Sample records for bacteroidetes

  1. Environmental and gut bacteroidetes: the food connection.

    PubMed

    Thomas, François; Hehemann, Jan-Hendrik; Rebuffet, Etienne; Czjzek, Mirjam; Michel, Gurvan

    2011-01-01

    Members of the diverse bacterial phylum Bacteroidetes have colonized virtually all types of habitats on Earth. They are among the major members of the microbiota of animals, especially in the gastrointestinal tract, can act as pathogens and are frequently found in soils, oceans and freshwater. In these contrasting ecological niches, Bacteroidetes are increasingly regarded as specialists for the degradation of high molecular weight organic matter, i.e., proteins and carbohydrates. This review presents the current knowledge on the role and mechanisms of polysaccharide degradation by Bacteroidetes in their respective habitats. The recent sequencing of Bacteroidetes genomes confirms the presence of numerous carbohydrate-active enzymes covering a large spectrum of substrates from plant, algal, and animal origin. Comparative genomics reveal specific Polysaccharide Utilization Loci shared between distantly related members of the phylum, either in environmental or gut-associated species. Moreover, Bacteroidetes genomes appear to be highly plastic and frequently reorganized through genetic rearrangements, gene duplications and lateral gene transfers (LGT), a feature that could have driven their adaptation to distinct ecological niches. Evidence is accumulating that the nature of the diet shapes the composition of the intestinal microbiota. We address the potential links between gut and environmental bacteria through food consumption. LGT can provide gut bacteria with original sets of utensils to degrade otherwise refractory substrates found in the diet. A more complete understanding of the genetic gateways between food-associated environmental species and intestinal microbial communities sheds new light on the origin and evolution of Bacteroidetes as animals' symbionts. It also raises the question as to how the consumption of increasingly hygienic and processed food deprives our microbiota from useful environmental genes and possibly affects our health.

  2. Genome-Based Taxonomic Classification of Bacteroidetes

    PubMed Central

    Hahnke, Richard L.; Meier-Kolthoff, Jan P.; García-López, Marina; Mukherjee, Supratim; Huntemann, Marcel; Ivanova, Natalia N.; Woyke, Tanja; Kyrpides, Nikos C.; Klenk, Hans-Peter; Göker, Markus

    2016-01-01

    The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogenetic analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved. PMID:28066339

  3. Genome-Based Taxonomic Classification of Bacteroidetes

    DOE PAGES

    Hahnke, Richard L.; Meier-Kolthoff, Jan P.; García-López, Marina; ...

    2016-12-20

    The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogeneticmore » analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved.« less

  4. Genome-Based Taxonomic Classification of Bacteroidetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahnke, Richard L.; Meier-Kolthoff, Jan P.; García-López, Marina

    The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for assessing their taxonomy based on the principles of phylogenetic classification and trees inferred from genome-scale data. No significant conflict between 16S rRNA gene and whole-genome phylogeneticmore » analysis is found, whereas many but not all of the involved taxa are supported as monophyletic groups, particularly in the genome-scale trees. Phenotypic and phylogenomic features support the separation of Balneolaceae as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new class Saprospiria from Chitinophagia. Epilithonimonas is nested within the older genus Chryseobacterium and without significant phenotypic differences; thus merging the two genera is proposed. Similarly, Vitellibacter is proposed to be included in Aequorivita. Flexibacter is confirmed as being heterogeneous and dissected, yielding six distinct genera. Hallella seregens is a later heterotypic synonym of Prevotella dentalis. Compared to values directly calculated from genome sequences, the G+C content mentioned in many species descriptions is too imprecise; moreover, corrected G+C content values have a significantly better fit to the phylogeny. Corresponding emendations of species descriptions are provided where necessary. Whereas most observed conflict with the current classification of Bacteroidetes is already visible in 16S rRNA gene trees, as expected whole-genome phylogenies are much better resolved.« less

  5. Analysis of Ecological Distribution and Genomic Content from a Clade of Bacteroidetes Endemic to Sulfidic Environments

    NASA Astrophysics Data System (ADS)

    Zhou, K.; Sylvan, J. B.; Hallam, S. J.

    2017-12-01

    The Bacteroidetes are a ubiquitous phylum of bacteria found in a wide variety of habitats. Marine Bacteroidetes are known to utilize complex carbohydrates and have a potentially important role in the global carbon cycle through processing these compounds, which are not digestible by many other microbes. Some members of the phylum are known to perform denitrification and are facultative anaerobes, but Bacteroidetes are not known to participate in sulfur redox cycling. Recently, it was shown that a clade of uncultured Bacteroidetes, including the VC2.1_Bac22 group, appears to be endemic to sulfidic environments, including hydrothermal vent sulfide chimneys, sediments and marine water column oxygen minimum zones (OMZs). This clade, dubbed the Sulfiphilic Bacteroidetes, is not detected in 16S rRNA amplicon studies from non-sulfidic environments. To test the hypothesis that the Sulphiphilic Bacteroidetes are involved in sulfur redox chemistry, we updated our meta-analysis of the clade using 16s rRNA sequences from public databases and employed single-cell genomics to survey their genomic potential using 19 single amplified genomes (SAGs) isolated from the seasonally anoxic Saanich Inlet, a seasonally hypoxic basin in British Columbia. Initial analysis of these SAGs indicates the Sulphiphilic Bacteroidetes may perform sulfur redox reactions using a three gene psrABC operon encoding the polysulfide reductase enzyme complex with a thiosulfate sulfurtransferase (rhodanese), which putatively uses cyanide to convert thiosulfate to sulfite, just upstream. Interestingly, this is the same configuration as discovered recently in some Marine Group A bacteria. Further aspects of the Sulphiphilic Bacteroidetes' genomic potential will be presented in light of their presence in sulfidic environments.

  6. Unexpected Stability of Bacteroidetes and Firmicutes Communities in Laboratory Biogas Reactors Fed with Different Defined Substrates

    PubMed Central

    Ratering, S.; Kramer, I.; Schmidt, M.; Zerr, W.; Schnell, S.

    2012-01-01

    In the present study, bacterial communities in 200-liter biogas reactors containing liquid manure consecutively fed with casein, starch, and cream were investigated over a period of up to 33 days. A 16S rRNA gene clone library identified Bacteroidetes and Firmicutes as the most abundant bacterial groups in the starting material, at 58.9% and 30.1% of sequences, respectively. The community development of both groups was monitored by real-time PCR and single-strand conformation polymorphism (SSCP) analysis. The Firmicutes and Bacteroidetes communities were unexpectedly stable and hardly influenced by batch-feeding events. The continuous feeding of starch led to community shifts that nevertheless contributed to a stable reactor performance. A longer starving period and a change in the pH value resulted in further community shifts within the Bacteroidetes but did not influence the Firmicutes. Predominant DNA bands from SSCP gels were cloned and sequenced. Sequences related to Peptococcaceae, Cytophagales, and Petrimonas sulfuriphila were found in all samples from all experiments. Real-time PCR demonstrated the abundance of members of the phylum Bacteroidetes and also reflected changes in gene copy numbers in conjunction with a changing pH value and acetate accumulation. PMID:22247168

  7. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes

    PubMed Central

    Foley, Matthew H.; Cockburn, Darrell W.; Koropatkin, Nicole M.

    2016-01-01

    Resident bacteria in the densely populated human intestinal tract must efficiently compete for carbohydrate nutrition. The Bacteroidetes, a dominant bacterial phylum in the mammalian gut, encode a plethora of discrete polysaccharide utilization loci (PULs) that are selectively activated to facilitate glycan capture at the cell surface. The most well-studied PUL-encoded glycan-up-take system is the starch utilization system (Sus) of Bacteroides thetaiotaomicron. The Sus includes the requisite proteins for binding and degrading starch at the surface of the cell preceding oligosaccharide transport across the outer membrane for further depolymerization to glucose in the periplasm. All mammalian gut Bacteroidetes possess analogous Sus-like systems that target numerous diverse glycans. In this review, we discuss what is known about the eight Sus proteins of B. thetaiotaomicron that define the Sus-like paradigm of nutrient acquisition that is exclusive to the Gram-negative Bacteroidetes. We emphasize the well-characterized outer membrane proteins SusDEF and the α-amylase SusG, each of which have unique structural features that allow them to interact with starch on the cell surface. Despite the apparent redundancy in starch-binding sites among these proteins, each has a distinct role during starch catabolism. Additionally, we consider what is known about how these proteins dynamically interact and cooperate in the membrane and propose a model for the formation of the Sus outer membrane complex. PMID:27137179

  8. Assessment of fecal pollution sources in a small northern-plains watershed using PCR and phylogenetic analyses of Bacteroidetes 16S rRNA gene

    USGS Publications Warehouse

    Lamendella, R.; Domingo, J.W.S.; Oerther, D.B.; Vogel, J.R.; Stoeckel, D.M.

    2007-01-01

    We evaluated the efficacy, sensitivity, host-specificity, and spatial/temporal dynamics of human- and ruminant-specific 16S rRNA gene Bacteroidetes markers used to assess the sources of fecal pollution in a fecally impacted watershed. Phylogenetic analyses of 1271 fecal and environmental 16S rRNA gene clones were also performed to study the diversity of Bacteroidetes in this watershed. The host-specific assays indicated that ruminant feces were present in 28-54% of the water samples and in all sampling seasons, with increasing frequency in downstream sites. The human-targeted assays indicated that only 3-5% of the water samples were positive for human fecal signals, although a higher percentage of human-associated signals (19-24%) were detected in sediment samples. Phylogenetic analysis indicated that 57% of all water clones clustered with yet-to-be-cultured Bacteroidetes species associated with sequences obtained from ruminant feces, further supporting the prevalence of ruminant contamination in this watershed. However, since several clusters contained sequences from multiple sources, future studies need to consider the potential cosmopolitan nature of these bacterial populations when assessing fecal pollution sources using Bacteroidetes markers. Moreover, additional data is needed in order to understand the distribution of Bacteroidetes host-specific markers and their relationship to water quality regulatory standards. ?? 2006 Federation of European Microbiological Societies.

  9. Assessing hog lagoon waste contamination in the Cape Fear Watershed using Bacteroidetes 16S rRNA gene pyrosequencing.

    PubMed

    Arfken, Ann M; Song, Bongkeun; Mallin, Michael A

    2015-09-01

    Hog lagoons can be major sources of waste and nutrient contamination to watersheds adjacent to pig farms. Fecal source tracking methods targeting Bacteroidetes 16S rRNA genes in pig fecal matter may underestimate or fail to detect hog lagoon contamination in riverine environments. In order to detect hog lagoon wastewater contamination in the Cape Fear Watershed, where a large number of hog farms are present, we conducted pyrosequencing analyses of Bacteroidetes 16S rRNA genes in hog lagoon waste and identified new hog lagoon-specific marker sequences. Additional pyrosequencing analyses of Bacteroidetes 16S rRNA genes were conducted with surface water samples collected at 4 sites during 5 months in the Cape Fear Watershed. Using an operational taxonomic unit (OTU) identity cutoff value of 97 %, these newly identified hog lagoon markers were found in 3 of the river samples, while only 1 sample contained the pig fecal marker. In the sample containing the pig fecal marker, there was a relatively high percentage (14.1 %) of the hog lagoon markers and a low pig fecal marker relative abundance of 0.4 % in the Bacteroidetes 16S rRNA gene sequences. This suggests that hog lagoon contamination must be somewhat significant in order for pig fecal markers to be detected, and low levels of hog lagoon contamination cannot be detected targeting only pig-specific fecal markers. Thus, new hog lagoon markers have a better detection capacity for lagoon waste contamination, and in conjunction with a pig fecal marker, provide a more comprehensive and accurate detection of hog lagoon waste contamination in susceptible watersheds.

  10. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING BACTEROIDETES 16S RDNA-BASED ASSAYS

    EPA Science Inventory

    Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate between ruminant and human fecal pollution. These assays are rapid and relatively inexpensive but have been used in a limited number of studies. In this study, we evaluated the efficacy o...

  11. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation.

    PubMed

    Peng, Bingyin; Huang, Shuangcheng; Liu, Tingting; Geng, Anli

    2015-05-17

    Xylose isomerase (XI) catalyzes the conversion of xylose to xylulose, which is the key step for anaerobic ethanolic fermentation of xylose. Very few bacterial XIs can function actively in Saccharomyces cerevisiae. Here, we illustrate a group of XIs that would function for xylose fermentation in S. cerevisiae through phylogenetic analysis, recombinant yeast strain construction, and xylose fermentation. Phylogenetic analysis of deposited XI sequences showed that XI evolutionary relationship was highly consistent with the bacterial taxonomic orders and quite a few functional XIs in S. cerevisiae were clustered with XIs from mammal gut Bacteroidetes group. An XI from Bacteroides valgutus in this cluster was actively expressed in S. cerevisiae with an activity comparable to the fungal XI from Piromyces sp. Two XI genes were isolated from the environmental metagenome and they were clustered with XIs from environmental Bacteroidetes group. These two XIs could not be expressed in yeast with activity. With the XI from B. valgutus expressed in S. cerevisiae, background yeast strains were optimized by pentose metabolizing pathway enhancement and adaptive evolution in xylose medium. Afterwards, more XIs from the mammal gut Bacteroidetes group, including those from B. vulgatus, Tannerella sp. 6_1_58FAA_CT1, Paraprevotella xylaniphila and Alistipes sp. HGB5, were individually transformed into S. cerevisiae. The known functional XI from Orpinomyces sp. ukk1, a mammal gut fungus, was used as the control. All the resulting recombinant yeast strains were able to ferment xylose. The respiration-deficient strains harboring B. vulgatus and Alistipes sp. HGB5 XI genes respectively obtained specific xylose consumption rate of 0.662 and 0.704 g xylose gcdw(-1) h(-1), and ethanol specific productivity of 0.277 and 0.283 g ethanol gcdw(-1) h(-1), much comparable to those obtained by the control strain carrying Orpinomyces sp. ukk1 XI gene. This study demonstrated that XIs clustered in the

  12. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING PCR AND PHYLOGENETIC ANALYSES OF BACTEROIDETES 16S RDNA

    EPA Science Inventory

    Traditional methods for assessing fecal pollution in environmental systems, such as monitoring for fecal coliforms are not capable of discriminating between different sources fecal pollution. Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate betw...

  13. Isolation and Complete Genome Sequence of Algibacter alginolytica sp. nov., a Novel Seaweed-Degrading Bacteroidetes Bacterium with Diverse Putative Polysaccharide Utilization Loci.

    PubMed

    Sun, Cong; Fu, Ge-Yi; Zhang, Chong-Ya; Hu, Jing; Xu, Lin; Wang, Rui-Jun; Su, Yue; Han, Shuai-Bo; Yu, Xiao-Yun; Cheng, Hong; Zhang, Xin-Qi; Huo, Ying-Yi; Xu, Xue-Wei; Wu, Min

    2016-05-15

    The members of the phylum Bacteroidetes are recognized as some of the most important specialists for the degradation of polysaccharides. However, in contrast to research on Bacteroidetes in the human gut, research on polysaccharide degradation by marine Bacteroidetes is still rare. The genus Algibacter belongs to the Flavobacteriaceae family of the Bacteroidetes, and most species in this genus are isolated from or near the habitat of algae, indicating a preference for the complex polysaccharides of algae. In this work, a novel brown-seaweed-degrading strain designated HZ22 was isolated from the surface of a brown seaweed (Laminaria japonica). On the basis of its physiological, chemotaxonomic, and genotypic characteristics, it is proposed that strain HZ22 represents a novel species in the genus Algibacter with the proposed name Algibacter alginolytica sp. nov. The genome of strain HZ22, the type strain of this species, harbors 3,371 coding sequences (CDSs) and 255 carbohydrate-active enzymes (CAZymes), including 104 glycoside hydrolases (GHs) and 18 polysaccharide lyases (PLs); this appears to be the highest proportion of CAZymes (∼7.5%) among the reported strains in the class Flavobacteria Seventeen polysaccharide utilization loci (PUL) are predicted to be specific for marine polysaccharides, especially algal polysaccharides from red, green, and brown seaweeds. In particular, PUL N is predicted to be specific for alginate. Taking these findings together with the results of assays of crude alginate lyases, we prove that strain HZ22(T) can completely degrade alginate. This work reveals that strain HZ22(T) has good potential for the degradation of algal polysaccharides and that the structure and related mechanism of PUL in strain HZ22(T) are worth further research. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Prevalence of new candidate pathogens Prevotella baroniae, Prevotella multisaccharivorax and as-yet-uncultivated Bacteroidetes clone X083 in primary endodontic infections.

    PubMed

    Rôças, Isabela N; Siqueira, José F

    2009-10-01

    Culture-independent studies have revealed a broad spectrum of oral bacterial taxa that may be associated with disease. This study investigated the prevalence of three new candidate oral pathogens: Prevotella baroniae, Prevotella multisaccharivorax, and as-yet-uncultivated Bacteroidetes oral clone X083 in primary endodontic infections using a devised culture-independent approach. Genomic DNA was isolated from samples taken from 52 teeth with different forms of apical periodontitis and used as template in a taxon-specific 16S rRNA gene-based nested polymerase chain reaction assay to determine the prevalence of the 3 target taxa. Bacteroidetes clone X083, P. baroniae, and P. multisaccharivorax were respectively detected in 81%, 43%, and 38% of the root canals of teeth associated with chronic apical periodontitis, in 60%, 40% and 40% of the canals of teeth with acute apical periodontitis, and in 14%, 24%, and 5% of the pus aspirates from acute apical abscesses. No targeted taxon was positively associated with abscesses or clinical symptoms. Overall, Bacteroidetes clone X083, P. baroniae, and P. multisaccharivorax were found in 50%, 35%, and 25% of the samples taken from primary endodontic infections, respectively. Findings confirmed that the two newly named species and the uncultivated phylotype targeted in this study are associated with different forms of apical periodontitis, and a pathogenetic or at least an ecologic role is suspected.

  15. Effects of dietary fiber preparations made from maize starch on the growth and activity of selected bacteria from the Firmicutes, Bacteroidetes, and Actinobacteria phyla in fecal samples from obese children.

    PubMed

    Barczynska, Renata; Slizewska, Katarzyna; Litwin, Mieczyslaw; Szalecki, Mieczyslaw; Kapusniak, Janusz

    2016-01-01

    Currently, there is a search for substances that would be very well tolerated by an organism and which could contribute to the activation of the growth of Bacteroidetes and Actinobacteria strains, with simultaneous inhibition of the growth of Firmicutes. High expectations in this regard are raised with the use of fiber preparations from starch - resistant corn dextrins, branched dextrins, resistant maltodextrins and soluble corn fiber. In this paper, the influence of fiber preparations made from corn starch was evaluated on growth and activity of Bacteroidetes, Actinobacteria and Firmicutes strains isolated from obese children. It was demonstrated that in the stool of obese children Firmicutes strains predominate, while Bacteroidetes and Actinobacteria strains were in the minority. A supplementation of fecal culture with fiber preparations did not cause any significant changes in the number of strains of Bacteroidetes and Firmicutes. Addition of fiber preparations to the fecal samples of obese children increased the amount of short-chain fatty acids, especially acetic (p < 0.01), propionic, butyric (p = 0.05) and lactic acid (p < 0.01).

  16. Phylogenetic analysis of faecal microbiota from captive cheetahs reveals underrepresentation of Bacteroidetes and Bifidobacteriaceae

    PubMed Central

    2014-01-01

    Background Imbalanced feeding regimes may initiate gastrointestinal and metabolic diseases in endangered felids kept in captivity such as cheetahs. Given the crucial role of the host’s intestinal microbiota in feed fermentation and health maintenance, a better understanding of the cheetah’s intestinal ecosystem is essential for improvement of current feeding strategies. We determined the phylogenetic diversity of the faecal microbiota of the only two cheetahs housed in an EAZA associated zoo in Flanders, Belgium, to gain first insights in the relative distribution, identity and potential role of the major community members. Results Taxonomic analysis of 16S rRNA gene clone libraries (702 clones) revealed a microbiota dominated by Firmicutes (94.7%), followed by a minority of Actinobacteria (4.3%), Proteobacteria (0.4%) and Fusobacteria (0.6%). In the Firmicutes, the majority of the phylotypes within the Clostridiales were assigned to Clostridium clusters XIVa (43%), XI (38%) and I (13%). Members of the Bacteroidetes phylum and Bifidobacteriaceae, two groups that can positively contribute in maintaining intestinal homeostasis, were absent in the clone libraries and detected in only marginal to low levels in real-time PCR analyses. Conclusions This marked underrepresentation is in contrast to data previously reported in domestic cats where Bacteroidetes and Bifidobacteriaceae are common residents of the faecal microbiota. Next to methodological differences, these findings may also reflect the apparent differences in dietary habits of both felid species. Thus, our results question the role of the domestic cat as the best available model for nutritional intervention studies in endangered exotic felids. PMID:24548488

  17. Phylogenetic analysis of faecal microbiota from captive cheetahs reveals underrepresentation of Bacteroidetes and Bifidobacteriaceae.

    PubMed

    Becker, Anne A M J; Hesta, Myriam; Hollants, Joke; Janssens, Geert P J; Huys, Geert

    2014-02-18

    Imbalanced feeding regimes may initiate gastrointestinal and metabolic diseases in endangered felids kept in captivity such as cheetahs. Given the crucial role of the host's intestinal microbiota in feed fermentation and health maintenance, a better understanding of the cheetah's intestinal ecosystem is essential for improvement of current feeding strategies. We determined the phylogenetic diversity of the faecal microbiota of the only two cheetahs housed in an EAZA associated zoo in Flanders, Belgium, to gain first insights in the relative distribution, identity and potential role of the major community members. Taxonomic analysis of 16S rRNA gene clone libraries (702 clones) revealed a microbiota dominated by Firmicutes (94.7%), followed by a minority of Actinobacteria (4.3%), Proteobacteria (0.4%) and Fusobacteria (0.6%). In the Firmicutes, the majority of the phylotypes within the Clostridiales were assigned to Clostridium clusters XIVa (43%), XI (38%) and I (13%). Members of the Bacteroidetes phylum and Bifidobacteriaceae, two groups that can positively contribute in maintaining intestinal homeostasis, were absent in the clone libraries and detected in only marginal to low levels in real-time PCR analyses. This marked underrepresentation is in contrast to data previously reported in domestic cats where Bacteroidetes and Bifidobacteriaceae are common residents of the faecal microbiota. Next to methodological differences, these findings may also reflect the apparent differences in dietary habits of both felid species. Thus, our results question the role of the domestic cat as the best available model for nutritional intervention studies in endangered exotic felids.

  18. Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes.

    PubMed

    Gruwell, Matthew E; Morse, Geoffrey E; Normark, Benjamin B

    2007-07-01

    Insects in the sap-sucking hemipteran suborder Sternorrhyncha typically harbor maternally transmitted bacteria housed in a specialized organ, the bacteriome. In three of the four superfamilies of Sternorrhyncha (Aphidoidea, Aleyrodoidea, Psylloidea), the bacteriome-associated (primary) bacterial lineage is from the class Gammaproteobacteria (phylum Proteobacteria). The fourth superfamily, Coccoidea (scale insects), has a diverse array of bacterial endosymbionts whose affinities are largely unexplored. We have amplified fragments of two bacterial ribosomal genes from each of 68 species of armored scale insects (Diaspididae). In spite of initially using primers designed for Gammaproteobacteria, we consistently amplified sequences from a different bacterial phylum: Bacteroidetes. We use these sequences (16S and 23S, 2105 total base pairs), along with previously published sequences from the armored scale hosts (elongation factor 1alpha and 28S rDNA) to investigate phylogenetic congruence between the two clades. The Bayesian tree for the bacteria is roughly congruent with that of the hosts, with 67% of nodes identical. Partition homogeneity tests found no significant difference between the host and bacterial data sets. Of thirteen Shimodaira-Hasegawa tests, comparing the original Bayesian bacterial tree to bacterial trees with incongruent clades forced to match the host tree, 12 found no significant difference. A significant difference in topology was found only when the entire host tree was compared with the entire bacterial tree. For the bacterial data set, the treelengths of the most parsimonious host trees are only 1.8-2.4% longer than that of the most parsimonious bacterial trees. The high level of congruence between the topologies indicates that these Bacteroidetes are the primary endosymbionts of armored scale insects. To investigate the phylogenetic affinities of these endosymbionts, we aligned some of their 16S rDNA sequences with other known Bacteroidetes

  19. Gliding Motility and Por Secretion System Genes Are Widespread among Members of the Phylum Bacteroidetes

    PubMed Central

    Zhu, Yongtao

    2013-01-01

    The phylum Bacteroidetes is large and diverse, with rapid gliding motility and the ability to digest macromolecules associated with many genera and species. Recently, a novel protein secretion system, the Por secretion system (PorSS), was identified in two members of the phylum, the gliding bacterium Flavobacterium johnsoniae and the nonmotile oral pathogen Porphyromonas gingivalis. The components of the PorSS are not similar in sequence to those of other well-studied bacterial secretion systems. The F. johnsoniae PorSS genes are a subset of the gliding motility genes, suggesting a role for the secretion system in motility. The F. johnsoniae PorSS is needed for assembly of the gliding motility apparatus and for secretion of a chitinase, and the P. gingivalis PorSS is involved in secretion of gingipain protease virulence factors. Comparative analysis of 37 genomes of members of the phylum Bacteroidetes revealed the widespread occurrence of gliding motility genes and PorSS genes. Genes associated with other bacterial protein secretion systems were less common. The results suggest that gliding motility is more common than previously reported. Microscopic observations confirmed that organisms previously described as nonmotile, including Croceibacter atlanticus, “Gramella forsetii,” Paludibacter propionicigenes, Riemerella anatipestifer, and Robiginitalea biformata, exhibit gliding motility. Three genes (gldA, gldF, and gldG) that encode an apparent ATP-binding cassette transporter required for F. johnsoniae gliding were absent from two related gliding bacteria, suggesting that the transporter may not be central to gliding motility. PMID:23123910

  20. Hydrogenotrophic culture enrichment reveals rumen Lachnospiraceae and Ruminococcaceae acetogens and hydrogen-responsive Bacteroidetes from pasture-fed cattle.

    PubMed

    Gagen, Emma J; Padmanabha, Jagadish; Denman, Stuart E; McSweeney, Christopher S

    2015-07-01

    Molecular information suggests that there is a broad diversity of acetogens in the rumen, distinct from any currently isolated acetogens. We combined molecular analysis with enrichment culture techniques to investigate this diversity further. Methane-inhibited, hydrogenotrophic enrichment cultures produced acetate as the dominant end product. Acetyl-CoA synthase gene analysis revealed putative acetogens in the cultures affiliated with the Lachnospiraceae and Ruminococcaceae as has been found in other rumen studies. No formyltetrahydrofolate synthetase genes affiliating with acetogens or with 'homoacetogen similarity' scores >90% were identified. To further investigate the hydrogenotrophic populations in these cultures and link functional gene information with 16S rRNA gene identity, cultures were subcultured quickly, twice, through medium without exogenous hydrogen, followed by incubation without exogenous hydrogen. Comparison of cultures lacking hydrogen and their parent cultures revealed novel Lachnospiraceae and Ruminococcaceae that diminished in the absence of hydrogen, supporting the hypothesis that they were likely the predominant acetogens in the enrichments. Interestingly, a range of Bacteroidetes rrs sequences that demonstrated <86% identity to any named isolate also diminished in cultures lacking hydrogen. Acetogens or sulphate reducers from the Bacteroidetes have not been reported previously; therefore this observation requires further investigation. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Emticicia oligotrophica gen. nov., sp. nov., a new member of the family 'Flexibacteraceae', phylum Bacteroidetes.

    PubMed

    Saha, P; Chakrabarti, T

    2006-05-01

    An aquatic bacterium, strain GPTSA100-15T, was isolated on nutritionally poor medium TSBA100 (tryptic soy broth diluted 100 times and solidified with 1.5 % agarose) and characterized using a polyphasic approach. The isolate was unable to grow on commonly used nutritionally rich media such as tryptic soy agar, nutrient agar and Luria-Bertani agar. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was affiliated with the family 'Flexibacteraceae' in the phylum Bacteroidetes. Phylogenetically, it showed closest similarity (94.0 %) with an uncultured bacterial clone, HP1A92, detected in a sludge microbial community. Among the culturable bacteria, the isolate had highest 16S rRNA gene sequence similarity with Leadbetterella byssophila 4M15T (87.8 %). Sequence similarities with other members of the phylum Bacteroidetes were less than 85 %. The fatty acid profile of the isolate grown on TSBA100 indicated that the major fatty acid was iso-C15:0, which is also present in many members of the family 'Flexibacteraceae'. Cells of strain GPTSA100-15T are Gram-negative, strictly aerobic rods. The DNA G+C content of the isolate is 36.9 mol%. Results of phenotypic, chemotaxonomic and phylogenetic analyses clearly indicate that strain GPTSA100-15T represents a new genus within the family 'Flexibacteraceae'; the name Emticicia gen. nov. is proposed for the genus, with Emticicia oligotrophica sp. nov. as the type species. The type strain of Emticicia oligotrophica is GPTSA100-15T (=MTCC 6937T=DSM 17448T).

  2. SPECIFICITY AND SENSITIVITY OF FECAL BACTEROIDETES HUMAN-SPECIFIC PRIMERS WITH FECAL AND WASTEWATER SAMPLES FROM THE U.S. MIDWEST AND NORTHEAST REGIONS

    EPA Science Inventory

    Numerous watersheds throughout the United States are impaired due to fecal contamination. Fecal Bacteroidetes is a group of anaerobic bacteria present in high concentrations in animal feces that has shown promise as a microbial source tracking indicator of human and othe...

  3. A protein secretion system linked to bacteroidete gliding motility and pathogenesis

    PubMed Central

    Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J.; Rhodes, Ryan G.; Nakayama, Koji

    2009-01-01

    Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum. PMID:19966289

  4. Inability of Prevotella bryantii to Form a Functional Shine-Dalgarno Interaction Reflects Unique Evolution of Ribosome Binding Sites in Bacteroidetes

    PubMed Central

    Accetto, Tomaž; Avguštin, Gorazd

    2011-01-01

    The Shine-Dalgarno (SD) sequence is a key element directing the translation to initiate at the authentic start codons and also enabling translation initiation to proceed in 5′ untranslated mRNA regions (5′-UTRs) containing moderately strong secondary structures. Bioinformatic analysis of almost forty genomes from the major bacterial phylum Bacteroidetes revealed, however, a general absence of SD sequence, drop in GC content and consequently reduced tendency to form secondary structures in 5′-UTRs. The experiments using the Prevotella bryantii TC1-1 expression system were in agreement with these findings: neither addition nor omission of SD sequence in the unstructured 5′-UTR affected the level of the reporter protein, non-specific nuclease NucB. Further, NucB level in P. bryantii TC1-1, contrary to hMGFP level in Escherichia coli, was five times lower when SD sequence formed part of the secondary structure with a folding energy -5,2 kcal/mol. Also, the extended SD sequences did not affect protein levels as in E. coli. It seems therefore that a functional SD interaction does not take place during the translation initiation in P. bryanttii TC1-1 and possibly other members of phylum Bacteroidetes although the anti SD sequence is present in 16S rRNA genes of their genomes. We thus propose that in the absence of the SD sequence interaction, the selection of genuine start codons in Bacteroidetes is accomplished by binding of ribosomal protein S1 to unstructured 5′-UTR as opposed to coding region which is inaccessible due to mRNA secondary structure. Additionally, we found that sequence logos of region preceding the start codons may be used as taxonomical markers. Depending on whether complete sequence logo or only part of it, such as information content and base proportion at specific positions, is used, bacterial genera or families and in some cases even bacterial phyla can be distinguished. PMID:21857964

  5. Exploring Microdiversity in Novel Kordia sp. (Bacteroidetes) with Proteorhodopsin from the Tropical Indian Ocean via Single Amplified Genomes

    PubMed Central

    Royo-Llonch, Marta; Ferrera, Isabel; Cornejo-Castillo, Francisco M.; Sánchez, Pablo; Salazar, Guillem; Stepanauskas, Ramunas; González, José M.; Sieracki, Michael E.; Speich, Sabrina; Stemmann, Lars; Pedrós-Alió, Carlos; Acinas, Silvia G.

    2017-01-01

    Marine Bacteroidetes constitute a very abundant bacterioplankton group in the oceans that plays a key role in recycling particulate organic matter and includes several photoheterotrophic members containing proteorhodopsin. Relatively few marine Bacteroidetes species have been described and, moreover, they correspond to cultured isolates, which in most cases do not represent the actual abundant or ecologically relevant microorganisms in the natural environment. In this study, we explored the microdiversity of 98 Single Amplified Genomes (SAGs) retrieved from the surface waters of the underexplored North Indian Ocean, whose most closely related isolate is Kordia algicida OT-1. Using Multi Locus Sequencing Analysis (MLSA) we found no microdiversity in the tested conserved phylogenetic markers (16S rRNA and 23S rRNA genes), the fast-evolving Internal Transcribed Spacer and the functional markers proteorhodopsin and the beta-subunit of RNA polymerase. Furthermore, we carried out a Fragment Recruitment Analysis (FRA) with marine metagenomes to learn about the distribution and dynamics of this microorganism in different locations, depths and size fractions. This analysis indicated that this taxon belongs to the rare biosphere, showing its highest abundance after upwelling-induced phytoplankton blooms and sinking to the deep ocean with large organic matter particles. This uncultured Kordia lineage likely represents a novel Kordia species (Kordia sp. CFSAG39SUR) that contains the proteorhodopsin gene and has a widespread spatial and vertical distribution. The combination of SAGs and MLSA makes a valuable approach to infer putative ecological roles of uncultured abundant microorganisms. PMID:28790980

  6. Performance Characteristics of qPCR Assays Targeting Human- and Ruminant-Associated Bacteroidetes for Microbial Source Tracking across Sixteen Countries on Six Continents

    PubMed Central

    2013-01-01

    Numerous quantitative PCR assays for microbial fecal source tracking (MST) have been developed and evaluated in recent years. Widespread application has been hindered by a lack of knowledge regarding the geographical stability and hence applicability of such methods beyond the regional level. This study assessed the performance of five previously reported quantitative PCR assays targeting human-, cattle-, or ruminant-associated Bacteroidetes populations on 280 human and animal fecal samples from 16 countries across six continents. The tested cattle-associated markers were shown to be ruminant-associated. The quantitative distributions of marker concentrations in target and nontarget samples proved to be essential for the assessment of assay performance and were used to establish a new metric for quantitative source-specificity. In general, this study demonstrates that stable target populations required for marker-based MST occur around the globe. Ruminant-associated marker concentrations were strongly correlated with total intestinal Bacteroidetes populations and with each other, indicating that the detected ruminant-associated populations seem to be part of the intestinal core microbiome of ruminants worldwide. Consequently tested ruminant-targeted assays appear to be suitable quantitative MST tools beyond the regional level while the targeted human-associated populations seem to be less prevalent and stable, suggesting potential for improvements in human-targeted methods. PMID:23755882

  7. Characterization of Potential Polysaccharide Utilization Systems in the Marine Bacteroidetes Gramella Flava JLT2011 Using a Multi-Omics Approach

    PubMed Central

    Tang, Kai; Lin, Yingfan; Han, Yu; Jiao, Nianzhi

    2017-01-01

    Members of phylum Bacteroidetes are distributed across diverse marine niches and Flavobacteria is often the predominant bacterial class decomposing algae-derived polysaccharides. Here, we report the complete genome of Gramella flava JLT2011 (Flavobacteria) isolated from surface water of the southeastern Pacific. A remarkable genomic feature is that the number of glycoside hydrolase (GH) genes in the genome of G. flava JLT2011 is more than 2-fold higher than that of other Gramella species. The functional profiles of the GHs suggest extensive variation in Gramella species. Growth experiments revealed that G. flava JLT2011 has the ability to utilize a wide range of polysaccharides for growth such as xylan and homogalacturonan in pectin. Nearly half of all GH genes were located on the multi-gene polysaccharide utilization loci (PUL) or PUL-like systems in G. flava JLT2011. This species was also found to harbor the two xylan PULs and a pectin PUL, respectively. Gene expression data indicated that more GHs and sugar-specific outer-membrane susC-susD systems were found in the presence of xylan than in the presence of pectin, suggesting a different strategy for heteropolymeric xylan and homoglacturonan utilization. Multi-omics data (transcriptomics, proteomics, and metabolomics) indicated that xylan PULs and pectin PUL are respectively involved in the catabolism of their corresponding polysaccharides. This work presents a comparison of polysaccharide decomposition within a genus and expands current knowledge on the diversity and function of PULs in marine Bacteroidetes, thereby deepening our understanding of their ecological role in polysaccharide remineralization in the marine system. PMID:28261179

  8. Dextrins from Maize Starch as Substances Activating the Growth of Bacteroidetes and Actinobacteria Simultaneously Inhibiting the Growth of Firmicutes, Responsible for the Occurrence of Obesity.

    PubMed

    Barczynska, Renata; Kapusniak, Janusz; Litwin, Mieczyslaw; Slizewska, Katarzyna; Szalecki, Mieczyslaw

    2016-06-01

    Unarguably, diet has a significant impact on human intestinal microbiota. The role of prebiotics as substances supporting the maintenance of appropriate body weight and reducing the demand for energy via stimulation of the growth of beneficial microbiota of the gut and formation products such as short-chain fatty acids, is more and more often highlighted. The objective of this study was to evaluate whether dextrins from maize starch resistant to enzymatic digestion stimulate the growth of Bacteroidetes and Actinobacteria strains representing a majority of the population of colon microbiota in lean individuals and limit the growth of Firmicutes bacterial strains representing a majority of the population of colon microbiota in obese individuals. The study was conducted with the use of in vitro method, using isolates from faeces of children characterized by normal weight, overweight and obesity. It was demonstrated that dextrins from maize starch equally efficient stimulate the growth of the isolates derived from normal-weight, overweight and obese children, and therefore may be added to foods as a beneficial component stimulating growth of strains belonging to Actinobacteria and Bacteroidetes for both overweight, obese and normal-weight children.

  9. New roles in hemicellulosic sugar fermentation for the uncultivated Bacteroidetes family BS11

    PubMed Central

    Solden, Lindsey M; Hoyt, David W; Collins, William B; Plank, Johanna E; Daly, Rebecca A; Hildebrand, Erik; Beavers, Timothy J; Wolfe, Richard; Nicora, Carrie D; Purvine, Sam O; Carstensen, Michelle; Lipton, Mary S; Spalinger, Donald E; Firkins, Jeffrey L; Wolfe, Barbara A; Wrighton, Kelly C

    2017-01-01

    Ruminants have co-evolved with their gastrointestinal microbial communities that digest plant materials to provide energy for the host. Some arctic and boreal ruminants have already shown to be vulnerable to dietary shifts caused by changing climate, yet we know little about the metabolic capacity of the ruminant microbiome in these animals. Here, we use meta-omics approaches to sample rumen fluid microbial communities from Alaskan moose foraging along a seasonal lignocellulose gradient. Winter diets with increased hemicellulose and lignin strongly enriched for BS11, a Bacteroidetes family lacking cultivated or genomically sampled representatives. We show that BS11 are cosmopolitan host-associated bacteria prevalent in gastrointestinal tracts of ruminants and other mammals. Metagenomic reconstruction yielded the first four BS11 genomes; phylogenetically resolving two genera within this previously taxonomically undefined family. Genome-enabled metabolic analyses uncovered multiple pathways for fermenting hemicellulose monomeric sugars to short-chain fatty acids (SCFA), metabolites vital for ruminant energy. Active hemicellulosic sugar fermentation and SCFA production was validated by shotgun proteomics and rumen metabolites, illuminating the role BS11 have in carbon transformations within the rumen. Our results also highlight the currently unknown metabolic potential residing in the rumen that may be vital for sustaining host energy in response to a changing vegetative environment. PMID:27959345

  10. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes.

    PubMed

    Larsbrink, Johan; Rogers, Theresa E; Hemsworth, Glyn R; McKee, Lauren S; Tauzin, Alexandra S; Spadiut, Oliver; Klinter, Stefan; Pudlo, Nicholas A; Urs, Karthik; Koropatkin, Nicole M; Creagh, A Louise; Haynes, Charles A; Kelly, Amelia G; Cederholm, Stefan Nilsson; Davies, Gideon J; Martens, Eric C; Brumer, Harry

    2014-02-27

    A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.

  11. New roles in hemicellulosic sugar fermentation for the uncultivated Bacteroidetes family BS11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solden, Lindsey M.; Hoyt, David W.; Collins, William B.

    Ruminants have co-evolved with their gastrointestinal microbial communities that aid in the digestion of plant materials, providing energy for the host. The ability of this microbiome to adapt to altered host diets may dramatically impact the survival of wild ruminant populations, especially under future climate change scenarios. To identify microorganisms capable of degrading climatedriven increases in woody biomass in arctic and boreal regions, we sampled rumen fluids from Alaskan moose foraging along a seasonal lignocellulose gradient. Winter diets with increased hemicellulose and lignin enriched for BS11, a Bacteroidetes family lacking cultivated or genomically sampled representatives. Our findings show that themore » BS11 are cosmopolitan host-associated bacteria prevalent in gastrointestinal tracts of ruminants and other mammals, including humans. Metagenomic reconstruction yielded the first five BS11 genomes, phylogenetically resolving two genera within this taxonomically undefined family. Genome-enabled metabolic analyses uncovered multiple pathways for degrading hemicellulose sugars to short-chain fatty acids, metabolites vital for ruminant energy. Active hemicellulosic fermentation, as well as butyrate and acetate production, were validated by shotgun proteomics and rumen metabolite detection using NMR, illuminating the vital role BS11 play in carbon transformations within the rumen. These results demonstrate that woody biomass selects for BS11 members, providing arctic herbivores with metabolic redundancy to sustain energy generation in a changing vegetative environment.« less

  12. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes

    PubMed Central

    Larsbrink, Johan; Rogers, Theresa E.; Hemsworth, Glyn R.; McKee, Lauren S.; Tauzin, Alexandra S.; Spadiut, Oliver; Klinter, Stefan; Pudlo, Nicholas A.; Urs, Karthik; Koropatkin, Nicole M.; Creagh, A. Louise; Haynes, Charles A.; Kelly, Amelia G.; Cederholm, Stefan Nilsson; Davies, Gideon J.; Martens, Eric C.; Brumer, Harry

    2014-01-01

    A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed “dietary fibre,” from the cell walls of diverse fruits and vegetables.1 Due to a paucity of alimentary enzymes encoded by the human genome,2 our ability to derive energy from dietary fibre depends on saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut.3,4 The xyloglucans (XyGs), in particular, are a ubiquitous family of highly branched plant cell wall polysaccharides5,6 whose mechanism(s) of degradation in the human gut and consequent importance in nutrition was heretofore unknown.1,7,8 Here, we demonstrate that a single, complex gene locus in Bacteroides ovatus confers xyloglucan catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous xyloglucan utilization loci (XyGULs) serve as genetic markers of xyloglucan catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.9–12 PMID:24463512

  13. Ichthyobacterium seriolicida gen. nov., sp. nov., a member of the phylum 'Bacteroidetes', isolated from yellowtail fish (Seriola quinqueradiata) affected by bacterial haemolytic jaundice, and proposal of a new family, Ichthyobacteriaceae fam. nov.

    PubMed

    Takano, Tomokazu; Matsuyama, Tomomasa; Sakai, Takamitsu; Nakamura, Yoji; Kamaishi, Takashi; Nakayasu, Chihaya; Kondo, Hidehiro; Hirono, Ikuo; Fukuda, Yutaka; Sorimachi, Minoru; Iida, Takaji

    2016-02-01

    A novel Gram-stain-negative, rod-shaped (0.3 × 4-6 μm), non-flagellated, aerobic strain with gliding motility, designated JBKA-6T, was isolated in 1991 from a yellowtail fish, Seriola quinqueradiata, showing symptoms of bacterial haemolytic jaundice. 16S rRNA gene sequence analysis showed that strain JBKA-6T was related most closely to members of the family Flavobacteriaceae in the phylum 'Bacteroidetes'. Furthermore, based on gyrB gene sequence analysis, JBKA-6T was classified into a single clade within the order Flavobacteriales, which was distinct from the known clades of the families Flavobacteriaceae, Blattabacteriaceae and Cryomorphaceae. The predominant isoprenoid quinone was identified as MK-6 (97.9 %), and the major cellular fatty acids (>10 %) were C14 : 0 and iso-C15 : 0. The main polar lipids were phosphatidylethanolamine, three unidentified phospholipids, two unidentified aminophospholipids and two unidentified polar lipids. The DNA G+C content of JBKA-6T, as derived from its whole genome, was 33.4 mol%. The distinct phylogenetic position and phenotypic traits of strain JBKA-6T distinguish it from all other described species of the phylum 'Bacteroidetes', and therefore it was concluded that strain JBKA-6T represents a new member of the phylum 'Bacteroidetes', and the name Ichthyobacterium seriolicida gen. nov., sp. nov. is proposed. The type strain of Ichthyobacterium seriolicida is JBKA-6T ( = ATCC BAA-2465T = JCM 18228T). We also propose that Icthyobacterium gen. nov. is the type genus of a novel family, Ichthyobacteriaceae fam. nov.

  14. Automated Sampling Procedures Supported by High Persistence of Bacterial Fecal Indicators and Bacteroidetes Genetic Microbial Source Tracking Markers in Municipal Wastewater during Short-Term Storage at 5°C

    PubMed Central

    Mayer, R. E.; Vierheilig, J.; Egle, L.; Reischer, G. H.; Saracevic, E.; Mach, R. L.; Kirschner, A. K. T.; Zessner, M.; Farnleitner, A. H.

    2015-01-01

    Because of high diurnal water quality fluctuations in raw municipal wastewater, the use of proportional autosampling over a period of 24 h at municipal wastewater treatment plants (WWTPs) to evaluate carbon, nitrogen, and phosphorus removal has become a standard in many countries. Microbial removal or load estimation at municipal WWTPs, however, is still based on manually recovered grab samples. The goal of this study was to establish basic knowledge regarding the persistence of standard bacterial fecal indicators and Bacteroidetes genetic microbial source tracking markers in municipal wastewater in order to evaluate their suitability for automated sampling, as the potential lack of persistence is the main argument against such procedures. Raw and secondary treated wastewater of municipal origin from representative and well-characterized biological WWTPs without disinfection (organic carbon and nutrient removal) was investigated in microcosm experiments at 5 and 21°C with a total storage time of 32 h (including a 24-h autosampling component and an 8-h postsampling phase). Vegetative Escherichia coli and enterococci, as well as Clostridium perfringens spores, were selected as indicators for cultivation-based standard enumeration. Molecular analysis focused on total (AllBac) and human-associated genetic Bacteroidetes (BacHum-UCD, HF183 TaqMan) markers by using quantitative PCR, as well as 16S rRNA gene-based next-generation sequencing. The microbial parameters showed high persistence in both raw and treated wastewater at 5°C under the storage conditions used. Surprisingly, and in contrast to results obtained with treated wastewater, persistence of the microbial markers in raw wastewater was also high at 21°C. On the basis of our results, 24-h autosampling procedures with 5°C storage conditions can be recommended for the investigation of fecal indicators or Bacteroidetes genetic markers at municipal WWTPs. Such autosampling procedures will contribute to better

  15. Apibacter adventoris gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from honey bees.

    PubMed

    Kwong, Waldan K; Moran, Nancy A

    2016-03-01

    Honey bees and bumble bees harbour a small, defined set of gut bacterial associates. Strains matching sequences from 16S rRNA gene surveys of bee gut microbiotas were isolated from two honey bee species from East Asia. These isolates were mesophlic, non-pigmented, catalase-positive and oxidase-negative. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, C16 : 0 and C16 : 0 3-OH. The DNA G+C content was 29-31 mol%. They had ∼87 % 16S rRNA gene sequence identity to the closest relatives described. Phylogenetic reconstruction using 20 protein-coding genes showed that these bee-derived strains formed a highly supported monophyletic clade, sister to the clade containing species of the genera Chryseobacterium and Elizabethkingia within the family Flavobacteriaceae of the phylum Bacteroidetes. On the basis of phenotypic and genotypic characteristics, we propose placing these strains in a novel genus and species: Apibacter adventoris gen. nov., sp. nov. The type strain of Apibacter adventoris is wkB301T ( = NRRL B-65307T = NCIMB 14986T).

  16. Molecular Mechanism by which Prominent Human Gut Bacteroidetes Utilize Mixed-Linkage Beta-Glucans, Major Health-Promoting Cereal Polysaccharides.

    PubMed

    Tamura, Kazune; Hemsworth, Glyn R; Déjean, Guillaume; Rogers, Theresa E; Pudlo, Nicholas A; Urs, Karthik; Jain, Namrata; Davies, Gideon J; Martens, Eric C; Brumer, Harry

    2017-10-10

    Microbial utilization of complex polysaccharides is a major driving force in shaping the composition of the human gut microbiota. There is a growing appreciation that finely tuned polysaccharide utilization loci enable ubiquitous gut Bacteroidetes to thrive on the plethora of complex polysaccharides that constitute "dietary fiber." Mixed-linkage β(1,3)/β(1,4)-glucans (MLGs) are a key family of plant cell wall polysaccharides with recognized health benefits but whose mechanism of utilization has remained unclear. Here, we provide molecular insight into the function of an archetypal MLG utilization locus (MLGUL) through a combination of biochemistry, enzymology, structural biology, and microbiology. Comparative genomics coupled with growth studies demonstrated further that syntenic MLGULs serve as genetic markers for MLG catabolism across commensal gut bacteria. In turn, we surveyed human gut metagenomes to reveal that MLGULs are ubiquitous in human populations globally, which underscores the importance of gut microbial metabolism of MLG as a common cereal polysaccharide. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. An Endohyphal Bacterium (Chitinophaga, Bacteroidetes) Alters Carbon Source Use by Fusarium keratoplasticum (F. solani Species Complex, Nectriaceae)

    PubMed Central

    Shaffer, Justin P.; U'Ren, Jana M.; Gallery, Rachel E.; Baltrus, David A.; Arnold, A. Elizabeth

    2017-01-01

    Bacterial endosymbionts occur in diverse fungi, including members of many lineages of Ascomycota that inhabit living plants. These endosymbiotic bacteria (endohyphal bacteria, EHB) often can be removed from living fungi by antibiotic treatment, providing an opportunity to assess their effects on functional traits of their fungal hosts. We examined the effects of an endohyphal bacterium (Chitinophaga sp., Bacteroidetes) on substrate use by its host, a seed-associated strain of the fungus Fusarium keratoplasticum, by comparing growth between naturally infected and cured fungal strains across 95 carbon sources with a Biolog® phenotypic microarray. Across the majority of substrates (62%), the strain harboring the bacterium significantly outperformed the cured strain as measured by respiration and hyphal density. These substrates included many that are important for plant- and seed-fungus interactions, such as D-trehalose, myo-inositol, and sucrose, highlighting the potential influence of EHB on the breadth and efficiency of substrate use by an important Fusarium species. Cases in which the cured strain outperformed the strain harboring the bacterium were observed in only 5% of substrates. We propose that additive or synergistic substrate use by the fungus-bacterium pair enhances fungal growth in this association. More generally, alteration of the breadth or efficiency of substrate use by dispensable EHB may change fungal niches in short timeframes, potentially shaping fungal ecology and the outcomes of fungal-host interactions. PMID:28382021

  18. Nafulsella turpanensis gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from soil.

    PubMed

    Zhang, Lei; Shen, Xihui; Liu, Yingbao; Li, Shiqing

    2013-05-01

    A Gram-staining-negative, rod-shaped, gliding and pale-pink-pigmented bacterium, designated strain ZLM-10(T), was isolated from a soil sample collected from an arid area in Xinjiang province, China, and characterized in a taxonomic study using a polyphasic approach. The novel strain grew optimally at 30-37 °C and in the presence of 2 % (w/v) sea salts. The only respiratory quinone detected was MK-7 and the major cellular fatty acids were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 0 and iso-C17 : 0 3-OH. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid and two unidentified aminophospholipids. The DNA G+C content was 45.4 mol%. Flexirubin-type pigments were not produced. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZLM-10(T) was a member of the phylum Bacteroidetes and appeared most closely related to Cesiribacter roseus 311(T) (90.2 % sequence similarity), Marivirga sericea LMG 13021(T) (89.2 %), Cesiribacter andamanensis AMV16(T) (89.1 %) and Marivirga tractuosa DSM 4126(T) (89.1 %). On the basis of phenotypic and genotypic data and phylogenetic inference, strain ZLM-10(T) should be classified as a novel species of a new genus in the family Flammeovirgaceae, for which the name Nafulsella turpanensis gen. nov., sp. nov. is proposed. The type strain of the type species is ZLM-10(T) ( = CCTCC AB 208222(T) = KCTC 23983(T)).

  19. Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems: Variable phage-host infection interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina

    Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less

  20. Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems: Variable phage-host infection interactions

    DOE PAGES

    Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina; ...

    2016-06-28

    Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less

  1. Identification of Carbohydrate Metabolism Genes in the Metagenome of a Marine Biofilm Community Shown to Be Dominated by Gammaproteobacteria, Bacteroidetes

    PubMed Central

    Edwards, Jennifer L.; Smith, Darren L.; Connolly, John; McDonald, James E.; Cox, Michael J.; Joint, Ian; Edwards, Clive; McCarthy, Alan J.

    2010-01-01

    Polysaccharides are an important source of organic carbon in the marine environment, degradation of the insoluble, globally abundant cellulose is a major component of the marine carbon cycle. Although a number of species of cultured bacteria are known to degrade crystalline cellulose, little is known of the polysaccharide hydrolases expressed by cellulose-degrading microbial communities, particularly in the marine environment. Next generation 454 Pyrosequencing was applied to analyze the microbial community that colonizes, degrades insoluble polysaccharides in situ in the Irish Sea. The bioinformatics tool MG-RAST was used to examine the randomly sampled data for taxonomic markers, functional genes,, showed that the community was dominated by members of the Gammaproteobacteria, Bacteroidetes. Furthermore, the identification of 211 gene sequences matched to a custom-made database comprising the members of nine glycoside hydrolase families revealed an extensive repertoire of functional genes predicted to be involved in cellulose utilization. This demonstrates that the use of an in situ cellulose baiting method yielded a marine microbial metagenome considerably enriched in functional genes involved in polysaccharide degradation. The research reported here is the first designed to specifically address the bacterial communities that colonize, degrade cellulose in the marine environment, to evaluate the glycoside hydrolase (cellulase, chitinase) gene repertoire of that community, in the absence of the biases associated with PCR-based molecular techniques. PMID:24710093

  2. Occurrence of human-associated Bacteroidetes genetic source tracking markers in raw and treated wastewater of municipal and domestic origin and comparison to standard and alternative indicators of faecal pollution

    PubMed Central

    Mayer, R.E.; Bofill-Mas, S.; Egle, L.; Reischer, G.H.; Schade, M.; Fernandez-Cassi, X.; Fuchs, W.; Mach, R.L.; Lindner, G.; Kirschner, A.; Gaisbauer, M.; Piringer, H.; Blaschke, A.P.; Girones, R.; Zessner, M.; Sommer, R.; Farnleitner, A.H.

    2016-01-01

    This was a detailed investigation of the seasonal occurrence, dynamics, removal and resistance of human-associated genetic Bacteroidetes faecal markers (GeBaM) compared with ISO-based standard faecal indicator bacteria (SFIB), human-specific viral faecal markers and one human-associated Bacteroidetes phage in raw and treated wastewater of municipal and domestic origin. Characteristics of the selected activated sludge wastewater treatment plants (WWTPs) from Austria and Germany were studied in detail (WWTPs, n = 13, connected populations from 3 to 49000 individuals), supported by volume-proportional automated 24-h sampling and chemical water quality analysis. GeBaM were consistently detected in high concentrations in raw (median log10 8.6 marker equivalents (ME) 100 ml−1) and biologically treated wastewater samples (median log10 6.2–6.5 ME 100 ml−1), irrespective of plant size, type and time of the season (n = 53–65). GeBaM, Escherichia coli, and enterococci concentrations revealed the same range of statistical variability for raw (multiplicative standard deviations s* = 2.3–3.0) and treated wastewater (s* = 3.7–4.5), with increased variability after treatment. Clostridium perfringens spores revealed the lowest variability for raw wastewater (s* = 1.5). In raw wastewater correlations among microbiological parameters were only detectable between GeBaM, C. perfringens and JC polyomaviruses. Statistical associations amongst microbial parameters increased during wastewater treatment. Two plants with advanced treatment were also investigated, revealing a minimum log10 5.0 (10th percentile) reduction of GeBaM in the activated sludge membrane bioreactor, but no reduction of the genetic markers during UV irradiation (254 nm). This study highlights the potential of human-associated GeBaM to complement wastewater impact monitoring based on the determination of SFIB. In addition, human-specific JC polyomaviruses and adenoviruses seem to be a valuable support if

  3. Sunxiuqinia faeciviva sp. nov., a facultatively anaerobic organoheterotroph of the Bacteroidetes isolated from deep subseafloor sediment.

    PubMed

    Takai, Ken; Abe, Mariko; Miyazaki, Masayuki; Koide, Osamu; Nunoura, Takuro; Imachi, Hiroyuki; Inagaki, Fumio; Kobayashi, Tohru

    2013-05-01

    A facultatively anaerobic organoheterotroph, designated JAM-BA0302(T), was isolated from a deep subseafloor sediment at a depth of 247.1 m below the seafloor off the Shimokita Peninsula of Japan in the north-western Pacific Ocean (Site C9001 , water depth 1180 m). Cells of strain JAM-BA0302(T) showed gliding motility and were thin, long rods with peritrichous fimbriae-like structures. Growth occurred at 4-37 °C (optimum 30 °C; doubling time 8 h), at pH 5.4-8.3 (optimum pH 7.5) and with 5-60 g NaCl l(-1) (optimum 20-25 g l(-1)). The isolate utilized proteinaceous substrates such as yeast extract, tryptone, casein and Casamino acids with O2 respiration or fermentation. Strain JAM-BA0302(T) was a piezotolerant bacterium that could grow at pressures as high as 25 MPa under aerobic conditions and 10 MPa under anaerobic conditions. The G+C content of the genomic DNA was 43.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JAM-BA0302(T) was most closely related to yet-undescribed strains recently isolated from various marine sedimentary environments (>99.6 % 16S rRNA gene sequence similarity) and was moderately related to Sunxiuqinia elliptica DQHS-4(T), isolated from a sea cucumber farm sediment (95.5 % 16S rRNA gene sequence similarity) within the Bacteroidetes. The phylogenetic analysis suggested that the isolate should belong to the genus Sunxiuqinia. However, low DNA-DNA relatedness (<11 %) and many physiological and molecular properties differentiated the isolate from those previously describedhttp://dx.doi.org/10.1601/nm.22746. We propose here a novel species of the genus Sunxiuqinia, with the name Sunxiuqinia faeciviva sp. nov. The type strain is JAM-BA0302(T) ( = JCM 15547(T)  = NCIMB 14481(T)).

  4. Rhodonellum psychrophilum gen. nov., sp. nov., a novel psychrophilic and alkaliphilic bacterium of the phylum Bacteroidetes isolated from Greenland.

    PubMed

    Schmidt, Mariane; Priemé, Anders; Stougaard, Peter

    2006-12-01

    A novel alkaliphilic and psychrophilic bacterium was isolated from the cold and alkaline ikaite tufa columns of the Ikka Fjord in south-west Greenland. According to 16S rRNA gene sequence analysis, strain GCM71(T) belonged to the family 'Flexibacteraceae' in the phylum Bacteroidetes. Strain GCM71(T), together with five related isolates from ikaite columns, formed a separate cluster with 86-93 % gene sequence similarity to their closest relative, Belliella baltica. The G+C content of the DNA from strain GCM71(T) was 43.1 mol%, whereas that of B. baltica was reported to be 35 mol%. DNA-DNA hybridization between strain GCM71(T) and B. baltica was 9.5 %. The strain was red pigmented, Gram-negative, strictly aerobic with non-motile, rod-shaped cells. The optimal growth conditions for strain GCM71(T) were pH 9.2-10.0, 5 degrees C and 0.6 % NaCl. The fatty acid profile of the novel strain was dominated by branched and unsaturated fatty acids (90-97 %), with a high abundance of iso-C(17 : 1)omega9c (17.5 %), iso-C(17 : 0) 3-OH (17.5 %) and summed feature 3, comprising iso-C(15 : 0) 2-OH and/or C(16 : 1)omega7c (12.6 %). Phylogenetic, chemotaxonomic and physiological characteristics showed that the novel strain could not be affiliated to any known genus. A new genus, Rhodonellum gen. nov., is proposed to accommodate the novel strain. Strain GCM71(T) (=DSM 17998(T)=LMG 23454(T)) is proposed as the type strain of the type species, Rhodonellum psychrophilum sp. nov.

  5. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX.

    PubMed

    Van den Abbeele, Pieter; Grootaert, Charlotte; Marzorati, Massimo; Possemiers, Sam; Verstraete, Willy; Gérard, Philippe; Rabot, Sylvie; Bruneau, Aurélia; El Aidy, Sahar; Derrien, Muriel; Zoetendal, Erwin; Kleerebezem, Michiel; Smidt, Hauke; Van de Wiele, Tom

    2010-08-01

    Dynamic, multicompartment in vitro gastrointestinal simulators are often used to monitor gut microbial dynamics and activity. These reactors need to harbor a microbial community that is stable upon inoculation, colon region specific, and relevant to in vivo conditions. Together with the reproducibility of the colonization process, these criteria are often overlooked when the modulatory properties from different treatments are compared. We therefore investigated the microbial colonization process in two identical simulators of the human intestinal microbial ecosystem (SHIME), simultaneously inoculated with the same human fecal microbiota with a high-resolution phylogenetic microarray: the human intestinal tract chip (HITChip). Following inoculation of the in vitro colon compartments, microbial community composition reached steady state after 2 weeks, whereas 3 weeks were required to reach functional stability. This dynamic colonization process was reproducible in both SHIME units and resulted in highly diverse microbial communities which were colon region specific, with the proximal regions harboring saccharolytic microbes (e.g., Bacteroides spp. and Eubacterium spp.) and the distal regions harboring mucin-degrading microbes (e.g., Akkermansia spp.). Importantly, the shift from an in vivo to an in vitro environment resulted in an increased Bacteroidetes/Firmicutes ratio, whereas Clostridium cluster IX (propionate producers) was enriched compared to clusters IV and XIVa (butyrate producers). This was supported by proportionally higher in vitro propionate concentrations. In conclusion, high-resolution analysis of in vitro-cultured gut microbiota offers new insight on the microbial colonization process and indicates the importance of digestive parameters that may be crucial in the development of new in vitro models.

  6. Structure, Function and Diversity of the Healthy Human Microbiome

    DTIC Science & Technology

    2012-06-14

    1 4 J U N E 2 0 1 2 Macmillan Publishers Limited. All rights reserved©2012 Phyla Firmicutes Actinobacteria Bacteroidetes Proteobacteria Fusobacteria...ra y– C ur tis ) Actinobacteria | Actinobacteria Bacteroidetes|Bacteroidia Firmicutes|Bacilli Firmicutes|Negativicutes Proteobacteria|Gammaproteobacteria...spp. dominating all three and correlating in abundance. However, Lactobacillus varied inversely with the Actinobacteria and Bacteroidetes (see Supplemen

  7. Microbial Community Shifts Associated with RDX Loss in a Saturated and Well-Drained Surface Soil

    DTIC Science & Technology

    2005-03-01

    community containing firmicutes (36%), proteobacteria (54%), actinobacteria (8%), and bacteroidetes (1%). The unsaturated soil contained a greater number of...genera (2.5 times that of the saturated soil) within similar phyla (19% firmicutes, 66% proteobacteria, 6% actinobacteria , 2% bacteroidetes, and 7...by the PLFA analysis. The T-RFLP analysis identified firmicutes (36%), proteobacteria (54%), actinobacteria (8%), and bacteroidetes (1%) in the

  8. Metagenomic analysis of bacterial community structure and diversity of lignocellulolytic bacteria in Vietnamese native goat rumen.

    PubMed

    Do, Thi Huyen; Dao, Trong Khoa; Nguyen, Khanh Hoang Viet; Le, Ngoc Giang; Nguyen, Thi Mai Phuong; Le, Tung Lam; Phung, Thu Nguyet; van Straalen, Nico M; Roelofs, Dick; Truong, Nam Hai

    2018-05-01

    In a previous study, analysis of Illumina sequenced metagenomic DNA data of bacteria in Vietnamese goats' rumen showed a high diversity of putative lignocellulolytic genes. In this study, taxonomy speculation of microbial community and lignocellulolytic bacteria population in the rumen was conducted to elucidate a role of bacterial structure for effective degradation of plant materials. The metagenomic data had been subjected into Basic Local Alignment Search Tool (BLASTX) algorithm and the National Center for Biotechnology Information non-redundant sequence database. Here the BLASTX hits were further processed by the Metagenome Analyzer program to statistically analyze the abundance of taxa. Microbial community in the rumen is defined by dominance of Bacteroidetes compared to Firmicutes. The ratio of Firmicutes versus Bacteroidetes was 0.36:1. An abundance of Synergistetes was uniquely identified in the goat microbiome may be formed by host genotype. With regard to bacterial lignocellulose degraders, the ratio of lignocellulolytic genes affiliated with Firmicutes compared to the genes linked to Bacteroidetes was 0.11:1, in which the genes encoding putative hemicellulases, carbohydrate esterases, polysaccharide lyases originated from Bacteroidetes were 14 to 20 times higher than from Firmicutes. Firmicutes seem to possess more cellulose hydrolysis capacity showing a Firmicutes/Bacteroidetes ratio of 0.35:1. Analysis of lignocellulolytic potential degraders shows that four species belonged to Bacteroidetes phylum, while two species belonged to Firmicutes phylum harbouring at least 12 different catalytic domains for all lignocellulose pretreatment, cellulose, as well as hemicellulose saccharification. Based on these findings, we speculate that increasing the members of Bacteroidetes to keep a low ratio of Firmicutes versus Bacteroidetes in goat rumen has resulted most likely in an increased lignocellulose digestion.

  9. Application of Microarrays and qPCR to Identify Phylogenetic and Functional Biomarkers Diagnostic of Microbial Communities that Biodegrade Chlorinated Solvents to Ethene

    DTIC Science & Technology

    2012-01-01

    Acidobacteria, Actinobacteria , Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, and all classes of Proteobacteria accounted for 76% of this dynamic...the course of treatment (Figure 4). The dominant members in cluster group 2 were from Actinobacteria (24 subfamilies), Bacteroidetes (25 subfamilies

  10. Identification of genes encoding the type IX secretion system and secreted proteins in Flavobacterium columnare IA-S-4

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, a member of the phylum Bacteroidetes, causes columnaris disease in wild and aquaculture-reared freshwater fish. The mechanisms responsible for columnaris disease are not known. Many members of the phylum Bacteroidetes use type IX secretion systems (T9SSs) to secrete enzymes...

  11. The type IX secretion system is required for virulence of the fish pathogen Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare, a member of the phylum Bacteroidetes, causes columnaris disease in wild and aquaculture-reared freshwater fish. The mechanisms responsible for columnaris disease are not known. Many members of the phylum Bacteroidetes use type IX secretion systems (T9SSs) to secrete enzymes...

  12. Mooreia alkaloidigena gen. nov., sp. nov. and Catalinimonas alkaloidigena gen. nov., sp. nov., alkaloid-producing marine bacteria in the proposed families Mooreiaceae fam. nov. and Catalimonadaceae fam. nov. in the phylum Bacteroidetes.

    PubMed

    Choi, Eun Ju; Beatty, Deanna S; Paul, Lauren A; Fenical, William; Jensen, Paul R

    2013-04-01

    Bacterial strains CNX-216(T) and CNU-914(T) were isolated from marine sediment samples collected from Palmyra Atoll and off Catalina Island, respectively. Both strains were gram-negative and aerobic and produce deep-orange to pink colonies and alkaloid secondary metabolites. Cells of strain CNX-216(T) were short, non-motile rods, whereas cells of strain CNU-914(T) were short, curved rods with gliding motility. The DNA G+C contents of CNX-216(T) and CNU-914(T) were respectively 57.7 and 44.4 mol%. Strains CNX-216(T) and CNU-914(T) contained MK-7 as the predominant menaquinone and iso-C15 : 0 and C16 : 1ω5c as the major fatty acids. Phylogenetic analyses revealed that both strains belong to the order Cytophagales in the phylum Bacteroidetes. Strain CNX-216(T) exhibited low 16S rRNA gene sequence identity (87.1 %) to the nearest type strain, Cesiribacter roseus 311(T), and formed a well-supported lineage that is outside all currently described families in the order Cytophagales. Strain CNU-914(T) shared 97.6 % 16S rRNA gene sequence identity with 'Porifericola rhodea' N5EA6-3A2B and, together with 'Tunicatimonas pelagia' N5DB8-4 and four uncharacterized marine bacteria isolated as part of this study, formed a lineage that is clearly distinguished from other families in the order Cytophagales. Based on our polyphasic taxonomic characterization, we propose that strains CNX-216(T) and CNU-914(T) represent novel genera and species, for which we propose the names Mooreia alkaloidigena gen. nov., sp. nov. (type strain CNX-216(T)  = DSM 25187(T)  = KCCM 90102(T)) and Catalinimonas alkaloidigena gen. nov., sp. nov. (type strain CNU-914(T)  = DSM 25186(T)  = KCCM 90101(T)) within the new families Mooreiaceae fam. nov. and Catalimonadaceae fam. nov.

  13. Effects of Oxygen on Biodegradation of Fuels in a Corroding Environment

    DTIC Science & Technology

    2013-06-12

    Planctomycetes o Lentisphaerae • Firmicutes • Chloroflexi oChlamydiae • Bacteroidetes • Actinobacteria 100% 90% Q) (,) 80% r:::: ca 70% "C r... Actinobacteria 1.4%~ 2.1 % Chlamydiae 1.4% Lentisphaerae 22.4% 35.0% V errucomicrobia 2.1 % Planctomycetes 6.8% 10.2% 12.5% Bacteroidetes 30.1 % 17.0% 14.0

  14. Marine Microbial Community Response to Inorganic and Organic Sediment Amendments in Laboratory Mesocosms

    DTIC Science & Technology

    2011-07-23

    organoclay in geotextile mats), acetate, and chitin on environmental microbial communities in overlying water and sediment profiles are reported here...Significant changes in both bacterial cell densities and populations were observed in response to amendments of apatiteþorganoclay, chitin , and acetate... chitin treatment led to a dominance of Bacteroidetes and Alphaproteobacteria. In amended sediments, Firmicutes, Bacteroidetes, and Deltaproteobacteria

  15. Molecular Characterization of Wetland Soil Bacterial Communities in Constructed Mesocosms

    DTIC Science & Technology

    2008-03-01

    Acido., Acidobacteria; Actino., Actinobacteria ; Bacter., Bacteroidetes; Chloro., Chloroflexi; Firm., Firmicutes; Gemma., Gemmatimonadetes; Lenti...Planted sequences (B) using RDP Classifier. Abbreviations: Acidobacteria; Actino., Actinobacteria ; Bacter., Bacteroidetes; Chloro., Chloroflexi...4.2 4.79 Lentisphaerae 0.13 0 Actinobacteria 2.5 3.04 Nitrospira 1.18 1.07 Chloroflexi 3.55 3.04 Acidobacteria 16.16 12.87 Proteobacteria 34.95

  16. Gut Microbiota Composition in Mid-Pregnancy Is Associated with Gestational Weight Gain but Not Prepregnancy Body Mass Index.

    PubMed

    Aatsinki, Anna-Katariina; Uusitupa, Henna-Maria; Munukka, Eveliina; Pesonen, Henri; Rintala, Anniina; Pietilä, Sami; Lahti, Leo; Eerola, Erkki; Karlsson, Linnea; Karlsson, Hasse

    2018-05-14

    Pregnancy is a time of numerous hormonal, metabolic, and immunological changes for both the mother and the fetus. Furthermore, maternal gut microbiota composition (GMC) is altered during pregnancy. One major factor affecting GMC in pregnant and nonpregnant populations is obesity. The aim was to analyze associations between maternal overweight/obesity, as well as gestational weight gain (GWG) and GMC. Moreover, the modifying effect of depression and anxiety symptom scores on weight and GMC were investigated. Study included 46 women from the FinnBrain Birth Cohort study, of which 36 were normal weight, and 11 overweight or obese according to their prepregnancy body mass index (BMI). Stool samples were collected in gestational week 24, and the GMC was sequenced with Illumina MiSeq approach. Hierarchical clustering was executed to illuminate group formation according to the GMC. The population was divided according to Firmicutes and Bacteroidetes dominance. Symptoms of depression, general anxiety, and pregnancy-related anxiety were measured by using standardized questionnaires. Excessive GWG was associated with distinct GMC in mid-pregnancy as measured by hierarchical clustering and grouping according to Firmicutes or Bacteroidetes dominance, with Bacteroidetes being prominent and Firmicutes being less prominent in the GMC among those with increased GWG. Reduced alpha diversity was observed among the Bacteroidetes-dominated subjects. There were no zero-order effects between the abundances of bacterial genera or phyla, alpha or beta diversity, and prepregnancy BMI or GWG. Bacteroidetes-dominated GMC in mid-pregnancy is associated with increased GWG and reduced alpha diversity.

  17. A Metagenomic Analysis of Microbial Contamination in Aviation Fuels

    DTIC Science & Technology

    2009-03-01

    classification by the RDP Classifier, sequences similar to members of the Acidobacteria, Actinobacteria , Bacteroidetes, Chloroflexi, Cyanobacteria... Actinobacteria 85 63 4 152 Bacteroidetes 5 0 0 5 Chloroflexi 7 0 0 7 Cyanobacteria 56 0 0 56 Deinococcus-Thermus 2 0 0 2 Firmicutes 83 99 2 184...Members of the Proteobacteria, Firmicutes and Actinobacteria were represented in all three fuel types; in Jet A and Biodiesel they were the only

  18. High-throughput sequencing technology to reveal the composition and function of cecal microbiota in Dagu chicken.

    PubMed

    Xu, Yunhe; Yang, Huixin; Zhang, Lili; Su, Yuhong; Shi, Donghui; Xiao, Haidi; Tian, Yumin

    2016-11-04

    The chicken gut microbiota is an important and complicated ecosystem for the host. They play an important role in converting food into nutrient and energy. The coding capacity of microbiome vastly surpasses that of the host's genome, encoding biochemical pathways that the host has not developed. An optimal gut microbiota can increase agricultural productivity. This study aims to explore the composition and function of cecal microbiota in Dagu chicken under two feeding modes, free-range (outdoor, OD) and cage (indoor, ID) raising. Cecal samples were collected from 24 chickens across 4 groups (12-w OD, 12-w ID, 18-w OD, and 18-w ID). We performed high-throughput sequencing of the 16S rRNA genes V4 hypervariable regions to characterize the cecal microbiota of Dagu chicken and compare the difference of cecal microbiota between free-range and cage raising chickens. It was found that 34 special operational taxonomic units (OTUs) in OD groups and 4 special OTUs in ID groups. 24 phyla were shared by the 24 samples. Bacteroidetes was the most abundant phylum with the largest proportion, followed by Firmicutes and Proteobacteria. The OD groups showed a higher proportion of Bacteroidetes (>50 %) in cecum, but a lower Firmicutes/Bacteroidetes ratio in both 12-w old (0.42, 0.62) and 18-w old groups (0.37, 0.49) compared with the ID groups. Cecal microbiota in the OD groups have higher abundance of functions involved in amino acids and glycan metabolic pathway. The composition and function of cecal microbiota in Dagu chicken under two feeding modes, free-range and cage raising are different. The cage raising mode showed a lower proportion of Bacteroidetes in cecum, but a higher Firmicutes/Bacteroidetes ratio compared with free-range mode. Cecal microbiota in free-range mode have higher abundance of functions involved in amino acids and glycan metabolic pathway.

  19. Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies.

    PubMed

    Güllert, Simon; Fischer, Martin A; Turaev, Dmitrij; Noebauer, Britta; Ilmberger, Nele; Wemheuer, Bernd; Alawi, Malik; Rattei, Thomas; Daniel, Rolf; Schmitz, Ruth A; Grundhoff, Adam; Streit, Wolfgang R

    2016-01-01

    The diverse microbial communities in agricultural biogas fermenters are assumed to be well adapted for the anaerobic transformation of plant biomass to methane. Compared to natural systems, biogas reactors are limited in their hydrolytic potential. The reasons for this are not understood. In this paper, we show that a typical industrial biogas reactor fed with maize silage, cow manure, and chicken manure has relatively lower hydrolysis rates compared to feces samples from herbivores. We provide evidence that on average, 2.5 genes encoding cellulolytic GHs/Mbp were identified in the biogas fermenter compared to 3.8 in the elephant feces and 3.2 in the cow rumen data sets. The ratio of genes coding for cellulolytic GH enzymes affiliated with the Firmicutes versus the Bacteroidetes was 2.8:1 in the biogas fermenter compared to 1:1 in the elephant feces and 1.4:1 in the cow rumen sample. Furthermore, RNA-Seq data indicated that highly transcribed cellulases in the biogas fermenter were four times more often affiliated with the Firmicutes compared to the Bacteroidetes, while an equal distribution of these enzymes was observed in the elephant feces sample. Our data indicate that a relatively lower abundance of bacteria affiliated with the phylum of Bacteroidetes and, to some extent, Fibrobacteres is associated with a decreased richness of predicted lignocellulolytic enzymes in biogas fermenters. This difference can be attributed to a partial lack of genes coding for cellulolytic GH enzymes derived from bacteria which are affiliated with the Fibrobacteres and, especially, the Bacteroidetes. The partial deficiency of these genes implies a potentially important limitation in the biogas fermenter with regard to the initial hydrolysis of biomass. Based on these findings, we speculate that increasing the members of Bacteroidetes and Fibrobacteres in biogas fermenters will most likely result in an increased hydrolytic performance.

  20. Effect of haylage and monensin supplementation on ruminal bacterial communities of feedlot cattle.

    PubMed

    Kim, Minseok; Felix, Tara L; Loerch, Steve C; Yu, Zhongtang

    2014-08-01

    The objective of this study was to investigate the ruminal bacterial communities as affected by monensin, haylage, and their interaction of feedlot cattle fed 60 % dried distillers grains with solubles in a replicated 4 × 4 Latin square design. Pyrosequencing analysis of the V1-V3 region (about 500 bp) of 16S rRNA gene from the four dietary treatments (3 treatment plus one control diets) collectively revealed 51 genera of bacteria within 11 phyla. Firmicutes and Bacteroidetes were the first and the second most predominant phyla, respectively, irrespective of the dietary treatments. Monensin supplementation decreased the proportion of Gram-positive Firmicutes while increasing that of Gram-negative Bacteroidetes. However, the monensin supplementation did not reduce the proportion of all genera of Gram-positive bacteria placed within Firmicutes and lowered that of some genera of Gram-negative bacteria placed within Bacteroidetes. Haylage supplementation appeared to attenuate inhibition of monensin on some genera of bacteria. Factors other than monensin and haylage could affect ruminal bacterial communities.

  1. Gut Microbiota Contributes to the Growth of Fast-Growing Transgenic Common Carp (Cyprinus carpio L.)

    PubMed Central

    Xie, Shouqi; Hu, Wei; Yu, Yuhe; Hu, Zihua

    2013-01-01

    Gut microbiota has shown tight and coordinated connection with various functions of its host such as metabolism, immunity, energy utilization, and health maintenance. To gain insight into whether gut microbes affect the metabolism of fish, we employed fast-growing transgenic common carp (Cyprinus carpio L.) to study the connections between its large body feature and gut microbes. Metagenome-based fingerprinting and high-throughput sequencing on bacterial 16S rRNA genes indicated that fish gut was dominated by Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes, which displayed significant differences between transgenic fish and wild-type controls. Analyses to study the association of gut microbes with the fish metabolism discovered three major phyla having significant relationships with the host metabolic factors. Biochemical and histological analyses indicated transgenic fish had increased carbohydrate but decreased lipid metabolisms. Additionally, transgenic fish has a significantly lower Bacteroidetes:Firmicutes ratio than that of wild-type controls, which is similar to mammals between obese and lean individuals. These findings suggest that gut microbiotas are associated with the growth of fast growing transgenic fish, and the relative abundance of Firmicutes over Bacteroidetes could be one of the factors contributing to its fast growth. Since the large body size of transgenic fish displays a proportional body growth, which is unlike obesity in human, the results together with the findings from others also suggest that the link between obesity and gut microbiota is likely more complex than a simple Bacteroidetes:Firmicutes ratio change. PMID:23741344

  2. Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deeply branching, uncultivated lineage

    DOE PAGES

    Hiras, Jennifer; Wu, Yu-Wei; Eichorst, Stephanie A.; ...

    2015-09-01

    Recent studies have expanded the phylum Chlorobi, demonstrating that the green sulfur bacteria (GSB), the original cultured representatives of the phylum, are a part of a larger lineage whose members have more diverse metabolic capabilities that overlap with members of the phylum Bacteroidetes. The 16S rRNA gene of an uncultivated clone, OPB56, distantly related to the phyla Chlorobi and Bacteroidetes, was recovered from Obsidian Pool in Yellowstone National Park; however, the detailed phylogeny and function of OPB56 and related clones have remained unknown. Culturing of thermophilic bacterial consortia from compost by adaptation to grow on ionic-liquid pretreated switchgrass provided amore » consortium in which one of the most abundant members, NICIL-2, clustered with OPB56-related clones. Phylogenetic analysis using the full-length 16S rRNA gene from NICIL-2 demonstrated that it was part of a monophyletic clade, referred to as OPB56, distinct from the Bacteroidetes and Chlorobi. A near complete draft genome ( > 95% complete) was recovered from metagenomic data from the culture adapted to grow on ionic-liquid pretreated switchgrass using an automated binning algorithm, and this genome was used for marker gene-based phylogenetic analysis and metabolic reconstruction. Six additional genomes related to NICIL-2 were reconstructed from metagenomic data sets obtained from thermal springs at Yellowstone National Park and Nevada Great Boiling Spring. In contrast to the 16S rRNA gene phylogenetic analysis, protein phylogenetic analysis was most consistent with the clustering of the Chlorobea, Ignavibacteria and OPB56 into a single phylum level clade. Metabolic reconstruction of NICIL-2 demonstrated a close linkage with the class Ignavibacteria and the family Rhodothermaceae, a deeply branching Bacteroidetes lineage. The combined phylogenetic and functional analysis of the NICIL-2 genome has refined the membership in the phylum Chlorobi and emphasized the close

  3. Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deeply branching, uncultivated lineage.

    PubMed

    Hiras, Jennifer; Wu, Yu-Wei; Eichorst, Stephanie A; Simmons, Blake A; Singer, Steven W

    2016-04-01

    Recent studies have expanded the phylum Chlorobi, demonstrating that the green sulfur bacteria (GSB), the original cultured representatives of the phylum, are a part of a broader lineage whose members have more diverse metabolic capabilities that overlap with members of the phylum Bacteroidetes. The 16S rRNA gene of an uncultivated clone, OPB56, distantly related to the phyla Chlorobi and Bacteroidetes, was recovered from Obsidian Pool in Yellowstone National Park; however, the detailed phylogeny and function of OPB56 and related clones have remained unknown. Culturing of thermophilic bacterial consortia from compost by adaptation to grow on ionic-liquid pretreated switchgrass provided a consortium in which one of the most abundant members, NICIL-2, clustered with OPB56-related clones. Phylogenetic analysis using the full-length 16S rRNA gene from NICIL-2 demonstrated that it was part of a monophyletic clade, referred to as OPB56, distinct from the Bacteroidetes and Chlorobi. A near complete draft genome (>95% complete) was recovered from metagenomic data from the culture adapted to grow on ionic-liquid pretreated switchgrass using an automated binning algorithm, and this genome was used for marker gene-based phylogenetic analysis and metabolic reconstruction. Six additional genomes related to NICIL-2 were reconstructed from metagenomic data sets obtained from thermal springs at Yellowstone National Park and Nevada Great Boiling Spring. In contrast to the 16S rRNA gene phylogenetic analysis, protein phylogenetic analysis was most consistent with the clustering of the Chlorobea, Ignavibacteria and OPB56 into a single phylum level clade. Metabolic reconstruction of NICIL-2 demonstrated a close linkage with the class Ignavibacteria and the family Rhodothermaceae, a deeply branching Bacteroidetes lineage. The combined phylogenetic and functional analysis of the NICIL-2 genome has refined the membership in the phylum Chlorobi and emphasized the close evolutionary and

  4. 454 pyrosequencing analysis on faecal samples from a randomized DBPC trial of colicky infants treated with Lactobacillus reuteri DSM 17938.

    PubMed

    Roos, Stefan; Dicksved, Johan; Tarasco, Valentina; Locatelli, Emanuela; Ricceri, Fulvio; Grandin, Ulf; Savino, Francesco

    2013-01-01

    To analyze the global microbial composition, using large-scale DNA sequencing of 16 S rRNA genes, in faecal samples from colicky infants given L. reuteri DSM 17938 or placebo. Twenty-nine colicky infants (age 10-60 days) were enrolled and randomly assigned to receive either Lactobacillus reuteri (10(8) cfu) or a placebo once daily for 21 days. Responders were defined as subjects with a decrease of 50% in daily crying time at day 21 compared with the starting point. The microbiota of faecal samples from day 1 and 21 were analyzed using 454 pyrosequencing. The primers: Bakt_341F and Bakt_805R, complemented with 454 adapters and sample specific barcodes were used for PCR amplification of the 16 S rRNA genes. The structure of the data was explored by using permutational multivariate analysis of variance and effects of different variables were visualized with ordination analysis. The infants' faecal microbiota were composed of Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as the four main phyla. The composition of the microbiota in infants with colic had very high inter-individual variability with Firmicutes/Bacteroidetes ratios varying from 4000 to 0.025. On an individual basis, the microbiota was, however, relatively stable over time. Treatment with L. reuteri DSM 17938 did not change the global composition of the microbiota, but when comparing responders with non-responders the group responders had an increased relative abundance of the phyla Bacteroidetes and genus Bacteroides at day 21 compared with day 0. Furthermore, the phyla composition of the infants at day 21 could be divided into three enterotype groups, dominated by Firmicutes, Bacteroidetes, and Actinobacteria, respectively. L. reuteri DSM 17938 did not affect the global composition of the microbiota. However, the increase of Bacteroidetes in the responder infants indicated that a decrease in colicky symptoms was linked to changes of the microbiota. ClinicalTrials.gov NCT00893711.

  5. Distribution of antibiotic-resistant bacteria in chicken manure and manure-fertilized vegetables.

    PubMed

    Yang, Qingxiang; Ren, Siwei; Niu, Tianqi; Guo, Yuhui; Qi, Shiyue; Han, Xinkuan; Liu, Dong; Pan, Feng

    2014-01-01

    Veterinary manure is an important pollution reservoir of antibiotics and antibiotic-resistant bacteria (ARB). However, little is known of the distribution of ARB in plant endophytic bacteria and the number/types of ARB in chicken manure. In this study, 454-pyrosequencing was used to investigate the distribution and composition of ARBs in chicken manure and fertilized vegetables. The prevalence of ARB in the samples of the chicken manure compost recovered from farms on which amoxicillin, kanamycin, gentamicin, and cephalexin were used was 20.91-65.9% for ARBs and 8.24-20.63% simultaneously resistant to two or more antibiotics (multiple antibiotic resistant bacteria (MARB)). Antibiotic-resistant endophytic bacteria were widely detected in celery, pakchoi, and cucumber with the highest rate of resistance to cephalexin. The pyrosequencing indicated that the chicken manure dominantly harbored Firmicutes, Bacteroidetes, Synergistetes, and Proteobacteria and that Bacteroidetes was significantly enhanced in farms utilizing antibiotics. In the total cultivable colonies, 62.58-89.43% ARBs and 95.29% MARB were clustered in Bacteroidetes with the dominant species (Myroides ordoratimimus and Spningobacterium spp., respectively) related to human clinical opportunistic pathogens.

  6. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

    PubMed Central

    Zhu, Yanping; Cameron, Elizabeth; Pudlo, Nicholas A.; Porter, Nathan T.; Urs, Karthik; Thompson, Andrew J.; Cartmell, Alan; Rogowski, Artur; Hamilton, Brian S.; Chen, Rui; Tolbert, Thomas J.; Piens, Kathleen; Bracke, Debby; Vervecken, Wouter; Hakki, Zalihe; Speciale, Gaetano; Munōz-Munōz, Jose L.; Day, Andrew; Peña, Maria J.; McLean, Richard; Suits, Michael D.; Boraston, Alisdair B.; Atherly, Todd; Ziemer, Cherie J.; Williams, Spencer J.; Davies, Gideon J.; Abbott, D. Wade; Martens, Eric C.; Gilbert, Harry J.

    2016-01-01

    Yeasts, which have been a component of the human diet for at least 7000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for Bacteroides thetaiotaomicron (Bt), a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by Bt presents a ‘selfish’ model for the catabolism of this recalcitrant polysaccharide. This report shows how a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet. PMID:25567280

  7. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

    USDA-ARS?s Scientific Manuscript database

    The architecture of the human distal gut microbiota (microbiota) is sculpted by the complex carbohydrates delivered in the diet. Yeasts, which are among the earliest domesticated microorganisms and have been a component of the human diet for at least 7000 years, possess an elaborate cell wall alpha-...

  8. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism.

    PubMed

    Cuskin, Fiona; Lowe, Elisabeth C; Temple, Max J; Zhu, Yanping; Cameron, Elizabeth; Pudlo, Nicholas A; Porter, Nathan T; Urs, Karthik; Thompson, Andrew J; Cartmell, Alan; Rogowski, Artur; Hamilton, Brian S; Chen, Rui; Tolbert, Thomas J; Piens, Kathleen; Bracke, Debby; Vervecken, Wouter; Hakki, Zalihe; Speciale, Gaetano; Munōz-Munōz, Jose L; Day, Andrew; Peña, Maria J; McLean, Richard; Suits, Michael D; Boraston, Alisdair B; Atherly, Todd; Ziemer, Cherie J; Williams, Spencer J; Davies, Gideon J; Abbott, D Wade; Martens, Eric C; Gilbert, Harry J

    2015-01-08

    Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a 'selfish' model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet.

  9. Identification of 2-keto-3-deoxy-d-Gluconate Kinase and 2-keto-3-deoxy-d-Phosphogluconate Aldolase in an Alginate-Assimilating Bacterium, Flavobacterium sp. Strain UMI-01

    PubMed Central

    Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2017-01-01

    Recently, we identified an alginate-assimilating gene cluster in the genome of Flavobacterium sp. strain UMI-01, a member of Bacteroidetes. Alginate lyase genes and a 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH) reductase gene in the cluster have already been characterized; however, 2-keto-3-deoxy-d-gluconate (KDG) kinase and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase genes, i.e., flkin and flald, still remained uncharacterized. The amino acid sequences deduced from flkin and flald showed low identities with those of corresponding enzymes of Saccharophagus degradans 2-40T, a member of Proteobacteria (Kim et al., Process Biochem., 2016). This led us to consider that the DEH-assimilating enzymes of Bacteroidetes species are somewhat deviated from those of Proteobacteria species. Thus, in the present study, we first assessed the characteristics in the primary structures of KDG kinase and KDG aldolase of the strain UMI-01, and then investigated the enzymatic properties of recombinant enzymes, recFlKin and recFlAld, expressed by an Escherichia coli expression system. Multiple-sequence alignment among KDG kinases and KDG aldolases from several Proteobacteria and Bacteroidetes species indicated that the strain UMI-01 enzymes showed considerably low sequence identities (15%–25%) with the Proteobacteria enzymes, while they showed relatively high identities (47%–68%) with the Bacteroidetes enzymes. Phylogenetic analyses for these enzymes indicated the distant relationship between the Proteobacteria enzymes and the Bacteroidetes enzymes, i.e., they formed distinct clusters in the phylogenetic tree. recFlKin and recFlAld produced with the genes flkin and flald, respectively, were confirmed to show KDG kinase and KDPG aldolase activities. Namely, recFlKin produced 1.7 mM KDPG in a reaction mixture containing 2.5 mM KDG and 2.5 mM ATP in a 90-min reaction, while recFlAld produced 1.2 mM pyruvate in the reaction mixture containing 5 mM KDPG at the equilibrium

  10. Outer membrane proteins related to SusC and SusD are not required for Cytophaga hutchinsonii cellulose utilization.

    PubMed

    Zhu, Yongtao; Kwiatkowski, Kurt J; Yang, Tengteng; Kharade, Sampada S; Bahr, Constance M; Koropatkin, Nicole M; Liu, Weifeng; McBride, Mark J

    2015-08-01

    Cytophaga hutchinsonii, a member of the phylum Bacteroidetes, employs a novel collection of cell-associated proteins to digest crystalline cellulose. Other Bacteroidetes rely on cell surface proteins related to the starch utilization system (Sus) proteins SusC and SusD to bind oligosaccharides and import them across the outer membrane for further digestion. These bacteria typically produce dozens of SusC-like porins and SusD-like oligosaccharide-binding proteins to facilitate utilization of diverse polysaccharides. C. hutchinsonii specializes in cellulose digestion and its genome has only two susC-like genes and two susD-like genes. Single and multiple gene deletions were constructed to determine if the susC-like and susD-like genes have roles in cellulose utilization. A mutant lacking all susC-like and all susD-like genes digested cellulose and grew on cellulose as well as wild-type cells. Further, recombinantly expressed SusD-like proteins CHU_0547 and CHU_0554 failed to bind cellulose or β-glucan hemicellulosic polysaccharides. The results suggest that the Bacteroidetes Sus paradigm for polysaccharide utilization may not apply to the cellulolytic bacterium C. hutchinsonii.

  11. Balancing Herbal Medicine and Functional Food for Prevention and Treatment of Cardiometabolic Diseases through Modulating Gut Microbiota.

    PubMed

    Lyu, Ming; Wang, Yue-Fei; Fan, Guan-Wei; Wang, Xiao-Ying; Xu, Shuang-Yong; Zhu, Yan

    2017-01-01

    It has become apparent that gut microbiota is closely associated with cardiometabolic diseases (CMDs), and alteration in microbiome compositions is also linked to the host environment. Next generation sequencing (NGS) has facilitated in-depth studies on the effects of herbal medicine and functional food on gut microbiota. Both herbal medicine and functional food contain fiber, polyphenols and polysaccharides, exerting prebiotics-like activities in the prevention and treatment of CMDs. The administrations of herbal medicine and functional food lead to increased the abundance of phylum Bacteroidetes, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella , while reducing phylum Firmicutes and Firmicutes/Bacteroidetes ratio in gut. Both herbal medicine and functional food interact with gut microbiome and alter the microbial metabolites including short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides (LPS), which are now correlated with metabolic diseases such as type 2 diabetes (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). In addition, trimethylamine (TMA)-N-oxide (TMAO) is recently linked to atherosclerosis (AS) and cardiovascular disease (CVD) risks. Moreover, gut-organs axes may serve as the potential strategy for treating CMDs with the intervention of herbal medicine and functional food. In summary, a balance between herbal medicine and functional food rich in fiber, polyphenols and polysaccharides plays a vital role in modulating gut microbiota (phylum Bacteroidetes, Firmicutes and Firmicutes/Bacteroidetes ratio, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella ) through SCFAs, BAs, LPS and TMAO signaling regarding CMDs. Targeting gut-organs axes may serve as a new therapeutic strategy for CMDs by herbal medicine and functional food in the future. This review aims to summarize the balance between herbal medicine and functional food utilized for the prevention and

  12. Balancing Herbal Medicine and Functional Food for Prevention and Treatment of Cardiometabolic Diseases through Modulating Gut Microbiota

    PubMed Central

    Lyu, Ming; Wang, Yue-fei; Fan, Guan-wei; Wang, Xiao-ying; Xu, Shuang-yong; Zhu, Yan

    2017-01-01

    It has become apparent that gut microbiota is closely associated with cardiometabolic diseases (CMDs), and alteration in microbiome compositions is also linked to the host environment. Next generation sequencing (NGS) has facilitated in-depth studies on the effects of herbal medicine and functional food on gut microbiota. Both herbal medicine and functional food contain fiber, polyphenols and polysaccharides, exerting prebiotics-like activities in the prevention and treatment of CMDs. The administrations of herbal medicine and functional food lead to increased the abundance of phylum Bacteroidetes, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella, while reducing phylum Firmicutes and Firmicutes/Bacteroidetes ratio in gut. Both herbal medicine and functional food interact with gut microbiome and alter the microbial metabolites including short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides (LPS), which are now correlated with metabolic diseases such as type 2 diabetes (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). In addition, trimethylamine (TMA)-N-oxide (TMAO) is recently linked to atherosclerosis (AS) and cardiovascular disease (CVD) risks. Moreover, gut-organs axes may serve as the potential strategy for treating CMDs with the intervention of herbal medicine and functional food. In summary, a balance between herbal medicine and functional food rich in fiber, polyphenols and polysaccharides plays a vital role in modulating gut microbiota (phylum Bacteroidetes, Firmicutes and Firmicutes/Bacteroidetes ratio, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella) through SCFAs, BAs, LPS and TMAO signaling regarding CMDs. Targeting gut-organs axes may serve as a new therapeutic strategy for CMDs by herbal medicine and functional food in the future. This review aims to summarize the balance between herbal medicine and functional food utilized for the prevention and treatment

  13. Complete genome sequence of the bile-resistant pigment-producing anaerobe Alistipes finegoldii type strain (AHN2437T)

    PubMed Central

    Mavromatis, Konstantinos; Stackebrandt, Erko; Munk, Christine; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Huntemann, Marcel; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Rohde, Manfred; Gronow, Sabine; Göker, Markus; Detter, John C.; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Woyke, Tanja

    2013-01-01

    Alistipes finegoldii Rautio et al. 2003 is one of five species of Alistipes with a validly published name: family Rikenellaceae, order Bacteroidetes, class Bacteroidia, phylum Bacteroidetes. This rod-shaped and strictly anaerobic organism has been isolated mostly from human tissues. Here we describe the features of the type strain of this species, together with the complete genome sequence, and annotation. A. finegoldii is the first member of the genus Alistipes for which the complete genome sequence of its type strain is now available. The 3,734,239 bp long single replicon genome with its 3,302 protein-coding and 68 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:23961309

  14. Effect of different levels of nitrogen on rhizosphere bacterial community structure in intensive monoculture of greenhouse lettuce.

    PubMed

    Li, Jian-Gang; Shen, Min-Chong; Hou, Jin-Feng; Li, Ling; Wu, Jun-Xia; Dong, Yuan-Hua

    2016-04-28

    Pyrosequencing-based analyses revealed significant effects among low (N50), medium (N80), and high (N100) fertilization on community composition involving a long-term monoculture of lettuce in a greenhouse in both summer and winter. The non-fertilized control (CK) treatment was characterized by a higher relative abundance of Actinobacteria, Acidobacteria, and Chloroflexi; however, the average abundance of Firmicutes typically increased in summer, and the relative abundance of Bacteroidetes increased in winter in the N-fertilized treatments. Principle component analysis showed that the distribution of the microbial community was separated by a N gradient with N80 and N100 in the same group in the summer samples, while CK and N50 were in the same group in the winter samples, with the other N-level treatments existing independently. Redundancy analysis revealed that available N, NO3(-)-N, and NH4(+)-N, were the main environmental factors affecting the distribution of the bacterial community. Correlation analysis showed that nitrogen affected the shifts of microbial communities by strongly driving the shifts of Firmicutes, Bacteroidetes, and Proteobacteria in summer samples, and Bacteroidetes, Actinobacteria, and Acidobacteria in winter samples. The study demonstrates a novel example of rhizosphere bacterial diversity and the main factors influencing rizosphere microbial community in continuous vegetable cropping within an intensive greenhouse ecosystem.

  15. High fat diet drives obesity regardless the composition of gut microbiota in mice

    PubMed Central

    Rabot, Sylvie; Membrez, Mathieu; Blancher, Florence; Berger, Bernard; Moine, Déborah; Krause, Lutz; Bibiloni, Rodrigo; Bruneau, Aurélia; Gérard, Philippe; Siddharth, Jay; Lauber, Christian L.; Chou, Chieh Jason

    2016-01-01

    The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1st week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not change obesity development or feed efficiency of recipients regardless whether the microbiota was taken before or after 10 weeks high fat (HF) feeding. Interestingly, HF-induced glucose intolerance was influenced by microbiota inoculation and improved glucose tolerance was associated with a low Firmicutes to Bacteroidetes ratio. Transplantation of Bacteroidetes rich microbiota compared to a control microbiota ameliorated glucose intolerance caused by HF feeding. Altogether, our results demonstrate that gut microbiota is involved in the regulation of glucose metabolism and the abundance of Bacteroidetes significantly modulates HF-induced glucose intolerance but has limited impact on obesity in mice. Our results suggest that gut microbiota is a part of complex aetiology of insulin resistance syndrome, individual microbiota composition may cause phenotypic variation associated with HF feeding in mice. PMID:27577172

  16. Seasonality Affects the Diversity and Composition of Bacterioplankton Communities in Dongjiang River, a Drinking Water Source of Hong Kong.

    PubMed

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Sun, Guoping

    2017-01-01

    Water quality ranks the most vital criterion for rivers serving as drinking water sources, which periodically changes over seasons. Such fluctuation is believed associated with the state shifts of bacterial community within. To date, seasonality effects on bacterioplankton community patterns in large rivers serving as drinking water sources however, are still poorly understood. Here we investigated the intra-annual bacterial community structure in the Dongjiang River, a drinking water source of Hong Kong, using high-throughput pyrosequencing in concert with geochemical property measurements during dry, and wet seasons. Our results showed that Proteobacteria, Actinobacteria , and Bacteroidetes were the dominant phyla of bacterioplankton communities, which varied in composition, and distribution from dry to wet seasons, and exhibited profound seasonal changes. Actinobacteria, Bacteroidetes , and Cyanobacteria seemed to be more associated with seasonality that the relative abundances of Actinobacteria , and Bacteroidetes were significantly higher in the dry season than those in the wet season ( p < 0.01), while the relative abundance of Cyanobacteria was about 10-fold higher in the wet season than in the dry season. Temperature and [Formula: see text]-N concentration represented key contributing factors to the observed seasonal variations. These findings help understand the roles of various bacterioplankton and their interactions with the biogeochemical processes in the river ecosystem.

  17. High fat diet drives obesity regardless the composition of gut microbiota in mice.

    PubMed

    Rabot, Sylvie; Membrez, Mathieu; Blancher, Florence; Berger, Bernard; Moine, Déborah; Krause, Lutz; Bibiloni, Rodrigo; Bruneau, Aurélia; Gérard, Philippe; Siddharth, Jay; Lauber, Christian L; Chou, Chieh Jason

    2016-08-31

    The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1(st) week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not change obesity development or feed efficiency of recipients regardless whether the microbiota was taken before or after 10 weeks high fat (HF) feeding. Interestingly, HF-induced glucose intolerance was influenced by microbiota inoculation and improved glucose tolerance was associated with a low Firmicutes to Bacteroidetes ratio. Transplantation of Bacteroidetes rich microbiota compared to a control microbiota ameliorated glucose intolerance caused by HF feeding. Altogether, our results demonstrate that gut microbiota is involved in the regulation of glucose metabolism and the abundance of Bacteroidetes significantly modulates HF-induced glucose intolerance but has limited impact on obesity in mice. Our results suggest that gut microbiota is a part of complex aetiology of insulin resistance syndrome, individual microbiota composition may cause phenotypic variation associated with HF feeding in mice.

  18. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation.

    PubMed

    Svartström, Olov; Alneberg, Johannes; Terrapon, Nicolas; Lombard, Vincent; de Bruijn, Ino; Malmsten, Jonas; Dalin, Ann-Marie; El Muller, Emilie; Shah, Pranjul; Wilmes, Paul; Henrissat, Bernard; Aspeborg, Henrik; Andersson, Anders F

    2017-11-01

    The moose (Alces alces) is a ruminant that harvests energy from fiber-rich lignocellulose material through carbohydrate-active enzymes (CAZymes) produced by its rumen microbes. We applied shotgun metagenomics to rumen contents from six moose to obtain insights into this microbiome. Following binning, 99 metagenome-assembled genomes (MAGs) belonging to 11 prokaryotic phyla were reconstructed and characterized based on phylogeny and CAZyme profile. The taxonomy of these MAGs reflected the overall composition of the metagenome, with dominance of the phyla Bacteroidetes and Firmicutes. Unlike in other ruminants, Spirochaetes constituted a significant proportion of the community and our analyses indicate that the corresponding strains are primarily pectin digesters. Pectin-degrading genes were also common in MAGs of Ruminococcus, Fibrobacteres and Bacteroidetes and were overall overrepresented in the moose microbiome compared with other ruminants. Phylogenomic analyses revealed several clades within the Bacteriodetes without previously characterized genomes. Several of these MAGs encoded a large numbers of dockerins, a module usually associated with cellulosomes. The Bacteroidetes dockerins were often linked to CAZymes and sometimes encoded inside polysaccharide utilization loci, which has never been reported before. The almost 100 CAZyme-annotated genomes reconstructed in this study provide an in-depth view of an efficient lignocellulose-degrading microbiome and prospects for developing enzyme technology for biorefineries.

  19. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation

    PubMed Central

    Svartström, Olov; Alneberg, Johannes; Terrapon, Nicolas; Lombard, Vincent; de Bruijn, Ino; Malmsten, Jonas; Dalin, Ann-Marie; Muller, Emilie E.L.; Shah, Pranjul; Wilmes, Paul; Henrissat, Bernard; Aspeborg, Henrik; Andersson, Anders F.

    2017-01-01

    The moose (Alces alces) is a ruminant that harvests energy from fiber-rich lignocellulose material through carbohydrate-active enzymes (CAZymes) produced by its rumen microbes. We applied shotgun metagenomics to rumen contents from six moose to obtain insights into this microbiome. Following binning, 99 metagenome-assembled genomes (MAGs) belonging to eleven prokaryotic phyla were reconstructed and characterized based on phylogeny and CAZyme profile. The taxonomy of these MAGs reflected the overall composition of the metagenome, with dominance of the phyla Bacteroidetes and Firmicutes. Unlike in other ruminants, Spirochaetes constituted a significant proportion of the community and our analyses indicate that the corresponding strains are primarily pectin digesters. Pectin-degrading genes were also common in MAGs of Ruminococcus, Fibrobacteres and Bacteroidetes, and were overall overrepresented in the moose microbiome compared to other ruminants. Phylogenomic analyses revealed several clades within the Bacteriodetes without previously characterized genomes. Several of these MAGs encoded a large numbers of dockerins, a module usually associated with cellulosomes. The Bacteroidetes dockerins were often linked to CAZymes and sometimes encoded inside polysaccharide utilization loci (PULs), which has never been reported before. The almost one hundred CAZyme-annotated genomes reconstructed in this study provides an in-depth view of an efficient lignocellulose-degrading microbiome and prospects for developing enzyme technology for biorefineries. PMID:28731473

  20. Effect of different levels of nitrogen on rhizosphere bacterial community structure in intensive monoculture of greenhouse lettuce

    NASA Astrophysics Data System (ADS)

    Li, Jian-Gang; Shen, Min-Chong; Hou, Jin-Feng; Li, Ling; Wu, Jun-Xia; Dong, Yuan-Hua

    2016-04-01

    Pyrosequencing-based analyses revealed significant effects among low (N50), medium (N80), and high (N100) fertilization on community composition involving a long-term monoculture of lettuce in a greenhouse in both summer and winter. The non-fertilized control (CK) treatment was characterized by a higher relative abundance of Actinobacteria, Acidobacteria, and Chloroflexi; however, the average abundance of Firmicutes typically increased in summer, and the relative abundance of Bacteroidetes increased in winter in the N-fertilized treatments. Principle component analysis showed that the distribution of the microbial community was separated by a N gradient with N80 and N100 in the same group in the summer samples, while CK and N50 were in the same group in the winter samples, with the other N-level treatments existing independently. Redundancy analysis revealed that available N, NO3--N, and NH4+-N, were the main environmental factors affecting the distribution of the bacterial community. Correlation analysis showed that nitrogen affected the shifts of microbial communities by strongly driving the shifts of Firmicutes, Bacteroidetes, and Proteobacteria in summer samples, and Bacteroidetes, Actinobacteria, and Acidobacteria in winter samples. The study demonstrates a novel example of rhizosphere bacterial diversity and the main factors influencing rizosphere microbial community in continuous vegetable cropping within an intensive greenhouse ecosystem.

  1. Microbial Community Structures and Dynamics in the O3/BAC Drinking Water Treatment Process

    PubMed Central

    Tian, Jian; Lu, Jun; Zhang, Yu; Li, Jian-Cheng; Sun, Li-Chen; Hu, Zhang-Li

    2014-01-01

    Effectiveness of drinking water treatment, in particular pathogen control during the water treatment process, is always a major public health concern. In this investigation, the application of PCR-DGGE technology to the analysis of microbial community structures and dynamics in the drinking water treatment process revealed several dominant microbial populations including: α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Bacteroidetes, Actinobacteria Firmicutes and Cyanobacteria. α-Proteobacteria and β-Proteobacteria were the dominant bacteria during the whole process. Bacteroidetes and Firmicutes were the dominant bacteria before and after treatment, respectively. Firmicutes showed season-dependent changes in population dynamics. Importantly, γ-Proteobacteria, which is a class of medically important bacteria, was well controlled by the O3/biological activated carbon (BAC) treatment, resulting in improved effluent water bio-safety. PMID:24937529

  2. Proanthocyanidin-Rich Grape Seed Extract Modulates Intestinal Microbiota in Ovariectomized Mice.

    PubMed

    Jin, Guangwen; Asou, Yoshinori; Ishiyama, Kirika; Okawa, Atsushi; Kanno, Taro; Niwano, Yoshimi

    2018-04-01

    Grape-seed extract (GSE) is rich in proanthocyanidins (polymers of flavan-3-ols). GSE is well known to have various beneficial effects to health. The objective of this study was to examine the effect of dietary GSE on the intestinal microbiota in ovariectomized (OVX) mice as a model of menopause. Phylum-level analyses using 16S rRNA-targeted group-specific polymerase-chain reaction primers in fecal samples collected 8 weeks postoperatively from OVX mice revealed that the proportion of Firmicutes and Bacteroidetes populations became imbalanced as compared with that in sham-operated control mice. That is, the ratio of Firmicutes:Bacteroidetes populations in the OVX group were increased significantly. When OVX animals were given dietary GSE, the imbalanced proportion of Firmicutes and Bacteroidetes populations was normalized to that seen in control mice. In addition, the body weight of OVX animals measured at 6 weeks postoperatively was significantly higher than that in sham-operated control animals. Dietary GSE also prevented OVX animals from increasing body weight. Thus, we postulated that GSE can improve imbalanced populations of intestinal microbiota, leading to prevention of obesity under conditions of not only menopause but morbidity. The GSE has a great potential to be a functional food to improve dysbiosis in post-menopausal women. © 2018 Institute of Food Technologists®.

  3. Bacterial community dynamics during polysaccharide degradation at contrasting sites in the Southern and Atlantic Oceans.

    PubMed

    Wietz, Matthias; Wemheuer, Bernd; Simon, Heike; Giebel, Helge-Ansgar; Seibt, Maren A; Daniel, Rolf; Brinkhoff, Thorsten; Simon, Meinhard

    2015-10-01

    The bacterial degradation of polysaccharides is central to marine carbon cycling, but little is known about the bacterial taxa that degrade specific marine polysaccharides. Here, bacterial growth and community dynamics were studied during the degradation of the polysaccharides chitin, alginate and agarose in microcosm experiments at four contrasting locations in the Southern and Atlantic Oceans. At the Southern polar front, chitin-supplemented microcosms were characterized by higher fractions of actively growing cells and a community shift from Alphaproteobacteria to Gammaproteobacteria and Bacteroidetes. At the Antarctic ice shelf, chitin degradation was associated with growth of Bacteroidetes, with 24% higher cell numbers compared with the control. At the Patagonian continental shelf, alginate and agarose degradation covaried with growth of different Alteromonadaceae populations, each with specific temporal growth patterns. At the Mauritanian upwelling, only the alginate hydrolysis product guluronate was consumed, coincident with increasing abundances of Alteromonadaceae and possibly cross-feeding SAR11. 16S rRNA gene amplicon libraries indicated that growth of the Bacteroidetes-affiliated genus Reichenbachiella was stimulated by chitin at all cold and temperate water stations, suggesting comparable ecological roles over wide geographical scales. Overall, the predominance of location-specific patterns showed that bacterial communities from contrasting oceanic biomes have members with different potentials to hydrolyse polysaccharides. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Dynamics of the microbiota found in the vaginas of dairy cows during the transition period: Associations with uterine diseases and reproductive outcome.

    PubMed

    Bicalho, M L S; Santin, T; Rodrigues, M X; Marques, C E; Lima, S F; Bicalho, R C

    2017-04-01

    We investigated the microbiota found in the vaginas of Holstein dairy cows during the transition period and described the differences in bacterial composition and total bacterial load (TBL) associated with disease and fertility. Vaginal swabs were collected at -7, 0, 3, and 7 d relative to parturition from 111 dairy cows housed on a commercial dairy farm near Ithaca, New York. Microbiota were characterized by next-generation DNA sequencing of the bacterial 16S rRNA gene, and TBL was determined by real-time quantitative PCR. We applied repeated-measures ANOVA to evaluate the associations of uterine disease and related risk factors with the microbiota and TBL. We estimated phylum-specific bacterial load by multiplying the TBL by the relative abundance of each phylum observed in the metagenomics results. We confirmed the validity of this approach for estimating bacterial load by enumerating the number of bacteria in an artificial sample mixed in vitro and in clinical and healthy vaginal samples. Phyla associated with uterine disease and related risk factors were Proteobacteria, Fusobacteria, and Bacteroidetes. Cows with retained placenta and healthy cows had similar TBL at the day of parturition, but at d 7 postpartum, cows with retained placenta showed a significantly higher TBL, mainly driven by higher estimated loads of Fusobacteria and Bacteroidetes. Cows diagnosed with metritis had a significantly higher estimated load of Proteobacteria at d -7 and at calving and higher estimated loads of Fusobacteria in the postpartum samples. Additionally, the estimated load of Bacteroidetes at d 7 postpartum was higher for cows diagnosed with endometritis at 35 days in milk. Higher estimated loads of Fusobacteria and Bacteroidetes were also evident in cows with postpartum fever, in primiparous cows, in cows with assisted parturition, and in cows that gave birth to twins. Our findings demonstrated that microbiota composition and TBL were associated with known periparturient

  5. “Candidatus Paraporphyromonas polyenzymogenes” encodes multi-modular cellulases linked to the type IX secretion system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naas, A. E.; Solden, L. M.; Norbeck, A. D.

    Background In Nature, obligate herbivorous ruminants have a close symbiotic relationship with their gastrointestinal microbiome, which proficiently deconstructs plant biomass. Despite decades of research, lignocellulose degradation in the rumen has thus far been attributed to a limited number of culturable microorganisms. Here, we combine metaomics and enzymology to identify and describe a novel Bacteroidetes family (UMH11) composed entirely of uncultivated strains that are predominant in ruminants and only distantly related to previously characterized taxa. Results The first metabolic reconstruction of UMH11-affiliated genome bins, with a particular focus on the provisionally named UParaporphyromonas polyenzymogenes, illustrated their capacity to degrade various lignocellulosicmore » substrates via comprehensive inventories of singular and multi-modular carbohydrate active enzymes (CAZymes). Closer examination revealed an absence of archetypical polysaccharide utilization loci found in human-gut microbiota. Instead, we identified many multi-modular CAZymes putatively secreted via the Bacteroidetes-specific Type 9 secretion system (T9SS). This included cellulases with two or more catalytic domains, which are modular arrangements that are unique to Bacteroidetes species studied to date. Core metabolic proteins from UP. polyenzymogenes were detected in metaproteomic data and were enriched in rumen-incubated plant biomass, indicating that active saccharification and fermentation of complex carbohydrates could be assigned to members of this novel family. Biochemical analysis of selected UP. polyenzymogenes CAZymes further iterated the cellulolytic activity of this hitherto uncultured bacterium towards linear polymers, such as amorphous and crystalline cellulose as well as mixed linkage β-glucans. Conclusion We propose that UP. olyenzymogenes genotypes and other UMH11 members actively degrade plant biomass in the rumen of cows, sheep, and most likely other ruminants

  6. "Candidatus Paraporphyromonas polyenzymogenes" encodes multi-modular cellulases linked to the type IX secretion system.

    PubMed

    Naas, A E; Solden, L M; Norbeck, A D; Brewer, H; Hagen, L H; Heggenes, I M; McHardy, A C; Mackie, R I; Paša-Tolić, L; Arntzen, M Ø; Eijsink, V G H; Koropatkin, N M; Hess, M; Wrighton, K C; Pope, P B

    2018-03-01

    In nature, obligate herbivorous ruminants have a close symbiotic relationship with their gastrointestinal microbiome, which proficiently deconstructs plant biomass. Despite decades of research, lignocellulose degradation in the rumen has thus far been attributed to a limited number of culturable microorganisms. Here, we combine meta-omics and enzymology to identify and describe a novel Bacteroidetes family ("Candidatus MH11") composed entirely of uncultivated strains that are predominant in ruminants and only distantly related to previously characterized taxa. The first metabolic reconstruction of Ca. MH11-affiliated genome bins, with a particular focus on the provisionally named "Candidatus Paraporphyromonas polyenzymogenes", illustrated their capacity to degrade various lignocellulosic substrates via comprehensive inventories of singular and multi-modular carbohydrate active enzymes (CAZymes). Closer examination revealed an absence of archetypical polysaccharide utilization loci found in human gut microbiota. Instead, we identified many multi-modular CAZymes putatively secreted via the Bacteroidetes-specific type IX secretion system (T9SS). This included cellulases with two or more catalytic domains, which are modular arrangements that are unique to Bacteroidetes species studied to date. Core metabolic proteins from Ca. P. polyenzymogenes were detected in metaproteomic data and were enriched in rumen-incubated plant biomass, indicating that active saccharification and fermentation of complex carbohydrates could be assigned to members of this novel family. Biochemical analysis of selected Ca. P. polyenzymogenes CAZymes further iterated the cellulolytic activity of this hitherto uncultured bacterium towards linear polymers, such as amorphous and crystalline cellulose as well as mixed linkage β-glucans. We propose that Ca. P. polyenzymogene genotypes and other Ca. MH11 members actively degrade plant biomass in the rumen of cows, sheep and most likely other

  7. Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota.

    PubMed

    Li, Miaomiao; Shang, Qingsen; Li, Guangsheng; Wang, Xin; Yu, Guangli

    2017-03-24

    Carrageenan, agarose, and alginate are algae-derived undigested polysaccharides that have been used as food additives for hundreds of years. Fermentation of dietary carbohydrates of our food in the lower gut of humans is a critical process for the function and integrity of both the bacterial community and host cells. However, little is known about the fermentation of these three kinds of seaweed carbohydrates by human gut microbiota. Here, the degradation characteristics of carrageenan, agarose, alginate, and their oligosaccharides, by Bacteroides xylanisolvens , Bacteroides ovatus , and Bacteroides uniforms , isolated from human gut microbiota, are studied.

  8. Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota

    PubMed Central

    Li, Miaomiao; Shang, Qingsen; Li, Guangsheng; Wang, Xin; Yu, Guangli

    2017-01-01

    Carrageenan, agarose, and alginate are algae-derived undigested polysaccharides that have been used as food additives for hundreds of years. Fermentation of dietary carbohydrates of our food in the lower gut of humans is a critical process for the function and integrity of both the bacterial community and host cells. However, little is known about the fermentation of these three kinds of seaweed carbohydrates by human gut microbiota. Here, the degradation characteristics of carrageenan, agarose, alginate, and their oligosaccharides, by Bacteroides xylanisolvens, Bacteroides ovatus, and Bacteroides uniforms, isolated from human gut microbiota, are studied. PMID:28338633

  9. Tungsten: A Preliminary Environmental Risk Assessment

    DTIC Science & Technology

    2011-05-01

    Tungsten Effects on Soil Microbial Communities BUILDING STRONG® Actinobacteria Bacteroidetes Firmicutes alpha-Proteobacteria beta-Proteobacteria gamma...Persistence of Actinobacteria & gamma- Proteobacteria • Actinobacteria – includes the actinomycetes  γ-Proteobacteria – includes a variety of microbes

  10. Determination of physiological, taxonomic, and molecular characteristics of a cultivable arsenic-resistant bacterial community.

    PubMed

    Cordi, A; Pagnout, C; Devin, S; Poirel, J; Billard, P; Dollard, M A; Bauda, P

    2015-09-01

    A collection of 219 bacterial arsenic-resistant isolates was constituted from neutral arsenic mine drainage sediments. Isolates were grown aerobically or anaerobically during 21 days on solid DR2A medium using agar or gelan gum as gelling agent, with 7 mM As(III) or 20 mM As(V) as selective pressure. Interestingly, the sum of the different incubation conditions used (arsenic form, gelling agent, oxygen pressure) results in an overall increase of the isolate diversity. Isolated strains mainly belonged to Proteobacteria (63%), Actinobacteria (25%), and Bacteroidetes (10%). The most representative genera were Pseudomonas (20%), Acinetobacter (8%), and Serratia (15%) among the Proteobacteria; Rhodococcus (13%) and Microbacterium (5%) among Actinobacteria; and Flavobacterium (13%) among the Bacteroidetes. Isolates were screened for the presence of arsenic-related genes (arsB, ACR3(1), ACR3(2), aioA, arsM, and arrA). In this way, 106 ACR3(1)-, 74 arsB-, 22 aioA-, 14 ACR3(2)-, and one arsM-positive PCR products were obtained and sequenced. Analysis of isolate sensitivity toward metalloids (arsenite, arsenate, and antimonite) revealed correlations between taxonomy, sensitivity, and genotype. Antimonite sensitivity correlated with the presence of ACR3(1) mainly present in Bacteroidetes and Actinobacteria, and arsenite or antimonite resistance correlated with arsB gene presence. The presence of either aioA gene or several different arsenite carrier genes did not ensure a high level of arsenic resistance in the tested conditions.

  11. Dietary L-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine.

    PubMed

    Ren, Wenkai; Duan, Jielin; Yin, Jie; Liu, Gang; Cao, Zhong; Xiong, Xia; Chen, Shuai; Li, Tiejun; Yin, Yulong; Hou, Yongqing; Wu, Guoyao

    2014-10-01

    This study was conducted to determine effects of dietary supplementation with 1 % L-glutamine for 14 days on the abundance of intestinal bacteria and the activation of intestinal innate immunity in mice. The measured variables included (1) the abundance of Bacteroidetes, Firmicutes, Lactobacillus, Streptococcus and Bifidobacterium in the lumen of the small intestine; (2) the expression of toll-like receptors (TLRs), pro-inflammatory cytokines, and antibacterial substances secreted by Paneth cells and goblet cells in the jejunum, ileum and colon; and (3) the activation of TLR4-nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt) signaling pathways in the jejunum and ileum. In the jejunum, glutamine supplementation decreased the abundance of Firmicutes, while increased mRNA levels for antibacterial substances in association with the activation of NF-κB and PI3K-Akt pathways. In the ileum, glutamine supplementation induced a shift in the Firmicutes:Bacteroidetes ratio in favor of Bacteroidetes, and enhanced mRNA levels for Tlr4, pro-inflammatory cytokines, and antibacterial substances participating in NF-κB and JNK signaling pathways. These results indicate that the effects of glutamine on the intestine vary with its segments and compartments. Collectively, dietary glutamine supplementation of mice beneficially alters intestinal bacterial community and activates the innate immunity in the small intestine through NF-κB, MAPK and PI3K-Akt signaling pathways.

  12. Cassava foliage affects the microbial diversity of Chinese indigenous geese caecum using 16S rRNA sequencing

    NASA Astrophysics Data System (ADS)

    Li, Mao; Zhou, Hanlin; Pan, Xiangyu; Xu, Tieshan; Zhang, Zhenwen; Zi, Xuejuan; Jiang, Yu

    2017-04-01

    Geese are extremely adept in utilizing plant-derived roughage within their diet. However, the intestinal microbiome of geese remains limited, especially the dietary effect on microbial diversity. Cassava foliage was widely used in animal feed, but little information is available for geese. In this study, the geese were fed with control diet (CK), experimental diet supplemented with 5% cassava foliage (CF5) or 10% (CF10) for 42 days, respectively. The cecal samples were collected after animals were killed. High-throughput sequencing technology was used to investigate the microbial diversity in the caecum of geese with different dietary supplements. Taxonomic analysis indicated that the predominant phyla were distinct with different dietary treatments. The phyla Firmicutes (51.4%), Bacteroidetes (29.55%) and Proteobacteria (7.90%) were dominant in the CK group, but Bacteroidetes (65.19% and 67.29%,) Firmicutes (18.01% and 17.39%), Proteobacteria (8.72% and 10.18%), Synergistete (2.51% and 1.76%) and Spirochaetes (2.60% and 1.46%) were dominant in CF5 and CF10 groups. The abundance of Firmicutes was negatively correlated with the supplementation of cassava foliage. However, the abundance of Bacteroidetes and Proteobacteria were positively correlated with the supplementation of cassava foliage. Our study also revealed that the microbial communities were significantly different at genus levels. Genes related to nutrient and energy metabolism, immunity and signal transduction pathways were primarily enriched by the microbiome.

  13. GUT MICROBIOTA DYSBIOSIS IS LINKED TO HYPERTENSION

    PubMed Central

    Yang, Tao; Santisteban, Monica M.; Rodriguez, Vermali; Li, Eric; Ahmari, Niousha; Carvajal, Jessica Marulanda; Zadeh, Mojgan; Gong, Minghao; Qi, Yanfei; Zubcevic, Jasenka; Sahay, Bikash; Pepine, Carl J.; Raizada, Mohan K.; Mohamadzadeh, Mansour

    2015-01-01

    Emerging evidence suggests that gut microbiota is critical in the maintenance of physiological homeostasis. The present study was designed to test the hypothesis that dysbiosis in gut microbiota is associated with hypertension since genetic, environmental, and dietary factors profoundly influence both gut microbiota and blood pressure. Bacterial DNA from fecal samples of two rat models of hypertension and a small cohort of patients was used for bacterial genomic analysis. We observed a significant decrease in microbial richness, diversity, and evenness in the spontaneously hypertensive rat, in addition to an increased Firmicutes to Bacteroidetes ratio. These changes were accompanied with decreases in acetate- and butyrate-producing bacteria. Additionally, the microbiota of a small cohort of human hypertension patients was found to follow a similar dysbiotic pattern, as it was less rich and diverse than that of control subjects. Similar changes in gut microbiota were observed in the chronic angiotensin II infusion rat model, most notably decreased microbial richness and an increased Firmicutes to Bacteroidetes ratio. In this model, we evaluated the efficacy of oral minocycline in restoring gut microbiota. In addition to attenuating high blood pressure, minocycline was able to rebalance the dysbiotic hypertension gut microbiota by reducing the Firmicutes to Bacteroidetes ratio. These observations demonstrate that high BP is associated with gut microbiota dysbiosis, both in animal and human hypertension. They suggest that dietary intervention to correct gut microbiota could be an innovative nutritional therapeutic strategy for hypertension. PMID:25870193

  14. Effect of DNA extraction and sample preservation method on rumen bacterial population.

    PubMed

    Fliegerova, Katerina; Tapio, Ilma; Bonin, Aurelie; Mrazek, Jakub; Callegari, Maria Luisa; Bani, Paolo; Bayat, Alireza; Vilkki, Johanna; Kopečný, Jan; Shingfield, Kevin J; Boyer, Frederic; Coissac, Eric; Taberlet, Pierre; Wallace, R John

    2014-10-01

    The comparison of the bacterial profile of intracellular (iDNA) and extracellular DNA (eDNA) isolated from cow rumen content stored under different conditions was conducted. The influence of rumen fluid treatment (cheesecloth squeezed, centrifuged, filtered), storage temperature (RT, -80 °C) and cryoprotectants (PBS-glycerol, ethanol) on quality and quantity parameters of extracted DNA was evaluated by bacterial DGGE analysis, real-time PCR quantification and metabarcoding approach using high-throughput sequencing. Samples clustered according to the type of extracted DNA due to considerable differences between iDNA and eDNA bacterial profiles, while storage temperature and cryoprotectants additives had little effect on sample clustering. The numbers of Firmicutes and Bacteroidetes were lower (P < 0.01) in eDNA samples. The qPCR indicated significantly higher amount of Firmicutes in iDNA sample frozen with glycerol (P < 0.01). Deep sequencing analysis of iDNA samples revealed the prevalence of Bacteroidetes and similarity of samples frozen with and without cryoprotectants, which differed from sample stored with ethanol at room temperature. Centrifugation and consequent filtration of rumen fluid subjected to the eDNA isolation procedure considerably changed the ratio of molecular operational taxonomic units (MOTUs) of Bacteroidetes and Firmicutes. Intracellular DNA extraction using bead-beating method from cheesecloth sieved rumen content mixed with PBS-glycerol and stored at -80 °C was found as the optimal method to study ruminal bacterial profile. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Characterization of Thermostable Cellulases Produced by Bacillus and Geobacillus Strains

    USDA-ARS?s Scientific Manuscript database

    Bacterial community composition of thermophilic (60 deg C) mixed cellulose-enrichment cultures was examined by constructing a 16S rDNA clone library which demonstrated major lineages affiliated to Actinobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Firmicutes, and Proteobacteria. A tot...

  16. “Candidatus Paraporphyromonas polyenzymogenes” encodes multi-modular cellulases linked to the type IX secretion system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naas, A. E.; Solden, L. M.; Norbeck, A. D.

    Abstract. Background In nature, obligate herbivorous ruminants have a close symbiotic relationship with their gastrointestinal microbiome, which proficiently deconstructs plant biomass. Despite decades of research, lignocellulose degradation in the rumen has thus far been attributed to a limited number of culturable microorganisms. Here in this paper, we combine meta-omics and enzymology to identify and describe a novel Bacteroidetes family (“Candidatus MH11”) composed entirely of uncultivated strains that are predominant in ruminants and only distantly related to previously characterized taxa. Results. The first metabolic reconstruction of Ca. MH11-affiliated genome bins, with a particular focus on the provisionally named “Candidatus Paraporphyromonas polyenzymogenes”,more » illustrated their capacity to degrade various lignocellulosic substrates via comprehensive inventories of singular and multi-modular carbohydrate active enzymes (CAZymes). Closer examination revealed an absence of archetypical polysaccharide utilization loci found in human gut microbiota. Instead, we identified many multi-modular CAZymes putatively secreted via the Bacteroidetes-specific type IX secretion system (T9SS). This included cellulases with two or more catalytic domains, which are modular arrangements that are unique to Bacteroidetes species studied to date. Core metabolic proteins from Ca. P. polyenzymogenes were detected in metaproteomic data and were enriched in rumen-incubated plant biomass, indicating that active saccharification and fermentation of complex carbohydrates could be assigned to members of this novel family. Biochemical analysis of selected Ca. P. polyenzymogenes CAZymes further iterated the cellulolytic activity of this hitherto uncultured bacterium towards linear polymers, such as amorphous and crystalline cellulose as well as mixed linkage β-glucans. Conclusion. We propose that Ca. P. polyenzymogene genotypes and other Ca. MH11 members actively degrade

  17. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study

    PubMed Central

    2013-01-01

    Background A recent study using a rat model found significant differences at the time of diabetes onset in the bacterial communities responsible for type 1 diabetes modulation. We hypothesized that type 1 diabetes in humans could also be linked to a specific gut microbiota. Our aim was to quantify and evaluate the difference in the composition of gut microbiota between children with type 1 diabetes and healthy children and to determine the possible relationship of the gut microbiota of children with type 1 diabetes with the glycemic level. Methods A case-control study was carried out with 16 children with type 1 diabetes and 16 healthy children. The fecal bacteria composition was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis and real-time quantitative polymerase chain reaction. Results The mean similarity index was 47.39% for the healthy children and 37.56% for the children with diabetes, whereas the intergroup similarity index was 26.69%. In the children with diabetes, the bacterial number of Actinobacteria and Firmicutes, and the Firmicutes to Bacteroidetes ratio were all significantly decreased, with the quantity of Bacteroidetes significantly increased with respect to healthy children. At the genus level, we found a significant increase in the number of Clostridium, Bacteroides and Veillonella and a significant decrease in the number of Lactobacillus, Bifidobacterium, Blautia coccoides/Eubacterium rectale group and Prevotella in the children with diabetes. We also found that the number of Bifidobacterium and Lactobacillus, and the Firmicutes to Bacteroidetes ratio correlated negatively and significantly with the plasma glucose level while the quantity of Clostridium correlated positively and significantly with the plasma glucose level in the diabetes group. Conclusions This is the first study showing that type 1 diabetes is associated with compositional changes in gut microbiota. The significant differences in the number of

  18. “Candidatus Paraporphyromonas polyenzymogenes” encodes multi-modular cellulases linked to the type IX secretion system

    DOE PAGES

    Naas, A. E.; Solden, L. M.; Norbeck, A. D.; ...

    2018-03-01

    Abstract. Background In nature, obligate herbivorous ruminants have a close symbiotic relationship with their gastrointestinal microbiome, which proficiently deconstructs plant biomass. Despite decades of research, lignocellulose degradation in the rumen has thus far been attributed to a limited number of culturable microorganisms. Here in this paper, we combine meta-omics and enzymology to identify and describe a novel Bacteroidetes family (“Candidatus MH11”) composed entirely of uncultivated strains that are predominant in ruminants and only distantly related to previously characterized taxa. Results. The first metabolic reconstruction of Ca. MH11-affiliated genome bins, with a particular focus on the provisionally named “Candidatus Paraporphyromonas polyenzymogenes”,more » illustrated their capacity to degrade various lignocellulosic substrates via comprehensive inventories of singular and multi-modular carbohydrate active enzymes (CAZymes). Closer examination revealed an absence of archetypical polysaccharide utilization loci found in human gut microbiota. Instead, we identified many multi-modular CAZymes putatively secreted via the Bacteroidetes-specific type IX secretion system (T9SS). This included cellulases with two or more catalytic domains, which are modular arrangements that are unique to Bacteroidetes species studied to date. Core metabolic proteins from Ca. P. polyenzymogenes were detected in metaproteomic data and were enriched in rumen-incubated plant biomass, indicating that active saccharification and fermentation of complex carbohydrates could be assigned to members of this novel family. Biochemical analysis of selected Ca. P. polyenzymogenes CAZymes further iterated the cellulolytic activity of this hitherto uncultured bacterium towards linear polymers, such as amorphous and crystalline cellulose as well as mixed linkage β-glucans. Conclusion. We propose that Ca. P. polyenzymogene genotypes and other Ca. MH11 members actively degrade

  19. Complete genome sequencing and analysis of Saprospira grandis str. Lewin, a predatory marine bacterium

    PubMed Central

    Saw, Jimmy H. W.; Yuryev, Anton; Kanbe, Masaomi; Hou, Shaobin; Young, Aaron G.; Aizawa, Shin-Ichi

    2012-01-01

    Saprospira grandis is a coastal marine bacterium that can capture and prey upon other marine bacteria using a mechanism known as ‘ixotrophy’. Here, we present the complete genome sequence of Saprospira grandis str. Lewin isolated from La Jolla beach in San Diego, California. The complete genome sequence comprises a chromosome of 4.35 Mbp and a plasmid of 54.9 Kbp. Genome analysis revealed incomplete pathways for the biosynthesis of nine essential amino acids but presence of a large number of peptidases. The genome encodes multiple copies of sensor globin-coupled rsbR genes thought to be essential for stress response and the presence of such sensor globins in Bacteroidetes is unprecedented. A total of 429 spacer sequences within the three CRISPR repeat regions were identified in the genome and this number is the largest among all the Bacteroidetes sequenced to date. PMID:22675601

  20. Complete genome sequence of Leadbetterella byssophila type strain (4M15T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abt, Birte; Teshima, Hazuki; Lucas, Susan

    2011-01-01

    Leadbetterella byssophila Weon et al. 2005 is the type species of the genus Leadbetterella of the family Cytophagaceae in the phylum Bacteroidetes. Members of the phylum Bacteroidetes are widely distributed in nature, especially in aquatic environments. They are of special interest for their ability to degrade complex biopolymers. L. byssophila occupies a rather isolated position in the tree of life and is characterized by its ability to hydrolyze starch and gelatine, but not agar, cellulose or chitin. Here we describe the features of this organism, together with the complete genome sequence, and annotation. L. byssophila is already the 16th membermore » of the family Cytophagaceae whose genome has been sequenced. The 4,059,653 bp long single replicon genome with its 3,613 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  1. Diversity of bacteria in surface ice of Austre Lovénbreen glacier, Svalbard.

    PubMed

    Zeng, Yin-Xin; Yan, Ming; Yu, Yong; Li, Hui-Rong; He, Jian-Feng; Sun, Kun; Zhang, Fang

    2013-05-01

    Two 16S rRNA gene clone libraries Cores 1U and 2U were constructed using two ice core samples collected from Austre Lovénbreen glacier in Svalbard. The two libraries yielded a total of 262 clones belonging to 59 phylotypes. Sequences fell into 10 major lineages of the domain Bacteria, including Proteobacteria (alpha, beta, gamma and delta subdivisions), Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, Chloroflexi, Planctomycetes, Cyanobacteria and candidate division TM7. Among them, Bacteroidetes, Actinobacteria, Alphaproteobacteria and Cyanobacteria were most abundant. UniFrac data showed no significant differences in community composition between the two ice cores. A total of nineteen bacterial strains from the genera Pseudoalteromonas and Psychrobacter were isolated from the ice cores. Phylogenetic and phenotypic analyses revealed a close relationship between the ice core isolates and bacteria in marine environments, indicating a wide distribution of some bacterial phylotypes in both terrestrial and marine ecosystems.

  2. Ecological differentiation within a cosmopolitan group of planktonic freshwater bacteria (SOL cluster, Saprospiraceae, Bacteroidetes).

    PubMed

    Schauer, Michael; Kamenik, Christian; Hahn, Martin W

    2005-10-01

    Members of the monophyletic SOL cluster are large filamentous bacteria inhabiting the pelagic zone of many freshwater habitats. The abundances of SOL bacteria and compositions of SOL communities in samples from 115 freshwater ecosystems around the globe were determined by fluorescence in situ hybridization with cluster- and subcluster-specific oligonucleotide probes. The vast majority (73%) of sampled ecosystems harbored SOL bacteria, and all three previously described SOL subclusters (LD2, HAL, and GKS2-217) were detected. The morphometric and chemicophysical parameters and trophic statuses of ecosystems were related to the occurrence and subcluster-specific composition of SOL bacteria by multivariate statistical methods. SOL bacteria did not occur in acidic lakes (pH < 6), and their abundance was negatively related to high trophy and pH. The subcluster-specific variation in the compositions of SOL communities could be related to the pH, electrical conductivity, altitude, and trophic status of ecosystems. All three known SOL subclusters differed in respect to their tolerated ranges of pH and conductivity. Complete niche separation was observed between the vicarious subclusters GKS2-217 and LD2; the former occurred in soft-water lakes, whereas the latter was found in a broad range of hard-water habitats. The third subgroup (HAL) showed a wide environmental tolerance and was usually found sympatrically with the LD2 or GKS2-217 subcluster. Ecological differentiation of SOL bacteria at the subcluster level was most probably driven by differential adaptation to water chemistry. The distribution of the two vicarious taxa seems to be predominantly controlled by the geological backgrounds of the catchment areas of the habitats.

  3. Bacterial isolates from polysaccharide enrichments cluster by host origin for Firmicutes but not Bacteroidetes.

    USDA-ARS?s Scientific Manuscript database

    The intestinal microbiota allows mammals to recover energy stored in plant biomass through fermentation of plant cell walls, primarily cellulose and hemicellulose. Bacteria were isolated from 8 week continuous culture enrichments with cellulose and xylan/pectin from cow (C, n=4), goat (G, n=4), huma...

  4. Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes.

    PubMed

    Sheridan, Paul O; Martin, Jennifer C; Lawley, Trevor D; Browne, Hilary P; Harris, Hugh M B; Bernalier-Donadille, Annick; Duncan, Sylvia H; O'Toole, Paul W; Scott, Karen P; Flint, Harry J

    2016-02-01

    Firmicutes and Bacteroidetes are the predominant bacterial phyla colonizing the healthy human large intestine. Whilst both ferment dietary fibre, genes responsible for this important activity have been analysed only in the Bacteroidetes , with very little known about the Firmicutes . This work investigates the carbohydrate-active enzymes (CAZymes) in a group of Firmicutes , Roseburia spp. and Eubacterium rectale , which play an important role in producing butyrate from dietary carbohydrates and in health maintenance. Genome sequences of 11 strains representing E. rectale and four Roseburia spp. were analysed for carbohydrate-active genes. Following assembly into a pan-genome, core, variable and unique genes were identified. The 1840 CAZyme genes identified in the pan-genome were assigned to 538 orthologous groups, of which only 26 were present in all strains, indicating considerable inter-strain variability. This analysis was used to categorize the 11 strains into four carbohydrate utilization ecotypes (CUEs), which were shown to correspond to utilization of different carbohydrates for growth. Many glycoside hydrolase genes were found linked to genes encoding oligosaccharide transporters and regulatory elements in the genomes of Roseburia spp. and E. rectale , forming distinct polysaccharide utilization loci (PULs). Whilst PULs are also a common feature in Bacteroidetes , key differences were noted in these Firmicutes , including the absence of close homologues of Bacteroides polysaccharide utilization genes, hence we refer to Gram-positive PULs (gpPULs). Most CAZyme genes in the Roseburia / E. rectale group are organized into gpPULs. Variation in gpPULs can explain the high degree of nutritional specialization at the species level within this group.

  5. Comparative analysis of the gastrointestinal microbial communities of bar-headed goose (Anser indicus) in different breeding patterns by high-throughput sequencing.

    PubMed

    Wang, Wen; Cao, Jian; Li, Ji-Rong; Yang, Fang; Li, Zhuo; Li, Lai-Xing

    2016-01-01

    The bar-headed goose is currently one of the most popular species for rare birds breeding in China. However, bar-headed geese in captivity display a reduced reproductive rate. The gut microbiome has been shown to influence host factors such as nutrient and energy metabolism, immune homeostasis and reproduction. It is therefore of great scientific and agriculture value to analyze the microbial communities associated with bar-headed geese in order to improve their reproductive rate. Here we describe the first comparative study of the gut microbial communities of bar-headed geese in three different breeding pattern groups by 16SrRNA sequences using the Illumina MiSeq platform. The results showed that Firmicutes predominated (58.33%) among wild bar-headed geese followed by Proteobacteria (30.67%), Actinobacteria (7.33%) and Bacteroidetes (3.33%). In semi-artificial breeding group, Firmicutes was also the most abundant bacteria (62.00%), followed by Bacteroidetes (28.67%), Proteobacteria (4.20%), Actinobacteria (3.27%) and Fusobacteria (1.51%). The microbial communities of artificial breeding group were dominated by Firmicutes (60.67%), Fusobacteria (29.67%) and Proteobacteria (9.33%). Wild bar-headed geese had a significant higher relative abundance of Proteobacteria and Actinobacteria, while semi-artificial breeding bar-headed geese had significantly more Bacteroidetes. The semi-artificial breeding group had the highest microbial community diversity and richness, followed by wild group, and then the artificial breeding group. The marked differences of genus level group-specific microbes create a baseline for future bar-headed goose microbiology research. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity?

    PubMed

    Davis, H C

    2018-05-01

    Recent research suggests that the human gastrointestinal microbiota is greatly involved in yielding, storing and expending energy from the diet; therefore, it may be a further factor in linking diet to obesity. The gut microbial composition is affected by diet throughout the human lifespan, and is highly dynamic and efficient in response to dietary alterations in particular to dietary fibre intake. Short-chained fatty acids (SCFA) are the bi-product of fibre fermentation and have both obesogenic and anti-obesogenic properties. The production of specific forms of SCFAs depends on the microbes available in the gut and the type of fibre ingested. The gut microbiome associated with healthy lean individuals has a higher microbial biodiversity and a greater Bacteroidete to Firmicute ratio compared to the obese individuals associated with microbiome. These gut microbial associations are similar to those seen in individuals with high and low dietary fibre intakes, respectively. Metabolites generated by Bacteroidetes and Firmicutes include the three main SCFA related to obesity, namely butyrate, acetate and propionate. However, neither Bacteroidetes nor Firmicutes is purely causative or purely preventative of obesity. More research is crucial in linking the various types of fibre with particular SCFA production and the microbiome it promotes before suggesting that dietary fibre modulation of the gut microbiome can treat obesity. However, the long-term dietary trend plays the principal role in assembling the diversity and abundance of gut microbes; thus, a sustained diet high in fibre may help prevent obesity by promoting a microbiome associated with a lean phenotype.

  7. Individual architecture of subgingival microflora in chronic periodontitis.

    PubMed

    Sasamoto, Minoru; Nagai, Atsushi; Sakagami, Ryuji; Kitamura, Kenji; Miki, Takeyoshi

    2009-01-01

    Nearly 400 species of bacteria have been found in human periodontal pockets, and half of them remain uncultured to date. The diagnosis of individual periodontal microflora using culture-independent detection of species is expected to serve as a tool for 'tailor-made' periodontal treatments. However, the richness and abundance of bacterial species within individual subgingival microflora have not been sufficiently studied to develop more specific diagnostic microbiological tests. The purpose of this study was to determine the ecological architecture of the subgingival microflora among chronic periodontitis patients and their individual differences based on phylotype analyses. Four 16S rRNA gene libraries were constructed from subgingival plaque samples taken from all diseased sites in four chronic periodontitis patients. The 480 clones generated from each of the four libraries were analyzed by phylotyping and subjected to ecological estimation of species richness. The indices of species richness of the four libraries were 73, 75, 98 or 100 phylotypes. A total of 195 phylotypes were identified in the combined libraries. The majority of phylotypes were assigned to the Bacteroidetes, Fusobacteria, Proteobacteria, Firmicutes and Actinobacteria phyla. The phylotypes assigned to the Bacteroidetes and Fusobacteria phyla were the most predominant in each library (chi2-test, p < 0.05). In this study, the molecular ecology of 1920 clones obtained from four patients' subgingival plaque samples was examined. More than half of the detected clones were categorized under either the Bacteroidetes or the Fusobacteria phyla. Each library showed unique richness and abundance of phylotypes.

  8. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla

    PubMed Central

    Mahowald, Michael A.; Rey, Federico E.; Seedorf, Henning; Turnbaugh, Peter J.; Fulton, Robert S.; Wollam, Aye; Shah, Neha; Wang, Chunyan; Magrini, Vincent; Wilson, Richard K.; Cantarel, Brandi L.; Coutinho, Pedro M.; Henrissat, Bernard; Crock, Lara W.; Russell, Alison; Verberkmoes, Nathan C.; Hettich, Robert L.; Gordon, Jeffrey I.

    2009-01-01

    The adult human distal gut microbial community is typically dominated by 2 bacterial phyla (divisions), the Firmicutes and the Bacteroidetes. Little is known about the factors that govern the interactions between their members. Here, we examine the niches of representatives of both phyla in vivo. Finished genome sequences were generated from Eubacterium rectale and E. eligens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute clades. Comparison of these and 25 other gut Firmicutes and Bacteroidetes indicated that the Firmicutes possess smaller genomes and a disproportionately smaller number of glycan-degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a prominent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole-genome transcriptional profiling, high-resolution proteomic analysis, and biochemical assays of microbial–microbial and microbial–host interactions. B. thetaiotaomicron adapts to E. rectale by up-regulating expression of a variety of polysaccharide utilization loci encoding numerous glycoside hydrolases, and by signaling the host to produce mucosal glycans that it, but not E. rectale, can access. E. rectale adapts to B. thetaiotaomicron by decreasing production of its glycan-degrading enzymes, increasing expression of selected amino acid and sugar transporters, and facilitating glycolysis by reducing levels of NADH, in part via generation of butyrate from acetate, which in turn is used by the gut epithelium. This simplified model of the human gut microbiota illustrates niche specialization and functional redundancy within members of its major bacterial phyla, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability. PMID:19321416

  9. Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes

    PubMed Central

    O. Sheridan, Paul; Martin, Jennifer C.; Lawley, Trevor D.; Browne, Hilary P.; Harris, Hugh M. B.; Bernalier-Donadille, Annick; Duncan, Sylvia H.; O'Toole, Paul W.; J. Flint, Harry

    2016-01-01

    Firmicutes and Bacteroidetes are the predominant bacterial phyla colonizing the healthy human large intestine. Whilst both ferment dietary fibre, genes responsible for this important activity have been analysed only in the Bacteroidetes, with very little known about the Firmicutes. This work investigates the carbohydrate-active enzymes (CAZymes) in a group of Firmicutes, Roseburia spp. and Eubacterium rectale, which play an important role in producing butyrate from dietary carbohydrates and in health maintenance. Genome sequences of 11 strains representing E. rectale and four Roseburia spp. were analysed for carbohydrate-active genes. Following assembly into a pan-genome, core, variable and unique genes were identified. The 1840 CAZyme genes identified in the pan-genome were assigned to 538 orthologous groups, of which only 26 were present in all strains, indicating considerable inter-strain variability. This analysis was used to categorize the 11 strains into four carbohydrate utilization ecotypes (CUEs), which were shown to correspond to utilization of different carbohydrates for growth. Many glycoside hydrolase genes were found linked to genes encoding oligosaccharide transporters and regulatory elements in the genomes of Roseburia spp. and E. rectale, forming distinct polysaccharide utilization loci (PULs). Whilst PULs are also a common feature in Bacteroidetes, key differences were noted in these Firmicutes, including the absence of close homologues of Bacteroides polysaccharide utilization genes, hence we refer to Gram-positive PULs (gpPULs). Most CAZyme genes in the Roseburia/E. rectale group are organized into gpPULs. Variation in gpPULs can explain the high degree of nutritional specialization at the species level within this group. PMID:28348841

  10. Variations in the structure of airborne bacterial communities in Tsogt-Ovoo of Gobi desert area during dust events.

    PubMed

    Maki, Teruya; Kurosaki, Yasunori; Onishi, Kazunari; Lee, Kevin C; Pointing, Stephen B; Jugder, Dulam; Yamanaka, Norikazu; Hasegawa, Hiroshi; Shinoda, Masato

    2017-01-01

    Asian dust events transport the airborne bacteria in Chinese desert regions as well as mineral particles and influence downwind area varying biological ecosystems and climate changes. However, the airborne bacterial dynamics were rarely investigated in the Gobi desert area, where dust events are highly frequent. In this study, air samplings were sequentially performed at a 2-m high above the ground at the sampling site located in desert area (Tsogt-Ovoo of Gobi desert; Mongolia 44.2304°N, 105.1700°E). During the dust event days, the bacterial cells and mineral particles increased to more than tenfold of concentrations. MiSeq sequencing targeting 16S ribosomal DNA revealed that the airborne bacteria in desert area mainly belonged to the classes Acidobacteria , Actinobacteria , Bacteroidetes , Chloroflexi , Bacilli , Alpha-proteobacteria , Beta-proteobacteria , and Gamma-proteobacteria. The bacterial community structures were different between dust events and non-dust events. The air samples collected at the dust events indicated high abundance rates of Alpha-proteobacteria , which were reported to dominate on the leaf surfaces of plants or in the saline lake environments. After the dust events, the members of Firmicutes ( Bacilli ) and Bacteroidetes , which are known to form endospore and attach with coarse particles, respectively, increased their relative abundances in the air samples. Presumably, the bacterial compositions and diversities in atmosphere significantly vary during dust events, which carry some particles from grassland (phyllo-sphere), dry lake, and sand surfaces, as well as some bacterial populations such as Firmicutes and Bacteroidetes maintain in the atmosphere for longer time.

  11. Complete genome sequence of Ornithobacterium rhinotracheal strain ORT-UMN 88

    USDA-ARS?s Scientific Manuscript database

    Ornithobacterium rhinotracheale (O. rhinotracheale) strain ORT-UMN 88 is a Gram-negative pleomorphic rod-shaped bacterium and an etiologic agent of pneumonia and airsacculitis in poultry. It is a member of the family Flavobacteriaceae of the phylum Bacteroidetes. O. rhinotracheale strain ORT-UMN 8...

  12. Non-contiguous finished genome sequence of Ornithobacterium rhinotracheale strain H06-030791

    USDA-ARS?s Scientific Manuscript database

    The Gram-negative pleomorphic rod-shaped bacterium Ornithobacterium rhinotracheale (O. rhinotracheale) is a cause of pneumonia and airsacculitis in poultry. It is a member of the family Flavobacteriaceae of the phylum Bacteroidetes. O. rhinotracheale strain H06-030791 was isolated from the lung of...

  13. Glycan complexity dictates microbial resource allocation in the large intestine

    USDA-ARS?s Scientific Manuscript database

    The structure of the human gut microbiota, which impacts on the health of the host, is controlled by complex dietary carbohydrates and members of the Bacteroidetes phylum are the major contributors to the degradation of complex dietary carbohydrates. The extent to which complex dietary carbohydrates...

  14. New bacterial species associated with chronic periodontitis.

    PubMed

    Kumar, P S; Griffen, A L; Barton, J A; Paster, B J; Moeschberger, M L; Leys, E J

    2003-05-01

    Recent investigations of the human subgingival oral flora based on ribosomal 16S cloning and sequencing have shown many of the bacterial species present to be novel species or phylotypes. The purpose of the present investigation was to identify potential periodontal pathogens among these newly identified species and phylotypes. Species-specific ribosomal 16S primers for PCR amplification were developed for detection of new species. Associations with chronic periodontitis were observed for several new species or phylotypes, including uncultivated clones D084 and BH017 from the Deferribacteres phylum, AU126 from the Bacteroidetes phylum, Megasphaera clone BB166, clone X112 from the OP11 phylum, and clone I025 from the TM7 phylum, and the named species Eubacterium saphenum, Porphyromonas endodontalis, Prevotella denticola, and Cryptobacterium curtum. Species or phylotypes more prevalent in periodontal health included two uncultivated phylotypes, clone W090 from the Deferribacteres phylum and clone BU063 from the Bacteroidetes, and named species Atopobium rimae and Atopobium parvulum.

  15. Changes in bacterial gut community of Reticulitermes flavipes (Kollar) and Reticulitermes tibialis Banks after feeding on termiticidal bait material

    Treesearch

    Rachel A. Arango; Frederick Green III; Kenneth F. Raffa

    2014-01-01

    In this study, 454-pyrosequencing was used to evaluate the effect of two termiticidal baits, hexaflumuron and diflubenzuron, on the bacterial gut community in two Reticulitermes flavipes colonies and one Reticulitermes tibialis colony. Results showed two bacterial groups to be most abundant in the gut, the Bacteroidetes and...

  16. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants.

    PubMed

    Kolton, Max; Meller Harel, Yael; Pasternak, Zohar; Graber, Ellen R; Elad, Yigal; Cytryn, Eddie

    2011-07-01

    Adding biochar to soil has environmental and agricultural potential due to its long-term carbon sequestration capacity and its ability to improve crop productivity. Recent studies have demonstrated that soil-applied biochar promotes the systemic resistance of plants to several prominent foliar pathogens. One potential mechanism for this phenomenon is root-associated microbial elicitors whose presence is somehow augmented in the biochar-amended soils. The objective of this study was to assess the effect of biochar amendment on the root-associated bacterial community composition of mature sweet pepper (Capsicum annuum L.) plants. Molecular fingerprinting (denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism) of 16S rRNA gene fragments showed a clear differentiation between the root-associated bacterial community structures of biochar-amended and control plants. The pyrosequencing of 16S rRNA amplicons from the rhizoplane of both treatments generated a total of 20,142 sequences, 92 to 95% of which were affiliated with the Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes phyla. The relative abundance of members of the Bacteroidetes phylum increased from 12 to 30% as a result of biochar amendment, while that of the Proteobacteria decreased from 71 to 47%. The Bacteroidetes-affiliated Flavobacterium was the strongest biochar-induced genus. The relative abundance of this group increased from 4.2% of total root-associated operational taxonomic units (OTUs) in control samples to 19.6% in biochar-amended samples. Additional biochar-induced genera included chitin and cellulose degraders (Chitinophaga and Cellvibrio, respectively) and aromatic compound degraders (Hydrogenophaga and Dechloromonas). We hypothesize that these biochar-augmented genera may be at least partially responsible for the beneficial effect of biochar amendment on plant growth and viability.

  17. A Comparative Metagenome Survey of the Fecal Microbiota of a Breast- and a Plant-Fed Asian Elephant Reveals an Unexpectedly High Diversity of Glycoside Hydrolase Family Enzymes

    PubMed Central

    Ilmberger, Nele; Güllert, Simon; Dannenberg, Joana; Rabausch, Ulrich; Torres, Jeremy; Wemheuer, Bernd; Alawi, Malik; Poehlein, Anja; Chow, Jennifer; Turaev, Dimitrij; Rattei, Thomas; Schmeisser, Christel; Salomon, Jesper; Olsen, Peter B.; Daniel, Rolf; Grundhoff, Adam; Borchert, Martin S.; Streit, Wolfgang R.

    2014-01-01

    A phylogenetic and metagenomic study of elephant feces samples (derived from a three-weeks-old and a six-years-old Asian elephant) was conducted in order to describe the microbiota inhabiting this large land-living animal. The microbial diversity was examined via 16S rRNA gene analysis. We generated more than 44,000 GS-FLX+454 reads for each animal. For the baby elephant, 380 operational taxonomic units (OTUs) were identified at 97% sequence identity level; in the six-years-old animal, close to 3,000 OTUs were identified, suggesting high microbial diversity in the older animal. In both animals most OTUs belonged to Bacteroidetes and Firmicutes. Additionally, for the baby elephant a high number of Proteobacteria was detected. A metagenomic sequencing approach using Illumina technology resulted in the generation of 1.1 Gbp assembled DNA in contigs with a maximum size of 0.6 Mbp. A KEGG pathway analysis suggested high metabolic diversity regarding the use of polymers and aromatic and non-aromatic compounds. In line with the high phylogenetic diversity, a surprising and not previously described biodiversity of glycoside hydrolase (GH) genes was found. Enzymes of 84 GH families were detected. Polysaccharide utilization loci (PULs), which are found in Bacteroidetes, were highly abundant in the dataset; some of these comprised cellulase genes. Furthermore the highest coverage for GH5 and GH9 family enzymes was detected for Bacteroidetes, suggesting that bacteria of this phylum are mainly responsible for the degradation of cellulose in the Asian elephant. Altogether, this study delivers insight into the biomass conversion by one of the largest plant-fed and land-living animals. PMID:25208077

  18. Molecular Detection of Campylobacter spp. and Fecal Indicator Bacteria during the Northern Migration of Sandhill Cranes (Grus canadensis) at the Central Platte River

    PubMed Central

    Ryu, Hodon; Vogel, Jason; Santo Domingo, Jorge; Ashbolt, Nicholas J.

    2013-01-01

    The risk to human health of the annual sandhill crane (Grus canadensis) migration through Nebraska, which is thought to be a major source of fecal pollution of the central Platte River, is unknown. To better understand potential risks, the presence of Campylobacter species and three fecal indicator bacterial groups (Enterococcus spp., Escherichia coli, and Bacteroidetes) was assayed by PCR from crane excreta and water samples collected during their stopover at the Platte River, Nebraska, in 2010. Genus-specific PCR assays and sequence analyses identified Campylobacter jejuni as the predominant Campylobacter species in sandhill crane excreta. Campylobacter spp. were detected in 48% of crane excreta, 24% of water samples, and 11% of sediment samples. The estimated densities of Enterococcus spp. were highest in excreta samples (mean, 4.6 × 108 cell equivalents [CE]/g), while water samples contained higher levels of Bacteroidetes (mean, 5.1 × 105 CE/100 ml). Enterococcus spp., E. coli, and Campylobacter spp. were significantly increased in river water and sediments during the crane migration period, with Enterococcus sp. densities (∼3.3 × 105 CE/g) 2 to 4 orders of magnitude higher than those of Bacteroidetes (4.9 × 103 CE/g), E. coli (2.2 × 103 CE/g), and Campylobacter spp. (37 CE/g). Sequencing data for the 16S rRNA gene and Campylobacter species-specific PCR assays indicated that C. jejuni was the major Campylobacter species present in water, sediments, and crane excreta. Overall, migration appeared to result in a significant, but temporary, change in water quality in spring, when there may be a C. jejuni health hazard associated with water and crops visited by the migrating birds. PMID:23584775

  19. Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice

    PubMed Central

    Swanson, Kelly S; Dowd, Scot E; Suchodolski, Jan S; Middelbos, Ingmar S; Vester, Brittany M; Barry, Kathleen A; Nelson, Karen E; Torralba, Manolito; Henrissat, Bernard; Coutinho, Pedro M; Cann, Isaac KO; White, Bryan A; Fahey, George C

    2011-01-01

    This study is the first to use a metagenomics approach to characterize the phylogeny and functional capacity of the canine gastrointestinal microbiome. Six healthy adult dogs were used in a crossover design and fed a low-fiber control diet (K9C) or one containing 7.5% beet pulp (K9BP). Pooled fecal DNA samples from each treatment were subjected to 454 pyrosequencing, generating 503 280 (K9C) and 505 061 (K9BP) sequences. Dominant bacterial phyla included the Bacteroidetes/Chlorobi group and Firmicutes, both of which comprised ∼35% of all sequences, followed by Proteobacteria (13–15%) and Fusobacteria (7–8%). K9C had a greater percentage of Bacteroidetes, Fusobacteria and Proteobacteria, whereas K9BP had greater proportions of the Bacteroidetes/Chlorobi group and Firmicutes. Archaea were not altered by diet and represented ∼1% of all sequences. All archaea were members of Crenarchaeota and Euryarchaeota, with methanogens being the most abundant and diverse. Three fungi phylotypes were present in K9C, but none in K9BP. Less than 0.4% of sequences were of viral origin, with >99% of them associated with bacteriophages. Primary functional categories were not significantly affected by diet and were associated with carbohydrates; protein metabolism; DNA metabolism; cofactors, vitamins, prosthetic groups and pigments; amino acids and derivatives; cell wall and capsule; and virulence. Hierarchical clustering of several gastrointestinal metagenomes demonstrated phylogenetic and metabolic similarity between dogs, humans and mice. More research is required to provide deeper coverage of the canine microbiome, evaluate effects of age, genetics or environment on its composition and activity, and identify its role in gastrointestinal disease. PMID:20962874

  20. Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial.

    PubMed

    Holscher, Hannah D; Caporaso, J Gregory; Hooda, Seema; Brulc, Jennifer M; Fahey, George C; Swanson, Kelly S

    2015-01-01

    In our published randomized, double-blind, placebo-controlled, 3-period crossover trial, healthy adult men (n = 21) consumed bars containing no supplemental fiber (placebo; NFC), polydextrose (21 g/d), and soluble corn fiber (SCF; 21 g/d) for 21 d each. Fecal specimens were collected between days 16 and 21 for fermentative end-product analysis and 16S ribosomal RNA bacterial gene amplification for bacterial taxa identification. Fiber supplementation decreased fecal putrefaction compounds and shifted abundances of several bacterial taxa. The objective was to perform whole-genome shotgun 454 pyrosequencing on the same fecal specimens collected in that clinical trial to obtain comprehensive fecal bacterial genome sequencing coverage and explore the full range of bacterial genetic information in the fecal microbiome, thereby using a systematic approach to study the impact of dietary fiber supplementation on fecal metabolites, bacterial taxa, and bacterial metagenomes. Fecal samples were subjected to whole-genome shotgun 454 pyrosequencing to identify both fecal bacterial populations present and their functional genetic capacity. Whole-genome shotgun sequencing results revealed that fiber consumption shifted the Bacteroidetes:Firmicutes ratio, increasing the relative abundance of Bacteroidetes 12 ± 2% and 13 ± 2% with polydextrose and SCF, respectively, compared with NFC. Bivariate correlations showed a positive correlation between the Bacteroidetes:Firmicutes ratio and total dietary fiber intake but not body mass index. Principal coordinates analysis of Bray-Curtis distances indicated that bacterial gene composition was more similar in participants consuming fibers (polydextrose and SCF combined) in comparison with NFC. Shifts in bacterial gene abundances after polydextrose and SCF supplementation included genes associated with carbohydrate, amino acid, and lipid metabolism, as well as metabolism of cofactors and vitamins. This study conveys novel information about

  1. Oral imazalil exposure induces gut microbiota dysbiosis and colonic inflammation in mice.

    PubMed

    Jin, Cuiyuan; Zeng, Zhaoyang; Fu, Zhengwei; Jin, Yuanxiang

    2016-10-01

    The fungicide imazalil (IMZ) is used extensively in vegetable and fruit plantations and as a post-harvest treatment to avoid rot. Here, we revealed that ingestion of 25, 50 and 100 mg IMZ kg(-1) body weight for 28 d induced gut microbiota dysbiosis and colonic inflammation in mice. The relative abundance of Bacteroidetes, Firmicutes and Actinobacteria in the cecal contents decreased significantly after exposure to 100 mg kg(-1) IMZ for 28 d. In feces, the relative abundance in Bacteroidetes, Firmicutes and Actinobacteria decreased significantly after being exposed to 100 mg kg(-1) IMZ for 1, 14 and 7 d, respectively. High throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene revealed a significant reduction in the richness and diversity of microbiota in cecal contents and feces of IMZ-treated mice. Operational taxonomic units (OTUs) analysis identified 49.3% of OTUs changed in cecal contents, while 55.6% of OTUs changed in the feces after IMZ exposure. Overall, at the phylum level, the relative abundance of Firmicutes, Proteobacteria and Actinobacteria increased and that of Bacteroidetes decreased in IMZ-treated groups. At the genus level, the abundance of Lactobacillus and Bifidobacterium decreased while those of Deltaproteobacteria and Desulfovibrio increased in response to IMZ exposure. In addition, it was observed that IMZ exposure could induce colonic inflammation characterized by infiltration of inflammatory cells, elevated levels of lipocalin-2 (lcn-2) in the feces, and increased mRNA levels of Tnf-α, IL-1β, IL-22 and IFN-γ in the colon. Our findings strongly suggest that ingestion of IMZ has some risks to human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Changes in human gut flora with age: an Indian familial study.

    PubMed

    Marathe, Nachiket; Shetty, Sudarshan; Lanjekar, Vikram; Ranade, Dilip; Shouche, Yogesh

    2012-09-26

    The gut micro flora plays vital role in health status of the host. The majority of microbes residing in the gut have a profound influence on human physiology and nutrition. Different human ethnic groups vary in genetic makeup as well as the environmental conditions they live in. The gut flora changes with genetic makeup and environmental factors and hence it is necessary to understand the composition of gut flora of different ethnic groups. Indian population is different in physiology from western population (YY paradox) and thus the gut flora in Indian population is likely to differ from the extensively studied gut flora in western population. In this study we have investigated the gut flora of two Indian families, each with three individuals belonging to successive generations and living under the same roof. Denaturation gradient gel electrophoresis analysis showed age-dependant variation in gut microflora amongst the individuals within a family. Different bacterial genera were dominant in the individual of varying age in clone library analysis. Obligate anaerobes isolated from individuals within a family showed age related differences in isolation pattern, with 27% (6 out of 22) of the isolates being potential novel species based on 16S rRNA gene sequence. In qPCR a consistent decrease in Firmicutes number and increase in Bacteroidetes number with increasing age was observed in our subjects, this pattern of change in Firmicutes / Bacteroidetes ratio with age is different than previously reported in European population. There is change in gut flora with age amongst the individuals within a family. The isolation of high percent of novel bacterial species and the pattern of change in Firmicutes /Bacteroidetes ratio with age suggests that the composition of gut flora in Indian individuals may be different than the western population. Thus, further extensive study is needed to define the gut flora in Indian population.

  3. Molecular detection of Campylobacter spp. and fecal indicator bacteria during the northern migration of sandhill cranes (Grus canadensis) at the central Platte River.

    PubMed

    Lu, Jingrang; Ryu, Hodon; Vogel, Jason; Santo Domingo, Jorge; Ashbolt, Nicholas J

    2013-06-01

    The risk to human health of the annual sandhill crane (Grus canadensis) migration through Nebraska, which is thought to be a major source of fecal pollution of the central Platte River, is unknown. To better understand potential risks, the presence of Campylobacter species and three fecal indicator bacterial groups (Enterococcus spp., Escherichia coli, and Bacteroidetes) was assayed by PCR from crane excreta and water samples collected during their stopover at the Platte River, Nebraska, in 2010. Genus-specific PCR assays and sequence analyses identified Campylobacter jejuni as the predominant Campylobacter species in sandhill crane excreta. Campylobacter spp. were detected in 48% of crane excreta, 24% of water samples, and 11% of sediment samples. The estimated densities of Enterococcus spp. were highest in excreta samples (mean, 4.6 × 10(8) cell equivalents [CE]/g), while water samples contained higher levels of Bacteroidetes (mean, 5.1 × 10(5) CE/100 ml). Enterococcus spp., E. coli, and Campylobacter spp. were significantly increased in river water and sediments during the crane migration period, with Enterococcus sp. densities (~3.3 × 10(5) CE/g) 2 to 4 orders of magnitude higher than those of Bacteroidetes (4.9 × 10(3) CE/g), E. coli (2.2 × 10(3) CE/g), and Campylobacter spp. (37 CE/g). Sequencing data for the 16S rRNA gene and Campylobacter species-specific PCR assays indicated that C. jejuni was the major Campylobacter species present in water, sediments, and crane excreta. Overall, migration appeared to result in a significant, but temporary, change in water quality in spring, when there may be a C. jejuni health hazard associated with water and crops visited by the migrating birds.

  4. Mungo bean sprout microbiome and changes associated with culture based enrichment protocols used in detection of Gram-negative foodborne pathogens.

    PubMed

    Margot, Heike; Stephan, Roger; Tasara, Taurai

    2016-09-06

    Fresh sprouted seeds have been associated with a number of large outbreaks caused by Salmonella and Shiga toxin-producing E. coli. However, the high number of commensal bacteria found on sprouted seeds hampers the detection of these pathogens. Knowledge about the composition of the sprout microbiome is limited. In this study, the microbiome of mungo bean sprouts and the impact of buffered peptone water (BPW) and Enterobacteriaceae enrichment broth (EE-broth)-based enrichment protocols on this microbiome were investigated. Assessments based on aerobic mesophilic colony counts showed similar increases in mungo bean sprout background flora levels independent of the enrichment protocol used. 16S rRNA sequencing revealed a mungo bean sprout microbiome dominated by Proteobacteria and Bacteroidetes. EE-broth enrichment of such samples preserved and increased Proteobacteria dominance while reducing Bacteroidetes and Firmicutes relative abundances. BPW enrichment, however, increased Firmicutes relative abundance while decreasing Proteobacteria and Bacteroidetes levels. Both enrichments also lead to various genus level changes within the Protobacteria and Firmicutes phyla. New insights into the microbiome associated with mungo bean sprout and how it is influenced through BPW and EE-broth-based enrichment strategies used for detecting Gram-negative pathogens were generated. BPW enrichment leads to Firmicutes and Proteobacteria dominance, whereas EE-broth enrichment preserves Proteobacteria dominance in the mungo bean sprout samples. By increasing the relative abundance of Firmicutes, BPW also increases the abundance of Gram-positive organisms including some that might inhibit recovery of Gram-negative pathogens. The use of EE-broth, although preserving and increasing the dominance of Proteobacteria, can also hamper the detection of lowly abundant Gram-negative target pathogens due to outgrowth of such organisms by the highly abundant non-target Proteobacteria genera

  5. Age-Related Variations in Intestinal Microflora of Free-Range and Caged Hens.

    PubMed

    Cui, Yizhe; Wang, Qiuju; Liu, Shengjun; Sun, Rui; Zhou, Yaqiang; Li, Yue

    2017-01-01

    Free range feeding pattern puts the chicken in a mixture of growth materials and enteric bacteria excreted by nature, while it is typically unique condition materials and enteric bacteria in commercial caged hens production. Thus, the gastrointestinal microflora in two feeding patterns could be various. However, it remains poorly understood how feeding patterns affect development and composition of layer hens' intestinal microflora. In this study, the effect of feeding patterns on the bacteria community in layer hens' gut was investigated using free range and caged feeding form. Samples of whole small intestines and cecal digesta were collected from young hens (8-weeks) and mature laying hens (30-weeks). Based on analysis using polymerase chain reaction-denaturing gradient gel electrophoresis and sequencing of bacterial 16S rDNA gene amplicons, the microflora of all intestinal contents were affected by both feeding patterns and age of hens. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria were the main components. Additionally, uncultured environmental samples were found too. There were large differences between young hens and adult laying hens, the latter had more Firmicutes and Bacteroidetes, and bacterial community is more abundant in 30-weeks laying hens of all six phyla than 8-weeks young hens of only two phyla. In addition, the differences were also observed between free range and caged hens. Free range hens had richer Actinobacteria, Bacteroidetes, and Proteobacteria. Most of strains found were detected more abundant in small intestines than in cecum. Also the selected Lactic acid bacteria from hens gut were applied in feed and they had beneficial effects on growth performance and jejunal villus growth of young broilers. This study suggested that feeding patterns have an importance effect on the microflora composition of hens, which may impact the host nutritional status and intestinal health.

  6. Diversity rankings among bacterial lineages in soil.

    PubMed

    Youssef, Noha H; Elshahed, Mostafa S

    2009-03-01

    We used rarefaction curve analysis and diversity ordering-based approaches to rank the 11 most frequently encountered bacterial lineages in soil according to diversity in 5 previously reported 16S rRNA gene clone libraries derived from agricultural, undisturbed tall grass prairie and forest soils (n=26,140, 28 328, 31 818, 13 001 and 53 533). The Planctomycetes, Firmicutes and the delta-Proteobacteria were consistently ranked among the most diverse lineages in all data sets, whereas the Verrucomicrobia, Gemmatimonadetes and beta-Proteobacteria were consistently ranked among the least diverse. On the other hand, the rankings of alpha-Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Chloroflexi varied widely in different soil clone libraries. In general, lineages exhibiting largest differences in diversity rankings also exhibited the largest difference in relative abundance in the data sets examined. Within these lineages, a positive correlation between relative abundance and diversity was observed within the Acidobacteria, Actinobacteria and Chloroflexi, and a negative diversity-abundance correlation was observed within the Bacteroidetes. The ecological and evolutionary implications of these results are discussed.

  7. Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility

    PubMed Central

    Nakayama, K

    2015-01-01

    Porphyromonas gingivalis is a gram-negative, non-motile, anaerobic bacterium implicated as a major pathogen in periodontal disease. P. gingivalis grows as black-pigmented colonies on blood agar, and many bacteriologists have shown interest in this property. Studies of colonial pigmentation have revealed a number of important findings, including an association with the highly active extracellular and surface proteinases called gingipains that are found in P. gingivalis. The Por secretion system, a novel type IX secretion system (T9SS), has been implicated in gingipain secretion in studies using non-pigmented mutants. In addition, many potent virulence proteins, including the metallocarboxypeptidase CPG70, 35 kDa hemin-binding protein HBP35, peptidylarginine deiminase PAD and Lys-specific serine endopeptidase PepK, are secreted through the T9SS. These findings have not been limited to P. gingivalis but have been extended to other bacteria belonging to the phylum Bacteroidetes. Many Bacteroidetes species possess the T9SS, which is associated with gliding motility for some of these bacteria. PMID:25546073

  8. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    PubMed

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  9. Impaired Carbohydrate Digestion and Transport and Mucosal Dysbiosis in the Intestines of Children with Autism and Gastrointestinal Disturbances

    PubMed Central

    Williams, Brent L.; Hornig, Mady; Buie, Timothy; Bauman, Margaret L.; Cho Paik, Myunghee; Wick, Ivan; Bennett, Ashlee; Jabado, Omar; Hirschberg, David L.; Lipkin, W. Ian

    2011-01-01

    Gastrointestinal disturbances are commonly reported in children with autism, complicate clinical management, and may contribute to behavioral impairment. Reports of deficiencies in disaccharidase enzymatic activity and of beneficial responses to probiotic and dietary therapies led us to survey gene expression and the mucoepithelial microbiota in intestinal biopsies from children with autism and gastrointestinal disease and children with gastrointestinal disease alone. Ileal transcripts encoding disaccharidases and hexose transporters were deficient in children with autism, indicating impairment of the primary pathway for carbohydrate digestion and transport in enterocytes. Deficient expression of these enzymes and transporters was associated with expression of the intestinal transcription factor, CDX2. Metagenomic analysis of intestinal bacteria revealed compositional dysbiosis manifest as decreases in Bacteroidetes, increases in the ratio of Firmicutes to Bacteroidetes, and increases in Betaproteobacteria. Expression levels of disaccharidases and transporters were associated with the abundance of affected bacterial phylotypes. These results indicate a relationship between human intestinal gene expression and bacterial community structure and may provide insights into the pathophysiology of gastrointestinal disturbances in children with autism. PMID:21949732

  10. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances.

    PubMed

    Williams, Brent L; Hornig, Mady; Buie, Timothy; Bauman, Margaret L; Cho Paik, Myunghee; Wick, Ivan; Bennett, Ashlee; Jabado, Omar; Hirschberg, David L; Lipkin, W Ian

    2011-01-01

    Gastrointestinal disturbances are commonly reported in children with autism, complicate clinical management, and may contribute to behavioral impairment. Reports of deficiencies in disaccharidase enzymatic activity and of beneficial responses to probiotic and dietary therapies led us to survey gene expression and the mucoepithelial microbiota in intestinal biopsies from children with autism and gastrointestinal disease and children with gastrointestinal disease alone. Ileal transcripts encoding disaccharidases and hexose transporters were deficient in children with autism, indicating impairment of the primary pathway for carbohydrate digestion and transport in enterocytes. Deficient expression of these enzymes and transporters was associated with expression of the intestinal transcription factor, CDX2. Metagenomic analysis of intestinal bacteria revealed compositional dysbiosis manifest as decreases in Bacteroidetes, increases in the ratio of Firmicutes to Bacteroidetes, and increases in Betaproteobacteria. Expression levels of disaccharidases and transporters were associated with the abundance of affected bacterial phylotypes. These results indicate a relationship between human intestinal gene expression and bacterial community structure and may provide insights into the pathophysiology of gastrointestinal disturbances in children with autism.

  11. Cultured bacterial diversity and human impact on alpine glacier cryoconite.

    PubMed

    Lee, Yung Mi; Kim, So-Yeon; Jung, Jia; Kim, Eun Hye; Cho, Kyeung Hee; Schinner, Franz; Margesin, Rosa; Hong, Soon Gyu; Lee, Hong Kum

    2011-06-01

    The anthropogenic effect on the microbial communities in alpine glacier cryoconites was investigated by cultivation and physiological characterization of bacteria from six cryoconite samples taken at sites with different amounts of human impact. Two hundred and forty seven bacterial isolates were included in Actinobacteria (9%, particularly Arthrobacter), Bacteroidetes (14%, particularly Olleya), Firmicutes (0.8%), Alphaproteobacteria (2%), Betaproteobacteria (16%, particularly Janthinobacterium), and Gammaproteobacteria (59%, particularly Pseudomonas). Among them, isolates of Arthrobacter were detected only in samples from sites with no human impact, while isolates affiliated with Enterobacteriaceae were detected only in samples from sites with strong human impact. Bacterial isolates included in Actinobacteria and Bacteroidetes were frequently isolated from pristine sites and showed low maximum growth temperature and enzyme secretion. Bacterial isolates included in Gammaproteobacteria were more frequently isolated from sites with stronger human impact and showed high maximum growth temperature and enzyme secretion. Ecotypic differences were not evident among isolates of Janthinobacterium lividum, Pseudomonas fluorescens, and Pseudomonas veronii, which were frequently isolated from sites with different degrees of anthropogenic effect.

  12. Comparative Metagenomics of the Polymicrobial Black Band Disease of Corals

    PubMed Central

    Meyer, Julie L.; Paul, Valerie J.; Raymundo, Laurie J.; Teplitski, Max

    2017-01-01

    Black Band Disease (BBD), the destructive microbial consortium dominated by the cyanobacterium Roseofilum reptotaenium, affects corals worldwide. While the taxonomic composition of BBD consortia has been well-characterized, substantially less is known about its functional repertoire. We sequenced the metagenomes of Caribbean and Pacific black band mats and cultured Roseofilum and obtained five metagenome-assembled genomes (MAGs) of Roseofilum, nine of Proteobacteria, and 12 of Bacteroidetes. Genomic content analysis suggests that Roseofilum is a source of organic carbon and nitrogen, as well as natural products that may influence interactions between microbes. Proteobacteria and Bacteroidetes members of the disease consortium are suited to the degradation of amino acids, proteins, and carbohydrates. The accumulation of sulfide underneath the black band mat, in part due to a lack of sulfur oxidizers, contributes to the lethality of the disease. The presence of sulfide:quinone oxidoreductase genes in all five Roseofilum MAGs and in the MAGs of several heterotrophs demonstrates that resistance to sulfide is an important characteristic for members of the BBD consortium. PMID:28458657

  13. Characterization of Bacterial Communities Associated with Deep-Sea Corals on Gulf of Alaska Seamounts†

    PubMed Central

    Penn, Kevin; Wu, Dongying; Eisen, Jonathan A.; Ward, Naomi

    2006-01-01

    Although microbes associated with shallow-water corals have been reported, deepwater coral microbes are poorly characterized. A cultivation-independent analysis of Alaskan seamount octocoral microflora showed that Proteobacteria (classes Alphaproteobacteria and Gammaproteobacteria), Firmicutes, Bacteroidetes, and Acidobacteria dominate and vary in abundance. More sampling is needed to understand the basis and significance of this variation. PMID:16461727

  14. Temporal succession in carbon incorporation from macromolecules by particle-attached bacteria in marine microcosms: Particle-attached bacteria incorporating organic carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayali, Xavier; Stewart, Benjamin; Mabery, Shalini

    Here, we investigated bacterial carbon assimilation from stable isotope-labelled macromolecular substrates (proteins; lipids; and two types of polysaccharides, starch and cellobiose) while attached to killed diatom detrital particles during laboratory microcosms incubated for 17 days. Using Chip-SIP (secondary ion mass spectrometry analysis of RNA microarrays), we identified generalist operational taxonomic units (OTUs) from the Gammaproteobacteria, belonging to the genera Colwellia, Glaciecola, Pseudoalteromonas and Rheinheimera, and from the Bacteroidetes, genera Owenweeksia and Maribacter, that incorporated the four tested substrates throughout the incubation period. Many of these OTUs exhibited the highest isotope incorporation relative to the others, indicating that they were likelymore » the most active. Additional OTUs from the Gammaproteobacteria, Bacteroidetes and Alphaproteobacteria exhibited generally (but not always) lower activity and did not incorporate all tested substrates at all times, showing species succession in organic carbon incorporation. We also found evidence to suggest that both generalist and specialist OTUs changed their relative substrate incorporation over time, presumably in response to changing substrate availability as the particles aged. This pattern was demonstrated by temporal succession from relatively higher starch incorporation early in the incubations, eventually switching to higher cellobiose incorporation after 2 weeks.« less

  15. Mongolians core gut microbiota and its correlation with seasonal dietary changes.

    PubMed

    Zhang, Jiachao; Guo, Zhuang; Lim, Angela An Qi; Zheng, Yi; Koh, Eileen Y; Ho, Danliang; Qiao, Jianmin; Huo, Dongxue; Hou, Qiangchuan; Huang, Weiqiang; Wang, Lifeng; Javzandulam, Chimedsuren; Narangerel, Choijilsuren; Jirimutu; Menghebilige; Lee, Yuan-Kun; Zhang, Heping

    2014-05-16

    Historically, the Mongol Empire ranks among the world's largest contiguous empires, and the Mongolians developed their unique lifestyle and diet over thousands of years. In this study, the intestinal microbiota of Mongolians residing in Ulan Bator, TUW province and the Khentii pasturing area were studied using 454 pyrosequencing and q-PCR technology. We explored the impacts of lifestyle and seasonal dietary changes on the Mongolians' gut microbes. At the phylum level, the Mongolians's gut populations were marked by a dominance of Bacteroidetes (55.56%) and a low Firmicutes to Bacteroidetes ratio (0.71). Analysis based on the operational taxonomic unit (OTU) level revealed that the Mongolian core intestinal microbiota comprised the genera Prevotella, Bacteroides, Faecalibacterium, Ruminococcus, Subdoligranulum and Coprococcus. Urbanisation and life-style may have modified the compositions of the gut microbiota of Mongolians from Ulan Bator, TUW and Khentii. Based on a food frequency questionnaire, we found that the dietary structure was diverse and stable throughout the year in Ulan Bator and TUW, but was simple and varied during the year in Khentii. Accordingly, seasonal effects on intestinal microbiota were more distinct in Khentii residents than in TUW or Ulan Bator residents.

  16. Molecular-based environmental risk assessment of three varieties of genetically engineered cows.

    PubMed

    Xu, Jianxiang; Zhao, Jie; Wang, Jianwu; Zhao, Yaofeng; Zhang, Lei; Chu, Mingxing; Li, Ning

    2011-10-01

    The development of animal biotechnology has led to an increase in attention to biosafety issues. Here we evaluated the impact of genetically engineered cows on the environment. The probability of horizontal gene transfer and the impact on the microbial communities in cow gut and soil were tested using three varieties of genetically engineered cows that were previously transformed with a human gene encoding lysozyme, lactoferrin, or human alpha lactalbumin. The results showed that the transgenes were not detectable by polymerase chain reaction (PCR) or quantitative real-time PCR in gut microbial DNA extracts of manure or microbial DNA extracts of topsoil. In addition, the transgenes had no impact on the microbial communities in cow gut or soil as assessed by PCR-denaturing gradient gel electrophoresis or 16S rDNA sequencing. Furthermore, phylogenetic analyses showed that the manure bacteria sampled during each of the four seasons belonged primarily to two groups, Firmicutes and Bacteroidetes, and the soil bacteria belonged to four groups, Firmicutes, Bacteroidetes, Actinobacteria, and α-proteobacteria. Other groups, such as β-proteobacteria, γ-proteobacteria, δ-proteobacteria, ε-proteobacteria, Spirochaetes, Acidobacteria, Chloroflexi, and Nitrospira, were not dominant in the manure or soil.

  17. Correlation between diet and gut bacteria in a population of young adults.

    PubMed

    Mayorga Reyes, Lino; González Vázquez, Raquel; Cruz Arroyo, Schahrasad M; Melendez Avalos, Araceli; Reyes Castillo, Pedro A; Chavaro Pérez, David A; Ramos Terrones, Idalia; Ramos Ibáñez, Norma; Rodríguez Magallanes, Magdalena M; Langella, Philippe; Bermúdez Humarán, Luis; Azaola Espinosa, Alejandro

    2016-06-01

    Dietary habits strongly influence gut microbiota. The aim of this study was to compare and correlated the abundance of Firmicutes and Bacteroidetes phyla, some representative bacteria of these phyla such as Bacteroides thetaiotaomicron, Prevotella, Faecalibacterium prausnitzii, Clostridium leptum and Bifidobacterium longum as a member of Actinobacteria phylum in young adults with their food intake. Faecal samples used came from lean subjects (BMI = 19.83 ± 0.94 kg/m(2)), overweight (BMI = 27.17 ± 0.51 kg/m(2)) and obese (BMI = 41.33 ± 5.25 kg/m(2)). There were significant differences in total studied gut microbiota between the overweight and lean groups. Members of the Firmicutes phylum, and Bifidobacterium longum, were more abundant in the lean group. The results suggest that diet rich in unsaturated fatty acids and fibre promote an abundant population of beneficial bacteria such as B. longum and Bacteroidetes. However, it has been considered that the results may be biased due to the size of the individuals studied; therefore the results could be only valid for the studied population.

  18. Culturable bacterial diversity at the Princess Elisabeth Station (Utsteinen, Sør Rondane Mountains, East Antarctica) harbours many new taxa.

    PubMed

    Peeters, Karolien; Ertz, Damien; Willems, Anne

    2011-07-01

    We studied the culturable heterotrophic bacterial diversity present at the site of the new Princess Elisabeth Station at Utsteinen (Dronning Maud Land, East Antarctica) before construction. About 800 isolates were picked from two terrestrial microbial mat samples after incubation on several growth media at different temperatures. They were grouped using rep-PCR fingerprinting and partial 16S rRNA gene sequencing. Phylogenetic analysis of the complete 16S rRNA gene sequences of 93 representatives showed that the isolates belonged to five major phyla: Actinobacteria, Bacteroidetes, Proteobacteria, Firmicutes and Deinococcus-Thermus. Isolates related to the genus Arthrobacter were the most prevalent whereas the genera Hymenobacter, Deinococcus, Cryobacterium and Sphingomonas were also recovered in high numbers in both samples. A total of 35 different genera were found, the majority of which has previously been reported from Antarctica. For the genera Aeromicrobium, Aurantimonas, Rothia, Subtercola, Tessaracoccus and Xylophilus, this is the first report in Antarctica. In addition, numerous potential new species and new genera were recovered; many of them currently restricted to Antarctica, particularly in the phyla Bacteroidetes and Deinococcus-Thermus. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. Intestinal microbiota of healthy and unhealthy Atlantic salmon Salmo salar L. in a recirculating aquaculture system

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Sun, Guoxiang; Li, Shuangshuang; Li, Xian; Liu, Ying

    2017-04-01

    The present study sampled the intestinal content of healthy and unhealthy Atlantic salmon (Salmo salar L.), the ambient water of unhealthy fish, and the biofilter material in the recirculating aquaculture system (RAS) to understand differences in the intestinal microbiota. The V4-V5 regions of the prokaryotic 16S rRNA genes in the samples were analyzed by MiSeq high-throughput sequencing. The fish were adults with no differences in body length or weight. Representative members of the intestinal microbiota were identified. The intestinal microbiota of the healthy fish included Proteobacteria (44.33%), Actinobacteria (17.89%), Bacteroidetes (15.25%), and Firmicutes (9.11%), among which the families Micrococcaceae and Oxalobacteraceae and genera Sphingomonas, Streptomyces, Pedobacter, Janthinobacterium, Burkholderia, and Balneimonas were most abundant. Proteobacteria (70.46%), Bacteroidetes (7.59%), and Firmicutes (7.55%) dominated the microbiota of unhealthy fish, and Chloroflexi (2.71%), and Aliivibrio and Vibrio as well as genera in the family Aeromonadaceae were most strongly represented. Overall, the intestinal hindgut microbiota differed between healthy and unhealthy fish. This study offers a useful tool for monitoring the health status of fish and for screening the utility of probiotics by studying the intestinal microbiota.

  20. Mongolians core gut microbiota and its correlation with seasonal dietary changes

    PubMed Central

    Zhang, Jiachao; Guo, Zhuang; Lim, Angela An Qi; Zheng, Yi; Koh, Eileen Y.; Ho, Danliang; Qiao, Jianmin; Huo, Dongxue; Hou, Qiangchuan; Huang, Weiqiang; Wang, Lifeng; Javzandulam, Chimedsuren; Narangerel, Choijilsuren; Jirimutu; Menghebilige; Lee, Yuan-Kun; Zhang, Heping

    2014-01-01

    Historically, the Mongol Empire ranks among the world's largest contiguous empires, and the Mongolians developed their unique lifestyle and diet over thousands of years. In this study, the intestinal microbiota of Mongolians residing in Ulan Bator, TUW province and the Khentii pasturing area were studied using 454 pyrosequencing and q-PCR technology. We explored the impacts of lifestyle and seasonal dietary changes on the Mongolians' gut microbes. At the phylum level, the Mongolians's gut populations were marked by a dominance of Bacteroidetes (55.56%) and a low Firmicutes to Bacteroidetes ratio (0.71). Analysis based on the operational taxonomic unit (OTU) level revealed that the Mongolian core intestinal microbiota comprised the genera Prevotella, Bacteroides, Faecalibacterium, Ruminococcus, Subdoligranulum and Coprococcus. Urbanisation and life-style may have modified the compositions of the gut microbiota of Mongolians from Ulan Bator, TUW and Khentii. Based on a food frequency questionnaire, we found that the dietary structure was diverse and stable throughout the year in Ulan Bator and TUW, but was simple and varied during the year in Khentii. Accordingly, seasonal effects on intestinal microbiota were more distinct in Khentii residents than in TUW or Ulan Bator residents. PMID:24833488

  1. Bacterium-bacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross Sea).

    PubMed

    Lo Giudice, Angelina; Brilli, Matteo; Bruni, Vivia; De Domenico, Maria; Fani, Renato; Michaud, Luigi

    2007-06-01

    One hundred and forty bacteria isolated from Antarctic seawater samples were examined for their ability to inhibit the growth of indigenous isolates and their sensitivity to antibacterial activity expressed by one another. On the basis of 16S rRNA gene sequencing and analysis, bacterial isolates were assigned to five phylogenetically different taxa, Actinobacteria, alpha and gamma subclasses of Proteobacteria, Bacillaceae, and Bacteroidetes. Twenty-one isolates (15%), predominantly Actinobacteria, exhibited antagonistic properties against marine bacteria of Antarctic origin. Members of Bacteroidetes and Firmicutes did not show any inhibitory activity. Differences were observed among inhibition patterns of single isolates, suggesting that their activity was more likely strain-specific rather than dependent on phylogenetic affiliation. A novel analysis based on network theory confirmed these results, showing that the structure of this population is probably robust to perturbations, but also that it depends strongly on the most active strains. The determination of plasmid incidence in the bacterial strains investigated revealed that there was no correlation between their presence and the antagonistic activity. The data presented here provide evidence for the antagonistic interactions within bacterial strains inhabiting Antarctic seawater and suggest the potential exploitation of Antarctic bacteria as a novel source of antibiotics.

  2. Intestinal microbiota of healthy and unhealthy Atlantic salmon Salmo salar L. in a recirculating aquaculture system

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Sun, Guoxiang; Li, Shuangshuang; Li, Xian; Liu, Ying

    2018-03-01

    The present study sampled the intestinal content of healthy and unhealthy Atlantic salmon ( Salmo salar L.), the ambient water of unhealthy fish, and the biofilter material in the recirculating aquaculture system (RAS) to understand differences in the intestinal microbiota. The V4-V5 regions of the prokaryotic 16S rRNA genes in the samples were analyzed by MiSeq high-throughput sequencing. The fish were adults with no differences in body length or weight. Representative members of the intestinal microbiota were identified. The intestinal microbiota of the healthy fish included Proteobacteria (44.33%), Actinobacteria (17.89%), Bacteroidetes (15.25%), and Firmicutes (9.11%), among which the families Micrococcaceae and Oxalobacteraceae and genera Sphingomonas, Streptomyces, Pedobacter, Janthinobacterium, Burkholderia, and Balneimonas were most abundant. Proteobacteria (70.46%), Bacteroidetes (7.59%), and Firmicutes (7.55%) dominated the microbiota of unhealthy fish, and Chloroflexi (2.71%), and Aliivibrio and Vibrio as well as genera in the family Aeromonadaceae were most strongly represented. Overall, the intestinal hindgut microbiota differed between healthy and unhealthy fish. This study offers a useful tool for monitoring the health status of fish and for screening the utility of probiotics by studying the intestinal microbiota.

  3. Investigation of Microbial Diversity in Geothermal Hot Springs in Unkeshwar, India, Based on 16S rRNA Amplicon Metagenome Sequencing

    PubMed Central

    Mehetre, Gajanan T.; Paranjpe, Aditi; Dastager, Syed G.

    2016-01-01

    Microbial diversity in geothermal waters of the Unkeshwar hot springs in Maharashtra, India, was studied using 16S rRNA amplicon metagenomic sequencing. Taxonomic analysis revealed the presence of Bacteroidetes, Proteobacteria, Cyanobacteria, Actinobacteria, Archeae, and OD1 phyla. Metabolic function prediction analysis indicated a battery of biological information systems indicating rich and novel microbial diversity, with potential biotechnological applications in this niche. PMID:26950332

  4. Short communication: Modulation of the small intestinal microbial community composition over short-term or long-term administration with Lactobacillus plantarum ZDY2013.

    PubMed

    Xie, Qiong; Pan, Mingfang; Huang, Renhui; Tian, Ximei; Tao, Xueying; Shah, Nagendra P; Wei, Hua; Wan, Cuixiang

    2016-09-01

    The small intestinal (SI) microbiota has an essential role in the maintenance of human health. However, data about the indigenous bacteria in SI as affected by probiotics are limited. In our study, the short-term and long-term effects of a probiotic candidate, Lactobacillus plantarum ZDY2013, on the SI microbiota of C57BL/6J mice were investigated by the Illumina HiSeq (Novogene Bioinformatics Technology Co., Ltd., Tianjin, China) platform targeting the V4 region of the 16S rDNA. A total of 858,011 sequences in 15 samples were read. The α diversity analysis revealed that oral administration with L. plantarum ZDY2013 for 3 wk led to a significant increase in the richness and diversity of the SI bacterial community. Principal coordinate analysis and unweighted pair-group method with arithmetic means analysis showed a clear alteration in the SI microbiota composition after 3 wk of L. plantarum ZDY2013 treatment, although these changes were not found 6 wk after ceasing L. plantarum ZDY2013 administration. Species annotation showed that the dominant phyla in SI microbiota were Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia. Interestingly, operational taxonomic unit cluster analysis showed that administration with L. plantarum ZDY2013 for 3 wk significantly increased the abundance of Proteobacteria, but decreased that of Bacteroidetes. Linear discriminant analysis coupled with effect size identified 18 bacterial taxa (e.g., Ruminococcus spp. and Clostridium spp.) that overgrew in the SI microbiota of the mice administered with L. plantarum ZDY2013 for 3 wk, and most of them belonged to the phyla Bacteroidetes and Proteobacteria. However, only one bacterial taxon (e.g., Nocardioides spp.) was over-represented in the SI microbiota of mice 6 wk after L. plantarum ZDY2013 administration. Overall, this study shows that oral administration with probiotic results in an important but transient alteration in the microbiota of SI. Copyright © 2016 American Dairy

  5. Should We Build “Obese” or “Lean” Anaerobic Digesters?

    PubMed Central

    Briones, Aurelio; Coats, Erik; Brinkman, Cynthia

    2014-01-01

    Conventional anaerobic digesters (ADs) treating dairy manure are fed with raw or fermented manure rich in volatile fatty acids (VFAs). In contrast, pre-fermented AD (PF-AD) is fed with the more recalcitrant, fiber-rich fraction of manure that has been pre-fermented and depleted of VFAs. Thus, the substrate of PF-AD may be likened to a lean diet rich in fibers while the pre-fermentation stage fermenter is fed a relatively rich diet containing labile organic substances. Previous results have shown that conventional and pre-fermented ADs fed with raw or pre-fermented manure, respectively, produced comparable methane yields. The primary objective of this study was to characterize, using next-generation DNA sequencing, the bacterial communities in various bioreactors (pre-fermentation stage fermenter; various operational arrangements PF-AD; conventional single-stage AD; and a full scale AD) and compare the Firmicutes to Bacteroidetes (F/B) ratios in these different systems. Firmicutes and Bacteroidetes constituted the two most abundant phyla in all AD samples analyzed, as well as most of the samples analyzed in the fermenters and manure samples. Higher relative abundance of Bacteroidetes, ranging from 26% to 51% of bacteria, tended to be associated with PF-AD samples, while the highest relative abundance of Firmicutes occurred in the fermenter (maximum of 76% of bacteria) and manure (maximum of 66% of bacteria) samples. On average, primary stage fermenters exhibited microbiological traits linked to obesity: higher F/B ratios and a ‘diet’ that is less fibrous and more labile compared to that fed to PF-AD. On the other hand, microbial characteristics associated with leanness (lower F/B ratios combined with fibrous substrate) were associated with PF-AD. We propose that bacterial communities in AD shift depending on the quality of substrate, which ultimately results in maintaining VFA yields in PF-AD, similar to the role of bacterial communities and a high fiber diet in

  6. Investigation of Microbial Diversity in Geothermal Hot Springs in Unkeshwar, India, Based on 16S rRNA Amplicon Metagenome Sequencing.

    PubMed

    Mehetre, Gajanan T; Paranjpe, Aditi; Dastager, Syed G; Dharne, Mahesh S

    2016-02-25

    Microbial diversity in geothermal waters of the Unkeshwar hot springs in Maharashtra, India, was studied using 16S rRNA amplicon metagenomic sequencing. Taxonomic analysis revealed the presence of Bacteroidetes, Proteobacteria, Cyanobacteria, Actinobacteria, Archeae, and OD1 phyla. Metabolic function prediction analysis indicated a battery of biological information systems indicating rich and novel microbial diversity, with potential biotechnological applications in this niche. Copyright © 2016 Mehetre et al.

  7. Gut Microbiota and Host Reaction in Liver Diseases

    PubMed Central

    Fukui, Hiroshi

    2015-01-01

    Although alcohol feeding produces evident intestinal microbial changes in animals, only some alcoholics show evident intestinal dysbiosis, a decrease in Bacteroidetes and an increase in Proteobacteria. Gut dysbiosis is related to intestinal hyperpermeability and endotoxemia in alcoholic patients. Alcoholics further exhibit reduced numbers of the beneficial Lactobacillus and Bifidobacterium. Large amounts of endotoxins translocated from the gut strongly activate Toll-like receptor 4 in the liver and play an important role in the progression of alcoholic liver disease (ALD), especially in severe alcoholic liver injury. Gut microbiota and bacterial endotoxins are further involved in some of the mechanisms of nonalcoholic fatty liver disease (NAFLD) and its progression to nonalcoholic steatohepatitis (NASH). There is experimental evidence that a high-fat diet causes characteristic dysbiosis of NAFLD, with a decrease in Bacteroidetes and increases in Firmicutes and Proteobacteria, and gut dysbiosis itself can induce hepatic steatosis and metabolic syndrome. Clinical data support the above dysbiosis, but the details are variable. Intestinal dysbiosis and endotoxemia greatly affect the cirrhotics in relation to major complications and prognosis. Metagenomic approaches to dysbiosis may be promising for the analysis of deranged host metabolism in NASH and cirrhosis. Management of dysbiosis may become a cornerstone for the future treatment of liver diseases. PMID:27682116

  8. Phylogenetic Analysis of a Microbialite-Forming Microbial Mat from a Hypersaline Lake of the Kiritimati Atoll, Central Pacific

    PubMed Central

    Schneider, Dominik; Arp, Gernot; Reimer, Andreas; Reitner, Joachim; Daniel, Rolf

    2013-01-01

    On the Kiritimati atoll, several lakes exhibit microbial mat-formation under different hydrochemical conditions. Some of these lakes trigger microbialite formation such as Lake 21, which is an evaporitic, hypersaline lake (salinity of approximately 170‰). Lake 21 is completely covered with a thick multilayered microbial mat. This mat is associated with the formation of decimeter-thick highly porous microbialites, which are composed of aragonite and gypsum crystals. We assessed the bacterial and archaeal community composition and its alteration along the vertical stratification by large-scale analysis of 16S rRNA gene sequences of the nine different mat layers. The surface layers are dominated by aerobic, phototrophic, and halotolerant microbes. The bacterial community of these layers harbored Cyanobacteria (Halothece cluster), which were accompanied with known phototrophic members of the Bacteroidetes and Alphaproteobacteria. In deeper anaerobic layers more diverse communities than in the upper layers were present. The deeper layers were dominated by Spirochaetes, sulfate-reducing bacteria (Deltaproteobacteria), Chloroflexi (Anaerolineae and Caldilineae), purple non-sulfur bacteria (Alphaproteobacteria), purple sulfur bacteria (Chromatiales), anaerobic Bacteroidetes (Marinilabiacae), Nitrospirae (OPB95), Planctomycetes and several candidate divisions. The archaeal community, including numerous uncultured taxonomic lineages, generally changed from Euryarchaeota (mainly Halobacteria and Thermoplasmata) to uncultured members of the Thaumarchaeota (mainly Marine Benthic Group B) with increasing depth. PMID:23762495

  9. Root Canal Microbiota of Teeth with Chronic Apical Periodontitis▿ †

    PubMed Central

    Rôças, I. N.; Siqueira, J. F.

    2008-01-01

    Samples from infected root canals of 43 teeth with chronic apical periodontitis were analyzed for the presence and relative levels of 83 oral bacterial species and/or phylotypes using a reverse-capture checkerboard hybridization assay. Associations between the most frequently detected taxa were also recorded. The most prevalent taxa were Olsenella uli (74%), Eikenella corrodens (63%), Porphyromonas endodontalis (56%), Peptostreptococcus anaerobius (54%), and Bacteroidetes oral clone X083 (51%). When prevalence was considered only for bacteria present at levels >105, Bacteroidetes clone X083 was the most frequently isolated bacterium (37%), followed by Parvimonas micra (28%), E. corrodens (23%), and Tannerella forsythia (19%). The number of target taxa per canal was directly proportional to the size of the apical periodontitis lesion, with lesions >10 mm in diameter harboring a mean number of approximately 20 taxa. Several positive associations for the most prevalent taxa were disclosed for the first time and may have important ecological and pathogenic implications. In addition to strengthening the association of several cultivable named species with chronic apical periodontitis, the present findings using a large-scale analysis allowed the inclusion of some newly named species and as-yet-uncultivated phylotypes in the set of candidate pathogens associated with this disease. PMID:18768651

  10. PhyloChip microarray analysis reveals altered gastrointestinal microbial communities in a rat model of colonic hypersensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, T.A.; Holmes, S.; Alekseyenko, A.V.

    Irritable bowel syndrome (IBS) is a chronic, episodic gastrointestinal disorder that is prevalent in a significant fraction of western human populations; and changes in the microbiota of the large bowel have been implicated in the pathology of the disease. Using a novel comprehensive, high-density DNA microarray (PhyloChip) we performed a phylogenetic analysis of the microbial community of the large bowel in a rat model in which intracolonic acetic acid in neonates was used to induce long lasting colonic hypersensitivity and decreased stool water content and frequency, representing the equivalent of human constipation-predominant IBS. Our results revealed a significantly increased compositionalmore » difference in the microbial communities in rats with neonatal irritation as compared with controls. Even more striking was the dramatic change in the ratio of Firmicutes relative to Bacteroidetes, where neonatally irritated rats were enriched more with Bacteroidetes and also contained a different composition of species within this phylum. Our study also revealed differences at the level of bacterial families and species. The PhyloChip is a useful and convenient method to study enteric microflora. Further, this rat model system may be a useful experimental platform to study the causes and consequences of changes in microbial community composition associated with IBS.« less

  11. Inoculum selection is crucial to ensure operational stability in anaerobic digestion.

    PubMed

    De Vrieze, Jo; Gildemyn, Sylvia; Vilchez-Vargas, Ramiro; Jáuregui, Ruy; Pieper, Dietmar H; Verstraete, Willy; Boon, Nico

    2015-01-01

    Anaerobic digestion is considered a key technology for the future bio-based economy. The microbial consortium carrying out the anaerobic digestion process is quite complex, and its exact role in terms of "elasticity", i.e., the ability to rapidly adapt to changing conditions, is still unknown. In this study, the role of the initial microbial community in terms of operational stability and stress tolerance was evaluated during a 175-day experiment. Five different inocula from stable industrial anaerobic digesters were fed a mixture of waste activated sludge and glycerol. Increasing ammonium pulses were applied to evaluate stability and stress tolerance. A different response in terms of start-up and ammonium tolerance was observed among the different inocula. Methanosaetaceae were the dominant acetoclastic methanogens, yet, Methanosarcinaceae increased in abundance at elevated ammonium concentrations. A shift from a Firmicutes to a Proteobacteria dominated bacterial community was observed in failing digesters. Methane production was strongly positively correlated with Methanosaetaceae, but also with Bacteria related to Anaerolinaceae, Clostridiales, and Alphaproteobacteria. Volatile fatty acids were strongly positively correlated with Betaproteobacteria and Bacteroidetes, yet ammonium concentration only with Bacteroidetes. Overall, these results indicate the importance of inoculum selection to ensure stable operation and stress tolerance in anaerobic digestion.

  12. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure.

    PubMed

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-22

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  13. Rumen Bacterial Diversity of 80 to 110-Day-Old Goats Using 16S rRNA Sequencing

    PubMed Central

    Han, Xufeng; Yang, Yuxin; Yan, Hailong; Wang, Xiaolong; Qu, Lei; Chen, Yulin

    2015-01-01

    The ability of rumen microorganisms to use fibrous plant matter plays an important role in ruminant animals; however, little information about rumen colonization by microbial populations after weaning has been reported. In this study, high-throughput sequencing was used to investigate the establishment of this microbial population in 80 to 110-day-old goats. Illumina sequencing of goat rumen samples yielded 101,356,610 nucleotides that were assembled into 256,868 reads with an average read length of 394 nucleotides. Taxonomic analysis of metagenomic reads indicated that the predominant phyla were distinct at different growth stages. The phyla Firmicutes and Synergistetes were predominant in samples taken from 80 to 100-day-old goats, but Bacteroidetes and Firmicutes became the most abundant phyla in samples from 110-day-old animals. There was a remarkable variation in the microbial populations with age; Firmicutes and Synergistetes decreased after weaning, but Bacteroidetes and Proteobacteria increased from 80 to 110 day of age. These findings suggested that colonization of the rumen by microorganisms is related to their function in the rumen digestive system. These results give a better understanding of the role of rumen microbes and the establishment of the microbial population, which help to maintain the host’s health and improve animal performance. PMID:25700157

  14. Root canal microbiota of teeth with chronic apical periodontitis.

    PubMed

    Rôças, I N; Siqueira, J F

    2008-11-01

    Samples from infected root canals of 43 teeth with chronic apical periodontitis were analyzed for the presence and relative levels of 83 oral bacterial species and/or phylotypes using a reverse-capture checkerboard hybridization assay. Associations between the most frequently detected taxa were also recorded. The most prevalent taxa were Olsenella uli (74%), Eikenella corrodens (63%), Porphyromonas endodontalis (56%), Peptostreptococcus anaerobius (54%), and Bacteroidetes oral clone X083 (51%). When prevalence was considered only for bacteria present at levels >10(5), Bacteroidetes clone X083 was the most frequently isolated bacterium (37%), followed by Parvimonas micra (28%), E. corrodens (23%), and Tannerella forsythia (19%). The number of target taxa per canal was directly proportional to the size of the apical periodontitis lesion, with lesions >10 mm in diameter harboring a mean number of approximately 20 taxa. Several positive associations for the most prevalent taxa were disclosed for the first time and may have important ecological and pathogenic implications. In addition to strengthening the association of several cultivable named species with chronic apical periodontitis, the present findings using a large-scale analysis allowed the inclusion of some newly named species and as-yet-uncultivated phylotypes in the set of candidate pathogens associated with this disease.

  15. Disturbed subsurface microbial communities follow equivalent trajectories despite different structural starting points: Microbial community succession and disturbance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handley, Kim M.; Wrighton, Kelly C.; Miller, Christopher S.

    2014-04-18

    Microbial community structure, and niche and neutral processes can all influence response to disturbance. Here, we provide experimental evidence for niche versus neutral and founding community effects during a bioremediation-related organic carbon disturbance. Subsurface sediment, partitioned into 22 flow-through columns, was stimulated in situ by the addition of acetate as a carbon and electron donor source. This drove the system into a new transient biogeochemical state characterized by iron reduction and enriched Desulfuromonadales, Comamonadaceae and Bacteroidetes lineages. After approximately 1 month conditions favoured sulfate reduction, and were accompanied by a substantial increase in the relative abundance of Desulfobulbus, Desulfosporosinus, Desulfitobacteriummore » and Desulfotomaculum. Two subsets of four to five columns each were switched from acetate to lactate amendment during either iron (earlier) or sulfate (later) reduction. Hence, subsets had significantly different founding communities. All lactate treatments exhibited lower relative abundances of Desulfotomaculum and Bacteroidetes, enrichments of Clostridiales and Psychrosinus species, and a temporal succession from highly abundant Clostridium sensu stricto to Psychrosinus. Regardless of starting point, lactate-switch communities followed comparable structural trajectories, whereby convergence was evident 9 to 16 days after each switch, and significant after 29 to 34 days of lactate addition. Results imply that neither the founding community nor neutral processes influenced succession following perturbation.« less

  16. Comparative analyses of fecal microbiota in Tibetan and Chinese Han living at low or high altitude by barcoded 454 pyrosequencing

    PubMed Central

    Li, Long; Zhao, Xin

    2015-01-01

    Knowledge about the impact of altitude and ethnicity on human gut microbiota is currently limited. In this study, fecal microbiota from 12 Tibetans (T group), 11 Chinese Han living in Tibet (HH group) and 12 Chinese Han living in Shaanxi province (LH group) were profiled by 454 pyrosequencing. Analysis of UniFrac principal coordinates showed significant structural changes in fecal microbiota among the three groups. There were significant differences in the composition of fecal microbiota among the three groups at phylum and genus levels. At the phylum level, the fecal samples of HH and T groups had higher relative abundances of Firmicutes, whereas the LH group had a higher relative abundance of Bacteroidetes. These changes at the phylum level reflected different dominant genus compositions. Compared with the LH group, changes of Firmicutes and Bacteroidetes were mainly due to a significant decrease of Prevotella in the HH group and were primarily attributable to significant decreases of Bacteroides and Prevotella as well as a significant increase of Catenibacterium in the T group. In conclusion, our results suggest that high altitude may contribute to shaping human gut microbiota. Genetic and dietary factors may also explain the different microbiota compositions between Tibetan and Chinese Han. PMID:26443005

  17. Microbiome analysis and bacterial isolation from Lejía Lake soil in Atacama Desert.

    PubMed

    Mandakovic, Dinka; Maldonado, Jonathan; Pulgar, Rodrigo; Cabrera, Pablo; Gaete, Alexis; Urtuvia, Viviana; Seeger, Michael; Cambiazo, Verónica; González, Mauricio

    2018-07-01

    As a consequence of the severe climatic change affecting our entire world, many lakes in the Andes Cordillera are likely to disappear within a few decades. One of these lakes is Lejía Lake, located in the central Atacama Desert. The objectives of this study were: (1) to characterize the bacterial community from Lejía Lake shore soil (LLS) using 16S rRNA sequencing and (2) to test a culture-based approach using a soil extract medium (SEM) to recover soil bacteria. This extreme ecosystem was dominated by three phyla: Bacteroidetes, Proteobacteria, and Firmicutes with 29.2, 28.2 and 28.1% of the relative abundance, respectively. Using SEM, we recovered 7.4% of the operational taxonomic units from LLS, all of which belonged to the same three dominant phyla from LLS (6.9% of Bacteroidetes, 77.6% of Proteobacteria, and 15.3% of Firmicutes). In addition, we used SEM to recover isolates from LLS and supplemented the culture medium with increasing salt concentrations to isolate microbial representatives of salt tolerance (Halomonas spp.). The results of this study complement the list of microbial taxa diversity from the Atacama Desert and assess a pipeline to isolate selective bacteria that could represent useful elements for biotechnological approaches.

  18. Effect of Bifidobacterium breve on the Intestinal Microbiota of Coeliac Children on a Gluten Free Diet: A Pilot Study.

    PubMed

    Quagliariello, Andrea; Aloisio, Irene; Bozzi Cionci, Nicole; Luiselli, Donata; D'Auria, Giuseppe; Martinez-Priego, Llúcia; Pérez-Villarroya, David; Langerholc, Tomaž; Primec, Maša; Mičetić-Turk, Dušanka; Di Gioia, Diana

    2016-10-22

    Coeliac disease (CD) is associated with alterations of the intestinal microbiota. Although several Bifidobacterium strains showed anti-inflammatory activity and prevention of toxic gliadin peptides generation in vitro, few data are available on their efficacy when administered to CD subjects. This study evaluated the effect of administration for three months of a food supplement based on two Bifidobacterium breve strains (B632 and BR03) to restore the gut microbial balance in coeliac children on a gluten free diet (GFD). Microbial DNA was extracted from faeces of 40 coeliac children before and after probiotic or placebo administration and 16 healthy children (Control group). Sequencing of the amplified V3-V4 hypervariable region of 16S rRNA gene as well as qPCR of Bidobacterium spp., Lactobacillus spp., Bacteroides fragilis group Clostridium sensu stricto and enterobacteria were performed. The comparison between CD subjects and Control group revealed an alteration in the intestinal microbial composition of coeliacs mainly characterized by a reduction of the Firmicutes/Bacteroidetes ratio, of Actinobacteria and Euryarchaeota . Regarding the effects of the probiotic, an increase of Actinobacteria was found as well as a re-establishment of the physiological Firmicutes/Bacteroidetes ratio. Therefore, a three-month administration of B. breve strains helps in restoring the healthy percentage of main microbial components.

  19. The effect of anaerobic-aerobic and feast-famine cultivation pattern on bacterial diversity during poly-β-hydroxybutyrate production from domestic sewage sludge.

    PubMed

    Liu, Changli; Liu, Di; Qi, Yingjie; Zhang, Ying; Liu, Xi; Zhao, Min

    2016-07-01

    The main objective of this work was to investigate the influence of different oxygen supply patterns on poly-β-hydroxybutyrate (PHB) yield and bacterial community diversity. The anaerobic-aerobic (A/O) sequencing batch reactors (SBR1) and feast-famine (F/F) SBR2 were used to cultivate activated sludge to produce PHB. The mixed microbial communities were collected and analyzed after 3 months cultivation. The PHB maximum yield was 64 wt% in SBR1 and 53 wt% in SBR2. Pyrosequencing analysis 16S rRNA gene of two microbial communities indicated there were nine and four bacterial phyla in SBR1 and SBR2, respectively. Specifically, Proteobacteria (36.4 % of the total bacterial community), Actinobacteria (19.7 %), Acidobacteria (14.1 %), Firmicutes (4.4 %), Bacteroidetes (1.7 %), Cyanobacteria/Chloroplast (1.5 %), TM7 (0.8 %), Gemmatimonadetes (0.2 %), and Nitrospirae (0.1 %) were present in SBR1. Proteobacteria (94.2 %), Bacteroidetes (2.9 %), Firmicutes (1.9 %), and Actinobacteria (0.7 %) were present in SBR2. Our results indicated the SBR1 fermentation system was more stable than that of SBR2 for PHB accumulation.

  20. Variability of Prokaryotic Community Structure in a Drinking Water Reservoir (Marathonas, Greece)

    PubMed Central

    Lymperopoulou, Despoina S.; Kormas, Konstantinos Ar.; Karagouni, Amalia D.

    2012-01-01

    The structure of the Bacteria and Archaea community in a large drinking water reservoir (Marathonas, Greece; MR) was investigated in October 2007 and September 2008, using 16S rRNA gene clone libraries. The bacterial communities were more diverse than archaeal communities (Shannon diversity index H′ 0.81–3.28 and 1.36–1.77, respectively). The overall bacterial community composition was comparable to bacterioplankton community described in other freshwater habitats. Within the Bacteria, Betaproteobacteria dominated, while representatives of Alpha-, Gamma- and Deltaproteobacteria also occurred. Other important phyla were Actinobacteria and Bacteroidetes, while representatives of Acidobacteria, Cyanobacteria, Chloroflexi, Planctomycetes and Verrucomicrobia were also retrieved. Several phylotypes in Alpha- and Betaproteobacteria and Bacteroidetes were related to bacteria capable of cyanotoxin degradation and with aromatic compounds/iron oxidizers or polymer degraders. Euryarchaeota dominated (60.5%) the Archaea community mostly with phylotypes related to Methanobacteriales and Methanosarcinales. Among the Thaumarchaeota, the two most abundant phylotypes were affiliated (97% similarity) with the only cultivated mesophilic thaumarchaeote of marine origin, Nitrosopumilus maritimus. Temporal and spatial comparison of the prokaryotic community structure revealed that three of the most abundant prokaryotic phylotypes, belonging to Actinobacteria, were recovered from all sites both years, suggesting that these Actinobacteria could be important key players in MR ecosystem functioning. PMID:21971081

  1. Comparison of Gut Microbiota between Sasang Constitutions

    PubMed Central

    Bae, Hyo Sang; Lim, Chi-yeon; Kim, Mi Jeong; Seo, Jae-gu; Kim, Jong Yeol; Kim, Jai-eun

    2013-01-01

    The Sasang constitutional medicine has long been applied to diagnose and treat patients with various diseases. Studies have been conducted for establishment of scientific evidence supporting Sasang Constitutional (SC) diagnosis. Recent human microbiome studies have demonstrated individual variations of gut microbiota which can be dependent on lifestyle and health conditions. We hypothesized that gut microbial similarities and discrepancies may exist across SC types. We compared the difference of gut microbiota among three constitutions (So-Yang, So-Eum, and Tae-Eum), along with the investigation of anthropometric and biochemical parameters. Firmicutes and Bacteroidetes were predominant phyla in all SC types. The median plot analysis suggested that Firmicutes and Bacteroidetes appeared more abundant in SE and TE, respectively, in the male subjects of 20–29 years old. At the genus level, Bifidobacterium and Bacteroides manifested the difference between SE and TE types. For anthropometry, body weight, body mass index, and waist circumference of the TE type were significantly higher than those of the other types. Overall, findings indicated a possible link between SC types and gut microbiota within a narrow age range. Further investigations are deemed necessary to elucidate the influences of age, gender, and other factors in the context of SC types and gut microbiota. PMID:24454486

  2. Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population.

    PubMed

    Andoh, Akira; Nishida, Atsushi; Takahashi, Kenichiro; Inatomi, Osamu; Imaeda, Hirotsugu; Bamba, Shigeki; Kito, Katsuyuki; Sugimoto, Mitsushige; Kobayashi, Toshio

    2016-07-01

    Altered gut microbial ecology contributes to the development of metabolic diseases including obesity. In this study, we performed 16S rRNA sequence analysis of the gut microbiota profiles of obese and lean Japanese populations. The V3-V4 hypervariable regions of 16S rRNA of fecal samples from 10 obese and 10 lean volunteers were sequenced using the Illumina MiSeq(TM)II system. The average body mass index of the obese and lean group were 38.1 and 16.6 kg/m(2), respectively (p<0.01). The Shannon diversity index was significantly higher in the lean group than in the obese group (p<0.01). The phyla Firmicutes and Fusobacteria were significantly more abundant in obese people than in lean people. The abundance of the phylum Bacteroidetes and the Bacteroidetes/Firmicutes ratio were not different between the obese and lean groups. The genera Alistipes, Anaerococcus, Corpococcus, Fusobacterium and Parvimonas increased significantly in obese people, and the genera Bacteroides, Desulfovibrio, Faecalibacterium, Lachnoanaerobaculum and Olsenella increased significantly in lean people. Bacteria species possessing anti-inflammatory properties, such as Faecalibacterium prausnitzii, increased significantly in lean people, but bacteria species possessing pro-inflammatory properties increased in obese people. Obesity-associated gut microbiota in the Japanese population was different from that in Western people.

  3. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  4. Phylum level change in the cecal and fecal gut communities of rats fed diets containing different fermentable substrates supports a role for nitrogen as a factor contributing to community structure.

    PubMed

    Kalmokoff, Martin; Franklin, Jeff; Petronella, Nicholas; Green, Judy; Brooks, Stephen P J

    2015-05-06

    Fermentation differs between the proximal and distal gut but little is known regarding how the bacterial communities differ or how they are influenced by diet. In order to investigate this, we compared community diversity in the cecum and feces of rats by 16S rRNA gene content and DNA shot gun metagenomics after feeding purified diets containing different fermentable substrates. Gut community composition was dependent on the source of fermentable substrate included in the diet. Cecal communities were dominated by Firmicutes, and contained a higher abundance of Lachnospiraceae compared to feces. In feces, community structure was shifted by varying degrees depending on diet towards the Bacteroidetes, although this change was not always evident from 16S rRNA gene data. Multi-dimensional scaling analysis (PCoA) comparing cecal and fecal metagenomes grouped by location within the gut rather than by diet, suggesting that factors in addition to substrate were important for community change in the distal gut. Differentially abundant genes in each environment supported this shift away from the Firmicutes in the cecum (e.g., motility) towards the Bacteroidetes in feces (e.g., Bacteroidales transposons). We suggest that this phylum level change reflects a shift to ammonia as the primary source of nitrogen used to support continued microbial growth in the distal gut.

  5. Characterizing bacterial communities in tilapia pond surface sediment and their responses to pond differences and temporal variations.

    PubMed

    Fan, Limin; Barry, Kamira; Hu, Gengdong; Meng, Shunlong; Song, Chao; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Chen, Jiazhang; Xu, Pao

    2017-01-01

    Bacterial community compositions in the surface sediment of tilapia ponds and their responses to pond characteristics or seasonal variations were investigated. For that, three ponds with different stocking densities were selected to collect the samples. And the method of Illumina high-throughput sequencing was used to amplify the bacterial 16S rRNA genes. A total of 662, 876 valid reads and 5649 operational taxonomic units were obtained. Further analysis showed that the dominant phyla in all three ponds were Proteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria. The phyla Planctomycetes, Firmicutes, Chlorobi, and Spirochaetae were also relatively abundant. Among the eight phyla, the abundances of only Proteobacteria, Bacteroidetes, Firmicutes, and Spirochaetae were affected by seasonal variations, while seven of these (with the exception of Acidobacteria) were affected by pond differences. A comprehensive analysis of the richness and diversity of the bacterial 16S rRNA gene, and of the similarity in bacterial community composition in sediment also showed that the communities in tilapia pond sediment were shaped more by pond differences than by seasonal variations. Linear discriminant analysis further indicated that the influences of pond characteristics on sediment bacterial communities might be related to feed coefficients and stocking densities of genetically improved farmed tilapia (GIFT).

  6. Microbial diversity in an Armenian geothermal spring assessed by molecular and culture-based methods.

    PubMed

    Panosyan, Hovik; Birkeland, Nils-Kåre

    2014-11-01

    The phylogenetic diversity of the prokaryotic community thriving in the Arzakan hot spring in Armenia was studied using molecular and culture-based methods. A sequence analysis of 16S rRNA gene clone libraries demonstrated the presence of a diversity of microorganisms belonging to the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Epsilonproteobacteria, Firmicutes, Bacteroidetes phyla, and Cyanobacteria. Proteobacteria was the dominant group, representing 52% of the bacterial clones. Denaturing gradient gel electrophoresis profiles of the bacterial 16S rRNA gene fragments also indicated the abundance of Proteobacteria, Bacteroidetes, and Cyanobacteria populations. Most of the sequences were most closely related to uncultivated microorganisms and shared less than 96% similarity with their closest matches in GenBank, indicating that this spring harbors a unique community of novel microbial species or genera. The majority of the sequences of an archaeal 16S rRNA gene library, generated from a methanogenic enrichment, were close relatives of members of the genus Methanoculleus. Aerobic endospore-forming bacteria mainly belonging to Bacillus and Geobacillus were detected only by culture-dependent methods. Three isolates were successfully obtained having 99, 96, and 96% 16S rRNA gene sequence similarities to Arcobacter sp., Methylocaldum sp., and Methanoculleus sp., respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Insoluble Dietary Fiber from Pear Pomace Can Prevent High-Fat Diet-Induced Obesity in Rats Mainly by Improving the Structure of the Gut Microbiota.

    PubMed

    Chang, Shimin; Cui, Xingtian; Guo, Mingzhang; Tian, Yiling; Xu, Wentao; Huang, Kunlun; Zhang, Yuxing

    2017-04-28

    Supplement of dietary fibers (DF) is regarded as one of the most effective way to prevent and relieve chronic diseases caused by long-term intake of a high-fat diet in the current society. The health benefits of soluble dietary fibers (SDF) have been widely researched and applied, whereas the insoluble dietary fibers (IDF), which represent a higher proportion in plant food, were mistakenly thought to have effects only in fecal bulking. In this article, we proved the anti-obesity and glucose homeostasis improvement effects of IDF from pear pomace at first, and then the mechanisms responsible for these effects were analyzed. The preliminary study by real-time PCR and ELISA showed that this kind of IDF caused more changes in the gut microbiota compared with in satiety hormone or in hepatic metabolism. Further analysis of the gut microbiota by high-throughput amplicon sequencing showed IDF from pear pomace obviously improved the structure of the gut microbiota. Specifically, it promoted the growth of Bacteroidetes and inhibited the growth of Firmicutes. These results are coincident with previous hypothesis that the ratio of Bacteroidetes/Firmicutes is negatively related with obesity. In conclusion, our results demonstrated IDF from pear pomace could prevent high-fat diet-induced obesity in rats mainly by improving the structure of the gut microbiota.

  8. High‑throughput sequencing analyses of oral microbial diversity in healthy people and patients with dental caries and periodontal disease.

    PubMed

    Chen, Tingtao; Shi, Yan; Wang, Xiaolei; Wang, Xin; Meng, Fanjing; Yang, Shaoguo; Yang, Jian; Xin, Hongbo

    2017-07-01

    Recurrence of oral diseases caused by antibiotics has brought about an urgent requirement to explore the oral microbial diversity in the human oral cavity. In the present study, the high‑throughput sequencing method was adopted to compare the microbial diversity of healthy people and oral patients and sequence analysis was performed by UPARSE software package. The Venn results indicated that a mean of 315 operational taxonomic units (OTUs) was obtained, and 73, 64, 53, 19 and 18 common OTUs belonging to Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria and Fusobacteria, respectively, were identified in healthy people. Moreover, the reduction of Firmicutes and the increase of Proteobacteria in the children group, and the increase of Firmicutes and the reduction of Proteobacteria in the youth and adult groups, indicated that the age bracket and oral disease had largely influenced the tooth development and microbial development in the oral cavity. In addition, the traditional 'pathogenic bacteria' of Firmicutes, Proteobacteria and Bacteroidetes (accounted for >95% of the total sequencing number in each group) indicated that the 'harmful' bacteria may exert beneficial effects on oral health. Therefore, the data will provide certain clues for curing some oral diseases by the strategy of adjusting the disturbed microbial compositions in oral disease to healthy level.

  9. Bacterial diversity and community structure in lettuce soil are shifted by cultivation time

    NASA Astrophysics Data System (ADS)

    Liu, Yiqian; Chang, Qing; Guo, Xu; Yi, Xinxin

    2017-08-01

    Compared with cereal production, vegetable production usually requires a greater degree of management and larger input of nutrients and irrigation, but these systems are not sustainable in the long term. This study aimed to what extent lettuce determine the bacterial community composition in the soil, during lettuce cultivation, pesticides and fertilizers were not apply to soil. Soil samples were collected from depths of 0-20cm and 20-40cm. A highthroughput sequencing approach was employed to investigate bacterial communities in lettuce-cultivated soil samples in a time-dependent manner. The dominant bacteria in the lettuce soil samples were mainly Proteobacteria, Actinobacteria, Chloroflexi, Nitrospirae, Firmicutes, Acidobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Gemmatimo nadetes, Cyanobacteria. Proteobacteria was the most abundant phylum in the 6 soil samples. The relative abundance of Acidobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria decreased through time of lettuce cultivation, but the relative abundance of Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, Planctomycetes and Nitrospirae increased over time. In the 0-20cm depth group and the 20-40cm depth soil, a similar pattern was observed that the percentage number of only shared OTUs between the early and late stage was lower than that between the early and middle stage soil, the result showed that lettuce growth can affect structure of soil bacterial communities.

  10. Correction to: Microbial diversity of saline environments: searching for cytotoxic activities.

    PubMed

    Díaz-Cárdenas, Carolina; Cantillo, Angela; Rojas, Laura Yinneth; Sandoval, Tito; Fiorentino, Susana; Robles, Jorge; Ramos, Freddy A; Zambrano, María Mercedes; Baena, Sandra

    2018-03-09

    The original version of this article (Diaz-Cardenas et al. 2017) unfortunately contained a mistake in Fig. 1. The pie chart of Fig. 1 should explain the distribution of the relative abundance of the Bacteria and Archaea strains isolated at Zipaquirá salt mine: Proteobacteria 39%; Actinobacteria 9%, Bacteroidetes 1%, Archaea 3% and Firmicutes 48% instead of NOMBRE DE CATEGORIA [PORCENTAJE]. The corrected Fig. 1 and caption are given below.

  11. Analysis of the Microbial Diversity in the Fecal Material of Giraffes.

    PubMed

    Schmidt, Jessica M; Henken, Susan; Dowd, Scot E; McLaughlin, Richard William

    2018-03-01

    Using bacterial and fungal tag-encoded FLX-Titanium amplicon pyrosequencing, the microbiota of the fecal material of seven giraffes living in captivity at the Jacksonville Zoo and Gardens, Jacksonville, FL was investigated. In all samples, the most predominant bacterial phylum was the Firmicutes followed by Bacteroidetes. The most predominant fungi were members of the phylum Ascomycota followed by Neocallimastigomycota in five of seven samples. The reverse was true in the other two samples.

  12. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first "metagenomic snapshots" of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that themore » top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermace ae-related draft genome were indicative of a "salt-in" strategy of

  13. Effect of ensiled mulberry leaves and sun-dried mulberry fruit pomace on the fecal bacterial community composition in finishing steers.

    PubMed

    Li, Yan; Meng, Qingxiang; Zhou, Bo; Zhou, Zhenming

    2017-04-21

    Here, we aimed to investigate the effects of ensiled mulberry leaves (EML) and sun-dried mulberry fruit pomace (SMFP) on fecal bacterial communities in Simmental crossbred finishing steers. To this end, the steers were reared on a standard TMR diet, standard diet containing EML, and standard diet containing SMFP. The protein and energy levels of all the diets were similar. Illumina MiSeq sequencing of the V4 region of the 16S rRNA gene and quantitative real-time PCR were used to analyze and detect the fecal bacterial community. Most of the sequences were assigned to Firmicutes (56.67%) and Bacteroidetes (35.90%), followed by Proteobacteria (1.87%), Verrucomicrobia (1.80%) and Tenericutes (1.37%). The predominant genera were 5-7 N15 (5.91%), CF231 (2.49%), Oscillospira (2.33%), Paludibacter (1.23%) and Akkermansia (1.11%). No significant differences were observed in the numbers of Firmicutes (p = 0.28), Bacteroidetes (p = 0.63), Proteobacteria (p = 0.46), Verrucomicrobia (p = 0.17), and Tenericutes (p = 0.75) populations between the treatment groups. At the genus level, genera classified with high abundance (more than 0.1%) belonged primarily to Bacteroidetes and Firmicutes. Furthermore, no differences were observed at the genus level: 5-7 N15, CF231, Oscillospira, Paludibacter, and Akkermansia (p > 0.05 in all cases), except that rc4-4 was lower in the CON and SMFP groups than in the EML group (p = 0.02). There were no significant differences in the richness estimate and diversity indices between the groups (p > 0.16), and the different diets did not significantly influence most selected fecal bacterial species (p > 0.06), except for Ruminococcus albus, which was higher in the EML group (p < 0.01) and Streptococcus bovis, which was lower in the CON group (p < 0.01) relative to the other groups. In conclusion, diets supplemented with EML and SMFP have little influence on the fecal bacterial community composition in finishing steers.

  14. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines

    PubMed Central

    Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco; Sorokin, Dimitry Y.; Tringe, Susannah G.; Hugenholtz, Philip; Muyzer, Gerard

    2016-01-01

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first “metagenomic snapshots” of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that the top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermaceae-related draft genome were indicative of a “salt-in” strategy of

  15. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines

    DOE PAGES

    Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco; ...

    2016-02-25

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first "metagenomic snapshots" of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that themore » top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermace ae-related draft genome were indicative of a "salt-in" strategy of

  16. Possible correlation between gut microbiota and immunity among healthy middle-aged and elderly people in southwest China.

    PubMed

    Shen, Xi; Miao, Junjie; Wan, Qun; Wang, Shuyue; Li, Ming; Pu, Fangfang; Wang, Guoqing; Qian, Wei; Yu, Qian; Marotta, Francesco; He, Fang

    2018-01-01

    The present study was conducted to investigate the possible association between gut microbes and immunity among healthy middle-aged and elderly individuals in southwest China. A total of 148 healthy adults aged ≥ 50 years were divided into two age groups: middle-aged group (50-59 years; n = 67, 54.13 ± 3.32) and elderly group (≥ 60 years; n = 81, 64.70 ± 3.93). Blood samples were collected to measure serum immune and biochemical indices. Gut microbiota compositions of the groups were characterized on the basis of faecal DNA using 16S rRNA gene sequencing. Among the detected gut microbes, the presence of Alistipes was negatively correlated with age in both groups. In the middle-aged group, age was negatively correlated with the presence of Desulfovibrio and Faecalibacterium . In the elderly group, Coprococcus was present at significantly higher levels; age was negatively correlated with the presence of Lachnobacterium , Oxalobacter and the Chao index, whereas positively correlated with the presence of Sutterella. In the middle-aged group, the presence of Bacteroidetes was positively correlated with serum immunoglobulin G (IgG) levels and the percent of CD8 + T cells and negatively correlated with the CD4 + /CD8 + ratio; the presence of Firmicutes was negatively correlated with IgM levels; Bacteroidetes/Firmicutes ratio was positively correlated with IgG and IgM levels and Simpson index was negatively correlated with the percent of CD8 + T cells and positively correlated with CD4 + /CD8 + ratio. In the elderly group, the presence of Verrucomicrobia (identified as genus Akkermansia ) was positively correlated with IgA levels and the percent of CD8 + T cells and negatively correlated with the percent of CD4 + T cells and CD4 + /CD8 + ratio; the Chao index and observed species were positively correlated with IgA levels. These results indicated that ageing could significantly correlate with the composition of gut microbiota in terms of quantity and

  17. “Candidatus Paraporphyromonas polyenzymogenes” encodes multi-modular cellulases linked to the type IX secretion system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naas, A. E.; Solden, L. M.; Norbeck, A. D.

    2018-03-01

    In Nature, obligate herbivorous ruminants have a close symbiotic relationship with their gastrointestinal microbiome, which proficiently deconstructs plant biomass. Despite decades of research, lignocellulose degradation in the rumen has thus far been attributed to a limited number of culturable microorganisms. Here, we combine meta-omics and enzymology to identify and describe a novel Bacteroidetes family (“Candidatus MH11”) composed entirely of uncultivated strains that are predominant in ruminants and only distantly related to previously characterized taxa.

  18. Characterization and identification of microbial communities in bovine necrotic vulvovaginitis.

    PubMed

    Shpigel, N Y; Adler-Ashkenazy, L; Scheinin, S; Goshen, T; Arazi, A; Pasternak, Z; Gottlieb, Y

    2017-01-01

    Bovine necrotic vulvovaginitis (BNVV) is a severe and potentially fatal disease of post-partum cows that emerged in Israel after large dairy herds were merged. While post-partum cows are commonly affected by mild vulvovaginitis (BVV), in BNVV these benign mucosal abrasions develop into progressive deep necrotic lesions leading to sepsis and death if untreated. The etiology of BNVV is still unknown and a single pathogenic agent has not been found. We hypothesized that BNVV is a polymicrobial disease where the normally benign vaginal microbiome is remodeled and affects the local immune response. To this end, we compared the histopathological changes and the microbial communities using 16S rDNA metagenetic technique in biopsies taken from vaginal lesions in post-partum cows affected by BVV and BNVV. The hallmark of BNVV was the formation of complex polymicrobial communities in the submucosal fascia and abrogation of neutrophil recruitment in these lesions. Additionally, there was a marked difference in the composition of bacterial communities in the BNVV lesions in comparison to the benign BVV lesions. This difference was characterized by the abundance of Bacteroidetes and lower total community membership in BNVV. Indicator taxa for BNVV were Parvimonas, Porphyromonas, unclassified Veillonellaceae, Mycoplasma and Bacteroidetes, whereas unclassified Clostridiales was an indicator for BVV. The results support a polymicrobial etiology for BNVV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Metagenomic profiling of gut microbial communities in both wild and artificially reared Bar-headed goose (Anser indicus).

    PubMed

    Wang, Wen; Zheng, Sisi; Sharshov, Kirill; Sun, Hao; Yang, Fang; Wang, Xuelian; Li, Laixing; Xiao, Zhixiong

    2017-04-01

    Bar-headed goose (Anser indicus), a species endemic to Asia, has become one of the most popular species in recent years for rare bird breeding industries in several provinces of China. There has been no information on the gut metagenome configuration in both wild and artificially reared Bar-headed geese, even though the importance of gut microbiome in vertebrate nutrient and energy metabolism, immune homeostasis and reproduction is widely acknowledged. In this study, metagenomic methods have been used to describe the microbial community structure and composition of functional genes associated with both wild and artificially reared Bar-headed goose. Taxonomic analyses revealed that Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes were the four most abundant phyla in the gut of Bar-headed geese. Bacteroidetes were significantly abundant in the artificially reared group compared to wild group. Through functional profiling, we found that artificially reared Bar-headed geese had higher bacterial gene content related to carbohydrate transport and metabolism, energy metabolism and coenzyme transport, and metabolism. A comprehensive gene catalog of Bar-headed geese metagenome was built, and the metabolism of carbohydrate, amino acid, nucleotide, and energy were found to be the four most abundant categories. These results create a baseline for future Bar-headed goose microbiology research, and make an original contribution to the artificial rearing of this bird. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. Effects of Whole-Grain Rice and Wheat on Composition of Gut Microbiota and Short-Chain Fatty Acids in Rats.

    PubMed

    Han, Fei; Wang, Yong; Han, Yangyang; Zhao, Jianxin; Han, Fenli; Song, Ge; Jiang, Ping; Miao, Haijiang

    2018-05-29

    Diets rich in whole grain (WG) cereals bring lower disease risks compared with refined grain-based diets. We investigated the effects of polished rice (PR), refined wheat (RW), unpolished rice (UPR), and whole wheat (WW) on short-chain fatty acids (SCFAs) and gut microbiota in ileal, cecal, and colonic digesta of normal rats. Animals fed with UPR and WW diets exhibited higher total SCFA in cecal and colonic digesta compared with those fed with PR and RW diets. Wheat diets contributed higher total SCFA than rice diets. In cecal and colonic digesta, animals fed with UPR and WW diets demonstrated higher acetate and butyrate contents than those given PR and RW. Firmicutes were the dominant eumycota in rat ileum digesta (>92% abundance). Cecal and colonic digesta were dominated by Firmicutes, Verrucomicrobia, and Bacteroidetes. UPR and WW affected gut microbiota, decreasing the proportion of Firmicutes to Bacteroidetes. SMB53, Lactobacillus, and Faecalibacterium were the main bacterial genera in ileal digesta. Akkermansia was highest in cecal and colonic digesta. In the colonic digesta of rats, the relative abundance of Akkermansia in rats on wheat diets was higher than that in rats on rice diets ( P < 0.05). Thus, UPR and WW could modulate gut microbiota composition and increase the SCFA concentration. Wheat diet was superior to rice diet in terms of intestinal microbiota adjustment.

  1. Phylum Level Change in the Cecal and Fecal Gut Communities of Rats Fed Diets Containing Different Fermentable Substrates Supports a Role for Nitrogen as a Factor Contributing to Community Structure

    PubMed Central

    Kalmokoff, Martin; Franklin, Jeff; Petronella, Nicholas; Green, Judy; Brooks, Stephen P.J.

    2015-01-01

    Fermentation differs between the proximal and distal gut but little is known regarding how the bacterial communities differ or how they are influenced by diet. In order to investigate this, we compared community diversity in the cecum and feces of rats by 16S rRNA gene content and DNA shot gun metagenomics after feeding purified diets containing different fermentable substrates. Gut community composition was dependent on the source of fermentable substrate included in the diet. Cecal communities were dominated by Firmicutes, and contained a higher abundance of Lachnospiraceae compared to feces. In feces, community structure was shifted by varying degrees depending on diet towards the Bacteroidetes, although this change was not always evident from 16S rRNA gene data. Multi-dimensional scaling analysis (PCoA) comparing cecal and fecal metagenomes grouped by location within the gut rather than by diet, suggesting that factors in addition to substrate were important for community change in the distal gut. Differentially abundant genes in each environment supported this shift away from the Firmicutes in the cecum (e.g., motility) towards the Bacteroidetes in feces (e.g., Bacteroidales transposons). We suggest that this phylum level change reflects a shift to ammonia as the primary source of nitrogen used to support continued microbial growth in the distal gut. PMID:25954902

  2. Polyphenol-rich sorghum brans alter colon microbiota and impact species diversity and species richness after multiple bouts of dextran sodium sulfate-induced colitis.

    PubMed

    Ritchie, Lauren E; Sturino, Joseph M; Carroll, Raymond J; Rooney, Lloyd W; Azcarate-Peril, M Andrea; Turner, Nancy D

    2015-03-01

    The microbiota affects host health, and dysbiosis is involved in colitis. Sorghum bran influences butyrate concentrations during dextran sodium sulfate (DSS) colitis, suggesting microbiota changes. We aimed to characterize the microbiota during colitis, and ascertain if polyphenol-rich sorghum bran diets mitigate these effects. Rats (n = 80) were fed diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins), or Hi Tannin black (both) sorghum bran. Inflammation was induced three times using 3% DSS for 48 h (40 rats, 2 week separation), and the microbiota characterized by pyrosequencing. The Firmicutes/Bacteroidetes ratio was higher in Cellulose DSS rats. Colonic injury negatively correlated with Firmicutes, Actinobacteria, Lactobacillales and Lactobacillus, and positively correlated with Unknown/Unclassified. Post DSS#2, richness was significantly lower in Sumac and Hi Tannin black. Post DSS#3 Bacteroidales, Bacteroides, Clostridiales, Lactobacillales and Lactobacillus were reduced, with no Clostridium identified. Diet significantly affected Bacteroidales, Bacteroides, Clostridiales and Lactobacillus post DSS#2 and #3. Post DSS#3 diet significantly affected all genus, including Bacteroides and Lactobacillus, and diversity and richness increased. Sumac and Hi Tannin black DSS had significantly higher richness compared to controls. Thus, these sorghum brans may protect against alterations observed during colitis including reduced microbial diversity and richness, and dysbiosis of Firmicutes/Bacteroidetes. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial.

    PubMed

    Cho, Clara E; Taesuwan, Siraphat; Malysheva, Olga V; Bender, Erica; Tulchinsky, Nathan F; Yan, Jian; Sutter, Jessica L; Caudill, Marie A

    2017-01-01

    Trimethylamine-N-oxide (TMAO), a metabolite linked to the gut microbiota, is associated with excess risk of heart disease. We hypothesized that (i) TMAO response to animal source foods would vary among healthy men and (ii) this response would be modified by their gut microbiome. A crossover feeding trial in healthy young men (n = 40) was conducted with meals containing TMAO (fish), its dietary precursors, choline (eggs) and carnitine (beef), and a fruit control. Fish yielded higher circulating and urinary concentrations of TMAO (46-62 times; p < 0.0001), trimethylamine (8-14 times; p < 0.0001), and dimethylamine (4-6-times; P<0.0001) than eggs, beef, or the fruit control. Circulating TMAO concentrations were increased within 15 min of fish consumption, suggesting that dietary TMAO can be absorbed without processing by gut microbes. Analysis of 16S rRNA genes indicated that high-TMAO producers (≥20% increase in urinary TMAO in response to eggs and beef) had more Firmicutes than Bacteroidetes (p = 0.04) and less gut microbiota diversity (p = 0.03). Consumption of fish yielded substantially greater increases in circulating TMAO than eggs or beef. The higher Firmicutes to Bacteroidetes enrichment among men exhibiting a greater response to dietary TMAO precursor intake indicates that TMAO production is a function of individual differences in the gut microbiome. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Qualitative Parameters of the Colonic Flora in Patients with HNF1A-MODY Are Different from Those Observed in Type 2 Diabetes Mellitus

    PubMed Central

    Mrozinska, Sandra; Radkowski, Piotr; Gosiewski, Tomasz; Szopa, Magdalena; Bulanda, Malgorzata; Ludwig-Galezowska, Agnieszka H.; Morawska, Iwona; Sroka-Oleksiak, Agnieszka; Matejko, Bartlomiej; Kapusta, Przemyslaw; Salamon, Dominika; Malecki, Maciej T.; Wolkow, Pawel

    2016-01-01

    Background. Type 2 diabetes mellitus (T2DM) is determined by genetic and environmental factors. There have been many studies on the relationship between the composition of the gastrointestinal bacterial flora, T2DM, and obesity. There are no data, however, on the gut microbiome structure in monogenic forms of the disease including Maturity Onset Diabetes of the Young (MODY). Methods. The aim of the investigation was to compare the qualitative parameters of the colonic flora in patients with HNF1A-MODY and T2DM and healthy individuals. 16S sequencing of bacterial DNA isolated from the collected fecal samples using the MiSeq platform was performed. Results. There were significant between-group differences in the bacterial profile. At the phylum level, the amount of Proteobacteria was higher (p = 0.0006) and the amount of Bacteroidetes was lower (p = 0.0005) in T2DM group in comparison to the control group. In HNF1A-MODY group, the frequency of Bacteroidetes was lower than in the control group (p = 0.0143). At the order level, Turicibacterales was more abundant in HNF1A-MODY group than in T2DM group. Conclusions. It appears that there are differences in the gut microbiome composition between patients with HNF1A-MODY and type 2 diabetes. Further investigation on this matter should be conducted. PMID:27807544

  5. Qualitative Parameters of the Colonic Flora in Patients with HNF1A-MODY Are Different from Those Observed in Type 2 Diabetes Mellitus.

    PubMed

    Mrozinska, Sandra; Radkowski, Piotr; Gosiewski, Tomasz; Szopa, Magdalena; Bulanda, Malgorzata; Ludwig-Galezowska, Agnieszka H; Morawska, Iwona; Sroka-Oleksiak, Agnieszka; Matejko, Bartlomiej; Kapusta, Przemyslaw; Salamon, Dominika; Malecki, Maciej T; Wolkow, Pawel; Klupa, Tomasz

    2016-01-01

    Background . Type 2 diabetes mellitus (T2DM) is determined by genetic and environmental factors. There have been many studies on the relationship between the composition of the gastrointestinal bacterial flora, T2DM, and obesity. There are no data, however, on the gut microbiome structure in monogenic forms of the disease including Maturity Onset Diabetes of the Young (MODY). Methods . The aim of the investigation was to compare the qualitative parameters of the colonic flora in patients with HNF1A - MODY and T2DM and healthy individuals. 16S sequencing of bacterial DNA isolated from the collected fecal samples using the MiSeq platform was performed. Results . There were significant between-group differences in the bacterial profile. At the phylum level, the amount of Proteobacteria was higher ( p = 0.0006) and the amount of Bacteroidetes was lower ( p = 0.0005) in T2DM group in comparison to the control group. In HNF1A-MODY group, the frequency of Bacteroidetes was lower than in the control group ( p = 0.0143). At the order level, Turicibacterales was more abundant in HNF1A-MODY group than in T2DM group. Conclusions . It appears that there are differences in the gut microbiome composition between patients with HNF1A-MODY and type 2 diabetes. Further investigation on this matter should be conducted.

  6. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    PubMed

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

  7. Microbial Community Analysis of Anaerobic Reactors Treating Soft Drink Wastewater

    PubMed Central

    Narihiro, Takashi; Kim, Na-Kyung; Mei, Ran; Nobu, Masaru K.; Liu, Wen-Tso

    2015-01-01

    The anaerobic packed-bed (AP) and hybrid packed-bed (HP) reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG) and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95%) after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs). Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR) increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR. PMID:25748027

  8. Marked seasonal variation in the wild mouse gut microbiota.

    PubMed

    Maurice, Corinne F; Knowles, Sarah C L; Ladau, Joshua; Pollard, Katherine S; Fenton, Andy; Pedersen, Amy B; Turnbaugh, Peter J

    2015-11-01

    Recent studies have provided an unprecedented view of the microbial communities colonizing captive mice; yet the host and environmental factors that shape the rodent gut microbiota in their natural habitat remain largely unexplored. Here, we present results from a 2-year 16 S ribosomal RNA gene sequencing-based survey of wild wood mice (Apodemus sylvaticus) in two nearby woodlands. Similar to other mammals, wild mice were colonized by 10 bacterial phyla and dominated by the Firmicutes, Bacteroidetes and Proteobacteria. Within the Firmicutes, the Lactobacillus genus was most abundant. Putative bacterial pathogens were widespread and often abundant members of the wild mouse gut microbiota. Among a suite of extrinsic (environmental) and intrinsic (host-related) factors examined, seasonal changes dominated in driving qualitative and quantitative differences in the gut microbiota. In both years examined, we observed a strong seasonal shift in gut microbial community structure, potentially due to the transition from an insect- to a seed-based diet. This involved decreased levels of Lactobacillus, and increased levels of Alistipes (Bacteroidetes phylum) and Helicobacter. We also detected more subtle but statistically significant associations between the gut microbiota and biogeography, sex, reproductive status and co-colonization with enteric nematodes. These results suggest that environmental factors have a major role in shaping temporal variations in microbial community structure within natural populations.

  9. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    PubMed Central

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-01-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure. PMID:27444518

  10. Comparison of the gut microbiota composition between wild and captive sika deer (Cervus nippon hortulorum) from feces by high-throughput sequencing.

    PubMed

    Guan, Yu; Yang, Haitao; Han, Siyu; Feng, Limin; Wang, Tianming; Ge, Jianping

    2017-11-23

    The gut microbiota is characterized as a complex ecosystem that has effects on health and diseases of host with the interactions of many other factors together. Sika deer is the national level for the protection of wild animals in China. The available sequencing data of gut microbiota from feces of wild sika deer, especially for Cervus nippon hortulorum in Northeast China, are limited. Here, we characterized the gastrointestinal bacterial communities of wild (7 samples) and captive (12 samples) sika deer from feces, and compared their gut microbiota by analyzing the V3-V4 region of 16S rRNA gene using high-throughput sequencing technology on the Illumina Hiseq platform. Firmicutes (77.624%), Bacteroidetes (18.288%) and Tenericutes (1.342%) were the most predominant phyla in wild sika deer. While in captive sika deer, Firmicutes (50.710%) was the dominant phylum, followed by Bacteroidetes (31.996%) and Proteobacteria (4.806%). A total of 9 major phyla, 22 families and 30 genera among gastrointestinal bacterial communities showed significant differences between wild and captive sika deer. The specific function and mechanism of Tenericutes in wild sika deer need further study. Our results indicated that captive sika deer in farm had higher fecal bacterial diversity than the wild. Abundance and quantity of diet source for sika deer played crucial role in shaping the composition and structure of gut microbiota.

  11. [Bacterial diversity within different sections of summer sea-ice samples from the Prydz Bay, Antarctica].

    PubMed

    Ma, Jifei; Du, Zongjun; Luo, Wei; Yu, Yong; Zeng, Yixin; Chen, Bo; Li, Huirong

    2013-02-04

    In order to assess bacterial abundance and diversity within three different sections of summer sea-ice samples collected from the Prydz Bay, Antarctica. Fluorescence in situ hybridization was applied to determine the proportions of Bacteria in sea-ice. Bacterial community composition within sea ice was analyzed by 16S rRNA gene clone library construction. Correlation analysis was performed between the physicochemical parameters and the bacterial diversity and abundance within sea ice. The result of fluorescence in situ hybridization shows that bacteria were abundant in the bottom section, and the concentration of total organic carbon, total organic nitrogen and phosphate may be the main factors for bacterial abundance. In bacterial 16S rRNA gene libraries of sea-ice, nearly complete 16S rRNA gene sequences were grouped into three distinct lineages of Bacteria (gamma-Proteobacteria, alpha-Proteobacteria and Bacteroidetes). Most clone sequences were related to cultured bacterial isolates from the marine environment, arctic and Antarctic sea-ice with high similarity. The member of Bacteroidetes was not detected in the bottom section of sea-ice. The bacterial communities within sea-ice were little heterogeneous at the genus-level between different sections, and the concentration of NH4+ may cause this distribution. The number of bacteria was abundant in the bottom section of sea-ice. Gamma-proteobacteria was the dominant bacterial lineage in sea-ice.

  12. Enrichment of lignocellulose-degrading microbial communities from natural and engineered methanogenic environments.

    PubMed

    Ozbayram, Emine Gozde; Kleinsteuber, Sabine; Nikolausz, Marcell; Ince, Bahar; Ince, Orhan

    2018-01-01

    The aim of this study was to develop an effective bioaugmentation concept for anaerobic digesters treating lignocellulosic biomass such as straw. For that purpose, lignocellulose-degrading methanogenic communities were enriched on wheat straw from cow and goat rumen fluid as well as from a biogas reactor acclimated to lignocellulosic biomass (sorghum as mono-substrate). The bacterial communities of the enriched cultures and the different inocula were examined by 454 amplicon sequencing of 16S rRNA genes while the methanogenic archaeal communities were analyzed by terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of the mcrA gene. Bacteroidetes was the most abundant phylum in all samples. Within the Bacteroidetes phylum, Bacteroidaceae was the most abundant family in the rumen-derived enrichment cultures, whereas Porphyromonadaceae was the predominant one in the reactor-derived culture. Additionally, the enrichment procedure increased the relative abundance of Ruminococcaceae (phylum: Firmicutes) in all cultures. T-RFLP profiles of the mcrA gene amplicons highlighted that the ruminal methanogenic communities were composed of hydrogenotrophic methanogens dominated by the order Methanobacteriales regardless of the host species. The methanogenic communities changed significantly during the enrichment procedure, but still the strict hydrogenotrophic Methanobacteriales and Methanomicrobiales were the predominant orders in the enrichment cultures. The bioaugmentation potential of the enriched methanogenic cultures will be evaluated in further studies.

  13. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations.

    PubMed

    Riva, Alessandra; Borgo, Francesca; Lassandro, Carlotta; Verduci, Elvira; Morace, Giulia; Borghi, Elisa; Berry, David

    2017-01-01

    An altered gut microbiota has been linked to obesity in adulthood, although little is known about childhood obesity. The aim of this study was to characterize the composition of the gut microbiota in obese (n = 42) and normal-weight (n = 36) children aged 6 to 16. Using 16S rRNA gene-targeted sequencing, we evaluated taxa with differential abundance according to age- and sex-normalized body mass index (BMI z-score). Obesity was associated with an altered gut microbiota characterized by elevated levels of Firmicutes and depleted levels of Bacteroidetes. Correlation network analysis revealed that the gut microbiota of obese children also had increased correlation density and clustering of operational taxonomic units (OTUs). Members of the Bacteroidetes were generally better predictors of BMI z-score and obesity than Firmicutes, which was likely due to discordant responses of Firmicutes OTUs. In accordance with these observations, the main metabolites produced by gut bacteria, short chain fatty acids (SCFAs), were higher in obese children, suggesting elevated substrate utilisation. Multiple taxa were correlated with SCFA levels, reinforcing the tight link between the microbiota, SCFAs and obesity. Our results suggest that gut microbiota dysbiosis and elevated fermentation activity may be involved in the etiology of childhood obesity. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Influence of fasting during moult on the faecal microbiota of penguins.

    PubMed

    Dewar, Meagan L; Arnould, John P Y; Krause, Lutz; Trathan, Phil; Dann, Peter; Smith, Stuart C

    2014-01-01

    Many seabirds including penguins are adapted to long periods of fasting, particularly during parts of the reproductive cycle and during moult. However, the influence of fasting on the gastrointestinal (GI) microbiota has not been investigated in seabirds. Therefore, the present study aimed to examine the microbial composition and diversity of the GI microbiota of fasting little (Eudyptula minor) and king penguins (Aptenodytes patagonicus) penguins during early and late moult. The results from this study indicated that there was little change in the abundance of the major phyla during moult, except for a significant increase in the level of Proteobacteria in king penguins. In king penguins the abundance of Fusobacteria increases from 1.73% during early moult to 33.6% by late moult, whilst the abundance of Proteobacteria (35.7% to 17.2%) and Bacteroidetes (19.5% to 11%) decrease from early to late moult. In little penguins, a decrease in the abundances of Firmicutes (44% to 29%) and an increase in the abundance of Bacteroidetes (11% to 20%) were observed from early to late moult respectively. The results from this study indicate that the microbial composition of both king and little penguins alters during fasting. However, it appears that the microbial composition of king penguins is more affected by fasting than little penguins with the length of fast the most probable cause for this difference.

  15. Nitrous oxide reduction genetic potential from the microbial community of an intermittently aerated partial nitritation SBR treating mature landfill leachate.

    PubMed

    Gabarró, J; Hernández-Del Amo, E; Gich, F; Ruscalleda, M; Balaguer, M D; Colprim, J

    2013-12-01

    This study investigates the microbial community dynamics in an intermittently aerated partial nitritation (PN) SBR treating landfill leachate, with emphasis to the nosZ encoding gene. PN was successfully achieved and high effluent stability and suitability for a later anammox reactor was ensured. Anoxic feedings allowed denitrifying activity in the reactor. The influent composition influenced the mixed liquor suspended solids concentration leading to variations of specific operational rates. The bacterial community was low diverse due to the stringent conditions in the reactor, and was mostly enriched by members of Betaproteobacteria and Bacteroidetes as determined by 16S rRNA sequencing from excised DGGE melting types. The qPCR analysis for nitrogen cycle-related enzymes (amoA, nirS, nirK and nosZ) demonstrated high amoA enrichment but being nirS the most relatively abundant gene. nosZ was also enriched from the seed sludge. Linear correlation was found mostly between nirS and the organic specific rates. Finally, Bacteroidetes sequenced in this study by 16S rRNA DGGE were not sequenced for nosZ DGGE, indicating that not all denitrifiers deal with complete denitrification. However, nosZ encoding gene bacteria was found during the whole experiment indicating the genetic potential to reduce N2O. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy.

    PubMed

    Mason, Katie L; Erb Downward, John R; Mason, Kelly D; Falkowski, Nicole R; Eaton, Kathryn A; Kao, John Y; Young, Vincent B; Huffnagle, Gary B

    2012-10-01

    Candida albicans is a normal member of the gastrointestinal (GI) tract microbiota of healthy humans, but during host immunosuppression or alterations in the bacterial microbiota, C. albicans can disseminate and cause life-threatening illness. The bacterial microbiome of the GI tract, including lactic acid bacteria (LAB), plays a vital role in preventing fungal invasion. However, little is known about the role of C. albicans in shaping the bacterial microbiota during antibiotic recovery. We investigated the fungal burdens in the GI tracts of germfree mice and mice with a disturbed microbiome to demonstrate the role of the microbiota in preventing C. albicans colonization. Histological analysis demonstrated that colonization with C. albicans during antibiotic treatment does not trigger overt inflammation in the murine cecum. Bacterial diversity is reduced long term following cefoperazone treatment, but the presence of C. albicans during antibiotic recovery promoted the recovery of bacterial diversity. Cefoperazone diminishes Bacteroidetes populations long term in the ceca of mice, but the presence of C. albicans during cefoperazone recovery promoted Bacteroidetes population recovery. However, the presence of C. albicans resulted in a long-term reduction in Lactobacillus spp. and promoted Enterococcus faecalis populations. Previous studies have focused on the ability of bacteria to alter C. albicans; this study addresses the ability of C. albicans to alter the bacterial microbiota during nonpathogenic colonization.

  17. Microbial community dynamics in continuous microbial fuel cells fed with synthetic wastewater and pig slurry.

    PubMed

    Sotres, Ana; Tey, Laura; Bonmatí, August; Viñas, Marc

    2016-10-01

    Two-chambered microbial fuel cells (MFCs) operating with synthetic wastewater and pig slurry were assessed. Additionally, the use of 2-bromoethanesulfonate (BES-Inh) was studied. The synthetic wastewater-fed MFC (MFCSW) showed a maximum power density (PDmax) of 2138mWm(-3), and the addition of BES-Inh (10mM) did not show any improvement in its performance (PDmax=2078mWm(-3)). When pig slurry was used as feed (MFCPS), PDmax increased up to 5623mWm(-3). The microbial community composition was affected by the type of substrate used. While, Pseudomonadaceae and Clostridiaceae were the most representative families within the acetate-based medium, Flavobacteriaceae, Chitinophagaceae, Comamonadaceae and Nitrosomonadaceae were predominant when pig slurry was used as feed. Otherwise, only the Eubacterial microbial community composition was strongly modified when adding BES-Inh, thus leading to an enrichment of the Bacteroidetes phylum. Oppositely, the Archaeal community was less affected by the addition of BES-Inh, and Methanosarcina sp., arose as the predominant family in both situations. Despite all the differences in microbial communities, 6 operational taxonomic units (OTUs) belonging to Bacteroidetes (Porphyromonadaceae and Marinilabiaceae) and Firmicutes (Clostridiales) were found to be common to both MFCs, also for different contents of COD and N-NH4(+), and therefore could be considered as the bioanode core microbiome. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Identification of Microbial Communities in Open and Closed Circuit Bioelectrochemical MBRs by High-Throughput 454 Pyrosequencing

    PubMed Central

    Huang, Jian; Wang, Zhiwei; Zhu, Chaowei; Ma, Jinxing; Zhang, Xingran; Wu, Zhichao

    2014-01-01

    Two bioelectrochemical membrane bioreactors (MBRs) developed by integrating microbial fuel cell and MBR technology were operated under closed-circuit and open-circuit modes, and high-throughput 454 pyrosequencing was used to investigate the effects of the power generation on the microbial community of bio-anode and bio-cathode. Microbes on the anode under open-circuit operation (AO) were enriched and highly diverse when compared to those on the anode under closed-circuit operation (AC). However, among the cathodes the closed-circuit mode (CC) had richer and more diverse microbial community compared to the cathode under open-circuit mode (CO). On the anodes AO and AC, Proteobacteria and Bacteroidetes were the dominant phyla, while Firmicutes was enriched only on AC. Deltaproteobacteria affiliated to Proteobacteria were also more abundant on AC than AO. Furthermore, the relative abundance of Desulfuromonas, which are well-known electrogenic bacteria, were much higher on AC (10.2%) when compared to AO (0.11%), indicating that closed-circuit operation was more conducive for the growth of electrogenic bacteria on the anodes. On the cathodes, Protebacteria was robust on CC while Bacteroidetes was more abundant on CO. Rhodobacter and Hydrogenophaga were also enriched on CC than CO, suggesting that these genera play a role in electron transfer from the cathode surface to the terminal electron acceptors in the bioelectrochemical MBR under closed-circuit operation. PMID:24705450

  19. Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada).

    PubMed

    Garneau, Marie-Ève; Michel, Christine; Meisterhans, Guillaume; Fortin, Nathalie; King, Thomas L; Greer, Charles W; Lee, Kenneth

    2016-10-01

    The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, ice-covered seas. Hydrocarbon degradation potential of ice-associated microbes collected from the Northwest Passage was investigated. Microcosm incubations were run for 15 days at -1.7°C with and without oil to determine the effects of hydrocarbon exposure on microbial abundance, diversity and activity, and to estimate component-specific hydrocarbon loss. Diversity was assessed with automated ribosomal intergenic spacer analysis and Ion Torrent 16S rRNA gene sequencing. Bacterial activity was measured by (3)H-leucine uptake rates. After incubation, sub-ice and sea-ice communities degraded 94% and 48% of the initial hydrocarbons, respectively. Hydrocarbon exposure changed the composition of sea-ice and sub-ice communities; in sea-ice microcosms, Bacteroidetes (mainly Polaribacter) dominated whereas in sub-ice microcosms, the contribution of Epsilonproteobacteria increased, and that of Alphaproteobacteria and Bacteroidetes decreased. Sequencing data revealed a decline in diversity and increases in Colwellia and Moritella in oil-treated microcosms. Low concentration of dissolved organic matter (DOM) in sub-ice seawater may explain higher hydrocarbon degradation when compared to sea ice, where DOM was abundant and composed of labile exopolysaccharides. © Fisheries and Oceans Canada [2016].

  20. Evolution of the Translocation and Assembly Module (TAM)

    PubMed Central

    Heinz, Eva; Selkrig, Joel; Belousoff, Matthew J.; Lithgow, Trevor

    2015-01-01

    Bacterial outer membrane proteins require the beta-barrel assembly machinery (BAM) for their correct folding and function. The central component of this machinery is BamA, an Omp85 protein that is essential and found in all Gram-negative bacteria. An additional feature of the BAM is the translocation and assembly module (TAM), comprised TamA (an Omp85 family protein) and TamB. We report that TamA and a closely related protein TamL are confined almost exclusively to Proteobacteria and Bacteroidetes/Chlorobi respectively, whereas TamB is widely distributed across the majority of Gram-negative bacterial lineages. A comprehensive phylogenetic and secondary structure analysis of the TamB protein family revealed that TamB was present very early in the evolution of bacteria. Several sequence characteristics were discovered to define the TamB protein family: A signal-anchor linkage to the inner membrane, beta-helical structure, conserved domain architecture and a C-terminal region that mimics outer membrane protein beta-strands. Taken together, the structural and phylogenetic analyses suggest that the TAM likely evolved from an original combination of BamA and TamB, with a later gene duplication event of BamA, giving rise to an additional Omp85 sequence that evolved to be TamA in Proteobacteria and TamL in Bacteroidetes/Chlorobi. PMID:25994932

  1. Comparative Analysis of the Gut Microbial Communities in Forest and Alpine Musk Deer Using High-Throughput Sequencing

    PubMed Central

    Hu, Xiaolong; Liu, Gang; Shafer, Aaron B. A.; Wei, Yuting; Zhou, Juntong; Lin, Shaobi; Wu, Haibin; Zhou, Mi; Hu, Defu; Liu, Shuqiang

    2017-01-01

    The gut ecosystem is characterized by dynamic and reciprocal interactions between the host and bacteria. Although characterizing microbiota for herbivores has become recognized as important tool for gauging species health, no study to date has investigated the bacterial communities and evaluated the age-related bacterial dynamics of musk deer. Moreover, gastrointestinal diseases have been hypothesized to be a limiting factor of population growth in captive musk deer. Here, high-throughput sequencing of the bacterial 16S rRNA gene was used to profile the fecal bacterial communities in juvenile and adult alpine and forest musk deer. The two musk deer species harbored similar bacterial communities at the phylum level, whereas the key genera for the two species were distinct. The bacterial communities were dominated by Firmicutes and Bacteroidetes, with the bacterial diversity being higher in forest musk deer. The Firmicutes to Bacteroidetes ratio also increased from juvenile to adult, while the bacterial diversity, within-group and between-group similarity, all increased with age. This work serves as the first sequence-based analysis of variation in bacterial communities within and between musk deer species, and demonstrates how the gut microbial community dynamics vary among closely related species and shift with age. As gastrointestinal diseases have been observed in captive populations, this study provides valuable data that might benefit captive management and future reintroduction programs. PMID:28421061

  2. Changes in fibre-adherent and fluid-associated microbial communities and fermentation profiles in the rumen of cattle fed diets differing in hay quality and concentrate amount.

    PubMed

    Klevenhusen, Fenja; Petri, Renee M; Kleefisch, Maria-Theresia; Khiaosa-Ard, Ratchaneewan; Metzler-Zebeli, Barbara U; Zebeli, Qendrim

    2017-09-01

    The rumen microbiota enable important metabolic functions to the host cattle. Feeding of starch-rich concentrate feedstuffs to cattle has been demonstrated to increase the risk of metabolic disorders and to significantly alter the rumen microbiome. Thus, alternative feeding strategies like the use of high-quality hay, rich in sugars, as an alternative energy source need to be explored. The aim of this study was to investigate changes in rumen microbial abundances in the liquid and solid-associated fraction of cattle fed two hay qualities differing in sugar content with graded amounts of starchy concentrate feeds using Illumina MiSeq sequencing and quantitative polymerase chain reaction. Operational taxonomic units clustered separately between the liquid and the solid-associated fraction. Phyla in the liquid fraction were identified as mainly Firmicutes, Proteobacteria and Bacteroidetes, whereas main phyla of the fibre-associated fraction were Bacteroidetes, Fibrobacteres and Firmicutes. Significant alterations in the rumen bacterial communities at all taxonomic levels as a result of changing the hay quality and concentrate proportions were observed. Several intermicrobial correlations were found. Genera Ruminobacter and Fibrobacter were significantly suppressed by feeding sugar-rich hay, whereas others such as Selenomonas and Prevotella proliferated. This study extends the knowledge about diet-induced changes in ruminal microbiome of cattle. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota

    PubMed Central

    Polansky, Ondrej; Sekelova, Zuzana; Faldynova, Marcela; Sebkova, Alena; Sisak, Frantisek

    2015-01-01

    The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established. PMID:26712550

  4. Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean.

    PubMed

    Tada, Yuya; Taniguchi, Akito; Nagao, Ippei; Miki, Takeshi; Uematsu, Mitsuo; Tsuda, Atsushi; Hamasaki, Koji

    2011-06-01

    Growth and productivity of phytoplankton substantially change organic matter characteristics, which affect bacterial abundance, productivity, and community structure in aquatic ecosystems. We analyzed bacterial community structures and measured activities inside and outside phytoplankton blooms in the western North Pacific Ocean by using bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization (BIC-FISH). Roseobacter/Rhodobacter, SAR11, Betaproteobacteria, Alteromonas, SAR86, and Bacteroidetes responded differently to changes in organic matter supply. Roseobacter/Rhodobacter bacteria remained widespread, active, and proliferating despite large fluctuations in organic matter and chlorophyll a (Chl-a) concentrations. The relative contribution of Bacteroidetes to total bacterial production was consistently high. Furthermore, we documented the unexpectedly large contribution of Alteromonas to total bacterial production in the bloom. Bacterial abundance, productivity, and growth potential (the proportion of growing cells in a population) were significantly correlated with Chl-a and particulate organic carbon concentrations. Canonical correspondence analysis showed that organic matter supply was critical for determining bacterial community structures. The growth potential of each bacterial group as a function of Chl-a concentration showed a bell-shaped distribution, indicating an optimal organic matter concentration to promote growth. The growth of Alteromonas and Betaproteobacteria was especially strongly correlated with organic matter supply. These data elucidate the distinctive ecological role of major bacterial taxa in organic matter cycling during open ocean phytoplankton blooms.

  5. Differing Growth Responses of Major Phylogenetic Groups of Marine Bacteria to Natural Phytoplankton Blooms in the Western North Pacific Ocean ▿ †

    PubMed Central

    Tada, Yuya; Taniguchi, Akito; Nagao, Ippei; Miki, Takeshi; Uematsu, Mitsuo; Tsuda, Atsushi; Hamasaki, Koji

    2011-01-01

    Growth and productivity of phytoplankton substantially change organic matter characteristics, which affect bacterial abundance, productivity, and community structure in aquatic ecosystems. We analyzed bacterial community structures and measured activities inside and outside phytoplankton blooms in the western North Pacific Ocean by using bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization (BIC-FISH). Roseobacter/Rhodobacter, SAR11, Betaproteobacteria, Alteromonas, SAR86, and Bacteroidetes responded differently to changes in organic matter supply. Roseobacter/Rhodobacter bacteria remained widespread, active, and proliferating despite large fluctuations in organic matter and chlorophyll a (Chl-a) concentrations. The relative contribution of Bacteroidetes to total bacterial production was consistently high. Furthermore, we documented the unexpectedly large contribution of Alteromonas to total bacterial production in the bloom. Bacterial abundance, productivity, and growth potential (the proportion of growing cells in a population) were significantly correlated with Chl-a and particulate organic carbon concentrations. Canonical correspondence analysis showed that organic matter supply was critical for determining bacterial community structures. The growth potential of each bacterial group as a function of Chl-a concentration showed a bell-shaped distribution, indicating an optimal organic matter concentration to promote growth. The growth of Alteromonas and Betaproteobacteria was especially strongly correlated with organic matter supply. These data elucidate the distinctive ecological role of major bacterial taxa in organic matter cycling during open ocean phytoplankton blooms. PMID:21515719

  6. Metaphylogenomic and potential functionality of the limpet Patella pellucida's gastrointestinal tract microbiome.

    PubMed

    Dudek, Magda; Adams, Jessica; Swain, Martin; Hegarty, Matthew; Huws, Sharon; Gallagher, Joe

    2014-10-20

    This study investigated the microbial diversity associated with the digestive tract of the seaweed grazing marine limpet Patella pellucida. Using a modified indirect DNA extraction protocol and performing metagenomic profiling based on specific prokaryotic marker genes, the abundance of bacterial groups was identified from the analyzed metagenome. The members of three significantly abundant phyla of Proteobacteria, Firmicutes and Bacteroidetes were characterized through the literature and their predicted functions towards the host, as well as potential applications in the industrial environment assessed.

  7. Metaphylogenomic and Potential Functionality of the Limpet Patella pellucida’s Gastrointestinal Tract Microbiome

    PubMed Central

    Dudek, Magda; Adams, Jessica; Swain, Martin; Hegarty, Matthew; Huws, Sharon; Gallagher, Joe

    2014-01-01

    This study investigated the microbial diversity associated with the digestive tract of the seaweed grazing marine limpet Patella pellucida. Using a modified indirect DNA extraction protocol and performing metagenomic profiling based on specific prokaryotic marker genes, the abundance of bacterial groups was identified from the analyzed metagenome. The members of three significantly abundant phyla of Proteobacteria, Firmicutes and Bacteroidetes were characterized through the literature and their predicted functions towards the host, as well as potential applications in the industrial environment assessed. PMID:25334059

  8. Polymerase Chain Reaction (PCR) Analysis of Microbial Consortia on Wastewater Treatment Processes for High Explosives

    DTIC Science & Technology

    2009-09-01

    Phyluma Raw Sewage GLBR Sp.b Clone (%)c Sp. Clone (%)d Actinobacteria 0 0 2 3.5 Bacteroidetes 6 28.2 7 8.2 Chloroflexi 2 11.3 2 3.5 Firmicutes 7...and 2,4,6-trinitrotoluene (TNT) based on 16S rDNA clone distribution. Phyluma Sp.b Clone (%)c Acidobacteria 1 1.1 Actinobacteria 1 8.7...distribution, established that the culture was enriched in both Actinobacteria and Proteobacteria, suggesting involvement of both phyla in 2,4-DNP degradation

  9. Sequence Analysis of Changes in Microbial Composition in Different Milk Products During Fermentation and Storage.

    PubMed

    Zalewska, Barbora; Kaevska, Marija; Slana, Iva

    2018-02-01

    The objective of this study was to analyze the changes in the microbiota of milk products during fermentation and storage. Two kinds of Yoghurt, one Kefir, and one Acidophilus milk were observed during the fermentation process and storage using 16S rDNA amplicon sequencing. Cow's, goat's, raw and pasteurized milk were also examined. The most represented organisms in all manufactured products were shown to be those of the phylum Firmicutes. In some products, Proteobacteria, Bacteroidetes and Actinobacteria were also present in high amounts.

  10. Effects of apples and specific apple components on the cecal environment of conventional rats: role of apple pectin.

    PubMed

    Licht, Tine R; Hansen, Max; Bergström, Anders; Poulsen, Morten; Krath, Britta N; Markowski, Jaroslaw; Dragsted, Lars O; Wilcks, Andrea

    2010-01-20

    Our study was part of the large European project ISAFRUIT aiming to reveal the biological explanations for the epidemiologically well-established health effects of fruits. The objective was to identify effects of apple and apple product consumption on the composition of the cecal microbial community in rats, as well as on a number of cecal parameters, which may be influenced by a changed microbiota. Principal Component Analysis (PCA) of cecal microbiota profiles obtained by PCR-DGGE targeting bacterial 16S rRNA genes showed an effect of whole apples in a long-term feeding study (14 weeks), while no effects of apple juice, purée or pomace on microbial composition in cecum were observed. Administration of either 0.33 or 3.3% apple pectin in the diet resulted in considerable changes in the DGGE profiles.A 2-fold increase in the activity of beta-glucuronidase was observed in animals fed with pectin (7% in the diet) for four weeks, as compared to control animals (P < 0.01). Additionally, the level of butyrate measured in these pectin-fed animal was more than double of the corresponding level in control animals (P < 0.01). Sequencing revealed that DGGE bands, which were suppressed in pectin-fed rats, represented Gram-negative anaerobic rods belonging to the phylum Bacteroidetes, whereas bands that became more prominent represented mainly Gram-positive anaerobic rods belonging to the phylum Firmicutes, and specific species belonging to the Clostridium Cluster XIVa.Quantitative real-time PCR confirmed a lower amount of given Bacteroidetes species in the pectin-fed rats as well as in the apple-fed rats in the four-week study (P < 0.05). Additionally, a more than four-fold increase in the amount of Clostridium coccoides (belonging to Cluster XIVa), as well as of genes encoding butyryl-coenzyme A CoA transferase, which is involved in butyrate production, was detected by quantitative PCR in fecal samples from the pectin-fed animals. Our findings show that consumption of apple

  11. Structure of a glycoside hydrolase family 50 enzyme from a subfamily that is enriched in human gut microbiome bacteroidetes.

    PubMed

    Giles, Kaleigh; Pluvinage, Benjamin; Boraston, Alisdair B

    2017-01-01

    The polysaccharide utilization locus in Bacteroides plebeius that confers the ability to catabolize porphyran contains a putative GH50 β-agarase (BACPLE_01683, BpGH50). BpGH50 did not show any clear activity on agarose or on the related algal galactans porphyran and carrageenan. However, the 1.4 Å resolution X-ray crystal structure of BpGH50 confirmed its possession of the core (α/β) 8 barrel fold found in GH50 enzymes as well as the structural conservation of the catalytic residues and some substrate binding residues. Examination of the structure supports assignment of this protein as a β-galactosidase but suggests that it may utilize a different, possibly hybrid, algal galactan substrate. Proteins 2016; 85:182-187. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients

    PubMed Central

    López, Patricia; de Paz, Banesa; Rodríguez-Carrio, Javier; Hevia, Arancha; Sánchez, Borja; Margolles, Abelardo; Suárez, Ana

    2016-01-01

    Intestinal dysbiosis, characterized by a reduced Firmicutes/Bacteroidetes ratio, has been reported in systemic lupus erythematosus (SLE) patients. In this study, in vitro cultures revealed that microbiota isolated from SLE patient stool samples (SLE-M) promoted lymphocyte activation and Th17 differentiation from naïve CD4+ lymphocytes to a greater extent than healthy control-microbiota. Enrichment of SLE-M with Treg-inducing bacteria showed that a mixture of two Clostridia strains significantly reduced the Th17/Th1 balance, whereas Bifidobacterium bifidum supplementation prevented CD4+ lymphocyte over-activation, thus supporting a possible therapeutic benefit of probiotics containing Treg-inducer strains in order to restore the Treg/Th17/Th1 imbalance present in SLE. In fact, ex vivo analyses of patient samples showed enlarged Th17 and Foxp3+ IL-17+ populations, suggesting a possible Treg-Th17 trans-differentiation. Moreover, analyses of fecal microbiota revealed a negative correlation between IL-17+ populations and Firmicutes in healthy controls, whereas in SLE this phylum correlated directly with serum levels of IFNγ, a Th1 cytokine slightly reduced in patients. Finally, the frequency of Synergistetes, positively correlated with the Firmicutes/Bacteroidetes ratio in healthy controls, tended to be reduced in patients when anti-dsDNA titers were increased and showed a strong negative correlation with IL-6 serum levels and correlated positively with protective natural IgM antibodies against phosphorylcholine. PMID:27044888

  13. Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 Deficiency Syndrome: A 3-month prospective observational study.

    PubMed

    Tagliabue, Anna; Ferraris, Cinzia; Uggeri, Francesca; Trentani, Claudia; Bertoli, Simona; de Giorgis, Valentina; Veggiotti, Pierangelo; Elli, Marina

    2017-02-01

    The classical ketogenic diet (KD) is a high-fat, very low-carbohydrate normocaloric diet used for drug-resistant epilepsy and Glucose Transporter 1 Deficiency Syndrome (GLUT1 DS). In animal models, high fat diet induces large alterations in microbiota producing deleterious effects on gut health. We carried out a pilot study on patients treated with KD comparing their microbiota composition before and after three months on the diet. Six patients affected by GLUT1 DS were asked to collect fecal samples before and after three months on the diet. RT - PCR analysis was performed in order to quantify Firmicutes, Bacteroidetes, Bifidobacterium spp., Lactobacillus spp., Clostridium perfringens, Enterobacteriaceae, Clostridium cluster XIV, Desulfovibrio spp. and Faecalibacterium prausnitzii. Compared with baseline, there were no statistically significant differences at 3 months in Firmicutes and Bacteroidetes. However fecal microbial profiles revealed a statistically significant increase in Desulfovibrio spp. (p = 0.025), a bacterial group supposed to be involved in the exacerbation of the inflammatory condition of the gut mucosa associated to the consumption of fats of animal origin. A future prospective study on the changes in gut microbiota of all children with epilepsy started on a KD is warranted. In patients with dysbiosis demonstrated by fecal samples, it my be reasonable to consider an empiric trial of pre or probiotics to potentially restore the «ecological balance» of intestinal microbiota. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  14. Evaluation of A Novel Split-Feeding Anaerobic/Oxic Baffled Reactor (A/OBR) For Foodwaste Anaerobic Digestate: Performance, Modeling and Bacterial Community

    PubMed Central

    Wang, Shaojie; Peng, Liyu; Jiang, Yixin; Gikas, Petros; Zhu, Baoning; Su, Haijia

    2016-01-01

    To enhance the treatment efficiency from an anaerobic digester, a novel six-compartment anaerobic/oxic baffled reactor (A/OBR) was employed. Two kinds of split-feeding A/OBRs R2 and R3, with influent fed in the 1st, 3rd and 5th compartment of the reactor simultaneously at the respective ratios of 6:3:1 and 6:2:2, were compared with the regular-feeding reactor R1 when all influent was fed in the 1st compartment (control). Three aspects, the COD removal, the hydraulic characteristics and the bacterial community, were systematically investigated, compared and evaluated. The results indicated that R2 and R3 had similar tolerance to loading shock, but the R2 had the highest COD removal of 91.6% with a final effluent of 345 mg/L. The mixing patterns in both split-feeding reactors were intermediate between plug-flow and completely-mixed, with dead spaces between 8.17% and 8.35% compared with a 31.9% dead space in R1. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that the split-feeding strategy provided a higher bacterial diversity and more stable bacterial community than that in the regular-feeding strategy. Further analysis indicated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant bacteria, among which Firmicutes and Bacteroidetes might be responsible for organic matter degradation and Proteobacteria for nitrification and denitrification. PMID:27708368

  15. Changes in bacterial and archaeal communities during the concentration of brine at the graduation towers in Ciechocinek spa (Poland).

    PubMed

    Kalwasińska, Agnieszka; Deja-Sikora, Edyta; Burkowska-But, Aleksandra; Szabó, Attila; Felföldi, Támas; Kosobucki, Przemysław; Krawiec, Arkadiusz; Walczak, Maciej

    2018-03-01

    This study evaluates the changes in bacterial and archaeal community structure during the gradual evaporation of water from the brine (extracted from subsurface Jurassic deposits) in the system of graduation towers located in Ciechocinek spa, Poland. The communities were assessed with 16S rRNA gene sequencing (MiSeq, Illumina) and microscopic methods. The microbial cell density determined by direct cell count was at the order of magnitude of 10 7 cells/mL. It was found that increasing salt concentration was positively correlated with both the cell counts, and species-level diversity of bacterial and archaeal communities. The archaeal community was mostly constituted by members of the phylum Euryarchaeota, class Halobacteria and was dominated by Halorubrum-related sequences. The bacterial community was more diverse, with representatives of the phyla Proteobacteria and Bacteroidetes as the most abundant. The proportion of Proteobacteria decreased with increasing salt concentration, while the proportion of Bacteroidetes increased significantly in the more concentrated samples. Representatives of the genera Idiomarina, Psychroflexus, Roseovarius, and Marinobacter appeared to be tolerant to changes of salinity. During the brine concentration, the relative abundances of Sphingobium and Sphingomonas were significantly decreased and the raised contributions of genera Fabibacter and Fodinibius were observed. The high proportion of novel (not identified at 97% similarity level) bacterial reads (up to 42%) in the 16S rRNA gene sequences indicated that potentially new bacterial taxa inhabit this unique environment.

  16. Effects of Feeding Increasing Proportions of Corn Grain on Concentration of Lipopolysaccharide in the Rumen Fluid and the Subsequent Alterations in Immune Responses in Goats

    PubMed Central

    Huo, Wenjie; Zhu, Weiyun; Mao, Shengyong

    2013-01-01

    This study was conducted to investigate the effects of feeding increasing proportions of corn grain on concentration of lipopolysaccharide (LPS) in the rumen fluid and the subsequent alterations in immune responses as reflected by plasma concentrations of serum amyloid A (SAA) and haptoglobin (Hp) in goats. Nine goats were assigned to three diets (0%, 25%, and 50% corn grain) in a 3 ×3 Latin square experimental design. The results showed that as the proportion of dietary corn increased, the ruminal pH decreased (p< 0.001), and the concentrations of propionate (p<0.001), butyrate (p<0.001), lactic acid (p = 0.013) and total volatile fatty acid (p = 0.031) elevated and the ruminal LPS level increased (p<0.001). As the proportion of dietary corn increased, the concentration of SAA increased (p = 0.013). LPS was detectable in the blood of individual goats fed 25% and 50% corn. A real-time PCR analysis showed that the copy number of phylum Bacteroidetes (p<0.001) was reduced (4.61×109copies/mL to 1.48×109copies/mL) by the increasing dietary corn, and a correlation analysis revealed a significant negative correlation between the number of Bacteroidetes and rumen LPS levels. Collectively, these results indicated that feeding goats high proportions (50%) of corn grain decreased the ruminal pH, increased LPS in the rumen fluid and tended to stimulate an inflammatory response. PMID:25049727

  17. Water regime influences bulk soil and Rhizosphere of Cereus jamacaru bacterial communities in the Brazilian Caatinga biome.

    PubMed

    Nessner Kavamura, Vanessa; Taketani, Rodrigo Gouvêa; Lançoni, Milena Duarte; Andreote, Fernando Dini; Mendes, Rodrigo; Soares de Melo, Itamar

    2013-01-01

    We used the T-RFLP technique combined with Ion Torrent (PGM) sequencing of 16S rRNA and multivariate analysis to study the structure of bulk soil and rhizosphere bacterial communities of a cactus, Cereus jamacaru, from the Brazilian Caatinga biome, which is unique to Brazil. The availability of water shapes the rhizosphere communities, resulting in different patterns during the rainy and dry seasons. Taxonomic approaches and statistical analysis revealed that the phylum Actinobacteria strongly correlated with the dry season, while samples from the rainy season exhibited a strong correlation with the phylum Proteobacteria for rhizosphere samples and with the phyla Bacteroidetes, Firmicutes, Lentisphaerae, and Tenericutes for bulk soil samples. The STAMP software also indicated that the phylum Bacteroidetes, as well as two classes in the Proteobacteria phylum (γ and δ), were the most significant ones during the rainy season. The average abundance of the phylum Actinobacteria and the genus Bacillus was significantly greater during the dry season. Some significant genera found during the dry season might reflect their tolerance to the extreme conditions found in the Caatinga biome. They may also indicate the ecological function that microorganisms play in providing plants with some degree of tolerance to water stress or in assisting in their development through mechanisms of growth promotion. Alterations in microbial communities can be due to the different abilities of native microorganisms to resist and adapt to environmental changes.

  18. Water Regime Influences Bulk Soil and Rhizosphere of Cereus jamacaru Bacterial Communities in the Brazilian Caatinga Biome

    PubMed Central

    Nessner Kavamura, Vanessa; Taketani, Rodrigo Gouvêa; Lançoni, Milena Duarte; Andreote, Fernando Dini; Mendes, Rodrigo; Soares de Melo, Itamar

    2013-01-01

    We used the T-RFLP technique combined with Ion Torrent (PGM) sequencing of 16S rRNA and multivariate analysis to study the structure of bulk soil and rhizosphere bacterial communities of a cactus, Cereus jamacaru, from the Brazilian Caatinga biome, which is unique to Brazil. The availability of water shapes the rhizosphere communities, resulting in different patterns during the rainy and dry seasons. Taxonomic approaches and statistical analysis revealed that the phylum Actinobacteria strongly correlated with the dry season, while samples from the rainy season exhibited a strong correlation with the phylum Proteobacteria for rhizosphere samples and with the phyla Bacteroidetes, Firmicutes, Lentisphaerae, and Tenericutes for bulk soil samples. The STAMP software also indicated that the phylum Bacteroidetes, as well as two classes in the Proteobacteria phylum (γ and δ), were the most significant ones during the rainy season. The average abundance of the phylum Actinobacteria and the genus Bacillus was significantly greater during the dry season. Some significant genera found during the dry season might reflect their tolerance to the extreme conditions found in the Caatinga biome. They may also indicate the ecological function that microorganisms play in providing plants with some degree of tolerance to water stress or in assisting in their development through mechanisms of growth promotion. Alterations in microbial communities can be due to the different abilities of native microorganisms to resist and adapt to environmental changes. PMID:24069212

  19. Disturbed subsurface microbial communities follow equivalent trajectories despite different structural starting points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handley, Kim M.; Wrighton, Kelly C.; Miller, Christopher S.

    2015-03-01

    We explored the impact of the starting community composition and structure on ecosystem response to perturbations using organic carbon amendment experiments. Subsurface sediment was partitioned into flow-through columns, and the microbial communities were initially stimulated in situ by addition of acetate as a carbon and electron donor source. This drove community richness and evenness down, and pushed the system into a new biogeochemical state characterized by iron reduction. Reconstructed near-full-length 16S rRNA gene sequence analysis indicated a concomitant enrichment of Desulfuromonadales, Comamonadaceae and Bacteroidetes lineages. After 10 to 12 days, acetate was exchange for lactate in a subset of columns.more » Following the clear onset of sulfate reduction (35 days after acetate-amendment), acetate was substituted for lactate in additional columns. Acetatestimulated communities differed markedly during each biogeochemical regime and at each lactate-switch. Regardless, however, of when communities were switched to lactate, they followed comparable trajectories with respect to composition and structure, with convergence evident one week after each switch, and marked after one month of lactate amendment. During sulfate reduction all treatments were enriched in Firmicutes and a number of species likely involved in sulfate reduction (notably Desulfobulbus, Desulfosporosinus, Desulfitobacterium and Desulfotomaculum). Lactate treatments were distinguished by substantially lower relative abundances of Desulfotomaculum and Bacteroidetes, and enrichments of Psychrosinus and Clostridiales species. Results imply that the structure of the starting community was not significant in controlling organism selection in community succession.« less

  20. Alterations in the Colonic Microbiota in Response to Osmotic Diarrhea

    PubMed Central

    Trajanoski, Slave; Lackner, Stefan; Stocker, Gernot; Hinterleitner, Thomas; Gülly, Christian; Högenauer, Christoph

    2013-01-01

    Background & Aims Diseases of the human gastrointestinal (GI) tract are often accompanied by diarrhea with profound alterations in the GI microbiota termed dysbiosis. Whether dysbiosis is due to the disease itself or to the accompanying diarrhea remains elusive. With this study we characterized the net effects of osmotic diarrhea on the composition of the GI microbiota in the absence of disease. Methods We induced osmotic diarrhea in four healthy adults by oral administration of polyethylene glycol 4000 (PEG). Stool as well as mucosa specimens were collected before, during and after diarrhea and 16S rDNA-based microbial community profiling was used to assess the microbial community structure. Results Stool and mucosal microbiotas were strikingly different, with Firmicutes dominating the mucosa and Bacteroidetes the stools. Osmotic diarrhea decreased phylotype richness and showed a strong tendency to equalize the otherwise individualized microbiotas on the mucosa. Moreover, diarrhea led to significant relative shifts in the phyla Bacteroidetes and Firmicutes and to a relative increase in the abundance of Proteobacteria on the mucosa, a phenomenon also noted in several inflammatory and diarrheal GI diseases. Conclusions Changes in microbial community structure induced by osmotic diarrhea are profound and show similarities to changes observed in other GI diseases including IBD. These effects so must be considered when specimens from diarrheal diseases (i.e. obtained by stratification of samples according to diarrheal status) or conditions wherein bowel preparations like PEG (i.e. specimens obtained during endoscopy) are used. PMID:23409050

  1. Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 on mice.

    PubMed

    Usui, Yuki; Kimura, Yasumasa; Satoh, Takeshi; Takemura, Naoki; Ouchi, Yasuo; Ohmiya, Hiroko; Kobayashi, Kyosuke; Suzuki, Hiromi; Koyama, Satomi; Hagiwara, Satoko; Tanaka, Hirotoshi; Imoto, Seiya; Eberl, Gérard; Asami, Yukio; Fujimoto, Kosuke; Uematsu, Satoshi

    2018-05-15

    The gut is an extremely complicated ecosystem where microorganisms, nutrients and host cells interact vigorously. Although the function of the intestine and its barrier system weakens with age, some probiotics can potentially prevent age-related intestinal dysfunction. Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, which are the constituents of LB81 yogurt, are representative probiotics. However, it is unclear whether their long-term intake has a beneficial influence on systemic function. Here, we examined the gut microbiome, fecal metabolites and gene expression profiles of various organs in mice. Although age-related alterations were apparent in them, long-term LB81 yogurt intake led to an increased Bacteroidetes to Firmicutes ratio and elevated abundance of the bacterial family S24-7 (Bacteroidetes), which is known to be associated with butyrate and propanoate production. According to our fecal metabolite analysis to detect enrichment, long-term LB81 yogurt intake altered the intestinal metabolic pathways associated with propanoate and butanoate in the mice. Gene ontology analysis also revealed that long-term LB81 yogurt intake influenced many physiological functions related to the defense response. The profiles of various genes associated with antimicrobial peptides-, tight junctions-, adherens junctions- and mucus-associated intestinal barrier functions were also drastically altered in the LB81 yogurt-fed mice. Thus, long-term intake of LB81 yogurt has the potential to maintain systemic homeostasis, such as the gut barrier function, by controlling the intestinal microbiome and its metabolites.

  2. 454 pyrosequencing analysis of bacterial diversity revealed by a comparative study of soils from mining subsidence and reclamation areas.

    PubMed

    Li, Yuanyuan; Chen, Longqian; Wen, Hongyu; Zhou, Tianjian; Zhang, Ting; Gao, Xiali

    2014-03-28

    Significant alteration in the microbial community can occur across reclamation areas suffering subsidence from mining. A reclamation site undergoing fertilization practices and an adjacent coal-excavated subsidence site (sites A and B, respectively) were examined to characterize the bacterial diversity using 454 high-throughput 16S rDNA sequencing. The dominant taxonomic groups in both the sites were Proteobacteria, Acidobacteria, Bacteroidetes, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, and Firmicutes. However, the bacterial communities' abundance, diversity, and composition differed significantly between the sites. Site A presented higher bacterial diversity and more complex community structures than site B. The majority of sequences related to Proteobacteria, Gemmatimonadetes, Chloroflexi, Nitrospirae, Firmicutes, Betaproteobacteria, Deltaproteobacteria, and Anaerolineae were from site A; whereas those related to Actinobacteria, Planctomycetes, Bacteroidetes, Verrucomicrobia, Gammaproteobacteria, Nitriliruptoria, Alphaproteobacteria, and Phycisphaerae originated from site B. The distribution of some bacterial groups and subgroups in the two sites correlated with soil properties and vegetation due to reclamation practice. Site A exhibited enriched bacterial community, soil organic matter (SOM), and total nitrogen (TN), suggesting the presence of relatively diverse microorganisms. SOM and TN were important factors shaping the underlying microbial communities. Furthermore, the specific plant functional group (legumes) was also an important factor influencing soil microbial community composition. Thus, the effectiveness of 454 pyrosequencing in analyzing soil bacterial diversity was validated and an association between land ecological system restoration, mostly mediated by microbial communities, and an improvement in soil properties in coalmining reclamation areas was suggested.

  3. Limited prolonged effects of rifaximin treatment on irritable bowel syndrome-related differences in the fecal microbiome and metabolome

    PubMed Central

    Zeber-Lubecka, Natalia; Kulecka, Maria; Ambrozkiewicz, Filip; Paziewska, Agnieszka; Goryca, Krzysztof; Karczmarski, Jakub; Rubel, Tymon; Wojtowicz, Wojciech; Mlynarz, Piotr; Marczak, Lukasz; Tomecki, Roman; Mikula, Michal; Ostrowski, Jerzy

    2016-01-01

    ABSTRACT Irritable bowel syndrome (IBS) is a chronic functional disorder and its development may be linked, directly and indirectly, to intestinal dysbiosis. Here we investigated the interactions between IBS symptoms and the gut microbiome, including the relation to rifaximin (1200 mg daily; 11.2 g per a treatment). We recruited 72 patients, including 31 with IBS-D (diarrhea), 11 with IBS-C (constipation), and 30 with IBS-M (mixed constipation and diarrhea) and 30 healthy controls (HCs). Of them, 68%, 64%, and 53% patients with IBS-D, IBS-C, and IBS-M, respectively, achieved 10–12 week-term improvement after the rifaximin treatment. Stool samples were collected before and after the treatment, and fecal microbiotic profiles were analyzed by deep sequencing of 16S rRNA, while stool metabolic profiles were studied by hydrogen 1-nuclear magnetic resonance (1H-NMR) and gas chromatography–mass spectrometry (GC-MS). Of 26 identified phyla, only Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria were consistently found in all samples. Bacteroidetes was predominant in fecal samples from HCs and IBS-D and IBS-M subjects, whereas Firmicutes was predominant in samples from IBS-C subjects. Species richness, but not community diversity, differentiated all IBS patients from HCs. Metabolic fingerprinting, using NMR spectra, distinguished HCs from all IBS patients. Thirteen metabolites identified by GC-MS differed HCs and IBS patients. However, neither metagenomics nor metabolomics analyses identified significant differences between patients with and without improvement after treatment. PMID:27662586

  4. Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake

    PubMed Central

    Woodhouse, Jason Nicholas; Kinsela, Andrew Stephen; Collins, Richard Nicholas; Bowling, Lee Chester; Honeyman, Gordon L; Holliday, Jon K; Neilan, Brett Anthony

    2016-01-01

    The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as heterotrophic bacterioplankton, viruses and protists emerging as critical drivers. During the Australian summer of 2012–2013, a bloom that occurred in a shallow ephemeral lake over a 6-month period was comprised of 22 distinct cyanobacteria, including Microcystis, Dolichospermum, Oscillatoria and Sphaerospermopsis. Cyanobacterial cell densities, bacterial community composition and abiotic parameters were assessed over this period. Alpha-diversity indices and multivariate analysis were successful at differentiating three distinct bloom phases and the contribution of abiotic parameters to each. Network analysis, assessing correlations between biotic and abiotic variables, reproduced these phases and assessed the relative importance of both abiotic and biotic factors. Variables possessing elevated betweeness centrality included temperature, sodium and operational taxonomic units belonging to the phyla Verrucomicrobia, Planctomyces, Bacteroidetes and Actinobacteria. Species-specific associations between cyanobacteria and bacterioplankton, including the free-living Actinobacteria acI, Bacteroidetes, Betaproteobacteria and Verrucomicrobia, were also identified. We concluded that changes in the abundance and nature of freshwater cyanobacteria are associated with changes in the diversity and composition of lake bacterioplankton. Given this, an increase in the frequency of cyanobacteria blooms has the potential to alter nutrient cycling and contribute to long-term functional perturbation of freshwater systems. PMID:26636552

  5. Changes in the composition and diversity of the bacterial microbiota associated with oysters (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) during commercial production.

    PubMed

    Trabal Fernández, Natalia; Mazón-Suástegui, José M; Vázquez-Juárez, Ricardo; Ascencio-Valle, Felipe; Romero, Jaime

    2014-04-01

    The resident microbiota of three oyster species (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) was characterised using a high-throughput sequencing approach (pyrosequencing) that was based on the V3-V5 regions of the 16S rRNA gene. We analysed the changes in the bacterial community beginning with the postlarvae produced in a hatchery, which were later planted at two grow-out cultivation sites until they reached the adult stage. DNA samples from the oysters were amplified, and 31 008 sequences belonging to 13 phyla (including Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes) and 243 genera were generated. Considering all life stages, Proteobacteria was the most abundant phylum, but it showed variations at the genus level between the postlarvae and the adult oysters. Bacteroidetes was the second most common phylum, but it was found in higher abundance in the postlarvae than in adults. The relative abundance showed that the microbiota that was associated with the postlarvae and adults differed substantially, and higher diversity and richness were evident in the postlarvae in comparison with adults of the same species. The site of rearing influenced the bacterial community composition of C. corteziensis and C. sikamea adults. The bacterial groups that were found in these oysters were complex and metabolically versatile, making it difficult to understand the host-bacteria symbiotic relationships; therefore, the physiological and ecological significances of the resident microbiota remain uncertain. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Sasa quelpaertensis leaf extract regulates microbial dysbiosis by modulating the composition and diversity of the microbiota in dextran sulfate sodium-induced colitis mice.

    PubMed

    Yeom, Yiseul; Kim, Bong-Soo; Kim, Se-Jae; Kim, Yuri

    2016-11-25

    Inflammatory bowel diseases (IBD) are related to a dysfunction of the mucosal immune system and they result from complex interactions between genetics and environmental factors, including lifestyle, diet, and the gut microbiome. Therefore, the effect of Sasa quelpaertensis leaf extract (SQE) on gut microbiota in a dextran sulfate sodium (DSS)-induced colitis mouse model was investigated with pyrosequencing of fecal samples. Three groups of animals were examined: i) a control group, ii) a group that was received 2.5% DSS in their drinking water for 7 days, followed by 7 days of untreated water, and then another 7 days of 2.5% DSS in their drinking water, and iii) a group that was presupplemented with SQE (300 mg/kg body weight) by gavage for two weeks prior to the same DSS treatment schedule described in ii. SQE supplementation alleviated disease activity scores and shortened colon length compared to the other two groups. In the DSS group, the proportion of Bacteroidetes increased, whereas that the proportion of Firmicutes was decreased compared to the control group. SQE supplementation recovered the proportions of Firmicutes and Bacteroidetes back to control levels. Moreover, the diversity of microbiota in the SQE supplementation group higher than that of the DSS group. SQE was found to protect mice from microbial dysbiosis associated with colitis by modulating the microbial composition and diversity of the microbiota present. These results provide valuable insight into microbiota-food component interactions in IBD.

  7. Gut Bacterial Community of the Xylophagous Cockroaches Cryptocercus punctulatus and Parasphaeria boleiriana

    PubMed Central

    Berlanga, Mercedes; Llorens, Carlos; Comas, Jaume; Guerrero, Ricardo

    2016-01-01

    Cryptocercus punctulatus and Parasphaeria boleiriana are two distantly related xylophagous and subsocial cockroaches. Cryptocercus is related to termites. Xylophagous cockroaches and termites are excellent model organisms for studying the symbiotic relationship between the insect and their microbiota. In this study, high-throughput 454 pyrosequencing of 16S rRNA was used to investigate the diversity of metagenomic gut communities of C. punctulatus and P. boleiriana, and thereby to identify possible shifts in symbiont allegiances during cockroaches evolution. Our results revealed that the hindgut prokaryotic communities of both xylophagous cockroaches are dominated by members of four Bacteria phyla: Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Other identified phyla were Spirochaetes, Planctomycetes, candidatus Saccharibacteria (formerly TM7), and Acidobacteria, each of which represented 1–2% of the total population detected. Community similarity based on phylogenetic relatedness by unweighted UniFrac analyses indicated that the composition of the bacterial community in the two species was significantly different (P < 0.05). Phylogenetic analysis based on the characterized clusters of Bacteroidetes, Spirochaetes, and Deltaproteobacteria showed that many OTUs present in both cockroach species clustered with sequences previously described in termites and other cockroaches, but not with those from other animals or environments. These results suggest that, during their evolution, those cockroaches conserved several bacterial communities from the microbiota of a common ancestor. The ecological stability of those microbial communities may imply the important functional role for the survival of the host of providing nutrients in appropriate quantities and balance. PMID:27054320

  8. Bacterial community in ancient permafrost alluvium at the Mammoth Mountain (Eastern Siberia).

    PubMed

    Brouchkov, Anatoli; Kabilov, Marsel; Filippova, Svetlana; Baturina, Olga; Rogov, Victor; Galchenko, Valery; Mulyukin, Andrey; Fursova, Oksana; Pogorelko, Gennady

    2017-12-15

    Permanently frozen (approx. 3.5Ma) alluvial Neogene sediments exposed in the Aldan river valley at the Mammoth Mountain (Eastern Siberia) are unique, ancient, and poorly studied permafrost environments. So far, the structure of the indigenous bacterial community has remained unknown. Use of 16S metagenomic analysis with total DNA isolation using DNA Spin Kit for Soil (MO-Bio) and QIAamp DNA Stool Mini Kit (Qiagen) has revealed the major and minor bacterial lineages in the permafrost alluvium sediments. In sum, 61 Operational Taxonomic Units (OTUs) with 31,239 reads (Qiagen kit) and 15,404 reads (Mo-Bio kit) could be assigned to the known taxa. Only three phyla, Bacteroidetes, Proteobacteria and Firmicutes, comprised >5% of the OTUs abundance and accounted for 99% of the total reads. OTUs pertaining to the top families (Chitinophagaceae, Caulobacteraceae, Sphingomonadaceae, Bradyrhizobiaceae, Halomonadaceae) held >90% of reads. The abundance of Actinobacteria was less (0.7%), whereas members of other phyla (Deinococcus-Thermus, Cyanobacteria/Chloroplast, Fusobacteria, and Acidobacteria) constituted a minor fraction of reads. The bacterial community in the studied ancient alluvium differs from other permafrost sediments, mainly by predominance of Bacteroidetes (>52%). The diversity of this preserved bacterial community has the potential to cause effects unknown if prompted to thaw and spread with changing climate. Therefore, this study elicits further reason to study how reintroduction of these ancient bacteria could affect the surrounding ecosystem, including current bacterial species. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota.

    PubMed

    Polansky, Ondrej; Sekelova, Zuzana; Faldynova, Marcela; Sebkova, Alena; Sisak, Frantisek; Rychlik, Ivan

    2015-12-28

    The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Daesiho-Tang Is an Effective Herbal Formulation in Attenuation of Obesity in Mice through Alteration of Gene Expression and Modulation of Intestinal Microbiota.

    PubMed

    Hussain, Ahtesham; Yadav, Mukesh Kumar; Bose, Shambhunath; Wang, Jing-Hua; Lim, Dongwoo; Song, Yun-Kyung; Ko, Seong-Gyu; Kim, Hojun

    2016-01-01

    Obesity has become a major global health challenge due to its increasing prevalence, and the associated health risk. It is the main cause of various metabolic diseases including diabetes, hypertension, cardiovascular disease, stroke and certain forms of cancer. In the present study we evaluated the anti-obesity property of Daesiho-tang (DSHT), an herbal medicine, using high fat diet (HFD)-induced obese mice as a model. Our results showed that DSHT ameliorated body weight gain, decreased total body fat, regulated expression of leptin and adiponectin genes of adipose tissue and exerted an anti-diabetic effect by attenuating fasting glucose level and serum insulin level in HFD-fed animals. In addition, DSHT-treatment significantly reduced total cholesterol (TC), triglycerides (TG) and increased high density lipoprotein-cholesterol (HDL), glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) levels in serum and reduced deposition of fat droplets in liver. DSHT treatment resulted in significantly increased relative abundance of bacteria including Bacteroidetes, Bacteroidetes/Firmicutes ratio, Akkermansia Bifidobacterium., Lactobacillus, and decreased the level of Firmicutes. Using RT2 profiler PCR array, 39 (46%) genes were found to be differentially expressed in HFD-fed mice compared to normal control. However, normal gene expressions were restored in 36 (92%) genes of HFD-fed mice, when co-exposed to DSHT. The results of this study demonstrated that DSHT is an effective herbal formulation in attenuation of obesity in HFD-fed mice through alteration of gene expressions and modulation of intestinal microbiota.

  11. Diversity and homogeneity of oral microbiota in healthy Korean pre-school children using pyrosequencing.

    PubMed

    Lee, Soo Eon; Nam, Ok Hyung; Lee, Hyo-Seol; Choi, Sung Chul

    2016-07-01

    Objectives The purpose of this study was designed to identify the oral microbiota in healthy Korean pre-school children using pyrosequencing. Materials and methods Dental plaque samples were obtained form 10 caries-free pre-school children. The samples were analysed using pyrosequencing. Results The pyrosequencing analysis revealed that, at the phylum level, Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria and Fusobacteria showed high abundance. Also, predominant genera were identified as core microbiome, such as Streptococcus, Neisseria, Capnocytophaga, Haemophilus and Veilonella. Conclusions The diversity and homogeneity was shown in the dental plaque microbiota in healthy Korean pre-school children.

  12. Clinical impact of pre-transplant gut microbial diversity on outcomes of allogeneic hematopoietic stem cell transplantation.

    PubMed

    Doki, Noriko; Suyama, Masahiro; Sasajima, Satoshi; Ota, Junko; Igarashi, Aiko; Mimura, Iyo; Morita, Hidetoshi; Fujioka, Yuki; Sugiyama, Daisuke; Nishikawa, Hiroyoshi; Shimazu, Yutaka; Suda, Wataru; Takeshita, Kozue; Atarashi, Koji; Hattori, Masahira; Sato, Eiichi; Watakabe-Inamoto, Kyoko; Yoshioka, Kosuke; Najima, Yuho; Kobayashi, Takeshi; Kakihana, Kazuhiko; Takahashi, Naoto; Sakamaki, Hisashi; Honda, Kenya; Ohashi, Kazuteru

    2017-09-01

    Post-transplant microbial diversity in the gastrointestinal tract is closely associated with clinical outcomes following allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, little is known about the impact of the fecal microbiota before allo-HSCT. We analyzed fecal samples approximately 2 weeks before conditioning among 107 allo-HSCT recipients between 2013 and 2015. Microbial analysis was performed using 16S rRNA gene sequencing. Operational taxonomic unit-based microbial diversity was estimated by calculating the Shannon index. Patients were classified into three groups based on the diversity index: low (<2), intermediate (2, 3), and high (>3) diversity (18 (16.8%), 48 (44.9%), and 41 (38.3%) patients, respectively). There were no significant differences in the 20-month overall survival, cumulative incidence of relapse, and non-relapse mortality among three groups. The cumulative incidence of grade II to IV acute graft-versus-host disease (aGVHD) was similar among the three groups (low 55.6%; intermediate 35.4%; high 48.8%, p = 0.339, at day 100). Furthermore, we found no differences in the cumulative incidence of grade II to IV acute gastrointestinal GVHD among the three groups (low 38.9%; intermediate 21.3%; high 24.4%, p = 0.778, at day 100). Regarding the composition of microbiota before allo-HSCT, aGVHD patients showed a significantly higher abundance of phylum Firmicutes (p < 0.01) and a lower tendency for Bacteroidetes (p = 0.106) than non-aGVHD patients. Maintenance of Bacteroidetes throughout allo-HSCT may be a strategy to prevent aGVHD.

  13. Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows.

    PubMed

    Liu, Jun-hua; Zhang, Meng-ling; Zhang, Rui-yang; Zhu, Wei-yun; Mao, Sheng-yong

    2016-03-01

    The objective of this research was to compare the composition of bacterial microbiota associated with the ruminal content (RC), ruminal epithelium (RE) and faeces of Holstein dairy cows. The RC, RE and faecal samples were collected from six Holstein dairy cows when the animals were slaughtered. Community compositions of bacterial 16S rRNA genes from RC, RE and faeces were determined using a MiSeq sequencing platform with bacterial-targeting universal primers 338F and 806R. UniFrac analysis revealed that the bacterial communities of RC, RE and faeces were clearly separated from each other. Statistically significant dissimilarities were observed between RC and faeces (P = 0.002), between RC and RE (P = 0.003), and between RE and faeces (P = 0.001). A assignment of sequences to taxa showed that the abundance of the predominant phyla Bacteroidetes was lower in RE than in RC, while a significant higher (P < 0.01) abundance of Proteobacteria was present in RE than in RC. When compared with the RC, the abundance of Firmicutes and Verrucomicrobia was higher in faeces, and RC contained a greater abundance of Bacteroidetes and Tenericutes. A higher proportions of Butyrivibrio and Campylobacter dominated RE as compared to RC. The faecal microbiota was less diverse than RC and dominated by genera Turicibacter and Clostridium. In general, these findings clearly demonstrated the striking compositional differences among RC, RE and faeces, indicating that bacterial communities are specific and adapted to the harbouring environment. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom.

    PubMed

    Penn, Kevin; Wang, Jia; Fernando, Samodha C; Thompson, Janelle R

    2014-09-01

    Cyanobacterial harmful algal blooms (cyanoHABs) appear to be increasing in frequency on a global scale. The Cyanobacteria in blooms can produce toxic secondary metabolites that make freshwater dangerous for drinking and recreation. To characterize microbial activities in a cyanoHAB, transcripts from a eutrophic freshwater reservoir in Singapore were sequenced for six samples collected over one day-night period. Transcripts from the Cyanobacterium Microcystis dominated all samples and were accompanied by at least 533 genera primarily from the Cyanobacteria, Proteobacteria, Bacteroidetes and Actinobacteria. Within the Microcystis population, abundant transcripts were from genes for buoyancy, photosynthesis and synthesis of the toxin microviridin, suggesting that these are necessary for competitive dominance in the Reservoir. During the day, Microcystis transcripts were enriched in photosynthesis and energy metabolism while at night enriched pathways included DNA replication and repair and toxin biosynthesis. Microcystis was the dominant source of transcripts from polyketide and non-ribosomal peptide synthase (PKS and NRPS, respectively) gene clusters. Unexpectedly, expression of all PKS/NRPS gene clusters, including for the toxins microcystin and aeruginosin, occurred throughout the day-night cycle. The most highly expressed PKS/NRPS gene cluster from Microcystis is not associated with any known product. The four most abundant phyla in the reservoir were enriched in different functions, including photosynthesis (Cyanobacteria), breakdown of complex organic molecules (Proteobacteria), glycan metabolism (Bacteroidetes) and breakdown of plant carbohydrates, such as cellobiose (Actinobacteria). These results provide the first estimate of secondary metabolite gene expression, functional partitioning and functional interplay in a freshwater cyanoHAB.

  15. Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea.

    PubMed

    Lee, Dong Wan; Lee, Hanbyul; Lee, Aslan Hwanhwi; Kwon, Bong-Oh; Khim, Jong Seong; Yim, Un Hyuk; Kim, Beom Seok; Kim, Jae-Jin

    2018-03-01

    The tidal flats near Sinduri beach in Taean, Korea, have been severely contaminated by heavy crude oils due to the Korea's worst oil spill accident, say the Hebei Spirit Oil Spill, in 2007. Crude oil compounds, including polycyclic aromatic hydrocarbons (PAHs), pose significant environmental damages due to their wide distribution, persistence, high toxicity, mutagenicity, and carcinogenicity. Microbial community of Sinduri beach sediments samples was analyzed by metagenomic data with 16S rRNA gene amplicons. Three phyla (Proteobacteria, Firmicutes, and Bacteroidetes) accounted for approximately ≥93.0% of the total phyla based on metagenomic analysis. Proteobacteria was the dominant phylum in Sinduri beach sediments. Cultivable bacteria were isolated from PAH-enriched cultures, and bacterial diversity was investigated through performing culture characterization followed by molecular biology methods. Sixty-seven isolates were obtained, comprising representatives of Actinobacteria, Firmicutes, α- and γ-Proteobacteria, and Bacteroidetes. PAH catabolism genes, such as naphthalene dioxygenase (NDO) and aromatic ring hydroxylating dioxygenase (ARHDO), were used as genetic markers to assess biodegradation of PAHs in the cultivable bacteria. The ability to degrade PAHs was demonstrated by monitoring the removal of PAHs using a gas chromatography mass spectrometer. Overall, various PAH-degrading bacteria were widely present in Sinduri beach sediments and generally reflected the restored microbial community. Among them, Cobetia marina, Rhodococcus soli, and Pseudoalteromonas agarivorans were found to be significant in degradation of PAHs. This large collection of PAH-degrading strains represents a valuable resource for studies investigating mechanisms of PAH degradation and bioremediation in oil contaminated coastal environment, elsewhere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Changes in Metabolically Active Bacterial Community during Rumen Development, and Their Alteration by Rhubarb Root Powder Revealed by 16S rRNA Amplicon Sequencing.

    PubMed

    Wang, Zuo; Elekwachi, Chijioke; Jiao, Jinzhen; Wang, Min; Tang, Shaoxun; Zhou, Chuanshe; Tan, Zhiliang; Forster, Robert J

    2017-01-01

    The objective of this present study was to explore the initial establishment of metabolically active bacteria and subsequent evolution in four fractions: rumen solid-phase (RS), liquid-phase (RL), protozoa-associated (RP), and epithelium-associated (RE) through early weaning and supplementing rhubarb root powder in 7 different age groups (1, 10, 20, 38, 41, 50, and 60 d) during rumen development. Results of the 16S rRNA sequencing based on RNA isolated from the four fractions revealed that the potentially active bacterial microbiota in four fractions were dominated by the phyla Proteobacteria, Firmicutes , and Bacteroidetes regardless of different ages. An age-dependent increment of Chao 1 richness was observed in the fractions of RL and RE. The principal coordinate analysis (PCoA) indicated that samples in four fractions all clustered based on different age groups, and the structure of the bacterial community in RE was distinct from those in other three fractions. The abundances of Proteobacteria decreased significantly ( P < 0.05) with age, while increases in the abundances of Firmicutes and Bacteroidetes were noted. At the genus level, the abundance of the predominant genus Mannheimia in the Proteobacteria phylum decreased significantly ( P < 0.05) after 1 d, while the genera Quinella, Prevotella, Fretibacterium, Ruminococcus, Lachnospiraceae NK3A20 group , and Atopobium underwent different manners of increases and dominated the bacterial microbiota across four fractions. Variations of the distributions of some specific bacterial genera across fractions were observed, and supplementation of rhubarb affected the relative abundance of various genera of bacteria.

  17. Microbial communities of biomethanization digesters fed with raw and heat pre-treated microalgae biomasses.

    PubMed

    Sanz, Jose Luis; Rojas, Patricia; Morato, Ana; Mendez, Lara; Ballesteros, Mercedes; González-Fernández, Cristina

    2017-02-01

    Microalgae biomasses are considered promising feedstocks for biofuel and methane productions. Two Continuously Stirred Tank Reactors (CSTR), fed with fresh (CSTR-C) and heat pre-treated (CSTR-T) Chlorella biomass were run in parallel in order to determine methane productions. The methane yield was 1.5 times higher in CSTR-T with regard to CSTR-C. Aiming to understand the microorganism roles within of the reactors, the sludge used as an inoculum (I), plus raw (CSTR-C) and heat pre-treated (CSTR-T) samples were analyzed by high-throughput pyrosequencing. The bacterial communities were dominated by Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes. Spirochaetae and Actinobacteria were only detected in sample I. Proteobacteria, mainly Alfaproteobacteria, were by far the dominant phylum within of the CSTR-C bioreactor. Many of the sequences retrieved were related to bacteria present in activated sludge treatment plants and they were absent after thermal pre-treatment. Most of the sequences affiliated to the Bacteroidetes were related to uncultured groups. Anaerolineaceae was the sole family found of the Chloroflexi phylum. All of the genera identified of the Firmicutes phylum carried out macromolecule hydrolysis and by-product fermentation. The proteolytic bacteria were prevalent over the saccharolytic microbes. The percentage of the proteolytic genera increased from the inoculum to the CSTR-T sample in a parallel fashion with an available protein increase owing to the high protein content of Chlorella. To relate the taxa identified by high-throughput sequencing to their functional roles remains a future challenge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Deep 16S rRNA Pyrosequencing Reveals a Bacterial Community Associated with Banana Fusarium Wilt Disease Suppression Induced by Bio-Organic Fertilizer Application

    PubMed Central

    Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas. PMID:24871319

  19. Response of Archaeal and Bacterial Soil Communities to Changes Associated with Outdoor Cattle Overwintering.

    PubMed

    Chroňáková, Alica; Schloter-Hai, Brigitte; Radl, Viviane; Endesfelder, David; Quince, Christopher; Elhottová, Dana; Šimek, Miloslav; Schloter, Michael

    2015-01-01

    Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI) and long-term impact (17 years; LTI), one is regenerating from cattle impact (REG) and a control is unaffected by cattle (CON). Cattle manure (CMN), the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria) dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes) were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning.

  20. Phototrophic Biofilm Assembly in Microbial-Mat-Derived Unicyanobacterial Consortia: Model Systems for the Study of Autotroph-Heterotroph Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.

    2014-04-07

    Though microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, the diversity and complexity of natural systems and their intractability to in situ environmental manipulation makes elucidation of the principles governing these interactions challenging. Examination of primary succession during phototrophic biofilm assembly provides a robust means by which to elucidate the dynamics of such interactions and determine their influence upon recruitment and maintenance of phylogenetic and functional diversity in microbial communities. We isolated and characterized two unicyanobacterial consortia from the Hot Lake phototrophic mat, quantifying the structural and community composition of their assembling biofilms. The same heterotrophs were retainedmore » in both consortia and included members of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, taxa frequently reported as consorts of microbial photoautotrophs. Cyanobacteria led biofilm assembly, eventually giving way to a late heterotrophic bloom. The consortial biofilms exhibited similar patterns of assembly, with the relative abundances of members of Bacteroidetes and Alphaproteobacteria increasing and members of Gammaproteobacteria decreasing as colonization progressed. Despite similar trends in assembly at higher taxa, the consortia exhibited substantial differences in community structure at the species level. These similar patterns of assembly with divergent community structures suggest that, while similar niches are created by the metabolism of the cyanobacteria, the resultant webs of autotroph-heterotroph and heterotroph-heterotroph interactions driving metabolic exchange are specific to each primary producer. Altogether, our data support these Hot Lake unicyanobacterial consortia as generalizable model systems whose simplicity and tractability permit the deciphering of community assembly principles relevant to natural microbial communities.« less

  1. Postprandial remodeling of the gut microbiota in Burmese pythons

    PubMed Central

    Costello, Elizabeth K.; Gordon, Jeffrey I.; Secor, Stephen M.; Knight, Rob

    2014-01-01

    The vertebrate gut microbiota evolved in an environment typified by periodic fluctuations in nutrient availability, yet little is known about its responses to host feeding and fasting. Because many model species (e.g., mice) are adapted to lifestyles of frequent small meals, we turned to the Burmese python, a sit-and-wait foraging snake that consumes large prey at long intervals (>1 month), to examine the effects of a dynamic nutrient milieu on the gut microbiota. We employed multiplexed 16S rRNA gene pyrosequencing to characterize bacterial communities harvested from the intestines of fasted and digesting snakes, and from their rodent meal. In this unprecedented survey of a reptilian host, we found that Bacteroidetes and Firmicutes numerically dominated the python gut. In the large intestine, fasting was associated with increased abundances of the genera Bacteroides, Rikenella, Synergistes, and Akkermansia, and reduced overall diversity. A marked postprandial shift in bacterial community configuration occurred. Between 12 hours and 3 days after feeding, Firmicutes, including the taxa Clostridium, Lactobacillus, and Peptostreptococcaceae, gradually outnumbered the fasting-dominant Bacteroidetes, and overall ‘species’-level diversity increased significantly. Most lineages appeared to be indigenous to the python rather than ingested with the meal, but a dietary source of Lactobacillus could not be ruled out. Thus, the observed large-scale alterations of the gut microbiota that accompany the Burmese python's own dramatic physiological and morphological changes during feeding and fasting emphasize the need to consider both microbial and host cellular responses to nutrient flux. The Burmese python may provide a unique model for dissecting these interrelationships. PMID:20520652

  2. Changes in Metabolically Active Bacterial Community during Rumen Development, and Their Alteration by Rhubarb Root Powder Revealed by 16S rRNA Amplicon Sequencing

    PubMed Central

    Wang, Zuo; Elekwachi, Chijioke; Jiao, Jinzhen; Wang, Min; Tang, Shaoxun; Zhou, Chuanshe; Tan, Zhiliang; Forster, Robert J.

    2017-01-01

    The objective of this present study was to explore the initial establishment of metabolically active bacteria and subsequent evolution in four fractions: rumen solid-phase (RS), liquid-phase (RL), protozoa-associated (RP), and epithelium-associated (RE) through early weaning and supplementing rhubarb root powder in 7 different age groups (1, 10, 20, 38, 41, 50, and 60 d) during rumen development. Results of the 16S rRNA sequencing based on RNA isolated from the four fractions revealed that the potentially active bacterial microbiota in four fractions were dominated by the phyla Proteobacteria, Firmicutes, and Bacteroidetes regardless of different ages. An age-dependent increment of Chao 1 richness was observed in the fractions of RL and RE. The principal coordinate analysis (PCoA) indicated that samples in four fractions all clustered based on different age groups, and the structure of the bacterial community in RE was distinct from those in other three fractions. The abundances of Proteobacteria decreased significantly (P < 0.05) with age, while increases in the abundances of Firmicutes and Bacteroidetes were noted. At the genus level, the abundance of the predominant genus Mannheimia in the Proteobacteria phylum decreased significantly (P < 0.05) after 1 d, while the genera Quinella, Prevotella, Fretibacterium, Ruminococcus, Lachnospiraceae NK3A20 group, and Atopobium underwent different manners of increases and dominated the bacterial microbiota across four fractions. Variations of the distributions of some specific bacterial genera across fractions were observed, and supplementation of rhubarb affected the relative abundance of various genera of bacteria. PMID:28223972

  3. Effect of high-fat diet and growth stage on the diversity and composition of intestinal microbiota in healthy bovine livestock.

    PubMed

    Jiao, Shengyin; Cao, Hui; Dai, Yue; Wu, Junhui; Lv, Jia; Du, Renjia; Han, Bei

    2017-11-01

    This study aimed to investigate the composition of bacteria in the bovine rectum and their functions during growth, in relation to different diets. Fecal samples were collected from 6-, 12-, 18- and 24-month cattle fed high-fat diet, and healthy female parents fed regular diet. Total DNA was amplified (V3-V4 of 16S rRNA) and submitted to barcode-DNA pyrosequencing. Intestinal microbiota profiles and functions were then analyzed. A total of 114 512 operational taxonomic units were detected from the 1 802 243 sequences obtained. In 6-month-old and female parent groups, the top three abundant phyla were Bacteroidetes (37.6%, 32.2%), Firmicutes (34.4%, 48.2%) and Proteobacteria (9.1%, 6.3%); in the 12-, 18- and 24-month groups, they were Proteobacteria (45.5%, 47.1%, 38.8%), Firmicutes (27.4%, 22.2%, 20.1%) and Bacteroidetes (14.9%, 19.4%, 17.7%), respectively. Paludibacter and Desulfopila in abundance showed negative (P < 0.001) and positive (P < 0.05) correlation, respectively, to cattle weight gain through metagenomic functional prediction of methane, cysteine and methionine metabolism. Meanwhile, cofactor/vitamin and amino acid metabolic processes were significantly higher in bacteria from the regular diet group than high-fat diet groups, with markedly lower cellular processes and signaling, and reduced glycan biosynthesis and metabolism (P < 0.01). The 6-month cattle and female parents shared similar intestinal bacteria; the community structure of fecal microbiota was significantly affected by high-fat diet in older cattle. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity

    PubMed Central

    Denou, Emmanuel; Marcinko, Katarina; Surette, Michael G.; Steinberg, Gregory R.

    2016-01-01

    Diet and exercise underpin the risk of obesity-related metabolic disease. Diet alters the gut microbiota, which contributes to aspects of metabolic disease during obesity. Repeated exercise provides metabolic benefits during obesity. We assessed whether exercise could oppose changes in the taxonomic and predicted metagenomic characteristics of the gut microbiota during diet-induced obesity. We hypothesized that high-intensity interval training (HIIT) would counteract high-fat diet (HFD)-induced changes in the microbiota without altering obesity in mice. Compared with chow-fed mice, an obesity-causing HFD decreased the Bacteroidetes-to-Firmicutes ratio and decreased the genetic capacity in the fecal microbiota for metabolic pathways such as the tricarboxylic acid (TCA) cycle. After HFD-induced obesity was established, a subset of mice were HIIT for 6 wk, which increased host aerobic capacity but did not alter body or adipose tissue mass. The effects of exercise training on the microbiota were gut segment dependent and more extensive in the distal gut. HIIT increased the alpha diversity and Bacteroidetes/Firmicutes ratio of the distal gut and fecal microbiota during diet-induced obesity. Exercise training increased the predicted genetic capacity related to the TCA cycle among other aspects of metabolism. Strikingly, the same microbial metabolism indexes that were increased by exercise were all decreased in HFD-fed vs. chow diet-fed mice. Therefore, exercise training directly opposed some of the obesity-related changes in gut microbiota, including lower metagenomic indexes of metabolism. Some host and microbial pathways appeared similarly affected by exercise. These exercise- and diet-induced microbiota interactions can be captured in feces. PMID:27117007

  5. [The composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora].

    PubMed

    Lei, D; Lin, Y; Jiang, X; Lan, L; Zhang, W; Wang, B X

    2017-03-02

    Objective: To explore the composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora. Method: Twenty-four specimens were collected from pregnant Kunming mouse including 8 mice of early embryonic (12-13 days) gastrointestinal tissues, 8 cases of late embryonic (19-20 days)gastrointestinal tissues, 8 of late pregnancy placental tissues.The 24 samples were extracted by DNeasy Blood & Tissue kit for high-throughput DNA sequencing. Result: The level of Proteobacteria, Bacteroidetes, Actino-bacteria and Firmicutes were predominantin all specimens.The relative content of predominant bacterial phyla in each group: Proteobacteria (95.00%, 88.14%, 87.26%), Bacteroidetes(1.71%, 2.15%, 2.63%), Actino-Bacteria(1.16%, 4.10%, 3.38%), Firmicutes(0.75%, 2.62%, 2.01%). At the level of family, there were nine predominant bacterial families in which Enterobacteriaeae , Shewanel laceae and Moraxellaceae were dominant.The relative content of dominant bacterial family in eachgroup: Enterobacteriaeae (46.99%, 44.34%, 41.08%), Shewanellaceae (21.99%, 21.10%, 19.05%), Moraxellaceae (9.18%, 7.09%, 5.64%). From the species of flora, the flora from fetal gastrointestinal in early pregnancy and late pregnancy (65.44% and 62.73%) were the same as that from placenta tissue in the late pregnancy.From the abundance of bacteria, at the level of family, the same content of bacteria in three groups accounted for 78.16%, 72.53% and 65.78% respectively. Conclusion: It was proved that the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora were colonized. At the same time the bacteria are classified.

  6. Community dynamics drive punctuated engraftment of the fecal microbiome following transplantation using freeze-dried, encapsulated fecal microbiota.

    PubMed

    Staley, Christopher; Vaughn, Byron P; Graiziger, Carolyn T; Singroy, Stephanie; Hamilton, Matthew J; Yao, Dan; Chen, Chi; Khoruts, Alexander; Sadowsky, Michael J

    2017-05-04

    Fecal microbiota transplantation (FMT) is a highly effective treatment of recurrent and recalcitrant Clostridium difficile infection (rCDI). In a recent study oral-delivery of encapsulated, freeze-dried donor material, resulted in comparable rates of cure to colonoscopic approaches. Here we characterize shifts in the fecal bacterial community structure of patients treated for rCDI using encapsulated donor material. Prior to FMT, patient fecal samples showed declines in diversity and abundance of Firmicutes and Bacteroidetes, with concurrent increases in members of the Proteobacteria, specifically Enterobacteriaceae. Moreover, patients who experienced recurrence of CDI within the 2-month clinical follow-up had greater abundances of Enterobacteriaceae and did not show resolution of dysbioses. Despite resolution of rCDI following oral-administration of encapsulated fecal microbiota, community composition was slow to return to a normal donor-like assemblage. Post-FMT taxa within the Firmicutes showed rapid increases in relative abundance and did not vary significantly over time. Conversely, Bacteroidetes taxa only showed significant increases in abundance after one month post-FMT, corresponding to significant increases in the community attributable to the donors. Changes in the associations among dominant OTUs were observed at days, weeks, and months post-FMT, suggesting shifts in community dynamics may be related to the timing of increases in abundance of specific taxa. Administration of encapsulated, freeze-dried, fecal microbiota to rCDI patients resulted in restoration of bacterial diversity and resolution of dysbiosis. However, shifts in the fecal microbiome were incremental rather than immediate, and may be driven by changes in community dynamics reflecting changes in the host environment.

  7. Horizon-Specific Bacterial Community Composition of German Grassland Soils, as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes ▿ †

    PubMed Central

    Will, Christiane; Thürmer, Andrea; Wollherr, Antje; Nacke, Heiko; Herold, Nadine; Schrumpf, Marion; Gutknecht, Jessica; Wubet, Tesfaye; Buscot, François; Daniel, Rolf

    2010-01-01

    The diversity of bacteria in soil is enormous, and soil bacterial communities can vary greatly in structure. Here, we employed a pyrosequencing-based analysis of the V2-V3 16S rRNA gene region to characterize the overall and horizon-specific (A and B horizons) bacterial community compositions in nine grassland soils, which covered three different land use types. The entire data set comprised 752,838 sequences, 600,544 of which could be classified below the domain level. The average number of sequences per horizon was 41,824. The dominant taxonomic groups present in all samples and horizons were the Acidobacteria, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes. Despite these overarching dominant taxa, the abundance, diversity, and composition of bacterial communities were horizon specific. In almost all cases, the estimated bacterial diversity (H′) was higher in the A horizons than in the corresponding B horizons. In addition, the H′ was positively correlated with the organic carbon content, the total nitrogen content, and the C-to-N ratio, which decreased with soil depth. It appeared that lower land use intensity results in higher bacterial diversity. The majority of sequences affiliated with the Actinobacteria, Bacteroidetes, Cyanobacteria, Fibrobacteres, Firmicutes, Spirochaetes, Verrucomicrobia, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria were derived from A horizons, whereas the majority of the sequences related to Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospira, TM7, and WS3 originated from B horizons. The distribution of some bacterial phylogenetic groups and subgroups in the different horizons correlated with soil properties such as organic carbon content, total nitrogen content, or microbial biomass. PMID:20729324

  8. Diversity of Bacterial Communities in Container Habitats of Mosquitoes

    PubMed Central

    Ponnusamy, Loganathan; Xu, Ning; Stav, Gil; Wesson, Dawn M.; Schal, Coby

    2010-01-01

    We investigated the bacterial diversity of microbial communities in water-filled, human-made and natural container habitats of the mosquitoes Aedes aegypti and Aedes albopictus in suburban landscapes of New Orleans, Louisiana in 2003. We collected water samples from three classes of containers, including tires (n=12), cemetery urns (n=23), and miscellaneous containers that included two tree holes (n=19). Total genomic DNA was extracted from water samples, and 16S ribosomal DNA fragments (operational taxonomic units, OTUs) were amplified by PCR and separated by denaturing gradient gel electrophoresis (DGGE). The bacterial communities in containers represented diverse DGGE-DNA banding patterns that were not related to the class of container or to the local spatial distribution of containers. Mean richness and evenness of OTUs were highest in water samples from tires. Bacterial phylotypes were identified by comparative sequence analysis of 90 16S rDNA DGGE band amplicons. The majority of sequences were placed in five major taxa: Alpha-, Beta- and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and an unclassified group; Proteobacteria and Bacteroidetes were the predominant heterotrophic bacteria in containers. The bacterial communities in human-made containers consisted mainly of undescribed species, and a phylogenetic analysis based on 16S rRNA sequences suggested that species composition was independent of both container type and the spatial distribution of containers. Comparative PCR-based, cultivation-independent rRNA surveys of microbial communities associated with mosquito habitats can provide significant insight into community organization and dynamics of bacterial species. PMID:18373113

  9. Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus.

    PubMed

    Ceja-Navarro, Javier A; Nguyen, Nhu H; Karaoz, Ulas; Gross, Stephanie R; Herman, Donald J; Andersen, Gary L; Bruns, Thomas D; Pett-Ridge, Jennifer; Blackwell, Meredith; Brodie, Eoin L

    2014-01-01

    Coarse woody debris is an important biomass pool in forest ecosystems that numerous groups of insects have evolved to take advantage of. These insects are ecologically important and represent useful natural analogs for biomass to biofuel conversion. Using a range of molecular approaches combined with microelectrode measurements of oxygen, we have characterized the gut microbiome and physiology of Odontotaenius disjunctus, a wood-feeding beetle native to the eastern United States. We hypothesized that morphological and physiological differences among gut regions would correspond to distinct microbial populations and activities. In fact, significantly different communities were found in the foregut (FG), midgut (MG)/posterior hindgut (PHG) and anterior hindgut (AHG), with Actinobacteria and Rhizobiales being more abundant toward the FG and PHG. Conversely, fermentative bacteria such as Bacteroidetes and Clostridia were more abundant in the AHG, and also the sole region where methanogenic Archaea were detected. Although each gut region possessed an anaerobic core, micron-scale profiling identified radial gradients in oxygen concentration in all regions. Nitrogen fixation was confirmed by (15)N2 incorporation, and nitrogenase gene (nifH) expression was greatest in the AHG. Phylogenetic analysis of nifH identified the most abundant transcript as related to Ni-Fe nitrogenase of a Bacteroidetes species, Paludibacter propionicigenes. Overall, we demonstrate not only a compartmentalized microbiome in this beetle digestive tract but also sharp oxygen gradients that may permit aerobic and anaerobic metabolism to occur within the same regions in close proximity. We provide evidence for the microbial fixation of N2 that is important for this beetle to subsist on woody biomass.

  10. Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia.

    PubMed

    Boujelben, Ines; Gomariz, María; Martínez-García, Manuel; Santos, Fernando; Peña, Arantxa; López, Cristina; Antón, Josefa; Maalej, Sami

    2012-05-01

    The spatial and seasonal dynamics of the halophilic prokaryotic community was investigated in five ponds from Sfax solar saltern (Tunisia), covering a salinity gradient ranging from 20 to 36%. Fluorescence in situ hybridization indicated that, above 24% salinity, the prokaryotic community shifted from bacterial to archaeal dominance with a remarkable increase in the proportion of detected cells. Denaturing gradient gel electrophoresis (DGGE) profiles were rather similar in all the samples analyzed, except in the lowest salinity pond (around 20% salt) where several specific archaeal and bacterial phylotypes were detected. In spite of previous studies on these salterns, DGGE analysis unveiled the presence of microorganisms not previously described in these ponds, such as Archaea related to Natronomonas or bacteria related to Alkalimnicola, as well as many new sequences of Bacteroidetes. Some phylotypes, such as those related to Haloquadratum or to some Bacteroidetes, displayed a strong dependence of salinity and/or magnesium concentrations, which in the case of Haloquadratum could be related to the presence of ecotypes. Seasonal variability in the prokaryotic community composition was focused on two ponds with the lowest (20%) and the highest salinity (36%). In contrast to the crystallized pond, where comparable profiles between autumn 2007 and summer 2008 were obtained, the non-crystallized pond showed pronounced seasonal changes and a sharp succession of "species" during the year. Canonical correspondence analysis of biological and physicochemical parameters indicated that temperature was a strong factor structuring the prokaryotic community in the non-crystallizer pond, that had salinities ranging from 20 to 23.8% during the year.

  11. Distribution, diversity and abundance of bacterial laccase-like genes in different particle size fractions of sediments in a subtropical mangrove ecosystem.

    PubMed

    Luo, Ling; Zhou, Zhi-Chao; Gu, Ji-Dong

    2015-10-01

    This study investigated the diversity and abundance of bacterial lacasse-like genes in different particle size fractions, namely sand, silt, and clay of sediments in a subtropical mangrove ecosystem. Moreover, the effects of nutrient conditions on bacterial laccase-like communities as well as the correlation between nutrients and, both the abundance and diversity indices of laccase-like bacteria in particle size fractions were also studied. Compared to bulk sediments, Bacteroidetes, Caldithrix, Cyanobacteria and Chloroflexi were dominated in all 3 particle-size fractions of intertidal sediment (IZ), but Actinobacteria and Firmicutes were lost after the fractionation procedures used. The diversity index of IZ fractions decreased in the order of bulk > clay > silt > sand. In fractions of mangrove forest sediment (MG), Verrucomicrobia was found in silt, and both Actinobacteria and Bacteroidetes appeared in clay, but no new species were found in sand. The declining order of diversity index in MG fractions was clay > silt > sand > bulk. Furthermore, the abundance of lacasse-like bacteria varied with different particle-size fractions significantly (p < 0.05), and decreased in the order of sand > clay > silt in both IZ and MG fractions. Additionally, nutrient availability was found to significantly affect the diversity and community structure of laccase-like bacteria (p < 0.05), while the total organic carbon contents were positively related to the abundance of bacterial laccase-like genes in particle size fractions (p < 0.05). Therefore, this study further provides evidence that bacterial laccase plays a vital role in turnover of sediment organic matter and cycling of nutrients.

  12. Bacterial succession within an ephemeral hypereutrophic Mojave Desert playa Lake.

    PubMed

    Navarro, Jason B; Moser, Duane P; Flores, Andrea; Ross, Christian; Rosen, Michael R; Dong, Hailiang; Zhang, Gengxin; Hedlund, Brian P

    2009-02-01

    Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by approximately 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of approximately 1x10(6) cells ml(-1) of culturable heterotrophs was replaced by a dense population of more than 1x10(9) cells ml(-1), which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria.

  13. Impact of selected non-steroidal anti-inflammatory pharmaceuticals on microbial community assembly and activity in sequencing batch reactors

    PubMed Central

    Jiang, Cong; Hu, Haidong; Ma, Haijun; Gao, Xingsheng; Ren, Hongqiang

    2017-01-01

    This study covers three widely detected non-steroidal anti-inflammatory pharmaceuticals (NSAIDs), diclofenac (DCF), ibuprofen (IBP) and naproxen (NPX), as NSAIDs pollutants. The objective is to evaluate the impact of NSAIDs at their environmental concentrations on microbial community assembly and activity. The exposure experiments were conducted under three conditions (5 μg L-1 DCF, 5 μg L-1 DCF+5 μg L-1 IBP and 5 μg L-1 DCF+5 μg L-1 IBP+ 5 μg L-1 NPX) in sequencing batch reactors (SBRs) for 130 days. Removals of COD and NH4+-N were not affected but total nitrogen (TN) removal decreased. IBP and NPX had the high removal efficiencies (79.96% to 85.64%), whereas DCF was more persistent (57.24% to 64.12%). In addition, the decreased removals of TN remained the same under the three conditions (p > 0.05). The results of oxidizing enzyme activities, live cell percentages and extracellular polymeric substances (EPS) indicated that NSAIDs damaged the cell walls or microorganisms and the mixtures of the three NSAIDs increased the toxicity. The increased Shannon-Wiener diversity index suggested that bacterial diversity was increased with the addition of selected NSAIDs. Bacterial ribosomal RNA small subunit (16S) gene sequencing results indicated that Actinobacteria and Bacteroidetes were enriched, while Micropruina and Nakamurella decreased with the addition of NSAIDs. The enrichment of Actinobacteria and Bacteroidetes indicated that both of them might have the ability to degrade NSAIDs and thereby could adapt well with the presence of NSAIDs. PMID:28640897

  14. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions

    PubMed Central

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.; Kim, Young-Mo; Chrisler, William B.; Engelmann, Heather E.; Dohnalkova, Alice C.; Hu, Dehong; Metz, Thomas O.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2014-01-01

    Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity over time. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in Hot Lake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gammaproteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural microbial communities. PMID

  15. Structure of the human gastric bacterial community in relation to Helicobacter pylori status.

    PubMed

    Maldonado-Contreras, Ana; Goldfarb, Kate C; Godoy-Vitorino, Filipa; Karaoz, Ulas; Contreras, Mónica; Blaser, Martin J; Brodie, Eoin L; Dominguez-Bello, Maria G

    2011-04-01

    The human stomach is naturally colonized by Helicobacter pylori, which, when present, dominates the gastric bacterial community. In this study, we aimed to characterize the structure of the bacterial community in the stomach of patients of differing H. pylori status. We used a high-density 16S rRNA gene microarray (PhyloChip, Affymetrix, Inc.) to hybridize 16S rRNA gene amplicons from gastric biopsy DNA of 10 rural Amerindian patients from Amazonas, Venezuela, and of two immigrants to the United States (from South Asia and Africa, respectively). H. pylori status was determined by PCR amplification of H. pylori glmM from gastric biopsy samples. Of the 12 patients, 8 (6 of the 10 Amerindians and the 2 non-Amerindians) were H. pylori glmM positive. Regardless of H. pylori status, the PhyloChip detected Helicobacteriaceae DNA in all patients, although with lower relative abundance in patients who were glmM negative. The G2-chip taxonomy analysis of PhyloChip data indicated the presence of 44 bacterial phyla (of which 16 are unclassified by the Taxonomic Outline of the Bacteria and Archaea taxonomy) in a highly uneven community dominated by only four phyla: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Positive H. pylori status was associated with increased relative abundance of non-Helicobacter bacteria from the Proteobacteria, Spirochetes and Acidobacteria, and with decreased abundance of Actinobacteria, Bacteroidetes and Firmicutes. The PhyloChip detected richness of low abundance phyla, and showed marked differences in the structure of the gastric bacterial community according to H. pylori status.

  16. Soil Parameters Drive the Structure, Diversity and Metabolic Potentials of the Bacterial Communities Across Temperate Beech Forest Soil Sequences.

    PubMed

    Jeanbille, M; Buée, M; Bach, C; Cébron, A; Frey-Klett, P; Turpault, M P; Uroz, S

    2016-02-01

    Soil and climatic conditions as well as land cover and land management have been shown to strongly impact the structure and diversity of the soil bacterial communities. Here, we addressed under a same land cover the potential effect of the edaphic parameters on the soil bacterial communities, excluding potential confounding factors as climate. To do this, we characterized two natural soil sequences occurring in the Montiers experimental site. Spatially distant soil samples were collected below Fagus sylvatica tree stands to assess the effect of soil sequences on the edaphic parameters, as well as the structure and diversity of the bacterial communities. Soil analyses revealed that the two soil sequences were characterized by higher pH and calcium and magnesium contents in the lower plots. Metabolic assays based on Biolog Ecoplates highlighted higher intensity and richness in usable carbon substrates in the lower plots than in the middle and upper plots, although no significant differences occurred in the abundance of bacterial and fungal communities along the soil sequences as assessed using quantitative PCR. Pyrosequencing analysis of 16S ribosomal RNA (rRNA) gene amplicons revealed that Proteobacteria, Acidobacteria and Bacteroidetes were the most abundantly represented phyla. Acidobacteria, Proteobacteria and Chlamydiae were significantly enriched in the most acidic and nutrient-poor soils compared to the Bacteroidetes, which were significantly enriched in the soils presenting the higher pH and nutrient contents. Interestingly, aluminium, nitrogen, calcium, nutrient availability and pH appeared to be the best predictors of the bacterial community structures along the soil sequences.

  17. Bacterial succession within an ephemeral hypereutrophic mojave desert playa lake

    USGS Publications Warehouse

    Navarro, J.B.; Moser, D.P.; Flores, A.; Ross, C.; Rosen, Michael R.; Dong, H.; Zhang, G.; Hedlund, B.P.

    2009-01-01

    Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of 1 ?????106 cells ml-1 of culturable heterotrophs was replaced by a dense population of more than 1????????109 cells ml-1, which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria. ?? 2008 Springer Science+Business Media, LLC.

  18. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx.

    PubMed

    Lemon, Katherine P; Klepac-Ceraj, Vanja; Schiffer, Hilary K; Brodie, Eoin L; Lynch, Susan V; Kolter, Roberto

    2010-06-22

    The nose and throat are important sites of pathogen colonization, yet the microbiota of both is relatively unexplored by culture-independent approaches. We examined the bacterial microbiota of the nostril and posterior wall of the oropharynx from seven healthy adults using two culture-independent methods, a 16S rRNA gene microarray (PhyloChip) and 16S rRNA gene clone libraries. While the bacterial microbiota of the oropharynx was richer than that of the nostril, the oropharyngeal microbiota varied less among participants than did nostril microbiota. A few phyla accounted for the majority of the bacteria detected at each site: Firmicutes and Actinobacteria in the nostril and Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx. Compared to culture-independent surveys of microbiota from other body sites, the microbiota of the nostril and oropharynx show distinct phylum-level distribution patterns, supporting niche-specific colonization at discrete anatomical sites. In the nostril, the distribution of Actinobacteria and Firmicutes was reminiscent of that of skin, though Proteobacteria were much less prevalent. The distribution of Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx was most similar to that in saliva, with more Proteobacteria than in the distal esophagus or mouth. While Firmicutes were prevalent at both sites, distinct families within this phylum dominated numerically in each. At both sites there was an inverse correlation between the prevalences of Firmicutes and another phylum: in the oropharynx, Firmicutes and Proteobacteria, and in the nostril, Firmicutes and Actinobacteria. In the nostril, this inverse correlation existed between the Firmicutes family Staphylococcaceae and Actinobacteria families, suggesting potential antagonism between these groups.

  19. Impact of selected non-steroidal anti-inflammatory pharmaceuticals on microbial community assembly and activity in sequencing batch reactors.

    PubMed

    Jiang, Cong; Geng, Jinju; Hu, Haidong; Ma, Haijun; Gao, Xingsheng; Ren, Hongqiang

    2017-01-01

    This study covers three widely detected non-steroidal anti-inflammatory pharmaceuticals (NSAIDs), diclofenac (DCF), ibuprofen (IBP) and naproxen (NPX), as NSAIDs pollutants. The objective is to evaluate the impact of NSAIDs at their environmental concentrations on microbial community assembly and activity. The exposure experiments were conducted under three conditions (5 μg L-1 DCF, 5 μg L-1 DCF+5 μg L-1 IBP and 5 μg L-1 DCF+5 μg L-1 IBP+ 5 μg L-1 NPX) in sequencing batch reactors (SBRs) for 130 days. Removals of COD and NH4+-N were not affected but total nitrogen (TN) removal decreased. IBP and NPX had the high removal efficiencies (79.96% to 85.64%), whereas DCF was more persistent (57.24% to 64.12%). In addition, the decreased removals of TN remained the same under the three conditions (p > 0.05). The results of oxidizing enzyme activities, live cell percentages and extracellular polymeric substances (EPS) indicated that NSAIDs damaged the cell walls or microorganisms and the mixtures of the three NSAIDs increased the toxicity. The increased Shannon-Wiener diversity index suggested that bacterial diversity was increased with the addition of selected NSAIDs. Bacterial ribosomal RNA small subunit (16S) gene sequencing results indicated that Actinobacteria and Bacteroidetes were enriched, while Micropruina and Nakamurella decreased with the addition of NSAIDs. The enrichment of Actinobacteria and Bacteroidetes indicated that both of them might have the ability to degrade NSAIDs and thereby could adapt well with the presence of NSAIDs.

  20. Structure of the human gastric bacterial community in relation to Helicobacter pylori status

    PubMed Central

    Maldonado-Contreras, Ana; Goldfarb, Kate C; Godoy-Vitorino, Filipa; Karaoz, Ulas; Contreras, Mónica; Blaser, Martin J; Brodie, Eoin L; Dominguez-Bello, Maria G

    2011-01-01

    The human stomach is naturally colonized by Helicobacter pylori, which, when present, dominates the gastric bacterial community. In this study, we aimed to characterize the structure of the bacterial community in the stomach of patients of differing H. pylori status. We used a high-density 16S rRNA gene microarray (PhyloChip, Affymetrix, Inc.) to hybridize 16S rRNA gene amplicons from gastric biopsy DNA of 10 rural Amerindian patients from Amazonas, Venezuela, and of two immigrants to the United States (from South Asia and Africa, respectively). H. pylori status was determined by PCR amplification of H. pylori glmM from gastric biopsy samples. Of the 12 patients, 8 (6 of the 10 Amerindians and the 2 non-Amerindians) were H. pylori glmM positive. Regardless of H. pylori status, the PhyloChip detected Helicobacteriaceae DNA in all patients, although with lower relative abundance in patients who were glmM negative. The G2-chip taxonomy analysis of PhyloChip data indicated the presence of 44 bacterial phyla (of which 16 are unclassified by the Taxonomic Outline of the Bacteria and Archaea taxonomy) in a highly uneven community dominated by only four phyla: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Positive H. pylori status was associated with increased relative abundance of non-Helicobacter bacteria from the Proteobacteria, Spirochetes and Acidobacteria, and with decreased abundance of Actinobacteria, Bacteroidetes and Firmicutes. The PhyloChip detected richness of low abundance phyla, and showed marked differences in the structure of the gastric bacterial community according to H. pylori status. PMID:20927139

  1. A Metagenomic Survey of Serpentinites and Nearby Soils in Taiwan

    NASA Astrophysics Data System (ADS)

    Li, K. Y.; Hsu, Y. W.; Chen, Y. W.; Huang, T. Y.; Shih, Y. J.; Chen, J. S.; Hsu, B. M.

    2016-12-01

    The serpentinite of Taiwan is originated from the subduction zone of the Eurasian plate and the Philippine Sea plate. Many small bodies of serpentinite are scattered around the lands of the East Rift Valley, which are also one of the major agricultural areas in Taiwan. Since microbial communities play a role both on weathering process and soil recovery, uncovering the microbial compositions in serpentinites and surrounding soils may help people to understand the roles of microorganisms on serpentinites during the nature weathering process. In this study, microorganisms growing on the surface of serpentinites, in the surrounding soil, and agriculture soils that are miles of horizontal distance away from serpentinite were collected. Next generation sequencing (NGS) was carried out to examine the metagenomics of uncultured microbial community in these samples. The metagenomics were further clustered into operational taxonomic units (OTUs) to analyze relative abundance, heatmap of OTUs, and principal coordinates analysis (PCoA). Our data revealed the different types of geographic material had their own distinct structures of microbial community. In serpentinites, the heatmaps based on the phylogenetic pattern showed that the OTUs distributions were similar in phyla of Bacteroidetes, Cyanobacteria, Proteobacteria, Verrucomicrobia, and WPS-1/WPS-2. On the other hand, the heatmaps of phylogenetic pattern of agriculture soils showed that the OTUs distributions in phyla of Chloroflexi, Acidobacteria, Actinobacteria, WPS-1/WPS-2, and Proteobacteria were similar. In soil nearby the serpentinite, some clusters of OTUs in phyla of Bacteroidetes, Cyanobacteria, and WPS-1/WPS-2 have disappeared. Our data provided evidence regarding kinetic evolutions of microbial communities in different geographic materials.

  2. Effects of the Dietary Protein and Carbohydrate Ratio on Gut Microbiomes in Dogs of Different Body Conditions.

    PubMed

    Li, Qinghong; Lauber, Christian L; Czarnecki-Maulden, Gail; Pan, Yuanlong; Hannah, Steven S

    2017-01-24

    Obesity has become a health epidemic in both humans and pets. A dysbiotic gut microbiota has been associated with obesity and other metabolic disorders. High-protein, low-carbohydrate (HPLC) diets have been recommended for body weight loss, but little is known about their effects on the canine gut microbiome. Sixty-three obese and lean Labrador retrievers and Beagles (mean age, 5.72 years) were fed a common baseline diet for 4 weeks in phase 1, followed by 4 weeks of a treatment diet, specifically, the HPLC diet (49.4% protein, 10.9% carbohydrate) or a low-protein, high-carbohydrate (LPHC) diet (25.5% protein, 38.8% carbohydrate) in phase 2. 16S rRNA gene profiling revealed that dietary protein and carbohydrate ratios have significant impacts on gut microbial compositions. This effect appeared to be more evident in obese dogs than in lean dogs but was independent of breed. Consumption of either diet increased the bacterial evenness, but not the richness, of the gut compared to that after consumption of the baseline diet. Macronutrient composition affected taxon abundances, mainly within the predominant phyla, Firmicutes and Bacteroidetes The LPHC diet appeared to favor the growth of Bacteroides uniformis and Clostridium butyricum, while the HPLC diet increased the abundances of Clostridium hiranonis, Clostridium perfringens, and Ruminococcus gnavus and enriched microbial gene networks associated with weight maintenance. In addition, we observed a decrease in the Bacteroidetes to Firmicutes ratio and an increase in the Bacteroides to Prevotella ratio in the HPLC diet-fed dogs compared to these ratios in dogs fed other diets. Finally, analysis of the effect of diet on the predicted microbial gene network was performed using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt). More than 50% of dogs are either overweight or obese in the United States. A dysbiotic gut microbiota is associated with obesity and other

  3. 16S Based Microbiome Analysis from Healthy Subjects’ Skin Swabs Stored for Different Storage Periods Reveal Phylum to Genus Level Changes

    PubMed Central

    Klymiuk, Ingeborg; Bambach, Isabella; Patra, Vijaykumar; Trajanoski, Slave; Wolf, Peter

    2016-01-01

    in the ratios of the main phyla Actinobacteria, Firmicutes, and Bacteroidetes: Actinobacteria vs. Bacteroidetes at d0 vs. d90 (p-value = 0.0234), at d0 vs. d365 (p-value = 0.0234) and d90 vs. d365 (p-value = 0.0234) in forearm samples and at d90 vs. d365 in V of the chest (p-value = 0.0234) and back samples (p-value = 0.0234). The ratios of Firmicutes vs. Bacteroidetes showed no significant changes in any of the body locations as well as the ratios of Actinobacteria vs. Firmicutes at any time point. Studies with larger sample sizes are required to verify our results and determine long term storage effects with regard to specific biological questions. PMID:28066342

  4. Comparison of the Oral Microbiomes of Canines and Their Owners Using Next-Generation Sequencing.

    PubMed

    Oh, Changin; Lee, Kunkyu; Cheong, Yeotaek; Lee, Sang-Won; Park, Seung-Yong; Song, Chang-Seon; Choi, In-Soo; Lee, Joong-Bok

    2015-01-01

    The oral microbiome, which is closely associated with many diseases, and the resident pathogenic oral bacteria, which can be transferred by close physical contact, are important public health considerations. Although the dog is the most common companion animal, the composition of the canine oral microbiome, which may include human pathogenic bacteria, and its relationship with that of their owners are unclear. In this study, 16S rDNA pyrosequencing was used to compare the oral microbiomes of 10 dogs and their owners and to identify zoonotic pathogens. Pyrosequencing revealed 246 operational taxonomic units in the 10 samples, representing 57 genera from eight bacterial phyla. Firmicutes (57.6%), Proteobacteria (21.6%), Bacteroidetes (9.8%), Actinobacteria (7.1%), and Fusobacteria (3.9%) were the predominant phyla in the human oral samples, whereas Proteobacteria (25.7%), Actinobacteria (21%), Bacteroidetes (19.7%), Firmicutes (19.3%), and Fusobacteria (12.3%) were predominant in the canine oral samples. The predominant genera in the human samples were Streptococcus (43.9%), Neisseria (10.3%), Haemophilus (9.6%), Prevotella (8.4%), and Veillonella (8.1%), whereas the predominant genera in the canine samples were Actinomyces (17.2%), Unknown (16.8), Porphyromonas (14.8), Fusobacterium (11.8), and Neisseria (7.2%). The oral microbiomes of dogs and their owners were appreciably different, and similarity in the microbiomes of canines and their owners was not correlated with residing in the same household. Oral-to-oral transfer of Neisseria shayeganii, Porphyromonas canigingivalis, Tannerella forsythia, and Streptococcus minor from dogs to humans was suspected. The finding of potentially zoonotic and periodontopathic bacteria in the canine oral microbiome may be a public health concern.

  5. Gastrointestinal microbiota in children with autism in Slovakia.

    PubMed

    Tomova, Aleksandra; Husarova, Veronika; Lakatosova, Silvia; Bakos, Jan; Vlkova, Barbora; Babinska, Katarina; Ostatnikova, Daniela

    2015-01-01

    Development of Autism Spectrum Disorders (ASD), including autism, is based on a combination of genetic predisposition and environmental factors. Recent data propose the etiopathogenetic role of intestinal microflora in autism. The aim of this study was to elucidate changes in fecal microbiota in children with autism and determine its role in the development of often present gastrointestinal (GI) disorders and possibly other manifestations of autism in Slovakia. The fecal microflora of 10 children with autism, 9 siblings and 10 healthy children was investigated by real-time PCR. The fecal microbiota of autistic children showed a significant decrease of the Bacteroidetes/Firmicutes ratio and elevation of the amount of Lactobacillus spp. Our results also showed a trend in the incidence of elevated Desulfovibrio spp. in children with autism reaffirmed by a very strong association of the amount of Desulfovibrio spp. with the severity of autism in the Autism Diagnostic Interview (ADI) restricted/repetitive behavior subscale score. The participants in our study demonstrated strong positive correlation of autism severity with the severity of GI dysfunction. Probiotic diet supplementation normalized the Bacteroidetes/Firmicutes ratio, Desulfovibrio spp. and the amount of Bifidobacterium spp. in feces of autistic children. We did not find any correlation between plasma levels of oxytocin, testosterone, DHEA-S and fecal microbiota, which would suggest their combined influence on autism development. This pilot study suggests the role of gut microbiota in autism as a part of the "gut-brain" axis and it is a basis for further investigation of the combined effect of microbial, genetic, and hormonal changes for development and clinical manifestation of autism. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Characterization of Intestinal Bacteria in Wild and Domesticated Adult Black Tiger Shrimp (Penaeus monodon)

    PubMed Central

    Rungrassamee, Wanilada; Klanchui, Amornpan; Maibunkaew, Sawarot; Chaiyapechara, Sage; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2014-01-01

    The black tiger shrimp (Penaeus monodon) is a marine crustacean of economic importance in the world market. To ensure sustainability of the shrimp industry, production capacity and disease outbreak prevention must be improved. Understanding healthy microbial balance inside the shrimp intestine can provide an initial step toward better farming practice and probiotic applications. In this study, we employed a barcode pyrosequencing analysis of V3-4 regions of 16S rRNA genes to examine intestinal bacteria communities in wild-caught and domesticated P. monodon broodstock. Shrimp faeces were removed from intestines prior to further analysis in attempt to identify mucosal bacterial population. Five phyla, Actinobacteria, Fusobacteria, Proteobacteria, Firmicutes and Bacteroidetes, were found in all shrimp from both wild and domesticated environments. The operational taxonomic unit (OTU) was assigned at 97% sequence identity, and our pyrosequencing results identified 18 OTUs commonly found in both groups. Sequences of the shared OTUs were similar to bacteria in three phyla, namely i) Proteobacteria (Vibrio, Photobacterium, Novosphingobium, Pseudomonas, Sphingomonas and Undibacterium), ii) Firmicutes (Fusibacter), and iii) Bacteroidetes (Cloacibacterium). The shared bacterial members in P. monodon from two different habitats provide evidence that the internal environments within the host shrimp also exerts selective pressure on bacterial members. Intestinal bacterial profiles were compared using denaturing gradient gel electrophoresis (DGGE). The sequences from DGGE bands were similar to those of Vibrio and Photobacterium in all shrimp, consistent with pyrosequencing results. This work provides the first comprehensive report on bacterial populations in the intestine of adult black tiger shrimp and reveals some similar bacterial members between the intestine of wild-caught and domesticated shrimp. PMID:24618668

  7. Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats.

    PubMed

    Thiennimitr, Parameth; Yasom, Sakawdaurn; Tunapong, Wannipa; Chunchai, Titikorn; Wanchai, Keerati; Pongchaidecha, Anchalee; Lungkaphin, Anusorn; Sirilun, Sasithorn; Chaiyasut, Chaiyavat; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2018-03-20

    The beneficial effects of pro-, pre-, and synbiotics on obesity with insulin resistance have been reported previously. However, the strain-specific effect of probiotics and the combination with various types of prebiotic fiber yield controversial outcomes and limit clinical applications. Our previous study demonstrated that the probiotic Lactobacillus paracasei (L. paracasei) HII01, prebiotic xylooligosaccharide (XOS), and synbiotics share similar efficacy in attenuating cardiac mitochondrial dysfunction in obese-insulin resistant rats. Nonetheless, the roles of HII01 and XOS on gut dysbiosis and gut inflammation under obese-insulin resistant conditions have not yet, to our knowledge, been investigated. Our hypothesis was that pro-, pre-, and synbiotics improve the metabolic parameters in obese-insulin resistant rats by reducing gut dysbiosis and gut inflammation. Male Wistar rats were fed with either a normal or high-fat diet that contained 19.77% and 59.28% energy from fat, respectively, for 12 wk. Then, the high-fat diet rats were fed daily with a 10 8 colony forming unit of the probiotic HII01, 10% prebiotic XOS, and synbiotics for 12 wk. The metabolic parameters, serum lipopolysaccharide levels, fecal Firmicutes/Bacteroidetes ratios, levels of Enterobacteriaceae, Bifidobacteria, and gut proinflammatory cytokine gene expression were quantified. The consumption of probiotic L. paracasei HII01, prebiotic XOS, and synbiotics for 12 wk led to a decrease in metabolic endotoxemia, gut dysbiosis (a reduction in the Firmicutes/Bacteroidetes ratio and Enterobacteriaceae), and gut inflammation in obese-insulin resistant rats. Pro-, pre-, and synbiotics reduced gut dysbiosis and gut inflammation, which lead to improvements in metabolic dysfunction in obese-insulin resistant rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. High-throughput sequencing reveals the core gut microbiome of Bar-headed goose (Anser indicus) in different wintering areas in Tibet.

    PubMed

    Wang, Wen; Cao, Jian; Yang, Fang; Wang, Xuelian; Zheng, Sisi; Sharshov, Kirill; Li, Laixing

    2016-04-01

    Elucidating the spatial dynamic and core gut microbiome related to wild bar-headed goose is of crucial importance for probiotics development that may meet the demands of bar-headed goose artificial breeding industries and accelerate the domestication of this species. However, the core microbial communities in the wild bar-headed geese remain totally unknown. Here, for the first time, we present a comprehensive survey of bar-headed geese gut microbial communities by Illumina high-throughput sequencing technology using nine individuals from three distinct wintering locations in Tibet. A total of 236,676 sequences were analyzed, and 607 OTUs were identified. We show that the gut microbial communities of bar-headed geese have representatives of 14 phyla and are dominated by Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. The additive abundance of these four most dominant phyla was above 96% across all the samples. At the genus level, the sequences represented 150 genera. A set of 19 genera were present in all samples and considered as core gut microbiome. The top seven most abundant core genera were distributed in that four dominant phyla. Among them, four genera (Lactococcus, Bacillus, Solibacillus, and Streptococcus) belonged to Firmicutes, while for other three phyla, each containing one genus, such as Proteobacteria (genus Pseudomonas), Actinobacteria (genus Arthrobacter), and Bacteroidetes (genus Bacteroides). This broad survey represents the most in-depth assessment, to date, of the gut microbes that associated with bar-headed geese. These data create a baseline for future bar-headed goose microbiology research, and make an original contribution to probiotics development for bar-headed goose artificial breeding industries. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  9. Perioperative supplementation with bifidobacteria improves postoperative nutritional recovery, inflammatory response, and fecal microbiota in patients undergoing colorectal surgery: a prospective, randomized clinical trial

    PubMed Central

    MIZUTA, Minoru; ENDO, Izuru; YAMAMOTO, Sumiharu; INOKAWA, Hidetoshi; KUBO, Masatoshi; UDAKA, Tetsunobu; SOGABE, Osanori; MAEDA, Hiroya; SHIRAKAWA, Kazutoyo; OKAZAKI, Eriko; ODAMAKI, Toshitaka; ABE, Fumiaki; XIAO, Jin-zhong

    2015-01-01

    The use of probiotics has been widely documented to benefit human health, but their clinical value in surgical patients remains unclear. The present study investigated the effect of perioperative oral administration of probiotic bifidobacteria to patients undergoing colorectal surgery. Sixty patients undergoing colorectal resection were randomized to two groups prior to resection. One group (n=31) received a probiotic supplement, Bifidobacterium longum BB536, preoperatively for 7–14 days and postoperatively for 14 days, while the other group (n=29) received no intervention as a control. The occurrences of postoperative infectious complications were recorded. Blood and fecal samples were collected before and after surgery. No significant difference was found in the incidence of postoperative infectious complications and duration of hospital stay between the two groups. In comparison to the control group, the probiotic group tended to have higher postoperative levels of erythrocytes, hemoglobin, lymphocytes, total protein, and albumin and lower levels of high sensitive C-reactive proteins. Postoperatively, the proportions of fecal bacteria changed significantly; Actinobacteria increased in the probiotic group, Bacteroidetes and Proteobacteria increased in the control group, and Firmicutes decreased in both groups. Significant correlations were found between the proportions of fecal bacteria and blood parameters; Actinobacteria correlated negatively with blood inflammatory parameters, while Bacteroidetes and Proteobacteria correlated positively with blood inflammatory parameters. In the subgroup of patients who received preoperative chemoradiotherapy treatment, the duration of hospital stay was significantly shortened upon probiotic intervention. These results suggest that perioperative oral administration of bifidobacteria may contribute to a balanced intestinal microbiota and attenuated postoperative inflammatory responses, which may subsequently promote a healthy

  10. Comparison of the Oral Microbiomes of Canines and Their Owners Using Next-Generation Sequencing

    PubMed Central

    Oh, Changin; Lee, Kunkyu; Cheong, Yeotaek; Lee, Sang-Won; Park, Seung-Yong; Song, Chang-Seon; Choi, In-Soo; Lee, Joong-Bok

    2015-01-01

    The oral microbiome, which is closely associated with many diseases, and the resident pathogenic oral bacteria, which can be transferred by close physical contact, are important public health considerations. Although the dog is the most common companion animal, the composition of the canine oral microbiome, which may include human pathogenic bacteria, and its relationship with that of their owners are unclear. In this study, 16S rDNA pyrosequencing was used to compare the oral microbiomes of 10 dogs and their owners and to identify zoonotic pathogens. Pyrosequencing revealed 246 operational taxonomic units in the 10 samples, representing 57 genera from eight bacterial phyla. Firmicutes (57.6%), Proteobacteria (21.6%), Bacteroidetes (9.8%), Actinobacteria (7.1%), and Fusobacteria (3.9%) were the predominant phyla in the human oral samples, whereas Proteobacteria (25.7%), Actinobacteria (21%), Bacteroidetes (19.7%), Firmicutes (19.3%), and Fusobacteria (12.3%) were predominant in the canine oral samples. The predominant genera in the human samples were Streptococcus (43.9%), Neisseria (10.3%), Haemophilus (9.6%), Prevotella (8.4%), and Veillonella (8.1%), whereas the predominant genera in the canine samples were Actinomyces (17.2%), Unknown (16.8), Porphyromonas (14.8), Fusobacterium (11.8), and Neisseria (7.2%). The oral microbiomes of dogs and their owners were appreciably different, and similarity in the microbiomes of canines and their owners was not correlated with residing in the same household. Oral-to-oral transfer of Neisseria shayeganii, Porphyromonas canigingivalis, Tannerella forsythia, and Streptococcus minor from dogs to humans was suspected. The finding of potentially zoonotic and periodontopathic bacteria in the canine oral microbiome may be a public health concern. PMID:26134411

  11. Response of Archaeal and Bacterial Soil Communities to Changes Associated with Outdoor Cattle Overwintering

    PubMed Central

    Chroňáková, Alica; Schloter-Hai, Brigitte; Radl, Viviane; Endesfelder, David; Quince, Christopher; Elhottová, Dana; Šimek, Miloslav; Schloter, Michael

    2015-01-01

    Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI) and long-term impact (17 years; LTI), one is regenerating from cattle impact (REG) and a control is unaffected by cattle (CON). Cattle manure (CMN), the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria) dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes) were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning. PMID:26274496

  12. Diversified Microbiota of Meconium Is Affected by Maternal Diabetes Status

    PubMed Central

    Hu, Jianzhong; Nomura, Yoko; Bashir, Ali; Fernandez-Hernandez, Heriberto; Itzkowitz, Steven; Pei, Zhiheng; Stone, Joanne; Loudon, Holly; Peter, Inga

    2013-01-01

    Objectives This study was aimed to assess the diversity of the meconium microbiome and determine if the bacterial community is affected by maternal diabetes status. Methods The first intestinal discharge (meconium) was collected from 23 newborns stratified by maternal diabetes status: 4 mothers had pre-gestational type 2 diabetes mellitus (DM) including one mother with dizygotic twins, 5 developed gestational diabetes mellitus (GDM) and 13 had no diabetes. The meconium microbiome was profiled using multi-barcode 16S rRNA sequencing followed by taxonomic assignment and diversity analysis. Results All meconium samples were not sterile and contained diversified microbiota. Compared with adult feces, the meconium showed a lower species diversity, higher sample-to-sample variation, and enrichment of Proteobacteria and reduction of Bacteroidetes. Among the meconium samples, the taxonomy analyses suggested that the overall bacterial content significantly differed by maternal diabetes status, with the microbiome of the DM group showing higher alpha-diversity than that of no-diabetes or GDM groups. No global difference was found between babies delivered vaginally versus via Cesarean-section. Regression analysis showed that the most robust predictor for the meconium microbiota composition was the maternal diabetes status that preceded pregnancy. Specifically, Bacteroidetes (phyla) and Parabacteriodes (genus) were enriched in the meconium in the DM group compared to the no-diabetes group. Conclusions Our study provides evidence that meconium contains diversified microbiota and is not affected by the mode of delivery. It also suggests that the meconium microbiome of infants born to mothers with DM is enriched for the same bacterial taxa as those reported in the fecal microbiome of adult DM patients. PMID:24223144

  13. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats.

    PubMed

    Zhang, Qian; Xiao, Xinhua; Li, Ming; Yu, Miao; Ping, Fan; Zheng, Jia; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Emerging evidence supports a key role for the gut microbiota in metabolic diseases, including type 2 diabetes (T2D) and obesity. The dipeptidyl peptidase-4 inhibitor vildagliptin is highly efficacious in treating T2D. However, whether vildagliptin can alter the gut microbiome is still unclear. This study aimed to identify whether vildagliptin modifies the gut microbiota structure during T2D treatment. Diabetic Sprague-Dawley (SD) rats were induced by a high-fat diet and streptozotocin injection (HFD/STZ). Diabetic rats were orally administered a low dose of vildagliptin (LV, 0.01 g/kg/d vildagliptin), high dose of vildagliptin (HV, 0.02 g/kg/d vildagliptin), or normal saline for 12 weeks. Fasting blood glucose, blood glucose after glucose loading, and serum insulin levels were significantly reduced in the LV and HV groups compared with those in the T2D group. The serum GLP-1 level increased more in the vildagliptin-treated group than in the T2D group. Pyrosequencing of the V3-V4 regions of 16S rRNA genes revealed that vildagliptin significantly altered the gut microbiota. The operational taxonomic units (OTUs) and community richness (Chao1) index were significantly reduced in the vildagliptin and diabetic groups compared with those in the control group. At the phylum level, a higher relative abundance of Bacteroidetes, lower abundance of Firmicutes, and reduced ratio of Fimicutes/Bacteroidetes were observed in the vildagliptin-treated group. Moreover, vildagliptin treatment increased butyrate-producing bacteria, including Baceroides and Erysipelotrichaeae, in the diabetic rats. Moreover, Lachnospira abundance was significantly negatively correlated with fasting blood glucose levels. In conclusion, vildagliptin treatment could benefit the communities of the gut microbiota.

  14. Characterization of coastal urban watershed bacterial communities leads to alternative community-based indicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, C.H.; Sercu, B.; Van De Werhorst, L.C.

    2010-03-01

    Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomicmore » units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and a-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.« less

  15. Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model.

    PubMed

    Hu, Jianzhong; Raikhel, Vincent; Gopalakrishnan, Kalpana; Fernandez-Hernandez, Heriberto; Lambertini, Luca; Manservisi, Fabiana; Falcioni, Laura; Bua, Luciano; Belpoggi, Fiorella; L Teitelbaum, Susan; Chen, Jia

    2016-06-14

    This proof-of-principle study examines whether postnatal, low-dose exposure to environmental chemicals modifies the composition of gut microbiome. Three chemicals that are widely used in personal care products-diethyl phthalate (DEP), methylparaben (MPB), triclosan (TCS)-and their mixture (MIX) were administered at doses comparable to human exposure to Sprague-Dawley rats from birth through adulthood. Fecal samples were collected at two time points: postnatal day (PND) 62 (adolescence) and PND 181 (adulthood). The gut microbiome was profiled by 16S ribosomal RNA gene sequencing, taxonomically assigned and assessed for diversity. Metagenomic profiling revealed that the low-dose chemical exposure resulted in significant changes in the overall bacterial composition, but in adolescent rats only. Specifically, the individual taxon relative abundance for Bacteroidetes (Prevotella) was increased while the relative abundance of Firmicutes (Bacilli) was reduced in all treated rats compared to controls. Increased abundance was observed for Elusimicrobia in DEP and MPB groups, Betaproteobacteria in MPB and MIX groups, and Deltaproteobacteria in TCS group. Surprisingly, these differences diminished by adulthood (PND 181) despite continuous exposure, suggesting that exposure to the environmental chemicals produced a more profound effect on the gut microbiome in adolescents. We also observed a small but consistent reduction in the bodyweight of exposed rats in adolescence, especially with DEP and MPB treatment (p < 0.05), which is consistent with our findings of a reduced Firmicutes/Bacteroidetes ratio at PND 62 in exposed rats. This study provides initial evidence that postnatal exposure to commonly used environmental chemicals at doses comparable to human exposure is capable of modifying the gut microbiota in adolescent rats; whether these changes lead to downstream health effects requires further investigation.

  16. High quality draft genome sequence of Flavobacterium rivuli type strain WB 3.3-2T (DSM 21788T), a valuable source of polysaccharide decomposing enzymes

    DOE PAGES

    Hahnke, Richard L.; Stackebrandt, Erko; Meier-Kolthoff, Jan P.; ...

    2015-07-30

    Flavobacterium rivuli Ali et al. 2009 emend. Dong et al. 2013 is one of about 100 species in the genus Flavobacterium (family Flavobacteriacae, phylum Bacteroidetes) with a validly published name, and has been isolated from the spring of a hard water rivulet in Northern Germany. Including all type strains of the genus Myroides and Flavobacterium into the 16S rRNA gene sequence phylogeny revealed a clustering of members of the genus Myroides as a monophyletic group within the genus Flavobacterium. Furthermore, F. rivuli WB 3.3-2T and its next relatives seem more closely related to the genus Myroides than to the typemore » species of the genus Flavobacterium, F. aquatile. The 4,489,248 bp long genome with its 3,391 protein-coding and 65 RNA genes is part of the G enomic E ncyclopedia of B acteria and A rchaea project. The genome of F. rivuli has almost as many genes encoding carbohydrate active enzymes (151 CAZymes) as genes encoding peptidases (177). Peptidases comprised mostly metallo (M) and serine (S) peptidases. Among CAZymes, 30 glycoside hydrolase families, 10 glycosyl transferase families, 7 carbohydrate binding module families and 7 carbohydrate esterase families were identified. Furthermore, we found four polysaccharide utilization loci (PUL) and one large CAZy rich gene cluster that might enable strain WB 3.3-2T to decompose plant and algae derived polysaccharides. In conclusion, based on these results we propose F. rivuli as an interesting candidate for further physiological studies and the role of Bacteroidetes in the decomposition of complex polymers in the environment.« less

  17. Volatile organic compound emissions from straw-amended agricultural soils and their relations to bacterial communities: A laboratory study.

    PubMed

    Zhao, Juan; Wang, Zhe; Wu, Ting; Wang, Xinming; Dai, Wanhong; Zhang, Yujie; Wang, Ran; Zhang, Yonggan; Shi, Chengfei

    2016-07-01

    A laboratory study was conducted to investigate volatile organic compound (VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66days under non-flooded and flooded conditions. The results indicated that ethene, propene, ethanol, i-propanol, 2-butanol, acetaldehyde, acetone, 2-butanone, 2-pentanone and acetophenone were the 10 most abundant VOCs, making up over 90% of the total VOCs released under the two water conditions. The mean emission of total VOCs from the amended soils under the non-flooded condition (5924ng C/(kg·hr)) was significantly higher than that under the flooded condition (2211ng C/(kg·hr)). One "peak emission window" appeared at days 0-44 or 4-44, and over 95% of the VOC emissions occurred during the first month under the two water conditions. Bacterial community analysis using denaturing gradient gel electrophoresis (DGGE) showed that a relative increase of Actinobacteria, Bacteroidetes, Firmicutes and γ-Proteobacteria but a relative decrease of Acidobacteria with time were observed after straw amendments under the two water conditions. Cluster analysis revealed that the soil bacterial communities changed greatly with incubation time, which was in line with the variation of the VOC emissions over the experimental period. Most of the above top 10 VOCs correlated positively with the predominant bacterial species of Bacteroidetes, Firmicutes and Verrucomicrobia but correlated negatively with the dominant bacterial species of Actinobacteria under the two water conditions. These results suggested that bacterial communities might play an important role in VOC emissions from straw-amended agricultural soils. Copyright © 2016. Published by Elsevier B.V.

  18. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity.

    PubMed

    Denou, Emmanuel; Marcinko, Katarina; Surette, Michael G; Steinberg, Gregory R; Schertzer, Jonathan D

    2016-06-01

    Diet and exercise underpin the risk of obesity-related metabolic disease. Diet alters the gut microbiota, which contributes to aspects of metabolic disease during obesity. Repeated exercise provides metabolic benefits during obesity. We assessed whether exercise could oppose changes in the taxonomic and predicted metagenomic characteristics of the gut microbiota during diet-induced obesity. We hypothesized that high-intensity interval training (HIIT) would counteract high-fat diet (HFD)-induced changes in the microbiota without altering obesity in mice. Compared with chow-fed mice, an obesity-causing HFD decreased the Bacteroidetes-to-Firmicutes ratio and decreased the genetic capacity in the fecal microbiota for metabolic pathways such as the tricarboxylic acid (TCA) cycle. After HFD-induced obesity was established, a subset of mice were HIIT for 6 wk, which increased host aerobic capacity but did not alter body or adipose tissue mass. The effects of exercise training on the microbiota were gut segment dependent and more extensive in the distal gut. HIIT increased the alpha diversity and Bacteroidetes/Firmicutes ratio of the distal gut and fecal microbiota during diet-induced obesity. Exercise training increased the predicted genetic capacity related to the TCA cycle among other aspects of metabolism. Strikingly, the same microbial metabolism indexes that were increased by exercise were all decreased in HFD-fed vs. chow diet-fed mice. Therefore, exercise training directly opposed some of the obesity-related changes in gut microbiota, including lower metagenomic indexes of metabolism. Some host and microbial pathways appeared similarly affected by exercise. These exercise- and diet-induced microbiota interactions can be captured in feces. Copyright © 2016 the American Physiological Society.

  19. Assessing the viability of bacterial species in drinking water by combined cellular and molecular analyses.

    PubMed

    Kahlisch, Leila; Henne, Karsten; Gröbe, Lothar; Brettar, Ingrid; Höfle, Manfred G

    2012-02-01

    The question which bacterial species are present in water and if they are viable is essential for drinking water safety but also of general relevance in aquatic ecology. To approach this question we combined propidium iodide/SYTO9 staining ("live/dead staining" indicating membrane integrity), fluorescence-activated cell sorting (FACS) and community fingerprinting for the analysis of a set of tap water samples. Live/dead staining revealed that about half of the bacteria in the tap water had intact membranes. Molecular analysis using 16S rRNA and 16S rRNA gene-based single-strand conformation polymorphism (SSCP) fingerprints and sequencing of drinking water bacteria before and after FACS sorting revealed: (1) the DNA- and RNA-based overall community structure differed substantially, (2) the community retrieved from RNA and DNA reflected different bacterial species, classified as 53 phylotypes (with only two common phylotypes), (3) the percentage of phylotypes with intact membranes or damaged cells were comparable for RNA- and DNA-based analyses, and (4) the retrieved species were primarily of aquatic origin. The pronounced difference between phylotypes obtained from DNA extracts (dominated by Betaproteobacteria, Bacteroidetes, and Actinobacteria) and from RNA extracts (dominated by Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria) demonstrate the relevance of concomitant RNA and DNA analyses for drinking water studies. Unexpected was that a comparable fraction (about 21%) of phylotypes with membrane-injured cells was observed for DNA- and RNA-based analyses, contradicting the current understanding that RNA-based analyses represent the actively growing fraction of the bacterial community. Overall, we think that this combined approach provides an interesting tool for a concomitant phylogenetic and viability analysis of bacterial species of drinking water.

  20. High quality draft genome sequence of Flavobacterium rivuli type strain WB 3.3-2T (DSM 21788T), a valuable source of polysaccharide decomposing enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahnke, Richard L.; Stackebrandt, Erko; Meier-Kolthoff, Jan P.

    Flavobacterium rivuli Ali et al. 2009 emend. Dong et al. 2013 is one of about 100 species in the genus Flavobacterium (family Flavobacteriacae, phylum Bacteroidetes) with a validly published name, and has been isolated from the spring of a hard water rivulet in Northern Germany. Including all type strains of the genus Myroides and Flavobacterium into the 16S rRNA gene sequence phylogeny revealed a clustering of members of the genus Myroides as a monophyletic group within the genus Flavobacterium. Furthermore, F. rivuli WB 3.3-2T and its next relatives seem more closely related to the genus Myroides than to the typemore » species of the genus Flavobacterium, F. aquatile. The 4,489,248 bp long genome with its 3,391 protein-coding and 65 RNA genes is part of the G enomic E ncyclopedia of B acteria and A rchaea project. The genome of F. rivuli has almost as many genes encoding carbohydrate active enzymes (151 CAZymes) as genes encoding peptidases (177). Peptidases comprised mostly metallo (M) and serine (S) peptidases. Among CAZymes, 30 glycoside hydrolase families, 10 glycosyl transferase families, 7 carbohydrate binding module families and 7 carbohydrate esterase families were identified. Furthermore, we found four polysaccharide utilization loci (PUL) and one large CAZy rich gene cluster that might enable strain WB 3.3-2T to decompose plant and algae derived polysaccharides. In conclusion, based on these results we propose F. rivuli as an interesting candidate for further physiological studies and the role of Bacteroidetes in the decomposition of complex polymers in the environment.« less

  1. Effect of Saccharomyces boulardii and Mode of Delivery on the Early Development of the Gut Microbial Community in Preterm Infants.

    PubMed

    Zeber-Lubecka, Natalia; Kulecka, Maria; Ambrozkiewicz, Filip; Paziewska, Agnieszka; Lechowicz, Milosz; Konopka, Ewa; Majewska, Urszula; Borszewska-Kornacka, Maria; Mikula, Michal; Cukrowska, Bozena; Ostrowski, Jerzy

    2016-01-01

    Recent advances in culture-independent approaches have enabled insights into the diversity, complexity, and individual variability of gut microbial communities. To examine the effect of oral administration of Saccharomyces (S.) boulardii and mode of delivery on the intestinal microbial community in preterm infants. Stool samples were collected from preterm newborns randomly divided into two groups: a probiotic-receiving group (n = 18) or a placebo group (n = 21). Samples were collected before probiotic intake (day 0), and after 2 and 6 weeks of supplementation. The composition of colonizing bacteria was assessed by 16S ribosomal RNA (rRNA) gene sequencing of fecal samples using the Ion 16S Metagenomics Kit and the Ion Torrent Personal Genome Machine platform. A total of 11932257 reads were generated, and were clustered into 459, 187, and 176 operational taxonomic units at 0 days, 2 weeks, and 6 weeks, respectively. Of the 17 identified phyla, Firmicutes Actinobacteria, Proteobacteria, and Bacteroidetes were universal. The microbial community differed at day 0 compared with at 2 weeks and 6 weeks. There was a tendency for increased bacterial diversity at 2 weeks and 6 weeks compared with day 0, and infants with a gestational age of 31 weeks or higher presented increased bacterial diversity prior to S. boulardii administration. Firmicutes and Proteobacteria remained stable during the observation period, whereas Actinobacteria and Bacteroidetes increased in abundance, the latter particularly more sharply in vaginally delivered infants. While the mode of delivery may influence the development of a microbial community, this study had not enough power to detect statistical differences between cohorts supplemented with probiotics, and in a consequence, to speculate on S. boulardii effect on gut microbiome composition in preterm newborns.

  2. Metagenomic Insights into the Fibrolytic Microbiome in Yak Rumen

    PubMed Central

    Song, Lei; Liu, Di; Liu, Li; Chen, Furong; Wang, Min; Li, Jiabao; Zeng, Xiaowei; Dong, Zhiyang; Hu, Songnian; Li, Lingyan; Xu, Jian; Huang, Li; Dong, Xiuzhu

    2012-01-01

    The rumen hosts one of the most efficient microbial systems for degrading plant cell walls, yet the predominant cellulolytic proteins and fibrolytic mechanism(s) remain elusive. Here we investigated the cellulolytic microbiome of the yak rumen by using a combination of metagenome-based and bacterial artificial chromosome (BAC)-based functional screening approaches. Totally 223 fibrolytic BAC clones were pyrosequenced and 10,070 ORFs were identified. Among them 150 were annotated as the glycoside hydrolase (GH) genes for fibrolytic proteins, and the majority (69%) of them were clustered or linked with genes encoding related functions. Among the 35 fibrolytic contigs of >10 Kb in length, 25 were derived from Bacteroidetes and four from Firmicutes. Coverage analysis indicated that the fibrolytic genes on most Bacteroidetes-contigs were abundantly represented in the metagenomic sequences, and they were frequently linked with genes encoding SusC/SusD-type outer-membrane proteins. GH5, GH9, and GH10 cellulase/hemicellulase genes were predominant, but no GH48 exocellulase gene was found. Most (85%) of the cellulase and hemicellulase proteins possessed a signal peptide; only a few carried carbohydrate-binding modules, and no cellulosomal domains were detected. These findings suggest that the SucC/SucD-involving mechanism, instead of one based on cellulosomes or the free-enzyme system, serves a major role in lignocellulose degradation in yak rumen. Genes encoding an endoglucanase of a novel GH5 subfamily occurred frequently in the metagenome, and the recombinant proteins encoded by the genes displayed moderate Avicelase in addition to endoglucanase activities, suggesting their important contribution to lignocellulose degradation in the exocellulase-scarce rumen. PMID:22808161

  3. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity.

    PubMed

    Qiao, Yi; Sun, Jin; Xia, Shufang; Tang, Xue; Shi, Yonghui; Le, Guowei

    2014-06-01

    Recent studies have investigated the anti-obesity effect of resveratrol, but the pathways through which resveratrol resists obesity are not clear. In the present study, we hypothesize that resveratrol exerts anti-obesity effects that are likely mediated by mechanisms of regulating gut microbes, and in turn, improving fat storage and metabolism. Gut microbes, glucose and lipid metabolism in high-fat diet (HF) mice in vivo are investigated after resveratrol treatment. Several biochemical markers are measured. Fluorescence in situ hybridization and flow cytometry are used to monitor and quantify the changes in gut microbiota. The key genes related to fat storage and metabolism in the liver and visceral adipose tissues are measured by real-time PCR. The results show that resveratrol (200 mg per kg per day) significantly lowers both body and visceral adipose weights, and reduces blood glucose and lipid levels in HF mice. Resveratrol improves the gut microbiota dysbiosis induced by the HF diet, including increasing the Bacteroidetes-to-Firmicutes ratios, significantly inhibiting the growth of Enterococcus faecalis, and increasing the growth of Lactobacillus and Bifidobacterium. Furthermore, resveratrol significantly increases the fasting-induced adipose factor (Fiaf, a key gene negatively regulated by intestinal microbes) expression in the intestine. Resveratrol significantly decreases mRNA expression of Lpl, Scd1, Ppar-γ, Acc1, and Fas related to fatty acids synthesis, adipogenesis and lipogenesis, which may be driven by increased Fiaf expression. The Pearson's correlation coefficient shows that there is a negative correlation between the body weight and the ratios of Bacteroidetes-to-Firmicutes. Therefore, resveratrol mediates the composition of gut microbes, and in turn, through the Fiaf signaling pathway, accelerates the development of obesity.

  4. Unique hyper-thermal composting process in Kagoshima City forms distinct bacterial community structures.

    PubMed

    Tashiro, Yukihiro; Tabata, Hanae; Itahara, Asuka; Shimizu, Natsuki; Tashiro, Kosuke; Sakai, Kenji

    2016-11-01

    A unique compost, Satsuma soil, is produced from three types of wastewater sludge using hyper-thermal processes at temperatures much higher than that of general thermophilic processes in Kagoshima City, Japan. We analyzed the bacterial community structures of this hyper-thermal compost sample and other sludges and composts by a high-throughput barcoded pyrosequencing method targeting the 16S rRNA gene. In total, 621,076 reads were derived from 17 samples and filtered. Artificial sequences were deleted and the reads were clustered based on the operational taxonomic units (OTUs) at 97% similarity. Phylum-level analysis of the hyper-thermal compost revealed drastic changes of the sludge structures (each relative abundance) from Firmicutes (average 47.8%), Proteobacteria (average 22.3%), and Bacteroidetes (average 10.1%) to two main phyla including Firmicutes (73.6%) and Actinobacteria (25.0%) with less Proteobacteria (∼0.3%) and Bacteroidetes (∼0.1%). Furthermore, we determined the predominant species (each relative abundance) of the hyper-thermal compost including Firmicutes related to Staphylococcus cohnii (13.8%), Jeotgalicoccus coquinae (8.01%), and Staphylococcus lentus (5.96%), and Actinobacteria related to Corynebacterium stationis (6.41%), and found that these species were not predominant in wastewater sludge. In contrast, we did not observe any common structures among eight other composts produced, using the hyper-thermal composts as the inoculums, under thermophilic conditions from different materials. Principle coordinate analysis of the hyper-thermal compost indicated a large difference in bacterial community structures from material sludge and other composts. These results suggested that a distinct bacterial community structure was formed by hyper-thermal composting. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Long-term intake of a high prebiotic fiber diet but not high protein reduces metabolic risk after a high fat challenge and uniquely alters gut microbiota and hepatic gene expression.

    PubMed

    Saha, Dolan C; Reimer, Raylene A

    2014-09-01

    A mismatch between early developmental diet and adulthood may increase obesity risk. Our objective was to determine the effects of re-matching rats to their weaning diets high in protein or fiber after transient high-fat/high-sucrose challenge in adulthood. We hypothesize that a long-term high fiber diet will be associated with a gut microbiota and hepatic gene expression reflective of reduced adiposity. Wistar rat pups were fed a control (C), high prebiotic fiber (HF), or high protein (HP) diet from 3-15 weeks of age; a high-fat/high-sucrose diet from 15-21 weeks; their respective C, HF, or HP diets from 21-25 weeks. Gut microbiota of cecal contents and hepatic gene expression were measured when rats were terminated at 25 weeks of age. HF rats had higher total bacteria, bifidobacteria and Bacteroides/Prevotella spp than C and HP at 25 weeks (P < 0.05). Firmicutes, especially Clostridium leptum, decreased in HF compared to C and HP (P < .05). The ratio of Firmicutes:Bacteroidetes was markedly lower in HF versus C and HP at 25 weeks (P < .05). HF decreased hepatic cholesterol content compared to HP and C at 25 weeks. HF and HP increased 3-hydroxy-3-methylglutaryl-CoA reductase mRNA and decreased lecithin-cholesterol acyltransferase mRNA compared to C (P < .05). In conclusion, re-matching rats to a HF but not HP diet attenuated the typical increase in Firmicutes:Bacteroidetes ratio associated with consumption of a high fat diet. Lower hepatic cholesterol with long-term HF diet intake may be related to alterations in gut microbiota and hepatic lipid metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Fecal bacterial communities of wild-captured and stranded green turtles (Chelonia mydas) on the Great Barrier Reef.

    PubMed

    Ahasan, Md Shamim; Waltzek, Thomas B; Huerlimann, Roger; Ariel, Ellen

    2017-12-01

    Green turtles (Chelonia mydas) are endangered marine herbivores that break down food particles, primarily sea grasses, through microbial fermentation. However, the microbial community and its role in health and disease is still largely unexplored. In this study, we investigated and compared the fecal bacterial communities of eight wild-captured green turtles to four stranded turtles in the central Great Barrier Reef regions that include Bowen and Townsville. We used high-throughput sequencing analysis targeting the hypervariable V1-V3 regions of the bacterial 16S rRNA gene. At the phylum level, Firmicutes predominated among wild-captured green turtles, followed by Bacteroidetes and Proteobacteria. In contrast, Proteobacteria (Gammaproteobacteria) was the most significantly dominant phylum among all stranded turtles, followed by Bacteroidetes and Firmicutes. In addition, Fusobacteria was also significantly abundant in stranded turtles. No significant differences were found between the wild-captured turtles in Bowen and Townsville. At the family level, the core bacterial community consisted of 25 families that were identified in both the wild-captured and stranded green turtles, while two unique sets of 14 families each were only found in stranded or wild-captured turtles. The predominance of Bacteroides in all groups indicates the importance of these bacteria in turtle gut health. In terms of bacterial diversity and richness, wild-captured green turtles showed a higher bacterial diversity and richness compared with stranded turtles. The marked differences in the bacterial communities between wild-captured and stranded turtles suggest the possible dysbiosis in stranded turtles in addition to potential causal agents. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L.

    PubMed Central

    Tanaka, Sachi; Yamamoto, Kana; Yamada, Kazuki; Furuya, Kanon

    2016-01-01

    This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10. PMID:26921420

  8. Bacteroides fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer’s Disease

    PubMed Central

    Lukiw, Walter J.

    2016-01-01

    The human microbiome consists of ~3.8 × 1013 symbiotic microorganisms that form a highly complex and dynamic ecosystem: the gastrointestinal (GI) tract constitutes the largest repository of the human microbiome by far, and its impact on human neurological health and disease is becoming increasingly appreciated. Bacteroidetes, the largest phylum of Gram-negative bacteria in the GI tract microbiome, while generally beneficial to the host when confined to the GI tract, have potential to secrete a remarkably complex array of pro-inflammatory neurotoxins that include surface lipopolysaccharides (LPSs) and toxic proteolytic peptides. The deleterious effects of these bacterial exudates appear to become more important as GI tract and blood-brain barriers alter or increase their permeability with aging and disease. For example, presence of the unique LPSs of the abundant Bacteroidetes species Bacteroides fragilis (BF-LPS) in the serum represents a major contributing factor to systemic inflammation. BF-LPS is further recognized by TLR2, TLR4, and/or CD14 microglial cell receptors as are the pro-inflammatory 42 amino acid amyloid-beta (Aβ42) peptides that characterize Alzheimer’s disease (AD) brain. Here we provide the first evidence that BF-LPS exposure to human primary brain cells is an exceptionally potent inducer of the pro-inflammatory transcription factor NF-kB (p50/p65) complex, a known trigger in the expression of pathogenic pathways involved in inflammatory neurodegeneration. This ‘Perspectives communication’ will in addition highlight work from recent studies that advance novel and emerging concepts on the potential contribution of microbiome-generated factors, such as BF-LPS, in driving pro-inflammatory degenerative neuropathology in the AD brain. PMID:27725817

  9. Cultivation of Hard-To-Culture Subsurface Mercury-Resistant Bacteria and Discovery of New merA Gene Sequences▿

    PubMed Central

    Rasmussen, L. D.; Zawadsky, C.; Binnerup, S. J.; Øregaard, G.; Sørensen, S. J.; Kroer, N.

    2008-01-01

    Mercury-resistant bacteria may be important players in mercury biogeochemistry. To assess the potential for mercury reduction by two subsurface microbial communities, resistant subpopulations and their merA genes were characterized by a combined molecular and cultivation-dependent approach. The cultivation method simulated natural conditions by using polycarbonate membranes as a growth support and a nonsterile soil slurry as a culture medium. Resistant bacteria were pregrown to microcolony-forming units (mCFU) before being plated on standard medium. Compared to direct plating, culturability was increased up to 2,800 times and numbers of mCFU were similar to the total number of mercury-resistant bacteria in the soils. Denaturing gradient gel electrophoresis analysis of DNA extracted from membranes suggested stimulation of growth of hard-to-culture bacteria during the preincubation. A total of 25 different 16S rRNA gene sequences were observed, including Alpha-, Beta-, and Gammaproteobacteria; Actinobacteria; Firmicutes; and Bacteroidetes. The diversity of isolates obtained by direct plating included eight different 16S rRNA gene sequences (Alpha- and Betaproteobacteria and Actinobacteria). Partial sequencing of merA of selected isolates led to the discovery of new merA sequences. With phylum-specific merA primers, PCR products were obtained for Alpha- and Betaproteobacteria and Actinobacteria but not for Bacteroidetes and Firmicutes. The similarity to known sequences ranged between 89 and 95%. One of the sequences did not result in a match in the BLAST search. The results illustrate the power of integrating advanced cultivation methodology with molecular techniques for the characterization of the diversity of mercury-resistant populations and assessing the potential for mercury reduction in contaminated environments. PMID:18441111

  10. Molecular Dissection of Xyloglucan Recognition in a Prominent Human Gut Symbiont

    PubMed Central

    Tauzin, Alexandra S.; Kwiatkowski, Kurt J.; Orlovsky, Nicole I.; Smith, Christopher J.; Creagh, A. Louise; Haynes, Charles A.; Wawrzak, Zdzislaw

    2016-01-01

    ABSTRACT Polysaccharide utilization loci (PUL) within the genomes of resident human gut Bacteroidetes are central to the metabolism of the otherwise indigestible complex carbohydrates known as “dietary fiber.” However, functional characterization of PUL lags significantly behind sequencing efforts, which limits physiological understanding of the human-bacterial symbiosis. In particular, the molecular basis of complex polysaccharide recognition, an essential prerequisite to hydrolysis by cell surface glycosidases and subsequent metabolism, is generally poorly understood. Here, we present the biochemical, structural, and reverse genetic characterization of two unique cell surface glycan-binding proteins (SGBPs) encoded by a xyloglucan utilization locus (XyGUL) from Bacteroides ovatus, which are integral to growth on this key dietary vegetable polysaccharide. Biochemical analysis reveals that these outer membrane-anchored proteins are in fact exquisitely specific for the highly branched xyloglucan (XyG) polysaccharide. The crystal structure of SGBP-A, a SusD homolog, with a bound XyG tetradecasaccharide reveals an extended carbohydrate-binding platform that primarily relies on recognition of the β-glucan backbone. The unique, tetra-modular structure of SGBP-B is comprised of tandem Ig-like folds, with XyG binding mediated at the distal C-terminal domain. Despite displaying similar affinities for XyG, reverse-genetic analysis reveals that SGBP-B is only required for the efficient capture of smaller oligosaccharides, whereas the presence of SGBP-A is more critical than its carbohydrate-binding ability for growth on XyG. Together, these data demonstrate that SGBP-A and SGBP-B play complementary, specialized roles in carbohydrate capture by B. ovatus and elaborate a model of how vegetable xyloglucans are accessed by the Bacteroidetes. PMID:27118585

  11. Characterization of Coastal Urban Watershed Bacterial Communities Leads to Alternative Community-Based Indicators

    PubMed Central

    Wu, Cindy H.; Sercu, Bram; Van De Werfhorst, Laurie C.; Wong, Jakk; DeSantis, Todd Z.; Brodie, Eoin L.; Hazen, Terry C.; Holden, Patricia A.; Andersen, Gary L.

    2010-01-01

    Background Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Methodology/Principal Findings Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and α-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC∶A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. Conclusions/Significance This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health. PMID:20585654

  12. Quantification of Human Polyomaviruses JC Virus and BK Virus by TaqMan Quantitative PCR and Comparison to Other Water Quality Indicators in Water and Fecal Samples▿

    PubMed Central

    McQuaig, Shannon M.; Scott, Troy M.; Lukasik, Jerzy O.; Paul, John H.; Harwood, Valerie J.

    2009-01-01

    In the United States, total maximum daily load standards for bodies of water that do not meet bacterial water quality standards are set by each state. The presence of human polyomaviruses (HPyVs) can be used as an indicator of human-associated sewage pollution in these waters. We have developed and optimized a TaqMan quantitative PCR (QPCR) assay based on the conserved T antigen to both quantify and simultaneously detect two HPyVs; JC virus and BK virus. The QPCR assay was able to consistently quantify ≥10 gene copies per reaction and is linear over 5 orders of magnitude. HPyVs were consistently detected in human waste samples (57 of 64) and environmental waters with known human fecal contamination (5 of 5) and were not amplified in DNA extracted from 127 animal waste samples from 14 species. HPyV concentrations in sewage decreased 81.2 and 84.2% over 28 days incubation at 25 and 35°C, respectively. HPyVs results were compared to Escherichia coli, fecal coliform, and enterococci concentrations and the presence of three other human-associated microbes: Bacteroidetes, Methanobrevibacter smithii, and adenovirus. HPyVs were the most frequently detected of these in human and contaminated environmental samples and were more human specific than the Bacteroidetes (HF183) or M. smithii. HPyVs and M. smithii more closely mimicked the persistence of adenovirus in sewage than the other microbes. The use of this rapid and quantitative assay in water quality research could help regulatory agencies to identify sources of water pollution for improved remediation of contaminated waters and ultimately protect humans from exposure to pathogens. PMID:19346361

  13. Analysis of Composition and Structure of Coastal to Mesopelagic Bacterioplankton Communities in the Northern Gulf of Mexico

    PubMed Central

    King, Gary M.; Smith, Conor B.; Tolar, Bradley; Hollibaugh, James T.

    2013-01-01

    16S rRNA gene amplicons were pyrosequenced to assess bacterioplankton community composition, diversity, and phylogenetic community structure for 17 stations in the northern Gulf of Mexico (nGoM) sampled in March 2010. Statistical analyses showed that samples from depths ≤100 m differed distinctly from deeper samples. SAR 11 α-Proteobacteria and Bacteroidetes dominated communities at depths ≤100 m, which were characterized by high α-Proteobacteria/γ-Proteobacteria ratios (α/γ > 1.7). Thaumarchaeota, Firmicutes, and δ-Proteobacteria were relatively abundant in deeper waters, and α/γ ratios were low (<1). Canonical correlation analysis indicated that δ- and γ-Proteobacteria, Thaumarchaeota, and Firmicutes correlated positively with depth; α-Proteobacteria and Bacteroidetes correlated positively with temperature and dissolved oxygen; Actinobacteria, β-Proteobacteria, and Verrucomicrobia correlated positively with a measure of suspended particles. Diversity indices did not vary with depth or other factors, which indicated that richness and evenness elements of bacterioplankton communities might develop independently of nGoM physical-chemical variables. Phylogenetic community structure as measured by the net relatedness (NRI) and nearest taxon (NTI) indices also did not vary with depth. NRI values indicated that most of the communities were comprised of OTUs more distantly related to each other in whole community comparisons than expected by chance. NTI values derived from phylogenetic distances of the closest neighbor for each OTU in a given community indicated that OTUs tended to occur in clusters to a greater extent than expected by chance. This indicates that “habitat filtering” might play an important role in nGoM bacterioplankton species assembly, and that such filtering occurs throughout the water column. PMID:23346078

  14. Assessment of bacterial community composition in response to uranium levels in sediment samples of sacred Cauvery River.

    PubMed

    Suriya, Jayaraman; Chandra Shekar, Mootapally; Nathani, Neelam Mustakali; Suganya, Thangaiyan; Bharathiraja, Subramanian; Krishnan, Muthukalingan

    2017-01-01

    Global industrialization is a major cause of effluent discharge from industries up to alarming concentrations. Especially, uranium concentrations in water bodies are of great concern, as its radioactivity significantly affects the persistent diversity of microbiota. Recently, continuous application of pesticides in the agricultural lands and accumulation of quartz that enter the Cauvery River has significantly increased the concentration of uranium (U) and other heavy metals. To perceive the impact of uranium on bacterial diversity in Cauvery River, sediment samples collected from polluted (UP) site with 32.4 Bq/K of U concentration and control (UNP) site were scrutinized for bacterial diversity through metagenomic analysis of the V3 region of 16S rDNA by Illumina sequencing. Taxonomic assignment revealed that the unpolluted sample was dominated by Bacteroidetes (27.7 %), and Firmicutes (25.9 %), while sediment sample from the highly polluted site revealed abundance of Proteobacteria (47.5 %) followed by Bacteroidetes (22.4 %) and Firmicutes (14.6 %). Among Proteobacteria, Gammaproteobacteria was the most prevalent group followed by alpha, delta, epsilon, and beta in the uranium-polluted sample. Rare and abundant species analysis revealed that species like Idiomarina loihiensis was abundant in the pollutant sample; however, it was rare (<0.1 %) in the sample from pristine environment. Similarly, the species distribution in both the samples varied, with the bacteria potentially active in redox activity and biosorption potential dominating in the polluted sample. Outcomes of the present study demonstrated the impact of uranium and metal accumulation on the bacterial communities and further confirmed the promising candidature of specific bacterial species as bioindicators of contamination.

  15. Beneficial metabolic effects of 2', 3', 5'-tri-acetyl-N6-(3-hydroxylaniline) adenosine in multiple biological matrices and intestinal flora of hyperlipidemic hamsters.

    PubMed

    Li, Tianqi; Sun, Shanshan; Zhang, Jinyue; Qu, Kai; Yang, Liu; Ma, Changlu; Jin, Xiangju; Zhu, Haibo; Wang, Yinghong

    2018-06-21

    ABSTRACT:Hyperlipidemia is one of the main causes of obesity, type 2 diabetes mellitus (T2DM) and atherosclerosis. The adenosine derivative, 2', 3', 5'-tri-acetyl-N6-(3-hydroxylaniline) adenosine (IMM-H007) is an effective lipid-lowering compound that has important implications for the development of lipid-lowering drugs. Metabolomic analysis based on 1H-NMR was used to monitor dynamic changes in diverse biological media including serum, liver, urine, and feces in response to high-fat diet (HFD) and IMM-H007 treatments. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography (GC) analyses were performed to quantify the bile acids and fatty acids in the liver and feces. Fecal microbiome profiling was performed using Illumina sequencing of the 16S ribosomal RNA (16S rRNA) gene. IMM-H007 improved the metabolism of carbohydrate, ketone bodies, fatty acids, amino acids and bile acids in hyperlipidemic hamsters. The correlation between metabolite changes was explored in different biological media. Significant changes in gut microbiota were observed in the HFD and IMM-H007 treatment groups. In the HFD group at the phylum level, we found high levels of the Firmicutes genus and low levels of Bacteroidetes. In contrast, the administration of IMM-H007 reversed the levels of Firmicutes and Bacteroidetes. This reversal suggested that IMM-H007 may have the ability to regulate the composition of the gut flora. We also analyzed the correlation between the gut flora and the metabolites. Our results indicate that IMM-H007 treatment improves the hyperlipidemic metabolism and the structure of the gut microbiota in hyperlipidemic hamsters.

  16. Alternation of Gut Microbiota in Patients with Pulmonary Tuberculosis.

    PubMed

    Luo, Mei; Liu, Yong; Wu, Pengfei; Luo, Dong-Xia; Sun, Qun; Zheng, Han; Hu, Richard; Pandol, Stephen J; Li, Qing-Feng; Han, Yuan-Ping; Zeng, Yilan

    2017-01-01

    One-third of the world's population has been infected with Mycobacterium tuberculosis ( M. tuberculosis ), a primary pathogen of the mammalian respiratory system, while about 10% of latent infections progress to active tuberculosis (TB), indicating that host and environmental factors may determine the outcomes such as infection clearance/persistence and treatment prognosis. The gut microbiota is essential for development of host immunity, defense, nutrition and metabolic homeostasis. Thus, the pattern of gut microbiota may contribute to M. tuberculosis infection and prognosis. In current study we characterized the differences in gut bacterial communities in new tuberculosis patients (NTB), recurrent tuberculosis patients (RTB), and healthy control. The abundance-based coverage estimator (ACE) showed the diversity index of the gut microbiota in the patients with recurrent tuberculosis was increased significantly compared with healthy controls ( p < 0.05). At the phyla level, Actinobacteria and Proteobacteria, which contain many pathogenic species, were significantly enriched in the feces RTB patients. Conversely, phylum Bacteroidetes, containing a variety of beneficial commensal organisms, was reduced in the patients with the recurrent tuberculosis compared to healthy controls. The Gram-negative genus Prevotella of oral origin from phylum of Bacteroidetes and genus Lachnospira from phylum of Firmicutes were significantly decreased in both the new and recurrent TB patient groups, compared with the healthy control group ( p < 0.05). We also found that there was a positive correlation between the gut microbiota and peripheral CD4+ T cell counts in the patients. This study, for the first time, showed associations between gut microbiota with tuberculosis and its clinical outcomes. Maintaining eubiosis, namely homeostasis of gut microbiota, may be beneficial for host recovery and prevention of recurrence of M. tuberculosis infection.

  17. Bacterioplankton diversity and community composition in the Southern Lagoon of Venice.

    PubMed

    Simonato, Francesca; Gómez-Pereira, Paola R; Fuchs, Bernhard M; Amann, Rudolf

    2010-04-01

    The Lagoon of Venice is a large water basin that exchanges water with the Northern Adriatic Sea through three large inlets. In this study, the 16S rRNA approach was used to investigate the bacterial diversity and community composition within the southern basin of the Lagoon of Venice and at one inlet in October 2007 and June 2008. Comparative sequence analysis of 645 mostly partial 16S rRNA gene sequences indicated high diversity and dominance of Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes at the lagoon as well as at the inlet station, therefore pointing to significant mixing. Many of these sequences were close to the 16S rRNA of marine, often coastal, bacterioplankton, such as the Roseobacter clade, the family Vibrionaceae, and class Flavobacteria. Sequences of Actinobacteria were indicators of a freshwater input. The composition of the bacterioplankton was quantified by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) with a set of rRNA-targeted oligonucleotide probes. CARD-FISH counts corroborated the dominance of members of the phyla Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. When assessed by a probe set for the quantification of selected clades within Alphaproteobacteria and Gammaproteobacteria, bacterioplankton composition differed between October 2007 and June 2008, and also between the inlet and the lagoon. In particular, members of the readily culturable copiotrophic gammaproteobacterial genera Vibrio, Alteromonas and Pseudoalteromonas were enriched in the southern basin of the Lagoon of Venice. Interestingly, the alphaproteobacterial SAR11 clade and related clusters were also present in high abundances at the inlet and within the lagoon, which was indicative of inflow of water from the open sea.

  18. Soil bacterial consortia and previous exposure enhance the biodegradation of sulfonamides from pig manure.

    PubMed

    Islas-Espinoza, Marina; Reid, Brian J; Wexler, Margaret; Bond, Philip L

    2012-07-01

    Persistence or degradation of synthetic antibiotics in soil is crucial in assessing their environmental risks. Microbial catabolic activity in a sandy loamy soil with pig manure using 12C- and 14C-labelled sulfamethazine (SMZ) respirometry showed that SMZ was not readily degradable. But after 100 days, degradation in sulfadiazine-exposed manure was 9.2%, far greater than soil and organic manure (0.5% and 0.11%, respectively, p < 0.05). Abiotic degradation was not detected suggesting microbial catabolism as main degradation mechanism. Terminal restriction fragment length polymorphism showed biodiversity increases within 1 day of SMZ spiking and especially after 200 days, although some species plummeted. A clone library from the treatment with highest degradation showed that most bacteria belonged to α, β and γ classes of Proteobacteria, Firmicutes, Bacteroidetes and Acidobacteria. Proteobacteria (α, β and γ), Firmicutes and Bacteroidetes which were the most abundant classes on day 1 also decreased most following prolonged exposure. From the matrix showing the highest degradation rate, 17 SMZ-resistant isolates biodegraded low levels of 14C-labelled SMZ when each species was incubated separately (0.2-1.5%) but biodegradation was enhanced when the four isolates with the highest biodegradation were incubated in a consortium (Bacillus licheniformis, Pseudomonas putida, Alcaligenes sp. and Aquamicrobium defluvium as per 16S rRNA gene sequencing), removing up to 7.8% of SMZ after 20 days. One of these species (B. licheniformis) was a known livestock and occasional human pathogen. Despite an environmental role of these species in sulfonamide bioremediation, the possibility of horizontal transfer of pathogenicity and resistance genes should caution against an indiscriminate use of these species as sulfonamide degraders.

  19. Illumina Miseq platform analysis caecum bacterial communities of rex rabbits fed with different antibiotics.

    PubMed

    Zou, Fuqin; Zeng, Dong; Wen, Bin; Sun, Hao; Zhou, Yi; Yang, Mingyue; Peng, Zhirong; Xu, Shuai; Wang, Hesong; Fu, Xiangchao; Du, Dan; Zeng, Yan; Zhu, Hui; Pan, Kangcheng; Jing, Bo; Wang, Ping; Ni, Xueqin

    2016-12-01

    Antibiotics have been widely used for the prevention and the treatment of diseases to humans and animals, and they have fed additives for agricultural animals to promote growth. However, there is a growing concern over the practice due to its side effects on intestinal microbial communities which plays a vital role in animals' health. To investigate the effect of antibiotics on the bacterial population of the caecum in rex rabbits, 80 rex rabbits were randomly divided into four groups: control group (B, basal diet), chlortetracycline group (C, 50 mg/kg), colistin sulfate group (S, 20 mg/kg) and zinc bacitracin group (Z, 40 mg/kg). Caecum microbial communities of rex rabbits from the four groups were analyzed through Illumina Miseq platform after being fed 28 days. The results showed that most obtained sequences belongs to Firmicutes followed by Bacteroidetes, and the ratio of Bacteroidetes/Firmicutes in C group (42.31 %) was higher than that in Z group (21.84 %). Zinc bacitracin supplementation caused a significant decreased of the Proteobacteria phylum and Lactobacillus spp. (P < 0.05), while the Lactobacillus spp. significantly increased in S group (P < 0.05). In addition, Ruminococcus spp., especially Ruminococcus albus were the predominant bacterial species found in both S and Z groups. The proportion of Coprococcus spp. significantly increased in Z group (P < 0.05). These findings suggested that the antibiotics used may cause significant changes in the caecum microbiota of rex rabbits, and we also found C group had a similarity caecum bacteria structure with B group which was probably due to the high levels of chlortetracycline resistance.

  20. Comparative fecal metagenomics unveils unique functional capacity of the swine gut

    PubMed Central

    2011-01-01

    Background Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health as well as to food and water safety due to the presence of human pathogens in pig feces. Nonetheless, limited information on the functional diversity of the swine gut microbiome is available. Results Analysis of 637, 722 pyrosequencing reads (130 megabases) generated from Yorkshire pig fecal DNA extracts was performed to help better understand the microbial diversity and largely unknown functional capacity of the swine gut microbiome. Swine fecal metagenomic sequences were annotated using both MG-RAST and JGI IMG/M-ER pipelines. Taxonomic analysis of metagenomic reads indicated that swine fecal microbiomes were dominated by Firmicutes and Bacteroidetes phyla. At a finer phylogenetic resolution, Prevotella spp. dominated the swine fecal metagenome, while some genes associated with Treponema and Anareovibrio species were found to be exclusively within the pig fecal metagenomic sequences analyzed. Functional analysis revealed that carbohydrate metabolism was the most abundant SEED subsystem, representing 13% of the swine metagenome. Genes associated with stress, virulence, cell wall and cell capsule were also abundant. Virulence factors associated with antibiotic resistance genes with highest sequence homology to genes in Bacteroidetes, Clostridia, and Methanosarcina were numerous within the gene families unique to the swine fecal metagenomes. Other abundant proteins unique to the distal swine gut shared high sequence homology to putative carbohydrate membrane transporters. Conclusions The results from this metagenomic survey demonstrated the presence of genes associated with resistance to antibiotics and carbohydrate metabolism suggesting that the swine gut microbiome may be shaped by husbandry practices. PMID:21575148

  1. Bacterial Community Associated with the Intestinal Tract of Chinese Mitten Crab (Eriocheir sinensis) Farmed in Lake Tai, China

    PubMed Central

    Chen, Xiaobing; Di, Panpan; Wang, Hongming; Li, Bailin; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-01-01

    Chinese mitten crab (CMC, Eriocheir sinensis) is an economically valuable species in South-East Asia that has been widely farmed in China. Characterization of the intestinal bacterial diversity of CMC will provide insights into the aquaculturing of CMCs. Based on the analysis of cloned 16S rRNA genes from culture-independent CMC gut bacteria, 124 out of 128 different clones reveal >95% nucleotide similarity to the species belonging to the four phyla of Tenericutes, Bacteroidetes, Firmicutes and Proteobacteria; one clone shows 91% sequence similarity to the member of TM7 (a candidate phylum without cultured representatives). Fluorescent in situ hybridization also reveals the abundance of Bacteroidetes in crab intestine. Electron micrographs show that spherical and filamentous bacteria are closely associated with the microvillus brush border of the midgut epithelium and are often inserted into the space between the microvilli using a stalk-like cell appendage. In contrast, the predominant rod-shaped bacteria in the hindgut are tightly attached to the epithelium surface by an unusual pili-like structure. Both 16S rRNA gene denaturing gel gradient electrophoresis and metagenome library indicate that the CMC Mollicutes group 2 appears to be present in both the midgut and hindgut with no significant difference in abundance. The CMC Mollicutes group 1, however, was found mostly in the midgut of CMCs. The CMC gut Mollicutes phylotypes appear to be most closely related to Mollicutes symbionts detected in the gut of isopods (Crustacea: Isopoda). Overall, the results suggest that CMCs harbor diverse, novel and specific gut bacteria, which are likely to live in close relationships with the CMC host. PMID:25875449

  2. Characterization of the Prokaryotic Diversity in Cold Saline Perennial Springs of the Canadian High Arctic▿

    PubMed Central

    Perreault, Nancy N.; Andersen, Dale T.; Pollard, Wayne H.; Greer, Charles W.; Whyte, Lyle G.

    2007-01-01

    The springs at Gypsum Hill and Colour Peak on Axel Heiberg Island in the Canadian Arctic originate from deep salt aquifers and are among the few known examples of cold springs in thick permafrost on Earth. The springs discharge cold anoxic brines (7.5 to 15.8% salts), with a mean oxidoreduction potential of −325 mV, and contain high concentrations of sulfate and sulfide. We surveyed the microbial diversity in the sediments of seven springs by denaturing gradient gel electrophoresis (DGGE) and analyzing clone libraries of 16S rRNA genes amplified with Bacteria and Archaea-specific primers. Dendrogram analysis of the DGGE banding patterns divided the springs into two clusters based on their geographic origin. Bacterial 16S rRNA clone sequences from the Gypsum Hill library (spring GH-4) were classified into seven phyla (Actinobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, Proteobacteria, Spirochaetes, and Verrucomicrobia); Deltaproteobacteria and Gammaproteobacteria sequences represented half of the clone library. Sequences related to Proteobacteria (82%), Firmicutes (9%), and Bacteroidetes (6%) constituted 97% of the bacterial clone library from Colour Peak (spring CP-1). Most GH-4 archaeal clone sequences (79%) were related to the Crenarchaeota while half of the CP-1 sequences were related to orders Halobacteriales and Methanosarcinales of the Euryarchaeota. Sequences related to the sulfur-oxidizing bacterium Thiomicrospira psychrophila dominated both the GH-4 (19%) and CP-1 (45%) bacterial libraries, and 56 to 76% of the bacterial sequences were from potential sulfur-metabolizing bacteria. These results suggest that the utilization and cycling of sulfur compounds may play a major role in the energy production and maintenance of microbial communities in these unique, cold environments. PMID:17220254

  3. Temporal analysis of the effect of extruded flaxseed on the swine gut microbiota.

    PubMed

    Holman, Devin B; Baurhoo, Bushansingh; Chénier, Martin R

    2014-10-01

    Flaxseed is a rich source of α-linolenic acid, an essential ω-3 fatty acid reported to have beneficial health effects in humans. Feeding swine a diet supplemented with flaxseed has been found to enrich pork products with ω-3 fatty acids. However, the effect of flaxseed supplementation on the swine gut microbiota has not been assessed to date. The purpose of this study was to investigate if extruded flaxseed has any impact on the bacterial and archaeal microbiota in the feces of growing-finishing pigs over a 51-day period, using denaturing gradient gel electrophoresis (DGGE) and real-time PCR. Bacterial DGGE profile analysis revealed major temporal shifts in the bacterial microbiota with only minor ones related to diet. The archaeal microbiota was significantly less diverse than that of Bacteria. The majority of bacterial DGGE bands sequenced belonged to the Firmicutes phylum while the archaeal DGGE bands were found to consist of only 2 species, Methanobrevibacter smithii and Methanosphaera stadtmanae. The abundance of Bacteroidetes decreased significantly from day 0 to day 21 in all diet groups while the abundance of Firmicutes was relatively stable across all diet cohorts and sampling times. There was also no significant correlation between pig mass and the ratio of Firmicutes to Bacteroidetes. While the addition of extruded flaxseed to the feed of growing-finishing pigs was beneficial for improving ω-3 fatty acid content of pork, it had no detectable impact on the fecal bacterial and archaeal microbiota, suggesting that extruded flaxseed may be used to improve meat quality without adverse effect on the swine gut microbiota or animal performance.

  4. Tumour-associated and non-tumour-associated microbiota in colorectal cancer

    PubMed Central

    Flemer, Burkhardt; Lynch, Denise B; Brown, Jillian M R; Jeffery, Ian B; Ryan, Feargal J; Claesson, Marcus J; O'Riordain, Micheal; Shanahan, Fergus; O'Toole, Paul W

    2017-01-01

    Objective A signature that unifies the colorectal cancer (CRC) microbiota across multiple studies has not been identified. In addition to methodological variance, heterogeneity may be caused by both microbial and host response differences, which was addressed in this study. Design We prospectively studied the colonic microbiota and the expression of specific host response genes using faecal and mucosal samples (‘ON’ and ‘OFF’ the tumour, proximal and distal) from 59 patients undergoing surgery for CRC, 21 individuals with polyps and 56 healthy controls. Microbiota composition was determined by 16S rRNA amplicon sequencing; expression of host genes involved in CRC progression and immune response was quantified by real-time quantitative PCR. Results The microbiota of patients with CRC differed from that of controls, but alterations were not restricted to the cancerous tissue. Differences between distal and proximal cancers were detected and faecal microbiota only partially reflected mucosal microbiota in CRC. Patients with CRC can be stratified based on higher level structures of mucosal-associated bacterial co-abundance groups (CAGs) that resemble the previously formulated concept of enterotypes. Of these, Bacteroidetes Cluster 1 and Firmicutes Cluster 1 were in decreased abundance in CRC mucosa, whereas Bacteroidetes Cluster 2, Firmicutes Cluster 2, Pathogen Cluster and Prevotella Cluster showed increased abundance in CRC mucosa. CRC-associated CAGs were differentially correlated with the expression of host immunoinflammatory response genes. Conclusions CRC-associated microbiota profiles differ from those in healthy subjects and are linked with distinct mucosal gene-expression profiles. Compositional alterations in the microbiota are not restricted to cancerous tissue and differ between distal and proximal cancers. PMID:26992426

  5. Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)genomic Data

    PubMed Central

    Vital, Marius; Howe, Adina Chuang

    2014-01-01

    ABSTRACT Butyrate-producing bacteria have recently gained attention, since they are important for a healthy colon and when altered contribute to emerging diseases, such as ulcerative colitis and type II diabetes. This guild is polyphyletic and cannot be accurately detected by 16S rRNA gene sequencing. Consequently, approaches targeting the terminal genes of the main butyrate-producing pathway have been developed. However, since additional pathways exist and alternative, newly recognized enzymes catalyzing the terminal reaction have been described, previous investigations are often incomplete. We undertook a broad analysis of butyrate-producing pathways and individual genes by screening 3,184 sequenced bacterial genomes from the Integrated Microbial Genome database. Genomes of 225 bacteria with a potential to produce butyrate were identified, including many previously unknown candidates. The majority of candidates belong to distinct families within the Firmicutes, but members of nine other phyla, especially from Actinobacteria, Bacteroidetes, Fusobacteria, Proteobacteria, Spirochaetes, and Thermotogae, were also identified as potential butyrate producers. The established gene catalogue (3,055 entries) was used to screen for butyrate synthesis pathways in 15 metagenomes derived from stool samples of healthy individuals provided by the HMP (Human Microbiome Project) consortium. A high percentage of total genomes exhibited a butyrate-producing pathway (mean, 19.1%; range, 3.2% to 39.4%), where the acetyl-coenzyme A (CoA) pathway was the most prevalent (mean, 79.7% of all pathways), followed by the lysine pathway (mean, 11.2%). Diversity analysis for the acetyl-CoA pathway showed that the same few firmicute groups associated with several Lachnospiraceae and Ruminococcaceae were dominating in most individuals, whereas the other pathways were associated primarily with Bacteroidetes. PMID:24757212

  6. Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows

    PubMed Central

    Opdahl, Lee James; Gonda, Michael G.

    2018-01-01

    The ability of ruminants to utilize cellulosic biomass is a result of the metabolic activities of symbiotic microbial communities that reside in the rumen. To gain further insight into this complex microbial ecosystem, a selection-based batch culturing approach was used to identify candidate cellulose-utilizing bacterial consortia. Prior to culturing with cellulose, rumen contents sampled from three beef cows maintained on a forage diet shared 252 Operational Taxonomic Units (OTUs), accounting for 41.6–50.0% of bacterial 16S rRNA gene sequences in their respective samples. Despite this high level of overlap, only one OTU was enriched in cellulose-supplemented cultures from all rumen samples. Otherwise, each set of replicate cellulose supplemented cultures originating from a sampled rumen environment was found to have a distinct bacterial composition. Two of the seven most enriched OTUs were closely matched to well-established rumen cellulose utilizers (Ruminococcus flavefaciens and Fibrobacter succinogenes), while the others did not show high nucleotide sequence identity to currently defined bacterial species. The latter were affiliated to Prevotella (1 OTU), Ruminococcaceae (3 OTUs), and the candidate phylum Saccharibacteria (1 OTU), respectively. While further investigations will be necessary to elucidate the metabolic function(s) of each enriched OTU, these results together further support cellulose utilization as a ruminal metabolic trait shared across vast phylogenetic distances, and that the rumen is an environment conducive to the selection of a broad range of microbial adaptations for the digestion of plant structural polysaccharides. PMID:29495256

  7. Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows.

    PubMed

    Opdahl, Lee James; Gonda, Michael G; St-Pierre, Benoit

    2018-02-24

    The ability of ruminants to utilize cellulosic biomass is a result of the metabolic activities of symbiotic microbial communities that reside in the rumen. To gain further insight into this complex microbial ecosystem, a selection-based batch culturing approach was used to identify candidate cellulose-utilizing bacterial consortia. Prior to culturing with cellulose, rumen contents sampled from three beef cows maintained on a forage diet shared 252 Operational Taxonomic Units (OTUs), accounting for 41.6-50.0% of bacterial 16S rRNA gene sequences in their respective samples. Despite this high level of overlap, only one OTU was enriched in cellulose-supplemented cultures from all rumen samples. Otherwise, each set of replicate cellulose supplemented cultures originating from a sampled rumen environment was found to have a distinct bacterial composition. Two of the seven most enriched OTUs were closely matched to well-established rumen cellulose utilizers ( Ruminococcus flavefaciens and Fibrobacter succinogenes ), while the others did not show high nucleotide sequence identity to currently defined bacterial species. The latter were affiliated to Prevotella (1 OTU), Ruminococcaceae (3 OTUs), and the candidate phylum Saccharibacteria (1 OTU), respectively. While further investigations will be necessary to elucidate the metabolic function(s) of each enriched OTU, these results together further support cellulose utilization as a ruminal metabolic trait shared across vast phylogenetic distances, and that the rumen is an environment conducive to the selection of a broad range of microbial adaptations for the digestion of plant structural polysaccharides.

  8. Raineya orbicola gen. nov., sp. nov. a slightly thermophilic bacterium of the phylum Bacteroidetes and the description of Raineyaceae fam. nov.

    PubMed

    Albuquerque, Luciana; Polónia, Ana Rita M; Barroso, Cristina; Froufe, Hugo J C; Lage, Olga; Lobo-da-Cunha, Alexandre; Egas, Conceição; da Costa, Milton S

    2018-04-01

    An isolate, designated SPSPC-11 T , with an optimum growth temperature of about 50 °C and an optimum pH for growth between 7.5 and 8.0, was recovered from a hot spring in central Portugal. Based on phylogenetic analysis of its 16S rRNA sequence, the new organism is most closely related to the species of the genus Thermonema but with a pairwise sequence similarity of <85 %. The isolate was orange-pigmented, formed non-motile long filaments and rod-shaped cells that stain Gram-negative. The organism was strictly aerobic, oxidase-positive and catalase-positive. The major fatty acids were iso-C15:0, iso-C15 : 0 2-OH and iso-C17 : 0 3-OH. The major polar lipids were one aminophospholipid, two aminolipids and three unidentified lipids. Menaquinone 7 was the major respiratory quinone. The DNA G+C content of strain SPSPC-11 T was 37.6 mol% (draft genome sequence). The high quality draft genome sequence corroborated many of the phenotypic characteristics of strain SPSPC-11 T . Based on genotypic, phylogenetic, physiological and biochemical characterization we describe a new species of a novel genus represented by strain SPSPC-11 T (=CECT 9012 T =LMG 29233 T ) for which we propose the name Raineya orbicola gen. nov., sp. nov. We also describe the family Raineyaceae to accommodate this new genus and species.

  9. Questionable Specificity of Genetic Total Faecal Pollution Markers for Integrated Water Quality Monitoring and Source Tracking

    NASA Astrophysics Data System (ADS)

    Vierheilig, Julia; Reischer, Georg H.; Farnleitner, Andreas H.

    2010-05-01

    Characterisation of microbial faecal hazards in water is a fundamental aspect for target-orientated water resources management to achieve appropriate water quality for various purposes like water supply or agriculture and thus to minimize related health risks. Nowadays the management of water resources increasingly demands detailed knowledge on the extent and the origin of microbial pollution. Cultivation of standard faecal indicator bacteria, which has been used for over a century to test the microbiological water quality, cannot sufficiently meet these challenges. The abundant intestinal bacterial populations are very promising alternative targets for modern faecal indication systems. Numerous assays for the detection of genetic markers targeting source-specific populations of the phylum Bacteroidetes have been developed in recent years. In some cases markers for total faecal pollution were also proposed in order to relate source-specific marker concentrations to general faecal pollution levels. However, microbial populations in intestinal and non-intestinal systems exhibit a dazzling array of diversity and molecular analysis of microbial faecal pollution has been based on a fragmentary puzzle of very limited sequence information. The aim of this study was to test the available qPCR-based methods detecting genetic Bacteroidetes markers for total faecal pollution in terms of their value and specificity as indicators of faecal pollution. We applied the AllBac (Layton et al., 2006) the BacUni (Kildare et al., 2007) and the Bacteroidetes (Dick and Field, 2004) assays on soil DNA samples. Samples were collected in well characterised karst spring catchments in Austria's Eastern Calcareous Alps. They were at various levels of altitude between 800 and 1800 meters above sea level and from several different habitats (woodland, alpine pastures, krummholz). In addition we tried to choose sampling sites representing a presumptive gradient of faecal pollution levels. For

  10. Effects of the Dietary Protein and Carbohydrate Ratio on Gut Microbiomes in Dogs of Different Body Conditions

    PubMed Central

    Lauber, Christian L.; Czarnecki-Maulden, Gail; Pan, Yuanlong; Hannah, Steven S.

    2017-01-01

    ABSTRACT Obesity has become a health epidemic in both humans and pets. A dysbiotic gut microbiota has been associated with obesity and other metabolic disorders. High-protein, low-carbohydrate (HPLC) diets have been recommended for body weight loss, but little is known about their effects on the canine gut microbiome. Sixty-three obese and lean Labrador retrievers and Beagles (mean age, 5.72 years) were fed a common baseline diet for 4 weeks in phase 1, followed by 4 weeks of a treatment diet, specifically, the HPLC diet (49.4% protein, 10.9% carbohydrate) or a low-protein, high-carbohydrate (LPHC) diet (25.5% protein, 38.8% carbohydrate) in phase 2. 16S rRNA gene profiling revealed that dietary protein and carbohydrate ratios have significant impacts on gut microbial compositions. This effect appeared to be more evident in obese dogs than in lean dogs but was independent of breed. Consumption of either diet increased the bacterial evenness, but not the richness, of the gut compared to that after consumption of the baseline diet. Macronutrient composition affected taxon abundances, mainly within the predominant phyla, Firmicutes and Bacteroidetes. The LPHC diet appeared to favor the growth of Bacteroides uniformis and Clostridium butyricum, while the HPLC diet increased the abundances of Clostridium hiranonis, Clostridium perfringens, and Ruminococcus gnavus and enriched microbial gene networks associated with weight maintenance. In addition, we observed a decrease in the Bacteroidetes to Firmicutes ratio and an increase in the Bacteroides to Prevotella ratio in the HPLC diet-fed dogs compared to these ratios in dogs fed other diets. Finally, analysis of the effect of diet on the predicted microbial gene network was performed using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt). PMID:28119466

  11. Of the milk sugars, galactose, but not prebiotic galacto-oligosaccharide, improves insulin sensitivity in male Sprague-Dawley rats.

    PubMed

    Stahel, Priska; Kim, Julie J; Xiao, Changting; Cant, John P

    2017-01-01

    Consumption of dairy products reduces risk of type 2 diabetes. Milk proteins and fats exhibit anti-diabetic properties but milk sugars have been studied little in this context. Galactose from milk lactose is readily converted to glycogen in the liver but its effects on insulin sensitivity have not been assessed. Prebiotic oligosaccharides from milk alter gut microbiota and can thereby influence host metabolism. Our objective was to assess the effect on insulin sensitivity of dietary galactose compared to glucose and fructose, and fermentable galacto-oligosaccharides compared to non-fermentable methylcellulose. Diets containing 15% of dry matter from glucose, fructose, galactose, galacto-oligosaccharides, or methylcellulose were fed to 36 rats per diet for 9 weeks. Hyperinsulinemic-euglycemic clamps with [3-3H]glucose infusion and a steady-state 2-[1-14C]deoxyglucose bolus injection were used to assess insulin sensitivity and glucose uptake indices. Tissue was collected in fed, fasted and fasted, insulin-stimulated states. Galactose increased glucose infusion rate during the clamp by 53% and decreased endogenous glucose production by 57% compared to glucose and fructose. Fed-state hepatic glycogen content was greater with galactose compared to glucose and fructose, consistent with a potentiation of the insulin effect on glycogen synthase by dephosphorylation. Galactose decreased the fecal Firmicutes:Bacteroidetes ratio while galacto-oligosaccharides increased abundance of fecal Bifidobacterium spp. 481-fold compared to methylcellulose, and also increased abundance of Lactobacillus spp. and Bacteroidetes. Galacto-oligosaccharides did not affect glucose infusion rate or endogenous glucose production during basal or clamp periods compared to methylcellulose. Galactose at 15% of daily intake improved hepatic insulin sensitivity in rats compared to glucose and fructose. Galactose caused an increase in fed-state hepatic glycogen content and a favourable shift in gut

  12. Faecal microbiota of healthy adults in south India: Comparison of a tribal & a rural population.

    PubMed

    Ramadass, Balamurugan; Rani, B Sandya; Pugazhendhi, Srinivasan; John, K R; Ramakrishna, Balakrishnan S

    2017-02-01

    The relevance of the gut microbiota to human health is increasingly appreciated. The objective of this study was to compare the gut microbiota of a group of adult tribals with that of healthy adult villagers in Tamil Nadu, India. Faeces were collected from 10 healthy tribal adults (TAs) in the Jawadhi hills and from 10 healthy villagers [rural adults (RAs)] in Vellore district, Tamil Nadu. DNA was extracted, and 456 bp segments comprising hypervariable regions 3 and 4 of the 16S rRNA gene were amplified, barcoded and 454 sequenced. Totally 227,710 good-quality reads were analyzed. TAs consumed a millets-based diet, ate pork every day, and did not consume milk or milk products. RAs consumed a rice-based diet with meat intake once a week. In both groups, Firmicutes was the most abundant phylum, followed by Proteobacteria, Bacteroidetes and Actinobacteria. The median Firmicutes-to-Bacteroidetes ratio was 34.0 in TA and 92.9 in RA groups. Actinobacteria were significantly low in TA, possibly due to non-consumption of milk. Clostridium constituted the most abundant genus in both groups, but was significantly more abundant in TAs than RAs, while Streptococcus was significantly more abundant in RA (P<0.05). Analyses of genetic distance revealed that the microbiota were distinctly different between TA and RA, and principal component analysis using 550 distinct taxonomically identifiable sequences revealed a clear separation of microbiota composition in the two groups. Phylogenetic analysis of major microbiota indicated clustering of microbial groups at different major branch points for TAs and RAs. Phylum Firmicutes and genus Clostridium constituted the bulk of the faecal microbiota, while significant differences in composition between the groups were probably due to differences in diet and lifestyle.

  13. Taxonomic Identification of Ruminal Epithelial Bacterial Diversity during Rumen Development in Goats

    PubMed Central

    Jiao, Jinzhen; Huang, Jinyu; Zhou, Chuanshe

    2015-01-01

    Understanding of the colonization process of epithelial bacteria attached to the rumen tissue during rumen development is very limited. Ruminal epithelial bacterial colonization is of great significance for the relationship between the microbiota and the host and can influence the early development and health of the host. MiSeq sequencing of 16S rRNA genes and quantitative real-time PCR (qPCR) were applied to characterize ruminal epithelial bacterial diversity during rumen development in this study. Seventeen goat kids were selected to reflect the no-rumination (0 and 7 days), transition (28 and 42 days), and rumination (70 days) phases of animal development. Alpha diversity indices (operational taxonomic unit [OTU] numbers, Chao estimate, and Shannon index) increased (P < 0.01) with age, and principal coordinate analysis (PCoA) revealed that the samples clustered together according to age group. Phylogenetic analysis revealed that Proteobacteria, Firmicutes, and Bacteroidetes were detected as the dominant phyla regardless of the age group, and the abundance of Proteobacteria declined quadratically with age (P < 0.001), while the abundances of Bacteroidetes (P = 0.088) and Firmicutes (P = 0.009) increased with age. At the genus level, Escherichia (80.79%) dominated at day zero, while Prevotella, Butyrivibrio, and Campylobacter surged (linearly; P < 0.01) in abundance at 42 and 70 days. qPCR showed that the total copy number of epithelial bacteria increased linearly (P = 0.013) with age. In addition, the abundances of the genera Butyrivibrio, Campylobacter, and Desulfobulbus were positively correlated with rumen weight, rumen papilla length, ruminal ammonia and total volatile fatty acid concentrations, and activities of carboxymethylcellulase (CMCase) and xylanase. Taking the data together, colonization by ruminal epithelial bacteria is age related (achieved at 2 months) and might participate in the anatomic and functional development of the rumen. PMID:25769827

  14. Bacterial community analysis of anoxic/aeration (A/O) system in a combined process for gibberellin wastewater treatment

    PubMed Central

    Ouyang, Erming; Lu, Yao; Ouyang, Jiating; Wang, Lele; Wang, Xiaohui

    2017-01-01

    Gibberellin wastewater cannot be directly discharged without treatment due to its high concentrations of sulfate and organic compounds and strong acidity. Therefore, multi-stage anaerobic bioreactor + micro-aerobic+ anoxic/aeration (A/O) + biological contact oxidation combined processes are used to treat gibberellin wastewater. However, knowledge of the treatment effects of the A/O process and bacterial community structure in the aeration tank reactors of such systems is sparse. Therefore, this study was conducted to investigate the treatment effects and operation of the A/O process on gibberellin wastewater, as well as changes in the bacterial community structure of activated sludge in the aeration tank during treatment. Moreover, removal was examined based on evaluation of effluent after A/O treatment. Although influent chemical oxygen demand (COD), NH3-N and total phosphorus (TP) fluctuated, effluent COD, NH3-N and TP remained stable. Moreover, average COD, NH3-N and TP removal efficiency were 68.41%, 93.67% and 45.82%, respectively, during the A/O process. At the phylum level, Proteobacteria was the dominant phylum in all samples, followed by Chloroflexi, Bacteroidetes and Actinobacteria. Proteobacteria played an important role in the removal of organic matter. Chloroflexi was found to be responsible for the degradation of carbohydrates and Bacteroidetes also had been found to be responsible for the degradation of complex organic matters. Actinobacteria are able to degrade a variety of environmental chemicals. Additionally, Anaerolineaceae_uncultured was the major genus in samples collected on May 25, 2015, while Novosphingobium and Nitrospira were dominant in most samples. Nitrosomonas are regarded as the dominant ammonia-oxidizing bacteria, while Nitrospira are the main nitrite-oxidizing bacteria. Bacterial community structure varied considerably with time, and a partial Mantel test showed a highly significant positive correlation between bacterial community

  15. Diversity analysis of gut microbiota in osteoporosis and osteopenia patients.

    PubMed

    Wang, Jihan; Wang, Yangyang; Gao, Wenjie; Wang, Biao; Zhao, Heping; Zeng, Yuhong; Ji, Yanhong; Hao, Dingjun

    2017-01-01

    Some evidence suggests that bone health can be regulated by gut microbiota. To better understand this, we performed 16S ribosomal RNA sequencing to analyze the intestinal microbial diversity in primary osteoporosis (OP) patients, osteopenia (ON) patients and normal controls (NC). We observed an inverse correlation between the number of bacterial taxa and the value of bone mineral density. The diversity estimators in the OP and ON groups were increased compared with those in the NC group. Beta diversity analyses based on hierarchical clustering and principal coordinate analysis (PCoA) could discriminate the NC samples from OP and ON samples. Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria constituted the four dominant phyla in all samples. Proportion of Firmicutes was significantly higher and Bacteroidetes was significantly lower in OP samples than that in NC samples ( p  < 0.05), Gemmatimonadetes and Chloroflexi were significantly different between OP and NC group as well as between ON and NC group ( p  < 0.01). A total of 21 genera with proportions above 1% were detected and Bacteroides accounted for the largest proportion in all samples. The Blautia, Parabacteroides and Ruminococcaceae genera differed significantly between the OP and NC group ( p  < 0.05). Linear discriminant analysis (LDA) results showed one phylum community and seven phylum communities were enriched in ON and OP, respectively. Thirty-five genus communities, five genus communities and two genus communities were enriched in OP, ON and NC, respectively. The results of this study indicate that gut microbiota may be a critical factor in osteoporosis development, which can further help us search for novel biomarkers of gut microbiota in OP and understand the interaction between gut microbiota and bone health.

  16. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates.

    PubMed

    Vandeputte, Doris; Falony, Gwen; Vieira-Silva, Sara; Tito, Raul Y; Joossens, Marie; Raes, Jeroen

    2016-01-01

    The assessment of potentially confounding factors affecting colon microbiota composition is essential to the identification of robust microbiome based disease markers. Here, we investigate the link between gut microbiota variation and stool consistency using Bristol Stool Scale classification, which reflects faecal water content and activity, and is considered a proxy for intestinal colon transit time. Through 16S rDNA Illumina profiling of faecal samples of 53 healthy women, we evaluated associations between microbiome richness, Bacteroidetes:Firmicutes ratio, enterotypes, and genus abundance with self-reported, Bristol Stool Scale-based stool consistency. Each sample's microbiota growth potential was calculated to test whether transit time acts as a selective force on gut bacterial growth rates. Stool consistency strongly correlates with all known major microbiome markers. It is negatively correlated with species richness, positively associated to the Bacteroidetes:Firmicutes ratio, and linked to Akkermansia and Methanobrevibacter abundance. Enterotypes are distinctly distributed over the BSS-scores. Based on the correlations between microbiota growth potential and stool consistency scores within both enterotypes, we hypothesise that accelerated transit contributes to colon ecosystem differentiation. While shorter transit times can be linked to increased abundance of fast growing species in Ruminococcaceae-Bacteroides samples, hinting to a washout avoidance strategy of faster replication, this trend is absent in Prevotella-enterotyped individuals. Within this enterotype adherence to host tissue therefore appears to be a more likely bacterial strategy to cope with washout. The strength of the associations between stool consistency and species richness, enterotypes and community composition emphasises the crucial importance of stool consistency assessment in gut metagenome-wide association studies. Published by the BMJ Publishing Group Limited. For permission to

  17. Life and Death of Deep-Sea Vents: Bacterial Diversity and Ecosystem Succession on Inactive Hydrothermal Sulfides

    PubMed Central

    Sylvan, Jason B.; Toner, Brandy M.; Edwards, Katrina J.

    2012-01-01

    ABSTRACT Hydrothermal chimneys are a globally dispersed habitat on the seafloor associated with mid-ocean ridge (MOR) spreading centers. Active, hot, venting sulfide structures from MORs have been examined for microbial diversity and ecology since their discovery in the mid-1970s, and recent work has also begun to explore the microbiology of inactive sulfides—structures that persist for decades to millennia and form moderate to massive deposits at and below the seafloor. Here we used tag pyrosequencing of the V6 region of the 16S rRNA and full-length 16S rRNA sequencing on inactive hydrothermal sulfide chimney samples from 9°N on the East Pacific Rise to learn their bacterial composition, metabolic potential, and succession from venting to nonventing (inactive) regimes. Alpha-, beta-, delta-, and gammaproteobacteria and members of the phylum Bacteroidetes dominate all inactive sulfides. Greater than 26% of the V6 tags obtained are closely related to lineages involved in sulfur, nitrogen, iron, and methane cycling. Epsilonproteobacteria represent <4% of the V6 tags recovered from inactive sulfides and 15% of the full-length clones, despite their high abundance in active chimneys. Members of the phylum Aquificae, which are common in active vents, were absent from both the V6 tags and full-length 16S rRNA data sets. In both analyses, the proportions of alphaproteobacteria, betaproteobacteria, and members of the phylum Bacteroidetes were greater than those found on active hydrothermal sulfides. These shifts in bacterial population structure on inactive chimneys reveal ecological succession following cessation of venting and also imply a potential shift in microbial activity and metabolic guilds on hydrothermal sulfides, the dominant biome that results from seafloor venting. PMID:22275502

  18. Thermal processing of food reduces gut microbiota diversity of the host and triggers adaptation of the microbiota: evidence from two vertebrates.

    PubMed

    Zhang, Zhimin; Li, Dapeng

    2018-05-31

    Adoption of thermal processing of the diet drives human evolution and gut microbiota diversity changes in a dietary habit-dependent manner. However, whether thermal processing of food triggers gut microbial variation remains unknown. Herein, we compared the microbiota of non-thermally processed and thermally processed food (NF and TF) and investigated gut microbiota associated with NF and TF in catfish Silurus meridionalis and C57BL/6 mice to assess effects of thermal processing of food on gut microbiota and to further identify the differences in host responses. We found no differences in overall microbial composition and structure in the pairwise NF and TF, but identified differential microbial communities between food and gut. Both fish and mice fed TF had significantly lower gut microbial diversity than those fed NF. Moreover, thermal processing of food triggered the changes in their microbial communities. Comparative host studies further indicated host species determined gut microbial assemblies, even if fed with the same food. Fusobacteria was the most abundant phylum in the fish, and Bacteroidetes and Firmicutes dominated in the mice. Besides the consistent reduction of Bacteroidetes and the balanced Protebacteria, the response of other dominated gut microbiota in the fish and mice to TF was taxonomically opposite at the phylum level, and those further found at the genus level. Our results reveal that thermal processing of food strongly contributes to the reduction of gut microbial diversity and differentially drives microbial alterations in a host-dependent manner, suggesting specific adaptations of host-gut microbiota in vertebrates responding to thermal processing of food. These findings open a window of opportunity to understand the decline in gut microbial diversity and the community variation in human evolution and provide new insights into the host-specific microbial assemblages associated with the use of processing techniques in food preparation in

  19. Stratified Bacterial Diversity along Physico-chemical Gradients in High-Altitude Modern Stromatolites

    PubMed Central

    Toneatti, Diego M.; Albarracín, Virginia H.; Flores, Maria R.; Polerecky, Lubos; Farías, María E.

    2017-01-01

    At an altitude of 3,570 m, the volcanic lake Socompa in the Argentinean Andes is presently the highest site where actively forming stromatolite-like structures have been reported. Interestingly, pigment and microsensor analyses performed through the different layers of the stromatolites (50 mm-deep) showed steep vertical gradients of light and oxygen, hydrogen sulfide and pH in the porewater. Given the relatively good characterization of these physico-chemical gradients, the aim of this follow-up work was to specifically address how the bacterial diversity stratified along the top six layers of the stromatolites which seems the most metabolically important and diversified zone of the whole microbial community. We herein discussed how, in only 7 mm, a drastic succession of metabolic adaptations occurred: i.e., microbial communities shift from a UV-high/oxic world to an IR-low/anoxic/high H2S environment which force stratification and metabolic specialization of the bacterial community, thus, modulating the chemical faces of the Socompa stromatolites. The oxic zone was dominated by Deinococcus sp. at top surface (0.3 mm), followed by a second layer of Coleofasciculus sp. (0.3 to ∼2 mm). Sequences from anoxygenic phototrophic Alphaproteobacteria, along with an increasing diversity of phyla including Bacteroidetes, Spirochaetes were found at middle layers 3 and 4. Deeper layers (5–7 mm) were mostly occupied by sulfate reducers of Deltaproteobacteria, Bacteroidetes and Firmicutes, next to a high diversity and equitable community of rare, unclassified and candidate phyla. This analysis showed how microbial communities stratified in a physicochemical vertical profile and according to the light source. It also gives an insight of which bacterial metabolic capabilities might operate and produce a microbial cooperative strategy to thrive in one of the most extreme environments on Earth. PMID:28446906

  20. Stratified Bacterial Diversity along Physico-chemical Gradients in High-Altitude Modern Stromatolites.

    PubMed

    Toneatti, Diego M; Albarracín, Virginia H; Flores, Maria R; Polerecky, Lubos; Farías, María E

    2017-01-01

    At an altitude of 3,570 m, the volcanic lake Socompa in the Argentinean Andes is presently the highest site where actively forming stromatolite-like structures have been reported. Interestingly, pigment and microsensor analyses performed through the different layers of the stromatolites (50 mm-deep) showed steep vertical gradients of light and oxygen, hydrogen sulfide and pH in the porewater. Given the relatively good characterization of these physico-chemical gradients, the aim of this follow-up work was to specifically address how the bacterial diversity stratified along the top six layers of the stromatolites which seems the most metabolically important and diversified zone of the whole microbial community. We herein discussed how, in only 7 mm, a drastic succession of metabolic adaptations occurred: i.e., microbial communities shift from a UV-high/oxic world to an IR-low/anoxic/high H 2 S environment which force stratification and metabolic specialization of the bacterial community, thus, modulating the chemical faces of the Socompa stromatolites. The oxic zone was dominated by Deinococcus sp. at top surface (0.3 mm), followed by a second layer of Coleofasciculus sp. (0.3 to ∼2 mm). Sequences from anoxygenic phototrophic Alphaproteobacteria, along with an increasing diversity of phyla including Bacteroidetes, Spirochaetes were found at middle layers 3 and 4. Deeper layers (5-7 mm) were mostly occupied by sulfate reducers of Deltaproteobacteria, Bacteroidetes and Firmicutes, next to a high diversity and equitable community of rare, unclassified and candidate phyla. This analysis showed how microbial communities stratified in a physicochemical vertical profile and according to the light source. It also gives an insight of which bacterial metabolic capabilities might operate and produce a microbial cooperative strategy to thrive in one of the most extreme environments on Earth.

  1. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama desert.

    PubMed

    Rasuk, Maria Cecilia; Kurth, Daniel; Flores, Maria Regina; Contreras, Manuel; Novoa, Fernando; Poire, Daniel; Farias, Maria Eugenia

    2014-10-01

    The Central Andes in northern Chile contains a large number of closed basins whose central depression is occupied by saline lakes and salt crusts (salars). One of these basins is Salar de Llamara (850 m a.s.l.), where large domed structures of seemingly evaporitic origin forming domes can be found. In this work, we performed a detailed microbial characterization of these domes. Mineralogical studies revealed gypsum (CaSO(4)) as a major component. Microbial communities associated to these structures were analysed by 454 16S rDNA amplicon sequencing and compared between winter and summer seasons. Bacteroidetes Proteobacteria and Planctomycetes remained as the main phylogenetic groups, an increased diversity was found in winter. Comparison of the upper air-exposed part and the lower water-submerged part of the domes in both seasons showed little variation in the upper zone, showing a predominance of Chromatiales (Gammaproteobacteria), Rhodospirillales (Alphaproteobacteria), and Sphingobacteriales (Bacteroidetes). However, the submerged part showed marked differences between seasons, being dominated by Proteobacteria (Alpha and Gamma) and Verrucomicrobia in summer, but with more diverse phyla found in winter. Even though not abundant by sequence, Cyanobacteria were visually identified by scanning electron microscopy (SEM), which also revealed the presence of diatoms. Photosynthetic pigments were detected by high-performance liquid chromatography, being more diverse on the upper photosynthetic layer. Finally, the system was compared with other endoevaporite, mats microbialite and Stromatolites microbial ecosystems, showing higher similitude with evaporitic ecosystems from Atacama and Guerrero Negro. This environment is of special interest for extremophile studies because microbial life develops associated to minerals in the driest desert all over the world. Nevertheless, it is endangered by mining activity associated to copper and lithium extraction; thus, its

  2. Metagenomic Analysis of the Rumen Microbiome of Steers with Wheat-Induced Frothy Bloat.

    PubMed

    Pitta, D W; Pinchak, W E; Indugu, N; Vecchiarelli, B; Sinha, R; Fulford, J D

    2016-01-01

    Frothy bloat is a serious metabolic disorder that affects stocker cattle grazing hard red winter wheat forage in the Southern Great Plains causing reduced performance, morbidity, and mortality. We hypothesize that a microbial dysbiosis develops in the rumen microbiome of stocker cattle when grazing on high quality winter wheat pasture that predisposes them to frothy bloat risk. In this study, rumen contents were harvested from six cannulated steers grazing hard red winter wheat (three with bloat score "2" and three with bloat score "0"), extracted for genomic DNA and subjected to 16S rDNA and shotgun sequencing on 454/Roche platform. Approximately 1.5 million reads were sequenced, assembled and assigned for phylogenetic and functional annotations. Bacteria predominated up to 84% of the sequences while archaea contributed to nearly 5% of the sequences. The abundance of archaea was higher in bloated animals (P < 0.05) and dominated by Methanobrevibacter. Predominant bacterial phyla were Firmicutes (65%), Actinobacteria (13%), Bacteroidetes (10%), and Proteobacteria (6%) across all samples. Genera from Firmicutes such as Clostridium, Eubacterium, and Butyrivibrio increased (P < 0.05) while Prevotella from Bacteroidetes decreased in bloated samples. Co-occurrence analysis revealed syntrophic associations between bacteria and archaea in non-bloated samples, however; such interactions faded in bloated samples. Functional annotations of assembled reads to Subsystems database revealed the abundance of several metabolic pathways, with carbohydrate and protein metabolism well represented. Assignment of contigs to CaZy database revealed a greater diversity of Glycosyl Hydrolases dominated by oligosaccharide breaking enzymes (>70%) in non-bloated samples. However, the abundance and diversity of CaZymes were greatly reduced in bloated samples indicating the disruption of carbohydrate metabolism. We conclude that mild to moderate frothy bloat results from tradeoffs both within

  3. Thermophilic bacterial communities inhabiting the microbial mats of "indifferent" and chalybeate (iron-rich) thermal springs: Diversity and biotechnological analysis.

    PubMed

    Selvarajan, Ramganesh; Sibanda, Timothy; Tekere, Memory

    2018-04-01

    Microbial mats are occasionally reported in thermal springs and information on such mats is very scarce. In this study, microbial mats were collected from two hot springs (Brandvlei (BV) and Calitzdorp (CA)), South Africa and subjected to scanning electron microscopy (SEM) and targeted 16S rRNA gene amplicon analysis using Next Generation Sequencing (NGS). Spring water temperature was 55°C for Brandvlei and 58°C for Calitzdorp while the pH of both springs was slightly acidic, with an almost identical pH range (6.2-6.3). NGS analysis resulted in a total of 4943 reads, 517 and 736 OTUs for BV and CA at, respectively, a combined total of 14 different phyla in both samples, 88 genera in CA compared to 45 in BV and 37.64% unclassified sequences in CA compared to 27.32% recorded in BV. Dominant bacterial genera in CA microbial mat were Proteobacteria (29.19%), Bacteroidetes (9.41%), Firmicutes (9.01%), Cyanobacteria (6.89%), Actinobacteria (2.65%), Deinococcus-Thermus (2.57%), and Planctomycetes (1.94%) while the BV microbial mat was dominated by Bacteroidetes (47.3%), Deinococcus-Thermus (12.35%), Proteobacteria (7.98%), and Planctomycetes (2.97%). Scanning electron microscopy results showed the presence of microbial filaments possibly resembling cyanobacteria, coccids, rod-shaped bacteria and diatoms in both microbial mats. Dominant genera that were detected in this study have been linked to different biotechnological applications including hydrocarbon degradation, glycerol fermentation, anoxic-fermentation, dehalogenation, and biomining processes. Overall, the results of this study exhibited thermophilic bacterial community structures with high diversity in microbial mats, which have a potential for biotechnological exploitation. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Effect of Macondo Prospect 252 Oil on Microbiota Associated with Pelagic Sargassum in the Northern Gulf of Mexico.

    PubMed

    Torralba, Manolito G; Franks, James S; Gomez, Andres; Yooseph, Shibu; Nelson, Karen E; Grimes, D Jay

    2017-01-01

    The environmental impact of major oil spills on marine microorganisms has yet to be thoroughly investigated using molecular biology techniques. The Deepwater Horizon (DWH) drilling rig explosion of 2010 affected an approximately 176,000 km 2 surface area of the Gulf of Mexico (GOM) when an estimated 210 million gallons of oil from the Macondo Prospect spilled into the environment. Pelagic Sargassum, a complex of two surface drifting species (Sargassum natans and Sargassum fluitans) of marine brown macroalgae and a critically important habitat in the GOM ecosystem, was suffused by Macondo Prospect 252 oil released during the DWH event. Using 16S rRNA PCR and Roche 454 pyrosequencing, the effect of the oil on the bacterial population associated with pelagic Sargassum and contiguous waters was examined by comparing sequence data generated from samples collected from oiled and non-oiled locations in the northern GOM. Sequence data showed similar microbial composition in Sargassum regardless of exposure to oil primarily dominated by five phyla; Proteobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia, and unclassified bacteria. The microbial composition in water samples was significantly less diverse than for Sargassum and consisted primarily of Proteobacteria, Firmicutes, and Bacteroidetes. Due to the evenly distributed abundance of microbial species on oiled and non-oiled pelagic Sargassum, study findings indicate that DWH spilled oil had minimal effect on the composition and diversity of the microbial community associated with Sargassum and contiguous waters. However, higher abundances of Sulfitobacter and one species of Psychrobacter were found in oiled water samples when compared to non-oiled water samples indicating some effect of DHW oil in the microbial composition of seawater. Though there are a number of marine studies using molecular biology approaches, this is the first molecular examination of the impact of the DWH oil spill on bacterial communities

  5. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats

    PubMed Central

    Zhang, Qian; Li, Ming; Yu, Miao; Ping, Fan; Zheng, Jia; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Emerging evidence supports a key role for the gut microbiota in metabolic diseases, including type 2 diabetes (T2D) and obesity. The dipeptidyl peptidase-4 inhibitor vildagliptin is highly efficacious in treating T2D. However, whether vildagliptin can alter the gut microbiome is still unclear. This study aimed to identify whether vildagliptin modifies the gut microbiota structure during T2D treatment. Diabetic Sprague-Dawley (SD) rats were induced by a high-fat diet and streptozotocin injection (HFD/STZ). Diabetic rats were orally administered a low dose of vildagliptin (LV, 0.01 g/kg/d vildagliptin), high dose of vildagliptin (HV, 0.02 g/kg/d vildagliptin), or normal saline for 12 weeks. Fasting blood glucose, blood glucose after glucose loading, and serum insulin levels were significantly reduced in the LV and HV groups compared with those in the T2D group. The serum GLP-1 level increased more in the vildagliptin-treated group than in the T2D group. Pyrosequencing of the V3-V4 regions of 16S rRNA genes revealed that vildagliptin significantly altered the gut microbiota. The operational taxonomic units (OTUs) and community richness (Chao1) index were significantly reduced in the vildagliptin and diabetic groups compared with those in the control group. At the phylum level, a higher relative abundance of Bacteroidetes, lower abundance of Firmicutes, and reduced ratio of Fimicutes/Bacteroidetes were observed in the vildagliptin-treated group. Moreover, vildagliptin treatment increased butyrate-producing bacteria, including Baceroides and Erysipelotrichaeae, in the diabetic rats. Moreover, Lachnospira abundance was significantly negatively correlated with fasting blood glucose levels. In conclusion, vildagliptin treatment could benefit the communities of the gut microbiota. PMID:29036231

  6. Rumen microbial and fermentation characteristics are affected differently by acarbose addition during two nutritional types of simulated severe subacute ruminal acidosis in vitro.

    PubMed

    Wang, Yue; Liu, Junhua; Yin, Yuyang; Zhu, Weiyun; Mao, Shengyong

    2017-10-01

    Little information is available on whether or not the effect of an alpha-glucosidase inhibitor on the prevention of ruminal acidosis is influenced by the type of diet during ruminant feeding. This study was conducted to explore the effect of acarbose addition on the prevention of severe subacute ruminal acidosis induced by either cracked wheat or beet pulp in vitro. Cracked wheat and beet pulp were fermented in vitro by rumen microorganisms obtained from three dairy cows. When cracked wheat was used as the substrate and fermented for 24 h, compared with the control, acarbose addition decreased the concentrations of acetate, propionate, butyrate, total volatile fatty acids, and lactate (P < 0.05), while linearly increased the ratio of acetate to propionate, pH value, and the ammonia-nitrogen level (P < 0.05). Applying Illumina MiSeq sequencing of a fragment of the 16S rRNA gene revealed that the relative abundance of Firmicutes and Bacteroidetes as well as the ACE (abundance-based coverage estimator) value, Chao 1 value, and Shannon index increased significantly (P < 0.05), while there was a significant reduction (P < 0.05) in the relative abundance of Tenericutes as well as Proteobacteria after adding acarbose compared to the control. On the other hand, when beet pulp was used as the substrate, acarbose addition had no significant effects (P > 0.05) on the fermentation parameters and the Chao 1 value, the Shannon index, and the proportion of Firmicutes and Bacteroidetes. In general, these findings indicate that acarbose had more effects on ruminal fermentation when wheat was used as the substrate, whereas it exhibited little effect on ruminal fermentation when beet pulp was used as the substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.

    PubMed

    Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas

    2009-06-01

    The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.

  8. Dysbiosis of the Fecal Microbiota in Cattle Infected with Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Vecchiarelli, Bonnie; Indugu, Nagaraju; Kumar, Sanjay; Gallagher, Susan C.; Fyock, Terry L.; Sweeney, Raymond W.

    2016-01-01

    Johne's disease (JD) is a chronic, intestinal infection of cattle, caused by Mycobacterium avium subsp. paratuberculosis (MAP). It results in granulomatous inflammation of the intestinal lining, leading to malabsorption, diarrhea, and weight loss. Crohn’s disease (CD), a chronic, inflammatory gastrointestinal disease of humans, has many clinical and pathologic similarities to JD. Dysbiosis of the enteric microbiota has been demonstrated in CD patients. It is speculated that this dysbiosis may contribute to the intestinal inflammation observed in those patients. The purpose of this study was to investigate the diversity patterns of fecal bacterial populations in cattle infected with MAP, compared to those of uninfected control cattle, using phylogenomic analysis. Fecal samples were selected to include samples from 20 MAP-positive cows; 25 MAP-negative herdmates; and 25 MAP-negative cows from a MAP-free herd. The genomic DNA was extracted; PCR amplified sequenced on a 454 Roche platform, and analyzed using QIIME. Approximately 199,077 reads were analyzed from 70 bacterial communities (average of 2,843 reads/sample). The composition of bacterial communities differed between the 3 treatment groups (P < 0.001; Permanova test). Taxonomic assignment of the operational taxonomic units (OTUs) identified 17 bacterial phyla across all samples. Bacteroidetes and Firmicutes constituted more than 95% of the bacterial population in the negative and exposed groups. In the positive group, lineages of Actinobacteria and Proteobacteria increased and those of Bacteroidetes and Firmicutes decreased (P < 0.001). Actinobacteria was highly abundant (30% of the total bacteria) in the positive group compared to exposed and negative groups (0.1–0.2%). Notably, the genus Arthrobacter was found to predominate Actinobacteria in the positive group. This study indicates that MAP-infected cattle have a different composition of their fecal microbiota than MAP-negative cattle. PMID:27494144

  9. Dietary whey proteins shield murine cecal microbiota from extensive disarray caused by a high-fat diet.

    PubMed

    Monteiro, Naice E S; Roquetto, Aline R; de Pace, Fernanda; Moura, Carolina S; Santos, Andrey Dos; Yamada, Aureo T; Saad, Mário José A; Amaya-Farfan, Jaime

    2016-07-01

    High-fat diets are used to induce adverse alterations in the intestinal microbiota, or dysbiosis, generalized inflammation and metabolic stress, which ultimately may lead to obesity. The influence of dietary whey proteins, whether intact or hydrolyzed, has been reported to improve glucose homeostasis and reduce stress. Therefore, the purpose of this work was to test if dietary milk-whey proteins, both in the intact form and hydrolyzed, could have an effect on the compositional changes of the cecal microbiota that can be induced in mice when receiving a high-fat diet in combination with the standard casein. Male C57BL/6 mice were fed a control casein diet (AIN 93-G); high-fat-casein (HFCAS); high-fat-whey protein concentrate (HFWPC) and high-fat whey-protein hydrolysate (HFWPH) for 9weeks. The intestinal microbiota composition was analyzed by 16S-rRNA of the invariant (V1-V3) gene, potentially endotoxemic lipopolysaccharide (LPS) release was determined colorimetrically, and liver fat infiltration assessed by light microscopy. The high-fat diet proved to induce dysbiosis in the animals by inverting the dominance of the phylum Firmicutes over Bacteroidetes, promoted the increase of LPS and resulted in liver fat infiltration. The whey proteins, whether intact or hydrolyzed, resisted the installation of dysbiosis, prevented the surge of circulating LPS and prevented fat infiltration in the liver. It is concluded that dietary whey proteins exert metabolic actions that tend to preserve the normal microbiota profile, while mitigating liver fat deposition in mice consuming a high-fat diet for nine weeks. Such beneficial effects were not seen when casein was the dietary protein. The hydrolyzed whey protein still differed from the normal whey protein by selectively protecting the Bacteroidetes phylum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of Saccharomyces boulardii and Mode of Delivery on the Early Development of the Gut Microbial Community in Preterm Infants

    PubMed Central

    Zeber-Lubecka, Natalia; Kulecka, Maria; Ambrozkiewicz, Filip; Paziewska, Agnieszka; Lechowicz, Milosz; Konopka, Ewa; Majewska, Urszula; Borszewska-Kornacka, Maria; Mikula, Michal; Cukrowska, Bozena; Ostrowski, Jerzy

    2016-01-01

    Background Recent advances in culture-independent approaches have enabled insights into the diversity, complexity, and individual variability of gut microbial communities. Objectives To examine the effect of oral administration of Saccharomyces (S.) boulardii and mode of delivery on the intestinal microbial community in preterm infants. Study Design Stool samples were collected from preterm newborns randomly divided into two groups: a probiotic-receiving group (n = 18) or a placebo group (n = 21). Samples were collected before probiotic intake (day 0), and after 2 and 6 weeks of supplementation. The composition of colonizing bacteria was assessed by 16S ribosomal RNA (rRNA) gene sequencing of fecal samples using the Ion 16S Metagenomics Kit and the Ion Torrent Personal Genome Machine platform. Results A total of 11932257 reads were generated, and were clustered into 459, 187, and 176 operational taxonomic units at 0 days, 2 weeks, and 6 weeks, respectively. Of the 17 identified phyla, Firmicutes Actinobacteria, Proteobacteria, and Bacteroidetes were universal. The microbial community differed at day 0 compared with at 2 weeks and 6 weeks. There was a tendency for increased bacterial diversity at 2 weeks and 6 weeks compared with day 0, and infants with a gestational age of 31 weeks or higher presented increased bacterial diversity prior to S. boulardii administration. Firmicutes and Proteobacteria remained stable during the observation period, whereas Actinobacteria and Bacteroidetes increased in abundance, the latter particularly more sharply in vaginally delivered infants. Conclusion While the mode of delivery may influence the development of a microbial community, this study had not enough power to detect statistical differences between cohorts supplemented with probiotics, and in a consequence, to speculate on S. boulardii effect on gut microbiome composition in preterm newborns. PMID:26918330

  11. TCDD modulation of gut microbiome correlated with liver and immune toxicity in streptozotocin (STZ)-induced hyperglycemic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefever, Daniel E.; Xu, Joella; Chen, Yingjia

    2016-08-01

    An increasing body of evidence has shown the important role of the gut microbiome in mediating toxicity following environmental contaminant exposure. The goal of this study was to determine if the adverse metabolic effects of chronic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure would be sufficient to exacerbate hyperglycemia, and to further determine if these outcomes were attributable to the gut microbiota alteration. Adult male CD-1 mice were exposed to TCDD (6 μg/kg body weight biweekly) by gavage and injected (i.p.) with STZ (4 × 50 mg/kg body weight) to induced hyperglycemia. 16S rRNA sequencing was used to characterize the changes in the microbiomemore » community composition. Glucose monitoring, flow cytometry, histopathology, and organ characterization were performed to determine the deleterious phenotypic changes of TCDD exposure. Chronic TCDD treatment did not appear to exacerbate STZ-induced hyperglycemia as blood glucose levels were slightly reduced in the TCDD treated mice; however, polydipsia and polyphagia were observed. Importantly, TCDD exposure caused a dramatic change in microbiota structure, as characterized at the phylum level by increasing Firmicutes and decreasing Bacteroidetes while at the family level most notably by increasing Lactobacillaceae and Desulfovibrionaceae, and decreasing Prevotellaceae and ACK M1. The changes in microbiota were further found to be broadly associated with phenotypic changes seen from chronic TCDD treatment. In particular, the phylum level Bacteroidetes to Firmicutes ratio negatively correlated with both liver weight and liver pathology, and positively associated with %CD3{sup +} NK{sup +} T cells, a key mediator of host-microbial interactions. Collectively, these findings suggest that the dysregulated gut microbiome may contribute to the deleterious effects (e.g., liver toxicity) seen with TCDD exposure. - Highlights: • TCDD promoted wasting syndrome. • TCDD decreased hyperglycemia. • TCDD

  12. Intestinal microbiota and oral administration of Enterococcus faecium associated with the growth performance of new-born piglets.

    PubMed

    Wang, Y B; Du, W; Fu, A K; Zhang, X P; Huang, Y; Lee, K H; Yu, K; Li, W F; Li, Y L

    2016-09-01

    The oral administration of Enterococcus faecium EF1 to new-born suckling and weaning piglets along with their growth performances and intestinal microbiota was investigated in this study. Twenty-four new-born piglets were initially divided into 2 groups. The probiotics group received 2 ml of 10% sterilised skimmed milk by oral gavage supplemented with 6×10(8) cfu/ml viable E. faecium EF1 at the first, the third and the fifth day after birth, while the control group received 2 ml of 10% sterilised skimmed milk without probiotics at the same time. Results showed that oral administration of E. faecium EF1 was associated with a remarkable increase on the body weight of piglets for both suckling and weaning periods, by 30.73% (P<0.01) and 320.84% (P<0.01), and also decreased the diarrhoea rate, by 43.21% (P<0.05) and 71.42% (P<0.05), respectively. In addition, 454-pyrosequencing analysis revealed that there was no significant difference in the intestinal microbial diversity of the suckling piglets between the two groups; nevertheless, when compared to the control group, the relative abundance of Firmicutes in the probiotics group was substantially augmented, while the relative abundance of Proteobacteria, Bacteroidetes and Fusobacteria diminished. However, results indicated that oral administration of E. faecium EF1 did not have any influence on the relative abundance of Firmicutes in weaning piglets rather than increasing the relative abundance of Bacteroidetes and decreasing the relative abundance of Proteobacteria. Furthermore, at the level of the Firmicutes phylum, the relative abundance of Lactobacillales in the probiotic group increased significantly. These findings suggest that oral administration of E. faecium EF1 to new-born piglets could improve the growth performance and intestinal microbiota of piglets for both suckling and weaning periods.

  13. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania.

    PubMed

    Coman, Cristian; Chiriac, Cecilia M; Robeson, Michael S; Ionescu, Corina; Dragos, Nicolae; Barbu-Tudoran, Lucian; Andrei, Adrian-Ştefan; Banciu, Horia L; Sicora, Cosmin; Podar, Mircea

    2015-01-01

    Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbial mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (<0.5%) but increased significantly at 65°C (36%). The bacterial diversity was either similar to other microbialites described in literature (the 32°C sample) or displayed a specific combination of phyla and classes (the 49°C and 65°C samples). Bacterial taxa were distributed among 39 phyla, out of which 14 had inferred abundances >1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along thermal and

  14. Diversity of rumen bacteria in canadian cervids.

    PubMed

    Gruninger, Robert J; Sensen, Christoph W; McAllister, Timothy A; Forster, Robert J

    2014-01-01

    Interest in the bacteria responsible for the breakdown of lignocellulosic feedstuffs within the rumen has increased due to their potential utility in industrial applications. To date, most studies have focused on bacteria from domesticated ruminants. We have expanded the knowledge of the microbial ecology of ruminants by examining the bacterial populations found in the rumen of non-domesticated ruminants found in Canada. Next-generation sequencing of 16S rDNA was employed to characterize the liquid and solid-associated bacterial communities in the rumen of elk (Cervus canadensis), and white tailed deer (Odocoileus virginianus). Despite variability in the microbial populations between animals, principle component and weighted UniFrac analysis indicated that bacterial communities in the rumen of elk and white tail deer are distinct. Populations clustered according to individual host animal and not the association with liquid or solid phase of the rumen contents. In all instances, Bacteroidetes and Firmicutes were the dominant bacterial phyla, although the relative abundance of these differed among ruminant species and between phases of rumen digesta, respectively. In the elk samples Bacteroidetes were more predominant in the liquid phase whereas Firmicutes was the most prevalent phyla in the solid digesta (P = 1×10(-5)). There were also statistically significant differences in the abundance of OTUs classified as Fibrobacteres (P = 5×10(-3)) and Spirochaetes (P = 3×10(-4)) in the solid digesta of the elk samples. We identified a number of OTUs that were classified as phylotypes not previously observed in the rumen environment. Our results suggest that although the bacterial diversity in wild North American ruminants shows overall similarities to domesticated ruminants, we observed a number of OTUs not previously described. Previous studies primarily focusing on domesticated ruminants do not fully represent the microbial diversity of the rumen and

  15. Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis.

    PubMed

    Kumar, Himanshu; Lund, Riikka; Laiho, Asta; Lundelin, Krista; Ley, Ruth E; Isolauri, Erika; Salminen, Seppo

    2014-12-16

    The core human gut microbiota contributes to the developmental origin of diseases by modifying metabolic pathways. To evaluate the predominant microbiota as an epigenetic modifier, we classified 8 pregnant women into two groups based on their dominant microbiota, i.e., Bacteroidetes, Firmicutes, and Proteobacteria. Deep sequencing of DNA methylomes revealed a clear association between bacterial predominance and epigenetic profiles. The genes with differentially methylated promoters in the group in which Firmicutes was dominant were linked to risk of disease, predominantly to cardiovascular disease and specifically to lipid metabolism, obesity, and the inflammatory response. This is one of the first studies that highlights the association of the predominant bacterial phyla in the gut with methylation patterns. Further longitudinal and in-depth studies targeting individual microbial species or metabolites are recommended to give us a deeper insight into the molecular mechanism of such epigenetic modifications. Epigenetics encompasses genomic modifications that are due to environmental factors and do not affect the nucleotide sequence. The gut microbiota has an important role in human metabolism and could be a significant environmental factor affecting our epigenome. To investigate the association of gut microbiota with epigenetic changes, we assessed pregnant women and selected the participants based on their predominant gut microbiota for a study on their postpartum methylation profile. Intriguingly, we found that blood DNA methylation patterns were associated with gut microbiota profiles. The gut microbiota profiles, with either Firmicutes or Bacteroidetes as a dominant group, correlated with differential methylation status of gene promoters functionally associated with cardiovascular diseases. Furthermore, differential methylation of gene promoters linked to lipid metabolism and obesity was observed. For the first time, we report here a position of the predominant

  16. Effects of Diets Supplemented with Ensiled Mulberry Leaves and Sun-Dried Mulberry Fruit Pomace on the Ruminal Bacterial and Archaeal Community Composition of Finishing Steers.

    PubMed

    Niu, Yuhong; Meng, Qingxiang; Li, Shengli; Ren, Liping; Zhou, Bo; Schonewille, Thomas; Zhou, Zhenming

    2016-01-01

    This study investigated the effects of ensiled mulberry leaves (EML) and sun-dried mulberry fruit pomace (SMFP) on the ruminal bacterial and archaeal community composition of finishing steers. Corn grain- and cotton meal-based concentrate was partially replaced with EML or SMFP. The diets had similar crude protein (CP), neutral detergent fiber (NDF), and metabolizable energy. Following the feeding trial, the steers were slaughtered and ruminal liquid samples were collected to study the ruminal microbiome. Extraction of DNA, amplification of the V4 region of the 16S rRNA gene, and Illumina MiSeq pyrosequencing were performed for each sample. Following sequence de-noising, chimera checking, and quality trimming, an average of 209,610 sequences were generated per sample. Quantitative real-time PCR was performed to examine the selected bacterial species in the rumen. Our results showed that the predominant phyla were Bacteroidetes (43.90%), Firmicutes (39.06%), Proteobacteria (4.31%), and Tenericutes (2.04%), and the predominant genera included Prevotella (13.82%), Ruminococcus (2.51%), Butyrivibrio (2.38%), and Succiniclasticum (2.26%). Compared to the control group, EML and SMFP groups had a higher abundance of total bacteria (p < 0.001); however, the bacterial community composition was similar among the three groups. At the phylum level, there were no significant differences in Firmicutes (p = 0.7932), Bacteroidetes (p = 0.2330), Tenericutes (p = 0.2811), or Proteobacteria (p = 0.0680) levels among the three groups; however, Fibrobacteres decreased in EML (p = 0.0431). At the genus level, there were no differences in Prevotella (p = 0.4280), Ruminococcus (p = 0.2639), Butyrivibrio (p = 0.4433), or Succiniclasticum (p = 0.0431) levels among the groups. Additionally, the dietary treatments had no significant effects on the archaeal community composition in the rumen. Therefore, EML and SMFP supplementation had no significant effects on the ruminal bacterial or

  17. Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought.

    PubMed

    Mark Ibekwe, A; Ors, Selda; Ferreira, Jorge F S; Liu, Xuan; Suarez, Donald L

    2017-02-01

    Salinity is a common problem under irrigated agriculture, especially in low rainfall and high evaporative demand areas of southwestern United States and other semi-arid regions around the world. However, studies on salinity effects on soil microbial communities are relatively few while the effects of irrigation-induced salinity on soil chemical and physical properties and plant growth are well documented. In this study, we examined the effects of salinity, temperature, and temporal variability on soil and rhizosphere microbial communities in sand tanks irrigated with prepared solutions designed to simulate saline wastewater. Three sets of experiments with spinach (Spinacia oleracea L., cv. Racoon) were conducted under saline water during different time periods (early winter, late spring, and early summer). Bacterial 16S V4 rDNA region was amplified utilizing fusion primers designed against the surrounding conserved regions using MiSeq® Illumina sequencing platform. Across the two sample types, bacteria were relatively dominant among three phyla-the Proteobacteria, Cyanobacteria, and Bacteroidetes-accounted for 77.1% of taxa detected in the rhizosphere, while Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, community structure, and specific bacterial groups in soil and rhizosphere samples. Permutational analysis of variance (PERMANOVA) analysis showed that soil temperature (P=0.001), rhizosphere temperature (P=0.001), rhizosphere salinity (P=0.032), and evapotranspiration (P=0.002) significantly affected beta diversity of soil and rhizosphere microbial communities. Furthermore, salinity had marginal effects (P=0.078) on soil beta diversity. However, temporal variability differentially affected rhizosphere microbial communities irrigated with saline wastewater. Therefore, microbial communities in

  18. Dysbiosis of the Fecal Microbiota in Cattle Infected with Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Fecteau, Marie-Eve; Pitta, Dipti W; Vecchiarelli, Bonnie; Indugu, Nagaraju; Kumar, Sanjay; Gallagher, Susan C; Fyock, Terry L; Sweeney, Raymond W

    2016-01-01

    Johne's disease (JD) is a chronic, intestinal infection of cattle, caused by Mycobacterium avium subsp. paratuberculosis (MAP). It results in granulomatous inflammation of the intestinal lining, leading to malabsorption, diarrhea, and weight loss. Crohn's disease (CD), a chronic, inflammatory gastrointestinal disease of humans, has many clinical and pathologic similarities to JD. Dysbiosis of the enteric microbiota has been demonstrated in CD patients. It is speculated that this dysbiosis may contribute to the intestinal inflammation observed in those patients. The purpose of this study was to investigate the diversity patterns of fecal bacterial populations in cattle infected with MAP, compared to those of uninfected control cattle, using phylogenomic analysis. Fecal samples were selected to include samples from 20 MAP-positive cows; 25 MAP-negative herdmates; and 25 MAP-negative cows from a MAP-free herd. The genomic DNA was extracted; PCR amplified sequenced on a 454 Roche platform, and analyzed using QIIME. Approximately 199,077 reads were analyzed from 70 bacterial communities (average of 2,843 reads/sample). The composition of bacterial communities differed between the 3 treatment groups (P < 0.001; Permanova test). Taxonomic assignment of the operational taxonomic units (OTUs) identified 17 bacterial phyla across all samples. Bacteroidetes and Firmicutes constituted more than 95% of the bacterial population in the negative and exposed groups. In the positive group, lineages of Actinobacteria and Proteobacteria increased and those of Bacteroidetes and Firmicutes decreased (P < 0.001). Actinobacteria was highly abundant (30% of the total bacteria) in the positive group compared to exposed and negative groups (0.1-0.2%). Notably, the genus Arthrobacter was found to predominate Actinobacteria in the positive group. This study indicates that MAP-infected cattle have a different composition of their fecal microbiota than MAP-negative cattle.

  19. Bacterial community characterization and biogeochemistry of sediments from a tropical upwelling system (Cabo Frio, Southeastern Brazil)

    NASA Astrophysics Data System (ADS)

    Castelo-Branco, R.; Barreiro, A.; Silva, F. S.; Carvalhal-Gomes, S. B. V.; Fontana, L. F.; Mendonça-Filho, J. G.; Vasconcelos, V.

    2016-11-01

    The Cabo Frio Upwelling System is one of the largest and most productive areas in southeastern Brazil. Although it is well-known that bacterial communities play a crucial role in the biogeochemical cycles and food chain of marine ecosystems, little is known regarding the microbial communities in the sediments of this upwelling region. In this research, we address the effect of different hydrological conditions on the biogeochemistry of sediments and the diversity of bacterial communities. Biogeochemistry profiles of sediments from four sampling stations along an inner-outer transect on the continental shelf were evaluated and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments was used to study the bacterial community composition in these sediments. Our sequencing analysis of excised bands identified Alpha- and Gammaproteobacteria, Bacteroidetes and bacteria belonging to the Firmicutes phyla as the phylogenetic groups, indicating the existence of great diversity in these marine sediments. In this multidisciplinary study, the use of multivariate analysis was crucial for understanding how biogeochemical profiles influence bacterial community distribution. A Principal Component Analysis (PCA) indicated that the biogeochemical variables exhibited a clear spatial pattern that is mainly related to hydrological conditions. A Correspondence Analysis (CA) revealed an important association between certain taxonomic groups and specific sampling locations. Canonical Correspondence Analysis (CCA) demonstrated that the biogeochemistry influences the structure of the bacterial community in sediments. Among the bacterial groups identified, the most taxonomically diverse classes (Alphaproteobacteria and Gammaproteobacteria) were found to be distributed regardless of any studied biogeochemical variables influences, whereas other groups responded to biogeochemical conditions which, in turn, were influenced by hydrological conditions. This finding

  20. Dynamic changes of yak (Bos grunniens) gut microbiota during growth revealed by polymerase chain reaction-denaturing gradient gel electrophoresis and metagenomics

    PubMed Central

    Nie, Yuanyang; Zhou, Zhiwei; Guan, Jiuqiang; Xia, Baixue; Luo, Xiaolin; Yang, Yang; Fu, Yu; Sun, Qun

    2017-01-01

    Objective To understand the dynamic structure, function, and influence on nutrient metabolism in hosts, it was crucial to assess the genetic potential of gut microbial community in yaks of different ages. Methods The denaturing gradient gel electrophoresis (DGGE) profiles and Illumina-based metagenomic sequencing on colon contents of 15 semi-domestic yaks were investigated. Unweighted pairwise grouping method with mathematical averages (UPGMA) clustering and principal component analysis (PCA) were used to analyze the DGGE fingerprint. The Illumina sequences were assembled, predicted to genes and functionally annotated, and then classified by querying protein sequences of the genes against the Kyoto encyclopedia of genes and genomes (KEGG) database. Results Metagenomic sequencing showed that more than 85% of ribosomal RNA (rRNA) gene sequences belonged to the phylum Firmicutes and Bacteroidetes, indicating that the family Ruminococcaceae (46.5%), Rikenellaceae (11.3%), Lachnospiraceae (10.0%), and Bacteroidaceae (6.3%) were dominant gut microbes. Over 50% of non-rRNA gene sequences represented the metabolic pathways of amino acids (14.4%), proteins (12.3%), sugars (11.9%), nucleotides (6.8%), lipids (1.7%), xenobiotics (1.4%), coenzymes, and vitamins (3.6%). Gene functional classification showed that most of enzyme-coding genes were related to cellulose digestion and amino acids metabolic pathways. Conclusion Yaks’ age had a substantial effect on gut microbial composition. Comparative metagenomics of gut microbiota in 0.5-, 1.5-, and 2.5-year-old yaks revealed that the abundance of the class Clostridia, Bacteroidia, and Lentisphaeria, as well as the phylum Firmicutes, Bacteroidetes, Lentisphaerae, Tenericutes, and Cyanobacteria, varied more greatly during yaks’ growth, especially in young animals (0.5 and 1.5 years old). Gut microbes, including Bacteroides, Clostridium, and Lentisphaeria, make a contribution to the energy metabolism and synthesis of amino acid

  1. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity.

    PubMed

    Evans, Christian C; LePard, Kathy J; Kwak, Jeff W; Stancukas, Mary C; Laskowski, Samantha; Dougherty, Joseph; Moulton, Laura; Glawe, Adam; Wang, Yunwei; Leone, Vanessa; Antonopoulos, Dionysios A; Smith, Dan; Chang, Eugene B; Ciancio, Mae J

    2014-01-01

    Diet-induced obesity (DIO) is a significant health concern which has been linked to structural and functional changes in the gut microbiota. Exercise (Ex) is effective in preventing obesity, but whether Ex alters the gut microbiota during development with high fat (HF) feeding is unknown. Determine the effects of voluntary Ex on the gastrointestinal microbiota in LF-fed mice and in HF-DIO. Male C57BL/6 littermates (5 weeks) were distributed equally into 4 groups: low fat (LF) sedentary (Sed) LF/Sed, LF/Ex, HF/Sed and HF/Ex. Mice were individually housed and LF/Ex and HF/Ex cages were equipped with a wheel and odometer to record Ex. Fecal samples were collected at baseline, 6 weeks and 12 weeks and used for bacterial DNA isolation. DNA was subjected both to quantitative PCR using primers specific to the 16S rRNA encoding genes for Bacteroidetes and Firmicutes and to sequencing for lower taxonomic identification using the Illumina MiSeq platform. Data were analyzed using a one or two-way ANOVA or Pearson correlation. HF diet resulted in significantly greater body weight and adiposity as well as decreased glucose tolerance that were prevented by voluntary Ex (p<0.05). Visualization of Unifrac distance data with principal coordinates analysis indicated clustering by both diet and Ex at week 12. Sequencing demonstrated Ex-induced changes in the percentage of major bacterial phyla at 12 weeks. A correlation between total Ex distance and the ΔCt Bacteroidetes: ΔCt Firmicutes ratio from qPCR demonstrated a significant inverse correlation (r2 = 0.35, p = 0.043). Ex induces a unique shift in the gut microbiota that is different from dietary effects. Microbiota changes may play a role in Ex prevention of HF-DIO.

  2. Bacterial Diversity in the South Adriatic Sea during a Strong, Deep Winter Convection Year

    PubMed Central

    Korlević, M.; Pop Ristova, P.; Garić, R.; Amann, R.

    2014-01-01

    The South Adriatic Sea is the deepest part of the Adriatic Sea and represents a key area for both the Adriatic Sea and the deep eastern Mediterranean. It has a role in dense water formation for the eastern Mediterranean deep circulation cell, and it represents an entry point for water masses originating from the Ionian Sea. The biodiversity and seasonality of bacterial picoplankton before, during, and after deep winter convection in the oligotrophic South Adriatic waters were assessed by combining comparative 16S rRNA sequence analysis and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The picoplankton communities reached their maximum abundance in the spring euphotic zone when the maximum value of the chlorophyll a in response to deep winter convection was recorded. The communities were dominated by Bacteria, while Archaea were a minor constituent. A seasonality of bacterial richness and diversity was observed, with minimum values occurring during the winter convection and spring postconvection periods and maximum values occurring under summer stratified conditions. The SAR11 clade was the main constituent of the bacterial communities and reached the maximum abundance in the euphotic zone in spring after the convection episode. Cyanobacteria were the second most abundant group, and their abundance strongly depended on the convection event, when minimal cyanobacterial abundance was observed. In spring and autumn, the euphotic zone was characterized by Bacteroidetes and Gammaproteobacteria. Bacteroidetes clades NS2b, NS4, and NS5 and the gammaproteobacterial SAR86 clade were detected to co-occur with phytoplankton blooms. The SAR324, SAR202, and SAR406 clades were present in the deep layer, exhibiting different seasonal variations in abundance. Overall, our data demonstrate that the abundances of particular bacterial clades and the overall bacterial richness and diversity are greatly impacted by strong winter convection. PMID:25548042

  3. A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor

    PubMed Central

    2013-01-01

    Background A solid-state anaerobic digestion method is used to produce biogas from various solid wastes in China but the efficiency of methane production requires constant improvement. The diversity and abundance of relevant microorganisms play important roles in methanogenesis of biomass. The next-generation high-throughput pyrosequencing platform (Roche/454 GS FLX Titanium) provides a powerful tool for the discovery of novel microbes within the biogas-generating microbial communities. Results To improve the power of our metagenomic analysis, we first evaluated five different protocols for extracting total DNA from biogas-producing mesophilic solid-state fermentation materials and then chose two high-quality protocols for a full-scale analysis. The characterization of both sequencing reads and assembled contigs revealed that the most prevalent microbes of the fermentation materials are derived from Clostridiales (Firmicutes), which contribute to degrading both protein and cellulose. Other important bacterial species for decomposing fat and carbohydrate are Bacilli, Gammaproteobacteria, and Bacteroidetes (belonging to Firmicutes, Proteobacteria, and Bacteroidetes, respectively). The dominant bacterial species are from six genera: Clostridium, Aminobacterium, Psychrobacter, Anaerococcus, Syntrophomonas, and Bacteroides. Among them, abundant Psychrobacter species, which produce low temperature-adaptive lipases, and Anaerococcus species, which have weak fermentation capabilities, were identified for the first time in biogas fermentation. Archaea, represented by genera Methanosarcina, Methanosaeta and Methanoculleus of Euryarchaeota, constitute only a small fraction of the entire microbial community. The most abundant archaeal species include Methanosarcina barkeri fusaro, Methanoculleus marisnigri JR1, and Methanosaeta theromphila, and all are involved in both acetotrophic and hydrogenotrophic methanogenesis. Conclusions The identification of new bacterial genera and

  4. Spatio-Temporal Interdependence of Bacteria and Phytoplankton during a Baltic Sea Spring Bloom

    PubMed Central

    Bunse, Carina; Bertos-Fortis, Mireia; Sassenhagen, Ingrid; Sildever, Sirje; Sjöqvist, Conny; Godhe, Anna; Gross, Susanna; Kremp, Anke; Lips, Inga; Lundholm, Nina; Rengefors, Karin; Sefbom, Josefin; Pinhassi, Jarone; Legrand, Catherine

    2016-01-01

    In temperate systems, phytoplankton spring blooms deplete inorganic nutrients and are major sources of organic matter for the microbial loop. In response to phytoplankton exudates and environmental factors, heterotrophic microbial communities are highly dynamic and change their abundance and composition both on spatial and temporal scales. Yet, most of our understanding about these processes comes from laboratory model organism studies, mesocosm experiments or single temporal transects. Spatial-temporal studies examining interactions of phytoplankton blooms and bacterioplankton community composition and function, though being highly informative, are scarce. In this study, pelagic microbial community dynamics (bacteria and phytoplankton) and environmental variables were monitored during a spring bloom across the Baltic Proper (two cruises between North Germany to Gulf of Finland). To test to what extent bacterioplankton community composition relates to the spring bloom, we used next generation amplicon sequencing of the 16S rRNA gene, phytoplankton diversity analysis based on microscopy counts and population genotyping of the dominating diatom Skeletonema marinoi. Several phytoplankton bloom related and environmental variables were identified to influence bacterial community composition. Members of Bacteroidetes and Alphaproteobacteria dominated the bacterial community composition but the bacterial groups showed no apparent correlation with direct bloom related variables. The less abundant bacterial phyla Actinobacteria, Planctomycetes, and Verrucomicrobia, on the other hand, were strongly associated with phytoplankton biomass, diatom:dinoflagellate ratio, and colored dissolved organic matter (cDOM). Many bacterial operational taxonomic units (OTUs) showed high niche specificities. For example, particular Bacteroidetes OTUs were associated with two distinct genetic clusters of S. marinoi. Our study revealed the complexity of interactions of bacterial taxa with inter

  5. Faecal microbiota of healthy adults in south India: Comparison of a tribal & a rural population

    PubMed Central

    Ramadass, Balamurugan; Rani, B. Sandya; Pugazhendhi, Srinivasan; John, K.R.; Ramakrishna, Balakrishnan S.

    2017-01-01

    Background & objectives: The relevance of the gut microbiota to human health is increasingly appreciated. The objective of this study was to compare the gut microbiota of a group of adult tribals with that of healthy adult villagers in Tamil Nadu, India. Methods: Faeces were collected from 10 healthy tribal adults (TAs) in the Jawadhi hills and from 10 healthy villagers [rural adults (RAs)] in Vellore district, Tamil Nadu. DNA was extracted, and 456 bp segments comprising hypervariable regions 3 and 4 of the 16S rRNA gene were amplified, barcoded and 454 sequenced. Results: Totally 227,710 good-quality reads were analyzed. TAs consumed a millets-based diet, ate pork every day, and did not consume milk or milk products. RAs consumed a rice-based diet with meat intake once a week. In both groups, Firmicutes was the most abundant phylum, followed by Proteobacteria, Bacteroidetes and Actinobacteria. The median Firmicutes-to-Bacteroidetes ratio was 34.0 in TA and 92.9 in RA groups. Actinobacteria were significantly low in TA, possibly due to non-consumption of milk. Clostridium constituted the most abundant genus in both groups, but was significantly more abundant in TAs than RAs, while Streptococcus was significantly more abundant in RA (P<0.05). Analyses of genetic distance revealed that the microbiota were distinctly different between TA and RA, and principal component analysis using 550 distinct taxonomically identifiable sequences revealed a clear separation of microbiota composition in the two groups. Phylogenetic analysis of major microbiota indicated clustering of microbial groups at different major branch points for TAs and RAs. Interpretation & conclusions: Phylum Firmicutes and genus Clostridium constituted the bulk of the faecal microbiota, while significant differences in composition between the groups were probably due to differences in diet and lifestyle. PMID:28639601

  6. High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes.

    PubMed

    Bartrons, Mireia; Catalan, Jordi; Casamayor, Emilio O

    2012-11-01

    Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50 % of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35 % of the total sequences matched at <95 % identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than

  7. Exercise Prevents Weight Gain and Alters the Gut Microbiota in a Mouse Model of High Fat Diet-Induced Obesity

    PubMed Central

    Evans, Christian C.; LePard, Kathy J.; Kwak, Jeff W.; Stancukas, Mary C.; Laskowski, Samantha; Dougherty, Joseph; Moulton, Laura; Glawe, Adam; Wang, Yunwei; Leone, Vanessa; Antonopoulos, Dionysios A.; Smith, Dan; Chang, Eugene B.; Ciancio, Mae J.

    2014-01-01

    Background Diet-induced obesity (DIO) is a significant health concern which has been linked to structural and functional changes in the gut microbiota. Exercise (Ex) is effective in preventing obesity, but whether Ex alters the gut microbiota during development with high fat (HF) feeding is unknown. Objective Determine the effects of voluntary Ex on the gastrointestinal microbiota in LF-fed mice and in HF-DIO. Methods Male C57BL/6 littermates (5 weeks) were distributed equally into 4 groups: low fat (LF) sedentary (Sed) LF/Sed, LF/Ex, HF/Sed and HF/Ex. Mice were individually housed and LF/Ex and HF/Ex cages were equipped with a wheel and odometer to record Ex. Fecal samples were collected at baseline, 6 weeks and 12 weeks and used for bacterial DNA isolation. DNA was subjected both to quantitative PCR using primers specific to the 16S rRNA encoding genes for Bacteroidetes and Firmicutes and to sequencing for lower taxonomic identification using the Illumina MiSeq platform. Data were analyzed using a one or two-way ANOVA or Pearson correlation. Results HF diet resulted in significantly greater body weight and adiposity as well as decreased glucose tolerance that were prevented by voluntary Ex (p<0.05). Visualization of Unifrac distance data with principal coordinates analysis indicated clustering by both diet and Ex at week 12. Sequencing demonstrated Ex-induced changes in the percentage of major bacterial phyla at 12 weeks. A correlation between total Ex distance and the ΔCt Bacteroidetes: ΔCt Firmicutes ratio from qPCR demonstrated a significant inverse correlation (r2 = 0.35, p = 0.043). Conclusion Ex induces a unique shift in the gut microbiota that is different from dietary effects. Microbiota changes may play a role in Ex prevention of HF-DIO. PMID:24670791

  8. Red pitaya betacyanins protects from diet-induced obesity, liver steatosis and insulin resistance in association with modulation of gut microbiota in mice.

    PubMed

    Song, Haizhao; Chu, Qiang; Yan, Fujie; Yang, Yunyun; Han, Wen; Zheng, Xiaodong

    2016-08-01

    Growing evidence indicates that gut microbiota contributes to obesity and its related metabolic disorders. Betacyanins possess free radical scavenging and antioxidant activities, suggesting its potential beneficial effects on metabolic diseases. The present study aimed to investigate the metabolic effect of red pitaya (Hylocereus polyrhizus) fruit betacyanins (HPBN) on high-fat diet-fed mice and determine whether the beneficial effects of HPBN are associated with the modulation of gut microbiota. Thirty-six male C57BL/6J mice were divided into three groups and fed low-fat diet (LFD), high-fat diet (HFD), or high-fat diet plus HPBN of 200 mg/kg for 14 weeks. Sixteen seconds rRNA sequencing was used to analyze the composition of gut microbiota. Our results indicated that administration of HPBN reduced HFD-induced body weight gain and visceral obesity and improved hepatic steatosis, adipose hypertrophy, and insulin resistance in mice. Sixteen seconds rRNA sequencing performed on the MiSeq Illumina platform (Illumina, Inc., San Diego, CA, USA) showed that HPBN supplement not only decreased the proportion of Firmicutes and increased the proportion of Bacteroidetes at the phylum level but also induced a dramatic increase in the relative abundance of Akkermansia at the genus level. Red pitaya betacyanins protect from diet-induced obesity and its related metabolic disorders, which is associated with improved inflammatory status and modulation of gut microbiota, especially its ability to decrease the ratio of Firmicutes and Bacteroidetes and increase the relative abundance of Akkermansia. The study suggested a clinical implication of HPBN in the management of obesity, non-alcoholic fatty liver disease, and type 2 diabetes. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  9. The Artificial Sweetener Splenda Promotes Gut Proteobacteria, Dysbiosis, and Myeloperoxidase Reactivity in Crohn's Disease-Like Ileitis.

    PubMed

    Rodriguez-Palacios, Alexander; Harding, Andrew; Menghini, Paola; Himmelman, Catherine; Retuerto, Mauricio; Nickerson, Kourtney P; Lam, Minh; Croniger, Colleen M; McLean, Mairi H; Durum, Scott K; Pizarro, Theresa T; Ghannoum, Mahmoud A; Ilic, Sanja; McDonald, Christine; Cominelli, Fabio

    2018-04-23

    Epidemiological studies indicate that the use of artificial sweeteners doubles the risk for Crohn's disease (CD). Herein, we experimentally quantified the impact of 6-week supplementation with a commercial sweetener (Splenda; ingredients sucralose maltodextrin, 1:99, w/w) on both the severity of CD-like ileitis and the intestinal microbiome alterations using SAMP1/YitFc (SAMP) mice. Metagenomic shotgun DNA sequencing was first used to characterize the microbiome of ileitis-prone SAMP mice. Then, 16S rRNA microbiome sequencing, quantitative polymerase chain reaction, fluorescent in situ hybridization (FISH), bacterial culture, stereomicroscopy, histology, and myeloperoxidase (MPO) activity analyses were then implemented to compare the microbiome and ileitis phenotype in SAMP with that of control ileitis-free AKR/J mice after Splenda supplementation. Metagenomics indicated that SAMP mice have a gut microbial phenotype rich in Bacteroidetes, and experiments showed that Helicobacteraceae did not have an exacerbating effect on ileitis. Splenda did not increase the severity of (stereomicroscopic/histological) ileitis; however, biochemically, ileal MPO activity was increased in SAMP treated with Splenda compared with nonsupplemented mice (P < 0.022) and healthy AKR mice. Splenda promoted dysbiosis with expansion of Proteobacteria in all mice, and E. coli overgrowth with increased bacterial infiltration into the ileal lamina propria of SAMP mice. FISH showed increase malX gene-carrying bacterial clusters in the ilea of supplemented SAMP (but not AKR) mice. Splenda promoted gut Proteobacteria, dysbiosis, and biochemical MPO reactivity in a spontaneous model of (Bacteroidetes-rich) ileal CD. Our results indicate that although Splenda may promote parallel microbiome alterations in CD-prone and healthy hosts, this did not result in elevated MPO levels in healthy mice, only CD-prone mice. The consumption of sucralose/maltodextrin-containing foods might exacerbate MPO intestinal

  10. High taxonomic diversity of cultivation-recalcitrant endophytic bacteria in grapevine field shoots, their in vitro introduction, and unsuspected persistence.

    PubMed

    Thomas, Pious; Sekhar, Aparna C; Shaik, Sadiq Pasha

    2017-11-01

    Molecular and microscopic analyses reveal enormous non-cultivable endophytic bacteria in grapevine field shoots with functional significance. Diverse bacteria enter tissue cultures through surface-sterilized tissues and survive surreptitiously with varying taxonomic realignments. The study was envisaged to assess the extent of endophytic bacterial association with field shoot tissues of grapevine and the likelihood of introduction of such internally colonizing bacteria in vitro adopting molecular techniques targeting the non-cultivable bacterial community. PowerFood ® -kit derived DNA from surface-sterilized field shoot tips of grapevine Flame Seedless was employed in a preliminary bacterial class-specific PCR screening proving positive for major prokaryotic taxa including Archaea. Taxonomic and functional diversity were analyzed through whole metagenome profiling (WMG) which revealed predominantly phylum Actinobacteria, Proteobacteria, and minor shares of Firmicutes, Bacteroidetes, and Deinococcus-Thermus with varying functional roles ascribable to the whole bacterial community. Field shoot tip tissues and callus derived from stem segments were further employed in 16S rRNA V3-V4 amplicon taxonomic profiling. This revealed elevated taxonomic diversity in field shoots over WMG, predominantly Proteobacteria succeeded by Actinobacteria, Firmicutes, Bacteroidetes, and 15 other phyla including several candidate phyla (135 families, 179 genera). Callus stocks also displayed broad bacterial diversity (16 phyla; 96 families; 141 genera) bearing resemblance to field tissues with Proteobacterial dominance but a reduction in its share, enrichment of Actinobacteria and Firmicutes, disappearance of some field-associated phyla and detection of a few additional taxonomic groups over field community. Similar results were documented during 16S V3-V4 amplicon taxonomic profiling on Thompson Seedless field shoot tip and callus tissues. Video microscopy on tissue homogenates

  11. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China.

    PubMed

    Zhang, Bingchang; Kong, Weidong; Wu, Nan; Zhang, Yuanming

    2016-06-01

    Biological soil crusts (BSCs) are common and play critical roles in semi-arid and arid ecosystems. Bacteria, as an important community in BSCs, play critical roles in biochemical processes. However, how bacterial diversity and community change in different successional stages of BSCs is still unknown. We used 454 pyrosequencing of 16S rRNA to investigate the bacterial composition and community, and the relationships between bacterial composition and environmental factors were also explored. In different successional stages of BSCs, the number of bacteria operational taxonomic units (OTUs) detected in each sample ranged from 2572 to 3157. Proteobacteria, Cyanobacteria, Bacteroidetes were dominant in BSCs, followed by Firmicutes, Acidobacteria, and Actinobacteria. At the successional stages of BSCs, bacterial communities, OTU composition and their relative abundance notably differentiated, and Cyanobacteria, especially Microcoleus vaginatus, dominated algal crust and lichen crust, and were the main C-fixing bacteria in BSCs. Proteobacteria and Bacteroidetes increased with the development of BSCs. OTUs related to Planomicrobium Chinese, Desulfobulbus sp., Desulfomicrobium sp., Arthrobacter sp., and Ahhaerbacter sp. showed higher relative abundance in bare sand than other successional stages of BSCs, while relative abundance of Sphingomonas sp. Niastella sp., Pedobacter, Candidatus solobacter, and Streptophyta increased with the development of BSCs. In successional stages of BSCs, bacterial OTUs composition demonstrated strong correlations with soil nutrients, soil salts, and soil enzymes. Additionally, variation of bacterial composition led to different ecological function. In bare sand, some species were related with mineral metabolism or promoting plant growth, and in algal crust and lichen crust, C-fixing bacteria increased and accumulated C to the desert soil. In later developed stage of BSCs, bacteria related with decomposition of organic matter, such as

  12. A mixture of Lactobacillus species isolated from traditional fermented foods promote recovery from antibiotic-induced intestinal disruption in mice.

    PubMed

    Shi, Y; Zhao, X; Zhao, J; Zhang, H; Zhai, Q; Narbad, A; Chen, W

    2018-03-01

    This study evaluated the antibiotic-induced changes in microbial ecology, intestinal dysbiosis and low-grade inflammation; and the combined effect of four different Lactobacillus species on recovery of microbiota composition and improvement of gut barrier function in mice. Administration of the antibiotic ampicillin for 2 weeks decreased microbial community diversity, induced caecum tumefaction and increased gut permeability in mice. Application of a probiotic cocktail of four Lactobacillus species (JUP-Y4) modulated the microbiota community structure and promoted the abundance of potentially beneficial bacteria such as Akkermansia. Ampicillin administration led to a decline in Bacteroidetes from 46·6 ± 3·91% to 0·264 ± 0·0362%; the addition of JUP-Y4 restored this to 41·4 ± 2·87%. This probiotic supplementation was more effective than natural restoration, where the levels of Bacteroidetes were only restored to 29·3 ± 2·07%. Interestingly, JUP-Y4 treatment was more effective in the restoration of microbiota in faecal samples than in caecal samples. JUP-Y4 also significantly reduced the levels of d-lactate and endotoxin (lipopolysaccharide, LPS) in the serum of mice, and increased the expression of tight-junction proteins while reducing the production of inflammatory cytokines (TNF-α, IL-6, MCP-1, IFN-γ and IL-1β) in the ileum and the colon of antibiotic-treated mice. JUP-Y4 not only promoted recovery from antibiotic-induced gut dysbiosis, but also enhanced the function of the gut barrier, reduced inflammation and lowered levels of circulating endotoxin in mice. Consumption of a mixture of Lactobacillus species may encourage faster recovery from antibiotic-induced gut dysbiosis and gut microbiota-related immune disturbance. © 2018 The Society for Applied Microbiology.

  13. Towards long-read metagenomics: complete assembly of three novel genomes from bacteria dependent on a diazotrophic cyanobacterium in a freshwater lake co-culture.

    PubMed

    Driscoll, Connor B; Otten, Timothy G; Brown, Nathan M; Dreher, Theo W

    2017-01-01

    Here we report three complete bacterial genome assemblies from a PacBio shotgun metagenome of a co-culture from Upper Klamath Lake, OR. Genome annotations and culture conditions indicate these bacteria are dependent on carbon and nitrogen fixation from the cyanobacterium Aphanizomenon flos-aquae, whose genome was assembled to draft-quality . Due to their taxonomic novelty relative to previously sequenced bacteria, we have temporarily designated these bacteria as incertae sedis Hyphomonadaceae strain UKL13-1 (3,501,508 bp and 56.12% GC), incertae sedis Betaproteobacterium strain UKL13-2 (3,387,087 bp and 54.98% GC), and incertae sedis Bacteroidetes strain UKL13-3 (3,236,529 bp and 37.33% GC). Each genome consists of a single circular chromosome with no identified plasmids. When compared with binned Illumina assemblies of the same three genomes, there was ~7% discrepancy in total genome length. Gaps where Illumina assemblies broke were often due to repetitive elements. Within these missing sequences were essential genes and genes associated with a variety of functional categories. Annotated gene content reveals that both Proteobacteria are aerobic anoxygenic phototrophs, with Betaproteobacterium UKL13-2 potentially capable of phototrophic oxidation of sulfur compounds. Both proteobacterial genomes contain transporters suggesting they are scavenging fixed nitrogen from A. flos-aquae in the form of ammonium. Bacteroidetes UKL13-3 has few completely annotated biosynthetic pathways, and has a comparatively higher proportion of unannotated genes. The genomes were detected in only a few other freshwater metagenomes, suggesting that these bacteria are not ubiquitous in freshwater systems. Our results indicate that long-read sequencing is a viable method for sequencing dominant members from low-diversity microbial communities, and should be considered for environmental metagenomics when conditions meet these requirements.

  14. Oral hydroxysafflor yellow A reduces obesity in mice by modulating the gut microbiota and serum metabolism.

    PubMed

    Liu, Juan; Yue, Shijun; Yang, Zhirui; Feng, Wuwen; Meng, Xintong; Wang, Aiting; Peng, Cheng; Wang, Changyun; Yan, Dan

    2018-05-19

    Given the high and increasing prevalence of obesity, the safe and effective treatment of obesity would be beneficial. Here, we examined whether oral hydroxysafflor yellow A (HSYA), an active compound from the dried florets of Carthamus tinctorius L., can reduce high-fat (HF) diet-induced obesity in C57BL/6 J mice. Our results showed that the average body weight of HF group treated by HSYA was significantly lower than that of the HF group (P < 0.01). HSYA also reduced fat accumulation, ameliorated insulin resistance, restored glucose homeostasis, reduced inflammation, enhanced intestinal integrity, and increased short-chain fatty acids (SCFAs) production in HF diet-fed mice. Sequencing of 16S rRNA genes in fecal samples demonstrated that HSYA reversed HF diet induced gut microbiota dysbiosis. Particularly, HSYA increased the relative abundances of genera Akkermansia and Romboutsia, as well as SCFAs-producing bacteria, including genera Butyricimonas and Alloprevotella, whereas it decreased the phyla Firmicutes/Bacteroidetes ratio of HF diet-fed mice. Additionally, serum metabolomics analysis revealed that HSYA increased lysophosphatidylcholines (lysoPCs), L-carnitine and sphingomyelin, and decreased phosphatidylcholines in mice fed a HF diet, as compared to HF group. These changed metabolites were mainly linked with the pathways of glycerophospholipid metabolism and sphingolipid metabolism. Spearman's correlation analysis further revealed that Firmicutes was positively while Bacteroidetes and Akkermansia were negatively correlated with body weight, fasting serum glucose and insulin. Moreover, Akkermansia and Butyricimonas had positive correlations with lysoPCs, suggestive of the role of gut microbiota in serum metabolites. Our findings suggest HSYA may be a potential therapeutic drug for obesity and the gut microbiota may be potential territory for targeting of HSYA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Airborne bacterial contaminations in typical Chinese wet market with live poultry trade.

    PubMed

    Gao, Xin-Lei; Shao, Ming-Fei; Luo, Yi; Dong, Yu-Fang; Ouyang, Feng; Dong, Wen-Yi; Li, Ji

    2016-12-01

    Chinese wet markets with live poultry trade have been considered as major sources of pathogen dissemination, and sites for horizontal transfer of bacterial and viral pathogens. In this study, the pathogenic bacteria and antibiotic resistant genes (ARGs) in air samples collected at a typical Chinese wet market had been analysis and quantified. Corynebacterium minutissimum and other pathogenic bacteria accounted for 0.81-8.02% of the whole microbial community in different air samples. The four ARGs quantified in this study showed a comparable relative concentration (copies/ng_DNA) with municipal wastewater. Poultry manures were demonstrated to be important microbial contamination source in wet market, which was supported by both microbial composition based source tracking and the quantification of airborne microbial density. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. Our results indicate bioaerosols acted as important route for the transmissions of pathogens and ARGs. Continued surveillance of airborne microbial contamination is required in poultry trade wet market. Urban live poultry markets are important sources of pathogen dissemination, and sites for horizontal transfer of viral and bacterial pathogens. In the present field-study, pathogenic bacteria and antibiotic resistance genes were focused to provide quantitative information on the levels of microbial contaminations at the indoor air of wet markets. Results demonstrated that poultry manures were important microbial contamination source in wet market, and in the meanwhile bioaerosols were identified as important route for the transmissions of microbial contaminants. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry

  16. Halophilic & halotolerant prokaryotes in humans.

    PubMed

    Seck, El Hadji; Dufour, Jean-Charles; Raoult, Didier; Lagier, Jean-Christophe

    2018-05-04

    Halophilic prokaryotes are described as microorganisms living in hypersaline environments. Here, we list the halotolerant and halophilic bacteria which have been isolated in humans. Of the 52 halophilic prokaryotes, 32 (61.54%) were moderately halophilic, 17 (32.69%) were slightly halophilic and three (5.76%) were extremely halophilic prokaryotes. At the phylum level, 29 (54.72%) belong to Firmicutes, 15 (28.84%) to Proteobacteria, four (7.69%) to Actinobacteria, three (5.78%) to Euryarchaeota and one (1.92%) belongs to Bacteroidetes. Halophilic prokaryotes are rarely pathogenic: of these 52 halophilic prokaryotes only two (3.92%) species were classified in Risk Group 2 (Vibrio cholerae, Vibrio parahaemolyticus) and one (1.96%), species in Risk Group 3 (Bacillus anthracis).

  17. Complete genome sequence of Cellulophaga lytica type strain (LIM-21T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pati, Amrita; Abt, Birte; Teshima, Hazuki

    Cellulophaga lytica (Lewin 1969) Johansen et al. 1999 is the type species of the genus Cellulophaga, which belongs to the family Flavobacteriaceae within the phylum 'Bacteroidetes' and was isolated from marine beach mud in Limon, Costa Rica. The species is of biotechnological interest because its members produce a wide range of extracellular enzymes capable of degrading proteins and polysaccharides. After the genome sequence of Cellulophaga algicola this is the second completed genome sequence of a member of the genus Cellulophaga. The 3,765,936 bp long genome with its 3,303 protein-coding and 55 RNA genes consists of one circular chromosome and ismore » a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  18. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor

    PubMed Central

    Jabari, Linda; Gannoun, Hana; Khelifi, Eltaief; Cayol, Jean-Luc; Godon, Jean-Jacques; Hamdi, Moktar; Fardeau, Marie-Laure

    2016-01-01

    Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published. PMID:26887229

  19. Application of a new purification method of West-Kazakhstan chestnut soil microbiota DNA for metagenomic analysis

    NASA Astrophysics Data System (ADS)

    Sergaliev, N. Kh.; Kakishev, M. G.; Zhiengaliev, A. T.; Volodin, M. A.; Andronov, E. E.; Pinaev, A. G.

    2015-04-01

    A method for the extraction of soil microbial DNA has been tested on chestnut soils (Kastanozems) of the West Kazakhstan region. The taxonomic analysis of soil microbiome libraries has shown that the phyla Actinobacteria and Proteobacteria constitute the largest part of microbial communities in the analyzed soils. The Archaea form an appreciable part of the microbiome in the studied samples. In the underdeveloped dark chestnut soil, their portion is higher than 11%. This is of interest, as the proportion of Archaea in the soil communities of virgin lands usually does not exceed 5%. In addition to the phyla mentioned above, there are representatives of the phyla Acidobacteria, Bacteroidetes, Firmicutes, Gemmatimonadales, Planctomycetes, and Verrucomicrobia, which are all fairly common in soil communities.

  20. Molecular analysis of microbial diversity in corrosion samples from energy transmission towers.

    PubMed

    Oliveira, Valéria M; Lopes-Oliveira, Patrícia F; Passarini, Michel R Z; Menezes, Claudia B A; Oliveira, Walter R C; Rocha, Adriano J; Sette, Lara D

    2011-04-01

    Microbial diversity in corrosion samples from energy transmission towers was investigated using molecular methods. Ribosomal DNA fragments were used to assemble gene libraries. Sequence analysis indicated 10 bacterial genera within the phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. In the two libraries generated from corroded screw-derived samples, the genus Acinetobacter was the most abundant. Acinetobacter and Clostridium spp. dominated, with similar percentages, in the libraries derived from corrosion scrapings. Fungal clones were affiliated with 14 genera belonging to the phyla Ascomycota and Basidiomycota; of these, Capnobotryella and Fellomyces were the most abundant fungi observed. Several of the microorganisms had not previously been associated with biofilms and corrosion, reinforcing the need to use molecular techniques to achieve a more comprehensive assessment of microbial diversity in environmental samples.

  1. Metagenomic analysis of a desulphurisation system used to treat biogas from vinasse methanisation.

    PubMed

    Dias, Marcela França; Colturato, Luis Felipe; de Oliveira, João Paulo; Leite, Laura Rabelo; Oliveira, Guilherme; Chernicharo, Carlos Augusto; de Araújo, Juliana Calabria

    2016-04-01

    We investigated the response of microbial community to changes in H2S loading rate in a microaerated desulphurisation system treating biogas from vinasse methanisation. H2S removal efficiency was high, and both COD and DO seemed to be important parameters to biomass activity. DGGE analysis retrieved sequences of sulphide-oxidising bacteria (SOB), such as Thioalkalimicrobium sp. Deep sequencing analysis revealed that the microbial community was complex and remained constant throughout the experiment. Most sequences belonged to Firmicutes and Proteobacteria, and, to a lesser extent, Bacteroidetes, Chloroflexi, and Synergistetes. Despite the high sulphide removal efficiency, the abundance of the taxa of SOB was low, and was negatively affected by the high sulphide loading rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Polysaccharides and Proteins Added to Flowing Drinking Water at Microgram-per-Liter Levels Promote the Formation of Biofilms Predominated by Bacteroidetes and Proteobacteria

    PubMed Central

    Sack, Eveline L. W.; van der Kooij, Dick

    2014-01-01

    Biopolymers are important substrates for heterotrophic bacteria in (ultra)oligotrophic freshwater environments, but information about their utilization at microgram-per-liter levels by attached freshwater bacteria is lacking. This study aimed at characterizing biopolymer utilization in drinking-water-related biofilms by exposing such biofilms to added carbohydrates or proteins at 10 μg C liter−1 in flowing tap water for up to 3 months. Individually added amylopectin was not utilized by the biofilms, whereas laminarin, gelatin, and caseinate were. Amylopectin was utilized during steady-state biofilm growth with simultaneously added maltose but not with simultaneously added acetate. Biofilm formation rates (BFR) at 10 μg C liter−1 per substrate were ranked as follows, from lowest to highest: blank or amylopectin (≤6 pg ATP cm−2 day−1), gelatin or caseinate, laminarin, maltose, acetate alone or acetate plus amylopectin, and maltose plus amylopectin (980 pg ATP cm−2 day−1). Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequence analyses revealed that the predominant maltose-utilizing bacteria also dominated subsequent amylopectin utilization, indicating catabolic repression and (extracellular) enzyme induction. The accelerated BFR with amylopectin in the presence of maltose probably resulted from efficient amylopectin binding to and hydrolysis by inductive enzymes attached to the bacterial cells. Cytophagia, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia grew during polysaccharide addition, and Alpha-, Beta-, and Gammaproteobacteria, Cytophagia, Flavobacteriia, and Sphingobacteriia grew during protein addition. The succession of bacterial populations in the biofilms coincided with the decrease in the specific growth rate during biofilm formation. Biopolymers can clearly promote biofilm formation at microgram-per-liter levels in drinking water distribution systems and, depending on their concentrations, might impair the biological stability of distributed drinking water. PMID:24487544

  3. Polysaccharides and proteins added to flowing drinking water at microgram-per-liter levels promote the formation of biofilms predominated by bacteroidetes and proteobacteria.

    PubMed

    Sack, Eveline L W; van der Wielen, Paul W J J; van der Kooij, Dick

    2014-04-01

    Biopolymers are important substrates for heterotrophic bacteria in (ultra)oligotrophic freshwater environments, but information about their utilization at microgram-per-liter levels by attached freshwater bacteria is lacking. This study aimed at characterizing biopolymer utilization in drinking-water-related biofilms by exposing such biofilms to added carbohydrates or proteins at 10 μg C liter(-1) in flowing tap water for up to 3 months. Individually added amylopectin was not utilized by the biofilms, whereas laminarin, gelatin, and caseinate were. Amylopectin was utilized during steady-state biofilm growth with simultaneously added maltose but not with simultaneously added acetate. Biofilm formation rates (BFR) at 10 μg C liter(-1) per substrate were ranked as follows, from lowest to highest: blank or amylopectin (≤6 pg ATP cm(-2) day(-1)), gelatin or caseinate, laminarin, maltose, acetate alone or acetate plus amylopectin, and maltose plus amylopectin (980 pg ATP cm(-2) day(-1)). Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequence analyses revealed that the predominant maltose-utilizing bacteria also dominated subsequent amylopectin utilization, indicating catabolic repression and (extracellular) enzyme induction. The accelerated BFR with amylopectin in the presence of maltose probably resulted from efficient amylopectin binding to and hydrolysis by inductive enzymes attached to the bacterial cells. Cytophagia, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia grew during polysaccharide addition, and Alpha-, Beta-, and Gammaproteobacteria, Cytophagia, Flavobacteriia, and Sphingobacteriia grew during protein addition. The succession of bacterial populations in the biofilms coincided with the decrease in the specific growth rate during biofilm formation. Biopolymers can clearly promote biofilm formation at microgram-per-liter levels in drinking water distribution systems and, depending on their concentrations, might impair the biological stability of distributed drinking water.

  4. Effects of Diets Supplemented with Ensiled Mulberry Leaves and Sun-Dried Mulberry Fruit Pomace on the Ruminal Bacterial and Archaeal Community Composition of Finishing Steers

    PubMed Central

    Niu, Yuhong; Meng, Qingxiang; Li, Shengli; Ren, Liping; Zhou, Bo; Schonewille, Thomas; Zhou, Zhenming

    2016-01-01

    This study investigated the effects of ensiled mulberry leaves (EML) and sun-dried mulberry fruit pomace (SMFP) on the ruminal bacterial and archaeal community composition of finishing steers. Corn grain- and cotton meal-based concentrate was partially replaced with EML or SMFP. The diets had similar crude protein (CP), neutral detergent fiber (NDF), and metabolizable energy. Following the feeding trial, the steers were slaughtered and ruminal liquid samples were collected to study the ruminal microbiome. Extraction of DNA, amplification of the V4 region of the 16S rRNA gene, and Illumina MiSeq pyrosequencing were performed for each sample. Following sequence de-noising, chimera checking, and quality trimming, an average of 209,610 sequences were generated per sample. Quantitative real-time PCR was performed to examine the selected bacterial species in the rumen. Our results showed that the predominant phyla were Bacteroidetes (43.90%), Firmicutes (39.06%), Proteobacteria (4.31%), and Tenericutes (2.04%), and the predominant genera included Prevotella (13.82%), Ruminococcus (2.51%), Butyrivibrio (2.38%), and Succiniclasticum (2.26%). Compared to the control group, EML and SMFP groups had a higher abundance of total bacteria (p < 0.001); however, the bacterial community composition was similar among the three groups. At the phylum level, there were no significant differences in Firmicutes (p = 0.7932), Bacteroidetes (p = 0.2330), Tenericutes (p = 0.2811), or Proteobacteria (p = 0.0680) levels among the three groups; however, Fibrobacteres decreased in EML (p = 0.0431). At the genus level, there were no differences in Prevotella (p = 0.4280), Ruminococcus (p = 0.2639), Butyrivibrio (p = 0.4433), or Succiniclasticum (p = 0.0431) levels among the groups. Additionally, the dietary treatments had no significant effects on the archaeal community composition in the rumen. Therefore, EML and SMFP supplementation had no significant effects on the ruminal bacterial or

  5. PG1058 Is a Novel Multidomain Protein Component of the Bacterial Type IX Secretion System

    PubMed Central

    Veith, Paul D.; Butler, Catherine A.; Nor Muhammad, Nor A.; Chen, Yu-Yen; Slakeski, Nada; Peng, Benjamin; Zhang, Lianyi; Dashper, Stuart G.; Cross, Keith J.; Cleal, Steven M.; Moore, Caroline; Reynolds, Eric C.

    2016-01-01

    Porphyromonas gingivalis utilises the Bacteroidetes-specific type IX secretion system (T9SS) to export proteins across the outer membrane (OM), including virulence factors such as the gingipains. The secreted proteins have a conserved carboxy-terminal domain essential for type IX secretion that is cleaved upon export. In P. gingivalis the T9SS substrates undergo glycosylation with anionic lipopolysaccharide (A-LPS) and are attached to the OM. In this study, comparative analyses of 24 Bacteroidetes genomes identified ten putative novel components of the T9SS in P. gingivalis, one of which was PG1058. Computer modelling of the PG1058 structure predicted a novel N- to C-terminal architecture comprising a tetratricopeptide repeat (TPR) domain, a β-propeller domain, a carboxypeptidase regulatory domain-like fold (CRD) and an OmpA_C-like putative peptidoglycan binding domain. Inactivation of pg1058 in P. gingivalis resulted in loss of both colonial pigmentation and surface-associated proteolytic activity; a phenotype common to T9SS mutants. Immunoblot and LC-MS/MS analyses of subcellular fractions revealed T9SS substrates accumulated within the pg1058 mutant periplasm whilst whole-cell ELISA showed the Kgp gingipain was absent from the cell surface, confirming perturbed T9SS function. Immunoblot, TEM and whole-cell ELISA analyses indicated A-LPS was produced and present on the pg1058 mutant cell surface although it was not linked to T9SS substrate proteins. This indicated that PG1058 is crucial for export of T9SS substrates but not for the translocation of A-LPS. PG1058 is a predicted lipoprotein and was localised to the periplasmic side of the OM using whole-cell ELISA, immunoblot and LC-MS/MS analyses of subcellular fractions. The structural prediction and localisation of PG1058 suggests that it may have a role as an essential scaffold linking the periplasmic and OM components of the T9SS. PMID:27711252

  6. Bacterial community composition and structure in an Urban River impacted by different pollutant sources.

    PubMed

    Ibekwe, A Mark; Ma, Jincai; Murinda, Shelton E

    2016-10-01

    Microbial communities in terrestrial fresh water are diverse and dynamic in composition due to different environmental factors. The goal of this study was to undertake a comprehensive analysis of bacterial composition along different rivers and creeks and correlate these to land-use practices and pollutant sources. Here we used 454 pyrosequencing to determine the total bacterial community composition, and bacterial communities that are potentially of fecal origin, and of relevance to water quality assessment. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, and community composition. Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to correlate bacterial composition in streams and creeks to different environmental parameters impacting bacterial communities in the sediment and surface water within the watershed. Bacteria were dominated by the phyla Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria, with Bacteroidetes significantly (P<0.001) higher in all water samples than sediment, where as Acidobacteria and Actinobacteria where significantly higher (P<0.05) in all the sediment samples than surface water. Overall results, using the β diversity measures, coupled with PCoA and DCA showed that bacterial composition in sediment and surface water was significantly different (P<0.001). Also, there were differences in bacterial community composition between agricultural runoff and urban runoff based on parsimony tests using 454 pyrosequencing data. Fecal indicator bacteria in surface water along different creeks and channels were significantly correlated with pH (P<0.01), NO2 (P<0.03), and NH4N (P<0.005); and in the sediment with NO3 (P<0.015). Our results suggest that microbial community compositions were influenced by several environmental factors, and pH, NO2, and NH4 were the major environmental factors driving FIB in surface water

  7. Multilayer Approach for Characterization of Bacterial Diversity in a Marginal Sea: From Surface to Seabed

    NASA Technical Reports Server (NTRS)

    Ivana, Babic; Maja, Mucko; Ivica, Vilibic; Hrvoje, Mihanovic; Reffaella, Casotti; Zrinka, Ljubesic; Ivona, Cetinic; Cecilia, Balestra; Ines, Petric; Suncica, Bosak; hide

    2018-01-01

    Bacteria are the most important microorganisms in the world oceans, accounting for up to 75% of the total biomass. They are responsible for fundamental biogeochemical processes and therefore often used as ecological indicators. In this study, bacteria were quantified by flow cytometry and their diversity assessed by High Throughput Sequencing (HTS) in the southern Adriatic Sea. The most abundant bacterial groups were also quantified by qPCR. The samples were collected from the surface to the seabed over a total of 16 different depths at four stations during the late winter BIOTA (BIO-Tracing Adriatic water masses) cruise conducted in March 2016. The investigated area showed unusual water mass properties and was characterized by a shallow mixed layer, which differed from the usual winter convection conditions, typical of middle-altitude ecosystems and important for the seasonal picoplankton dynamics of this area. Heterotrophic bacteria were separated into HNA (relative High Nucleic Acid content) and LNA (Low Nucleic Acid content) subpopulations with abundances up to 1.8×10(exp 5) and 8.8×10(exp 5) cells/mL, respectively. HNA dominated at offshore stations reaching their maximum at depths below the euphotic zone. The bacterial community was dominated by Alphaproteobacteria, accounting for greater than 40% of the total sequence reads and were mainly represented by the SAR11 clade (90.84%), followed by Marinimicrobia (18% of the total sequence reads), mainly represented by clade SAR406 (8.44%). Distinctive bacterial groups were found in the euphotic layer (Bacteroidetes and Actinobacteria) and aphotic layer samples (Deltaproteobacteria, Marinimicrobia, Chloroflexi, Acidobacteria and Planctomycetes). Results of the qPCR analyses further confirmed HTS results with highest abundances obtained for Alphaproteobacteria, followed by Gammaproteobacteria and Bacteroidetes. The adopted multiple approach, combining different molecular tools, critically supported by optics and

  8. Metagenomic investigation of the microbial diversity in a chrysotile asbestos mine pit pond, Lowell, Vermont, USA.

    PubMed

    Driscoll, Heather E; Vincent, James J; English, Erika L; Dolci, Elizabeth D

    2016-12-01

    Here we report on a metagenomics investigation of the microbial diversity in a serpentine-hosted aquatic habitat created by chrysotile asbestos mining activity at the Vermont Asbestos Group (VAG) Mine in northern Vermont, USA. The now-abandoned VAG Mine on Belvidere Mountain in the towns of Eden and Lowell includes three open-pit quarries, a flooded pit, mill buildings, roads, and > 26 million metric tons of eroding mine waste that contribute alkaline mine drainage to the surrounding watershed. Metagenomes and water chemistry originated from aquatic samples taken at three depths (0.5 m, 3.5 m, and 25 m) along the water column at three distinct, offshore sites within the mine's flooded pit (near 44°46'00.7673″, - 72°31'36.2699″; UTM NAD 83 Zone 18 T 0695720 E, 4960030 N). Whole metagenome shotgun Illumina paired-end sequences were quality trimmed and analyzed based on a translated nucleotide search of NCBI-NR protein database and lowest common ancestor taxonomic assignments. Our results show strata within the pit pond water column can be distinguished by taxonomic composition and distribution, pH, temperature, conductivity, light intensity, and concentrations of dissolved oxygen. At the phylum level, metagenomes from 0.5 m and 3.5 m contained a similar distribution of taxa and were dominated by Actinobacteria (46% and 53% of reads, respectively), Proteobacteria (45% and 38%, respectively), and Bacteroidetes (7% in both). The metagenomes from 25 m showed a greater diversity of phyla and a different distribution of reads than the two upper strata: Proteobacteria (60%), Actinobacteria (18%), Planctomycetes, (10%), Bacteroidetes (5%) and Cyanobacteria (2.5%), Armatimonadetes (< 1%), Verrucomicrobia (< 1%), Firmicutes (< 1%), and Nitrospirae (< 1%). Raw metagenome sequence data from each sample reside in NCBI's Short Read Archive (SRA ID: SRP056095) and are accessible through NCBI BioProject PRJNA277916.

  9. Metagenomic Analysis of the Rumen Microbiome of Steers with Wheat-Induced Frothy Bloat

    PubMed Central

    Pitta, D. W.; Pinchak, W. E.; Indugu, N.; Vecchiarelli, B.; Sinha, R.; Fulford, J. D.

    2016-01-01

    Frothy bloat is a serious metabolic disorder that affects stocker cattle grazing hard red winter wheat forage in the Southern Great Plains causing reduced performance, morbidity, and mortality. We hypothesize that a microbial dysbiosis develops in the rumen microbiome of stocker cattle when grazing on high quality winter wheat pasture that predisposes them to frothy bloat risk. In this study, rumen contents were harvested from six cannulated steers grazing hard red winter wheat (three with bloat score “2” and three with bloat score “0”), extracted for genomic DNA and subjected to 16S rDNA and shotgun sequencing on 454/Roche platform. Approximately 1.5 million reads were sequenced, assembled and assigned for phylogenetic and functional annotations. Bacteria predominated up to 84% of the sequences while archaea contributed to nearly 5% of the sequences. The abundance of archaea was higher in bloated animals (P < 0.05) and dominated by Methanobrevibacter. Predominant bacterial phyla were Firmicutes (65%), Actinobacteria (13%), Bacteroidetes (10%), and Proteobacteria (6%) across all samples. Genera from Firmicutes such as Clostridium, Eubacterium, and Butyrivibrio increased (P < 0.05) while Prevotella from Bacteroidetes decreased in bloated samples. Co-occurrence analysis revealed syntrophic associations between bacteria and archaea in non-bloated samples, however; such interactions faded in bloated samples. Functional annotations of assembled reads to Subsystems database revealed the abundance of several metabolic pathways, with carbohydrate and protein metabolism well represented. Assignment of contigs to CaZy database revealed a greater diversity of Glycosyl Hydrolases dominated by oligosaccharide breaking enzymes (>70%) in non-bloated samples. However, the abundance and diversity of CaZymes were greatly reduced in bloated samples indicating the disruption of carbohydrate metabolism. We conclude that mild to moderate frothy bloat results from tradeoffs both

  10. Biological Characterization of Microenvironments in a Hypersaline Cold Spring Mars Analog

    PubMed Central

    Sapers, Haley M.; Ronholm, Jennifer; Raymond-Bouchard, Isabelle; Comrey, Raven; Osinski, Gordon R.; Whyte, Lyle G.

    2017-01-01

    While many habitable niches on Earth are characterized by permanently cold conditions, little is known about the spatial structure of seasonal communities and the importance of substrate-cell associations in terrestrial cyroenvironments. Here we use the 16S rRNA gene as a marker for genetic diversity to compare two visually distinct but spatially integrated surface microbial mats on Axel Heiberg Island, Canadian high arctic, proximal to a perennial saline spring. This is the first study to describe the bacterial diversity in microbial mats on Axel Heiberg Island. The hypersaline springs on Axel Heiberg represent a unique analog to putative subsurface aquifers on Mars. The Martian subsurface represents the longest-lived potentially habitable environment on Mars and a better understanding of the microbial communities on Earth that thrive in analog conditions will help direct future life detection missions. The microbial mats sampled on Axel Heiberg are only visible during the summer months in seasonal flood plains formed by melt water and run-off from the proximal spring. Targeted-amplicon sequencing revealed that not only does the bacterial composition of the two mat communities differ substantially from the sediment community of the proximal cold spring, but that the mat communities are distinct from any other microbial community in proximity to the Arctic springs studied to date. All samples are dominated by Gammaproteobacteria: Thiotichales is dominant within the spring samples while Alteromonadales comprises a significant component of the mat communities. The two mat samples differ in their Thiotichales:Alteromonadales ratio and contribution of Bacteroidetes to overall diversity. The red mats have a greater proportion of Alteromonadales and Bacteroidetes reads. The distinct bacterial composition of the mat bacterial communities suggests that the spring communities are not sourced from the surface, and that seasonal melt events create ephemerally habitable niches

  11. Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life.

    PubMed

    Wampach, Linda; Heintz-Buschart, Anna; Hogan, Angela; Muller, Emilie E L; Narayanasamy, Shaman; Laczny, Cedric C; Hugerth, Luisa W; Bindl, Lutz; Bottu, Jean; Andersson, Anders F; de Beaufort, Carine; Wilmes, Paul

    2017-01-01

    Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial colonization and succession, much less is known about the other two domains of life, archaea, and eukaryotes. Here we describe colonization and succession by bacteria, archaea and microeukaryotes during the first year of life (samples collected around days 1, 3, 5, 28, 150, and 365) within the gastrointestinal tract of infants delivered either vaginally or by cesarean section and using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing. Sequences from organisms belonging to all three domains of life were detectable in all of the collected meconium samples. The microeukaryotic community composition fluctuated strongly over time and early diversification was delayed in infants receiving formula milk. Cesarean section-delivered (CSD) infants experienced a delay in colonization and succession, which was observed for all three domains of life. Shifts in prokaryotic succession in CSD infants compared to vaginally delivered (VD) infants were apparent as early as days 3 and 5, which were characterized by increased relative abundances of the genera Streptococcus and Staphylococcus , and a decrease in relative abundance for the genera Bifidobacterium and Bacteroides . Generally, a depletion in Bacteroidetes was detected as early as day 5 postpartum in CSD infants, causing a significantly increased Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. Although the delivery mode appeared to have the strongest influence on differences between the infants, other factors such as a younger gestational age or maternal antibiotics intake likely contributed to the observed patterns as well. Our findings complement previous observations of a delay in colonization and succession of CSD infants, which affects not

  12. Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life

    PubMed Central

    Wampach, Linda; Heintz-Buschart, Anna; Hogan, Angela; Muller, Emilie E. L.; Narayanasamy, Shaman; Laczny, Cedric C.; Hugerth, Luisa W.; Bindl, Lutz; Bottu, Jean; Andersson, Anders F.; de Beaufort, Carine; Wilmes, Paul

    2017-01-01

    Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial colonization and succession, much less is known about the other two domains of life, archaea, and eukaryotes. Here we describe colonization and succession by bacteria, archaea and microeukaryotes during the first year of life (samples collected around days 1, 3, 5, 28, 150, and 365) within the gastrointestinal tract of infants delivered either vaginally or by cesarean section and using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing. Sequences from organisms belonging to all three domains of life were detectable in all of the collected meconium samples. The microeukaryotic community composition fluctuated strongly over time and early diversification was delayed in infants receiving formula milk. Cesarean section-delivered (CSD) infants experienced a delay in colonization and succession, which was observed for all three domains of life. Shifts in prokaryotic succession in CSD infants compared to vaginally delivered (VD) infants were apparent as early as days 3 and 5, which were characterized by increased relative abundances of the genera Streptococcus and Staphylococcus, and a decrease in relative abundance for the genera Bifidobacterium and Bacteroides. Generally, a depletion in Bacteroidetes was detected as early as day 5 postpartum in CSD infants, causing a significantly increased Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. Although the delivery mode appeared to have the strongest influence on differences between the infants, other factors such as a younger gestational age or maternal antibiotics intake likely contributed to the observed patterns as well. Our findings complement previous observations of a delay in colonization and succession of CSD infants, which affects not

  13. Lactobacillus reuteri and Escherichia coli in the human gut microbiota may predict weight gain associated with vancomycin treatment

    PubMed Central

    Million, M; Thuny, F; Angelakis, E; Casalta, J-P; Giorgi, R; Habib, G; Raoult, D

    2013-01-01

    Background: Antibiotics, used for 60 years to promote weight gain in animals, have been linked to obesity in adults and in children when administered during early infancy. Lactobacillus reuteri has been linked to obesity and weight gain in children affected with Kwashiorkor using ready-to-use therapeutic food. In contrast, Escherichia coli has been linked with the absence of obesity. Both of these bacteria are resistant to vancomycin. Objectives and methods: We assessed vancomycin-associated weight and gut microbiota changes, and tested whether bacterial species previously linked with body mass index (BMI) predict weight gain at 1 year. All endocarditis patients treated with vancomycin or amoxicillin in our center were included from January 2008 to December 2010. Bacteroidetes, Firmicutes, Lactobacillus and Methanobrevibacter smithii were quantified using real-time PCR on samples obtained during the 4–6 weeks antibiotic regimen. L. reuteri, L. plantarum, L. rhamnosus, Bifidobacterium animalis and E. coli were quantified on stool samples obtained during the first week of antibiotics. Results: Of the193 patients included in the study, 102 were treated with vancomycin and 91 with amoxicillin. Vancomycin was associated with a 10% BMI increase (odds ratio (OR) 14.1; 95% confidence interval (CI; 1.03–194); P=0.047) and acquired obesity (4/41 versus 0/56, P=0.01). In patients treated with vancomycin, Firmicutes, Bacteroidetes and Lactobacillus increased, whereas M. smithii decreased (P<0.05). The absence of E. coli was an independent predictor of weight gain (OR=10.7; 95% CI (1.4–82.0); P=0.02). Strikingly, a patient with an 18% BMI increase showed a dramatic increase of L. reuteri but no increase of E. coli. Conclusion: The acquired obesity observed in patients treated with vancomycin may be related to a modulation of the gut microbiota rather than a direct antibiotic effect. L. reuteri, which is resistant to vancomycin and produces broad bacteriocins, may have an

  14. Urbanization Reduces Transfer of Diverse Environmental Microbiota Indoors

    PubMed Central

    Parajuli, Anirudra; Grönroos, Mira; Siter, Nathan; Puhakka, Riikka; Vari, Heli K.; Roslund, Marja I.; Jumpponen, Ari; Nurminen, Noora; Laitinen, Olli H.; Hyöty, Heikki; Rajaniemi, Juho; Sinkkonen, Aki

    2018-01-01

    Expanding urbanization is a major factor behind rapidly declining biodiversity. It has been proposed that in urbanized societies, the rarity of contact with diverse environmental microbiota negatively impacts immune function and ultimately increases the risk for allergies and other immune-mediated disorders. Surprisingly, the basic assumption that urbanization reduces exposure to environmental microbiota and its transfer indoors has rarely been examined. We investigated if the land use type around Finnish homes affects the diversity, richness, and abundance of bacterial communities indoors. Debris deposited on standardized doormats was collected in 30 rural and 26 urban households in and near the city of Lahti, Finland, in August 2015. Debris was weighed, bacterial community composition determined by high throughput sequencing of bacterial 16S ribosomal RNA (rRNA) gene on the Illumina MiSeq platform, and the percentage of four different land use types (i.e., built area, forest, transitional, and open area) within 200 m and 2000 m radiuses from each household was characterized. The quantity of doormat debris was inversely correlated with coverage of built area. The diversity of total bacterial, Proteobacterial, Actinobacterial, Bacteroidetes, and Firmicutes communities decreased as the percentage of built area increased. Their richness followed the same pattern except for Firmicutes for which no association was observed. The relative abundance of Proteobacteria and particularly Gammaproteobacteria increased, whereas that of Actinobacteria decreased with increasing built area. Neither Phylum Firmicutes nor Bacteroidetes varied with coverage of built area. Additionally, the relative abundance of potentially pathogenic bacterial families and genera increased as the percentage of built area increased. Interestingly, having domestic animals (including pets) only altered the association between the richness of Gammaproteobacteria and diversity of Firmicutes with the built

  15. Characterization of the Gut Microbial Community of Obese Patients Following a Weight-Loss Intervention Using Whole Metagenome Shotgun Sequencing.

    PubMed

    Louis, Sandrine; Tappu, Rewati-Mukund; Damms-Machado, Antje; Huson, Daniel H; Bischoff, Stephan C

    2016-01-01

    Cross-sectional studies suggested that obesity is promoted by the gut microbiota. However, longitudinal data on taxonomic and functional changes in the gut microbiota of obese patients are scarce. The aim of this work is to study microbiota changes in the course of weight loss therapy and the following year in obese individuals with or without co-morbidities, and to asses a possible predictive value of the gut microbiota with regard to weight loss maintenance. Sixteen adult patients, who followed a 52-week weight-loss program comprising low calorie diet, exercise and behavioral therapy, were selected according to their weight-loss course. Over two years, anthropometric and metabolic parameters were assessed and microbiota from stool samples was functionally and taxonomically analyzed using DNA shotgun sequencing. Overall the microbiota responded to the dietetic and lifestyle intervention but tended to return to the initial situation both at the taxonomical and functional level at the end of the intervention after one year, except for an increase in Akkermansia abundance which remained stable over two years (12.7x103 counts, 95%CI: 322-25100 at month 0; 141x103 counts, 95%CI: 49-233x103 at month 24; p = 0.005). The Firmicutes/Bacteroidetes ratio was higher in obese subjects with metabolic syndrome (0.64, 95%CI: 0.34-0.95) than in the "healthy obese" (0.27, 95%CI: 0.08-0.45, p = 0.04). Participants, who succeeded in losing their weight consistently over the two years, had at baseline a microbiota enriched in Alistipes, Pseudoflavonifractor and enzymes of the oxidative phosphorylation pathway compared to patients who were less successful in weight reduction. Successful weight reduction in the obese is accompanied with increased Akkermansia numbers in feces. Metabolic co-morbidities are associated with a higher Firmicutes/Bacteroidetes ratio. Most interestingly, microbiota differences might allow discrimination between successful and unsuccessful weight loss prior to

  16. Lignocellulose-Degrading Microbial Communities in Landfill Sites Represent a Repository of Unexplored Biomass-Degrading Diversity.

    PubMed

    Ransom-Jones, Emma; McCarthy, Alan J; Haldenby, Sam; Doonan, James; McDonald, James E

    2017-01-01

    The microbial conversion of lignocellulosic biomass for biofuel production represents a renewable alternative to fossil fuels. However, the discovery of new microbial enzymes with high activity is critical for improving biomass conversion processes. While attempts to identify superior lignocellulose-degrading enzymes have focused predominantly on the animal gut, biomass-degrading communities in landfill sites represent an unexplored resource of hydrolytic enzymes for biomass conversion. Here, to address the paucity of information on biomass-degrading microbial diversity beyond the gastrointestinal tract, cellulose (cotton) "baits" were incubated in landfill leachate microcosms to enrich the landfill cellulolytic microbial community for taxonomic and functional characterization. Metagenome and 16S rRNA gene amplicon sequencing demonstrated the dominance of Firmicutes , Bacteroidetes , Spirochaetes , and Fibrobacteres in the landfill cellulolytic community. Functional metagenome analysis revealed 8,371 carbohydrate active enzymes (CAZymes) belonging to 244 CAZyme families. In addition to observing biomass-degrading enzymes of anaerobic bacterial "cellulosome" systems of members of the Firmicutes , we report the first detection of the Fibrobacter cellulase system and the Bacteroidetes polysaccharide utilization locus (PUL) in landfill sites. These data provide evidence for the presence of multiple mechanisms of biomass degradation in the landfill microbiome and highlight the extraordinary functional diversity of landfill microorganisms as a rich source of biomass-degrading enzymes of potential biotechnological significance. IMPORTANCE The microbial conversion of lignocellulosic biomass for biofuel production represents a renewable alternative to fossil fuels. However, the discovery of new microbial enzymes with high activity is critical for improving biomass conversion processes. While attempts to identify superior lignocellulose-degrading enzymes have focused

  17. The Tasmanian devil microbiome-implications for conservation and management.

    PubMed

    Cheng, Yuanyuan; Fox, Samantha; Pemberton, David; Hogg, Carolyn; Papenfuss, Anthony T; Belov, Katherine

    2015-12-21

    The Tasmanian devil, the world's largest carnivorous marsupial, is at risk of extinction due to devil facial tumour disease (DFTD), a fatal contagious cancer. The Save the Tasmanian Devil Program has established an insurance population, which currently holds over 600 devils in captive facilities across Australia. Microbes are known to play a crucial role in the health and well-being of humans and other animals, and increasing evidence suggests that changes in the microbiota can influence various aspects of host physiology and development. To improve our understanding of devils and facilitate management and conservation of the species, we characterised the microbiome of wild devils and investigated differences in the composition of microbial community between captive and wild individuals. A total of 1,223,550 bacterial 16S ribosomal RNA (rRNA) sequences were generated via Roche 454 sequencing from 56 samples, including 17 gut, 15 skin, 18 pouch and 6 oral samples. The devil's gut microbiome was dominated by Firmicutes and showed a high Firmicutes-to-Bacteroidetes ratio, which appears to be a common feature of many carnivorous mammals. Metabolisms of carbohydrates, amino acids, energy, cofactors and vitamins, nucleotides and lipids were predicted as the most prominent metabolic pathways that the devil's gut flora contributed to. The microbiota inside the female's pouch outside lactation was highly similar to that of the skin, both co-dominated by Firmicutes and Proteobacteria. The oral microbiome had similar proportions of Proteobacteria, Bacteroidetes, Firmicutes and Fusobacteria. Compositional differences were observed in all four types of microbiota between devils from captive and wild populations. Certain captive devils had significantly lower levels of gut bacterial diversity than wild individuals, and the two groups differed in the proportion of gut bacteria accounting for the metabolism of glycan, amino acids and cofactors and vitamins. Further studies are

  18. The development of lower respiratory tract microbiome in mice.

    PubMed

    Singh, Nisha; Vats, Asheema; Sharma, Aditi; Arora, Amit; Kumar, Ashwani

    2017-06-21

    Although culture-independent methods have paved the way for characterization of the lung microbiome, the dynamic changes in the lung microbiome from neonatal stage to adult age have not been investigated. In this study, we tracked changes in composition and diversity of the lung microbiome in C57BL/6N mice, starting from 1-week-old neonates to 8-week-old mice. Towards this, the lungs were sterilely excised from mice of different ages from 1 to 8 weeks. High-throughput DNA sequencing of the 16S rRNA gene followed by composition and diversity analysis was utilized to decipher the microbiome in these samples. Microbiome analysis suggests that the changes in the lung microbiome correlated with age. The lung microbiome was primarily dominated by phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria in all the stages from week 1 to week 8 after birth. Although Defluvibacter was the predominant genus in 1-week-old neonatal mice, Streptococcus became the dominant genus at the age of 2 weeks. Lactobacillus, Defluvibacter, Streptococcus, and Achromobacter were the dominant genera in 3-week-old mice, while Lactobacillus and Achromobacter were the most abundant genera in 4-week-old mice. Interestingly, relatively greater diversity (at the genus level) during the age of 5 to 6 weeks was observed as compared to the earlier weeks. The diversity of the lung microbiome remained stable between 6 and 8 weeks of age. In summary, we have tracked the development of the lung microbiome in mice from an early age of 1 week to adulthood. The lung microbiome is dominated by the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. However, dynamic changes were observed at the genus level. Relatively higher richness in the microbial diversity was achieved by age of 6 weeks and then maintained at later ages. We believe that this study improves our understanding of the development of the mice lung microbiome and will facilitate further analyses of the role of

  19. Diversity of Rumen Bacteria in Canadian Cervids

    PubMed Central

    Gruninger, Robert J.; Sensen, Christoph W.; McAllister, Timothy A.; Forster, Robert J.

    2014-01-01

    Interest in the bacteria responsible for the breakdown of lignocellulosic feedstuffs within the rumen has increased due to their potential utility in industrial applications. To date, most studies have focused on bacteria from domesticated ruminants. We have expanded the knowledge of the microbial ecology of ruminants by examining the bacterial populations found in the rumen of non-domesticated ruminants found in Canada. Next-generation sequencing of 16S rDNA was employed to characterize the liquid and solid-associated bacterial communities in the rumen of elk (Cervus canadensis), and white tailed deer (Odocoileus virginianus). Despite variability in the microbial populations between animals, principle component and weighted UniFrac analysis indicated that bacterial communities in the rumen of elk and white tail deer are distinct. Populations clustered according to individual host animal and not the association with liquid or solid phase of the rumen contents. In all instances, Bacteroidetes and Firmicutes were the dominant bacterial phyla, although the relative abundance of these differed among ruminant species and between phases of rumen digesta, respectively. In the elk samples Bacteroidetes were more predominant in the liquid phase whereas Firmicutes was the most prevalent phyla in the solid digesta (P = 1×10−5). There were also statistically significant differences in the abundance of OTUs classified as Fibrobacteres (P = 5×10−3) and Spirochaetes (P = 3×10−4) in the solid digesta of the elk samples. We identified a number of OTUs that were classified as phylotypes not previously observed in the rumen environment. Our results suggest that although the bacterial diversity in wild North American ruminants shows overall similarities to domesticated ruminants, we observed a number of OTUs not previously described. Previous studies primarily focusing on domesticated ruminants do not fully represent the microbial diversity of the rumen and

  20. Lignocellulose-Degrading Microbial Communities in Landfill Sites Represent a Repository of Unexplored Biomass-Degrading Diversity

    PubMed Central

    Ransom-Jones, Emma; McCarthy, Alan J.; Haldenby, Sam; Doonan, James

    2017-01-01

    ABSTRACT The microbial conversion of lignocellulosic biomass for biofuel production represents a renewable alternative to fossil fuels. However, the discovery of new microbial enzymes with high activity is critical for improving biomass conversion processes. While attempts to identify superior lignocellulose-degrading enzymes have focused predominantly on the animal gut, biomass-degrading communities in landfill sites represent an unexplored resource of hydrolytic enzymes for biomass conversion. Here, to address the paucity of information on biomass-degrading microbial diversity beyond the gastrointestinal tract, cellulose (cotton) “baits” were incubated in landfill leachate microcosms to enrich the landfill cellulolytic microbial community for taxonomic and functional characterization. Metagenome and 16S rRNA gene amplicon sequencing demonstrated the dominance of Firmicutes, Bacteroidetes, Spirochaetes, and Fibrobacteres in the landfill cellulolytic community. Functional metagenome analysis revealed 8,371 carbohydrate active enzymes (CAZymes) belonging to 244 CAZyme families. In addition to observing biomass-degrading enzymes of anaerobic bacterial “cellulosome” systems of members of the Firmicutes, we report the first detection of the Fibrobacter cellulase system and the Bacteroidetes polysaccharide utilization locus (PUL) in landfill sites. These data provide evidence for the presence of multiple mechanisms of biomass degradation in the landfill microbiome and highlight the extraordinary functional diversity of landfill microorganisms as a rich source of biomass-degrading enzymes of potential biotechnological significance. IMPORTANCE The microbial conversion of lignocellulosic biomass for biofuel production represents a renewable alternative to fossil fuels. However, the discovery of new microbial enzymes with high activity is critical for improving biomass conversion processes. While attempts to identify superior lignocellulose-degrading enzymes have

  1. The Placental Microbiota Is Altered among Subjects with Gestational Diabetes Mellitus: A Pilot Study

    PubMed Central

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Mao, Lili; Yu, Miao; Xu, Jianping; Wang, Tong

    2017-01-01

    Gestational diabetes mellitus (GDM) has significant implications for the future health of the mother and child. However, the associations between human placental microbiota and GDM are poorly understood. We aimed to profile the placental microbiota of GDM and further define whether or not certain placental microbiota taxon correlates with specific clinical characteristics. Placenta were collected from GDM women and women with normal pregnancies (n = 10, in each group) consecutively recruited at Peking Union Medical College Hospital. The anthropometric parameters of mother and infant, and cord blood hormones, including insulin, leptin and insulin-like growth factor-1 (IGF-1) were measured. Bacterial genomic DNA was isolated using magnetic beads and the human placental microbiota was analyzed using the Illumina MiSeq Sequencing System based on the V3-V4 hypervariable regions of the 16S rRNA gene. It showed there was no statistical difference in the clinical characteristics of mothers and infants, such as BMI at the beginning of pregnancy and gestational weight gain (GWG), birth weight, and cord blood hormones, including insulin, leptin and IGF-1. We found that the placental microbiota is composed of four dominant phyla from Proteobacteria (the most abundant), Bacteroidetes, Actinobacteria and Firmicutes, with the proportion of Proteobacteria increased, and Bacteroidetes and Firmicutes were decreased of women with GDM. Further analyses suggested that bacterial taxonomic composition of placentas from the phylum level down to the bacteria level, differed significantly between women with GDM and non-GDM women with normal pregnancies. Regression analysis showed a cluster of key operational taxonomic units (OTUs), phyla and genera were significantly correlated with GWG during pregnancy of mothers, and cord blood insulin, IGF-1 and leptin concentrations. In conclusion, our novel study showed that a distinct placental microbiota profile is present in GDM, and is associated

  2. Biological Characterization of Microenvironments in a Hypersaline Cold Spring Mars Analog.

    PubMed

    Sapers, Haley M; Ronholm, Jennifer; Raymond-Bouchard, Isabelle; Comrey, Raven; Osinski, Gordon R; Whyte, Lyle G

    2017-01-01

    While many habitable niches on Earth are characterized by permanently cold conditions, little is known about the spatial structure of seasonal communities and the importance of substrate-cell associations in terrestrial cyroenvironments. Here we use the 16S rRNA gene as a marker for genetic diversity to compare two visually distinct but spatially integrated surface microbial mats on Axel Heiberg Island, Canadian high arctic, proximal to a perennial saline spring. This is the first study to describe the bacterial diversity in microbial mats on Axel Heiberg Island. The hypersaline springs on Axel Heiberg represent a unique analog to putative subsurface aquifers on Mars. The Martian subsurface represents the longest-lived potentially habitable environment on Mars and a better understanding of the microbial communities on Earth that thrive in analog conditions will help direct future life detection missions. The microbial mats sampled on Axel Heiberg are only visible during the summer months in seasonal flood plains formed by melt water and run-off from the proximal spring. Targeted-amplicon sequencing revealed that not only does the bacterial composition of the two mat communities differ substantially from the sediment community of the proximal cold spring, but that the mat communities are distinct from any other microbial community in proximity to the Arctic springs studied to date. All samples are dominated by Gammaproteobacteria: Thiotichales is dominant within the spring samples while Alteromonadales comprises a significant component of the mat communities. The two mat samples differ in their Thiotichales:Alteromonadales ratio and contribution of Bacteroidetes to overall diversity. The red mats have a greater proportion of Alteromonadales and Bacteroidetes reads. The distinct bacterial composition of the mat bacterial communities suggests that the spring communities are not sourced from the surface, and that seasonal melt events create ephemerally habitable niches

  3. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber.

    PubMed

    Vitaglione, Paola; Mennella, Ilario; Ferracane, Rosalia; Rivellese, Angela A; Giacco, Rosalba; Ercolini, Danilo; Gibbons, Sean M; La Storia, Antonietta; Gilbert, Jack A; Jonnalagadda, Satya; Thielecke, Frank; Gallo, Maria A; Scalfi, Luca; Fogliano, Vincenzo

    2015-02-01

    Epidemiology associates whole-grain (WG) consumption with several health benefits. Mounting evidence suggests that WG wheat polyphenols play a role in mechanisms underlying health benefits. The objective was to assess circulating concentration, excretion, and the physiologic role of WG wheat polyphenols in subjects with suboptimal dietary and lifestyle behaviors. A placebo-controlled, parallel-group randomized trial with 80 healthy overweight/obese subjects with low intake of fruit and vegetables and sedentary lifestyle was performed. Participants replaced precise portions of refined wheat (RW) with a fixed amount of selected WG wheat or RW products for 8 wk. At baseline and every 4 wk, blood, urine, feces, and anthropometric and body composition measures were collected. Profiles of phenolic acids in biological samples, plasma markers of metabolic disease and inflammation, and fecal microbiota composition were assessed. WG consumption for 4-8 wk determined a 4-fold increase in serum dihydroferulic acid (DHFA) and a 2-fold increase in fecal ferulic acid (FA) compared with RW consumption (no changes). Similarly, urinary FA at 8 wk doubled the baseline concentration only in WG subjects. Concomitant reduction in plasma tumor necrosis factor-α (TNF-α) after 8 wk and increased interleukin (IL)-10 only after 4 wk with WG compared with RW (P = 0.04) were observed. No significant change in plasma metabolic disease markers over the study period was observed, but a trend toward lower plasma plasminogen activator inhibitor 1 with higher excretion of FA and DHFA in the WG group was found. Fecal FA was associated with baseline low Bifidobacteriales and Bacteroidetes abundances, whereas after WG consumption, it correlated with increased Bacteroidetes and Firmicutes but reduced Clostridium. TNF-α reduction correlated with increased Bacteroides and Lactobacillus. No effect of dietary interventions on anthropometric measurements and body composition was found. WG wheat

  4. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania

    PubMed Central

    Coman, Cristian; Chiriac, Cecilia M.; Robeson, Michael S.; Ionescu, Corina; Dragos, Nicolae; Barbu-Tudoran, Lucian; Andrei, Adrian-Ştefan; Banciu, Horia L.; Sicora, Cosmin; Podar, Mircea

    2015-01-01

    Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbial mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (<0.5%) but increased significantly at 65°C (36%). The bacterial diversity was either similar to other microbialites described in literature (the 32°C sample) or displayed a specific combination of phyla and classes (the 49°C and 65°C samples). Bacterial taxa were distributed among 39 phyla, out of which 14 had inferred abundances >1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along thermal and

  5. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania

    DOE PAGES

    Coman, Cristian; Chiriac, Cecilia M.; Robeson, Michael S.; ...

    2015-03-30

    Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbialmore » mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (<0.5%) but increased significantly at 65°C (36%). The bacterial diversity was either similar to other microbialites described in literature (the 32°C sample) or displayed a specific combination of phyla and classes (the 49°C and 65°C samples). Bacterial taxa were distributed among 39 phyla, out of which 14 had inferred abundances >1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Lastly, several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along

  6. Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity.

    PubMed

    Remely, M; Aumueller, E; Jahn, D; Hippe, B; Brath, H; Haslberger, A G

    2014-03-01

    Metabolic syndrome is associated with alterations in the structure of the gut microbiota leading to low-grade inflammatory responses. An increased penetration of the impaired gut membrane by bacterial components is believed to induce this inflammation, possibly involving epigenetic alteration of inflammatory molecules such as Toll-like receptors (TLRs). We evaluated changes of the gut microbiota and epigenetic DNA methylation of TLR2 and TLR4 in three groups of subjects: type 2 diabetics under glucagon-like peptide-1 agonist therapy, obese individuals without established insulin resistance, and a lean control group. Clostridium cluster IV, Clostridium cluster XIVa, lactic acid bacteria, Faecalibacterium prausnitzii and Bacteroidetes abundances were analysed by PCR and 454 high-throughput sequencing. The epigenetic methylation in the regulatory region of TLR4 and TLR2 was analysed using bisulfite conversion and pyrosequencing. We observed a significantly higher ratio of Firmicutes/ Bacteroidetes in type 2 diabetics compared to lean controls and obese. Major differences were shown in lactic acid bacteria, with the highest abundance in type 2 diabetics, followed by obese and lean participants. In comparison, F. prausnitzii was least abundant in type 2 diabetics, and most abundant in lean controls. Methylation analysis of four CpGs in the first exon of TLR4 showed significantly lower methylation in obese individuals, but no significant difference between type 2 diabetics and lean controls. Methylation of seven CpGs in the promoter region of TLR2 was significantly lower in type 2 diabetics compared to obese subjects and lean controls. The methylation levels of both TLRs were significantly correlated with body mass index. Our data suggest that changes in gut microbiota and thus cell wall components are involved in the epigenetic regulation of inflammatory reactions. An improved diet targeted to induce gut microbial balance and in the following even epigenetic changes of

  7. Molecular analyses of the microbial community composition of an anoxic basin of a municipal wastewater treatment plant reveal a novel lineage of proteobacteria.

    PubMed

    Chouari, Rakia; Le Paslier, Denis; Daegelen, Patrick; Dauga, Catherine; Weissenbach, Jean; Sghir, Abdelghani

    2010-08-01

    A culture-independent molecular phylogenetic approach was used to study prokaryotic diversity in an anoxic activated sludge from a municipal wastewater treatment plant. Two 16S rRNA gene libraries were constructed using total genomic DNA and amplified by polymerase chain reaction using primers specific for archaeal or bacterial domains. Phylogenetic analysis of 132 and 249 almost full-length 16S rRNA genes for Archaea and Bacteria, respectively, was done using the ARB software package. Phylogenetic groups affiliated with the Archaea belong to Euryarchaeota (93.8% of the operational taxonomic units [OTUs]) and Crenarchaeota (6.2% of the OTUs). Within the bacterial library, 84.8% of the OTUs represent novel putative phylotypes never described before and affiliated with ten divisions. The Proteobacteria phylum is the most abundant and diversified phylogenetic group representing 60.4% of the OTUs, followed by Bacteroidetes (22.1%) and gram-positives (6.1%). Interestingly, we detected a novel Proteobacteria monophyletic group distinct from the five known subclasses, which we named New Lineage of Proteobacteria (NLP) lineage, and it is composed of eight clones representing 4.6% of the Proteobacteria. A new 16S rRNA-targeted hybridization probe was designed and fluorescent in situ hybridization analyses shows representatives of NLP as cocci-shaped microorganisms. The Chloroflexi, Acidobacterium, and Nitrospira phyla and TM7 candidate division are each represented by ≤3% of clone sequences. A comprehensive set of eight 16S and 23S rRNA-targeted oligonucleotide probes was used to quantify these major groups by dot blot hybridization within 12 samples. The Proteobacteria accounted for 82.5 ± 4.9%, representing the most abundant phyla. The Bacteroidetes and Planctomycetales groups accounted for 4.9 ± 1.3% and 4 ± 1.7%, respectively. Firmicutes and Actinobacteria together accounted for only 1.9 ± 0.5%. The set of probes covers 93.4 ± 14% of the total

  8. Longitudinal shifts in bacterial diversity and fermentation pattern in the rumen of steers grazing wheat pasture.

    PubMed

    Pitta, D W; Pinchak, W E; Dowd, S; Dorton, K; Yoon, I; Min, B R; Fulford, J D; Wickersham, T A; Malinowski, D P

    2014-12-01

    Grazing steers on winter wheat forage is routinely practiced in the Southern Great Plains of the US. Here, we investigated the dynamics in bacterial populations of both solid and liquid ruminal fractions of steers grazing on maturing wheat forage of changing nutritive quality. The relationship between bacterial diversity and fermentation parameters in the liquid fraction was also investigated. During the first 28 days, the wheat was in a vegetative phase with a relatively high crude protein content (CP; 21%), which led to the incidence of mild cases of frothy bloat among steers. Rumen samples were collected on days 14, 28, 56 and 76, separated into solid and liquid fractions and analyzed for bacterial diversity using 16S pyrotag technology. The predominant phyla identified were Bacteroidetes (59-77%) and Firmicutes (20-33%) across both ruminal fractions. Very few differences were observed in the rumen bacterial communities within solid and liquid fractions on day 14. However, by day 28, the relatively high CP content complemented a distinct bacterial and chemical composition of the rumen fluid that was characterized by a higher ratio (4:1) of Bacteroidetes:Firmicutes and a corresponding lower acetate:propionate (3:1) ratio. Further, a greater accumulation of biofilm (mucopolysaccharide complex) on day 28 was strongly associated with the abundance of Firmicutes lineages such as Clostridium, Ruminococcus, Oscillospira and Moryella (P<0.05) in the fiber fraction. Such changes were diminished as the CP concentration declined over the course of the study. The abundance of Firmicutes was noticeable by 76 d in both fractions which signifies the development of a core microbiome associated with digestion of a more recalcitrant fiber in the mature wheat. This study demonstrates dynamics in the rumen microbiome and their association with fermentation activity in the rumen of steers during the vegetative (bloat-prone) and reproductive stages of wheat forage. Copyright © 2014

  9. The alligator gut microbiome and implications for archosaur symbioses

    PubMed Central

    Keenan, Sarah W.; Engel, Annette Summers; Elsey, Ruth M.

    2013-01-01

    Among vertebrate gastrointestinal microbiome studies, complete representation of taxa is limited, particularly among reptiles. Here, we provide evidence for previously unrecognized host-microbiome associations along the gastrointestinal tract from the American alligator, a crown archosaur with shared ancestry to extinct taxa, including dinosaurs. Microbiome compositional variations reveal that the digestive system consists of multiple, longitudinally heterogeneous microbiomes that strongly correlate to specific gastrointestinal tract organs, regardless of rearing histories or feeding status. A core alligator gut microbiome comprised of Fusobacteria, but depleted in Bacteroidetes and Proteobacteria common to mammalians, is compositionally unique from other vertebrate gut microbiomes, including other reptiles, fish, and herbivorous and carnivorous mammals. As such, modern alligator gut microbiomes advance our understanding of archosaur gut microbiome evolution, particularly if conserved host ecology has retained archosaur-specific symbioses over geologic time. PMID:24096888

  10. High quality permanent draft genome sequence of Chryseobacterium bovis DSM 19482 T, isolated from raw cow milk

    DOE PAGES

    Laviad-Shitrit, Sivan; Göker, Markus; Huntemann, Marcel; ...

    2017-05-08

    Chryseobacterium bovis DSM 19482 T (Hantsis-Zacharov et al., Int J Syst Evol Microbiol 58:1024-1028, 2008) is a Gram-negative, rod shaped, non-motile, facultative anaerobe, chemoorganotroph bacterium. C. bovis is a member of the Flavobacteriaceae, a family within the phylum Bacteroidetes. It was isolated when psychrotolerant bacterial communities in raw milk and their proteolytic and lipolytic traits were studied. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA G + C content is 38.19%. The chromosome length is 3,346,045 bp. It encodes 3236 proteins and 105 RNA genes. The C. bovis genome ismore » part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.« less

  11. High quality permanent draft genome sequence of Chryseobacterium bovis DSM 19482 T, isolated from raw cow milk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laviad-Shitrit, Sivan; Göker, Markus; Huntemann, Marcel

    Chryseobacterium bovis DSM 19482 T (Hantsis-Zacharov et al., Int J Syst Evol Microbiol 58:1024-1028, 2008) is a Gram-negative, rod shaped, non-motile, facultative anaerobe, chemoorganotroph bacterium. C. bovis is a member of the Flavobacteriaceae, a family within the phylum Bacteroidetes. It was isolated when psychrotolerant bacterial communities in raw milk and their proteolytic and lipolytic traits were studied. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA G + C content is 38.19%. The chromosome length is 3,346,045 bp. It encodes 3236 proteins and 105 RNA genes. The C. bovis genome ismore » part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.« less

  12. Seasonal influence of scallop culture on nutrient flux, bacterial pathogens and bacterioplankton diversity across estuaries off the Bohai Sea Coast of Northern China.

    PubMed

    He, Yaodong; Sen, Biswarup; Shang, Junyang; He, Yike; Xie, Ningdong; Zhang, Yongfeng; Zhang, Jianle; Johnson, Zackary I; Wang, Guangyi

    2017-11-15

    In this study, we investigated the environmental impacts of scallop culture on two coastal estuaries adjacent the Bohai Sea including developing a quantitative PCR assay to assess the abundance of the bacterial pathogens Escherichia coli and Vibrio parahaemolyticus. Scallop culture resulted in a significant reduction of nitrogen, Chlorophyll a, and phosphorous levels in seawater during summer. The abundance of bacteria including V. parahaemolyticus varied significantly across estuaries and breeding seasons and was influenced by nitrate as well as nutrient ratios (Si/DIN, N/P). Bacterioplankton diversity varied across the two estuaries and seasons, and was dominated by Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes. Overall, this study suggests a significant influence of scallop culture on the ecology of adjacent estuaries and offers a sensitive tool for monitoring scallop contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Bacterial ecology of abattoir wastewater treated by an anaerobic digestor.

    PubMed

    Jabari, Linda; Gannoun, Hana; Khelifi, Eltaief; Cayol, Jean-Luc; Godon, Jean-Jacques; Hamdi, Moktar; Fardeau, Marie-Laure

    2016-01-01

    Wastewater from an anaerobic treatment plant at a slaughterhouse was analysed to determine the bacterial biodiversity present. Molecular analysis of the anaerobic sludge obtained from the treatment plant showed significant diversity, as 27 different phyla were identified. Firmicutes, Proteobacteria, Bacteroidetes, Thermotogae, Euryarchaeota (methanogens), and msbl6 (candidate division) were the dominant phyla of the anaerobic treatment plant and represented 21.7%, 18.5%, 11.5%, 9.4%, 8.9%, and 8.8% of the total bacteria identified, respectively. The dominant bacteria isolated were Clostridium, Bacteroides, Desulfobulbus, Desulfomicrobium, Desulfovibrio and Desulfotomaculum. Our results revealed the presence of new species, genera and families of microorganisms. The most interesting strains were characterised. Three new bacteria involved in anaerobic digestion of abattoir wastewater were published. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Rice- or pork-based diets with similar calorie and content result in different rat gut microbiota.

    PubMed

    Qi, Xiaozhe; Xu, Wentao; Guo, Mingzhang; Chen, Siyuan; Liu, Yifei; He, Xiaoyun; Huang, Kunlun

    2017-11-01

    Rice is the most important food crop, and pork is the most widely eaten meat in the world. In this study, we compared the gut microbiota of the rats fed with rice or pork mixed diets, which have similar caloric contents. The physiological indices (body weights, hematology, serum chemistry, organ weights and histopathology) of two groups were all within the normal range. Two diets did not induce difference in the diversity of gut bacteria. However, Firmicutes were significantly higher in rice diet group, while Bacteroidetes were enriched in pork diet group. Butyrate and the bacteria enzymes β-glucuronidase, β-glucosidase and nitroreductase in the feces were all drastically higher in pork diet group. This study indicates that different diets with similar calorie and nutritional composition could change the community structure but not the diversity of rat fecal microbiota.

  15. Efficient anaerobic transformation of raw wheat straw by a robust cow rumen-derived microbial consortium.

    PubMed

    Lazuka, Adèle; Auer, Lucas; Bozonnet, Sophie; Morgavi, Diego P; O'Donohue, Michael; Hernandez-Raquet, Guillermina

    2015-11-01

    A rumen-derived microbial consortium was enriched on raw wheat straw as sole carbon source in a sequential batch-reactor (SBR) process under strict mesophilic anaerobic conditions. After five cycles of enrichment the procedure enabled to select a stable and efficient lignocellulolytic microbial consortium, mainly constituted by members of Firmicutes and Bacteroidetes phyla. The enriched community, designed rumen-wheat straw-derived consortium (RWS) efficiently hydrolyzed lignocellulosic biomass, degrading 55.5% w/w of raw wheat straw over 15days at 35°C and accumulating carboxylates as main products. Cellulolytic and hemicellulolytic activities, mainly detected on the cell bound fraction, were produced in the earlier steps of degradation, their production being correlated with the maximal lignocellulose degradation rates. Overall, these results demonstrate the potential of RWS to convert unpretreated lignocellulosic substrates into useful chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Complete genome sequence of Rhodothermus marinus type strain (R-10).

    PubMed

    Nolan, Matt; Tindall, Brian J; Pomrenke, Helga; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Saunders, Elizabeth; Han, Cliff; Bruce, David; Goodwin, Lynne; Chain, Patrick; Pitluck, Sam; Ovchinikova, Galina; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Brettin, Thomas; Göker, Markus; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Detter, John C

    2009-12-29

    Rhodothermus marinus Alfredsson et al. 1995 is the type species of the genus and is of phylogenetic interest because the Rhodothermaceae represent the deepest lineage in the phylum Bacteroidetes. R. marinus R-10(T) is a Gram-negative, non-motile, non-spore-forming bacterium isolated from marine hot springs off the coast of Iceland. Strain R-10(T) is strictly aerobic and requires slightly halophilic conditions for growth. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the genus Rhodothermus, and only the second sequence from members of the family Rhodothermaceae. The 3,386,737 bp genome (including a 125 kb plasmid) with its 2914 protein-coding and 48 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  17. Consolidated bioprocessing of microalgal biomass to carboxylates by a mixed culture of cow rumen bacteria using anaerobic sequencing batch reactor (ASBR).

    PubMed

    Zhao, Baisuo; Liu, Jie; Frear, Craig; Holtzapple, Mark; Chen, Shulin

    2016-12-01

    This study employed mixed-culture consolidated bioprocessing (CBP) to digest microalgal biomass in an anaerobic sequencing batch reactor (ASBR). The primary objectives are to evaluate the impact of hydraulic residence time (HRT) on the productivity of carboxylic acids and to characterize the bacterial community. HRT affects the production rate and patterns of carboxylic acids. For the 5-L laboratory-scale fermentation, a 12-day HRT was selected because it offered the highest productivity of carboxylic acids and it synthesized longer chains. The variability of the bacterial community increased with longer HRT (R 2 =0.85). In the 5-L laboratory-scale fermentor, the most common phyla were Firmicutes (58.3%), Bacteroidetes (27.4%), and Proteobacteria (11.9%). The dominant bacterial classes were Clostridia (29.8%), Bacteroidia (27.4%), Tissierella (26.2%), and Betaproteobacteria (8.9%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Core fecal microbiota of domesticated herbivorous ruminant, hindgut fermenters, and monogastric animals.

    PubMed

    O' Donnell, Michelle M; Harris, Hugh M B; Ross, R Paul; O'Toole, Paul W

    2017-10-01

    In this pilot study, we determined the core fecal microbiota composition and overall microbiota diversity of domesticated herbivorous animals of three digestion types: hindgut fermenters, ruminants, and monogastrics. The 42 animals representing 10 animal species were housed on a single farm in Ireland and all the large herbivores consumed similar feed, harmonizing two of the environmental factors that influence the microbiota. Similar to other mammals, the fecal microbiota of all these animals was dominated by the Firmicutes and Bacteroidetes phyla. The fecal microbiota spanning all digestion types comprised 42% of the genera identified. Host phylogeny and, to a lesser extent, digestion type determined the microbiota diversity in these domesticated herbivores. This pilot study forms a platform for future studies into the microbiota of nonbovine and nonequine domesticated herbivorous animals. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. Characterization of the Porphyromonas gingivalis Type IX Secretion Trans-envelope PorKLMNP Core Complex*

    PubMed Central

    Vincent, Maxence S.; Canestrari, Mickaël J.; Leone, Philippe; Stathopulos, Julien; Ize, Bérengère; Zoued, Abdelrahim; Cambillau, Christian; Kellenberger, Christine; Roussel, Alain

    2017-01-01

    The transport of proteins at the cell surface of Bacteroidetes depends on a secretory apparatus known as type IX secretion system (T9SS). This machine is responsible for the cell surface exposition of various proteins, such as adhesins, required for gliding motility in Flavobacterium, S-layer components in Tannerella forsythia, and tooth tissue-degrading enzymes in the oral pathogen Porphyromonas gingivalis. Although a number of subunits of the T9SS have been identified, we lack details on the architecture of this secretion apparatus. Here we provide evidence that five of the genes encoding the core complex of the T9SS are co-transcribed and that the gene products are distributed in the cell envelope. Protein-protein interaction studies then revealed that these proteins oligomerize and interact through a dense network of contacts. PMID:28057754

  20. Microbial diversity of culturable heterotrophs in the rhizosphere of salt marsh grass, Porteresia coarctata (Tateoka) in a mangrove ecosystem.

    PubMed

    Bharathkumar, Srinivasan; Paul, Diby; Nair, Sudha

    2008-02-01

    A study was conducted to understand the complexity of bacterial diversity of rhizosphere of Porteresia coarctata based on culture dependent method. A large number of bacteria were isolated on nutrient agar medium supplemented with 1% NaCl and the dominant ones were further analyzed with PCR-RFLP method. The sequence analyses of the dominant strains revealed that most of the sequences belonged to members of gamma proteobacteria, firmicutes, bacteroidetes and uncultured bacteria. The phylogenetic analysis of 16S rRNA gene sequences revealed close relationships to a wide range of clones or bacterial species of various divisions. These results afford an understanding of the role of rhizobacteria in alleviating salt stress in Porteresia coarctata expected to contribute towards long-term goal of improving plant-microbe interactions for salinity affected fields. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils

    PubMed Central

    Delgado-Balbuena, Laura; Bello-López, Juan M.; Navarro-Noya, Yendi E.; Rodríguez-Valentín, Analine; Luna-Guido, Marco L.; Dendooven, Luc

    2016-01-01

    Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the

  2. Live Probiotic Lactobacillus johnsonii BS15 Promotes Growth Performance and Lowers Fat Deposition by Improving Lipid Metabolism, Intestinal Development, and Gut Microflora in Broilers.

    PubMed

    Wang, Hesong; Ni, Xueqin; Qing, Xiaodan; Zeng, Dong; Luo, Min; Liu, Lei; Li, Guangyao; Pan, Kangcheng; Jing, Bo

    2017-01-01

    on the intestinal flora. Specifically, LJ markedly enhanced the population of Bacteroidetes and Lactobacillus spp. Moreover, the probiotic reduced the population of Enterobacteriaceae and the Firmicutes/Bacteroidetes ratio. Slight changes caused by disrupted LJ were detected. These findings indicated that live LJ supplementation may promote growth performance and lower fat deposition in broilers.

  3. New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes.

    PubMed

    Danso, Dominik; Schmeisser, Christel; Chow, Jennifer; Zimmermann, Wolfgang; Wei, Ren; Leggewie, Christian; Li, Xiangzhen; Hazen, Terry; Streit, Wolfgang R

    2018-04-15

    Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria , Proteobacteria , and Bacteroidetes Within the Proteobacteria , the Betaproteobacteria , Deltaproteobacteria , and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria , as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil. IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with

  4. Long-Term Warming Shifts the Composition of Bacterial Communities in the Phyllosphere of Galium album in a Permanent Grassland Field-Experiment

    PubMed Central

    Aydogan, Ebru L.; Moser, Gerald; Müller, Christoph; Kämpfer, Peter; Glaeser, Stefanie P.

    2018-01-01

    Global warming is currently a much discussed topic with as yet largely unexplored consequences for agro-ecosystems. Little is known about the warming effect on the bacterial microbiota inhabiting the plant surface (phyllosphere), which can have a strong impact on plant growth and health, as well as on plant diseases and colonization by human pathogens. The aim of this study was to investigate the effect of moderate surface warming on the diversity and composition of the bacterial leaf microbiota of the herbaceous plant Galium album. Leaves were collected from four control and four surface warmed (+2°C) plots located at the field site of the Environmental Monitoring and Climate Impact Research Station Linden in Germany over a 6-year period. Warming had no effect on the concentration of total number of cells attached to the leaf surface as counted by Sybr Green I staining after detachment, but changes in the diversity and phylogenetic composition of the bacterial leaf microbiota analyzed by bacterial 16S rRNA gene Illumina amplicon sequencing were observed. The bacterial phyllosphere microbiota were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Warming caused a significant higher relative abundance of members of the Gammaproteobacteria, Actinobacteria, and Firmicutes, and a lower relative abundance of members of the Alphaproteobacteria and Bacteroidetes. Plant beneficial bacteria like Sphingomonas spp. and Rhizobium spp. occurred in significantly lower relative abundance in leaf samples of warmed plots. In contrast, several members of the Enterobacteriaceae, especially Enterobacter and Erwinia, and other potential plant or human pathogenic genera such as Acinetobacter and insect-associated Buchnera and Wolbachia spp. occurred in higher relative abundances in the phyllosphere samples from warmed plots. This study showed for the first time the long-term impact of moderate (+2°C) surface warming on the phyllosphere microbiota on plants. A reduction

  5. Long-Term Warming Shifts the Composition of Bacterial Communities in the Phyllosphere of Galium album in a Permanent Grassland Field-Experiment.

    PubMed

    Aydogan, Ebru L; Moser, Gerald; Müller, Christoph; Kämpfer, Peter; Glaeser, Stefanie P

    2018-01-01

    Global warming is currently a much discussed topic with as yet largely unexplored consequences for agro-ecosystems. Little is known about the warming effect on the bacterial microbiota inhabiting the plant surface (phyllosphere), which can have a strong impact on plant growth and health, as well as on plant diseases and colonization by human pathogens. The aim of this study was to investigate the effect of moderate surface warming on the diversity and composition of the bacterial leaf microbiota of the herbaceous plant Galium album . Leaves were collected from four control and four surface warmed (+2°C) plots located at the field site of the Environmental Monitoring and Climate Impact Research Station Linden in Germany over a 6-year period. Warming had no effect on the concentration of total number of cells attached to the leaf surface as counted by Sybr Green I staining after detachment, but changes in the diversity and phylogenetic composition of the bacterial leaf microbiota analyzed by bacterial 16S rRNA gene Illumina amplicon sequencing were observed. The bacterial phyllosphere microbiota were dominated by Proteobacteria , Bacteroidetes , and Actinobacteria . Warming caused a significant higher relative abundance of members of the Gammaproteobacteria , Actinobacteria , and Firmicutes , and a lower relative abundance of members of the Alphaproteobacteria and Bacteroidetes . Plant beneficial bacteria like Sphingomonas spp. and Rhizobium spp. occurred in significantly lower relative abundance in leaf samples of warmed plots. In contrast, several members of the Enterobacteriaceae , especially Enterobacter and Erwinia , and other potential plant or human pathogenic genera such as Acinetobacter and insect-associated Buchnera and Wolbachia spp. occurred in higher relative abundances in the phyllosphere samples from warmed plots. This study showed for the first time the long-term impact of moderate (+2°C) surface warming on the phyllosphere microbiota on plants. A

  6. Microbial communities mediating algal detritus turnover under anaerobic conditions

    PubMed Central

    Morrison, Jessica M.; Murphy, Chelsea L.; Baker, Kristina; Zamor, Richard M.; Nikolai, Steve J.; Wilder, Shawn; Elshahed, Mostafa S.

    2017-01-01

    Background Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13–16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched

  7. Worse inflammatory profile in omnivores than in vegetarians associates with the gut microbiota composition.

    PubMed

    Franco-de-Moraes, Ana Carolina; de Almeida-Pititto, Bianca; da Rocha Fernandes, Gabriel; Gomes, Everton Padilha; da Costa Pereira, Alexandre; Ferreira, Sandra Roberta G

    2017-01-01

    To describe the abundance of major phyla and some genera in the gut microbiota of individuals according to dietary habits and examine their associations with inflammatory markers, insulin resistance, and cardiovascular risk profile. A total of 268 non-diabetic individuals were stratified into groups of dietary types (strict vegetarians, lacto-ovo-vegetarians, and omnivores). The taxonomic composition and phylogenetic structure of the microbiota were obtained through the analysis of the 16S rRNA gene. Samples were clustered into operational taxonomic units at 97% similarity using GreenGenes 13.5 database. Clinical, biochemical, and circulating inflammatory markers were compared by ANOVA or Kruskal-Wallis test. The sample (54.2% women, mean age 49.5 years) was composed of 66 strict vegetarians, 102 lacto-ovo-vegetarians and 100 omnivores. Considering the entire sample, the greatest abundant phyla were Firmicutes (40.7 ± 15.9%) and Bacteroidetes (39.5 ± 19.9%), and no difference in abundances was found between individuals with normal and excess weight. Stratifying by dietary types, the proportion of Firmicutes was lower and of Bacteroidetes was higher in strict vegetarians when compared to lacto-ovo-vegetarians and omnivores. At the genus level, strict vegetarians had a higher Prevotella abundance and Prevotella/Bacteroides ratio than the other groups. They also had a lower proportion of Faecalibacterium than lacto-ovo-vegetarians, and both vegetarian groups had higher proportions than did omnivores. Succinivibrio and Halomonas from the Proteobacteria phylum were overrepresented in omnivores. The omnivorous group showed higher values of anthropometric data, insulin, HOMA-IR, and a worse lipid profile. Inflammatory markers exhibited a gradual and significant increase from the vegetarians and lacto-ovo-vegetarians to the omnivorous group. There are differences in gut microbiota composition of individuals with distinct dietary habits, who differ according to their

  8. Changes seen in gut bacteria content and distribution with obesity: causation or association?

    PubMed

    Bell, David S H

    2015-01-01

    In the microbiota of both obese animals and humans there is an increased ratio of the gram positive Firmicutes to the gram negative Bacteroidetes (the obesity pattern). To assess if altering this ratio in animals and humans would prevent obesity or reduce body weight in the obese subject this review was preformed. A survey of all the available English language literature utilizing Medline on this topic was obtained and critically reviewed. The key words that were utilized were gut microbiota, diet and obesity. In both humans and animals changes in diet, particularly the utilization of the high fat, high calorie Western diet, utilization of artificial sweeteners and disruption of the diurnal rhythm will quickly change the microbiota from a thin to an obese pattern. In animals, the transfer of an obese microbiota to germ free animals and thin animals results in obesity and the introduction of a lean microbiota will result in weight loss in obese animals. However, in humans similar changes in the gut microbiota induced with probiotics and prebiotics have not been shown to result in weight loss. In both animals and humans the most dramatic changes in the gut microbiota occur following weight loss resulting from a gastric bypass where there is a restoration to a normal Firmicutes to Bacteroidetes ratio. These changes could either be due to the dramatic change in the composition of the diet which occurs following this surgery or due to down-regulation of the Farnesoid X Receptor which causes a decrease in bile acid production and an elevation of the gut pH which in turn allows the regrowth of bacteria associated with weight loss which were previously unable to grow in the acidic intestinal environment caused by excess production of bile acids. In both humans and animals there are characteristic changes in the gut microbiota associated with obesity. In animals but not in humans altering the microbiota can result in weight loss and weight gain which does not occur in

  9. New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes

    PubMed Central

    Danso, Dominik; Schmeisser, Christel; Chow, Jennifer; Wei, Ren; Leggewie, Christian; Li, Xiangzhen

    2018-01-01

    ABSTRACT Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria, Proteobacteria, and Bacteroidetes. Within the Proteobacteria, the Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria, as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil. IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with

  10. Temporal Dynamics of the Microbial Community Composition with a Focus on Toxic Cyanobacteria and Toxin Presence during Harmful Algal Blooms in Two South German Lakes

    PubMed Central

    Scherer, Pia I.; Millard, Andrew D.; Miller, Andreas; Schoen, Renate; Raeder, Uta; Geist, Juergen; Zwirglmaier, Katrin

    2017-01-01

    Bacterioplankton plays an essential role in aquatic ecosystems, and cyanobacteria are an influential part of the microbiome in many water bodies. In freshwaters used for recreational activities or drinking water, toxic cyanobacteria cause concerns due to the risk of intoxication with cyanotoxins, such as microcystins. In this study, we aimed to unmask relationships between toxicity, cyanobacterial community composition, and environmental factors. At the same time, we assessed the correlation of a genetic marker with microcystin concentration and aimed to identify the main microcystin producer. We used Illumina MiSeq sequencing to study the bacterioplankton in two recreational lakes in South Germany. We quantified a microcystin biosynthesis gene (mcyB) using qPCR and linked this information with microcystin concentration to assess toxicity. Microcystin biosynthesis gene (mcyE)-clone libraries were used to determine the origin of microcystin biosynthesis genes. Bloom toxicity did not alter the bacterial community composition, which was highly dynamic at the lowest taxonomic level for some phyla such as Cyanobacteria. At the OTU level, we found distinctly different degrees of temporal variation between major bacteria phyla. Cyanobacteria and Bacteroidetes showed drastic temporal changes in their community compositions, while the composition of Actinobacteria remained rather stable in both lakes. The bacterial community composition of Alpha- and Beta-proteobacteria remained stable over time in Lake Klostersee, but it showed temporal variations in Lake Bergknappweiher. The presence of potential microcystin degraders and potential algicidal bacteria amongst prevalent Bacteroidetes and Alphaproteobacteria implied a role of those co-occurring heterotrophic bacteria in cyanobacterial bloom dynamics. Comparison of both lakes studied revealed a large shared microbiome, which was shaped toward the lake specific community composition by environmental factors. Microcystin

  11. Original XPCTM Effect on Salmonella Typhimurium and Cecal Microbiota from Three Different Ages of Broiler Chickens When Incubated in an Anaerobic In Vitro Culture System

    PubMed Central

    Park, Si Hong; Kim, Sun Ae; Lee, Sang In; Rubinelli, Peter M.; Roto, Stephanie M.; Pavlidis, Hilary O.; McIntyre, Donald R.; Ricke, Steven C.

    2017-01-01

    Feed supplements are utilized in the poultry industry as a means for improving growth performance and reducing pathogens. The aim of the present study was to evaluate the effects of Diamond V Original XPCTM (XPC, a fermented product generated from yeast cultures) on Salmonella Typhimurium ST 97 along with its potential for modulation of the cecal microbiota by using an anaerobic in vitro mixed culture assay. Cecal slurries obtained from three broiler chickens at each of three sampling ages (14, 28, and 42 days) were generated and exposed to a 24 h pre-incubation period with the various treatments: XPC (1% XPC, ceca, and feeds), CO (ceca only), and NC (negative control) group consisting of ceca and feeds. The XPC, CO, and NC were each challenged with S. Typhimurium and subsequently plated on selective media at 0, 24, and 48 h. Plating results indicated that the XPC treatment significantly reduced the survival of S. Typhimurium at the 24 h plating time point for both the 28 and 42 days bird sampling ages, while S. Typhimurium reduction in the NC appeared to eventually reach the same population survival level at the 48 h plating time point. For microbiome analysis, Trial 1 revealed that XPC, CO, and NC groups exhibited a similar pattern of taxa summary. However, more Bacteroidetes were observed in the CO group at 24 and 48 h. There were no significant differences (P > 0.05) in alpha diversity among samples based on day, hour and treatment. For beta diversity analysis, a pattern shift was observed when samples clustered according to sampling hour. In Trial 2, both XPC and NC groups exhibited the highest Firmicutes level at 0 h but the Bacteroidetes group became dominant at 6 h. Complexity of alpha diversity was increased in the initial contents from older birds and became less complex after 6 h of incubation. Beta diversity analysis was clustered as a function of treatment NC and XPC groups and by individual hours including 6, 12, 24, and 48 h. Overall, addition of XPC

  12. Comparison of the fecal microbiota of domestic commercial meat, laboratory, companion, and shelter rabbits (Oryctolagus cuniculi).

    PubMed

    Kylie, Jennifer; Weese, J Scott; Turner, Patricia V

    2018-04-27

    Rabbits are cecotrophic, hindgut-fermenters that rely heavily on their gastrointestinal microbiota for optimal digestion of plant-based diets. Dysbiosis, caused by disruption of the gastrointestinal microbiota, is known to predispose rabbits to rabbit enteritis complex (REC), a major cause of morbidity and mortality. The objectives of this study were to describe the fecal microbiota of domestic rabbits from a variety of settings (commercial meat, companion, laboratory, and shelter) and to identify how factors such as age, season, and routine antimicrobial use affect the fecal microbiota composition. A total of 86 pooled commercial meat, 54 companion, 14 pooled laboratory, and 14 shelter rabbit fecal samples were evaluated using 16S rRNA gene sequencing of the V4 region. In all sample types, the predominant bacterial phylum was Firmicutes. Other commonly identified phyla (composing ≥ 1% of the total microbiota composition) were Verrucomicrobia, Proteobacteria, and Bacteroidetes. Significant differences in composition were noted between commercial, companion, laboratory, and shelter rabbit samples for proportions of Verrucomicrobia (P < 0.01), Proteobacteria (P < 0.01), and Lentisphaerae (P = 0.01) within the total microbiota. Within the commercial meat rabbit samples, significant differences between the microbiota composition of growers (n = 42) and does (n = 44) were limited to one unclassified Firmicutes (P = 0.03) and no differences were identified at the phylum level. Significant differences were present between fecal samples taken from rabbits during the summer (n = 44) compared to the winter (n = 42), with Firmicutes (P = 0.04), Verrucomicrobia (P = 0.03), Proteobacteria (P = 0.02), Deinococcus-Thermus (P = 0.04), Armatimonadates (P = 0.003), and Actinobacteria (P = 0.03) forming significantly different proportions of the microbiota. The only significant difference in composition between those farms

  13. Gut microbiome diversity influenced more by the Westernized dietary regime than the body mass index as assessed using effect size statistic.

    PubMed

    Davis, Shannon C; Yadav, Jagjit S; Barrow, Stephanie D; Robertson, Boakai K

    2017-08-01

    Human gut microbiome dysbiosis has been associated with the onset of metabolic diseases and disorders. However, the critical factors leading to dysbiosis are poorly understood. In this study, we provide increasing evidence of the association of diet type and body mass index (BMI) and how they relatively influence the taxonomic structure of the gut microbiota with respect to the causation of gut microbiome dysbiosis. The study included randomly selected Alabama residents (n = 81), including females (n = 45) and males (n = 36). The demographics data included age (33 ± 13.3 years), height (1.7 ± 0.11 meters), and weight (82.3 ± 20.6 kg). The mean BMI was 28.3 ± 7.01, equating to an overweight BMI category. A cross-sectional case-control design encompassing the newly recognized effect size approach to bioinformatics analysis was used to analyze data from donated stool samples and accompanying nutrition surveys. We investigated the microbiome variations in the Bacteroidetes-Firmicutes ratio relative to BMI, food categories, and dietary groups at stratified abundance percentages of <20%, 20%, 30%, 40%, 50%, 60%, and ≥70%. We further investigated variation in the Firmicutes and Bacteroidetes phyla composition (at the genus and species level) in relation to BMI, food categories, and dietary groups (Westernized or healthy). The Pearson Correlation coefficient as an indication of effect size across Alpha diversity indices was used to test the hypothesis (H 0 ): increased BMI has greater effect on taxonomic diversity than Westernized diet type, (H a ): increased BMI does not have a greater effect on taxonomic diversity than Westernized diet type. In conclusion, we rejected the (H 0 ) as our results demonstrated that Westernized diet type had an effect size of 0.22 posing a greater impact upon the gut microbiota diversity than an increased BMI with an effect size of 0.16. This implied Westernized diet as a critical factor in causing dysbiosis as compared

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Cliff; Spring, Stefan; Lapidus, Alla

    Pedobacter heparinus (Payza and Korn 1956) Steyn et al. 1998 comb. nov. is the type species of the rapidly growing genus Pedobacter within the family Sphingobacteriaceae of the phylum 'Bacteroidetes'. P. heparinus is of interest, because it was the first isolated strain shown to grow with heparin as sole carbon and nitrogen source and because it produces several enzymes involved in the degradation of mucopolysaccharides. All available data about this species are based on a sole strain that was isolated from dry soil. Here we describe the features of this organism, together with the complete genome sequence, and annotation. Thismore » is the first report on a complete genome sequence of a member of the genus Pedobacter, and the 5,167,383 bp long single replicon genome with its 4287 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  15. Ancient symbiosis confers desiccation resistance to stored grain pest beetles.

    PubMed

    Engl, Tobias; Eberl, Nadia; Gorse, Carla; Krüger, Theresa; Schmidt, Thorsten H P; Plarre, Rudy; Adler, Cornel; Kaltenpoth, Martin

    2018-04-01

    Microbial symbionts of insects provide a range of ecological traits to their hosts that are beneficial in the context of biotic interactions. However, little is known about insect symbiont-mediated adaptation to the abiotic environment, for example, temperature and humidity. Here, we report on an ancient clade of intracellular, bacteriome-located Bacteroidetes symbionts that are associated with grain and wood pest beetles of the phylogenetically distant families Silvanidae and Bostrichidae. In the saw-toothed grain beetle Oryzaephilus surinamensis, we demonstrate that the symbionts affect cuticle thickness, melanization and hydrocarbon profile, enhancing desiccation resistance and thereby strongly improving fitness under dry conditions. Together with earlier observations on symbiont contributions to cuticle biosynthesis in weevils, our findings indicate that convergent acquisitions of bacterial mutualists represented key adaptations enabling diverse pest beetle groups to survive and proliferate under the low ambient humidity that characterizes dry grain storage facilities. © 2017 John Wiley & Sons Ltd.

  16. The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome

    PubMed Central

    Kelley, Scott T.; Skarra, Danalea V.; Rivera, Alissa J.; Thackray, Varykina G.

    2016-01-01

    Women with polycystic ovary syndrome (PCOS) have reproductive and metabolic abnormalities that result in an increased risk of infertility, diabetes and cardiovascular disease. The large intestine contains a complex community of microorganisms (the gut microbiome) that is dysregulated in humans with obesity and type 2 diabetes. Using a letrozole-induced PCOS mouse model, we demonstrated significant diet-independent changes in the gut microbial community, suggesting that gut microbiome dysbiosis may also occur in PCOS women. Letrozole treatment was associated with a time-dependent shift in the gut microbiome and a substantial reduction in overall species and phylogenetic richness. Letrozole treatment also correlated with significant changes in the abundance of specific Bacteroidetes and Firmicutes previously implicated in other mouse models of metabolic disease in a time-dependent manner. Our results suggest that the hyperandrogenemia observed in PCOS may significantly alter the gut microbiome independently of diet. PMID:26731268

  17. Prokaryote community dynamics in anaerobic co-digestion of swine manure, rice straw and industrial clay residuals.

    PubMed

    Jiménez, Janet; Theuerl, Susanne; Bergmann, Ingo; Klocke, Michael; Guerra, Gilda; Romero-Romero, Osvaldo

    The aim of this study was to analyze the effect of the addition of rice straw and clay residuals on the prokaryote methane-producing community structure in a semi-continuously stirred tank reactor fed with swine manure. Molecular techniques, including terminal restriction fragment length polymorphism and a comparative nucleotide sequence analyses of the prokaryotic 16S rRNA genes, were performed. The results showed a positive effect of clay addition on methane yield during the co-digestion of swine manure and rice straw. At the digestion of swine manure, the bacterial phylum Firmicutes and the archaeal family Methanosarcinaceae, particularly Methanosarcina species, were predominant. During the co-digestion of swine manure and rice straw the microbial community changed, and with the addition of clay residual, the phylum Bacteroidetes predominated. The new nutritional conditions resulted in a shift in the archaeal family Methanosarcinaceae community as acetoclastic Methanosaeta species became dominant.

  18. Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells.

    PubMed

    Zhang, Baogang; Tian, Caixing; Liu, Ying; Hao, Liting; Liu, Ye; Feng, Chuanping; Liu, Yuqian; Wang, Zhongli

    2015-03-01

    Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation were realized in microbial fuel cells (MFCs). With initial V(V) concentrations of 75 mg/l and 150 mg/l in anolyte and catholyte, respectively, stable power output of 419±11 mW/m(2) was achieved. After 12h operation, V(V) concentration in the catholyte decreased to the value similar to that of the initial one in the anolyte, meanwhile it was nearly reduced completely in the anolyte. V(IV) was the main reduction product, which subsequently precipitated, acquiring total vanadium removal efficiencies of 76.8±2.9%. Microbial community analysis revealed the emergence of the new species of Deltaproteobacteria and Bacteroidetes as well as the enhanced Spirochaetes mainly functioned in the anode. This study opens new pathways to successful remediation of vanadium contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Unravelling the microbiome of eggs of the endangered sea turtle Eretmochelys imbricata identifies bacteria with activity against the emerging pathogen Fusarium falciforme.

    PubMed

    Sarmiento-Ramírez, Jullie M; van der Voort, Menno; Raaijmakers, Jos M; Diéguez-Uribeondo, Javier

    2014-01-01

    Habitat bioaugmentation and introduction of protective microbiota have been proposed as potential conservation strategies to rescue endangered mammals and amphibians from emerging diseases. For both strategies, insight into the microbiomes of the endangered species and their habitats is essential. Here, we sampled nests of the endangered sea turtle species Eretmochelys imbricata that were infected with the fungal pathogen Fusarium falciforme. Metagenomic analysis of the bacterial communities associated with the shells of the sea turtle eggs revealed approximately 16,664 operational taxonomic units, with Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes as the most dominant phyla. Subsequent isolation of Actinobacteria from the eggshells led to the identification of several genera (Streptomyces, Amycolaptosis, Micromomospora Plantactinospora and Solwaraspora) that inhibit hyphal growth of the pathogen F. falciforme. These bacterial genera constitute a first set of microbial indicators to evaluate the potential role of microbiota in conservation of endangered sea turtle species.

  20. Intestinal Microbial Community Differs between Acute Pancreatitis Patients and Healthy Volunteers.

    PubMed

    Zhang, Xi Mei; Zhang, Zheng Yu; Zhang, Chen Huan; Wu, Jing; Wang, You Xin; Zhang, Guo Xin

    2018-01-01

    A case control study including 45 acute pancreatitis and 44 healthy volunteers was performed to investigate the association between intestinal microbial community and acute pancreatitis. High-throughput 16S rRNA gene amplicon sequencing was used to profile the microbiological composition of the samples. In total, 27 microbial phyla were detected and the samples of pancreatitis patients contained fewer phyla. Samples from acute pancreatitis patients contained more Bacteroidetes and Proteobacteria and fewer Firmicutes and Actinobacteria than those from healthy volunteers. PCoA analyses distinguished the fecal microbial communities of acute pancreatitis patients from those of healthy volunteers. The intestinal microbes of acute pancreatitis patients are different from those of healthy volunteers. Modulation of the intestinal microbiome may serve as an alternative strategy for treating acute pancreatitis. Copyright © 2018 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  1. Genome Sequences of Apibacter spp., Gut Symbionts of Asian Honey Bees

    PubMed Central

    Kwong, Waldan K; Steele, Margaret I; Moran, Nancy A

    2018-01-01

    Abstract Honey bees have distinct gut microbiomes consisting almost entirely of several host-specific bacterial species. We present the genomes of three strains of Apibacter spp., bacteria of the Bacteroidetes phylum that are endemic to Asian honey bee species (Apis dorsata and Apis cerana). The Apibacter strains have similar metabolic abilities to each other and to Apibacter mensalis, a species isolated from a bumble bee. They use microaerobic respiration and fermentation to catabolize a limited set of monosaccharides and dicarboxylic acids. All strains are capable of gliding motility and encode a type IX secretion system. Two strains and A. mensalis have type VI secretion systems, and all strains encode Rhs or VgrG proteins used in intercellular interactions. The characteristics of Apibacter spp. are consistent with adaptions to life in a gut environment; however, the factors responsible for host-specificity and mutualistic interactions remain to be uncovered. PMID:29635372

  2. Biological support media influence the bacterial biofouling community in reverse osmosis water reclamation demonstration plants.

    PubMed

    Ferrera, Isabel; Mas, Jordi; Taberna, Elisenda; Sanz, Joan; Sánchez, Olga

    2015-01-01

    The diversity of the bacterial community developed in different stages of two reverse osmosis (RO) water reclamation demonstration plants designed in a wastewater treatment plant (WWTP) in Tarragona (Spain) was characterized by applying 454-pyrosequencing of the 16S rRNA gene. The plants were fed by secondary treated effluent to a conventional pretreatment train prior to the two-pass RO system. Plants differed in the material used in the filtration process, which was sand in one demonstration plant and Scandinavian schists in the second plant. The results showed the presence of a highly diverse and complex community in the biofilms, mainly composed of members of the Betaproteobacteria and Bacteroidetes in all stages, with the presence of some typical wastewater bacteria, suggesting a feed water origin. Community similarities analyses revealed that samples clustered according to filter type, highlighting the critical influence of the biological supporting medium in biofilm community structure.

  3. Performance and diversity of polyvinyl alcohol-degrading bacteria under aerobic and anaerobic conditions.

    PubMed

    Huang, Jianping; Yang, Shisu; Zhang, Siqi

    2016-11-01

    To compare the degradation performance and biodiversity of a polyvinyl alcohol-degrading microbial community under aerobic and anaerobic conditions. An anaerobic-aerobic bioreactor was operated to degrade polyvinyl alcohol (PVA) in simulated wastewater. The degradation performance of the bioreactor during sludge cultivation and the microbial communities in each reactor were compared. Both anaerobic and aerobic bioreactors demonstrated high chemical oxygen demand removal efficiencies of 87.5 and 83.6 %, respectively. Results of 16S rDNA sequencing indicated that Proteobacteria dominated in both reactors and that the microbial community structures varied significantly under different operating conditions. Both reactors obviously differed in bacterial diversity from the phyla Planctomycetes, Chlamydiae, Bacteroidetes, and Chloroflexi. Betaproteobacteria and Alphaproteobacteria dominated, respectively, in the anaerobic and aerobic reactors. The anaerobic-aerobic system is suitable for PVA wastewater treatment, and the microbial genetic analysis may serve as a reference for PVA biodegradation.

  4. Gut microbiota from twins discordant for obesity modulate metabolism in mice.

    PubMed

    Ridaura, Vanessa K; Faith, Jeremiah J; Rey, Federico E; Cheng, Jiye; Duncan, Alexis E; Kau, Andrew L; Griffin, Nicholas W; Lombard, Vincent; Henrissat, Bernard; Bain, James R; Muehlbauer, Michael J; Ilkayeva, Olga; Semenkovich, Clay F; Funai, Katsuhiko; Hayashi, David K; Lyle, Barbara J; Martini, Margaret C; Ursell, Luke K; Clemente, Jose C; Van Treuren, William; Walters, William A; Knight, Rob; Newgard, Christopher B; Heath, Andrew C; Gordon, Jeffrey I

    2013-09-06

    The role of specific gut microbes in shaping body composition remains unclear. We transplanted fecal microbiota from adult female twin pairs discordant for obesity into germ-free mice fed low-fat mouse chow, as well as diets representing different levels of saturated fat and fruit and vegetable consumption typical of the U.S. diet. Increased total body and fat mass, as well as obesity-associated metabolic phenotypes, were transmissible with uncultured fecal communities and with their corresponding fecal bacterial culture collections. Cohousing mice harboring an obese twin's microbiota (Ob) with mice containing the lean co-twin's microbiota (Ln) prevented the development of increased body mass and obesity-associated metabolic phenotypes in Ob cage mates. Rescue correlated with invasion of specific members of Bacteroidetes from the Ln microbiota into Ob microbiota and was diet-dependent. These findings reveal transmissible, rapid, and modifiable effects of diet-by-microbiota interactions.

  5. Hypogonadism alters cecal and fecal microbiota in male mice.

    PubMed

    Harada, Naoki; Hanaoka, Ryo; Hanada, Kazuki; Izawa, Takeshi; Inui, Hiroshi; Yamaji, Ryoichi

    2016-11-01

    Low testosterone levels increase the risk for cardiovascular disease in men and lead to shorter life spans. Our recent study showed that androgen deprivation via castration altered fecal microbiota and exacerbated risk factors for cardiovascular disease, including obesity, impaired fasting glucose, excess hepatic triglyceride accumulation, and thigh muscle weight loss only in high-fat diet (HFD)-fed male mice. However, when mice were administered antibiotics that disrupted the gut microbiota, castration did not increase cardiovascular risks or decrease the ratio of dried feces to food intake. Here, we show that changes in cecal microbiota (e.g., an increased Firmicutes/Bacteroidetes ratio and number of Lactobacillus species) were consistent with changes in feces and that there was a decreased cecal content secondary to castration in HFD mice. Castration increased rectal body temperature and plasma adiponectin, irrespective of diet. Changes in the gut microbiome may provide novel insight into hypogonadism-induced cardiovascular diseases.

  6. The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes

    PubMed Central

    Ma, Yantian; Zhang, He; Du, Ye; Tian, Tian; Xiang, Ting; Liu, Xiande; Wu, Fasi; An, Lizhe; Wang, Wanfu; Gu, Ji-Dong; Feng, Huyuan

    2015-01-01

    In this study, we compared the microbial communities colonising ancient cave wall paintings of the Mogao Grottoes exhibiting signs of biodeterioration. Ten samples were collected from five different caves built during different time periods and analysed using culture-independent and culture-dependent methods. The clone library results revealed high microbial diversity, including the bacterial groups Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Chloroflexi and the fungal groups Euascomycetes, Dothideomycetes, Eurotiomycetes, Sordariomycetes, Saccharomycetes, Plectomycetes, Pezizomycetes, Zygomycota, and Basidiomycota. The bacterial community structures differed among the samples, with no consistent temporal or spatial trends. However, the fungal community diversity index correlated with the building time of the caves independent of environmental factors (e.g., temperature or relative humidity). The enrichment cultures revealed that many culturable strains were highly resistant to various stresses and thus may be responsible for the damage to cave paintings in the Mogao Grottoes. PMID:25583346

  7. The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes.

    PubMed

    Ma, Yantian; Zhang, He; Du, Ye; Tian, Tian; Xiang, Ting; Liu, Xiande; Wu, Fasi; An, Lizhe; Wang, Wanfu; Gu, Ji-Dong; Feng, Huyuan

    2015-01-13

    In this study, we compared the microbial communities colonising ancient cave wall paintings of the Mogao Grottoes exhibiting signs of biodeterioration. Ten samples were collected from five different caves built during different time periods and analysed using culture-independent and culture-dependent methods. The clone library results revealed high microbial diversity, including the bacterial groups Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Chloroflexi and the fungal groups Euascomycetes, Dothideomycetes, Eurotiomycetes, Sordariomycetes, Saccharomycetes, Plectomycetes, Pezizomycetes, Zygomycota, and Basidiomycota. The bacterial community structures differed among the samples, with no consistent temporal or spatial trends. However, the fungal community diversity index correlated with the building time of the caves independent of environmental factors (e.g., temperature or relative humidity). The enrichment cultures revealed that many culturable strains were highly resistant to various stresses and thus may be responsible for the damage to cave paintings in the Mogao Grottoes.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen Li; Rishika Haynes; Eugene Sato

    Microbial fuel cells (MFCs) convert chemical energy to electrical energy via bioelectrochemical reactions mediated by microorganisms. We investigated the diversity of the microbial community in an air cathode single chamber MFC that utilized potato-process wastewater as substrate. Terminal Restriction Fragment Length Polymorphism (T-RFLP) results indicated that the bacterial communities on the anode, cathode, control electrode, and MFC bulk fluid were similar, but differed dramatically from that of the anaerobic domestic sludge and potato wastewater inoculum. The 16S rDNA sequencing results showed that microbial species detected on the anode were predominantly within the phyla of Proteobacteria, Firmicutes, and Bacteroidetes. Fluorescent microscopymore » results indicated that there was a clear enhancement of biofilm formation on the anode. Results of this study could help improve understanding of the complexity of microbial communities and optimize the microbial composition for generating electricity by MFCs that utilize potato wastewater.« less

  9. Gut microbiome of the Hadza hunter-gatherers.

    PubMed

    Schnorr, Stephanie L; Candela, Marco; Rampelli, Simone; Centanni, Manuela; Consolandi, Clarissa; Basaglia, Giulia; Turroni, Silvia; Biagi, Elena; Peano, Clelia; Severgnini, Marco; Fiori, Jessica; Gotti, Roberto; De Bellis, Gianluca; Luiselli, Donata; Brigidi, Patrizia; Mabulla, Audax; Marlowe, Frank; Henry, Amanda G; Crittenden, Alyssa N

    2014-04-15

    Human gut microbiota directly influences health and provides an extra means of adaptive potential to different lifestyles. To explore variation in gut microbiota and to understand how these bacteria may have co-evolved with humans, here we investigate the phylogenetic diversity and metabolite production of the gut microbiota from a community of human hunter-gatherers, the Hadza of Tanzania. We show that the Hadza have higher levels of microbial richness and biodiversity than Italian urban controls. Further comparisons with two rural farming African groups illustrate other features unique to Hadza that can be linked to a foraging lifestyle. These include absence of Bifidobacterium and differences in microbial composition between the sexes that probably reflect sexual division of labour. Furthermore, enrichment in Prevotella, Treponema and unclassified Bacteroidetes, as well as a peculiar arrangement of Clostridiales taxa, may enhance the Hadza's ability to digest and extract valuable nutrition from fibrous plant foods.

  10. Microbial degradation of complex carbohydrates in the gut.

    PubMed

    Flint, Harry J; Scott, Karen P; Duncan, Sylvia H; Louis, Petra; Forano, Evelyne

    2012-01-01

    Bacteria that colonize the mammalian intestine collectively possess a far larger repertoire of degradative enzymes and metabolic capabilities than their hosts. Microbial fermentation of complex non-digestible dietary carbohydrates and host-derived glycans in the human intestine has important consequences for health. Certain dominant species, notably among the Bacteroidetes, are known to possess very large numbers of genes that encode carbohydrate active enzymes and can switch readily between different energy sources in the gut depending on availability. Nevertheless, more nutritionally specialized bacteria appear to play critical roles in the community by initiating the degradation of complex substrates such as plant cell walls, starch particles and mucin. Examples are emerging from the Firmicutes, Actinobacteria and Verrucomicrobium phyla, but more information is needed on these little studied groups. The impact of dietary carbohydrates, including prebiotics, on human health requires understanding of the complex relationship between diet composition, the gut microbiota and metabolic outputs.

  11. Effect of UV on De-NOx performance and microbial community of a hybrid catalytic membrane biofilm reactor

    NASA Astrophysics Data System (ADS)

    Chen, Zhouyang; Huang, Zhensha; He, Yiming; Xiao, Xiaoliang; Wei, Zaishan

    2018-02-01

    The hybrid membrane catalytic biofilm reactor provides a new way of flue gas denitration. However, the effects of UV on denitrification performance, microbial community and microbial nitrogen metabolism are still unknown. In this study, the effects of UV on deNO x performance, nitrification and denitrification, microbial community and microbial nitrogen metabolism of a bench scale N-TiO2/PSF hybrid catalytic membrane biofilm reactor (HCMBR) were evaluated. The change from nature light to UV in the HCMBR leads to the fall of NO removal efficiency of HCMBR from 92.8% to 81.8%. UV affected the microbial community structure, but did not change microbial nitrogen metabolism, as shown by metagenomics sequencing method. Some dominant phyla, such as Gammaproteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Alphaproteobacteria, increased in abundance, whereas others, such as Proteobacteria and Betaproteobacteria, decreased. There were nitrification, denitrification, nitrogen fixation, and organic nitrogen metabolism in the HCMBR.

  12. Biodegradation of chloro- and bromobenzoic acids: effect of milieu conditions and microbial community analysis.

    PubMed

    Gaza, Sarah; Felgner, Annika; Otto, Johannes; Kushmaro, Ariel; Ben-Dov, Eitan; Tiehm, Andreas

    2015-04-28

    Monohalogenated benzoic acids often appear in industrial wastewaters where biodegradation can be hampered by complex mixtures of pollutants and prevailing extreme milieu conditions. In this study, the biodegradation of chlorinated and brominated benzoic acids was conducted at a pH range of 5.0-9.0, at elevated salt concentrations and with pollutant mixtures including fluorinated and iodinated compounds. In mixtures of the isomers, the degradation order was primarily 4-substituted followed by 3-substituted and then 2-substituted halogenated benzoic acids. If the pH and salt concentration were altered simultaneously, long adaptation periods were required. Community analyses were conducted in liquid batch cultures and after immobilization on sand columns. The Alphaproteobacteria represented an important fraction in all of the enrichment cultures. On the genus level, Afipia sp. was detected most frequently. In particular, Bacteroidetes were detected in high numbers with chlorinated benzoic acids. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. L-Glutamine Supplementation Alleviates Constipation during Late Gestation of Mini Sows by Modifying the Microbiota Composition in Feces

    PubMed Central

    Lu, Taofeng; Han, Lingxia; Zhao, Lili; Niu, Yinjie

    2017-01-01

    Constipation occurs frequently in both sows and humans, particularly, during late gestation. The microbial community of the porcine gut, the enteric microbiota, plays a critical role in functions that sustain intestinal health. Hence, microbial regulation during pregnancy may be important to prevent host constipation. The present study was conducted to determine whether L-glutamine (Gln) supplementation improved intestinal function and alleviated constipation by regulation of enteric microbiota. 16S rRNA sequences obtained from fecal samples from 9 constipated sows (3 in the constipation group and 6 in the 1.0% Gln group) were assessed from gestational day 70 to 84. Comparative analysis showed that the abundance of intestinal-friendly microbiota, that is, Bacteroidetes (P = 0.007) and Actinobacteria (P = 0.037), was comparatively increased in the 1.0% Gln group, while the abundance of pernicious bacteria, Oscillospira (P < 0.001) and Treponema (P = 0.011), was decreased. Dietary supplementation with 1.0% Gln may ameliorate constipation of sows by regulated endogenous gut microbiota. PMID:28386552

  14. Aerobic granulation in a modified oxidation ditch with an adjustable volume intraclarifier.

    PubMed

    Li, Jun; Cai, Ang; Wang, Miao; Ding, Libin; Ni, Yongjiong

    2014-04-01

    A modified oxidation ditch (MOD) with an adjustable volume intraclarifier was proposed and used to achieve aerobic sludge granulation in continuous flow process. This MOD with working volume of 60L treated onsite wastewater from a town. Excellent aerobic granules with mean diameter of 600μm and sludge volume index (SVI) of 44mL/g were obtained in 120day. Bacterial community analysis revealed that most species from seed sludge were preserved in both MOD and granule SBR (G-SBR) except bacteria (Bacteroidetes) might be easily washed out during granulation. Some different bacterial communities were found in sludges from sequencing batch and continuous flow reactors. Presence of metal ions and inorganics in raw wastewater had positive effect on granule formation, but an adjustable volume intraclarifier for controlling selection pressure and deleting return sludge pump played a key role in aerobic sludge granulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. High-quality draft genome sequence of Flavobacterium suncheonense GH29-5 T (DSM 17707 T) isolated from greenhouse soil in South Korea, and emended description of Flavobacterium suncheonense GH29-5 T

    DOE PAGES

    Tashkandy, Nisreen; Sabban, Sari; Fakieh, Mohammad; ...

    2016-06-16

    Flavobacterium suncheonense is a member of the family Flavobacteriaceae in the phylum Bacteroidetes. Strain GH29-5 T (DSM 17707 T ) was isolated from greenhouse soil in Suncheon, South Korea. F. suncheonense GH29-5 T is part of the Genomic Encyclopedia of Bacteria and Archaea project. The 2,880,663 bp long draft genome consists of 54 scaffolds with 2739 protein-coding genes and 82 RNA genes. The genome of strain GH29-5 T has 117 genes encoding peptidases but a small number of genes encoding carbohydrate active enzymes (51 CAZymes). Metallo and serine peptidases were found most frequently. Among CAZymes, eight glycoside hydrolase families, ninemore » glycosyl transferase families, two carbohydrate binding module families and four carbohydrate esterase families were identified. Suprisingly, polysaccharides utilization loci (PULs) were not found in strain GH29-5 T . Based on the coherent physiological and genomic characteristics we suggest that F. suncheonense GH29-5 T feeds rather on proteins than saccharides and lipids.« less

  16. Microbial communities involved in biogas production exhibit high resilience to heat shocks.

    PubMed

    Abendroth, Christian; Hahnke, Sarah; Simeonov, Claudia; Klocke, Michael; Casani-Miravalls, Sonia; Ramm, Patrice; Bürger, Christoph; Luschnig, Olaf; Porcar, Manuel

    2018-02-01

    We report here the impact of heat-shock treatments (55 and 70 °C) on the biogas production within the acidification stage of a two-stage reactor system for anaerobic digestion and biomethanation of grass. The microbiome proved both taxonomically and functionally very robust, since heat shocks caused minor community shifts compared to the controls, and biogas yield was not decreased. The strongest impact on the microbial profile was observed with a combination of heat shock and low pH. Since no transient reduction of microbial diversity occured after the shock, biogas keyplayers, but also potential pathogens, survived the treatment. All along the experiment, the heat-resistant bacterial profile consisted mainly of Firmicutes, Bacteroidetes and Proteobacteria. Bacteroides and Acholeplasma were reduced after heat shocks. An increase was observed for Aminobacterium. Our results prove the stability to thermal stresses of the microbial communities involved in acidification, and the resilience in biogas production irrespectively of the thermal treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. NLRP6 inflammasome is a regulator of colonic microbial ecology and risk for colitis

    PubMed Central

    Elinav, Eran; Strowig, Till; Kau, Andrew L.; Henao-Mejia, Jorge; Thaiss, Christoph A.; Booth, Carmen J.; Peaper, David R.; Bertin, John; Eisenbarth, Stephanie C.; Gordon, Jeffrey I.; Flavell, Richard A.

    2011-01-01

    Inflammasomes are multi-protein complexes that function as sensors of endogenous or exogenous damage-associated molecular patterns. Here we show that deficiency of NLRP6 in mouse colonic epithelial cells results in reduced IL-18 levels and altered fecal microbiota characterized by expanded representation of the bacterial phyla Bacteroidetes (Prevotellaceae) and TM7. NLRP6 inflammasome-deficient mice were characterized by spontaneous intestinal hyperplasia, inflammatory cell recruitment, and exacerbation of chemical colitis induced by exposure to dextran sodium sulfate (DSS). Cross-fostering and cohousing experiments revealed that the colitogenic activity of this microbiota is transferable to neonatal or adult wild-type mice, leading to exacerbation of DSS colitis via induction of CCL5. Antibiotic treatment and electron microscopy studies further supported the role of Prevotellaceae as a key representative of this microbiota-associated phenotype. Altogether, perturbations in this inflammasome pathway, including NLRP6, ASC, caspase-1 and IL-18 may constitute a predisposing or initiating event in some cases of human IBD. PMID:21565393

  18. Human gut microbiota community structures in urban and rural populations in Russia

    PubMed Central

    Tyakht, Alexander V.; Kostryukova, Elena S.; Popenko, Anna S.; Belenikin, Maxim S.; Pavlenko, Alexander V.; Larin, Andrey K.; Karpova, Irina Y.; Selezneva, Oksana V.; Semashko, Tatyana A.; Ospanova, Elena A.; Babenko, Vladislav V.; Maev, Igor V.; Cheremushkin, Sergey V.; Kucheryavyy, Yuriy A.; Shcherbakov, Petr L.; Grinevich, Vladimir B.; Efimov, Oleg I.; Sas, Evgenii I.; Abdulkhakov, Rustam A.; Abdulkhakov, Sayar R.; Lyalyukova, Elena A.; Livzan, Maria A.; Vlassov, Valentin V.; Sagdeev, Renad Z.; Tsukanov, Vladislav V.; Osipenko, Marina F.; Kozlova, Irina V.; Tkachev, Alexander V.; Sergienko, Valery I.; Alexeev, Dmitry G.; Govorun, Vadim M.

    2013-01-01

    The microbial community of the human gut has a crucial role in sustaining host homeostasis. High-throughput DNA sequencing has delineated the structural and functional configurations of gut metagenomes in world populations. The microbiota of the Russian population is of particular interest to researchers, because Russia encompasses a uniquely wide range of environmental conditions and ethnogeographical cohorts. Here we conduct a shotgun metagenomic analysis of gut microbiota samples from 96 healthy Russian adult subjects, which reveals novel microbial community structures. The communities from several rural regions display similarities within each region and are dominated by the bacterial taxa associated with the healthy gut. Functional analysis shows that the metabolic pathways exhibiting differential abundance in the novel types are primarily associated with the trade-off between the Bacteroidetes and Firmicutes phyla. The specific signatures of the Russian gut microbiota are likely linked to the host diet, cultural habits and socioeconomic status. PMID:24036685

  19. Biological treatment of fish processing wastewater: A case study from Sfax City (Southeastern Tunisia).

    PubMed

    Jemli, Meryem; Karray, Fatma; Feki, Firas; Loukil, Slim; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2015-04-01

    The present work presents a study of the biological treatment of fish processing wastewater at salt concentration of 55 g/L. Wastewater was treated by both continuous stirred-tank reactor (CSTR) and membrane bioreactor (MBR) during 50 and 100 days, respectively. These biological processes involved salt-tolerant bacteria from natural hypersaline environments at different organic loading rates (OLRs). The phylogenetic analysis of the corresponding excised DGGE bands has demonstrated that the taxonomic affiliation of the most dominant species includes Halomonadaceae and Flavobacteriaceae families of the Proteobacteria (Gamma-proteobacteria class) and the Bacteroidetes phyla, respectively. The results of MBR were better than those of CSTR in the removal of total organic carbon with efficiencies from 97.9% to 98.6%. Nevertheless, salinity with increasing OLR aggravates fouling that requires more cleaning for a membrane in MBR while leads to deterioration of sludge settleability and effluent quality in CSTR. Copyright © 2015. Published by Elsevier B.V.

  20. Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle

    NASA Astrophysics Data System (ADS)

    Wallace, R. John; Rooke, John A.; Duthie, Carol-Anne; Hyslop, Jimmy J.; Ross, David W.; McKain, Nest; de Souza, Shirley Motta; Snelling, Timothy J.; Waterhouse, Anthony; Roehe, Rainer

    2014-07-01

    Methane produced from 35 Aberdeen-Angus and 33 Limousin cross steers was measured in respiration chambers. Each group was split to receive either a medium- or high-concentrate diet. Ruminal digesta samples were subsequently removed to investigate correlations between methane emissions and the rumen microbial community, as measured by qPCR of 16S or 18S rRNA genes. Diet had the greatest influence on methane emissions. The high-concentrate diet resulted in lower methane emissions (P < 0.001) than the medium-concentrate diet. Methane was correlated, irrespective of breed, with the abundance of archaea (R = 0.39), bacteria (-0.47), protozoa (0.45), Bacteroidetes (-0.37) and Clostridium Cluster XIVa (-0.35). The archaea:bacteria ratio provided a stronger correlation (0.49). A similar correlation was found with digesta samples taken 2-3 weeks later at slaughter. This finding could help enable greenhouse gas emissions of large animal cohorts to be predicted from samples taken conveniently in the abattoir.

  1. Effect of two seaweed polysaccharides on intestinal microbiota in mice evaluated by illumina PE250 sequencing.

    PubMed

    Zhang, Zhongshan; Wang, Xiaomei; Han, Shuwen; Liu, Chundong; Liu, Feng

    2018-06-01

    Effect of polysaccharides from two seaweeds, Porphyra haitanensis and Ulva prolifera, on intestinal microbiota in mice was evaluated by illumina PE250 sequencing. Analysis showed significant structural changes in fecal microbiota among the three sample groups. There were significant differences in the composition of fecal microbiota among the three groups at phylum and genus levels. At the phylum level, the most predominant phylum was Bacteroidetes contributing 58.76%, 73.39%, 75.38% and 64.40% of the fecal microbiota in K, Z, H and D groups respectively, followed by Firmicutes, contributing 37.61%, 23.99%, 21.87% and 30.82% respectively. Many genera were significantly higher in the Z and H group than in the K group, including Prevotellaceae UCG-001 (p<0.05) and Rikenellaceae RC9 (p<0.01). In conclusion, our results suggest that polysaccharide type and glycoside may contribute to shaping mice gut microbiota. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro.

    PubMed

    Chen, Ligen; Xu, Wei; Chen, Dan; Chen, Guijie; Liu, Junwei; Zeng, Xiaoxiong; Shao, Rong; Zhu, Hongjun

    2018-06-01

    Sulfated polysaccharides from marine algae exhibit various bioactivities with potential benefits for human health and well-being. In this study, the in vitro digestibility and fermentability of polysaccharides from the brown seaweed Ascophyllum nodosum (AnPs) were examined, and the effects of AnPs on gut microbiota were determined using high-throughput sequencing technology. Salivary amylase, artificial gastric juice, and intestinal juice had no effect on AnPs, but the molecular weight of AnPs and reducing sugar decreased significantly after fermentation by gut microbiota. AnPs significantly modulated the composition of the gut microbiota; in particular, they increased the relative abundance of Bacteroidetes and Firmicutes, suggesting the potential for AnPs to decrease the risk of obesity. Furthermore, the total SCFA content after fermentation increased significantly. These results suggest that AnPs have potential uses as functional food components to improve human gut health. Copyright © 2018. Published by Elsevier B.V.

  3. Antihypertensive Effects of Probiotics.

    PubMed

    Robles-Vera, Iñaki; Toral, Marta; Romero, Miguel; Jiménez, Rosario; Sánchez, Manuel; Pérez-Vizcaíno, Francisco; Duarte, Juan

    2017-04-01

    The present review focuses in the hypertension-associated changes in the microbiota and the current insights regarding the impact of probiotics on blood pressure in animal models and in human hypertensive patients. Gut dysbiosis in hypertension is characterized by (i) the gut microbioma that is less diverse and less rich with an increased Firmicutes/Bacteroidetes ratio and (ii) a decrease in acetate- and butyrate-producing bacteria and an increase in lactate-producing bacterial populations. The meta-analysis of the human studies supports that supplementation with probiotics reduces blood pressure. The mechanism of this antihypertensive effect of probiotics and its protective effect on endothelial function has not been fully elucidated. Further investigations are needed to clarify if the effects of probiotic bacteria result from the changes in the gut microbiota and its metabolic by-products; the restoration of the gut barrier function; and the effects on endotoxemia, inflammation, and renal sympathetic nerve activity.

  4. Unveiling in situ interactions between marine protists and bacteria through single cell sequencing

    PubMed Central

    Martinez-Garcia, Manuel; Brazel, David; Poulton, Nicole J; Swan, Brandon K; Gomez, Monica Lluesma; Masland, Dashiell; Sieracki, Michael E; Stepanauskas, Ramunas

    2012-01-01

    Heterotrophic protists are a highly diverse and biogeochemically significant component of marine ecosystems, yet little is known about their species-specific prey preferences and symbiotic interactions in situ. Here we demonstrate how these previously unresolved questions can be addressed by sequencing the eukaryote and bacterial SSU rRNA genes from individual, uncultured protist cells collected from their natural marine environment and sorted by flow cytometry. We detected Pelagibacter ubique in association with a MAST-4 protist, an actinobacterium in association with a chrysophyte and three bacteroidetes in association with diverse protist groups. The presence of identical phylotypes among the putative prey and the free bacterioplankton in the same sample provides evidence for predator–prey interactions. Our results also suggest a discovery of novel symbionts, distantly related to Rickettsiales and the candidate divisions ZB3 and TG2, associated with Cercozoa and Chrysophyta cells. This study demonstrates the power of single cell sequencing to untangle ecological interactions between uncultured protists and prokaryotes. PMID:21938022

  5. Bacterial Species and Biochemical Characteristic Investigations of Nostoc flagelliforme Concentrates during its Storage.

    PubMed

    Yue, Lifang; Lv, Hexin; Zhen, Jing; Jiang, Shengping; Jia, Shiru; Shen, Shigang; Gao, Lu; Dai, Yujie

    2016-04-28

    Preservation of fresh algae plays an important role in algae seed subculture and aquaculture. The determination and examination of the changes of cell viability, composition, and bacterial species during storage would help to take suitable preservation methods to prolong the preservation time of fresh algae. Nostoc flagelliforme is a kind of edible cyanobacterium with important herbal and dietary values. This article investigated the changes of bacterial species and biochemical characteristics of fresh N. flagelliforme concentrate during natural storage. It was found that the viability of cells decreased along with the storage time. Fourteen bacteria strains in the algae concentrate were identified by PCR-DGGE and were grouped into four phyla, including Cyanobacteria, Firmicutes, Proteobacteria, and Bacteroidetes. Among them, Enterococcus viikkiensis may be a concern in the preservation. Eleven volatile organic compounds were identified from N. flagelliforme cells, in which geosmin could be treated as an indicator of the freshness of N. flagelliforme. The occurrence of indole compound may be an indicator of the degradation of cells.

  6. Succession of the functional microbial communities and the metabolic functions in maize straw composting process.

    PubMed

    Wei, Huawei; Wang, Liuhong; Hassan, Muhammad; Xie, Bing

    2018-05-01

    Illumina MiSeq sequencing and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) were applied to study the dynamic changes and effects of microbial community structures as well as the metabolic function of bacterial community in maize straw composting process. Results showed that humic acid contents in loosely combined humus (HA1) and stably combined humus (HA2) increased after composting and Staphylococcus, Cellulosimicrobium and Ochrobactrum possibly participated in the transformation of the process. The bacterial communities differed in different stages of the composting. Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were reported the dominant phyla throughout the process and the relative abundance of the dominant phyla varied significantly (p < 0.05) over time. Moreover, the total phosphorus (TP) had the greatest influence on the microbial community structure among C/N ratio, available phosphorus (AP) and humic substances. Metabolism, cellular processes and environmental information processing might be the primary functions of microbial community during the composting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community.

    PubMed

    Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua

    2017-01-01

    To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The microbiota of acute apical abscesses.

    PubMed

    Siqueira, J F; Rôças, I N

    2009-01-01

    As the breadth of bacterial diversity in the oral cavity has been deciphered by molecular studies, several newly identified species/phylotypes have emerged as potential pathogens. We hypothesized that many of these species/phylotypes could also be involved with the etiology of endodontic abscesses. Abscess aspirates from 42 persons were analyzed for the presence of 81 species/phylotypes by means of a reverse-capture checkerboard hybridization assay. Associations between the most frequently detected taxa were calculated. The most prevalent taxa were Fusobacterium nucleatum, Parvimonas micra, and Porphyromonas endodontalis. Other frequently found taxa included Olsenella uli, streptococci, Eikenella corrodens, some as-yet-uncultivated phylotypes (Bacteroidetes clone X083 and Synergistes clone BA121), and newly named species (Prevotella baroniae and Dialister invisus). Several positive bacterial associations were disclosed. Findings not only strengthen the association of many cultivable species with abscesses, but also include some newly named species and uncultivated phylotypes in the set of candidate pathogens associated with this disease.

  9. Comparative Gut Microbiota of 59 Neotropical Bird Species

    PubMed Central

    Hird, Sarah M.; Sánchez, César; Carstens, Bryan C.; Brumfield, Robb T.

    2015-01-01

    The gut microbiota of vertebrates are essential to host health. Most non-model vertebrates, however, lack even a basic description of natural gut microbiota biodiversity. Here, we sampled 116 intestines from 59 Neotropical bird species and used the V6 region of the 16S rRNA molecule as a microbial fingerprint (average coverage per bird ~80,000 reads). A core microbiota of Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria was identified, as well as several gut-associated genera. We tested 18 categorical variables associated with each bird for significant correlation to the gut microbiota; host taxonomic categories were most frequently significant and explained the most variation. Ecological variables (e.g., diet, foraging stratum) were also frequently significant but explained less variation. Little evidence was found for a significant influence of geographic space. Finally, we suggest that microbial sampling during field collection of organisms would propel biological understanding of evolutionary history and ecological significance of host-associated microbiota. PMID:26733954

  10. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome

    PubMed Central

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E.

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na+). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L−1 day−1 organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the “ML635J-40 aquatic group” while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  11. Bacteria associated with sabellids (Polychaeta: Annelida) as a novel source of surface active compounds.

    PubMed

    Rizzo, Carmen; Michaud, Luigi; Hörmann, Barbara; Gerçe, Berna; Syldatk, Christoph; Hausmann, Rudolf; De Domenico, Emilio; Lo Giudice, Angelina

    2013-05-15

    A total of 69 bacteria were isolated from crude oil enrichments of the polychaetes Megalomma claparedei, Sabella spallanzanii and Branchiomma luctuosum, and screened for biosurfactant (BS) production by conventional methods. Potential BS-producers (30 isolates) were primarily selected due to the production of both interesting spots on thin layer chromatography (TLC) plates and highly stable emulsions (E₂₄ ≥ 50%). Only few strains grew on cetyltrimethylammonium bromide and blood agar plates, indicating the probable production of anionic surfactants. The 16S rRNA gene sequencing revealed that selected isolates mainly belonged to the CFB group of Bacteroidetes, followed by Gammaproteobacteria and Alphaproteobacteria. A number of BS-producers belonged to genera (i.e., Cellulophaga, Cobetia, Cohaesibacter, Idiomarina, Pseudovibrio and Thalassospira) that have been never reported as able to produce BSs, even if they have been previously detected in hydrocarbon-enriched samples. Our results suggest that filter-feeding Polychaetes could represent a novel and yet unexplored source of biosurfactant-producing bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Enhanced sulfide removal and bioelectricity generation in microbial fuel cells with anodes modified by vertically oriented nanosheets.

    PubMed

    Yang, Meng; Zhong, Yuezhi; Zhang, Baogang; Shi, Jiaxin; Huang, Xueyang; Xing, Yi; Su, Lin; Liu, Huipeng; Borthwick, Alistair G L

    2018-01-31

    Anode materials and structures are of critical importance for microbial fuel cells (MFCs) recovering energy from toxic substrates. Carbon-fiber-felt anodes modified by layers of vertically oriented TiO 2 and Fe 2 O 3 nanosheets were applied in the present study. Enhanced sulfide removal efficiencies (both over 90%) were obtained after a 48-h operation, with maximum power densities improved by 1.53 and 1.36 folds compared with MFCs with raw carbon-fiber-felt anode. The modified anodes provided more active sites for microbial adhesion with increasing biomass densities. High-throughput 16S rRNA gene sequencing analysis also indicated the increase in microbial diversities. Bacteroidetes responsible for bioelectricity generation with Thiobacillus and Spirochaeta dominating sulfide removal were found in the MFCs with the modified anodes, with less anaerobic fermentative bacteria as Firmicutes appeared. This indicates that the proposed materials are competitive for applications of MFCs generating bioelectricity from toxic sulfide.

  13. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea.

    PubMed

    Bik, Elisabeth M; Costello, Elizabeth K; Switzer, Alexandra D; Callahan, Benjamin J; Holmes, Susan P; Wells, Randall S; Carlin, Kevin P; Jensen, Eric D; Venn-Watson, Stephanie; Relman, David A

    2016-02-03

    Marine mammals play crucial ecological roles in the oceans, but little is known about their microbiotas. Here we study the bacterial communities in 337 samples from 5 body sites in 48 healthy dolphins and 18 healthy sea lions, as well as those of adjacent seawater and other hosts. The bacterial taxonomic compositions are distinct from those of other mammals, dietary fish and seawater, are highly diverse and vary according to body site and host species. Dolphins harbour 30 bacterial phyla, with 25 of them in the mouth, several abundant but poorly characterized Tenericutes species in gastric fluid and a surprisingly paucity of Bacteroidetes in distal gut. About 70% of near-full length bacterial 16S ribosomal RNA sequences from dolphins are unique. Host habitat, diet and phylogeny all contribute to variation in marine mammal distal gut microbiota composition. Our findings help elucidate the factors structuring marine mammal microbiotas and may enhance monitoring of marine mammal health.

  14. Long-term effect of set potential on biocathodes in microbial fuel cells: electrochemical and phylogenetic characterization.

    PubMed

    Xia, Xue; Sun, Yanmei; Liang, Peng; Huang, Xia

    2012-09-01

    The long-term effect of set potential on oxygen reducing biocathodes was investigated in terms of electrochemical and biological characteristics. Three biocathodes were poised at 200, 60 and -100 mV vs. saturated calomel electrode (SCE) for 110 days, including the first 17 days for startup. Electrochemical analyses showed that 60 mV was the optimum potential during long-term operation. The performance of all the biocathodes kept increasing after startup, suggesting a period longer than startup time needed to make potential regulation more effective. The inherent characteristics without oxygen transfer limitation were studied. Different from short-term regulation, the amounts of biomass were similar while the specific electrochemical activity was significantly influenced by potential. Moreover, potential showed a strong selection for cathode bacteria. Clones 98% similar with an uncultured Bacteroidetes bacterium clone CG84 accounted for 75% to 80% of the sequences on the biocathodes that showed higher electrochemical activity (60 and -100 mV). Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Effects of bitter melon (Momordica charantia L.) on the gut microbiota in high fat diet and low dose streptozocin-induced rats.

    PubMed

    Zhu, Ying; Bai, Juan; Zhang, Yi; Xiao, Xiang; Dong, Ying

    2016-09-01

    The effects on gut microbiota of type 2 diabetic rats fed a bitter melon formulation (BLSP, a lyophilized superfine powder) were investigated. BLSP treatment significantly reduced fasting blood glucose levels (p < 0.05) and serum insulin levels (p < 0.05) of the diabetic rats. The gut microbiota of treated and control rats were profiled by PCR amplification and pyrosequencing of 16S rRNA genes (V3-V9 region). BLSP significantly reduced the ratio of Firmicutes to Bacteroidetes in diabetic rats, while the relative abundances of Ruminococcaceae, Bacteroides and Ruminococcus were significantly lowered in BLSP-treated rats compared to diabetic rats. Additionally, BLSP significantly suppressed the activation of MAPK (JNK and p38). The results indicate that BLSP can significantly modify the proportions of particular gut microbiota in diabetic rats without disturbing the normal population diversity. By suppressing the activation of MAPK signaling pathway, a BLSP containing diet may ameliorate type 2 diabetes.

  16. The effect of sun-dried raisins (Vitis vinifera L.) on the in vitro composition of the gut microbiota.

    PubMed

    Mandalari, Giuseppina; Chessa, Simona; Bisignano, Carlo; Chan, Luisa; Carughi, Arianna

    2016-09-14

    Modulation of the human gut microbiota has proven to have beneficial effects on host health. The aim of this work was to evaluate the effect of sun-dried raisins (SR) on the composition of the human gut microbiota. A full model of the gastrointestinal tract, which includes simulated mastication, a dynamic gastric model, a duodenal model and a colonic model of the human large intestine, was used. An increase in the numbers of bifidobacteria and lactobacilli was observed by plate-counting in response to the addition of either SR or FOS after 8 and 24 h fermentation. A significant decrease in Firmicutes and Bacteroidetes was observed in SR samples after 8 and 24 h fermentation. FOS resulted in the greatest production of short chain fatty acids. Sun-dried raisins demonstrated considerable potential to promote the colonization and proliferation of beneficial bacteria in the human large intestine and to stimulate the production of organic acids.

  17. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children.

    PubMed

    Korpela, Katri; Salonen, Anne; Virta, Lauri J; Kekkonen, Riina A; Forslund, Kristoffer; Bork, Peer; de Vos, Willem M

    2016-01-26

    Early-life antibiotic use is associated with increased risk for metabolic and immunological diseases, and mouse studies indicate a causal role of the disrupted microbiome. However, little is known about the impacts of antibiotics on the developing microbiome of children. Here we use phylogenetics, metagenomics and individual antibiotic purchase records to show that macrolide use in 2-7 year-old Finnish children (N=142; sampled at two time points) is associated with a long-lasting shift in microbiota composition and metabolism. The shift includes depletion of Actinobacteria, increase in Bacteroidetes and Proteobacteria, decrease in bile-salt hydrolase and increase in macrolide resistance. Furthermore, macrolide use in early life is associated with increased risk of asthma and predisposes to antibiotic-associated weight gain. Overweight and asthmatic children have distinct microbiota compositions. Penicillins leave a weaker mark on the microbiota than macrolides. Our results support the idea that, without compromising clinical practice, the impact on the intestinal microbiota should be considered when prescribing antibiotics.

  18. Composition and variation of sediment bacterial and nirS-harboring bacterial communities at representative sites of the Bohai Gulf coastal zone, China.

    PubMed

    Guan, Xiangyu; Zhu, Lingling; Li, Youxun; Xie, Yuxuan; Zhao, Mingzhang; Luo, Ximing

    2014-04-01

    With rapid urbanization, anthropogenic activities are increasingly influencing the natural environment of the Bohai Bay. In this study, the composition and variation of bacterial and nirS-harboring bacterial communities in the coastal zone sediments of the Bohai Gulf were analyzed using PCR-based clone libraries. A total of 95 genera were detected in the bacterial communities, with Proteobacteria (72.1 %), Acidobacteria (10.5 %), Firmicutes (1.7 %), Bacteroidetes (1.4 %), Chloroflexi (0.7 %) and Planctomycetes (0.7 %) being the dominated phyla. The NirS sequences were divided into nine Clusters (A-I). Canonical correlation analysis showed that the bacterial or denitrifying communities were correlated with different environmental factors, such as total organic carbon, total nitrogen, ammonium, sulfate, etc. Furthermore, bacterial communities' composition and diversity are influenced by oil exploration, sewage discharge and other anthropogenic activities in the coastal area of the Bohai Sea. Thus, this study provided useful information on further research on regional or global environmental control and restore.

  19. Microbiota of little penguins and short-tailed shearwaters during development

    PubMed Central

    Arnould, John P. Y.; Allnutt, Theo R.; Crowley, Tamsyn; Krause, Lutz; Reynolds, John; Dann, Peter; Smith, Stuart C.

    2017-01-01

    The establishment and early colonisation of the gastrointestinal (GI) tract has been recognised as a crucial stage in chick development, with pioneering microbial species responsible for influencing the development of the GI tract and influencing host health, fitness and disease status throughout life. Development of the microbiota in long lived seabirds is poorly understood. This study characterised the microbial composition of little penguin and short-tailed shearwater chicks throughout development, using Quantitative Real Time PCR (qPCR) and 16S rRNA sequencing. The results indicated that microbial development differed between the two seabird species with the short-tailed shearwater microbiota being relatively stable throughout development whilst significant fluctuations in the microbial composition and an upward trend in the abundance of Firmicutes and Bacteroidetes were observed in the little penguin. When the microbial composition of adults and chicks was compared, both species showed low similarity in microbial composition, indicating that the adult microbiota may have a negligible influence over the chick’s microbiota. PMID:28806408

  20. Organic loading rate and hydraulic retention time shape distinct ecological networks of anaerobic digestion related microbiome.

    PubMed

    Xu, Rui; Yang, Zhao-Hui; Zheng, Yue; Liu, Jian-Bo; Xiong, Wei-Ping; Zhang, Yan-Ru; Lu, Yue; Xue, Wen-Jing; Fan, Chang-Zheng

    2018-04-22

    Understanding of how anaerobic digestion (AD)-related microbiomes are constructed by operational parameters or their interactions within the biochemical process is limited. Using high-throughput sequencing and molecular ecological network analysis, this study shows the succession of AD-related microbiome hosting diverse members of the phylum Actinobacteria, Bacteroidetes, Euryarchaeota, and Firmicutes, which were affected by organic loading rate (OLR) and hydraulic retention time (HRT). OLR formed finer microbial network modules than HRT (12 vs. 6), suggesting the further subdivision of functional components. Biomarkers were also identified in OLR or HRT groups (e.g. the family Actinomycetaceae, Methanosaetaceae and Aminiphilaceae). The most pair-wise link between Firmicutes and biogas production indicates the keystone members based on network features can be considered as markers in the regulation of AD. A set of 40% species ("core microbiome") were similar across different digesters. Such noteworthy overlap of microbiomes indicates they are generalists in maintaining the ecological stability of digesters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The Gut Microbiota Modulates Energy Metabolism in the Hibernating Brown Bear Ursus arctos.

    PubMed

    Sommer, Felix; Ståhlman, Marcus; Ilkayeva, Olga; Arnemo, Jon M; Kindberg, Jonas; Josefsson, Johan; Newgard, Christopher B; Fröbert, Ole; Bäckhed, Fredrik

    2016-02-23

    Hibernation is an adaptation that helps many animals to conserve energy during food shortage in winter. Brown bears double their fat depots during summer and use these stored lipids during hibernation. Although bears seasonally become obese, they remain metabolically healthy. We analyzed the microbiota of free-ranging brown bears during their active phase and hibernation. Compared to the active phase, hibernation microbiota had reduced diversity, reduced levels of Firmicutes and Actinobacteria, and increased levels of Bacteroidetes. Several metabolites involved in lipid metabolism, including triglycerides, cholesterol, and bile acids, were also affected by hibernation. Transplantation of the bear microbiota from summer and winter to germ-free mice transferred some of the seasonal metabolic features and demonstrated that the summer microbiota promoted adiposity without impairing glucose tolerance, suggesting that seasonal variation in the microbiota may contribute to host energy metabolism in the hibernating brown bear. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Anaerobic biodegradation of nonylphenol in river sediment under nitrate- or sulfate-reducing conditions and associated bacterial community.

    PubMed

    Wang, Zhao; Yang, Yuyin; Dai, Yu; Xie, Shuguang

    2015-04-09

    Nonylphenol (NP) is a commonly detected pollutant in aquatic ecosystem and can be harmful to aquatic organisms. Anaerobic degradation is of great importance for the clean-up of NP in sediment. However, information on anaerobic NP biodegradation in the environment is still very limited. The present study investigated the shift in bacterial community structure associated with NP degradation in river sediment microcosms under nitrate- or sulfate-reducing conditions. Nearly 80% of NP (100 mg kg(-1)) could be removed under these two anaerobic conditions after 90 or 110 days' incubation. Illumina MiSeq sequencing analysis indicated that Proteobacteria, Firmicutes, Bacteroidetes and Chloroflexi became the dominant phylum groups with NP biodegradation. The proportion of Gammaproteobacteria, Deltaproteobacteria and Choloroflexi showed a marked increase in nitrate-reducing microcosm, while Gammaproteobacteria and Firmicutes in sulfate-reducing microcosm. Moreover, sediment bacterial diversity changed with NP biodegradation, which was dependent on type of electron acceptor. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Comparison of the Rhizosphere Bacterial Communities of Zigongdongdou Soybean and a High-Methionine Transgenic Line of This Cultivar

    PubMed Central

    Ji, Jun; Wu, Haiying; Meng, Fang; Zhang, Mingrong; Zheng, Xiaobo; Wu, Cunxiang; Zhang, Zhengguang

    2014-01-01

    Previous studies have shown that methionine from root exudates affects the rhizosphere bacterial population involved in soil nitrogen fixation. A transgenic line of Zigongdongdou soybean cultivar (ZD91) that expresses Arabidopsis cystathionine γ-synthase resulting in an increased methionine production was examined for its influence to the rhizosphere bacterial population. Using 16S rRNA gene-based pyrosequencing analysis of the V4 region and DNA extracted from bacterial consortia collected from the rhizosphere of soybean plants grown in an agricultural field at the pod-setting stage, we characterized the populational structure of the bacterial community involved. In total, 87,267 sequences (approximately 10,908 per sample) were analyzed. We found that Acidobacteria, Proteobacteria, Bacteroidetes, Actinobacteria, Chloroflexi, Planctomycetes, Gemmatimonadetes, Firmicutes, and Verrucomicrobia constitute the dominant taxonomic groups in either the ZD91 transgenic line or parental cultivar ZD, and that there was no statistically significant difference in the rhizosphere bacterial community structure between the two cultivars. PMID:25079947

  4. Firmicutes dominate the bacterial taxa within sugar-cane processing plants

    PubMed Central

    Sharmin, Farhana; Wakelin, Steve; Huygens, Flavia; Hargreaves, Megan

    2013-01-01

    Sugar cane processing sites are characterised by high sugar/hemicellulose levels, available moisture and warm conditions, and are relatively unexplored unique microbial environments. The PhyloChip microarray was used to investigate bacterial diversity and community composition in three Australian sugar cane processing plants. These ecosystems were highly complex and dominated by four main Phyla, Firmicutes (the most dominant), followed by Proteobacteria, Bacteroidetes, and Chloroflexi. Significant variation (p < 0.05) in community structure occurred between samples collected from ‘floor dump sediment’, ‘cooling tower water’, and ‘bagasse leachate’. Many bacterial Classes contributed to these differences, however most were of low numerical abundance. Separation in community composition was also linked to Classes of Firmicutes, particularly Bacillales, Lactobacillales and Clostridiales, whose dominance is likely to be linked to their physiology as ‘lactic acid bacteria’, capable of fermenting the sugars present. This process may help displace other bacterial taxa, providing a competitive advantage for Firmicutes bacteria. PMID:24177592

  5. Start-Up of an Anaerobic Dynamic Membrane Digester for Waste Activated Sludge Digestion: Temporal Variations in Microbial Communities

    PubMed Central

    Yu, Hongguang; Wang, Qiaoying; Wang, Zhiwei; Sahinkaya, Erkan; Li, Yongli; Ma, Jinxing; Wu, Zhichao

    2014-01-01

    An anaerobic dynamic membrane digester (ADMD) was developed to digest waste sludge, and pyrosequencing was used to analyze the variations of the bacterial and archaeal communities during the start-up. Results showed that bacterial community richness decreased and then increased over time, while bacterial diversity remained almost the same during the start-up. Proteobacteria and Bacteroidetes were the major phyla. At the class level, Betaproteobacteria was the most abundant at the end of start-up, followed by Sphingobacteria. In the archaeal community, richness and diversity peaked at the end of the start-up stage. Principle component and cluster analyses demonstrated that archaeal consortia experienced a distinct shift and became stable after day 38. Methanomicrobiales and Methanosarcinales were the two predominant orders. Further investigations indicated that Methanolinea and Methanosaeta were responsible for methane production in the ADMD system. Hydrogenotrophic pathways might prevail over acetoclastic means for methanogenesis during the start-up, supported by specific methanogenic activity tests. PMID:24695488

  6. Bacteria and archaea paleomicrobiology of the dental calculus: a review.

    PubMed

    Huynh, H T T; Verneau, J; Levasseur, A; Drancourt, M; Aboudharam, G

    2016-06-01

    Dental calculus, a material observed in the majority of adults worldwide, emerged as a source for correlating paleomicrobiology with human health and diet. This mini review of 48 articles on the paleomicrobiology of dental calculus over 7550 years discloses a secular core microbiota comprising nine bacterial phyla - Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, TM7, Synergistetes, Chloroflexi, Fusobacteria, Spirochetes - and one archaeal phylum Euryarchaeota; and some accessory microbiota that appear and disappear according to time frame. The diet residues and oral microbes, including bacteria, archaea, viruses and fungi, consisting of harmless organisms and pathogens associated with local and systemic infections have been found trapped in ancient dental calculus by morphological approaches, immunolabeling techniques, isotope analyses, fluorescent in situ hybridization, DNA-based approaches, and protein-based approaches. These observations led to correlation of paleomicrobiology, particularly Streptococcus mutans and archaea, with past human health and diet. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Saccharomyces boulardii Administration Changes Gut Microbiota and Attenuates D-Galactosamine-Induced Liver Injury.

    PubMed

    Yu, Lei; Zhao, Xue-Ke; Cheng, Ming-Liang; Yang, Guo-Zhen; Wang, Bi; Liu, Hua-Juan; Hu, Ya-Xin; Zhu, Li-Li; Zhang, Shuai; Xiao, Zi-Wen; Liu, Yong-Mei; Zhang, Bao-Fang; Mu, Mao

    2017-05-02

    Growing evidence has shown that gut microbiome is a key factor involved in liver health. Therefore, gut microbiota modulation with probiotic bacteria, such as Saccharomyces boulardii, constitutes a promising therapy for hepatosis. In this study, we aimed to investigate the protective effects of S. boulardii on D-Galactosamine-induced liver injury in mice. Liver function test and histopathological analysis both suggested that the liver injury can be effectively attenuated by S. boulardii administration. In the meantime, S. boulardii induced dramatic changes in the gut microbial composition. At the phylum level, we found that S. boulardii significantly increased in the relative abundance of Bacteroidetes, and decreased the relative abundance of Firmicutes and Proteobacteria, which may explain the hepatic protective effects of S. boulardii. Taken together, our results demonstrated that S. boulardii administration could change the gut microbiota in mice and alleviate acute liver failure, indicating a potential protective and therapeutic role of S. boulardii.

  8. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water.

    PubMed

    Sun, Min; Xiao, Tangfu; Ning, Zengping; Xiao, Enzong; Sun, Weimin

    2015-03-01

    Five rice paddy soils located in southwest China were selected for geochemical and microbial community analysis. These rice fields were irrigated with river water which was contaminated by Fe-S-rich acid mine drainage. Microbial communities were characterized by high-throughput sequencing, which showed 39 different phyla/groups in these samples. Among these phyla/groups, Proteobacteria was the most abundant phylum in all samples. Chloroflexi, Acidobacteria, Nitrospirae, and Bacteroidetes exhibited higher relative abundances than other phyla. A number of rare and candidate phyla were also detected. Moreover, canonical correspondence analysis suggested that pH, sulfate, and nitrate were significant factors that shaped the microbial community structure. In addition, a wide diversity of Fe- and S-related bacteria, such as GOUTA19, Shewanella, Geobacter, Desulfobacca, Thiobacillus, Desulfobacterium, and Anaeromyxobacter, might be responsible for biogeochemical Fe and S cycles in the tested rice paddy soils. Among the dominant genera, GOUTA19 and Shewanella were seldom detected in rice paddy soils.

  9. Soil microbial communities of three grassland ecosystems in the Bayinbuluke, China.

    PubMed

    Shao, Keqiang; Gao, Guang

    2018-03-01

    The microbial community plays an important role in soil nutrient cycles and energy transformations in alpine grassland. In this study, we investigated the composition of the soil microbial community collected from alpine cold swamp meadow (ASM), alpine cold meadow (AM), and alpine cold desert steppe (ADS) within the Bayinbuluke alpine grassland, China, using Illumina amplicon sequencing. Of the 147 271 sequences obtained, 36 microbial phyla or groups were detected. The results showed that the ADS had lower microbial diversity than the ASM and AM, as estimated by the Shannon index. The Verrucomicrobia, Chloroflexi, Planctomycetes, Proteobacteria, and Actinobacteria were the predominant phyla in all 3 ecosystems. Particularly, Thaumarchaeota was only abundant in ASM, Bacteroidetes in AM, and Acidobacteria in ADS. Additionally, the predominant genus also differed with each ecosystem. Candidatus Nitrososphaera was predominant in ADS, the Pir4 lineage in ASM, and Sphingomonas in AM. Our results indicated that the soil microbial community structure was different for each grassland ecosystem in the Bayinbuluke.

  10. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children

    PubMed Central

    Korpela, Katri; Salonen, Anne; Virta, Lauri J.; Kekkonen, Riina A.; Forslund, Kristoffer; Bork, Peer; de Vos, Willem M.

    2016-01-01

    Early-life antibiotic use is associated with increased risk for metabolic and immunological diseases, and mouse studies indicate a causal role of the disrupted microbiome. However, little is known about the impacts of antibiotics on the developing microbiome of children. Here we use phylogenetics, metagenomics and individual antibiotic purchase records to show that macrolide use in 2–7 year-old Finnish children (N=142; sampled at two time points) is associated with a long-lasting shift in microbiota composition and metabolism. The shift includes depletion of Actinobacteria, increase in Bacteroidetes and Proteobacteria, decrease in bile-salt hydrolase and increase in macrolide resistance. Furthermore, macrolide use in early life is associated with increased risk of asthma and predisposes to antibiotic-associated weight gain. Overweight and asthmatic children have distinct microbiota compositions. Penicillins leave a weaker mark on the microbiota than macrolides. Our results support the idea that, without compromising clinical practice, the impact on the intestinal microbiota should be considered when prescribing antibiotics. PMID:26811868

  11. A comparative study of composting the solid fraction of dairy manure with or without bulking material: Performance and microbial community dynamics.

    PubMed

    Zhong, Xiao-Zhong; Ma, Shi-Chun; Wang, Shi-Peng; Wang, Ting-Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Deng, Yu; Kida, Kenji

    2018-01-01

    The present study compared the development of various physicochemical properties and the composition of microbial communities involved in the composting process in the solid fraction of dairy manure (SFDM) with a sawdust-regulated SFDM (RDM). The changes in several primary physicochemical properties were similar in the two composting processes, and both resulted in mature end-products within 48days. The bacterial communities in both composting processes primarily comprised Proteobacteria and Bacteroidetes. Firmicutes were predominant in the thermophilic phase, whereas Chloroflexi, Planctomycetes, and Nitrospirae were more abundant in the final mature phase. Furthermore, the succession of bacteria in both groups proceeded in a similar pattern, suggesting that the effects of the bulking material on bacterial dynamics were minor. These results demonstrate the feasibility of composting using only the SFDM, reflected by the evolution of physicochemical properties and the microbial communities involved in the composting process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Culture-independent phylogenetic analysis of the microbial community in industrial sugarcane bagasse feedstock piles.

    PubMed

    Rattanachomsri, Ukrit; Kanokratana, Pattanop; Eurwilaichitr, Lily; Igarashi, Yasuo; Champreda, Verawat

    2011-01-01

    Sugarcane bagasse is an important lignocellulosic by-product with potential for conversion to biofuels and chemicals in biorefinery. As a step towards an understanding of microbial diversity and the processes existing in bagasse collection sites, the microbial community in industrial bagasse feedstock piles was investigated. Molecular biodiversity analysis of 16S rDNA sequences revealed the presence of a complex bacterial community. A diverse group of mainly aerobic and facultative anaerobic bacteria was identified reflecting the aerobic and high temperature microenvironmental conditions under the pile surface. The major bacterial taxa present were identified as Firmicutes, Alpha- and Gammaproteobacteria, Acidobacteria, Bacteroidetes, and Actinobacteria. Analysis of the eukaryotic microbial assemblage based on an internal transcribed spacer revealed the predominance of diverse cellulolytic and hemicellulolytic ascomycota. A microbial interaction model is proposed, focusing on lignocellulose degradation and methane metabolism. The insights into the microbial community in this study provide a basis for efficient utilization of bagasse in lignocellulosic biomass-based industries.

  13. Microbial monitoring of ammonia removal in a UASB reactor treating pre-digested chicken manure with anaerobic granular inoculum.

    PubMed

    Yangin-Gomec, Cigdem; Pekyavas, Goksen; Sapmaz, Tugba; Aydin, Sevcan; Ince, Bahar; Akyol, Çağrı; Ince, Orhan

    2017-10-01

    Performance and microbial community dynamics in an upflow anaerobic sludge bed (UASB) reactor coupled with anaerobic ammonium oxidizing (Anammox) treating diluted chicken manure digestate (Total ammonia nitrogen; TAN=123±10mg/L) were investigated for a 120-d operating period in the presence of anaerobic granular inoculum. Maximum TAN removal efficiency reached to above 80% with as low as 20mg/L TAN concentrations in the effluent. Moreover, total COD (tCOD) with 807±215mg/L in the influent was removed by 60-80%. High-throughput sequencing revealed that Proteobacteria, Actinobacteria, and Firmicutes were dominant phyla followed by Euryarchaeota and Bacteroidetes. The relative abundance of Planctomycetes significantly increased from 4% to 8-9% during the late days of the operation with decreased tCOD concentration, which indicated a more optimum condition to favor ammonia removal through anammox route. There was also significant association between the hzsA gene and ammonia removal in the UASB reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Structure and Inhibition of Microbiome β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Bret D.; Roberts, Adam B.; Pollet, Rebecca M.

    The selective inhibition of bacterial β-glucuronidases was recently shown to alleviate drug-induced gastrointestinal toxicity in mice, including the damage caused by the widely used anticancer drug irinotecan. Here, we report crystal structures of representative β-glucuronidases from the Firmicutes Streptococcus agalactiae and Clostridium perfringens and the Proteobacterium Escherichia coli, and the characterization of a β-glucuronidase from the Bacteroidetes Bacteroides fragilis. While largely similar in structure, these enzymes exhibit marked differences in catalytic properties and propensities for inhibition, indicating that the microbiome maintains functional diversity in orthologous enzymes. Small changes in the structure of designed inhibitors can induce significant conformational changes inmore » the β-glucuronidase active site. Finally, we establish that β-glucuronidase inhibition does not alter the serum pharmacokinetics of irinotecan or its metabolites in mice. Together, the data presented advance our in vitro and in vivo understanding of the microbial β-glucuronidases, a promising new set of targets for controlling drug-induced gastrointestinal toxicity.« less

  15. Illumina MiSeq sequencing reveals the key microorganisms involved in partial nitritation followed by simultaneous sludge fermentation, denitrification and anammox process.

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying

    2016-05-01

    A combined process including a partial nitritation SBR (PN-SBR) followed by a simultaneous sludge fermentation, denitrification and anammox reactor (SFDA) was established to treat low C/N domestic wastewater in this study. An average nitrite accumulation rate of 97.8% and total nitrogen of 9.4mg/L in the effluent was achieved during 140days' operation. The underlying mechanisms were investigated by using Illumina MiSeq sequencing to analyze the microbial community structures in the PN-SBR and SFDA. Results showed that the predominant bacterial phylum was Proteobacteria in the external waste activated sludge (WAS, added to the SFDA) and SFDA while Bacteroidetes in the PN-SBR. Further study indicated that in the PN-SBR, the dominant nitrobacteria, Nitrosomonas genus, facilitated nitritation and little nitrate was generated in the PN-SBR effluent. In the SFDA, the co-existence of functional microorganisms Thauera, Candidatus Anammoximicrobium and Pseudomonas were found to contribute to simultaneous sludge fermentation, denitrification and anammox. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota.

    PubMed

    Chang, Chih-Jung; Lin, Chuan-Sheng; Lu, Chia-Chen; Martel, Jan; Ko, Yun-Fei; Ojcius, David M; Tseng, Shun-Fu; Wu, Tsung-Ru; Chen, Yi-Yuan Margaret; Young, John D; Lai, Hsin-Chih

    2015-06-23

    Obesity is associated with low-grade chronic inflammation and intestinal dysbiosis. Ganoderma lucidum is a medicinal mushroom used in traditional Chinese medicine with putative anti-diabetic effects. Here, we show that a water extract of Ganoderma lucidum mycelium (WEGL) reduces body weight, inflammation and insulin resistance in mice fed a high-fat diet (HFD). Our data indicate that WEGL not only reverses HFD-induced gut dysbiosis-as indicated by the decreased Firmicutes-to-Bacteroidetes ratios and endotoxin-bearing Proteobacteria levels-but also maintains intestinal barrier integrity and reduces metabolic endotoxemia. The anti-obesity and microbiota-modulating effects are transmissible via horizontal faeces transfer from WEGL-treated mice to HFD-fed mice. We further show that high molecular weight polysaccharides (>300 kDa) isolated from the WEGL extract produce similar anti-obesity and microbiota-modulating effects. Our results indicate that G. lucidum and its high molecular weight polysaccharides may be used as prebiotic agents to prevent gut dysbiosis and obesity-related metabolic disorders in obese individuals.

  17. Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw.

    PubMed

    Zhang, Jie; Guo, Rong-Bo; Qiu, Yan-Ling; Qiao, Jiang-Tao; Yuan, Xian-Zheng; Shi, Xiao-Shuang; Wang, Chuan-Shui

    2015-03-01

    The effect of bioaugmentation with an acetate-type fermentation bacterium in the phylum Bacteroidetes on the anaerobic digestion of corn straw was evaluated by batch experiments. Acetobacteroides hydrogenigenes is a promising strain for bioaugmentation with relatively high growth rate, hydrogen yields and acetate tolerance, which ferments a broad spectrum of pentoses, hexoses and polyoses mainly into acetate and hydrogen. During corn straw digestion, bioaugmentation with A. hydrogenigenes led to 19-23% increase of the methane yield, with maximum of 258.1 mL/g-corn straw achieved by 10% inoculation (control, 209.3 mL/g-corn straw). Analysis of lignocellulosic composition indicated that A. hydrogenigenes could increase removal rates of cellulose and hemicelluloses in corn straw residue by 12% and 5%, respectively. Further experiment verified that the addition of A. hydrogenigenes could improve the methane yields of methyl cellulose and xylan (models for cellulose and hemicelluloses, respectively) by 16.8% and 7.0%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Operation optimization of a photo-sequencing batch reactor for wastewater treatment: Study on influencing factors and impact on symbiotic microbial ecology.

    PubMed

    Ye, Jianfeng; Liang, Junyu; Wang, Liang; Markou, Giorgos; Jia, Qilong

    2018-03-01

    Wastewater treatment technology with better energy efficiency and recyclability is in urgent demand. Photo-Sequencing batch reactor (SBR), which introduces microalgae into conventional SBR, is considered to have more potential for resource recycling. In this study, a photo-SBR was evaluated through the manipulation of several key operational parameters, i.e., aeration strength, light supply intensity and time per cycle, and solid retention time (SRT). The algal-bacterial symbiotic system had the potential of removing COD, NH 4 + -N and TN with limited aeration, representing the advantage of energy-saving by low aeration requirement. Maintaining appropriate proportion of microalgae in the symbiotic system is critical for good system performance. Introducing microalgae into conventional SBR has obvious impact on the original microbial ecology. When the concentration of microalgae is too high (>4.60 mg Chl/L), the inhibition on certain phyla of bacteria, e.g., Bacteroidetes and Actinobacteria, would become prominent and not conducive to the stable operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Microbial ecology overview during anaerobic codigestion of dairy wastewater and cattle manure and use in agriculture of obtained bio-fertilisers.

    PubMed

    Toumi, Jihen; Miladi, Baligh; Farhat, Amel; Nouira, Said; Hamdi, Moktar; Gtari, Maher; Bouallagui, Hassib

    2015-12-01

    The anaerobic co-digestion of dairy wastewater (DW) and cattle manure (CM) was examined and associated with microbial community's structures using Denaturing Gradient Gel Electrophoresis (DGGE). The highest volatile solids (VS) reduction yield of 88.6% and biogas production of 0.87 L/g VS removed were obtained for the C/N ratio of 24.7 at hydraulic retention time (HRT) of 20 days. The bacterial DGGE profile showed significant abundance of Uncultured Bacteroidetes, Firmicutes and Synergistetes bacterium. The Syntrophomonas strains were discovered in dependent association to H2-using bacteria such as Methanospirillum sp., Methanosphaera sp. and Methanobacterium formicicum. These syntrophic associations are essential in anaerobic digesters allow them to keep low hydrogen partial pressure. However, high concentrations of VFA produced from dairy wastes acidification allow the growth of Methanosarcina species. The application of the stabilised anaerobic effluent on the agriculture soil showed significant beneficial effects on the forage corn and tomato plants growth and crops. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Metagenomic analysis of antibiotic resistance genes in coastal industrial mariculture systems.

    PubMed

    Wang, Jian-Hua; Lu, Jian; Zhang, Yu-Xuan; Wu, Jun; Luo, Yongming; Liu, Hao

    2018-04-01

    The overuse of antibiotics has posed a propagation of antibiotic resistance genes (ARGs) in aquaculture systems. This study firstly explored the ARGs profiles of the typical mariculture farms including conventional and recirculating systems using metagenomics approach. Fifty ARGs subtypes belonging to 21 ARGs types were identified, showing the wide-spectrum profiles of ARGs in the coastal industrial mariculture systems. ARGs with multiple antibiotics resistance have emerged in the mariculure systems. The co-occurrence pattern between ARGs and microbial taxa showed that Proteobacteria and Bacteroidetes were potential dominant hosts of ARGs in the industrial mariculture systems. Typical nitrifying bacteria such as Nitrospinae in mariculture systems also carried with some resistance genes. Relative abundance of ARGs in fish ponds and wastewater treatment units was relatively high. The investigation showed that industrial mariculture systems were important ARGs reservoirs in coastal area, indicating the critical role of recirculating systems in the terms of ARGs pollution control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Diversity of Both the Cultivable Protease-Producing Bacteria and Bacterial Extracellular Proteases in the Coastal Sediments of King George Island, Antarctica

    PubMed Central

    Zhou, Ming-Yang; Wang, Guang-Long; Li, Dan; Zhao, Dian-Li; Qin, Qi-Long; Chen, Xiu-Lan; Chen, Bo; Zhou, Bai-Cheng; Zhang, Xi-Ying; Zhang, Yu-Zhong

    2013-01-01

    Protease-producing bacteria play a vital role in degrading sedimentary organic nitrogen. However, the diversity of these bacteria and their extracellular proteases in most regions remain unknown. In this paper, the diversity of the cultivable protease-producing bacteria and of bacterial extracellular proteases in the sediments of Maxwell Bay, King George Island, Antarctica was investigated. The cultivable protease-producing bacteria reached 105 cells/g in all 8 sediment samples. The cultivated protease-producing bacteria were mainly affiliated with the phyla Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria, and the predominant genera were Bacillus (22.9%), Flavobacterium (21.0%) and Lacinutrix (16.2%). Among these strains, Pseudoalteromonas and Flavobacteria showed relatively high protease production. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria were serine proteases or metalloproteases. These results begin to address the diversity of protease-producing bacteria and bacterial extracellular proteases in the sediments of the Antarctic Sea. PMID:24223990

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tashkandy, Nisreen; Sabban, Sari; Fakieh, Mohammad

    Flavobacterium suncheonense is a member of the family Flavobacteriaceae in the phylum Bacteroidetes. Strain GH29-5 T (DSM 17707 T ) was isolated from greenhouse soil in Suncheon, South Korea. F. suncheonense GH29-5 T is part of the Genomic Encyclopedia of Bacteria and Archaea project. The 2,880,663 bp long draft genome consists of 54 scaffolds with 2739 protein-coding genes and 82 RNA genes. The genome of strain GH29-5 T has 117 genes encoding peptidases but a small number of genes encoding carbohydrate active enzymes (51 CAZymes). Metallo and serine peptidases were found most frequently. Among CAZymes, eight glycoside hydrolase families, ninemore » glycosyl transferase families, two carbohydrate binding module families and four carbohydrate esterase families were identified. Suprisingly, polysaccharides utilization loci (PULs) were not found in strain GH29-5 T . Based on the coherent physiological and genomic characteristics we suggest that F. suncheonense GH29-5 T feeds rather on proteins than saccharides and lipids.« less

  3. Co-occurrence Networks Among Bacteria and Microbial Eukaryotes of Lake Baikal During a Spring Phytoplankton Bloom.

    PubMed

    Mikhailov, Ivan S; Zakharova, Yulia R; Bukin, Yuri S; Galachyants, Yuri P; Petrova, Darya P; Sakirko, Maria V; Likhoshway, Yelena V

    2018-06-07

    The pelagic zone of Lake Baikal is an ecological niche where phytoplankton bloom causes increasing microbial abundance in spring which plays a key role in carbon turnover in the freshwater lake. Co-occurrence patterns revealed among different microbes can be applied to predict interactions between the microbes and environmental conditions in the ecosystem. We used 454 pyrosequencing of 16S rRNA and 18S rRNA genes to study bacterial and microbial eukaryotic communities and their co-occurrence patterns at the pelagic zone of Lake Baikal during a spring phytoplankton bloom. We found that microbes within one domain mostly correlated positively with each other and are highly interconnected. The highly connected taxa in co-occurrence networks were operational taxonomic units (OTUs) of Actinobacteria, Bacteroidetes, Alphaproteobacteria, and autotrophic and unclassified Eukaryota which might be analogous to microbial keystone taxa. Constrained correspondence analysis revealed the relationships of bacterial and microbial eukaryotic communities with geographical location.

  4. Physicochemical Drivers of Microbial Community Structure in Sediments of Lake Hazen, Nunavut, Canada.

    PubMed

    Ruuskanen, Matti O; St Pierre, Kyra A; St Louis, Vincent L; Aris-Brosou, Stéphane; Poulain, Alexandre J

    2018-01-01

    The Arctic is undergoing rapid environmental change, potentially affecting the physicochemical constraints of microbial communities that play a large role in both carbon and nutrient cycling in lacustrine environments. However, the microbial communities in such Arctic environments have seldom been studied, and the drivers of their composition are poorly characterized. To address these gaps, we surveyed the biologically active surface sediments in Lake Hazen, the largest lake by volume north of the Arctic Circle, and a small lake and shoreline pond in its watershed. High-throughput amplicon sequencing of the 16S rRNA gene uncovered a community dominated by Proteobacteria, Bacteroidetes, and Chloroflexi, similar to those found in other cold and oligotrophic lake sediments. We also show that the microbial community structure in this Arctic polar desert is shaped by pH and redox gradients. This study lays the groundwork for predicting how sediment microbial communities in the Arctic could respond as climate change proceeds to alter their physicochemical constraints.

  5. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea

    PubMed Central

    Bik, Elisabeth M.; Costello, Elizabeth K.; Switzer, Alexandra D.; Callahan, Benjamin J.; Holmes, Susan P.; Wells, Randall S.; Carlin, Kevin P.; Jensen, Eric D.; Venn-Watson, Stephanie; Relman, David A.

    2016-01-01

    Marine mammals play crucial ecological roles in the oceans, but little is known about their microbiotas. Here we study the bacterial communities in 337 samples from 5 body sites in 48 healthy dolphins and 18 healthy sea lions, as well as those of adjacent seawater and other hosts. The bacterial taxonomic compositions are distinct from those of other mammals, dietary fish and seawater, are highly diverse and vary according to body site and host species. Dolphins harbour 30 bacterial phyla, with 25 of them in the mouth, several abundant but poorly characterized Tenericutes species in gastric fluid and a surprisingly paucity of Bacteroidetes in distal gut. About 70% of near-full length bacterial 16S ribosomal RNA sequences from dolphins are unique. Host habitat, diet and phylogeny all contribute to variation in marine mammal distal gut microbiota composition. Our findings help elucidate the factors structuring marine mammal microbiotas and may enhance monitoring of marine mammal health. PMID:26839246

  6. Bacterial Diversity in Ships' Ballast Water, Ballast-Water Exchange, and Implications for Ship-Mediated Dispersal of Microorganisms.

    PubMed

    Lymperopoulou, Despoina S; Dobbs, Fred C

    2017-02-21

    Using next-generation DNA sequencing of the 16S rRNA gene, we analyzed the composition and diversity of bacterial assemblages in ballast water from tanks of 17 commercial ships arriving to Hampton Roads, Virginia (USA) following voyages in the North Atlantic Ocean. Amplicon sequencing analysis showed the heterogeneous assemblages were (1) dominated by Alpha- and Gammaproteobacteria, Bacteroidetes, and unclassified Bacteria; (2) temporally distinct (June vs August/September); and (3) highly fidelitous among replicate samples. Whether tanks were exchanged at sea or not, their bacterial assemblages differed from those of local, coastal water. Compositional data suggested at-sea exchange did not fully flush coastal Bacteria from all tanks; there were several instances of a genetic geographic signal. Quantitative PCR yielded no Escherichia coli and few instances of Vibrio species. Salinity, but not ballast-water age or temperature, contributed significantly to bacterial diversity. Whether anthropogenic mixing of marine Bacteria restructures their biogeography remains to be tested.

  7. Gut microbiome composition is associated with cardiac disease in zoo-housed western lowland gorillas (Gorilla gorilla gorilla).

    PubMed

    Krynak, Katherine L; Burke, David J; Martin, Ryan A; Dennis, Patricia M

    2017-08-15

    Cardiac disease is a leading cause of mortality in zoo-housed western lowland gorillas (Gorilla gorilla gorilla). The gut microbiome is associated with cardiac disease in humans and similarly the gut microbiome may be associated with cardiac diseases in close relatives of humans, such as gorillas. We assessed the relationship between cardiac disease and gut bacterial composition in eight zoo-housed male western lowland gorillas (N = 4 with and N = 4 without cardiac disease) utilizing 16S rRNA gene analysis on the Illumina MiSeq sequencing platform. We found bacterial composition differences between gorillas with and without cardiac disease. Bacterial operational taxonomic units from phyla Bacteroidetes, Spirochaetes, Proteobacteria and Firmicutes were significant indicators of cardiac disease. Our results suggest that further investigations between diet and cardiac disease could improve the management and health of zoo-housed populations of this endangered species. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Bacterial Communities in the Groundwater of Xikuangshan Antimony Mine, China

    NASA Astrophysics Data System (ADS)

    Wu, M.; Wang, H.; Wang, N.; Wang, M.

    2017-12-01

    Xikuangshan (XKS) is the biggest antimony (Sb) mine around the word, which causes serious environmental contamination due to the mining actives. To fully understand the bacterial compositions in the groundwater around the mining area in XKS and their correlation with environmental factors, groundwater samples were collected and subject to 16S rDNA high throughput sequencing. Results indicated that Proteobacteria (especially Gamma-Proteobacteria) dominated bacterial communities in high-Sb groundwater samples, whereas Bacteroidetes predominated in low-Sb groundwater. Furthermore, antimony concentration was found to be the most significant factor shaping bacterial communities (P=0.002) with an explanation of 9.16% of the variation. Other factors such as pH, contents of Mg, Ca and orthophosphate were also observed to significantly correlate with bacterial communities. This was the first report to show the important impact of Sb concentration on bacterial community structure in the groundwater in the mining area. Our results will enhance the understanding of subsurface biogeochemical processes mediated by microbes.

  9. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass.

    PubMed

    Zhao, Xiaoling; Liu, Jinhuan; Liu, Jingjing; Yang, Fuyu; Zhu, Wanbin; Yuan, Xufeng; Hu, Yuegao; Cui, Zongjun; Wang, Xiaofen

    2017-10-01

    Silage processing has a crucial positive impact on the methane yield of anaerobic treated substrates. Changes in the characteristics of switchgrass after ensiling with different additives and their effects on methane production and microbial community changes during anaerobic digestion were investigated. After ensiling (CK), methane yield was increased by 33.59% relative to that of fresh switchgrass (FS). In comparison with the CK treatment, methane production was improved by 17.41%, 13.08% and 8.72% in response to ensiling with LBr+X, LBr and X, respectively. A modified Gompertz model predicted that the optimum treatment was LBr+X, with a potential cumulative methane yield of 178.31mL/g total solids (TS) and a maximum biogas production rate of 44.39mL/g TS·d. Firmicutes and Bacteroidetes were the predominant bacteria in FS and silage switchgrass; however, the switchgrass treated with LBr+X was rich in Synergistetes, which was crucial for methane production. Copyright © 2017. Published by Elsevier Ltd.

  10. [Microbial diversity of salt lakes in Badain Jaran desert].

    PubMed

    Li, Lu; Hao, Chunbo; Wang, Lihua; Pei, Lixin

    2015-04-04

    We characterized procaryotic biodiversity, community structure and the relationship between the community structure and environmental factors of salt lakes in Badain Jaran desert, Inner Mongolia, China. We constructed 16S rRNA gene clone libraries by molecular biology techniques to analyze the procaryotic phylogenetic relationships, and used R language to compare the community structure of haloalkalophiles in the salt lakes. Water in this region has a high salinity ranging from 165 to 397 g/L. The water is strongly alkaline with pH value above 10. The microbial diversity and community structure of the salt lakes are obviously different. The diversity of bacteria is more abundant than that of archaea. The main categories of bacteria in the samples are Gammaproteobacteria, Bacteroidetes, Alphaproteobacteria, Firmicute and Verrucomicrobia, whereas all archaea only belong to Halobacteriaceae of Euryarchaeota. Salinity is the most important environmental factor influencing the bacterial community structure, whereas the archaea community structure was influenced comprehensively by multiple environmental factors.

  11. A balanced microbiota efficiently produces methane in a novel high-rate horizontal anaerobic reactor for the treatment of swine wastewater.

    PubMed

    Duda, Rose Maria; da Silva Vantini, Juliana; Martins, Larissa Scattolin; de Mello Varani, Alessandro; Lemos, Manoel Victor Franco; Ferro, Maria Inês Tiraboschi; de Oliveira, Roberto Alves

    2015-12-01

    A novel combination of structurally simple, high-rate horizontal anaerobic reactors installed in series was used to treat swine wastewater. The reactors maintained stable pH, alkalinity, and volatile acid levels. Removed chemical oxygen demand (COD) represented 68% of the total, and the average specific methane production was 0.30L CH4 (g removed CODtot)(-1). In addition, next-generation sequencing and quantitative real-time PCR analyses were used to explore the methane-producing Archaea and microbial diversity. At least 94% of the sludge diversity belong to the Bacteria and Archaea, indicating a good balance of microorganisms. Among the Bacteria the Proteobacteria, Bacteroidetes and Firmicutes were the most prevalent phyla. Interestingly, up to 12% of the sludge diversity belongs to methane-producing orders, such as Methanosarcinales, Methanobacteriales and Methanomicrobiales. In summary, this system can efficiently produce methane and this is the first time that horizontal anaerobic reactors have been evaluated for the treatment of swine wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effects of solids retention time on methanogenesis in anaerobic digestion of thickened mixed sludge.

    PubMed

    Lee, Il-Su; Parameswaran, Prathap; Rittmann, Bruce E

    2011-11-01

    When a bench-scale digester fed thickened mixed sludge was operated over an SRT range of 4-20 days, removal efficiencies for total chemical oxygen demand and volatile suspended solids declined with decreasing SRT (especially <10 days), but methanogenesis was stable for SRT as low as 5 days. Quantitative PCR analyses showed that methanogens declined steadily for SRT<10 days, with the acetate-cleaving Methanosaetaceae becoming more dominant. Clone-library analyses indicated significant shifts in bacterial population from 20 to 4 day SRT: declining Chloroflexi (28 to 4.5%) and Syntrophomonas (9 to 0%), but increasing Bacteroidetes (12.5 to 20%) and two acetogenic genera belonging to the phyla Firmicutes and Spirochaetales (6.3 to 12%). Thus, the decrease in the apparent hydrolysis constant (khyd-app) with higher SRT and the process limiting size of Methanosaetaceae with the lower SRT are proactive signs for defining rate limitation in anaerobic digestion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Bacterial abundance and diversity in pond water supplied with different feeds

    NASA Astrophysics Data System (ADS)

    Qin, Ya; Hou, Jie; Deng, Ming; Liu, Quansheng; Wu, Chongwei; Ji, Yingjie; He, Xugang

    2016-10-01

    The abundance and diversity of bacteria in two types of ponds were investigated by quantitative PCR and Illumina MiSeq sequencing. The results revealed that the abundance of bacterial 16S rRNA genes in D ponds (with grass carp fed sudan grass) was significantly lower than that in E ponds (with grass carp fed commercial feed). The microbial communities were dominated by Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria in both E and D ponds, while the abundance of some genera was significantly different between the two types of ponds. Specifically, some potential pathogens such as Acinetobacter and Aeromonas were found to be significantly decreased, while some probiotics such as Comamonadaceae unclassified and Bacillales unclassified were significantly increased in D ponds. In addition, water quality of D ponds was better than that of E ponds. Temperature, dissolved oxygen and nutrients had significant influence on bacterial communities. The differences in bacterial community compositions between the two types of ponds could be partially explained by the different water conditions.

  14. Diverse C-Terminal Sequences Involved in Flavobacterium johnsoniae Protein Secretion

    PubMed Central

    Kulkarni, Surashree S.; Zhu, Yongtao; Brendel, Colton J.

    2017-01-01

    ABSTRACT Flavobacterium johnsoniae and many related bacteria secrete proteins across the outer membrane using the type IX secretion system (T9SS). Proteins secreted by T9SSs have amino-terminal signal peptides for export across the cytoplasmic membrane by the Sec system and carboxy-terminal domains (CTDs) targeting them for secretion across the outer membrane by the T9SS. Most but not all T9SS CTDs belong to the family TIGR04183 (type A CTDs). We functionally characterized diverse CTDs for secretion by the F. johnsoniae T9SS. Attachment of the CTDs from F. johnsoniae RemA, AmyB, and ChiA to the foreign superfolder green fluorescent protein (sfGFP) that had a signal peptide at the amino terminus resulted in secretion across the outer membrane. In each case, approximately 80 to 100 amino acids from the extreme carboxy termini were needed for efficient secretion. Several type A CTDs from distantly related members of the phylum Bacteroidetes functioned in F. johnsoniae, supporting the secretion of sfGFP by the F. johnsoniae T9SS. F. johnsoniae SprB requires the T9SS for secretion but lacks a type A CTD. It has a conserved C-terminal domain belonging to the family TIGR04131, which we refer to as a type B CTD. The CTD of SprB was required for its secretion, but attachment of C-terminal regions of SprB of up to 1,182 amino acids to sfGFP failed to result in secretion. Additional features outside the C-terminal region of SprB may be required for its secretion. IMPORTANCE Type IX protein secretion systems (T9SSs) are common in but limited to members of the phylum Bacteroidetes. Most proteins that are secreted by T9SSs have conserved carboxy-terminal domains that belong to the protein domain family TIGR04183 (type A CTDs) or TIGR04131 (type B CTDs). Here, we identify features of T9SS CTDs of F. johnsoniae that are required for protein secretion and demonstrate that type A CTDs from distantly related members of the phylum function with the F. johnsoniae T9SS to secrete the

  15. Comparison of a modified phenol/chloroform and commercial-kit methods for extracting DNA from horse fecal material.

    PubMed

    Janabi, Ali H D; Kerkhof, Lee J; McGuinness, Lora R; Biddle, Amy S; McKeever, Kenneth H

    2016-10-01

    There are many choices for methods of extracting bacterial DNA for Next Generation Sequencing (NGS) from fecal samples. Here, we compare our modifications of a phenol/chloroform extraction method plus an inhibitor removal solution (C3) (ph/Chl+C3) to the PowerFecal® DNA Isolation Kit (MoBio-K). DNA quality and quantity coupled to NGS results were used to assess differences in relative abundance, Shannon diversity index, unique species, and principle coordinate analysis (PCoA) between biological replicates. Six replicate samples, taken from a single ball of horse feces manually collected from the rectum, were subjected to each extraction method. The Ph/Chl+C3 method produced 100× higher DNA yields with less shearing than the MoBio-K method. To assess the methods, the two method samples were sent for sequencing of the bacterial V3-V4 region of 16S rRNA gene using the Illumina MiSeq platform. The relative abundance of Bacteroidetes was greater and there were more unique species assigned to this group in MoBio-K than in Ph/Chl+C3 (P<0.05). In contrast, Firmicutes had greater relative abundance and more unique species in Ph/Chl+C3 extracts than in MoBio-K (P<0.05). The other major bacterial phyla were equally abundant in samples using both extraction methods. Alpha diversity and Shannon Weaver indices showed greater evenness of bacterial distribution in Ph/Chl+C3 compared with MoBio-K (P<0.05), but there was no difference in the OTU richness. Principle coordinate analysis (PCoA) indicated a distinct separation between the two methods (P<0.05) and tighter clustering (less variability) in Ph/Chl+C3 than in MoBio-K. These results suggest that the Ph/Chl+C3 may be preferred for research to identify specific Firmicutes taxa such as Clostridium, and Bacillus. However; MoBio-K may be a better choice for projects focusing on Bacteroidetes abundance. The Ph/Chl+C3 method required less time, but has some safety concerns associated with exposure and disposal of phenol and

  16. Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity: gut microbiota during development of obesity in cloned pigs.

    PubMed

    Pedersen, Rebecca; Andersen, Anders Daniel; Mølbak, Lars; Stagsted, Jan; Boye, Mette

    2013-02-07

    Obesity induced by a high-caloric diet has previously been associated with changes in the gut microbiota in mice and in humans. In this study, pigs were cloned to minimize genetic and biological variation among the animals with the aim of developing a controlled metabolomic model suitable for a diet-intervention study. Cloning of pigs may be an attractive way to reduce genetic influences when investigating the effect of diet and obesity on different physiological sites. The aim of this study was to assess and compare the changes in the composition of the gut microbiota of cloned vs. non-cloned pigs during development of obesity by a high-fat/high-caloric diet. Furthermore, we investigated the association between diet-induced obesity and the relative abundance of the phyla Firmicutes and Bacteroidetes in the fecal-microbiota. The fecal microbiota from obese cloned (n = 5) and non-cloned control pigs (n= 6) was investigated biweekly over a period of 136 days, by terminal restriction fragment length polymorphism (T-RFLP) and quantitative real time PCR (qPCR). A positive correlation was observed between body-weight at endpoint and percent body-fat in cloned (r=0.9, P<0.0001) and in non-cloned control pigs (r=0.9, P<0.0001). Shannon Weaver and principal component analysis (PCA) of the terminal restriction fragments (T-RFs) revealed no differences in the bacterial composition or variability of the fecal microbiota between the cloned pigs or between cloned and non-cloned control pigs. Body-weight correlated positively with the relative abundance of Firmicutes in both cloned (r=0.37; P<0.02) and non cloned-control pigs (r=0.45; P<0.006), and negatively with the abundance of Bacteroidetes in cloned pigs (r=-0.33, P<0.04), but not in the non-cloned control pigs. The cloned pigs did not have reduced inter-individual variation as compared to non-cloned pigs in regard to their gut microbiota in neither the obese nor the lean state. Diet-induced obesity was associated with an

  17. Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments

    NASA Astrophysics Data System (ADS)

    Ciobanu, M.-C.; Rabineau, M.; Droz, L.; Révillon, S.; Ghiglione, J.-F.; Dennielou, B.; Jorry, S.-J.; Kallmeyer, J.; Etoubleau, J.; Pignet, P.; Crassous, P.; Vandenabeele-Trambouze, O.; Laugier, J.; Guégan, M.; Godfroy, A.; Alain, K.

    2012-09-01

    An interdisciplinary study was conducted to evaluate the relationship between geological and paleoenvironmental parameters and the bacterial and archaeal community structure of two contrasting subseafloor sites in the Western Mediterranean Sea (Ligurian Sea and Gulf of Lion). Both depositional environments in this area are well-documented from paleoclimatic and paleooceanographic point of views. Available data sets allowed us to calibrate the investigated cores with reference and dated cores previously collected in the same area, and notably correlated to Quaternary climate variations. DNA-based fingerprints showed that the archaeal diversity was composed by one group, Miscellaneous Crenarchaeotic Group (MCG), within the Gulf of Lion sediments and of nine different lineages (dominated by MCG, South African Gold Mine Euryarchaeotal Group (SAGMEG) and Halobacteria) within the Ligurian Sea sediments. Bacterial molecular diversity at both sites revealed mostly the presence of the classes Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria within Proteobacteria phylum, and also members of Bacteroidetes phylum. The second most abundant lineages were Actinobacteria and Firmicutes at the Gulf of Lion site and Chloroflexi at the Ligurian Sea site. Various substrates and cultivation conditions allowed us to isolate 75 strains belonging to four lineages: Alpha-, Gammaproteobacteria, Firmicutes and Actinobacteria. In molecular surveys, the Betaproteobacteria group was consistently detected in the Ligurian Sea sediments, characterized by a heterolithic facies with numerous turbidites from a deep-sea levee. Analysis of relative betaproteobacterial abundances and turbidite frequency suggested that the microbial diversity was a result of main climatic changes occurring during the last 20 ka. Statistical direct multivariate canonical correspondence analyses (CCA) showed that the availability of electron acceptors and the quality of electron donors (indicated by age

  18. Risks Involved in the Use of Enrofloxacin for Salmonella Enteritidis or Salmonella Heidelberg in Commercial Poultry

    PubMed Central

    Morales-Barrera, Eduardo; Calhoun, Nicole; Lobato-Tapia, Jose L.; Lucca, Vivian; Prado-Rebolledo, Omar; Hernandez-Velasco, Xochitl; Merino-Guzman, Ruben; Petrone-García, Victor M.; Latorre, Juan D.; Mahaffey, Brittany D.; Teague, Kyle D.; Graham, Lucas E.; Wolfenden, Amanda D.; Baxter, Mikayla F. A.; Hargis, Billy M.; Tellez, Guillermo

    2016-01-01

    The objectives of the present study were to evaluate the risks involved in the use of Enrofloxacin for Salmonella Enteritidis (SE) or Salmonella Heidelberg (SH) in commercial poultry and determine the effects of a probiotic as an antibiotic alternative. Two experiments were conducted to evaluate the risks involved in the use of Enrofloxacin for SE or SH in commercial poultry. Experiment 1 consisted of two trials. In each trial, chickens were assigned to one of three groups; control + SE challenged; Enrofloxacin 25 mg/kg + SE; and Enrofloxacin 50 mg/kg + SE. Chickens received Enrofloxacin in the drinking water from days 1 to 5 of age. On day 6, all groups received fresh water without any treatment. All chickens were orally gavaged with 107 cfu/chick of SE at 7 days of age and euthanized on 8 days of age. In Experiment 2, turkey poults were assigned to one of the three groups; control + SH; probiotic + SH; and Enrofloxacin 50 mg/kg + SH. Poults received probiotic or Enrofloxacin in the drinking water from days 1 to 5 of age. On day 6, poults received fresh water without any treatment. Poults were orally gavaged with 107 cfu/poult of SH at 7 days of age. Poults were weighed and humanely killed 24 h post-SH challenge to evaluate serum concentration of fluorescein isothiocyanate-dextran to evaluate intestinal permeability, metagenomics, and SH infection. In both trials of Experiment 1, chickens treated with Enrofloxacin were more susceptible to SE organ invasion and intestinal colonization when compared with control non-treated chickens (P < 0.05). In Experiment 2, poults treated with 50 mg/kg of Enrofloxacin showed an increase in body weight, however, this group also showed an increase in SH susceptibility, intestinal permeability, and lower proportion of Firmicutes and Bacteroidetes, but with control group had the highest proportion of Proteobacteria. By contrast, poults that received the probiotic had the highest

  19. Presumptive Sources of Fecal Contamination in Four Tributaries to the New River Gorge National River, West Virginia, 2004

    USGS Publications Warehouse

    Mathes, Melvin V.; O'Brien, Tara L.; Strickler, Kriston M.; Hardy, Joshua J.; Schill, William B.; Lukasik, Jerzy; Scott, Troy M.; Bailey, David E.; Fenger, Terry L.

    2007-01-01

    Several methods were used to determine the sources of fecal contamination in water samples collected during September and October 2004 from four tributaries to the New River Gorge National River -- Arbuckle Creek, Dunloup Creek, Keeney Creek, and Wolf Creek. All four tributaries historically have had elevated levels of fecal coliform bacteria. The source-tracking methods used yielded various results, possibly because one or more methods failed. Sourcing methods used in this study included the detection of several human-specific and animal-specific biological or molecular markers, and library-dependent pulsed-field gel electrophoresis analysis that attempted to associate Escherichia coli bacteria obtained from water samples with animal sources by matching DNA-fragment banding patterns. Evaluation of the results of quality-control analysis indicated that pulsed-field gel electrophoresis analysis was unable to identify known-source bacteria isolates. Increasing the size of the known-source library did not improve the results for quality-control samples. A number of emerging methods, using markers in Enterococcus, human urine, Bacteroidetes, and host mitochondrial DNA, demonstrated some potential in associating fecal contamination with human or animal sources in a limited analysis of quality-control samples. All four of the human-specific markers were detected in water samples from Keeney Creek, a watershed with no centralized municipal wastewater-treatment facilities, thus indicating human sources of fecal contamination. The human-specific Bacteroidetes and host mitochondrial DNA markers were detected in water samples from Dunloup Creek, Wolf Creek, and to a lesser degree Arbuckle Creek. Results of analysis for wastewater compounds indicate that the September 27 sample from Arbuckle Creek contained numerous human tracer compounds likely from sewage. Dog, horse, chicken, and pig host mitochondrial DNA were detected in some of the water samples with the exception of the

  20. The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia

    PubMed Central

    Fujio-Vejar, Sayaka; Vasquez, Yessenia; Morales, Pamela; Magne, Fabien; Vera-Wolf, Patricia; Ugalde, Juan A.; Navarrete, Paola; Gotteland, Martin

    2017-01-01

    The gut microbiota is currently recognized as an important factor regulating the homeostasis of the gastrointestinal tract and influencing the energetic metabolism of the host as well as its immune and central nervous systems. Determining the gut microbiota composition of healthy subjects is therefore necessary to establish a baseline allowing the detection of microbiota alterations in pathologic conditions. Accordingly, the aim of this study was to characterize the gut microbiota of healthy Chilean subjects using 16S rRNA gene sequencing. Fecal samples were collected from 41 young, asymptomatic, normal weight volunteers (age: 25 ± 4 years; ♀:48.8%; BMI: 22.5 ± 1.6 kg/m2) with low levels of plasma (IL6 and hsCRP) and colonic (fecal calprotectin) inflammatory markers. The V3-V4 region of the 16S rRNA gene of bacterial DNA was amplified and sequenced using MiSeq Illumina system. 109,180 ± 13,148 sequences/sample were obtained, with an α-diversity of 3.86 ± 0.37. The dominant phyla were Firmicutes (43.6 ± 9.2%) and Bacteroidetes (41.6 ± 13.1%), followed by Verrucomicrobia (8.5 ± 10.4%), Proteobacteria (2.8 ± 4.8%), Actinobacteria (1.8 ± 3.9%) and Euryarchaeota (1.4 ± 2.7%). The core microbiota representing the genera present in all the subjects included Bacteroides, Prevotella, Parabacteroides (phylum Bacteroidetes), Phascolarctobacterium, Faecalibacterium, Ruminococcus, Lachnospira, Oscillospira, Blautia, Dorea, Roseburia, Coprococcus, Clostridium, Streptococcus (phylum Firmicutes), Akkermansia (phylum Verrucomicrobia), and Collinsella (phylum Actinobacteria). Butyrate-producing genera including Faecalibacterium, Roseburia, Coprococcus, and Oscillospira were detected. The family Methanobacteriaceae was reported in 83% of the subjects and Desulfovibrio, the most representative sulfate-reducing genus, in 76%. The microbiota of the Chilean individuals significantly differed from those of Papua New Guinea and the Matses ethnic group and was closer to that of