Sample records for baculovirus structural proteins

  1. Structural Organization of Baculovirus Occlusion Bodies and Protective Role of Multilayered Polyhedron Envelope Protein.

    PubMed

    Sajjan, Dayanand B; Hinchigeri, Shivayogeppa B

    2016-03-01

    Baculoviruses are the ingenious insect pathogens. Outside the host, baculovirus occlusion bodies (OB) provide stability to occlusion-derived viruses (ODV) embedded within. The OB is an organized structure, chiefly composed of proteins namely polyhedrin, polyhedron envelope protein (PEP) and P10. Currently, the structural organization of OB is poorly understood and the role of OB proteins in conferring the stability to ODV is unknown. Here we have shown that the assembly of polyhedrin unit cells into an OB is a rapid process; the PEP forms in multiple layers; the PEP layers predominantly contribute to ODV viability. Full-grown OBs (n = 36) were found to be 4.0 ± 1.0 µm in diameter and possessed a peculiar geometry of a truncated rhombic dodecahedron. The atomic force microscopy (AFM) study on the structure of OBs at different stages of growth in insect cells revealed polyhedrin assembly and thickness of PEP layers. The thickness of PEP layers at 53 h post-transfection (hpt) ranged from 56 to 80 nm. Mature PEP layers filled up approximately one third of the OB volume. The size of ODV nucleocapsid was found to be 433 ± 10 nm in length. The zeta potential and particle size distribution study of viruses revealed the protective role of PEP layers. The presence of a multilayered PEP confers a viable advantage to the baculoviruses compared to single-layered PEP. Thus, these findings may help in developing PEP layer-based biopolymers for protein-based nanodevices, nanoelectrodes and more stable biopesticides.

  2. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    PubMed Central

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  3. Expression, delivery and function of insecticidal proteins expressed by recombinant baculoviruses.

    PubMed

    Kroemer, Jeremy A; Bonning, Bryony C; Harrison, Robert L

    2015-01-21

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification.

  4. Insect cells-baculovirus system for the production of difficult to express proteins.

    PubMed

    Osz-Papai, Judit; Radu, Laura; Abdulrahman, Wassim; Kolb-Cheynel, Isabelle; Troffer-Charlier, Nathalie; Birck, Catherine; Poterszman, Arnaud

    2015-01-01

    The production of sufficient quantities of homogenous protein not only is an essential prelude for structural investigations but also represents a rate-limiting step for many human functional studies. Although technologies for expression of recombinant proteins and complexes have been improved tremendously, in many cases, protein production remains a challenge and can be associated with considerable investment. This chapter describes simple and efficient protocols for expression screening and optimization of protein production in insect cells using the baculovirus expression system. We describe the procedure, starting from the cloning of a gene of interest into an expression transfer baculovirus vector, followed by generation of the recombinant virus by homologous recombination, evaluation of protein expression, and scale-up. Handling of insect cell cultures and preparation of bacmid for co-transfection are also detailed.

  5. Structural divergence among genomes of closely related baculoviruses and its implications for baculovirus evolution

    USDA-ARS?s Scientific Manuscript database

    Baculoviruses are members of a large, well-characterized family of dsDNA viruses that have been identified from insects of the orders Lepidoptera, Hymenoptera, and Diptera. Baculovirus genomes from different virus species generally exhibit a considerable degree of structural diversity. However, so...

  6. Characterization of viral proteins of Oryctes baculovirus and comparison between two geographical isolates.

    PubMed

    Mohan, K S; Gopinathan, K P

    1989-01-01

    Bacilliform Oryctes baculovirus particles have been visualized in electron micrographs of midgut sections from virus infected Oryctes rhinoceros beetles. Morphologically the Indian isolate (Oryctes baculovirus, KI) resembled the previously reported Oryctes baculovirus, isolate PV505. The constituent proteins of baculovirus KI have been analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and by Western blots using polyclonal antibodies raised against the complete viral particles, as probes. A total of forty eight viral proteins have been identified. Fourteen viral proteins were located on the viral envelope. Among the proteins constituting the nucleocapsid, three were located internally within the capsid. A 23.5 kDa protein was tightly associated with viral DNA in the nucleocapsid core. Two envelope and seven capsid proteins of KI and PV505 revealed differences in SDS-PAGE profiles and glycosylation patterns. Immunoblotting of KI and PV505 proteins with anti KI antiserum demonstrated antigenic differences between the two viral isolates.

  7. Baculovirus replication induces the expression of heat shock proteins in vivo and in vitro

    USDA-ARS?s Scientific Manuscript database

    A recent handful of studies have linked baculovirus infection with the induction of heat shock proteins, a highly conserved family of cytoprotective proteins. Here, we demonstrate baculovirus-stimulated upregulation of hsp70 transcription in the natural host, Helicoverpa zea. Larvae lethally infec...

  8. Utility of temporally distinct baculovirus promoters for constitutive and baculovirus-inducible transgene expression in transformed insect cells.

    PubMed

    Lin, Chi-Hung; Jarvis, Donald L

    2013-05-10

    Genetically transformed lepidopteran insect cell lines have biotechnological applications as constitutive recombinant protein production platforms and improved hosts for baculovirus-mediated recombinant protein production. Insect cell transformation is often accomplished with a DNA construct(s) encoding a foreign protein(s) under the transcriptional control of a baculovirus immediate early promoter, such as the ie1 promoter. However, the potential utility of increasingly stronger promoters from later baculovirus gene classes, such as delayed early (39K), late (p6.9), and very late (polh), has not been systematically assessed. Hence, we produced DNA constructs encoding secreted alkaline phosphatase (SEAP) under the transcriptional control of each of the four temporally distinct classes of baculovirus promoters, used them to transform insect cells, and compared the levels of SEAP RNA and protein production obtained before and after baculovirus infection. The ie1 construct was the only one that supported SEAP protein production by transformed insect cells prior to baculovirus infection, confirming that only immediate early promoters can be used to isolate transformed insect cells for constitutive recombinant protein production. However, baculovirus infection activated transgene expression by all four classes of baculovirus promoters. After infection, cells transformed with the very late (polh) and late (p6.9) promoter constructs produced the highest levels of SEAP RNA, but only low levels of SEAP protein. Conversely, cells transformed with the immediate early (ie1) and delayed early (39K) promoter constructs produced lower levels of RNA, but equal or higher levels of SEAP protein. Unexpectedly, the 39K promoter construct provided tightly regulated, baculovirus-inducible protein production at higher levels than the later promoter constructs. Thus, this study demonstrated the utility of the 39K promoter for insect cell engineering, particularly when one requires higher

  9. Baculovirus IE2 Stimulates the Expression of Heat Shock Proteins in Insect and Mammalian Cells to Facilitate Its Proper Functioning.

    PubMed

    Tung, Hsuan; Wei, Sung-Chan; Lo, Huei-Ru; Chao, Yu-Chan

    2016-01-01

    Baculoviruses have gained popularity as pest control agents and for protein production in insect systems. These viruses are also becoming popular for gene expression, tissue engineering and gene therapy in mammalian systems. Baculovirus infection triggers a heat shock response, and this response is crucial for its successful infection of host insect cells. However, the viral protein(s) or factor(s) that trigger this response are not yet clear. Previously, we revealed that IE2-an early gene product of the baculovirus-could form unique nuclear bodies for the strong trans-activation of various promoters in mammalian cells. Here, we purified IE2 nuclear bodies from Vero E6 cells and investigated the associated proteins by using mass spectrometry. Heat shock proteins (HSPs) were found to be one of the major IE2-associated proteins. Our experiments show that HSPs are greatly induced by IE2 and are crucial for the trans-activation function of IE2. Interestingly, blocking both heat shock protein expression and the proteasome pathway preserved the IE2 protein and its nuclear body structure, and revived its function. These observations reveal that HSPs do not function directly to assist the formation of the nuclear body structure, but may rather protect IE2 from proteasome degradation. Aside from functional studies in mammalian cells, we also show that HSPs were stimulated and required to determine IE2 protein levels, in insect cells infected with baculovirus. Upon inhibiting the expression of heat shock proteins, baculovirus IE2 was substantially suppressed, resulting in a significantly suppressed viral titer. Thus, we demonstrate a unique feature in that IE2 can function in both insect and non-host mammalian cells to stimulate HSPs, which may be associated with IE2 stabilization and lead to the protection of the its strong gene activation function in mammalian cells. On the other hand, during viral infection in insect cells, IE2 could also strongly stimulate HSPs and

  10. Development of a baculovirus vector carrying a small hairpin RNA for suppression of sf-caspase-1 expression and improvement of recombinant protein production.

    PubMed

    Zhang, Xiaoyue; Xu, Keyan; Ou, Yanmei; Xu, Xiaodong; Chen, Hongying

    2018-05-02

    The Baculovirus expression vector system (BEVS) is a transient expression platform for recombinant protein production in insect cells. Baculovirus infection of insect cells will shutoff host translation and induce apoptosis and lead to the termination of protein expression. Previous reports have demonstrated the enhancement of protein yield in BEVS using stable insect cell lines expressing interference RNA to suppress the expression of caspase-1. In this study, short-hairpin RNA (shRNA) expression cassettes targeting Spodoptera frugiperda caspase-1 (Sf-caspase-1) were constructed and inserted into an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) vector. Using the recombinant baculovirus vectors, we detected the suppression of Sf-caspase-1 expression and cell apoptosis. Green fluorescent protein (GFP), Discosoma sp. Red (DsRed) and firefly luciferase were then expressed as reporter proteins. The results showed that suppression of apoptosis enhanced the accumulation of exogenous proteins at 2 and 3 days post infection. After 4 days post infection, the activity of the reporter proteins remained higher in BEVS using the baculovirus carrying shRNA in comparison with the control without shRNA, but the accumulated protein levels showed no obvious difference between them, suggesting that apoptosis suppression resulted in improved protein folding rather than translation efficiency at the very late stage of baculovirus infection. The baculovirus vector developed in this study would be a useful tool for the production of active proteins suitable for structural and functional studies or pharmaceutical applications in Sf9 cells, and it also has the potential to be adapted for the improvement of protein expression in different insect cell lines that can be infected by AcMNPV.

  11. A baculovirus-mediated strategy for full-length plant virus coat protein expression and purification.

    PubMed

    Ardisson-Araújo, Daniel Mendes Pereira; Rocha, Juliana Ribeiro; da Costa, Márcio Hedil Oliveira; Bocca, Anamélia Lorenzetti; Dusi, André Nepomuceno; de Oliveira Resende, Renato; Ribeiro, Bergmann Morais

    2013-08-15

    Garlic production is severely affected by virus infection, causing a decrease in productivity and quality. There are no virus-free cultivars and garlic-infecting viruses are difficult to purify, which make specific antibody production very laborious. Since high quality antisera against plant viruses are important tools for serological detection, we have developed a method to express and purify full-length plant virus coat proteins using baculovirus expression system and insects as bioreactors. In this work, we have fused the full-length coat protein (cp) gene from the Garlic Mite-borne Filamentous Virus (GarMbFV) to the 3'-end of the Polyhedrin (polh) gene of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The recombinant baculovirus was amplified in insect cell culture and the virus was used to infect Spodoptera frugiperda larvae. Thus, the recombinant fused protein was easily purified from insect cadavers using sucrose gradient centrifugation and analyzed by Western Blotting. Interestingly, amorphous crystals were produced in the cytoplasm of cells infected with the recombinant virus containing the chimeric-protein gene but not in cells infected with the wild type and recombinant virus containing the hexa histidine tagged Polh. Moreover, the chimeric protein was used to immunize rats and generate antibodies against the target protein. The antiserum produced was able to detect plants infected with GarMbFV, which had been initially confirmed by RT-PCR. The expression of a plant virus full-length coat protein fused to the baculovirus Polyhedrin in recombinant baculovirus-infected insects was shown to produce high amounts of the recombinant protein which was easily purified and efficiently used to generate specific antibodies. Therefore, this strategy can potentially be used for the development of plant virus diagnostic kits for those viruses that are difficult to purify, are present in low titers or are present in mix infection in

  12. Purification of proteins from baculovirus-infected insect cells.

    PubMed

    O'Shaughnessy, Luke; Doyle, Sean

    2011-01-01

    Expression of recombinant proteins in the baculovirus/insect cell expression system is employed because it enables post-translational protein modification and high yields of recombinant protein. The system is capable of facilitating the functional expression of many proteins - either secreted or intracellularly located within infected insect cells. Strategies for the isolation and extraction of soluble proteins are presented in this chapter and involve selective cell lysis, precipitation and chromatography. Protein insolubility, following recombinant expression in insect cells, can occur. However, using the methods described herein, it is possible to extract and purify insoluble protein using affinity, ion-exchange and gel filtration chromatography. Indeed, protein insolubility often aids protein purification.

  13. [Expression of goat IL-18 mature protein in insect/baculovirus and determination of bioactivity of the recombinant protein].

    PubMed

    Wang, Ting-Ting; Wang, Xi-Hui; Fan, Zhong-Ling; Chen, Jin-Long; Cao, Bing-Lei; Kong, Na; Hu, Jing-Dong; Zhao, Hong-Kun

    2011-02-01

    To express goat IL-18 in insect/baculovirus and detect the bioactivity of the recombinant protein. The mature goat interleukin-18(gIL-18) gene was cloned into the baculovirus transfer vector pFastBac Dual, and then the resulting eukaryotic expression plasmid pFastBac Dual-gIL18 was transformed into DH10Bac, followed by the identification of Bacmid-gIL18 recombinat plosmid by three antibiotics and blue-white patch. Finally, the recombinant bacmid was transfected into sf9 insect cells by Cellfectin and the transfected cells were harvested at different times. Then the expressed protein was identified by SDS-PAGE, Western blot and bioactivity assay. The recombinant protein recognized and bound to its specific antibody. Bioactivity assay showed that the recombinant protein stimulated the proliferation of lymphocytes and induced IFN-γproduction in spleen lymphocytes. The mature gIL-18 protein has been expressed successfully in insect/baculovirus expression system, and have good immunogenicity and bioactivity. The study paves a way for application of gIL-18 as an immunomodulator or immune adjuvant.

  14. [Demonstration, stabilization and purification of an intracapsid nucleoprotein structure of Baculovirus of Oryctes rhinoceros L].

    PubMed

    Monsarrat, P; Revet, B; Gourevitch, I

    1975-11-10

    The presence of a structurally organized nucleoproteic structure in the capsid of the Baculovirus of Oryctes rhinoceros L. is shown. This structure is stabilized under definite conditions described in detail in the paper. It possesses a rope-like structure of about 280 nm in length on 15 nm in diameter containing the DNA molecule. A basic protein is found in the virus.

  15. HSP70 induction during baculovirus infection

    USDA-ARS?s Scientific Manuscript database

    Baculoviruses are arthropod-specific double-stranded DNA viruses that have been employed as bio-insecticides against crop pests and to produce heterologous proteins in baculovirus expression systems. Although a consensus has emerged on the dominant molecular events driving baculovirus replication i...

  16. Membrane penetrating peptides greatly enhance baculovirus transduction efficiency into mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hong-Zhang; Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC; Wu, Carol P.

    2011-02-11

    Research highlights: {yields} Ligation of CTP with GP64 enhances baculovirus transduction into mammalian cells. {yields} Fusion of PTD with VP39 enhances baculovirus transduction into mammalian cells. {yields} CTP and PTD-carrying viruses improve the transduction of co-transduced baculoviruses. {yields} Virus entry and gene expression can be separate events in different cell types. -- Abstract: The baculovirus group of insect viruses is widely used for foreign gene introduction into mammalian cells for gene expression and protein production; however, the efficiency of baculovirus entry into mammalian cells is in general still low. In this study, two recombinant baculoviruses were engineered and their abilitymore » to improve viral entry was examined: (1) cytoplasmic transduction peptide (CTP) was fused with baculovirus envelope protein, GP64, to produce a cytoplasmic membrane penetrating baculovirus (vE-CTP); and (2) the protein transduction domain (PTD) of HIV TAT protein was fused with the baculovirus capsid protein VP39 to form a nuclear membrane penetrating baculovirus (vE-PTD). Transduction experiments showed that both viruses had better transduction efficiency than vE, a control virus that only expresses EGFP in mammalian cells. Interestingly, vE-CTP and vE-PTD were also able to improve the transduction efficiency of a co-transduced baculovirus, resulting in higher levels of gene expression. Our results have described new routes to further enhance the development of baculovirus as a tool for gene delivery into mammalian cells.« less

  17. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Huanyu; Wei, Na; Wang, Qian

    Highlights: {yields} All three capsid proteins can be expressed in insect cells in baculovirus expression system. {yields} All three recombinant proteins were spontaneously self-assemble into virus-like particles whose size and appearance were similar to those of native purified GPV virions. {yields} The immunogenicity of GPV-VLPs was better than commercial inactivated vaccine and attenuated vaccine. -- Abstract: Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particlesmore » (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.« less

  18. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, C.M.; Rohrmann, G.F.; Merrill, G.F., E-mail: merrillg@onid.orst.ed

    2009-06-05

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involvedmore » in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.« less

  19. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase.

    PubMed

    Long, C M; Rohrmann, G F; Merrill, G F

    2009-06-05

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involved in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.

  20. In Vitro and In Vivo Gene Delivery by Recombinant Baculoviruses

    PubMed Central

    Tani, Hideki; Limn, Chang Kwang; Yap, Chan Choo; Onishi, Masayoshi; Nozaki, Masami; Nishimune, Yoshitake; Okahashi, Nobuo; Kitagawa, Yoshinori; Watanabe, Rie; Mochizuki, Rika; Moriishi, Kohji; Matsuura, Yoshiharu

    2003-01-01

    Although recombinant baculovirus vectors can be an efficient tool for gene transfer into mammalian cells in vitro, gene transduction in vivo has been hampered by the inactivation of baculoviruses by serum complement. Recombinant baculoviruses possessing excess envelope protein gp64 or other viral envelope proteins on the virion surface deliver foreign genes into a variety of mammalian cell lines more efficiently than the unmodified baculovirus. In this study, we examined the efficiency of gene transfer both in vitro and in vivo by recombinant baculoviruses possessing envelope proteins derived from either vesicular stomatitis virus (VSVG) or rabies virus. These recombinant viruses efficiently transferred reporter genes into neural cell lines, primary rat neural cells, and primary mouse osteal cells in vitro. The VSVG-modified baculovirus exhibited greater resistance to inactivation by animal sera than the unmodified baculovirus. A synthetic inhibitor of the complement activation pathway circumvented the serum inactivation of the unmodified baculovirus. Furthermore, the VSVG-modified baculovirus could transduce a reporter gene into the cerebral cortex and testis of mice by direct inoculation in vivo. These results suggest the possible use of the recombinant baculovirus vectors in combination with the administration of complement inhibitors for in vivo gene therapy. PMID:12941888

  1. Baculovirus display of functional antibody Fab fragments.

    PubMed

    Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki

    2015-08-01

    The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.

  2. Rift Valley fever virus structural and non-structural proteins: Recombinant protein expression and immunoreactivity against antisera from sheep

    USDA-ARS?s Scientific Manuscript database

    The Rift Valley fever virus (RVFV) encodes structural proteins, nucleoprotein (N), N-terminus glycoprotein (Gn), C-terminus glycoprotein (Gc) and L protein, 78-kDa and non-structural proteins NSm and NSs. Using the baculovirus system we expressed the full-length coding sequence of N, NSs, NSm, Gc an...

  3. Genome scale transcriptomics of baculovirus-insect interactions.

    PubMed

    Nguyen, Quan; Nielsen, Lars K; Reid, Steven

    2013-11-12

    Baculovirus-insect cell technologies are applied in the production of complex proteins, veterinary and human vaccines, gene delivery vectors' and biopesticides. Better understanding of how baculoviruses and insect cells interact would facilitate baculovirus-based production. While complete genomic sequences are available for over 58 baculovirus species, little insect genomic information is known. The release of the Bombyx mori and Plutella xylostella genomes, the accumulation of EST sequences for several Lepidopteran species, and especially the availability of two genome-scale analysis tools, namely oligonucleotide microarrays and next generation sequencing (NGS), have facilitated expression studies to generate a rich picture of insect gene responses to baculovirus infections. This review presents current knowledge on the interaction dynamics of the baculovirus-insect system' which is relatively well studied in relation to nucleocapsid transportation, apoptosis, and heat shock responses, but is still poorly understood regarding responses involved in pro-survival pathways, DNA damage pathways, protein degradation, translation, signaling pathways, RNAi pathways, and importantly metabolic pathways for energy, nucleotide and amino acid production. We discuss how the two genome-scale transcriptomic tools can be applied for studying such pathways and suggest that proteomics and metabolomics can produce complementary findings to transcriptomic studies.

  4. The xeroderma pigmentosum group B protein ERCC3 produced in the baculovirus system exhibits DNA helicase activity.

    PubMed Central

    Ma, L; Siemssen, E D; Noteborn, H M; van der Eb, A J

    1994-01-01

    The XPB/ERCC3 gene corrects the nucleotide excision-repair defect in the human hereditary disease xeroderma pigmentosum group B and encodes the largest subunit of the basal transcription factor BTF2/TFIIH. The primary sequence of the XPB/ERCC3 protein features the hallmarks of seven helicase motifs found in many known and putative helicases or helicase-related proteins. Recently, the multiprotein BTF2/TFIIH complex has been found to be associated with DNA helicase activity. To explore the properties and functions of XPB/ERCC3, we have used the baculovirus/insect-cell expression system to produce recombinant protein. We report here the construction and analysis of recombinant baculovirus expressing XPB/ERCC3. The XPB/ERCC3 protein is synthesized at a relatively high level in baculovirus-infected insect cells. While the majority of XPB/ERCC3 end up in the insoluble fraction of insect cell lysates, a minor fraction of recombinant protein is present in soluble form which can be purified under native conditions. We have found that a DNA helicase activity is associated with the purified XPB/ERCC3 protein, suggesting that XPB/ERCC3 may function as a DNA helicase in local unwinding of DNA template both in the context of transcription and nucleotide excision repair. Images PMID:7937133

  5. Protein Expression Profiles of Permissive, Semi-Permissive and Non-Permissive Cells Infected by Baculovirus

    USDA-ARS?s Scientific Manuscript database

    Amassing information on the in vitro protein expression of an insect host challenged by an entomopathogenic agent, such as a baculovirus, is paramount to an enhanced understanding of how host-pathogen interactions determine the success or failure of a pathogen. In this study, 2D-gel electrophoresis...

  6. Improved replication of the baculovirus Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) in vitro using proteins from Lonomia obliqua hemolymph.

    PubMed

    Sousa, Álvaro P B; Moraes, Roberto H P; Mendonça, Ronaldo Z

    2015-03-01

    The baculovirus Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV), a member of the family Baculoviridae, has been widely applied as a biopesticide for the control of the velvetbean caterpillar, a pest of soybean crop field. Baculoviruses are considered safe and efficient agents for this purpose, because they do not infect vertebrates, being safe for the health of humans and animals, as well as to the environment. The objective of this work was to identify proteins obtained from Lonomia obliqua hemolymph with potential application in the optimization of baculovirus AgMNPV replication in Sf9 insect cell culture. In this work the improvement of the cell culture and viral replication of the AgMNPV baculovirus was observed when Grace medium was supplemented with 10 % (v/v) Fetal Bovine Serum (FBS), 1 % (v/v) hemolymph extract, or 3 % (v/v) of hemolymph fractions or hemolymph sub-fractions obtained by purifying hemolymph through High Performance Liquid Chromatography. Hemolymph presented a positive effect on the synthesis of polyhedra and enhanced baculovirus replication in Spodoptera frugiperda (Sf9) cells (TCID50/mL), and led to Sf9 cell culture improvement. Grace medium supplemented with 10 % (v/v) FBS and 1 % (v/v) hemolymph provided an increase of baculovirus replication, when the cells were infected with multiplicity of infection of 1. In this case, the baculovirus replication was 6,443.91 times greater than that obtained with the control: Grace medium supplemented with 10 % (v/v) FBS. In addition, this work suggests that hemolymph from L. obliqua could have an interesting application in biotechnology, due to an increase in the viability of the cells and virus replication.

  7. Baculovirus LEF-11 nuclear localization signal is important for viral DNA replication.

    PubMed

    Chen, Tingting; Dong, Zhanqi; Hu, Nan; Hu, Zhigang; Dong, Feifan; Jiang, Yaming; Li, Jun; Chen, Peng; Lu, Cheng; Pan, Minhui

    2017-06-15

    Baculovirus LEF-11 is a small nuclear protein that is involved in viral late gene transcription and DNA replication. However, the characteristics of its nuclear localization signal and its impact on viral DNA replication are unknown. In the present study, systemic bioinformatics analysis showed that the baculovirus LEF-11 contains monopartite and bipartite classical nuclear localization signal sequences (cNLSs), which were also detected in a few alphabaculovirus species. Localization of representative LEF-11 proteins of four baculovirus genera indicated that the nuclear localization characteristics of baculovirus LEF-11 coincided with the predicted results. Moreover, Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 could be transported into the nucleus during viral infection in the absence of a cNLSs. Further investigations demonstrated that the NLS of BmNPV LEF-11 is important for viral DNA replication. The findings of the present study indicate that the characteristics of the baculovirus LEF-11 protein and the NLS is essential to virus DNA replication and nuclear transport mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The Genome of Gryllus bimaculatus Nudivirus Indicates an Ancient Diversification of Baculovirus-Related Nonoccluded Nudiviruses of Insects▿

    PubMed Central

    Wang, Yongjie; Kleespies, Regina G.; Huger, Alois M.; Jehle, Johannes A.

    2007-01-01

    The Gryllus bimaculatus nudivirus (GbNV) infects nymphs and adults of the cricket Gryllus bimaculatus (Orthoptera: Gryllidae). GbNV and other nudiviruses such as Heliothis zea nudivirus 1 (HzNV-1) and Oryctes rhinoceros nudivirus (OrNV) were previously called “nonoccluded baculoviruses” as they share some similar structural, genomic, and replication aspects with members of the family Baculoviridae. Their relationships to each other and to baculoviruses are elucidated by the sequence of the complete genome of GbNV, which is 96,944 bp, has an AT content of 72%, and potentially contains 98 predicted protein-coding open reading frames (ORFs). Forty-one ORFs of GbNV share sequence similarities with ORFs found in OrNV, HzNV-1, baculoviruses, and bacteria. Most notably, 15 GbNV ORFs are homologous to the baculovirus core genes, which are associated with transcription (lef-8, lef-9, lef-4, vlf-1, and lef-5), replication (dnapol), structural proteins (p74, pif-1, pif-2, pif-3, vp91, and odv-e56), and proteins of unknown function (38K, ac81, and 19kda). Homologues to these baculovirus core genes have been predicted in HzNV-1 as well. Six GbNV ORFs are homologous to nonconserved baculovirus genes dnaligase, helicase 2, rr1, rr2, iap-3, and desmoplakin. However, the remaining 57 ORFs revealed no homology or poor similarities to the current gene databases. No homologous repeat (hr) sequences but fourteen short direct repeat (dr) regions were detected in the GbNV genome. Gene content and sequence similarity suggest that the nudiviruses GbNV, HzNV-1, and OrNV form a monophyletic group of nonoccluded double-stranded DNA viruses, which separated from the baculovirus lineage before this radiated into dipteran-, hymenopteran-, and lepidopteran-specific clades of occluded nucleopolyhedroviruses and granuloviruses. The accumulated information on the GbNV genome suggests that nudiviruses form a highly diverse and phylogenetically ancient sister group of the baculoviruses, which have

  9. Characterization of a baculovirus lacking the DBP (DNA-binding protein) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanarsdall, Adam L.; Mikhailov, Victor S.; N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 117808

    2007-08-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encodes two proteins that possess properties typical of single-stranded DNA-binding proteins (SSBs), late expression factor-3 (LEF-3), and a protein referred to as DNA-binding protein (DBP). Whereas LEF-3 is a multi-functional protein essential for viral DNA replication, transporting helicase into the nucleus, and forms a stable complex with the baculovirus alkaline nuclease, the role for DBP in baculovirus replication remains unclear. Therefore, to better understand the functional role of DBP in viral replication, a DBP knockout virus was generated from an AcMNPV bacmid and analyzed. The results of a growth curve analysis indicated that the dbpmore » knockout construct was unable to produce budded virus indicating that dbp is essential. The lack of DBP does not cause a general shutdown of the expression of viral genes, as was revealed by accumulation of early (LEF-3), late (VP39), and very late (P10) proteins in cells transfected with the dbp knockout construct. To investigate the role of DBP in DNA replication, a real-time PCR-based assay was employed and showed that, although viral DNA synthesis occurred in cells transfected with the dbp knockout, the levels were less than that of the control virus suggesting that DBP is required for normal levels of DNA synthesis or for stability of nascent viral DNA. In addition, analysis of the viral DNA replicated by the dbp knockout by using field inversion gel electrophoresis failed to detect the presence of genome-length DNA. Furthermore, analysis of DBP from infected cells indicated that similar to LEF-3, DBP was tightly bound to viral chromatin. Assessment of the cellular localization of DBP relative to replicated viral DNA by immunoelectron microscopy indicated that, at 24 h post-infection, DBP co-localized with nascent DNA at distinct electron-dense regions within the nucleus. Finally, immunoelectron microscopic analysis of cells transfected with the dbp

  10. The Env-like open reading frame of the baculovirus-integrated retrotransposon TED encodes a retrovirus-like envelope protein.

    PubMed

    Ozers, M S; Friesen, P D

    1996-12-15

    TED is a 7.5-kbp member of the gypsy family of retrotransposons that was first identified by its integration within the baculovirus DNA genome. This lepidopteran (moth) transposon contains three retrovirus-like genes, including functional gag and pol that yield reverse transcriptase-containing virus-like particles. To identify and characterize the product(s) of the third env-like open reading frame, TED ORF3 was expressed in homologous lepidopteran cells by using a baculovirus vector, vENV. Immunoblots and immunoprecipitations with antiserum raised against a bacterial ORF3-fusion protein detected two ORF3-encoded proteins, p68env and gp75env. On the basis of selective incorporation of [3H]mannose and inhibition of modification by tunicamycin which blocks N-linked glycosylation, gp75env is a glycoprotein derived from core precursor p68env. As predicted by the presence of a transmembrane domain near the carboxyl terminus, both p68env and gp75env were associated with heavy membranes of vENV-infected cells. Thus, TED ORF3 encodes a membrane glycoprotein with properties characteristic of retroviral env proteins. These data are consistent with the hypothesis that TED is an invertebrate retrovirus. Moreover, TED integration within the baculovirus genome provides an example of retroelement-mediated acquisition of host genes that may contribute to virus evolution.

  11. Baculovirus phylogeny and evolution.

    PubMed

    Herniou, Elisabeth A; Jehle, Johannes A

    2007-10-01

    The family Baculoviridae represents one of the largest and most diverse groups of viruses and a unique model for studying the forces driving the evolution and biodiversity of double-stranded DNA viruses with large genomes. With the advent of comparative genomics, the phylogenetic relationships of baculoviruses have been put on solid bases. This, as well as improved bioinformatic approaches, has provided a detailed picture of baculovirus phylogeny and evolution. According to the present knowledge, baculoviruses can be classified into at least four evolutionary lineages: the most ancestral dipteran nucleopolyhedroviruses, the hymenopteran nucleopolyhedroviruses and the lepidopteran nucleopolyhedroviruses and granuloviruses. Despite the growing understanding of baculovirus phylogeny and macro-evolution, our knowledge of the micro-evolutionary processes within baculovirus species and virus populations is still limited. Here we present the state of the art on baculovirus phylogeny and evolution.

  12. The silencing suppressor (NSs) protein of the plant virus Tomato spotted wilt virus enhances heterologous protein expression and baculovirus pathogenicity in cells and lepidopteran insects.

    PubMed

    de Oliveira, Virgínia Carla; da Silva Morgado, Fabricio; Ardisson-Araújo, Daniel Mendes Pereira; Resende, Renato Oliveira; Ribeiro, Bergmann Morais

    2015-11-01

    In this work, we showed that cell death induced by a recombinant (vAcNSs) Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressing the silencing suppressor (NSs) protein of Tomato spotted wilt virus (TSWV) was enhanced on permissive and semipermissive cell lines. The expression of a heterologous gene (firefly luciferase) during co-infection of insect cells with vAcNSs and a second recombinant baculovirus (vAgppolhfluc) was shown to increase when compared to single vAgppolhfluc infections. Furthermore, the vAcNSs mean time-to-death values were significantly lower than those for wild-type AcMNPV on larvae of Spodoptera frugiperda and Anticarsia gemmatalis. These results showed that the TSWV-NSs protein could efficiently increase heterologous protein expression in insect cells as well as baculovirus pathogenicity and virulence, probably by suppressing the gene-silencing machinery in insects.

  13. Baculovirus AC102 Is a Nucleocapsid Protein That Is Crucial for Nuclear Actin Polymerization and Nucleocapsid Morphogenesis.

    PubMed

    Hepp, Susan E; Borgo, Gina M; Ticau, Simina; Ohkawa, Taro; Welch, Matthew D

    2018-06-01

    The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the type species of alphabaculoviruses, is an enveloped DNA virus that infects lepidopteran insects and is commonly known as a vector for protein expression and cell transduction. AcMNPV belongs to a diverse group of viral and bacterial pathogens that target the host cell actin cytoskeleton during infection. AcMNPV is unusual, however, in that it absolutely requires actin translocation into the nucleus early in infection and actin polymerization within the nucleus late in infection coincident with viral replication. Of the six viral factors that are sufficient, when coexpressed, to induce the nuclear localization of actin, only AC102 is essential for viral replication and the nuclear accumulation of actin. We therefore sought to better understand the role of AC102 in actin mobilization in the nucleus early and late in infection. Although AC102 was proposed to function early in infection, we found that AC102 is predominantly expressed as a late protein. In addition, we observed that AC102 is required for F-actin assembly in the nucleus during late infection, as well as for proper formation of viral replication structures and nucleocapsid morphogenesis. Finally, we found that AC102 is a nucleocapsid protein and a newly recognized member of a complex consisting of the viral proteins EC27, C42, and the actin polymerization protein P78/83. Taken together, our findings suggest that AC102 is necessary for nucleocapsid morphogenesis and actin assembly during late infection through its role as a component of the P78/83-C42-EC27-AC102 protein complex. IMPORTANCE The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an important biotechnological tool for protein expression and cell transduction, and related nucleopolyhedroviruses are also used as environmentally benign insecticides. One impact of our work is to better understand the fundamental mechanisms through which Ac

  14. The baculovirus-integrated retrotransposon TED encodes gag and pol proteins that assemble into viruslike particles with reverse transcriptase.

    PubMed Central

    Lerch, R A; Friesen, P D

    1992-01-01

    TED is a lepidopteran retrotransposon found inserted within the DNA genome of the Autographa californica nuclear polyhedrosis virus mutant, FP-D. To examine the proteins and functions encoded by this representative of the gypsy family of retrotransposons, the gag- and pol-like open reading frames (ORFs 1 and 2) were expressed in homologous lepidopteran cells by using recombinant baculovirus vectors. Expression of ORF 1 resulted in synthesis of an abundant TED-specific protein (Pr55gag) that assembled into viruslike particles with a diameter of 55 to 60 nm. Expression of ORF 2, requiring a -1 translational frameshift, resulted in synthesis of a protease that mediated cleavage of Pr55gag to generate p37, the major protein component of the resulting particles. Expression of ORF 2 also produced reverse transcriptase that associated with these particles. Both protease and reverse transcriptase activities mapped to domains within ORF 2 that contain sequence similarities with the corresponding functional domains of the pol gene of the vertebrate retroviruses. These results indicated that TED ORFs 1 and 2 functionally resemble the retrovirus gag and pol genes and demonstrated for the first time that an invertebrate member of the gypsy family of elements encodes active forms of the structural and enzymatic functions necessary for transposition via an RNA intermediate. TED integration within the baculovirus genome thus represents one of the first examples of transposon-mediated transfer of host-derived genes to an eukaryotic virus. Images PMID:1371168

  15. Baculovirus: an Insect-derived Vector for Diverse Gene Transfer Applications

    PubMed Central

    Airenne, Kari J; Hu, Yu-Chen; Kost, Thomas A; Smith, Richard H; Kotin, Robert M; Ono, Chikako; Matsuura, Yoshiharu; Wang, Shu; Ylä-Herttuala, Seppo

    2013-01-01

    Insect-derived baculoviruses have emerged as versatile and safe workhorses of biotechnology. Baculovirus expression vectors (BEVs) have been applied widely for crop and forest protection, as well as safe tools for recombinant protein production in insect cells. However, BEVs ability to efficiently transduce noninsect cells is still relatively poorly recognized despite the fact that efficient baculovirus-mediated in vitro and ex vivo gene delivery into dormant and dividing vertebrate cells of diverse origin has been described convincingly by many authors. Preliminary proof of therapeutic potential has also been established in preclinical studies. This review summarizes the advantages and current status of baculovirus-mediated gene delivery. Stem cell transduction, preclinical animal studies, tissue engineering, vaccination, cancer gene therapy, viral vector production, and drug discovery are covered. PMID:23439502

  16. Utilizing the virus-induced blocking of apoptosis in an easy baculovirus titration method

    PubMed Central

    Niarchos, Athanasios; Lagoumintzis, George; Poulas, Konstantinos

    2015-01-01

    Baculovirus-mediated protein expression is a robust experimental technique for producing recombinant higher-eukaryotic proteins because it combines high yields with considerable post-translational modification capabilities. In this expression system, the determination of the titer of recombinant baculovirus stocks is important to achieve the correct multiplicity of infection for effective amplification of the virus and high expression of the target protein. To overcome the drawbacks of existing titration methods (e.g., plaque assay, real-time PCR), we present a simple and reliable assay that uses the ability of baculoviruses to block apoptosis in their host cells to accurately titrate virus samples. Briefly, after incubation with serial dilutions of baculovirus samples, Sf9 cells were UV irradiated and, after apoptosis induction, they were viewed via microscopy; the presence of cluster(s) of infected cells as islets indicated blocked apoptosis. Subsequently, baculovirus titers were calculated through the determination of the 50% endpoint dilution. The method is simple, inexpensive, and does not require unique laboratory equipment, consumables or expertise; moreover, it is versatile enough to be adapted for the titration of every virus species that can block apoptosis in any culturable host cells which undergo apoptosis under specific conditions. PMID:26490731

  17. Characterization of an Sf-rhabdovirus-negative Spodoptera frugiperda cell line as an alternative host for recombinant protein production in the baculovirus-insect cell system.

    PubMed

    Maghodia, Ajay B; Geisler, Christoph; Jarvis, Donald L

    2016-06-01

    Cell lines derived from the fall armyworm, Spodoptera frugiperda (Sf), are widely used as hosts for recombinant protein production in the baculovirus-insect cell system (BICS). However, it was recently discovered that these cell lines are contaminated with a virus, now known as Sf-rhabdovirus [1]. The detection of this adventitious agent raised a potential safety issue that could adversely impact the BICS as a commercial recombinant protein production platform. Thus, we examined the properties of Sf-RVN, an Sf-rhabdovirus-negative Sf cell line, as a potential alternative host. Nested RT-PCR assays showed Sf-RVN cells had no detectable Sf-rhabdovirus over the course of 60 passages in continuous culture. The general properties of Sf-RVN cells, including their average growth rates, diameters, morphologies, and viabilities after baculovirus infection, were virtually identical to those of Sf9 cells. Baculovirus-infected Sf-RVN and Sf9 cells produced equivalent levels of three recombinant proteins, including an intracellular prokaryotic protein and two secreted eukaryotic glycoproteins, and provided similar N-glycosylation patterns. In fact, except for the absence of Sf-rhabdovirus, the only difference between Sf-RVN and Sf9 cells was SF-RVN produced higher levels of infectious baculovirus progeny. These results show Sf-RVN cells can be used as improved, alternative hosts to circumvent the potential safety hazard associated with the use of Sf-rhabdovirus-contaminated Sf cells for recombinant protein manufacturing with the BICS. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Reaching the Melting Point: Degradative Enzymes and Protease Inhibitors Involved in Baculovirus Infection and Dissemination

    PubMed Central

    Ishimwe, Egide; Hodgson, Jeffrey J.; Clem, Rollie J.; Passarelli, A. Lorena

    2015-01-01

    Baculovirus infection of a host insect involves several steps, beginning with initiation of virus infection in the midgut, followed by dissemination of infection from the midgut to other tissues in the insect, and finally culminating in “melting” or liquefaction of the host, which allows for horizontal spread of infection to other insects. While all of the viral gene products are involved in ultimately reaching this dramatic infection endpoint, this review focuses on two particular types of baculovirus-encoded proteins: degradative enzymes and protease inhibitors. Neither of these types of proteins is commonly found in other virus families, but they both play important roles in baculovirus infection. The types of degradative enzymes and protease inhibitors encoded by baculoviruses are discussed, as are the roles of these proteins in the infection process. PMID:25724418

  19. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose.

    PubMed

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo; Wang, Junwei

    2011-05-27

    Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Effect of baculovirus P35 protein on apoptosis in brain tissue of rats with acute cerebral infarction.

    PubMed

    Ji, J F; Ma, X H

    2015-08-10

    We explored the effect of baculovirus P35 protein on apoptosis in the brain tissue of rats with acute cerebral infarction (ACI). A rat model of middle cerebral artery infarction was created. The rats were randomly divided into sham, model, and treatment groups. Baculovirus P35 protein was injected into the intracranial arteries of the treatment group rats. The rats in the model group were given an equal volume of phosphate-buffered saline. The rats were sacrificed after 72 h and the brain tissue was separated. The levels of caspase-3, Bcl-2, and Bax mRNA, the brain cell apoptosis index, and the infarct size were determined. After 72 h, the levels of caspase-3 and Bax mRNA in the model and treatment groups were significantly greater than in the sham group, and the levels of Bcl-2 mRNA were significantly smaller (P < 0.05). The levels of caspase-3 and Bax mRNA were significantly lower in the treatment group than in the model group, and the level of Bcl-2 mRNA was significantly greater (P < 0.05). Compared with the sham group, the brain tissue apoptosis index and the cerebral infarction area increased significantly in the model and treatment groups (P < 0.05). The brain tissue apoptosis index and cerebral infarction area in the treatment group were significantly lower than in the model group (P < 0.05). Baculovirus P35 protein can effectively inhibit brain cell apoptosis in rats with ACI. It delayed apoptosis and necrosis in subjects with ACI tissue and had a protective effect on brain tissue.

  1. Antigenic characterization of bovine ephemeral fever rhabdovirus G and GNS glycoproteins expressed from recombinant baculoviruses.

    PubMed

    Johal, Jasjit; Gresty, Karryn; Kongsuwan, Kritaya; Walker, Peter J

    2008-01-01

    Recombinant baculoviruses expressing the BEFV envelope glycoprotein G and non-structural glycoprotein G(NS) were constructed. The G protein expressed in insect cells was located on the cell surface and induced spontaneous cell fusion at mildly acidic pH. The expressed G protein reacted with MAbs to continuous and conformational neutralization sites (G1, G2, G3b and G4), but not to conformational site G3a. The expressed G(NS) protein was also located on the cell surface but did not exhibit fusogenic activity. The G(NS) protein reacted with polyclonal antiserum produced from vaccinia-virus-expressed recombinant G(NS) but did not react with G protein antibodies. A His(6)-tagged, soluble form of the G protein was expressed and purified by Ni(2+)-NTA chromatography. The purified G protein reacted with BEFV-neutralizing MAbs to all continuous and conformational antigenic sites. The highly protective characteristics of the native BEFV G protein suggest that the secreted, baculovirus-expressed product may be a useful vaccine antigen.

  2. Baculovirus-mediated expression of GPCRs in insect cells.

    PubMed

    Saarenpää, Tuulia; Jaakola, Veli-Pekka; Goldman, Adrian

    2015-01-01

    G-protein-coupled receptors (GPCRs) are a large family of seven transmembrane proteins that influence a considerable number of cellular events. For this reason, they are one of the most studied receptor types for their pharmacological and structural properties. Solving the structure of several GPCR receptor types has been possible using almost all expression systems, including Escherichia coli, yeast, mammalian, and insect cells. So far, however, most of the GPCR structures solved have been done using the baculovirus insect cell expression system. The reason for this is mainly due to cost-effectiveness, posttranslational modification efficiency, and overall effortless maintenance. The system has evolved so much that variables starting from vector type, purification tags, cell line, and growth conditions can be varied and optimized countless ways to suit the needs of new constructs. Here, we present the array of techniques that enable the rapid and efficient optimization of expression steps for maximal protein quality and quantity, including our emendations. © 2015 Elsevier Inc. All rights reserved.

  3. Glycobiotechnology of the Insect Cell-Baculovirus Expression System Technology.

    PubMed

    Palomares, Laura A; Srivastava, Indresh K; Ramírez, Octavio T; Cox, Manon M J

    2018-06-10

    The insect cell-baculovirus expression system technology (BEST) has a prominent role in producing recombinant proteins to be used as research and diagnostic reagents and vaccines. The glycosylation profile of proteins produced by the BEST is composed predominantly of terminal mannose glycans, and, in Trichoplusia ni cell lines, core α3 fucosylation, a profile different to that in mammals. Insects contain all the enzymatic activities needed for complex N- and O-glycosylation and sialylation, although few reports of complex glycosylation and sialylation by the BEST exist. The insect cell line and culture conditions determine the glycosylation profile of proteins produced by the BEST. The promoter used, dissolved oxygen tension, presence of sugar precursors, bovine serum or hemolymph, temperature, and the time of harvest all influence glycosylation, although more research is needed. The lack of activity of glycosylation enzymes possibly results from the transcription regulation and stress imposed by baculovirus infection. To solve this limitation, the glycosylation pathway of insect cells has been engineered to produce complex sialylated glycans and to eliminate α3 fucosylation, either by generating transgenic cell lines or by using baculovirus vectors. These strategies have been successful. Complex glycosylation, sialylation, and inhibition of α3 fucosylation have been achieved, although the majority of glycans still have terminal mannose residues. The implication of insect glycosylation in the proteins produced by the BEST is discussed. Graphical Abstract.

  4. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies.

    PubMed

    Goehring, April; Lee, Chia-Hsueh; Wang, Kevin H; Michel, Jennifer Carlisle; Claxton, Derek P; Baconguis, Isabelle; Althoff, Thorsten; Fischer, Suzanne; Garcia, K Christopher; Gouaux, Eric

    2014-11-01

    Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in overexpression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein. In this protocol, we show how to use small-scale transient transfection and fluorescence-detection size-exclusion chromatography (FSEC) experiments using a GFP-His8-tagged candidate protein to screen for monodispersity and expression level. Once promising candidates are identified, we describe how to generate baculovirus, transduce HEK293S GnTI(-) (N-acetylglucosaminyltransferase I-negative) cells in suspension culture and overexpress the candidate protein. We have used these methods to prepare pure samples of chicken acid-sensing ion channel 1a (cASIC1) and Caenorhabditis elegans glutamate-gated chloride channel (GluCl) for X-ray crystallography, demonstrating how to rapidly and efficiently screen hundreds of constructs and accomplish large-scale expression in 4-6 weeks.

  5. Construction of a highly efficient display system for baculovirus and its application on multigene co-display.

    PubMed

    Zheng, Hao; Wang, Xiong; Ren, Feifei; Zou, Shenglong; Feng, Min; Xu, Liangliang; Yao, Lunguang; Sun, Jingchen

    2018-06-19

    The classical baculovirus display system (BDS) has often recruited fields including gene delivery, gene therapy, and the genetic engineering of vaccines, as it is capable of presenting foreign polypeptides on the membranes of recombinant baculovirus through a transmembrane protein. However, classical BDS's high cost, complicated operation, low display efficiency and its inability to simultaneously display multiple gene products impede its practicality. In this study, we present a novel and highly efficient display system based on ires-dependent gp64 for rescuing gp64-null Bacmid of baculovirus construction without affecting the viral replication cycle, which we name the baculovirus multigene display system (BMDS). Laser scanning confocal microscopy demonstrated that eGFP, eYFP, and mCherry were translocated on the membrane of Spodoptera frugiperda 9 cell successfully as expected. Western blot analysis further confirmed the presence of the fluorescent proteins on the budded, mature viral particles. The results showed the display efficiency of target gene on cell surface is fourfold that of classical BDS. In addition, a recombinant baculovirus displaying three kinds of fluorescent proteins simultaneously was constructed, thereby demonstrating the effectiveness of BMDS as a co-display system.

  6. In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors.

    PubMed

    Guijarro-Pardo, Eva; Gómez-Sebastián, Silvia; Escribano, José M

    2017-12-01

    Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a

  7. Display of a maize cDNA library on baculovirus infected insect cells.

    PubMed

    Meller Harel, Helene Y; Fontaine, Veronique; Chen, Hongying; Jones, Ian M; Millner, Paul A

    2008-08-12

    Maize is a good model system for cereal crop genetics and development because of its rich genetic heritage and well-characterized morphology. The sequencing of its genome is well advanced, and new technologies for efficient proteomic analysis are needed. Baculovirus expression systems have been used for the last twenty years to express in insect cells a wide variety of eukaryotic proteins that require complex folding or extensive posttranslational modification. More recently, baculovirus display technologies based on the expression of foreign sequences on the surface of Autographa californica (AcMNPV) have been developed. We investigated the potential of a display methodology for a cDNA library of maize young seedlings. We constructed a full-length cDNA library of young maize etiolated seedlings in the transfer vector pAcTMVSVG. The library contained a total of 2.5 x 10(5) independent clones. Expression of two known maize proteins, calreticulin and auxin binding protein (ABP1), was shown by western blot analysis of protein extracts from insect cells infected with the cDNA library. Display of the two proteins in infected insect cells was shown by selective biopanning using magnetic cell sorting and demonstrated proof of concept that the baculovirus maize cDNA display library could be used to identify and isolate proteins. The maize cDNA library constructed in this study relies on the novel technology of baculovirus display and is unique in currently published cDNA libraries. Produced to demonstrate proof of principle, it opens the way for the development of a eukaryotic in vivo display tool which would be ideally suited for rapid screening of the maize proteome for binding partners, such as proteins involved in hormone regulation or defence.

  8. Characterization of 5-HT₁A receptors and their complexes with G-proteins in budded baculovirus particles using fluorescence anisotropy of Bodipy-FL-NAN-190.

    PubMed

    Tõntson, Lauri; Kopanchuk, Sergei; Rinken, Ago

    2014-02-01

    Bodipy-FL-NAN-190 was found to be well suited for characterization of ligand binding to 5-HT1A receptors expressed in budded baculovirus particles, as binding is accompanied by large increases in fluorescence intensity and anisotropy. This ligand appears to bind rapidly (t1/2,ass<1 min), reversibly (t1/2,diss∼6 min) and has high affinity (Kd=0.30 ± 0.13 nM). This fluorescence anisotropy assay based on Bodipy-FL-NAN-190 binding to baculovirus particles was also a suitable assay system for the pharmacological characterization of non-labelled serotonergic ligands, as well as being sensitive to the presence of G-proteins and guanine nucleotides. Coexpression of αi subunits of human G-proteins in baculovirus particles resulted in the appearance of significantly greater proportion of nucleotide sensitive high affinity agonist binding sites. There were no significant differences between αi1 and αi3 subtypes, while ligand binding in the presence of αi2 had higher sensitivity to GDP and Mn(2+). Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System.

    PubMed

    López-Vidal, Javier; Gómez-Sebastián, Silvia; Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.

  10. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System

    PubMed Central

    Bárcena, Juan; Nuñez, Maria del Carmen; Martínez-Alonso, Diego; Dudognon, Benoit; Guijarro, Eva; Escribano, José M.

    2015-01-01

    Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health. PMID:26458221

  11. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies

    PubMed Central

    Goehring, April; Lee, Chia-Hsueh; Wang, Kevin H.; Michel, Jennifer Carlisle; Claxton, Derek P.; Baconguis, Isabelle; Althoff, Thorsten; Fischer, Suzanne; Garcia, K. Christopher; Gouaux, Eric

    2014-01-01

    Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in over-expression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein. In this protocol we show how to use small-scale transient transfection and fluorescence-detection, size-exclusion chromatography (FSEC) experiments using a GFP-His8 tagged candidate protein to screen for monodispersity and expression level. Once promising candidates are identified, we describe how to generate baculovirus, transduce HEK293S GnTI− (N-acetylglucosaminyltransferase I-negative) cells in suspension culture, and over-express the candidate protein. We have used these methods to prepare pure samples of chicken acid-sensing ion channel 1a (cASIC1) and Caenorhabditis elegans glutamate-gated chloride channel (GluCl), for X-ray crystallography, demonstrating how to rapidly and efficiently screen hundreds of constructs and accomplish large-scale expression in 4-6 weeks. PMID:25299155

  12. Posttranslational Modifications of Baculovirus Protamine-Like Protein P6.9 and the Significance of Its Hyperphosphorylation for Viral Very Late Gene Hyperexpression

    PubMed Central

    Li, Ao; Zhao, Haizhou; Lai, Qingying; Huang, Zhihong; Yuan, Meijin

    2015-01-01

    ABSTRACT Many viruses utilize viral or cellular chromatin machinery for efficient infection. Baculoviruses encode a conserved protamine-like protein, P6.9. This protein plays essential roles in various viral physiological processes during infection. However, the mechanism by which P6.9 regulates transcription remains unknown. In this study, 7 phosphorylated species of P6.9 were resolved in Sf9 cells infected with the baculovirus type species Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Mass spectrometry identified 22 phosphorylation and 10 methylation sites but no acetylation sites in P6.9. Immunofluorescence demonstrated that the P6.9 and virus-encoded serine/threonine kinase PK1 exhibited similar distribution patterns in infected cells, and coimmunoprecipitation confirmed the interaction between them. Upon pk1 deletion, nucleocapsid assembly and polyhedron formation were interrupted and the transcription of viral very late genes was downregulated. Interestingly, we found that the 3 most phosphorylated P6.9 species vanished from Sf9 cells transfected with the pk1 deletion mutant, suggesting that PK1 is involved in the hyperphosphorylation of P6.9. Mass spectrometry suggested that the phosphorylation of the 7 Ser/Thr and 5 Arg residues in P6.9 was PK1 dependent. Replacement of the 7 Ser/Thr residues with Ala resulted in a P6.9 phosphorylation pattern similar to that of the pk1 deletion mutant. Importantly, the decreases in the transcription level of viral very late genes and viral infectivity were consistent. Our findings reveal that P6.9 hyperphosphorylation is a precondition for the maximal hyperexpression of baculovirus very late genes and provide the first experimental insights into the function of the baculovirus protamine-like protein and the related protein kinase in epigenetics. IMPORTANCE Diverse posttranslational modifications (PTMs) of histones constitute a code that creates binding platforms that recruit transcription factors to

  13. Transduction of cultured fish cells with recombinant baculoviruses.

    PubMed

    Leisy, Douglas J; Lewis, Teresa D; Leong, Jo-Ann C; Rohrmann, George F

    2003-05-01

    Five fish cell lines were tested for their ability to be transduced by Ac-CAlacZ, a recombinant baculovirus that is capable of expressing a beta-galactosidase reporter gene from the CAG promoter (consisting of a cytomegalovirus enhancer element, a chicken actin promoter and rabbit beta-globin termination sequences). TO (Tilapia ovary), EPC (carp), CHH-1 (Chum salmon heart fibroblast) and CHSE-214 (chinook salmon embryo) cells were transducible, as demonstrated by an in situ beta-galactosidase assay, whereas RTG-2 (rainbow trout gonad) cells were not. The EPC cell line was used for more detailed studies on baculovirus transduction. The transduction frequency was found to be higher at 28 degrees C than at 21 degrees C. Addition of the histone deacetylase inhibitor sodium butyrate increased the number of blue cells detected 5- to 7-fold. The m.o.i. was positively correlated with transduction frequency, although the relationship did not appear to be strictly linear, as has been observed with mammalian cells. The temperature at which baculoviruses were adsorbed to EPC cells did not affect levels of beta-galactosidase expression. We also examined expression levels of beta-galactosidase in EPC cells after infection with a baculovirus construct that overexpresses the vesicular stomatitis virus G protein and displays it on the virion surface. Expression levels with this virus were approximately 15-fold higher than were observed with Ac-CAlacZ.

  14. How baculovirus polyhedra fit square pegs into round holes to robustly package viruses.

    PubMed

    Ji, Xiaoyun; Sutton, Geoff; Evans, Gwyndaf; Axford, Danny; Owen, Robin; Stuart, David I

    2010-01-20

    Natural protein crystals (polyhedra) armour certain viruses, allowing them to survive for years under hostile conditions. We have determined the structure of polyhedra of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), revealing a highly symmetrical covalently cross-braced robust lattice, the subunits of which possess a flexible adaptor enabling this supra-molecular assembly to specifically entrap massive baculoviruses. Inter-subunit chemical switches modulate the controlled release of virus particles in the unusual high pH environment of the target insect's gut. Surprisingly, the polyhedrin subunits are more similar to picornavirus coat proteins than to the polyhedrin of cytoplasmic polyhedrosis virus (CPV). It is, therefore, remarkable that both AcMNPV and CPV polyhedra possess identical crystal lattices and crystal symmetry. This crystalline arrangement must be particularly well suited to the functional requirements of the polyhedra and has been either preserved or re-selected during evolution. The use of flexible adaptors to generate a powerful system for packaging irregular particles is characteristic of the AcMNPV polyhedrin and may provide a vehicle to sequester a wide range of objects such as biological nano-particles.

  15. Roles of silkworm endoplasmic reticulum chaperones in the secretion of recombinant proteins expressed by baculovirus system.

    PubMed

    Imai, Saki; Kusakabe, Takahiro; Xu, Jian; Li, Zhiqing; Shirai, Shintaro; Mon, Hiroaki; Morokuma, Daisuke; Lee, Jae Man

    2015-11-01

    Baculovirus expression vector system (BEVS) is widely used for production of recombinant eukaryotic proteins in insect larvae or cultured cells. BEVS has advantages over bacterial expression system in producing post-translationally modified secreted proteins. However, for some unknown reason, it is very difficult for insects to secrete sufficiently for certain proteins of interest. To understand the reasons why insect cells fail to secrete some kinds of recombinant proteins, we here employed three mammalian proteins as targets, EPO, HGF, and Wnt3A, with different secretion levels in BEVS and investigated their mRNA transcriptions from the viral genome, subcellular localizations, and interactions with silkworm ER chaperones. Moreover, we observed that no significantly influence on the secretion amounts of all three proteins when depleting or overexpressing most endogenous ER chaperone genes in cultured silkworm cells. However, among all detected ER chaperones, the depletion of BiP severely decreased the recombinant protein secretion in BEVS, indicating the possible central role of Bip in silkworm secretion pathway.

  16. Localization of VP28 on the baculovirus envelope and its immunogenicity against white spot syndrome virus in Penaeus monodon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syed Musthaq, S.; Madhan, Selvaraj; Sahul Hameed, A.S.

    2009-09-01

    White spot syndrome virus (WSSV) is a large dsDNA virus responsible for white spot disease in shrimp and other crustaceans. VP28 is one of the major envelope proteins of WSSV and plays a crucial role in viral infection. In an effort to develop a vaccine against WSSV, we have constructed a recombinant baculovirus with an immediate early promoter 1 which expresses VP28 at an early stage of infection in insect cells. Baculovirus expressed rVP28 was able to maintain its structural and antigenic conformity as indicated by immunofluorescence assay and western blot analysis. Interestingly, our results with confocal microscopy revealed thatmore » rVP28 was able to localize on the plasma membrane of insect cells infected with recombinant baculovirus. In addition, we demonstrated with transmission electron microscopy that baculovirus successfully acquired rVP28 from the insect cell membrane via the budding process. Using this baculovirus displaying VP28 as a vaccine against WSSV, we observed a significantly higher survival rate of 86.3% and 73.5% of WSSV-infected shrimp at 3 and 15 days post vaccination respectively. Quantitative real-time PCR also indicated that the WSSV viral load in vaccinated shrimp was significantly reduced at 7 days post challenge. Furthermore, our RT-PCR and immunohistochemistry results demonstrated that the recombinant baculovirus was able to express VP28 in vivo in shrimp tissues. This study will be of considerable significance in elucidating the morphogenesis of WSSV and will pave the way for new generation vaccines against WSSV.« less

  17. How baculovirus polyhedra fit square pegs into round holes to robustly package viruses

    PubMed Central

    Ji, Xiaoyun; Sutton, Geoff; Evans, Gwyndaf; Axford, Danny; Owen, Robin; Stuart, David I

    2010-01-01

    Natural protein crystals (polyhedra) armour certain viruses, allowing them to survive for years under hostile conditions. We have determined the structure of polyhedra of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), revealing a highly symmetrical covalently cross-braced robust lattice, the subunits of which possess a flexible adaptor enabling this supra-molecular assembly to specifically entrap massive baculoviruses. Inter-subunit chemical switches modulate the controlled release of virus particles in the unusual high pH environment of the target insect's gut. Surprisingly, the polyhedrin subunits are more similar to picornavirus coat proteins than to the polyhedrin of cytoplasmic polyhedrosis virus (CPV). It is, therefore, remarkable that both AcMNPV and CPV polyhedra possess identical crystal lattices and crystal symmetry. This crystalline arrangement must be particularly well suited to the functional requirements of the polyhedra and has been either preserved or re-selected during evolution. The use of flexible adaptors to generate a powerful system for packaging irregular particles is characteristic of the AcMNPV polyhedrin and may provide a vehicle to sequester a wide range of objects such as biological nano-particles. PMID:19959989

  18. Expression and purification of the matrix protein of Nipah virus in baculovirus insect cell system.

    PubMed

    Masoomi Dezfooli, Seyedehsara; Tan, Wen Siang; Tey, Beng Ti; Ooi, Chien Wei; Hussain, Siti Aslina

    2016-01-01

    Nipah virus (NiV) causes fatal respiratory illness and encephalitis in humans and animals. The matrix (M) protein of NiV plays an important role in the viral assembly and budding process. Thus, an access to the NiV M protein is vital to the design of viral antigens as diagnostic reagents. In this study, recombinant DNA technology was successfully adopted in the cloning and expression of NiV M protein. A recombinant expression cassette (baculovirus expression vector) was used to encode an N-terminally His-tagged NiV M protein in insect cells. A time-course study demonstrated that the highest yield of recombinant M protein (400-500 μg) was expressed from 107 infected cells 3 days after infection. A single-step purification method based on metal ion affinity chromatography was established to purify the NiV M protein, which successfully yielded a purity level of 95.67% and a purification factor of 3.39. The Western blotting and enzyme-linked immunosorbent assay (ELISA) showed that the purified recombinant M protein (48 kDa) was antigenic and reacted strongly with the serum of a NiV infected pig. © 2015 American Institute of Chemical Engineers.

  19. Trypsin cleavage of the baculovirus occlusion-derived virus attachment protein P74 is prerequisite in per os infection.

    PubMed

    Slack, Jeffrey M; Lawrence, Susan D; Krell, Peter J; Arif, Basil M

    2008-10-01

    Baculovirus occlusion-derived virions (ODVs) contain a number of infectivity factors essential for the initiation of infection in larval midgut cells. Deletion of any of these factors neutralizes infectivity by the per os route. We have observed that P74 of the group I alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is N-terminally cleaved when a soluble form of the protein was incubated with insect midgut tissues under alkaline conditions and that cleavage was prevented by soybean trypsin inhibitor (SBTI). Presently, biological assays were carried out that suggest SBTI inhibits and trypsin enhances baculovirus per os infectivity. We developed a method to rescue per os infectivity of a P74 null virus involving co-transfection of viral DNA with a plasmid that transiently expresses p74. We used this plasmid rescue method to functionally characterize P74. A series of site-directed mutants were generated at the N terminus to evaluate if trypsin cleavage sites were necessary for function. Mutagenesis of R195, R196 and R199 compromised per os infectivity and rendered P74 resistant to midgut trypsin.

  20. Comparison of two eukaryotic systems for the expression of VP6 protein of rotavirus specie A: transient gene expression in HEK293-T cells and insect cell-baculovirus system.

    PubMed

    da Silva Junior, Haroldo Cid; da Silva E Mouta Junior, Sérgio; de Mendonça, Marcos César Lima; de Souza Pereira, Mirian Claudia; da Rocha Nogueira, Alanderson; de Azevedo, Maria Luiza Borges; Leite, José Paulo Gagliardi; de Moraes, Márcia Terezinha Baroni

    2012-09-01

    The VP6 protein of rotavirus A (RVA) is a target antigen used for diagnostic assays and also for the development of new RVA vaccines. We have compared the expression of VP6 protein in human embryonic kidney (HEK293-T) cells with results obtained using a well-established insect cell-baculovirus system. The recombinant VP6 (rVP6) expressed in HEK293-T cells did not present degradation and also retained the ability to form trimers. In the insect cell-baculovirus system, rVP6 was expressed at higher levels and with protein degradation as well as partial loss of ability to form trimers was observed. Therefore, HEK293-T cells represent a less laborious alternative system than insect cells for expression of rVP6 from human RVA.

  1. The production of multiprotein complexes in insect cells using the baculovirus expression system.

    PubMed

    Abdulrahman, Wassim; Radu, Laura; Garzoni, Frederic; Kolesnikova, Olga; Gupta, Kapil; Osz-Papai, Judit; Berger, Imre; Poterszman, Arnaud

    2015-01-01

    The production of a homogeneous protein sample in sufficient quantities is an essential prerequisite not only for structural investigations but represents also a rate-limiting step for many functional studies. In the cell, a large fraction of eukaryotic proteins exists as large multicomponent assemblies with many subunits, which act in concert to catalyze specific activities. Many of these complexes cannot be obtained from endogenous source material, so recombinant expression and reconstitution are then required to overcome this bottleneck. This chapter describes current strategies and protocols for the efficient production of multiprotein complexes in large quantities and of high quality, using the baculovirus/insect cell expression system.

  2. Cloning and baculovirus expression of a desiccation stress gene from the beetle, Tenebrio molitor.

    PubMed

    Graham, L A; Bendena, W G; Walker, V K

    1996-02-01

    The cDNA sequence encoding a novel desiccation stress protein (dsp28) found in the hemolymph of the common yellow mealworm beetle, Tenebrio molitor, has been determined. The sequence encodes a 225 amino acid protein containing a 20 amino acid signal peptide. Dsp28 shows no significant similarity to any known nucleic acid or protein sequence. Levels of dsp28 mRNA were found to increase approx 5-fold following desiccation. Dsp28 cDNA has been cloned into a baculovirus expression vector and the expressed protein was compared to native dsp28. Both dsp28 expressed by recombinant baculovirus and native dsp28 are glycosylated and N-terminally processed. Although dsp28 is induced by cold in addition to desiccation stress, it does not contribute to the freezing point depression (thermal hysteresis) observed in Tenebrio hemolymph.

  3. A silencing suppressor protein (NSs) of a tospovirus enhances baculovirus replication in permissive and semipermissive insect cell lines.

    PubMed

    Oliveira, Virgínia Carla; Bartasson, Lorrainy; de Castro, Maria Elita Batista; Corrêa, José Raimundo; Ribeiro, Bergmann Morais; Resende, Renato Oliveira

    2011-01-01

    The nonstructural protein (NSs) of the Tomato spotted wilt virus (TSWV) has been identified as an RNAi suppressor in plant cells. A recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV) designated vAcNSs, containing the NSs gene under the control of the viral polyhedrin (polh) gene promoter, was constructed and the effects of NSs in permissive, semipermissive and nonpermissive insect cells to vAcNSs infection were evaluated. vAcNSs produced more budded virus when compared to wild type in semipermissive cells. Co-infection of vAcNSs with wild type baculoviruses clearly enhanced polyhedra production in all host cells. Confocal microscopy analysis showed that NSs accumulated in abundance in the cytoplasm of permissive and semipermissive cells. In contrast, high amounts of NSs were detected in the nuclei of nonpermissive cells. Co-infection of vAcNSs with a recombinant AcMNPV containing the enhanced green fluorescent protein (egfp) gene, significantly increased EGFP expression in semipermissive cells and in Anticarsia gemmatalis-hemocytes. Absence of small RNA molecules of egfp transcripts in this cell line and in a permissive cell line indicates the suppression of gene silencing activity. On the other hand, vAcNSs was not able to suppress RNAi in a nonpermissive cell line. Our data showed that NSs protein of TSWV facilitates baculovirus replication in different lepidopteran cell lines, and these results indicate that NSs could play a similar role during TSWV-infection in its thrips vector. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Global Screening of Antiviral Genes that Suppress Baculovirus Transgene Expression in Mammalian Cells.

    PubMed

    Wang, Chia-Hung; Naik, Nenavath Gopal; Liao, Lin-Li; Wei, Sung-Chan; Chao, Yu-Chan

    2017-09-15

    Although baculovirus has been used as a safe and convenient gene delivery vector in mammalian cells, baculovirus-mediated transgene expression is less effective in various mammalian cell lines. Identification of the negative regulators in host cells is necessary to improve baculovirus-based expression systems. Here, we performed high-throughput shRNA library screening, targeting 176 antiviral innate immune genes, and identified 43 host restriction factor genes in a human A549 lung carcinoma cell line. Among them, suppression of receptor interaction protein kinase 1 (RIP1, also known as RIPK1) significantly increased baculoviral transgene expression without resulting in significant cell death. Silencing of RIP1 did not affect viral entry or cell viability, but it did inhibit nuclear translocation of the IRF3 and NF-κB transcription factors. Also, activation of downstream signaling mediators (such as TBK1 and IRF7) was affected, and subsequent interferon and cytokine gene expression levels were abolished. Further, Necrostatin-1 (Nec-1)-an inhibitor of RIP1 kinase activity-dramatically increased baculoviral transgene expression in RIP1-silenced cells. Using baculovirus as a model system, this study presents an initial investigation of large numbers of human cell antiviral innate immune response factors against a "nonadaptive virus." In addition, our study has made baculovirus a more efficient gene transfer vector for some of the most frequently used mammalian cell systems.

  5. Fullerene-like organization of HIV gag-protein shell in virus-like particles produced by recombinant baculovirus.

    PubMed

    Nermut, M V; Hockley, D J; Jowett, J B; Jones, I M; Garreau, M; Thomas, D

    1994-01-01

    Virus-like particles produced by a recombinant baculovirus containing the HIV gag gene were examined by negative staining after delipidization. This technique demonstrated that the gag-protein shell consisted of radially arranged short rods which formed a network of ring-like structures. Similar structures were observed at the plasma membrane of infected cells which had been opened by wet-cleaving. Occasionally five or six subunits were observed forming a ring. These findings suggest that the gag-encoded precursor (pr55) is a rod-like molecule about 34 A in diameter and 85 A in length. A protein cylinder of such dimensions would have a molecular weight of 56K. The center-to-center distance of two neighboring rings formed by the rods was 66 +/- 8 A (N = 200) by direct measurements and 65 A as obtained from averaged images. This morphology and these dimensions indicate that the virus-like particles contain the gag precursor in the form of a near-spherical "fullerene-like" icosahedral shell. Our data indicate that the triangulation number of the rings equals 63. However, since one rod of pr55 is shared by two rings, the number of copies of the precursor will be 1890 as opposed to 2522 if the molecules were closely packed. The particle diameter of 102 nm deduced from the proposed model was close to the diameter obtained from thin sections of low-temperature-embedded specimens (103-108 nm).

  6. Novel baculovirus-derived p67 subunit vaccines efficacious against East Coast fever in cattle.

    PubMed

    Kaba, Stephen A; Musoke, Anthony J; Schaap, Dick; Schetters, Theo; Rowlands, John; Vermeulen, Arno N; Nene, Vishvanath; Vlak, Just M; van Oers, Monique M

    2005-04-15

    Two novel baculovirus-derived recombinant Theileria parva p67 constructs were tested for their vaccine potential against East Coast fever. Boran calves were immunized with a his-GFP-p67 fusion protein (GFP:p67deltaSS) or with GP64:p67C, a protein fusion between a C-terminal domain of p67 and the baculovirus envelope protein GP64. Both GFP:p67deltaSS and GP64:p67C induced antibodies with high ELISA titers that neutralized T. parva sporozoites with high efficiency. Upon challenge, a correlation was observed between the in vitro neutralizing capacity and the reduction in severe ECF for individual animals. A protection level upto 85% was obtained. This level of protection was achieved with only two inoculations of 100 microg per dose, which is a major improvement over previous recombinant p67 products.

  7. Expression of the lef5 gene from Spodoptera exigua multiple nucleopolyhedrovirus contributes to the baculovirus stability in cell culture.

    PubMed

    Martínez-Solís, María; Jakubowska, Agata K; Herrero, Salvador

    2017-10-01

    Baculoviruses are a broad group of viruses infecting insects, predominately of the order Lepidoptera. They are used worldwide as biological insecticides and as expression vectors to produce recombinant proteins. Baculoviruses replicate in their host, although several cell lines have been developed for in vitro replication. Nevertheless, replication of baculoviruses in cell culture involves the generation of defective viruses with a decrease in productivity and virulence. Transcriptional studies of the Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) and the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infective process revealed differences in the expression patterns when the virus replicated under in vitro (Se301 cells) or in vivo (S. exigua larvae) conditions. The late expression factor 5 (lef5) gene was found to be highly overexpressed when the virus replicates in larvae. To test the possible role of lef5 expression in viral stability, recombinant AcMNPV expressing the lef5 gene from SeMNPV (Se-lef5) was generated and its stability was monitored during successive infection passages in Sf21 cells by evaluating the loss of several essential and non-essential genes. The gfp transgene was more stable in those viruses expressing the Se-LEF5 protein and the GFP-defective viruses were accumulated at a lower level when compared to its control viruses, confirming the positive influence of lef5 in viral stability during the multiplication process. This work describes for the first time a viral factor involved in transgene stability when baculoviruses replicate in cell culture, opening new ways to facilitate the in vitro production of recombinant proteins using baculovirus.

  8. Construction of a recombinant baculovirus expressing swine hepatitis E Virus ORF2 and preliminary research on its immune effect.

    PubMed

    Yang, Z; Hu, Y; Yuan, P; Yang, Y; Wang, K; Xie, L Y; Huang, S L; Liu, J; Ran, L; Song, Z H

    2018-03-01

    In the swine hepatitis E virus (HEV), open reading frame 2 (ORF2) is rich in antigenic determinants and neutralizing epitopes that could induce immune protection. We chose the Bac-to-Bac® Baculovirus Expression System to express fragments containing the critical neutralizing antigenic sites within the HEV ORF2 protein of pigs to obtain a recombinant baculovirus. The fragment of swine HEV ORF2 region (1198-1881bp) was cloned into vector pFastBacTM. A recombinant baculovirus, rBacmid-ORF2, was obtained after transposition and transfection. The molecular mass of the recombinant protein was 26 kDa. Mice were immunized by the intraperitoneal and oral routes with cell lysates of recombinant baculovirus rBacmid-ORF2. Serum and feces of the mice were collected separately at 0, 14, 28, and 42 d after immunization and the antibody levels of IgG and secretory IgA against swine HEV were determined using an enzyme-linked immunosorbent assay. The results suggested that rBacmid-ORF2 induced antibodies of the humoral and mucosal immune responses in mice and that the oral route was significantly superior to the intraperitoneal route. This is the first study to demonstrate that that recombinant baculovirus swine HEV ORF2 could induce humoral and mucosal immune responses in mice. Copyright© by the Polish Academy of Sciences.

  9. Structural analysis and localization of the carbohydrate moieties of a soluble human interferon gamma receptor produced in baculovirus-infected insect cells.

    PubMed Central

    Manneberg, M.; Friedlein, A.; Kurth, H.; Lahm, H. W.; Fountoulakis, M.

    1994-01-01

    A soluble form of the human interferon gamma receptor that is required for the identification of interferon gamma antagonists was expressed in baculovirus-infected insect cells. The protein carried N-linked carbohydrate and showed a heterogeneity on denaturing polyacrylamide gels. We investigated the utilization of the potential sites for N-linked glycosylation and the structure of the carbohydrate moieties of this soluble receptor. Amino acid sequence analysis and ion spray mass spectrometry revealed that of the five potential sites for N-linked glycosylation, Asn17 and Asn69 were always utilized, whereas Asn62 and Asn162 were utilized in approximately one-third of the protein population. Asn223 was never found to be glycosylated. The soluble receptor was treated with N-glycosidase F and the oligosaccharides released were analyzed by matrix-assisted laser desorption mass spectrometry, which showed that the protein carried six types of short carbohydrate chains. The predominant species was a hexasaccharide of molecular mass 1,039, containing a fucose subunit linked to the proximal N-acetylglucosamine residue: [formula: see text] PMID:8142896

  10. Purification of functional baculovirus particles from silkworm larval hemolymph and their use as nanoparticles for the detection of human prorenin receptor (PRR) binding

    PubMed Central

    2011-01-01

    Background Baculovirus, which has a width of 40 nm and a length of 250-300 nm, can display functional peptides, receptors and antigens on its surface by their fusion with a baculovirus envelop protein, GP64. In addition, some transmembrane proteins can be displayed without GP64 fusion, using the native transmembrane domains of the baculovirus. We used this functionality to display human prorenin receptor fused with GFPuv (GFPuv-hPRR) on the surface of silkworm Bombyx mori nucleopolyhedrovirus (BmNPV) and then tested whether these baculovirus particles could be used to detect protein-protein interactions. Results BmNPV displaying GFPuv-hPRR (BmNPV-GFPuv-hPRR) was purified from hemolymph by using Sephacryl S-1000 column chromatography in the presence of 0.01% Triton X-100. Its recovery was 86% and the final baculovirus particles number was 4.98 × 108 pfu. Based on the results of enzyme-linked immunosorbent assay (ELISA), 3.1% of the total proteins in BmNPV-GFPuv-hPRR were GFPuv-hPRR. This value was similar to that calculated from the result of western blot by a densitometry (2.7%). To determine whether BmNPV-GFPuv-hPRR particles were bound to human prorenin, ELISA results were compared with those from ELISAs using protease negative BmNPV displaying β1,3-N-acetylglucosaminyltransferase 2 fused with the gene encoding GFPuv (GGT2) (BmNPV-CP--GGT2) particles, which do not display hPRR on their surfaces. Conclusion The display of on the surface of the BmNPV particles will be useful for the detection of protein-protein interactions and the screening of inhibitors and drugs in their roles as nanobioparticles. PMID:21635720

  11. A baculovirus (Bombyx mori nuclear polyhedrosis virus) repeat element functions as a powerful constitutive enhancer in transfected insect cells.

    PubMed

    Lu, M; Farrell, P J; Johnson, R; Iatrou, K

    1997-12-05

    It has been previously reported that baculovirus homologous regions, the regions of baculovirus genomes that contain the origins of DNA replication, can augment the expression of a small number of baculovirus genes in vitro. We are now reporting that a region of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) containing the homologous region 3 (HR3) acts as an enhancer for the promoter of a nonviral gene, the cytoplasmic actin gene of the silkmoth B. mori. Incorporation of the HR3 sequences of BmNPV into an actin promoter-based expression cassette results in an augmentation of transgene expression in transfected cells by two orders of magnitude relative to the control recombinant expression cassette. This increase is due to a corresponding increase in the rate of transcription from the actin promoter and not to replication of the expression cassette and occurs only when the HR3 element is linked to the expression cassette in cis. A comparable degree of enhancement in the activity of the silkworm actin promoter occurs also in heterologous lepidopteran cells. Concomitant supplementation of transfected cells with the BmIE1 trans-activator, which was previously shown to be capable of functioning in vitro as a transcriptional co-activator of the cytoplasmic actin gene promoter, results in more than a 1,000-fold increase in the level of expression of recombinant proteins placed under the control of the actin gene promoter. These findings provide the foundation for the development of a nonlytic insect cell expression system for continuous high-level expression of recombinant proteins. Such a system should provide levels of expression of recombinant proteins comparable to those obtained from baculovirus expression systems and should also have the additional advantage of continuous production in a cellular environment that, in contrast to that generated by a baculovirus infection, supports continuously proper posttranslational modifications of recombinant

  12. Baculovirus enhancins and their role in viral pathogenicity. Chapter 9

    Treesearch

    James M. Slavicek

    2012-01-01

    Baculoviruses are a large group of viruses pathogenic to arthropods, primarily insects from the order Lepidoptera and also insects in the orders Hymenoptera and Diptera. Baculoviruses have been used to control insect pests on agricultural crops and forests around the world. Efforts have been ongoing for the last two decades to develop strains of baculoviruses with...

  13. Expression of the Bacillus anthracis protective antigen gene by baculovirus and vaccinia virus recombinants.

    PubMed Central

    Iacono-Connors, L C; Schmaljohn, C S; Dalrymple, J M

    1990-01-01

    The gene encoding Bacillus anthracis protective antigen (PA) was modified by site-directed mutagenesis, subcloned into baculovirus and vaccinia virus plasmid transfer vectors (pAcYM1 and pSC-11, respectively), and inserted via homologous recombinations into baculovirus Autographa californica nuclear polyhedrosis virus or vaccinia virus (strains WR and Connaught). Expression of PA was detected in both systems by immunofluorescence assays with antisera from rabbits immunized with B. anthracis PA. Western blot (immunoblot) analysis showed that the expressed product of both systems was slightly larger (86 kilodaltons) than B. anthracis-produced PA (83.5 kilodaltons). Analysis of trypsin digests of virus-expressed and authentic PA suggested that the size difference was due to the presence of a signal sequence remaining with the virus-expressed protein. Immunization of mice with either recombinant baculovirus-infected Spodoptera frugiperda cells or with vaccinia virus recombinants elicited a high-titer, anti-PA antibody response. Images PMID:2105271

  14. Generation of Envelope-Modified Baculoviruses for Gene Delivery into Mammalian Cells.

    PubMed

    Hofmann, Christian

    2016-01-01

    Genetically modified baculoviruses can efficiently deliver and express genes in mammalian cells. The major prerequisite for the expression of a gene transferred by baculovirus is its control by a promoter that is active in mammalian cells. This chapter describes methods for producing second generation baculovirus vectors through modification of their envelope. Envelope modified baculoviruses offer additional new applications of the system, such as their use in in vivo gene delivery, targeting, and vaccination. Methods of generating a recombinant baculovirus vector with a modified envelope and its amplification and purification, including technical scale production, are discussed. A variety of notes give clues regarding specific technical procedures. Finally, methods to analyze the virus and transduction procedures are presented.

  15. CRISPR-Cas9 vectors for genome editing and host engineering in the baculovirus-insect cell system.

    PubMed

    Mabashi-Asazuma, Hideaki; Jarvis, Donald L

    2017-08-22

    The baculovirus-insect cell system (BICS) has been widely used to produce many different recombinant proteins for basic research and is being used to produce several biologics approved for use in human or veterinary medicine. Early BICS were technically complex and constrained by the relatively primordial nature of insect cell protein glycosylation pathways. Since then, recombination has been used to modify baculovirus vectors-which has simplified the system-and transform insect cells, which has enhanced its protein glycosylation capabilities. Now, CRISPR-Cas9 tools for site-specific genome editing are needed to facilitate further improvements in the BICS. Thus, in this study, we used various insect U6 promoters to construct CRISPR-Cas9 vectors and assessed their utility for site-specific genome editing in two insect cell lines commonly used as hosts in the BICS. We demonstrate the use of CRISPR-Cas9 to edit an endogenous insect cell gene and alter protein glycosylation in the BICS.

  16. Characterization of canine herpesvirus glycoprotein C expressed by a recombinant baculovirus in insect cells.

    PubMed

    Xuan, X; Maeda, K; Mikami, T; Otsuka, H

    1996-12-01

    The gene encoding the canine herpesvirus (CHV) glycoprotein C (gC) homologue has been identified by sequence homology analyses with other well studied herpesviruses. Previously, we have identified three CHV glycoproteins, gp145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gC, a recombinant baculovirus which contains the putative CHV gC structural gene under the baculovirus polyhedrin promoter was constructed. The recombinant baculovirus expressed gC-related polypeptides (44-62 kDa), which reacted only with MAbs against CHV gp80, indicating that the previously identified CHV gp80 is the translation product of the gC gene. The baculovirus expressed gC was glycosylated and transported to the surface of infected cells. At least seven neutralizing epitopes were conserved on the gC produced in insect cells. It was found that the recombinant baculovirus infected cells adsorbed murine erythrocytes as is the case for CHV-infected cells. The hemadsorption activity was inhibited by heparin, indicating that the CHV gC binds to heparan sulfate on the surface of murine erythrocytes. Mice immunized with the recombinant gC produced strong neutralizing antibodies. Our results suggest that CHV gC produced in insect cells may be useful as a subunit vaccine to control CHV infections.

  17. Identification of three PPV1 VP2 protein-specific B cell linear epitopes using monoclonal antibodies against baculovirus-expressed recombinant VP2 protein.

    PubMed

    Sun, Jianhui; Huang, Liping; Wei, Yanwu; Wang, Yiping; Chen, Dongjie; Du, Wenjuan; Wu, Hongli; Feng, Li; Liu, Changming

    2015-11-01

    Porcine parvovirus type 1 (PPV1) is a major causative agent of embryonic and fetal death in swine. The PPV1 VP2 protein is closely associated with viral immunogenicity for eliciting neutralizing antibodies, but its antigenic structures have been largely unknown. We generated three monoclonal antibodies (MAbs) against baculovirus-expressed recombinant PPV1 VP2 protein. A PEPSCAN analysis identified the minimal B cell linear epitopes of PPV1 VP2 based on these MAbs. Three core epitopes, (228)QQITDA(233), (284)RSLGLPPK(291), and (344)FEYSNGGPFLTPI(356), were defined and mapped onto three-dimensional models of the PPV1 virion and VP2 monomer. The epitope (228)QQITDA(233) is exposed on the virion surface, and the other two are located inside the protein. An alignment of the PPV1 VP2 amino acid sequences showed that (284)RSLGLPPK(291) and (344)FEYSNGGPFLTPI(356) are absolutely conserved, whereas (228)QQITDA(233) has a single substitution at residue 233 in some (S → A or T). We developed a VP2 epitope-based indirect enzyme-linked immunosorbent assay (iELISA) to test for anti-PPV1 antibodies. In a comparative analysis with an immunoperoxidase monolayer assay using 135 guinea pig sera, the VP2-epitope-based iELISA had a concordance rate of 85.19 %, sensitivity of 83.33 %, and specificity of 85.47 %. MAb 8H6 was used to monitor VP2 during the PPV1 replication cycle in vitro with an indirect immunofluorescence assay, which indicated that newly encapsulated virions are released from the nucleus at 24 h postinfection and the PPV1 replication cycle takes less than 24 h. This study provides valuable information clarifying the antigenic structure of PPV1 VP2 and lays the foundations for PPV1 serodiagnosis and antigen detection.

  18. Baculovirus GP64-mediated entry into mammalian cells.

    PubMed

    Kataoka, Chikako; Kaname, Yuuki; Taguwa, Shuhei; Abe, Takayuki; Fukuhara, Takasuke; Tani, Hideki; Moriishi, Kohji; Matsuura, Yoshiharu

    2012-03-01

    The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) serves as an efficient viral vector, not only for abundant gene expression in insect cells, but also for gene delivery into mammalian cells. Lentivirus vectors pseudotyped with the baculovirus envelope glycoprotein GP64 have been shown to acquire more potent gene transduction than those with vesicular stomatitis virus (VSV) envelope glycoprotein G. However, there are conflicting hypotheses about the molecular mechanisms of the entry of AcMNPV. Moreover, the mechanisms of the entry of pseudotyped viruses bearing GP64 into mammalian cells are not well characterized. Determination of the entry mechanisms of AcMNPV and the pseudotyped viruses bearing GP64 is important for future development of viral vectors that can deliver genes into mammalian cells with greater efficiency and specificity. In this study, we generated three pseudotyped VSVs, NPVpv, VSVpv, and MLVpv, bearing envelope proteins of AcMNPV, VSV, and murine leukemia virus, respectively. Depletion of membrane cholesterol by treatment with methyl-β-cyclodextrin, which removes cholesterol from cellular membranes, inhibited GP64-mediated internalization in a dose-dependent manner but did not inhibit attachment to the cell surface. Treatment of cells with inhibitors or the expression of dominant-negative mutants for dynamin- and clathrin-mediated endocytosis abrogated the internalization of AcMNPV and NPVpv into mammalian cells, whereas inhibition of caveolin-mediated endocytosis did not. Furthermore, inhibition of macropinocytosis reduced GP64-mediated internalization. These results suggest that cholesterol in the plasma membrane, dynamin- and clathrin-dependent endocytosis, and macropinocytosis play crucial roles in the entry of viruses bearing baculovirus GP64 into mammalian cells.

  19. Comparative studies of lepidopteran baculovirus-specific protein FP25K: development of a novel Bombyx mori nucleopolyhedrovirus-based vector with a modified fp25K gene.

    PubMed

    Nakanishi, Tadashi; Goto, Chie; Kobayashi, Michihiro; Kang, Wonkyung; Suzuki, Takehiro; Dohmae, Naoshi; Matsumoto, Shogo; Shimada, Toru; Katsuma, Susumu

    2010-05-01

    Lepidopteran baculovirus-specific protein FP25K performs many roles during the infection cycle, including functions in the production of occlusion bodies (OBs) and budded viruses (BVs), oral infection, and postmortem host degradation. To explore the common and specific functions of FP25K proteins among lepidopteran baculoviruses, we performed comparative analyses of FP25K proteins from group I and group II nucleopolyhedroviruses (NPVs) and granulovirus (GV). Using recombinant Bombyx mori NPVs (BmNPVs), we showed that the FP25Ks from NPVs were able to eliminate all the phenotypic defects observed in an infection with a BmNPV mutant lacking functional fp25K but that FP25K from GV did not show abilities to recover oral infectivity and postmortem host degradation. We also observed that introduction of Autographa californica multiple NPV (AcMNPV) fp25K into the BmNPV genome enhanced OB and BV production. According to these results, we generated a novel BmNPV-based expression vector with AcMNPV fp25K and examined its potential in BmN cells and B. mori larvae. Our results showed that the introduction of AcMNPV fp25K significantly increases the expression of foreign gene products in cultured cells and shortens the time for obtaining the secreted recombinant proteins from larval hemolymph.

  20. Protein Expression in Insect and Mammalian Cells Using Baculoviruses in Wave Bioreactors.

    PubMed

    Kadwell, Sue H; Overton, Laurie K

    2016-01-01

    Many types of disposable bioreactors for protein expression in insect and mammalian cells are now available. They differ in design, capacity, and sensor options, with many selections available for either rocking platform, orbitally shaken, pneumatically mixed, or stirred-tank bioreactors lined with an integral disposable bag (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). WAVE Bioreactors™ were among the first disposable systems to be developed (Singh, Cytotechnology 30:149-158, 1999). Since their commercialization in 1999, Wave Bioreactors have become routinely used in many laboratories due to their ease of operation, limited utility requirements, and protein expression levels comparability to traditional stirred-tank bioreactors. Wave Bioreactors are designed to use a presterilized Cellbag™, which is attached to a rocking platform and inflated with filtered air provided by the bioreactor unit. The Cellbag can be filled with medium and cells and maintained at a set temperature. The rocking motion, which is adjusted through angle and rock speed settings, provides mixing of oxygen (and CO2, which is used to control pH in mammalian cell cultures) from the headspace created in the inflated Cellbag with the cell culture medium and cells. This rocking motion can be adjusted to prevent cell shear damage. Dissolved oxygen and pH can be monitored during scale-up, and samples can be easily removed to monitor other parameters. Insect and mammalian cells grow very well in Wave Bioreactors (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). Combining Wave Bioreactor cell growth capabilities with recombinant baculoviruses engineered for insect or mammalian cell expression has proven to be a powerful tool for rapid production of a wide range of proteins.

  1. Soluble forms of the cell adhesion molecule L1 produced by insect and baculovirus-transduced mammalian cells enhance Schwann cell motility.

    PubMed

    Lavdas, Alexandros A; Efrose, Rodica; Douris, Vassilis; Gaitanou, Maria; Papastefanaki, Florentia; Swevers, Luc; Thomaidou, Dimitra; Iatrou, Kostas; Matsas, Rebecca

    2010-12-01

    For biotechnological applications, insect cell lines are primarily known as hosts for the baculovirus expression system that is capable to direct synthesis of high levels of recombinant proteins through use of powerful viral promoters. Here, we demonstrate the implementation of two alternative approaches based on the baculovirus system for production of a mammalian recombinant glycoprotein, comprising the extracellular part of the cell adhesion molecule L1, with potential important therapeutic applications in nervous system repair. In the first approach, the extracellular part of L1 bearing a myc tag is produced in permanently transformed insect cell lines and purified by affinity chromatography. In the second approach, recombinant baculoviruses that express L1-Fc chimeric protein, derived from fusion of the extracellular part of L1 with the Fc part of human IgG1, under the control of a mammalian promoter are used to infect mammalian HEK293 and primary Schwann cells. Both the extracellular part of L1 bearing a myc tag accumulating in the supernatants of insect cultures as well as L1-Fc secreted by transduced HEK293 or Schwann cells are capable of increasing the motility of Schwann cells with similar efficiency in a gap bridging bioassay. In addition, baculovirus-transduced Schwann cells show enhanced motility when grafted on organotypic cultures of neonatal brain slices while they retain their ability to myelinate CNS axons. This proof-of-concept that the migratory properties of myelin-forming cells can be modulated by recombinant protein produced in insect culture as well as by means of baculovirus-mediated adhesion molecule expression in mammalian cells may have beneficial applications in the field of CNS therapies. ©2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.

  2. Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody.

    PubMed

    Dhungel, Bidur; Ohno, Yoshikazu; Matayoshi, Rie; Otaki, Joji M

    2013-03-25

    Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer, express, and functionally

  3. Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody

    PubMed Central

    2013-01-01

    Background Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. Results A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Conclusions Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer

  4. Baculovirus vectors expressing F proteins in combination with virus-induced signaling adaptor (VISA) molecules confer protection against respiratory syncytial virus infection.

    PubMed

    Zhang, Yuan; Qiao, Lei; Hu, Xiao; Zhao, Kang; Zhang, Yanwen; Chai, Feng; Pan, Zishu

    2016-01-04

    Baculovirus has been exploited for use as a novel vaccine vector. To investigate the feasibility and efficacy of recombinant baculoviruses (rBVs) expressing respiratory syncytial virus (RSV) fusion (F) proteins, four constructs (Bac-tF/64, Bac-CF, Bac-CF/tF64 and Bac-CF/tF64-VISA) were generated. Bac-tF64 displays the F ectodomain (tF) on the envelope of rBVs, whereas Bac-CF expresses full-length F protein in transduced mammalian cells. Bac-CF/tF64 not only displays tF on the envelope but also expresses F in cells. Bac-CF/tF64-VISA comprises Bac-CF/tF64 harboring the virus-induced signaling adaptor (VISA) gene. After administration to BALB/c mice, all four vectors elicited RSV neutralizing antibody (Ab), systemic Ab (IgG, IgG1, and IgG2a), and cytokine responses. Compared with Bac-tF64, mice inoculated with Bac-CF and Bac-CF/tF64 exhibited an increased mixed Th1/Th2 cytokine response, increased ratios of IgG2a/IgG1 antibody responses, and reduced immunopathology upon RSV challenge. Intriguingly, co-expression of VISA reduced Th2 cytokine (IL-4, IL-5, and IL-10) production induced by Bac-CF/tF64, thus relieving lung pathology upon a subsequent RSV challenge. Our results indicated that the Bac-CF/tF64 vector incorporated with the VISA molecule may provide an effective vaccine strategy for protection against RSV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Baculovirus infection induces disruption of the nuclear lamina.

    PubMed

    Zhang, Xiaomei; Xu, Kaiyan; Wei, Denghui; Wu, Wenbi; Yang, Kai; Yuan, Meijin

    2017-08-10

    Baculovirus nucleocapsids egress from the nucleus primarily via budding at the nuclear membrane. The nuclear lamina underlying the nuclear membrane represents a substantial barrier to nuclear egress. Whether the nuclear lamina undergoes disruption during baculovirus infection remains unknown. In this report, we generated a clonal cell line, Sf9-L, that stably expresses GFP-tagged Drosophila lamin B. GFP autofluorescence colocalized with immunofluorescent anti-lamin B at the nuclear rim of Sf9-L cells, indicating GFP-lamin B was incorporated into the nuclear lamina. Meanwhile, virus was able to replicate normally in Sf9-L cells. Next, we investigated alterations to the nuclear lamina during baculovirus infection in Sf9-L cells. A portion of GFP-lamin B localized diffusely at the nuclear rim, and some GFP-lamin B was redistributed within the nucleus during the late phase of infection, suggesting the nuclear lamina was partially disrupted. Immunoelectron microscopy revealed associations between GFP-lamin B and the edges of the electron-dense stromal mattes of the virogenic stroma, intranuclear microvesicles, and ODV envelopes and nucleocapsids within the nucleus, indicating the release of some GFP-lamin B from the nuclear lamina. Additionally, GFP-lamin B phosphorylation increased upon infection. Based on these data, baculovirus infection induced lamin B phosphorylation and disruption of the nuclear lamina.

  6. Expression of the hemagglutinin HA1 subunit of the equine influenza virus using a baculovirus expression system.

    PubMed

    Sguazza, Guillermo H; Fuentealba, Nadia A; Tizzano, Marco A; Galosi, Cecilia M; Pecoraro, Marcelo R

    2013-01-01

    Equine influenza virus is a leading cause of respiratory disease in horses worldwide. Disease prevention is by vaccination with inactivated whole virus vaccines. Most current influenza vaccines are generated in embryonated hens' eggs. Virions are harvested from allantoic fluid and chemically inactivated. Although this system has served well over the years, the use of eggs as the substrate for vaccine production has several well-recognized disadvantages (cost, egg supply, waste disposal and yield in eggs). The aim of this study was to evaluate a baculovirus system as a potential method for producing recombinant equine influenza hemagglutinin to be used as a vaccine. The hemagglutinin ectodomain (HA1 subunit) was cloned and expressed using a baculovirus expression vector. The expression was determined by SDS-PAGE and immunoblotting. A high yield, 20μg/ml of viral protein, was obtained from recombinant baculovirus-infected cells. The immune response in BALB/c mice was examined following rHA1 inoculation. Preliminary results show that recombinant hemagglutinin expressed from baculovirus elicits a strong antibody response in mice; therefore it could be used as an antigen for subunit vaccines and diagnostic tests. Copyright © 2013 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  7. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohareer, Krishnaveni; Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046; Sahdev, Sudhir

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors,more » which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.« less

  8. A New theraphosid Spider Toxin Causes Early Insect Cell Death by Necrosis When Expressed In Vitro during Recombinant Baculovirus Infection

    PubMed Central

    Ardisson-Araújo, Daniel Mendes Pereira; Morgado, Fabrício Da Silva; Schwartz, Elisabeth Ferroni; Corzo, Gerardo; Ribeiro, Bergmann Morais

    2013-01-01

    Baculoviruses are the most studied insect viruses in the world and are used for biological control of agricultural and forest insect pests. They are also used as versatile vectors for expression of heterologous proteins. One of the major problems of their use as biopesticides is their slow speed to kill insects. Thus, to address this shortcoming, insect-specific neurotoxins from arachnids have been introduced into the baculovirus genome solely aiming to improve its virulence. In this work, an insecticide-like toxin gene was obtained from a cDNA derived from the venom glands of the theraphosid spider Brachypelma albiceps. The mature form of the peptide toxin (called Ba3) has a high content of basic amino acid residues, potential for three possible disulfide bonds, and a predicted three-stranded β-sheetDifferent constructions of the gene were engineered for recombinant baculovirus Autographa californica multiple nuclepolyhedrovirus (AcMNPV) expression. Five different forms of Ba3 were assessed; (1) the full-length sequence, (2) the pro-peptide and mature region, (3) only the mature region, and the mature region fused to an (4) insect or a (5) virus-derived signal peptide were inserted separately into the genome of the baculovirus. All the recombinant viruses induced cell death by necrosis earlier in infection relative to a control virus lacking the toxin gene. However, the recombinant virus containing the mature portion of the toxin gene induced a faster cell death than the other recombinants. We found that the toxin construct with the signal peptide and/or pro-peptide regions delayed the necrosis phenotype. When infected cells were subjected to ultrastructural analysis, the cells showed loss of plasma membrane integrity and structural changes in mitochondria before death. Our results suggest this use of baculovirus is a potential tool to help understand or to identify the effect of insect-specific toxic peptides when produced during infection of insect cells. PMID

  9. Use of baculovirus expression system for generation of virus-like particles: successes and challenges.

    PubMed

    Liu, Fuxiao; Wu, Xiaodong; Li, Lin; Liu, Zengshan; Wang, Zhiliang

    2013-08-01

    The baculovirus expression system (BES) has been one of the versatile platforms for the production of recombinant proteins requiring multiple post-translational modifications, such as folding, oligomerization, phosphorylation, glycosylation, acylation, disulfide bond formation and proteolytic cleavage. Advances in recombinant DNA technology have facilitated application of the BES, and made it possible to express multiple proteins simultaneously in a single infection and to produce multimeric proteins sharing functional similarity with their natural analogs. Therefore, the BES has been used for the production of recombinant proteins and the construction of virus-like particles (VLPs), as well as for the development of subunit vaccines, including VLP-based vaccines. The VLP, which consists of one or more structural proteins but no viral genome, resembles the authentic virion but cannot replicate in cells. The high-quality recombinant protein expression and post-translational modifications obtained with the BES, along with its capacity to produce multiple proteins, imply that it is ideally suited to VLP production. In this article, we critically review the pros and cons of using the BES as a platform to produce both enveloped and non-enveloped VLPs. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Evaluation of the Insecticidal Efficacy of Wild Type and Recombinant Baculoviruses.

    PubMed

    Popham, Holly J R; Ellersieck, Mark R; Li, Huarong; Bonning, Bryony C

    2016-01-01

    A considerable amount of work has been undertaken to genetically enhance the efficacy of baculovirus insecticides. Following construction of a genetically altered baculovirus, laboratory bioassays are used to quantify various parameters of insecticidal activity such as the median lethal concentration (or dose) required to kill 50 % of infected larvae (LC50 or LD50), median survival of larvae infected (ST50), and feeding damage incurred by infected larvae. In this chapter, protocols are described for a variety of bioassays and the corresponding data analyses for assessment of the insecticidal activity of baculovirus insecticides.

  11. Identification of a high-efficiency baculovirus DNA replication origin that functions in insect and mammalian cells.

    PubMed

    Wu, Yueh-Lung; Wu, Carol-P; Huang, Yu-Hui; Huang, Sheng-Ping; Lo, Huei-Ru; Chang, Hao-Shuo; Lin, Pi-Hsiu; Wu, Ming-Cheng; Chang, Chia-Jung; Chao, Yu-Chan

    2014-11-01

    The p143 gene from Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) has been found to increase the expression of luciferase, which is driven by the polyhedrin gene promoter, in a plasmid with virus coinfection. Further study indicated that this is due to the presence of a replication origin (ori) in the coding region of this gene. Transient DNA replication assays showed that a specific fragment of the p143 coding sequence, p143-3, underwent virus-dependent DNA replication in Spodoptera frugiperda IPLB-Sf-21 (Sf-21) cells. Deletion analysis of the p143-3 fragment showed that subfragment p143-3.2a contained the essential sequence of this putative ori. Sequence analysis of this region revealed a unique distribution of imperfect palindromes with high AT contents. No sequence homology or similarity between p143-3.2a and any other known ori was detected, suggesting that it is a novel baculovirus ori. Further study showed that the p143-3.2a ori can replicate more efficiently in infected Sf-21 cells than baculovirus homologous regions (hrs), the major baculovirus ori, or non-hr oris during virus replication. Previously, hr on its own was unable to replicate in mammalian cells, and for mammalian viral oris, viral proteins are generally required for their proper replication in host cells. However, the p143-3.2a ori was, surprisingly, found to function as an efficient ori in mammalian cells without the need for any viral proteins. We conclude that p143 contains a unique sequence that can function as an ori to enhance gene expression in not only insect cells but also mammalian cells. Baculovirus DNA replication relies on both hr and non-hr oris; however, so far very little is known about the latter oris. Here we have identified a new non-hr ori, the p143 ori, which resides in the coding region of p143. By developing a novel DNA replication-enhanced reporter system, we have identified and located the core region required for the p143 ori. This ori contains

  12. Baculovirus-expressed vitamin D-binding protein-macrophage activating factor (DBP-maf) activates osteoclasts and binding of 25-hydroxyvitamin D(3) does not influence this activity.

    PubMed

    Swamy, N; Ghosh, S; Schneider, G B; Ray, R

    2001-01-01

    Vitamin D-binding protein (DBP) is a multi-functional serum protein that is converted to vitamin D-binding protein-macrophage activating factor (DBP-maf) by post-translational modification. DBP-maf is a new cytokine that mediates bone resorption by activating osteoclasts, which are responsible for resorption of bone. Defective osteoclast activation leads to disorders like osteopetrosis, characterized by excessive accumulation of bone mass. Previous studies demonstrated that two nonallelic mutations in the rat with osteopetrosis have independent defects in the cascade involved in the conversion of DBP to DBP-maf. The skeletal defects associated with osteopetrosis are corrected in these mutants with in vivo DBP-maf treatment. This study evaluates the effects of various forms of DBP-maf (native, recombinant, and 25-hydroxyvitamin D(3) bound) on osteoclast function in vitro in order to determine some of the structural requirements of this protein that relate to bone resorbing activities. Osteoclast activity was determined by evaluating pit formation using osteoclasts, isolated from the long bones of newborn rats, incubated on calcium phosphate coated, thin film, Ostologic MultiTest Slides. Incubation of osteoclasts with ex vivo generated native DBP-maf resulted in a dose dependent, statistically significant, activation of the osteoclasts. The activation was similar whether or not the vitamin D binding site of the DBP-maf was occupied. The level of activity in response to DBP-maf was greater than that elicited by optimal doses of other known stimulators (PTH and 1,25(OH(2)D(3)) of osteoclast function. Furthermore, another potent macrophage activating factor, interferon--gamma, had no effect on osteoclast activity. The activated form of a full length recombinant DBP, expressed in E. coli showed no activity in the in vitro assay. Contrary to this finding, baculovirus-expressed recombinant DBP-maf demonstrated significant osteoclast activating activity. The normal

  13. Rift Valley Fever Virus Structural and Nonstructural Proteins: Recombinant Protein Expression and Immunoreactivity Against Antisera from Sheep

    PubMed Central

    Faburay, Bonto; Wilson, William; McVey, D. Scott; Drolet, Barbara S.; Weingartl, Hana; Madden, Daniel; Young, Alan; Ma, Wenjun

    2013-01-01

    Abstract The Rift Valley fever virus (RVFV) encodes the structural proteins nucleoprotein (N), aminoterminal glycoprotein (Gn), carboxyterminal glycoprotein (Gc), and L protein, 78-kD, and the nonstructural proteins NSm and NSs. Using the baculovirus system, we expressed the full-length coding sequence of N, NSs, NSm, Gc, and the ectodomain of the coding sequence of the Gn glycoprotein derived from the virulent strain of RVFV ZH548. Western blot analysis using anti-His antibodies and monoclonal antibodies against Gn and N confirmed expression of the recombinant proteins, and in vitro biochemical analysis showed that the two glycoproteins, Gn and Gc, were expressed in glycosylated form. Immunoreactivity profiles of the recombinant proteins in western blot and in indirect enzyme-linked immunosorbent assay against a panel of antisera obtained from vaccinated or wild type (RVFV)-challenged sheep confirmed the results obtained with anti-His antibodies and demonstrated the suitability of the baculo-expressed antigens for diagnostic assays. In addition, these recombinant proteins could be valuable for the development of diagnostic methods that differentiate infected from vaccinated animals (DIVA). PMID:23962238

  14. Identification of structural proteins of koi herpesvirus.

    PubMed

    Fuchs, Walter; Granzow, Harald; Dauber, Malte; Fichtner, Dieter; Mettenleiter, Thomas C

    2014-12-01

    As a prerequisite for development of improved vaccines and diagnostic tools for control of the fish pathogen koi herpesvirus, or cyprinid herpesvirus 3 (CyHV-3), we have started to identify putative viral envelope and capsid proteins. The complete or partial CyHV-3 open reading frames ORF25, ORF65, ORF92, ORF99, ORF136, ORF138, ORF146, ORF148, and ORF149 were expressed as bacterial fusion proteins, which were then used for preparation of monospecific rabbit antisera. All of the sera that were obtained detected their target proteins in cells transfected with the corresponding eukaryotic expression plasmids. However, only the type I membrane proteins pORF25, pORF65, pORF99, pORF136 and pORF149 and the major capsid protein pORF92 were sufficiently abundant and immunogenic to permit unambiguous detection in CyHV-3-infected cells. In indirect immunofluorescence tests (IIFT), sera from naturally or experimentally CyHV-3-infected carp and koi predominantly reacted with cells transfected with expression plasmids encoding pORF25, pORF65, pORF148, and pORF149, which represent a family of related CyHV-3 membrane proteins. Moreover, several neutralizing monoclonal antibodies raised against CyHV-3 virions proved to be specific for pORF149 in IIFT of transfected cells and in immunoelectron microscopic analysis of CyHV-3 particles. Since pORF149 appears to be an immunorelevant envelope protein of CyHV-3, a recombinant baculovirus was generated for its expression in insect cells, and pORF149 was shown to be incorporated into pseudotyped baculovirus particles, which might be suitable as diagnostic tools or subunit vaccines.

  15. Recombinant expression of extracellular domain of mutant Epidermal Growth Factor Receptor in prokaryotic and baculovirus expression systems.

    PubMed

    Vettath, Sunitha Kodengil; Shivashankar, Gaganashree; Menon, Krishnakumar N; Vijayachandran, Lakshmi S

    2018-04-15

    Epidermal Growth Factor Receptor variant III (EGFRvIII) is a tumor specific antigen detected in various tumors including gliomas, breast cancer, lung cancer, head and neck squamous cell carcinoma (HNSCC). Screening of EGFRvIII targeting drug molecules can be accelerated by developing drug screening platforms using recombinantly expressed protein. Choice of expression system is one of the major factors deciding the success of recombinant expression of a protein. In our study, we have tried to express and purify the extracellular domain (ECD) of this highly unstable protein using bacterial and baculovirus expression systems to select the expression system suited for our purpose. Even though the protein was successfully expressed in prokaryotic system, purification could be done only under denaturing conditions. But in the baculovirus expression system, the protein was expressed in soluble form and could be purified under native conditions, with single step of purification. Based on our results, we conclude that insect cells are better choice over E. coli cells for expressing EGFRvIII ECD in soluble form. This study provides insights for other researchers involved in expression of similar unstable membrane proteins, on selecting the best expression system and challenges involved. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Protective Efficacy of a Single Dose of Baculovirus Hemagglutinin-Based Vaccine in Chickens and Ducks Against Homologous and Heterologous H5N1 Virus Infections

    PubMed Central

    Park, Eun Hye; Song, Byung Min; Yum, Jung; Kim, Ji An; Oh, Seung Kyoo; Kim, Hyun Soo; Cho, Gil Jae

    2014-01-01

    Abstract Outbreaks of the highly pathogenic H5N1 virus in poultry and humans are ongoing. Vaccination is an efficient method for prevention of H5N1 infection. Using chickens and ducks, we assessed the efficacy of a vaccine comprising H5N1 hemagglutinin (HA) protein produced in a baculovirus expression system. The immunized chickens and ducks were protected against lethal infection by H5N1 in an antigen dose-dependent manner. Complete protection against homologous challenge and partial protection against heterologous challenge were achieved in chickens immunized with 5 μg HA protein and in ducks immunized with 10 μg HA protein. The IgG antibody subtype was mainly detected in the sera and tissues, including the lungs. The neuraminidase (NA) inhibition assay was negative in immunized chickens and ducks. Our results indicated that the expressed HA protein by baculovirus was immunogenic to both chickens and ducks, and the immunized chickens and ducks were protected from the lethal infections of highly pathogenic H5N1 influenza virus, though ducks required more HA protein than chickens to be protected. Also, baculovirus HA-vaccinated poultry can be differentiated from infected poultry by NA inhibition assay. PMID:25211640

  17. Proteolytic Processing and Assembly of gag and gag-pol Proteins of TED, a Baculovirus-Associated Retrotransposon of the Gypsy Family

    PubMed Central

    Hajek, Kathryn L.; Friesen, Paul D.

    1998-01-01

    TED (transposable element D) is an env-containing member of the gypsy family of retrotransposons that represents a possible retrovirus of invertebrates. This lepidopteran (moth) retroelement contains gag and pol genes that encode proteins capable of forming viruslike particles (VLP) with reverse transcriptase. Since VLP are likely intermediates in TED transposition, we investigated the roles of gag and pol in TED capsid assembly and maturation. By using constructed baculovirus vectors and TED Gag-specific antiserum, we show that the principal translation product of gag (Pr55gag) is cleaved to produce a single VLP structural protein, p37gag. Replacement of Asp436 within the retrovirus-like active site of the pol-encoded protease (PR) abolished Pr55gag cleavage and demonstrated the requirement for PR in capsid processing. As shown by expression of an in-frame fusion of TED gag and pol, PR is derived from the Gag-Pol polyprotein Pr195gag-pol. The PR cleavage site within Pr55gag was mapped to a position near the junction of a basic, nucleocapsid-like domain and a C-terminal acidic domain. Once released by cleavage, the C-terminal fragment was not detected. This acidic fragment was dispensable for VLP assembly, as demonstrated by the formation of VLP by C-terminal Pr55gag truncation proteins and replacement of the acidic domain with a heterologous protein. In contrast, C-terminal deletions that extended into the adjacent nucleocapsid-like domain of Pr55gag abolished VLP recovery and demonstrated that this central region contributes to VLP assembly or stability, or both. Collectively, these data suggest that the single TED protein p37gag provides both capsid and nucleocapsid functions. TED may therefore use a simple processing strategy for VLP assembly and genome packaging. PMID:9765414

  18. Proteolytic processing and assembly of gag and gag-pol proteins of TED, a baculovirus-associated retrotransposon of the gypsy family.

    PubMed

    Hajek, K L; Friesen, P D

    1998-11-01

    TED (transposable element D) is an env-containing member of the gypsy family of retrotransposons that represents a possible retrovirus of invertebrates. This lepidopteran (moth) retroelement contains gag and pol genes that encode proteins capable of forming viruslike particles (VLP) with reverse transcriptase. Since VLP are likely intermediates in TED transposition, we investigated the roles of gag and pol in TED capsid assembly and maturation. By using constructed baculovirus vectors and TED Gag-specific antiserum, we show that the principal translation product of gag (Pr55(gag)) is cleaved to produce a single VLP structural protein, p37(gag). Replacement of Asp436 within the retrovirus-like active site of the pol-encoded protease (PR) abolished Pr55(gag) cleavage and demonstrated the requirement for PR in capsid processing. As shown by expression of an in-frame fusion of TED gag and pol, PR is derived from the Gag-Pol polyprotein Pr195(gag-pol). The PR cleavage site within Pr55(gag) was mapped to a position near the junction of a basic, nucleocapsid-like domain and a C-terminal acidic domain. Once released by cleavage, the C-terminal fragment was not detected. This acidic fragment was dispensable for VLP assembly, as demonstrated by the formation of VLP by C-terminal Pr55(gag) truncation proteins and replacement of the acidic domain with a heterologous protein. In contrast, C-terminal deletions that extended into the adjacent nucleocapsid-like domain of Pr55(gag) abolished VLP recovery and demonstrated that this central region contributes to VLP assembly or stability, or both. Collectively, these data suggest that the single TED protein p37(gag) provides both capsid and nucleocapsid functions. TED may therefore use a simple processing strategy for VLP assembly and genome packaging.

  19. Overexpression of Promyelocytic Leukemia Protein Precludes the Dispersal of ND10 Structures and Has No Effect on Accumulation of Infectious Herpes Simplex Virus 1 or Its Proteins

    PubMed Central

    Lopez, Pascal; Jacob, Robert J.; Roizman, Bernard

    2002-01-01

    A key early event in the replication of herpes simplex virus 1 (HSV-1) is the localization of infected-cell protein no. 0 (ICP0) in nuclear structures knows as ND10 or promyelocytic leukemia oncogenic domains (PODs). This is followed by dispersal of ND10 constituents such as the promyelocytic leukemia protein (PML), CREB-binding protein (CBP), and Daxx. Numerous experiments have shown that this dispersal is mediated by ICP0. PML is thought to be the organizing structural component of ND10. To determine whether the virus targets PML because it is inimical to viral replication, telomerase-immortalized human foreskin fibroblasts and HEp-2 cells were transduced with wild-type baculovirus or a baculovirus expressing the Mr 69,000 form of PML. The transduced cultures were examined for expression and localization of PML in mock-infected and HSV-1-infected cells. The results obtained from studies of cells overexpressing PML were as follows. (i) Transduced cells accumulate large amounts of unmodified and SUMO-I-modified PML. (ii) Mock-infected cells exhibited enlarged ND10 structures containing CBP and Daxx in addition to PML. (iii) In infected cells, ICP0 colocalized with PML in ND10 early in infection, but the two proteins did not overlap or were juxtaposed in orderly structures. (iv) The enlarged ND10 structures remained intact at least until 12 h after infection and retained CBP and Daxx in addition to PML. (v) Overexpression of PML had no effect on the accumulation of viral proteins representative of α, β, or γ groups and had no effect on the accumulation of infectious virus in cells infected with wild-type virus or a mutant (R7910) from which the α0 genes had been deleted. These results indicate the following: (i) PML overexpressed in transduced cells cannot be differentiated from endogenous PML with respect to sumoylation and localization in ND10 structures. (ii) PML does not affect viral replication or the changes in the localization of ICP0 through infection

  20. Antigenic evaluation of a recombinant baculovirus-expressed Sarcocystis neurona SAG1 antigen.

    PubMed

    Gupta, G D; Lakritz, J; Saville, W J; Livingston, R S; Dubey, J P; Middleton, J R; Marsh, A E

    2004-10-01

    Sarcocystis neurona is the primary parasite associated with equine protozoal myeloencephalitis (EPM). This is a commonly diagnosed neurological disorder in the Americas that infects the central nervous system of horses. Current serologic assays utilize culture-derived parasites as antigen. This method requires large numbers of parasites to be grown in culture, which is labor intensive and time consuming. Also, a culture-derived whole-parasite preparation contains conserved antigens that could cross-react with antibodies against other Sarcocystis species and members of Sarcocystidae such as Neospora spp., Hammondia spp., and Toxoplasma gondii. Therefore, there is a need to develop an improved method for the detection of S. neurona-specific antibodies. The sera of infected horses react strongly to surface antigen 1 (SnSAG1), an approximately 29-kDa protein, in immunoblot analysis, suggesting that it is an immunodominant antigen. The SnSAG1 gene of S. neurona was cloned, and recombinant S. neurona SAG1 protein (rSnSAG1-Bac) was expressed with the use of a baculovirus system. By immunoblot analysis, the rSnSAG1-Bac antigen detected antibodies to S. neurona from naturally infected and experimentally inoculated equids, cats, rabbit, mice, and skunk. This is the first report of a baculovirus-expressed recombinant S. neurona antigen being used to detect anti-S. neurona antibodies in a variety of host species.

  1. Zika Virus Baculovirus-Expressed Virus-Like Particles Induce Neutralizing Antibodies in Mice.

    PubMed

    Dai, Shiyu; Zhang, Tao; Zhang, Yanfang; Wang, Hualin; Deng, Fei

    2018-06-01

    The newly emerged mosquito-borne Zika virus (ZIKV) strains pose a global challenge owing to its ability to cause microcephaly and neurological disorders. Several ZIKV vaccine candidates have been proposed, including inactivated and live attenuated virus vaccines, vector-based vaccines, DNA and RNA vaccines. These have been shown to be efficacious in preclinical studies in mice and nonhuman primates, but their use will potentially be a threat to immunocompromised individuals and pregnant women. Virus-like particles (VLPs) are empty particles composed merely of viral proteins, which can serve as a safe and valuable tool for clinical prevention and treatment strategies. In this study, we used a new strategy to produce ZIKV VLPs based on the baculovirus expression system and demonstrated the feasibility of their use as a vaccine candidate. The pre-membrane (prM) and envelope (E) proteins were co-expressed in insect cells and self-assembled into particles similar to ZIKV. We found that the ZIKV VLPs could be quickly and easily prepared in large quantities using this system. The VLPs were shown to have good immunogenicity in immunized mice, as they stimulated high levels of virus neutralizing antibody titers, ZIKV-specific IgG titers and potent memory T cell responses. Thus, the baculovirus-based ZIKV VLP vaccine is a safe, effective and economical vaccine candidate for use against ZIKV.

  2. Effect of different baculovirus inactivation procedures on the integrity and immunogenicity of porcine parvovirus-like particles.

    PubMed

    Rueda, P; Fominaya, J; Langeveld, J P; Bruschke, C; Vela, C; Casal, J I

    2000-11-22

    We have demonstrated earlier the usefulness of recombinant porcine parvovirus (PPV) virus-like particles (VLPs) as an efficient recombinant vaccine for PPV. Here, we have demonstrated that preparations of PPV VLPs could be contaminated by recombinant baculoviruses. Since these baculoviruses can be a problem for the registration and safety requirements of the recombinant vaccine, we have tested different baculovirus inactivation strategies, studying simultaneously the integrity and immunogenicity of the VLPs. These methods were pasteurization, treatment with detergents and alkylation with binary ethylenimine (BEI). The structural and functional integrity of the PPV VLPs after the inactivation treatments were analyzed by electron microscopy, hemagglutination, double antibody sandwich (DAS)-ELISA and immunogenicity studies. Binary ethylenimine and Triton X-100 inactivated particles maintained all the original structural and antigenic properties. In addition, PPV VLPs were subjected to size-exclusion chromatography to analyze the presence of VP2 monomers or any other contaminant. The resulting highly purified material was used as the standard of reference to quantify PPV VLPs in order to determine the dose of vaccine by DAS-ELISA. After immunization experiments in guinea pigs, the antibody titers obtained with all the inactivation procedures were very similar. Triton X-100 treatment was selected for further testing in animals because of the speed, simplicity and safety of the overall procedure.

  3. Transforming Lepidopteran Insect Cells for Improved Protein Processing and Expression

    USDA-ARS?s Scientific Manuscript database

    The lepidopteran insect cells used with the baculovirus expression vector system (BEVS) are capable of synthesizing and accurately processing foreign proteins. However, proteins expressed in baculovirus-infected cells often fail to be completely processed, or are not processed in a manner that meet...

  4. Insecticidal activity of two proteases against Spodoptera frugiperda larvae infected with recombinant baculoviruses

    PubMed Central

    2010-01-01

    Background Baculovirus comprise the largest group of insect viruses most studied worldwide, mainly because they efficiently kill agricutural insect pests. In this study, two recombinant baculoviruses containing the ScathL gene from Sarcophaga peregrina (vSynScathL), and the Keratinase gene from the fungus Aspergillus fumigatus (vSynKerat), were constructed. and their insecticidal properties analysed against Spodoptera frugiperda larvae. Results Bioassays of third-instar and neonate S. frugiperda larvae with vSynScathL and vSynKerat showed a decrease in the time needed to kill the infected insects when compared to the wild type virus. We have also shown that both recombinants were able to increase phenoloxidase activity in the hemolymph of S. frugiperda larvae. The expression of proteases in infected larvae resulted in destruction of internal tissues late in infection, which could be the reason for the increased viral speed of kill. Conclusions Baculoviruses and their recombinant forms constitute viable alternatives to chemical insecticides. Recombinant baculoviruses containing protease genes can be added to the list of engineered baculoviruses with great potential to be used in integrated pest management programs. PMID:20587066

  5. N-TERMINALLY ELONGATED SpliInx2 AND SpliInx3 REDUCE BACULOVIRUS-TRIGGERED APOPTOSIS VIA HEMICHANNEL CLOSURE.

    PubMed

    Chen, Ya-Bin; Xiao, Wei; Li, Ming; Zhang, Yan; Yang, Yang; Hu, Jian-Sheng; Luo, Kai-Jun

    2016-05-01

    The hemichannel and gap junction channel are major portals for the release of factors responsible for the effects of apoptotic cells on the spread of apoptosis to neighboring cells and apoptotic corpse clearance, typically by phagocytes. The N-terminal cytoplasmic domain in the connexins, gap junction proteins in vertebrate, has been implicated in regulating channel closure. However, little is known about how the hemichannel close responds to apoptotic signaling transduction leading to the reduction of neighboring cellular apoptosis in an invertebrate. An insect Bac-to-Bac expression system, pFastBac(TM) HT A, allows us to construct an N-terminally elongated SpliInx2 (Nte-Inx2) and SpliInx3 (Nte-Inx3). Here, we demonstrated that recombinant baculovirus Bac-Nte-Inx2 (reBac-Net-Inx2) and Bac-Nte-Inx3 (reBac-Nte-Inx3) closed the endogenous hemichannel on the Sf9 cell surface. Importantly, primary baculovirus infections significantly caused early apoptosis, and this apoptosis was reduced by hemichannel-closed Sf9 cells at 24-h post-infection (PI). Although N-terminal-elongated residue led to the increase in the phosphorylated sites in both Nte-Inx2 and Nte-Inx3 and an additional transmembrane domain in Nte-Inx3, both the proteins localized on the cell surface, suggesting Nte-Inxs proteins could mediate hemichannel closure. Further supporting evidence showed that hemichannel closure was dependent on N-Inxs expressed by baculovirus polyhedrin promoter, which began to express at 18-24 h PI. These results identify an unconventional function of N-terminal-elongated innexins that could act as a plug to manipulate hemichannel closure and provide a mechanism connecting the effect of hemichannel closure directly to apoptotic signaling transduction from intracellular to extracellular compartment. © 2016 Wiley Periodicals, Inc.

  6. Chaperokine function of recombinant Hsp72 produced in insect cells using a baculovirus expression system is retained.

    PubMed

    Zheng, Hongying; Nagaraja, Ganachari M; Kaur, Punit; Asea, Edwina E; Asea, Alexzander

    2010-01-01

    Extracellular heat shock protein 72 (Hsp72; inducible form of the 70-kDa heat shock protein) plays a critical role in innate and adaptive immune responses and has shown promise as an ideal adjuvant for the optimization of antigen-specific anti-tumor vaccines. Recent studies suggest that to correctly elucidate the mechanisms by which Hsp72 exerts its beneficial effects in vitro, great care must be taken to ensure that endotoxin by-products do not invalidate the findings. In this study, we have taken advantage of the baculovirus expression vector system for production of endotoxin-free recombinant Hsp72. The coding sequence of human hsp72 was recombined into the baculovirus immediately downstream of the strong polyhedron gene promoter. Ninety-six h post-infection of Sf9 insect cells with recombinant baculovirus, maximal levels of Hsp72 protein were detected. The recombinant human Hsp72 was purified by affinity chromatography from insect cells, and purity was confirmed by SDS-PAGE and mass spectrometry. The purified human recombinant Hsp72(bv) (Hsp72 produced using the BEVS) was demonstrated to have no endotoxin contamination and was shown to have stimulated potent calcium flux in the human monocytic cell line. Furthermore, recombinant Hsp72(bv) enhanced the tolerance of neuroblastoma cells to heat stress-induced cell death and displayed classical chaperokine functions including augmentation of inflammatory cytokine productions in mouse splenocytes. The production of functional, endotoxin-free recombinant human Hsp72(bv) in insect cells is inexpensive and convenient and eliminates the need of special procedures for endotoxin depletion. Endotoxin-free recombinant human Hsp72(bv) can now be used to unlock the important role Hsp72 plays in modulating immune function.

  7. Chaperokine Function of Recombinant Hsp72 Produced in Insect Cells Using a Baculovirus Expression System Is Retained*

    PubMed Central

    Zheng, Hongying; Nagaraja, Ganachari M.; Kaur, Punit; Asea, Edwina E.; Asea, Alexzander

    2010-01-01

    Extracellular heat shock protein 72 (Hsp72; inducible form of the 70-kDa heat shock protein) plays a critical role in innate and adaptive immune responses and has shown promise as an ideal adjuvant for the optimization of antigen-specific anti-tumor vaccines. Recent studies suggest that to correctly elucidate the mechanisms by which Hsp72 exerts its beneficial effects in vitro, great care must be taken to ensure that endotoxin by-products do not invalidate the findings. In this study, we have taken advantage of the baculovirus expression vector system for production of endotoxin-free recombinant Hsp72. The coding sequence of human hsp72 was recombined into the baculovirus immediately downstream of the strong polyhedron gene promoter. Ninety-six h post-infection of Sf9 insect cells with recombinant baculovirus, maximal levels of Hsp72 protein were detected. The recombinant human Hsp72 was purified by affinity chromatography from insect cells, and purity was confirmed by SDS-PAGE and mass spectrometry. The purified human recombinant Hsp72bv (Hsp72 produced using the BEVS) was demonstrated to have no endotoxin contamination and was shown to have stimulated potent calcium flux in the human monocytic cell line. Furthermore, recombinant Hsp72bv enhanced the tolerance of neuroblastoma cells to heat stress-induced cell death and displayed classical chaperokine functions including augmentation of inflammatory cytokine productions in mouse splenocytes. The production of functional, endotoxin-free recombinant human Hsp72bv in insect cells is inexpensive and convenient and eliminates the need of special procedures for endotoxin depletion. Endotoxin-free recombinant human Hsp72bv can now be used to unlock the important role Hsp72 plays in modulating immune function. PMID:19861412

  8. Bioengineered baculoviruses as new class of therapeutics using micro and nanotechnologies: principles, prospects and challenges.

    PubMed

    Paul, Arghya; Hasan, Anwarul; Rodes, Laetitia; Sangaralingam, Mugundhine; Prakash, Satya

    2014-05-01

    Designing a safe and efficient gene delivery system is required for success of gene therapy trials. Although a wide variety of viral, non-viral and polymeric nanoparticle based careers have been widely studied, the current gene delivery vehicles are limited by their suboptimal, non-specific therapeutic efficacy and acute immunological reactions, leading to unwanted side effects. Recently, there has been a growing interest in insect-cell-originated baculoviruses as gene delivery vehicles for diverse biomedical applications. Specifically, the emergence of diverse types of surface functionalized and bioengineered baculoviruses is posed to edge over currently available gene delivery vehicles. This is primarily because baculoviruses are comparatively non-pathogenic and non-toxic as they cannot replicate in mammalian cells and do not invoke any cytopathic effect. Moreover, emerging advanced studies in this direction have demonstrated that hybridizing the baculovirus surface with different kinds of bioactive therapeutic molecules, cell-specific targeting moieties, protective polymeric grafts and nanomaterials can significantly improve the preclinical efficacy of baculoviruses. This review presents a comprehensive overview of the recent advancements in the field of bioengineering and biotherapeutics to engineer baculovirus hybrids for tailored gene therapy, and articulates in detail the potential and challenges of these strategies for clinical realization. In addition, the article illustrates the rapid evolvement of microfluidic devices as a high throughput platform for optimizing baculovirus production and treatment conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Recombinant ELISA using baculovirus-expressed VP2 for detection of antibodies against canine parvovirus.

    PubMed

    Elia, Gabriella; Desario, Costantina; Pezzoni, Giulia; Camero, Michele; Brocchi, Emiliana; Decaro, Nicola; Martella, Vito; Buonavoglia, Canio

    2012-09-01

    The gene encoding the VP2 protein of canine parvovirus type 2 was expressed in an insect-baculovirus system. The recombinant (r) VP2 was similar antigenically/functionally to the native capsid protein as demonstrated by hemagglutination, Western blotting and hemagglutination inhibition test, using Canine parvovirus type-2 (CPV-2) positive sera. An enzyme-linked immunosorbent assay (ELISA) using the rVP2 was used for testing CPV-2 positive and negative sera from dogs and for determining the threshold of maternally derived antibodies interfering with successful vaccination of pups against CPV-2. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Chapter 15. transforming lepidopteran insect cells for continuous recombinant protein expression

    USDA-ARS?s Scientific Manuscript database

    The baculovirus expression vector system (BEVS) is widely used to produce large quantities of recombinant proteins. However, yields of extracellular and membrane-bound proteins obtained with this system often are very low, possibly due to the adverse effects of baculovirus infection on the host ins...

  11. Modularity and evolutionary constraints in a baculovirus gene regulatory network

    PubMed Central

    2013-01-01

    Background The structure of regulatory networks remains an open question in our understanding of complex biological systems. Interactions during complete viral life cycles present unique opportunities to understand how host-parasite network take shape and behave. The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is a large double-stranded DNA virus, whose genome may encode for 152 open reading frames (ORFs). Here we present the analysis of the ordered cascade of the AgMNPV gene expression. Results We observed an earlier onset of the expression than previously reported for other baculoviruses, especially for genes involved in DNA replication. Most ORFs were expressed at higher levels in a more permissive host cell line. Genes with more than one copy in the genome had distinct expression profiles, which could indicate the acquisition of new functionalities. The transcription gene regulatory network (GRN) for 149 ORFs had a modular topology comprising five communities of highly interconnected nodes that separated key genes that are functionally related on different communities, possibly maximizing redundancy and GRN robustness by compartmentalization of important functions. Core conserved functions showed expression synchronicity, distinct GRN features and significantly less genetic diversity, consistent with evolutionary constraints imposed in key elements of biological systems. This reduced genetic diversity also had a positive correlation with the importance of the gene in our estimated GRN, supporting a relationship between phylogenetic data of baculovirus genes and network features inferred from expression data. We also observed that gene arrangement in overlapping transcripts was conserved among related baculoviruses, suggesting a principle of genome organization. Conclusions Albeit with a reduced number of nodes (149), the AgMNPV GRN had a topology and key characteristics similar to those observed in complex cellular organisms, which indicates

  12. BACULOVIRUS REPLICATION ALTERS HORMONE-REGULATED HOST DEVELOPMENT.

    EPA Science Inventory

    The baculovirus Lymantria dispar nuclear polyhedrosis virus interferes with insect larval development by altering the host's hormonal system. The level of haemolymph ecdysteroids, the insect moulting hormone, was found to be higher in virus-infected larvae than in uninfected cont...

  13. Baculovirus Insecticides in Latin America: Historical Overview, Current Status and Future Perspectives

    PubMed Central

    Haase, Santiago; Sciocco-Cap, Alicia; Romanowski, Víctor

    2015-01-01

    Baculoviruses are known to regulate many insect populations in nature. Their host-specificity is very high, usually restricted to a single or a few closely related insect species. They are amongst the safest pesticides, with no or negligible effects on non-target organisms, including beneficial insects, vertebrates and plants. Baculovirus-based pesticides are compatible with integrated pest management strategies and the expansion of their application will significantly reduce the risks associated with the use of synthetic chemical insecticides. Several successful baculovirus-based pest control programs have taken place in Latin American countries. Sustainable agriculture (a trend promoted by state authorities in most Latin American countries) will benefit from the wider use of registered viral pesticides and new viral products that are in the process of registration and others in the applied research pipeline. The success of baculovirus-based control programs depends upon collaborative efforts among government and research institutions, growers associations, and private companies, which realize the importance of using strategies that protect human health and the environment at large. Initiatives to develop new regulations that promote the use of this type of ecological alternatives tailored to different local conditions and farming systems are underway. PMID:25941826

  14. Covert Infection of Insects by Baculoviruses.

    PubMed

    Williams, Trevor; Virto, Cristina; Murillo, Rosa; Caballero, Primitivo

    2017-01-01

    Baculoviruses ( Baculoviridae ) are occluded DNA viruses that are lethal pathogens of the larval stages of some lepidopterans, mosquitoes, and sawflies (phytophagous Hymenoptera). These viruses have been developed as biological insecticides for control of insect pests and as expression vectors in biotechnological applications. Natural and laboratory populations frequently harbor covert infections by baculoviruses, often at a prevalence exceeding 50%. Covert infection can comprise either non-productive latency or sublethal infection involving low level production of virus progeny. Latency in cell culture systems involves the expression of a small subset of viral genes. In contrast, covert infection in lepidopterans is associated with differential infection of cell types, modulation of virus gene expression and avoidance of immune system clearance. The molecular basis for covert infection may reside in the regulation of host-virus interactions through the action of microRNAs (miRNA). Initial findings suggest that insect nudiviruses and vertebrate herpesviruses may provide useful analogous models for exploring the mechanisms of covert infection by baculoviruses. These pathogens adopt mixed-mode transmission strategies that depend on the relative fitness gains that accrue through vertical and horizontal transmission. This facilitates virus persistence when opportunities for horizontal transmission are limited and ensures virus dispersal in migratory host species. However, when host survival is threatened by environmental or physiological stressors, latent or persistent infections can be activated to produce lethal disease, followed by horizontal transmission. Covert infection has also been implicated in population level effects on host-pathogen dynamics due to the reduced reproductive capacity of infected females. We conclude that covert infections provide many opportunities to examine the complexity of insect-virus pathosystems at the organismal level and to explore

  15. Covert Infection of Insects by Baculoviruses

    PubMed Central

    Williams, Trevor; Virto, Cristina; Murillo, Rosa; Caballero, Primitivo

    2017-01-01

    Baculoviruses (Baculoviridae) are occluded DNA viruses that are lethal pathogens of the larval stages of some lepidopterans, mosquitoes, and sawflies (phytophagous Hymenoptera). These viruses have been developed as biological insecticides for control of insect pests and as expression vectors in biotechnological applications. Natural and laboratory populations frequently harbor covert infections by baculoviruses, often at a prevalence exceeding 50%. Covert infection can comprise either non-productive latency or sublethal infection involving low level production of virus progeny. Latency in cell culture systems involves the expression of a small subset of viral genes. In contrast, covert infection in lepidopterans is associated with differential infection of cell types, modulation of virus gene expression and avoidance of immune system clearance. The molecular basis for covert infection may reside in the regulation of host–virus interactions through the action of microRNAs (miRNA). Initial findings suggest that insect nudiviruses and vertebrate herpesviruses may provide useful analogous models for exploring the mechanisms of covert infection by baculoviruses. These pathogens adopt mixed-mode transmission strategies that depend on the relative fitness gains that accrue through vertical and horizontal transmission. This facilitates virus persistence when opportunities for horizontal transmission are limited and ensures virus dispersal in migratory host species. However, when host survival is threatened by environmental or physiological stressors, latent or persistent infections can be activated to produce lethal disease, followed by horizontal transmission. Covert infection has also been implicated in population level effects on host–pathogen dynamics due to the reduced reproductive capacity of infected females. We conclude that covert infections provide many opportunities to examine the complexity of insect–virus pathosystems at the organismal level and to

  16. Isolation and characterization of the DNA-binding protein (DBP) of the Autographa californica multiple nucleopolyhedrovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailov, Victor S.; N. K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 117808; Vanarsdall, Adam L.

    2008-01-20

    DNA-binding protein (DBP) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was expressed as an N-terminal His{sub 6}-tag fusion using a recombinant baculovirus and purified to near homogeneity. Purified DBP formed oligomers that were crosslinked by redox reagents resulting in predominantly protein dimers and tetramers. In gel retardation assays, DBP showed a high affinity for single-stranded oligonucleotides and was able to compete with another baculovirus SSB protein, LEF-3, for binding sites. DBP binding protected ssDNA against hydrolysis by a baculovirus alkaline nuclease AN/LEF-3 complex. Partial proteolysis by trypsin revealed a domain structure of DBP that is required for interaction with DNA andmore » that can be disrupted by thermal treatment. Binding to ssDNA, but not to dsDNA, changed the pattern of proteolytic fragments of DBP indicating adjustments in protein structure upon interaction with ssDNA. DBP was capable of unwinding short DNA duplexes and also promoted the renaturation of long complementary strands of ssDNA into duplexes. The unwinding and renaturation activities of DBP, as well as the DNA binding activity, were sensitive to sulfhydryl reagents and were inhibited by oxidation of thiol groups with diamide or by alkylation with N-ethylmaleimide. A high affinity of DBP for ssDNA and its unwinding and renaturation activities confirmed identification of DBP as a member of the SSB/recombinase family. These activities and a tight association with subnuclear structures suggests that DBP is a component of the virogenic stroma that is involved in the processing of replicative intermediates.« less

  17. Combining stable insect cell lines with baculovirus-mediated expression for multi-HA influenza VLP production.

    PubMed

    Sequeira, Daniela P; Correia, Ricardo; Carrondo, Manuel J T; Roldão, António; Teixeira, Ana P; Alves, Paula M

    2018-05-24

    Safer and broadly protective vaccines are needed to cope with the continuous evolution of circulating influenza virus strains and promising approaches based on the expression of multiple hemagglutinins (HA) in a virus-like particle (VLP) have been proposed. However, expression of multiple genes in the same vector can lead to its instability due to tandem repetition of similar sequences. By combining stable with transient expression systems we can rationally distribute the number of genes to be expressed per platform and thus mitigate this risk. In this work, we developed a modular system comprising stable and baculovirus-mediated expression in insect cells for production of multi-HA influenza enveloped VLPs. First, a stable insect High Five cell population expressing two different HA proteins from subtype H3 was established. Infection of this cell population with a baculovirus vector encoding three other HA proteins from H3 subtype proved to be as competitive as traditional co-infection approaches in producing a pentavalent H3 VLP. Aiming at increasing HA expression, the stable insect cell population was infected at increasingly higher cell concentrations (CCI). However, cultures infected at CCI of 3×10 6 cells/mL showed lower HA titers per cell in comparison to standard CCI of 2×10 6 cells/mL, a phenomenon named "cell density effect". To lessen the negative impact of this phenomenon, a tailor-made refeed strategy was designed based on the exhaustion of key nutrients during cell growth. Noteworthy, cultures supplemented and infected at a CCI of 4×10 6 cells/mL showed comparable HA titers per cell to those of CCI of 2×10 6 cells/mL, thus leading to an increase of up to 4-fold in HA titers per mL. Scalability of the modular strategy herein proposed was successfully demonstrated in 2L stirred tank bioreactors with comparable HA protein levels observed between bioreactor and shake flasks cultures. Overall, this work demonstrates the suitability of combining stable

  18. Baculovirus expression system and method for high throughput expression of genetic material

    DOEpatents

    Clark, Robin; Davies, Anthony

    2001-01-01

    The present invention provides novel recombinant baculovirus expression systems for expressing foreign genetic material in a host cell. Such expression systems are readily adapted to an automated method for expression foreign genetic material in a high throughput manner. In other aspects, the present invention features a novel automated method for determining the function of foreign genetic material by transfecting the same into a host by way of the recombinant baculovirus expression systems according to the present invention.

  19. Electron Tomography and Simulation of Baculovirus Actin Comet Tails Support a Tethered Filament Model of Pathogen Propulsion

    PubMed Central

    Mueller, Jan; Pfanzelter, Julia; Winkler, Christoph; Narita, Akihiro; Le Clainche, Christophe; Nemethova, Maria; Carlier, Marie-France; Maeda, Yuichiro; Welch, Matthew D.; Ohkawa, Taro; Schmeiser, Christian; Resch, Guenter P.; Small, J. Victor

    2014-01-01

    Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial. Using electron tomography we have resolved the three-dimensional architecture of actin comet tails propelling baculovirus, the smallest pathogen yet known to hijack the actin motile machinery. Comet tail geometry was also mimicked in mixtures of virus capsids with purified actin and a minimal inventory of actin regulators. We demonstrate that propulsion is based on the assembly of a fishbone-like array of actin filaments organized in subsets linked by branch junctions, with an average of four filaments pushing the virus at any one time. Using an energy-minimizing function we have simulated the structure of actin comet tails as well as the tracks adopted by baculovirus in infected cells in vivo. The results from the simulations rule out gel squeezing models of propulsion and support those in which actin filaments are continuously tethered during branch nucleation and polymerization. Since Listeria monocytogenes, Shigella flexneri, and Vaccinia virus among other pathogens use the same common toolbox of components as baculovirus to move, we suggest they share the same principles of actin organization and mode of propulsion. PMID:24453943

  20. Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion.

    PubMed

    Mueller, Jan; Pfanzelter, Julia; Winkler, Christoph; Narita, Akihiro; Le Clainche, Christophe; Nemethova, Maria; Carlier, Marie-France; Maeda, Yuichiro; Welch, Matthew D; Ohkawa, Taro; Schmeiser, Christian; Resch, Guenter P; Small, J Victor

    2014-01-01

    Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial. Using electron tomography we have resolved the three-dimensional architecture of actin comet tails propelling baculovirus, the smallest pathogen yet known to hijack the actin motile machinery. Comet tail geometry was also mimicked in mixtures of virus capsids with purified actin and a minimal inventory of actin regulators. We demonstrate that propulsion is based on the assembly of a fishbone-like array of actin filaments organized in subsets linked by branch junctions, with an average of four filaments pushing the virus at any one time. Using an energy-minimizing function we have simulated the structure of actin comet tails as well as the tracks adopted by baculovirus in infected cells in vivo. The results from the simulations rule out gel squeezing models of propulsion and support those in which actin filaments are continuously tethered during branch nucleation and polymerization. Since Listeria monocytogenes, Shigella flexneri, and Vaccinia virus among other pathogens use the same common toolbox of components as baculovirus to move, we suggest they share the same principles of actin organization and mode of propulsion.

  1. Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription.

    PubMed

    Assenberg, R; Delmas, O; Morin, B; Graham, S C; De Lamballerie, X; Laubert, C; Coutard, B; Grimes, J M; Neyts, J; Owens, R J; Brandt, B W; Gorbalenya, A; Tucker, P; Stuart, D I; Canard, B; Bourhy, H

    2010-08-01

    Some mammalian rhabdoviruses may infect humans, and also infect invertebrates, dogs, and bats, which may act as vectors transmitting viruses among different host species. The VIZIER programme, an EU-funded FP6 program, has characterized viruses that belong to the Vesiculovirus, Ephemerovirus and Lyssavirus genera of the Rhabdoviridae family to perform ground-breaking research on the identification of potential new drug targets against these RNA viruses through comprehensive structural characterization of the replicative machinery. The contribution of VIZIER programme was of several orders. First, it contributed substantially to research aimed at understanding the origin, evolution and diversity of rhabdoviruses. This diversity was then used to obtain further structural information on the proteins involved in replication. Two strategies were used to produce recombinant proteins by expression of both full length or domain constructs in either E. coli or insect cells, using the baculovirus system. In both cases, parallel cloning and expression screening at small-scale of multiple constructs based on different viruses including the addition of fusion tags, was key to the rapid generation of expression data. As a result, some progress has been made in the VIZIER programme towards dissecting the multi-functional L protein into components suitable for structural and functional studies. However, the phosphoprotein polymerase co-factor and the structural matrix protein, which play a number of roles during viral replication and drives viral assembly, have both proved much more amenable to structural biology. Applying the multi-construct/multi-virus approach central to protein production processes in VIZIER has yielded new structural information which may ultimately be exploitable in the derivation of novel ways of intervening in viral replication. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Sleeping Beauty-baculovirus hybrid vectors for long-term gene expression in the eye.

    PubMed

    Turunen, Tytteli Anni Kaarina; Laakkonen, Johanna Päivikki; Alasaarela, Laura; Airenne, Kari Juhani; Ylä-Herttuala, Seppo

    2014-01-01

    A baculovirus vector is capable of efficiently transducing many nondiving and diving cell types. However, the potential of baculovirus is restricted for many gene delivery applications as a result of the transient gene expression that it mediates. The plasmid-based Sleeping Beauty (SB) transposon system integrates transgenes into target cell genome efficiently with a genomic integration pattern that is generally considered safer than the integration of many other integrating vectors; yet efficient delivery of therapeutic genes into cells of target tissues in vivo is a major challenge for nonviral gene therapy. In the present study, SB was introduced into baculovirus to obtain novel hybrid vectors that would combine the best features of the two vector systems (i.e. effective gene delivery and efficient integration into the genome), thus circumventing the major limitations of these vectors. We constructed and optimized SB-baculovirus hybrid vectors that bear either SB100x transposase or SB transposon in the forward or reverse orientations with respect to the viral backbone The functionality of the novel hybrid vectors was investigated in cell cultures and in a proof-of-concept study in the mouse eye. The hybrid vectors showed high and sustained transgene expression that remained stable and demonstrated no signs of decline during the 2 months follow-up in vitro. These results were verified in the mouse eye where persistent transgene expression was detected two months after intravitreal injection. Our results confirm that (i) SB-baculovirus hybrid vectors mediate long-term gene expression in vitro and in vivo, and (ii) the hybrid vectors are potential new tools for the treatment of ocular diseases. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Generation of PCV2 in PK15 cells transfected with recombinant baculovirus containing a 1.1 copy of the PCV2 genome.

    PubMed

    Cai, Jie; Xie, Xiaohong; Hu, Yi; Zhan, Yang; Yu, Wanting; Wang, Aibing; Wang, Naidong

    2017-06-01

    Porcine circovirus associated diseases (PCVAD) caused by PCV2 are responsible for severe economic losses in the swine industry. The mechanism of PCV2 replication has not been fully elucidated yet. PCV2 may be successfully rescued by means of either an infectious DNA clone containing the full length of the viral genomic DNA, or from PCV2-infected clinical tissues in PK15 cell culture. However, viruses harvested by both methods have low titres. In this study, PCV2 was prepared with a higher titre from PK15 cells infected by recombinant baculoviruses containing 1PCV2 (one stem-loop structure) or 1.1PCV2 (two stem-loop structure) genomic DNA copy. In addition, infectious DNA clones containing two stem-loop structures in either plasmid or baculovirus backbones are capable of generating a higher virus titre than the DNA clones with only one copy of stem-loop structure.

  4. Effect of spray drying processing parameters on the insecticidal activity of two encapsulated formulations of baculovirus

    USDA-ARS?s Scientific Manuscript database

    The aim of this work was to evaluate the effect of spray dryer processing parameters on the process yield and insecticidal activity of baculovirus to support the development of this beneficial group of microbes as biopesticides. For each of two baculoviruses [granulovirus (GV) from Pieris rapae (L....

  5. A pH-sensitive heparin-binding sequence from Baculovirus gp64 protein is important for binding to mammalian cells but not to Sf9 insect cells.

    PubMed

    Wu, Chunxiao; Wang, Shu

    2012-01-01

    Binding to heparan sulfate is essential for baculovirus transduction of mammalian cells. Our previous study shows that gp64, the major glycoprotein on the virus surface, binds to heparin in a pH-dependent way, with a stronger binding at pH 6.2 than at 7.4. Using fluorescently labeled peptides, we mapped the pH-dependent heparin-binding sequence of gp64 to a 22-amino-acid region between residues 271 and 292. Binding of this region to the cell surface was also pH dependent, and peptides containing this sequence could efficiently inhibit baculovirus transduction of mammalian cells at pH 6.2. When the heparin-binding peptide was immobilized onto the bead surface to mimic the high local concentration of gp64 on the virus surface, the peptide-coated magnetic beads could efficiently pull down cells expressing heparan sulfate but not cells pretreated with heparinase or cells not expressing heparan sulfate. Interestingly, although this heparin-binding function is essential for baculovirus transduction of mammalian cells, it is dispensable for infection of Sf9 insect cells. Virus infectivity on Sf9 cells was not reduced by the presence of heparin or the identified heparin-binding peptide, even though the peptide could bind to Sf9 cell surface and be efficiently internalized. Thus, our data suggest that, depending on the availability of the target molecules on the cell surface, baculoviruses can use two different methods, electrostatic interaction with heparan sulfate and more specific receptor binding, for cell attachment.

  6. Expression of human electron transfer flavoprotein-ubiquinone oxidoreductase from a baculovirus vector: kinetic and spectral characterization of the human protein.

    PubMed

    Simkovic, Martin; Degala, Gregory D; Eaton, Sandra S; Frerman, Frank E

    2002-06-15

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is an iron-sulphur flavoprotein and a component of an electron-transfer system that links 10 different mitochondrial flavoprotein dehydrogenases to the mitochondrial bc1 complex via electron transfer flavoprotein (ETF) and ubiquinone. ETF-QO is an integral membrane protein, and the primary sequences of human and porcine ETF-QO were deduced from the sequences of the cloned cDNAs. We have expressed human ETF-QO in Sf9 insect cells using a baculovirus vector. The cDNA encoding the entire protein, including the mitochondrial targeting sequence, was present in the vector. We isolated a membrane-bound form of the enzyme that has a molecular mass identical with that of the mature porcine protein as determined by SDS/PAGE and has an N-terminal sequence that is identical with that predicted for the mature holoenzyme. These data suggest that the heterologously expressed ETF-QO is targeted to mitochondria and processed to the mature, catalytically active form. The detergent-solubilized protein was purified by ion-exchange and hydroxyapatite chromatography. Absorption and EPR spectroscopy and redox titrations are consistent with the presence of flavin and iron-sulphur centres that are very similar to those in the equivalent porcine and bovine proteins. Additionally, the redox potentials of the two prosthetic groups appear similar to those of the other eukaryotic ETF-QO proteins. The steady-state kinetic constants of human ETF-QO were determined with ubiquinone homologues, a ubiquinone analogue, and with human wild-type ETF and a Paracoccus-human chimaeric ETF as varied substrates. The results demonstrate that this expression system provides sufficient amounts of human ETF-QO to enable crystallization and mechanistic investigations of the iron-sulphur flavoprotein.

  7. Crimean-Congo Hemorrhagic Fever Virus Gn Bioinformatic Analysis and Construction of a Recombinant Bacmid in Order to Express Gn by Baculovirus Expression System

    PubMed Central

    Rahpeyma, Mehdi; Fotouhi, Fatemeh; Makvandi, Manouchehr; Ghadiri, Ata; Samarbaf-Zadeh, Alireza

    2015-01-01

    Background Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the nairovirus, a genus in the Bunyaviridae family, which causes a life threatening disease in human. Currently, there is no vaccine against CCHFV and detailed structural analysis of CCHFV proteins remains undefined. The CCHFV M RNA segment encodes two viral surface glycoproteins known as Gn and Gc. Viral glycoproteins can be considered as key targets for vaccine development. Objectives The current study aimed to investigate structural bioinformatics of CCHFV Gn protein and design a construct to make a recombinant bacmid to express by baculovirus system. Materials and Methods To express the Gn protein in insect cells that can be used as antigen in animal model vaccine studies. Bioinformatic analysis of CCHFV Gn protein was performed and designed a construct and cloned into pFastBacHTb vector and a recombinant Gn-bacmid was generated by Bac to Bac system. Results Primary, secondary, and 3D structure of CCHFV Gn were obtained and PCR reaction with M13 forward and reverse primers confirmed the generation of recombinant bacmid DNA harboring Gn coding region under polyhedron promoter. Conclusions Characterization of the detailed structure of CCHFV Gn by bioinformatics software provides the basis for development of new experiments and construction of a recombinant bacmid harboring CCHFV Gn, which is valuable for designing a recombinant vaccine against deadly pathogens like CCHFV. PMID:26862379

  8. Crimean-Congo Hemorrhagic Fever Virus Gn Bioinformatic Analysis and Construction of a Recombinant Bacmid in Order to Express Gn by Baculovirus Expression System.

    PubMed

    Rahpeyma, Mehdi; Fotouhi, Fatemeh; Makvandi, Manouchehr; Ghadiri, Ata; Samarbaf-Zadeh, Alireza

    2015-11-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the nairovirus, a genus in the Bunyaviridae family, which causes a life threatening disease in human. Currently, there is no vaccine against CCHFV and detailed structural analysis of CCHFV proteins remains undefined. The CCHFV M RNA segment encodes two viral surface glycoproteins known as Gn and Gc. Viral glycoproteins can be considered as key targets for vaccine development. The current study aimed to investigate structural bioinformatics of CCHFV Gn protein and design a construct to make a recombinant bacmid to express by baculovirus system. To express the Gn protein in insect cells that can be used as antigen in animal model vaccine studies. Bioinformatic analysis of CCHFV Gn protein was performed and designed a construct and cloned into pFastBacHTb vector and a recombinant Gn-bacmid was generated by Bac to Bac system. Primary, secondary, and 3D structure of CCHFV Gn were obtained and PCR reaction with M13 forward and reverse primers confirmed the generation of recombinant bacmid DNA harboring Gn coding region under polyhedron promoter. Characterization of the detailed structure of CCHFV Gn by bioinformatics software provides the basis for development of new experiments and construction of a recombinant bacmid harboring CCHFV Gn, which is valuable for designing a recombinant vaccine against deadly pathogens like CCHFV.

  9. Development of a subunit vaccine for infectious pancreatic necrosis virus using a baculovirus insect/larvae system

    USGS Publications Warehouse

    Shivappa, R.B.; McAllister, P.E.; Edwards, G.H.; Santi, N.; Evensen, O.; Vakharia, V.N.; ,

    2005-01-01

    Various attempts to develop a vaccine against infectious pancreatic necrosis virus (IPNV) have not yielded consistent results. Thus, at present, no commercial vaccine is available that can be used with confidence to immunize fry of salmon and trout. We generated a cDNA clone of the large genome segment A of an IPNV Sp strain and expressed all structural protein genes in insect cells and larvae using a baculovirus expression system. Green fluorescent protein was also co-expressed as a reporter molecule. High yields of IPNV proteins were obtained and the structural proteins self assembled to form virus-like particles (VLPs). We tested the immunogenicity of the putative VLP antigen in immersion vaccine experiments (two concentrations) in rainbow trout (Oncorhynchus mykiss) fry, and by intraperitoneal immunisation of Atlantic salmon (Salmo salar) pre-smolts using an oil adjuvant formulation. Rainbow trout were challenged by immersion using either the Sp or the VR-299 strain of IPNV two or three weeks post-vaccination, while Atlantic salmon were bath challenged with Sp strain after two months, after parr-smolt transformation. In the rainbow trout fry challenged two weeks post-immunization, cumulative mortality rates three weeks post challenge were 14 % in the fry that had received the highest dose versus 8 % in the control groups. No indication of protection was seen in repeated trials using a lower dose of antigen and challenge three weeks post-immunisation. The cumulative mortality rate of intraperitoneally immunised Atlantic salmon post-smolts four weeks post challenge was lower (56 %) than in the control fish (77 %), showing a dose-response pattern.

  10. Genetically-engineered baculovirus pesticides and their environmental safety

    Treesearch

    H. Alan Wood; Yu Zailin

    1991-01-01

    Baculoviruses such as the Lymantria dispar nuclear polyhedrosis virus (LdMNPV) are ecologically attractive alternatives to chemical insect pesticides but have a slow rate of control. To overcome this we have developed and are field testing an environmentally acceptable strategy which can be used for the introduction and expression of pesticide-...

  11. Inhibition of melanization by serpin-5 and serpin-9 promotes baculovirus infection in cotton bollworm Helicoverpa armigera

    PubMed Central

    Wang, Manli; Wang, Xi; Yin, Mengyi; Wang, Qianran; Hu, Zhihong

    2017-01-01

    Melanization, an important insect defense mechanism, is mediated by clip-domain serine protease (cSP) cascades and is regulated by serpins. Here we show that proteolytic activation of prophenoloxidase (PPO) and PO-catalyzed melanization kill the baculovirus in vitro. Our quantitative proteomics and biochemical experiments revealed that baculovirus infection of the cotton bollworm, Helicoverpa armigera, reduced levels of most cascade members in the host hemolymph and PO activity. By contrast, serpin-9 and serpin-5 were sequentially upregulated after the viral infection. The H. armigera serpin-5 and serpin-9 regulate melanization by directly inhibiting their target proteases cSP4 and cSP6, respectively and cSP6 activates PPO purified from hemolymph. Furthermore, serpin-5/9-depleted insects exhibited high PO activities and showed resistance to baculovirus infection. Together, our results characterize a part of the melanization cascade in H. armigera, and suggest that natural insect virus baculovirus has evolved a distinct strategy to suppress the host immune system. PMID:28953952

  12. Baculovirus expression of the avian paramyxovirus 2 HN gene for diagnostic applications.

    PubMed

    Choi, Kang-Seuk; Kye, Soo-Jeong; Kim, Ji-Ye; Seul, Hee-Jeong; Lee, Hee-Soo; Kwon, Hyuk-Moo; Sung, Haan-Woo

    2014-03-01

    Avian paramyxovirus 2 (APMV-2) infections are associated with respiratory diseases in poultry worldwide. The hemagglutination inhibition (HI) test is a useful tool for surveillance and monitoring of this virus. In this study, full-length hemagglutinin (HN) gene of APMV-2 was chemically synthesized based on its published sequence, cloned and expressed in Spodoptera frugiperda insect cells using recombinant baculoviruses. The biological, antigenic and immunogenic properties of the expressed protein were evaluated to assess its ability to produce diagnostic reagents for HI testing. Recombinant APMV-2 HN protein showed two distinct bands with molecular masses of 64 and 75kDa, which showed hemagglutination (HA) and neuraminidase activities, respectively. The recombinant HN (rHN) protein extracted from infected cells produced high HA titers (2(13) per 25μL). HA activity of the protein was inhibited by APMV-2 antiserum, although there were weak cross reactions with other APMV serotype antisera. The rHN protein induced high titers of APMV-2-specific antibodies in immunized chickens based on the HI test. These results indicated that recombinant APMV-2 HN protein is a useful alternative to the APMV-2 antigen in HI assays. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Armored DNA in recombinant Baculoviruses as controls in molecular genetic assays.

    PubMed

    Freystetter, Andrea; Paar, Christian; Stekel, Herbert; Berg, Jörg

    2017-10-01

    The widespread use of molecular PCR-based assays in analytical and clinical laboratories brings about the need for test-specific, stable, and reliable external controls (EC) as well as standards and internal amplification controls (IC), in order to arrive at consistent test results. In addition, there is also a growing need to produce and provide stable, well-characterized molecular controls for quality assurance programs. In this study, we describe a novel approach to generate armored double-stranded DNA controls, which are encapsulated in baculovirus (BV) particles of the species Autographa californica multiple nucleopolyhedrovirus. We used the well-known BacPAK™ Baculovirus Expression System (Takara-Clontech), removed the polyhedrin promoter used for protein expression, and generated recombinant BV-armored DNAs. The obtained BV-armored DNAs were readily extracted by standard clinical DNA extraction methods, showed favorable linearity and performance in our clinical PCR assays, were resistant to DNase I digestion, and exhibited marked stability in human plasma and serum. BV-armored DNA ought to be used as ECs, quantification standards, and ICs in molecular assays, with the latter application allowing for the entire monitoring of clinical molecular assays for sample adequacy. BV-armored DNA may also be used to produce double-stranded DNA reference materials for, e.g., quality assurance programs. The ease to produce BV-armored DNA should make this approach feasible for a broad spectrum of molecular applications. Finally, as BV-armored DNAs are non-infectious to mammals, they may be even more conveniently shipped than clinical specimen.

  14. High-yield production of canine parvovirus virus-like particles in a baculovirus expression system.

    PubMed

    Jin, Hongli; Xia, Xiaohong; Liu, Bing; Fu, Yu; Chen, Xianping; Wang, Huihui; Xia, Zhenqiang

    2016-03-01

    An optimized VP2 gene from the current prevalent CPV strain (new CPV-2a) in China was expressed in a baculovirus expression system. It was found that the VP2 proteins assembled into virus-like particles (VLPs) with antigenic properties similar to those of natural CPV and with an especially high hemagglutination (HA) titer (1:2(20)). Dogs intramuscularly or orally immunized with VLPs produced antibodies against CPV with >1:80 hemagglutination inhibition (HI) units for at least 3 months. The CPV VLPs could be considered for use as a vaccine against CPV or as a platform for research on chimeric VLP vaccines against other diseases.

  15. Duck hepatitis A virus structural proteins expressed in insect cells self-assemble into virus-like particles with strong immunogenicity in ducklings.

    PubMed

    Wang, Anping; Gu, Lingling; Wu, Shuang; Zhu, Shanyuan

    2018-02-01

    Duck hepatitis A virus (DHAV), a non-enveloped ssRNA virus, can cause a highly contagious disease in young ducklings. The three capsid proteins of VP0, VP1 and VP3 are translated within a single large open reading frame (ORF) and hydrolyzed by protease 3CD. However, little is known on whether the recombinant viral structural proteins (VPs) expressed in insect cells could spontaneously assemble into virus-like particles (VLPs) and whether these VLPs could induce protective immunity in young ducklings. To address these issues, the structural polyprotein precursor gene P1 and the protease gene 3CD were amplified by PCR, and the recombinant proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures and immunogenicity. The recombinant proteins expressed in Sf9 cells were detected by indirect immunofluorescence assay and Western blot analysis. Electron microscopy showed that the recombinant proteins spontaneously assembled into VLPs in insect cells. Western blot analysis of the purified VLPs revealed that the VLPs were composed with the three structural proteins. In addition, vaccination with the VLPs induced high humoral immune response and provided strong protection. Therefore, our findings may provide a framework for development of new vaccines for the prevention of duck viral hepatitis. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. A common pathway for p10 and calyx proteins in progressive stages of polyhedron envelope assembly in AcMNPV-infected Spodoptera frugiperda larvae.

    PubMed

    Lee, S Y; Poloumienko, A; Belfry, S; Qu, X; Chen, W; MacAfee, N; Morin, B; Lucarotti, C; Krause, M

    1996-01-01

    The assembly of the polyhedron envelope in baculovirus-infected cells has been the subject of several studies, yet it is still poorly understood. We have used immunogold-labelled antibodies to two baculovirus proteins, p10 and calyx (also referred to as polyhedron envelope protein or PEP), to follow envelope assembly in AcMNPV-infected tissues of Spodoptera frugiperda larvae. We show that, in wild type virus, both proteins colocalize in fibrillar structures and associated electron-dense spacers which progress to encircle the polyhedra, as well as in completed polyhedron envelopes. In cells infected with polyhedrin-negative (PH-) viruses, an unusual proliferation of these spacers was observed suggesting a deregulatory event in the envelope assembly process. Results of Northern and Western blot analysis revealed that synthesis of P10 and calyx mRNA and proteins in PH- AcMNPV is unaffected as compared to wild type virus. Taken together, the observed physical and compositional connection between fibrillar structures, spacers and polyhedron envelopes, as well as the abnormal appearance of the spacers in PH- mutants, provide further evidence in support of a cooperative role of these structures in the assembly of the polyhedron envelope.

  17. Active Depletion of Host Cell Inhibitor-of-Apoptosis Proteins Triggers Apoptosis upon Baculovirus DNA Replication▿

    PubMed Central

    Vandergaast, Rianna; Schultz, Kimberly L. W.; Cerio, Rebecca J.; Friesen, Paul D.

    2011-01-01

    Apoptosis is an important antivirus defense by virtue of its impact on virus multiplication and pathogenesis. To define molecular mechanisms by which viruses are detected and the apoptotic response is initiated, we examined the antiviral role of host inhibitor-of-apoptosis (IAP) proteins in insect cells. We report here that the principal IAPs, DIAP1 and SfIAP, of the model insects Drosophila melanogaster and Spodoptera frugiperda, respectively, are rapidly depleted and thereby inactivated upon infection with the apoptosis-inducing baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Virus-induced loss of these host IAPs triggered caspase activation and apoptotic death. Elevation of IAP levels by ectopic expression repressed caspase activation. Loss of host IAP in both species was triggered by AcMNPV DNA replication. By using selected inhibitors, we found that virus-induced IAP depletion was mediated in part by the proteasome but not by caspase cleavage. Consistent with this conclusion, mutagenic disruption of the SfIAP RING motif, which acts as an E3 ubiquitin ligase, stabilized SfIAP during infection. Importantly, SfIAP was also stabilized upon the removal of its 99-residue N-terminal leader, which serves as a critical determinant of IAP turnover. These data indicated that a host pathway initiated by virus DNA replication and acting through instability motifs embedded within IAP triggers IAP depletion and thereby causes apoptosis. Taken together, the results of our study suggest that host modulation of cellular IAP levels is a conserved mechanism by which insects mount an apoptotic antiviral response. Thus, host IAPs may function as critical sentinels of virus invasion in insects. PMID:21653668

  18. Baculovirus-based genome editing in primary cells.

    PubMed

    Mansouri, Maysam; Ehsaei, Zahra; Taylor, Verdon; Berger, Philipp

    2017-03-01

    Genome editing in eukaryotes became easier in the last years with the development of nucleases that induce double strand breaks in DNA at user-defined sites. CRISPR/Cas9-based genome editing is currently one of the most powerful strategies. In the easiest case, a nuclease (e.g. Cas9) and a target defining guide RNA (gRNA) are transferred into a target cell. Non-homologous end joining (NHEJ) repair of the DNA break following Cas9 cleavage can lead to inactivation of the target gene. Specific repair or insertion of DNA with Homology Directed Repair (HDR) needs the simultaneous delivery of a repair template. Recombinant Lentivirus or Adenovirus genomes have enough capacity for a nuclease coding sequence and the gRNA but are usually too small to also carry large targeting constructs. We recently showed that a baculovirus-based multigene expression system (MultiPrime) can be used for genome editing in primary cells since it possesses the necessary capacity to carry the nuclease and gRNA expression constructs and the HDR targeting sequences. Here we present new Acceptor plasmids for MultiPrime that allow simplified cloning of baculoviruses for genome editing and we show their functionality in primary cells with limited life span and induced pluripotent stem cells (iPS). Copyright © 2017 Elsevier Inc. All rights reserved.

  19. MacoNPV baculovirus midgut-specific gene expression during infection of the bertha armyworm, Mamestra configurata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donly, B. Cameron, E-mail: Cam.Donly@agr.gc.ca

    Baculoviruses have two forms, occlusion derived virus (ODV) which is responsible for primary infection in host midgut tissue and budded virus (BV), which infects all other host tissues during secondary infection. This study examined the primary infection by ODV of midgut cells of bertha armyworm Mamestra configurata fourth instar larvae and measured the expression of viral genes over a time course of infection. Both digital PCR and RNA sequencing methods showed the profile of transcription to be different from those produced by AcMNPV BV infection of in vitro cell cultures. This included having unique collections of genes expressed early, asmore » well as much greater late gene expression of p6.9 and much reduced expression of polh and p10. These differences likely reflect characteristics unique to the critical step of in vivo midgut cell infection, and provide insights into the processes that regulate viral gene expression in different host tissues. -- Highlights: •The transcriptome of MacoNPV ODV in larval midgut was measured by RNA-seq and digital PCR. •The earliest genes expressed included fusion protein, hoar, and me53. •p6.9 was highly expressed late but polH and p10 were less so. •These patterns are unique from BV of other baculoviruses in tissue culture cells.« less

  20. Deuteration and selective labeling of alanine methyl groups of β2-adrenergic receptor expressed in a baculovirus-insect cell expression system.

    PubMed

    Kofuku, Yutaka; Yokomizo, Tomoki; Imai, Shunsuke; Shiraishi, Yutaro; Natsume, Mei; Itoh, Hiroaki; Inoue, Masayuki; Nakata, Kunio; Igarashi, Shunsuke; Yamaguchi, Hideyuki; Mizukoshi, Toshimi; Suzuki, Ei-Ichiro; Ueda, Takumi; Shimada, Ichio

    2018-03-08

    G protein-coupled receptors (GPCRs) exist in equilibrium between multiple conformations, and their populations and exchange rates determine their functions. However, analyses of the conformational dynamics of GPCRs in lipid bilayers are still challenging, because methods for observations of NMR signals of large proteins expressed in a baculovirus-insect cell expression system (BVES) are limited. Here, we report a method to incorporate methyl- 13 C 1 H 3 -labeled alanine with > 45% efficiency in highly deuterated proteins expressed in BVES. Application of the method to the NMR observations of β 2 -adrenergic receptor in micelles and in nanodiscs revealed the ligand-induced conformational differences throughout the transmembrane region of the GPCR.

  1. Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus grandis Boheman) and fall armyworm (Spodoptera frugiperda).

    PubMed

    Martins, E S; Aguiar, R W D S; Martins, N F; Melatti, V M; Falcão, R; Gomes, A C M M; Ribeiro, B M; Monnerat, R G

    2008-05-01

    To evaluate the activity of cry1Ia gene against cotton pests, Spodoptera frugiperda and Anthonomus grandis. Had isolated and characterized a toxin gene from the Bacillus thuringiensis S1451 strain which have been previously shown to be toxic to S. frugiperda and A. grandis. The toxin gene (cry1Ia) was amplified by PCR, sequenced, and cloned into the genome of a baculovirus. The Cry1Ia protein was expressed in baculovirus infected insect cells, producing protein inclusions in infected cells. The Cry1Ia protein has used in bioassays against to S. frugiperda and A. grandis. Bioassays using the purified recombinant protein showed high toxicity to S. frugiperda and A. grandis larvae. Molecular modelling of the Cry1Ia protein translated from the DNA sequence obtained in this work, showed that this protein possibly posses a similar structure to the Cry3A protein. Ultrastructural analysis of midgut cells from A. grandis incubated with the Cry1Ia toxin, showed loss of microvilli integrity. The results indicate that the cry1Ia is a good candidate for the construction of transgenic plants resistant to these important cotton pests.

  2. Suitability and perspectives on using recombinant insect cells for the production of virus-like particles.

    PubMed

    Yamaji, Hideki

    2014-03-01

    Virus-like particles (VLPs) can be produced in recombinant protein production systems by expressing viral surface proteins that spontaneously assemble into particulate structures similar to authentic viral or subviral particles. VLPs serve as excellent platforms for the development of safe and effective vaccines and diagnostic antigens. Among various recombinant protein production systems, the baculovirus-insect cell system has been used extensively for the production of a wide variety of VLPs. This system is already employed for the manufacture of a licensed human papillomavirus-like particle vaccine. However, the baculovirus-insect cell system has several inherent limitations including contamination of VLPs with progeny baculovirus particles. Stably transformed insect cells have emerged as attractive alternatives to the baculovirus-insect cell system. Different types of VLPs, with or without an envelope and composed of either single or multiple structural proteins, have been produced in stably transformed insect cells. VLPs produced by stably transformed insect cells have successfully elicited immune responses in vivo. In some cases, the yield of VLPs attained with recombinant insect cells was comparable to, or higher than, that obtained by baculovirus-infected insect cells. Recombinant insect cells offer a promising approach to the development and production of VLPs.

  3. Membrane fusion between baculovirus budded virus-enveloped particles and giant liposomes generated using a droplet-transfer method for the incorporation of recombinant membrane proteins.

    PubMed

    Nishigami, Misako; Mori, Takaaki; Tomita, Masahiro; Takiguchi, Kingo; Tsumoto, Kanta

    2017-07-01

    Giant proteoliposomes are generally useful as artificial cell membranes in biochemical and biophysical studies, and various procedures for their preparation have been reported. We present here a novel preparation technique that involves the combination of i) cell-sized lipid vesicles (giant unilamellar vesicles, GUVs) that are generated using the droplet-transfer method, where lipid monolayer-coated water-in-oil microemulsion droplets interact with oil/water interfaces to form enclosed bilayer vesicles, and ii) budded viruses (BVs) of baculovirus (Autographa californica nucleopolyhedrovirus) that express recombinant transmembrane proteins on their envelopes. GP64, a fusogenic glycoprotein on viral envelopes, is activated by weak acids and is thought to cause membrane fusion with liposomes. Using confocal laser scanning microscopy (CLSM), we observed that the single giant liposomes fused with octadecyl rhodamine B chloride (R18)-labeled wild-type BV envelopes with moderate leakage of entrapped soluble compounds (calcein), and the fusion profile depended on the pH of the exterior solution: membrane fusion occurred at pH ∼4-5. We further demonstrated that recombinant transmembrane proteins, a red fluorescent protein (RFP)-tagged GPCR (corticotropin-releasing hormone receptor 1, CRHR1) and envelope protein GP64 could be partly incorporated into membranes of the individual giant liposomes with a reduction of the pH value, though there were also some immobile fluorescent spots observed on their circumferences. This combination may be useful for preparing giant proteoliposomes containing the desired membranes and inner phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Iron levels change in larval Heliothis virescens tissues following baculovirus infection

    USDA-ARS?s Scientific Manuscript database

    Inductively-coupled plasma mass spectrometry (ICP-MS) and 59Fe radiotracers were used to investigate changes in levels of iron (Fe) in the tissues of Heliothis virescens following baculovirus infection. Fe concentrations were determined by ICP-MS in hemolymph collected from 4th instar larvae infect...

  5. Transient expression and cellular localization of recombinant proteins in cultured insect cells

    USDA-ARS?s Scientific Manuscript database

    Heterologous protein expression systems are used for production of recombinant proteins, interpretation of cellular trafficking/localization, and for the determination of biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for ...

  6. [Use of a novel baculovirus vector to express nucleoprotein gene of Crimean-Congo hemorrhagic fever virus in both insect and mammalian cells].

    PubMed

    Ma, Benjiang; Hang, Changshou; Zhao, Yun; Wang, Shiwen; Xie, Yanxiang

    2002-09-01

    To construct a novel baculovirus vector which is capable of promoting the high-yield expression of foreign gene in mammalian cells and to express by this vector the nucleoprotein (NP) gene of Crimean-Congo hemorrhagic fever virus (CCHFV) Chinese isolate (Xinjiang hemorrhagic fever virus, XHFV) BA88166 in insect and Vero cells. Human cytomegalovirus (CMV) immediate early (IE) promoter was ligated to the baculovirus vector pFastBac1 downstream of the polyhedrin promoter to give rise to the novel vector pCB1. XHFV NP gene was cloned to this vector and was well expressed in COS-7 cells and Vero cells by means of recombinant plasmid transfection and baculovirus infection. The XHFV NP gene in vector pCB1 could be well expressed in mammalian cells. Vero cells infected with recombinant baculovirus harboring NP gene could be employed as antigens to detect XHF serum specimens whose results were in good correlation with those of ELISA and in parallel with clinical diagnoses. This novel baculovirus vector is able to express the foreign gene efficiently in both insect and mammalian cells, which provides not only the convenient diagnostic antigens but also the potential for developing recombinant virus vaccines and gene therapies.

  7. Advances in recombinant protein expression for use in pharmaceutical research.

    PubMed

    Assenberg, Rene; Wan, Paul T; Geisse, Sabine; Mayr, Lorenz M

    2013-06-01

    Protein production for structural and biophysical studies, functional assays, biomarkers, mechanistic studies in vitro and in vivo, but also for therapeutic applications in pharma, biotech and academia has evolved into a mature discipline in recent years. Due to the increased emphasis on biopharmaceuticals, the growing demand for proteins used for structural and biophysical studies, the impact of genomics technologies on the analysis of large sets of structurally diverse proteins, and the increasing complexity of disease targets, the interest in innovative approaches for the expression, purification and characterisation of recombinant proteins has steadily increased over the years. In this review, we summarise recent developments in the field of recombinant protein expression for research use in pharma, biotech and academia. We focus mostly on the latest developments for protein expression in the most widely used expression systems: Escherichia coli (E. coli), insect cell expression using the Baculovirus Expression Vector System (BEVS) and, finally, transient and stable expression of recombinant proteins in mammalian cells. Copyright © 2013. Published by Elsevier Ltd.

  8. MEMBRANOUS LABYRINTH IN BACULOVIRUS-INFECTED CRUSTRACEAN CELLS: POSSIBLE ROLES IN VIRAL REPRODUCTION

    EPA Science Inventory

    The origins and morphogenesis of the membranous labyrinth (ML) in Baculovirus penaei (BP) infected cells of penaeid shrimps (Crustacea:Decapoda) are described. t is hypothesized that, because of the close parallel and concurrent development of the ML and virus reproduction, and o...

  9. Immunogenicity of Newcastle disease virus vectors expressing Norwalk virus capsid protein in the presence or absence of VP2 protein.

    PubMed

    Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y; Samal, Siba K

    2015-10-01

    Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirus-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Expression of Clonorchis sinensis GIIIsPLA2 protein in baculovirus-infected insect cells and its overexpression facilitating epithelial-mesenchymal transition in Huh7 cells via AKT pathway.

    PubMed

    Shang, Mei; Xie, Zhizhi; Tang, Zeli; He, Lei; Wang, Xiaoyun; Wang, Caiqin; Wu, Yinjuan; Li, Ye; Zhao, Lu; Lv, Zhiyue; Wu, Zhongdao; Huang, Yan; Yu, Xinbing; Li, Xuerong

    2017-04-01

    Although prior studies confirmed that group III secretory phospholipase A 2 of Clonorchis sinensis (CsGIIIsPLA 2 ) had stimulating effect on liver fibrosis by binding to LX-2 cells, large-scale expression of recombinant protein and its function in the progression of hepatoma are worth exploring. Because of high productivity and low lipopolysaccharides (LPS) in the Sf9-baculovirus expression system, we firstly used this system to express the coding region of CsGIIIsPLA 2 . The molecular weight of recombinant CsGIIIsPLA 2 protein was about 34 kDa. Further investigation showed that most of the recombinant protein presented intracellular expression in Sf9 insect cell nucleus and could be detected only into cell debris, which made the protein purification and further functional study difficult. Therefore, to study the role of CsGIIIsPLA 2 in hepatocellular carcinoma (HCC) progression, CsGIIIsPLA 2 overexpression Huh7 cell model was applied. Cell proliferation, migration, and the expression level of epithelial-mesenchymal transition (EMT)-related molecules (E-cadherin, N-cadherin, α-catenin, Vimentin, p300, Snail, and Slug) along with possible mechanism were measured. The results indicated that CsGIIIsPLA 2 overexpression not only inhibited cell proliferation and promoted migration and EMT but also enhanced the phosphorylation of AKT in HCC cells. In conclusion, this study supported that CsGIIIsPLA 2 overexpression suppressed cell proliferation and induced EMT through the AKT pathway.

  11. Identification of a Conserved Non-Protein-Coding Genomic Element that Plays an Essential Role in Alphabaculovirus Pathogenesis

    PubMed Central

    Kikhno, Irina

    2014-01-01

    Highly homologous sequences 154–157 bp in length grouped under the name of “conserved non-protein-coding element” (CNE) were revealed in all of the sequenced genomes of baculoviruses belonging to the genus Alphabaculovirus. A CNE alignment led to the detection of a set of highly conserved nucleotide clusters that occupy strictly conserved positions in the CNE sequence. The significant length of the CNE and conservation of both its length and cluster architecture were identified as a combination of characteristics that make this CNE different from known viral non-coding functional sequences. The essential role of the CNE in the Alphabaculovirus life cycle was demonstrated through the use of a CNE-knockout Autographa californica multiple nucleopolyhedrovirus (AcMNPV) bacmid. It was shown that the essential function of the CNE was not mediated by the presumed expression activities of the protein- and non-protein-coding genes that overlap the AcMNPV CNE. On the basis of the presented data, the AcMNPV CNE was categorized as a complex-structured, polyfunctional genomic element involved in an essential DNA transaction that is associated with an undefined function of the baculovirus genome. PMID:24740153

  12. DEVELOPMENT OF AN IN SITU TOXICITY ASSAY SYSTEM USING RECOMBINANT BACULOVIRUSES. (R825433)

    EPA Science Inventory

    A new method for experimentally analyzing the role of enzymes involved in metabolizing mutagenic, carcinogenic, or cytotoxic chemicals is described. Spodoptera fugiperda (SF-21) cells infected with recombinant baculoviruses are used for high level expression of one or m...

  13. A baculovirus polyhedron envelope protein: immunogold localization in infected cells and mature polyhedra.

    PubMed

    Russell, R L; Rohrmann, G F

    1990-01-01

    A polyclonal antiserum against a trpE fusion protein containing the complete open reading frame of the polyhedron envelope (PE) protein from the nuclear polyhedrosis virus of Orgyia pseudotsugata (OpMNPV) was used for immunogold staining and electron microscopic examination of polyhedra, isolated polyhedron envelopes, and infected insect cells at selected times postinfection. The antiserum specifically stained the peripheral envelope of mature polyhedra and also stained the envelope structure which remained after polyhedra were dissolved in dilute alkaline solutions. In OpMNPV-infected Lymantria dispar cells, the PE protein was detected by 48 hr postinfection (hr p.i.) but specific localization and staining of developing polyhedra were not evident. However, by 72 hr p.i. substantial and preferential staining of the periphery of developing polyhedra was evident even though a distinct polyhedron envelope was not yet observed. In addition, the periphery of fibrillar structures was stained by the PE antiserum. By 96 hr p.i., mature envelopes surrounded polyhedra and these polyhedron envelopes were stained with the PE antibody. The progression of PE protein staining during polyhedron morphogenesis indicates that the PE protein accumulates and becomes associated with developing polyhedra in the nucleus between 48 and 72 hr p.i. Very late in infection the mature polyhedron envelope forms on the polyhedron surface. The apparent affinity of the PE protein for the surface of maturing polyhedra suggests that it may be a major component of the polyhedron envelope or may form the matrix for the deposition of other components which contribute to the mature envelope. Immunogold staining and protease digestion experiments indicate that protein is an essential component of the polyhedron envelope.

  14. Reduction of the infectivity of baculovirus stocks frozen at ultra-low temperature in serum-free media: The role of lipid emulsions.

    PubMed

    Eberhardt, Ignacio; Gioria, Verónica Viviana; Micheloud, Gabriela Analía; Claus, Juan Daniel

    2016-11-01

    The infectivity of stocks of baculoviruses produced in serum-free media is sensitive to freezing at ultra-low temperatures. The objective of this work was to elucidate the causes of such sensitivity, using as a model the freezing of stocks of Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV), a baculovirus widely employed as biological insecticide. Titers of supernatants of cell cultures infected with AgMNPV in four different serum-free media supplemented with lipid emulsions were reduced by 50 to 90% after six months freezing. By using a full factorial experiment, freezing and lipid emulsion, as well as the interaction between them, were identified as the main factors reducing the viral titer. The virucidal effect of the lipid emulsion was reproduced by one of their components, the surfactant Polysorbate 80. Damaged viral envelopes were observed by transmission electron microscopy in most particles frozen in a medium supplemented with lipid emulsion or Polysorbate 80. Additionally, Polysorbate 80 also affected the infectivity of AgMNPV stocks that were incubated at 27°C. The identification of the roles played by the lipid emulsion and Polysorbate 80 is not only a contribution to the understanding of the mechanisms underlying the inactivation of baculovirus stocks produced in serum-free media during storage at ultra-low temperature, but is also an input for the rational development of new procedures aimed at improving both the preservation of baculovirus stocks and the composition of culture media for the production of baculovirus-based bioproducts in insect cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1559-1569, 2016. © 2016 American Institute of Chemical Engineers.

  15. Incorporation of adenylate cyclase into membranes of giant liposomes using membrane fusion with recombinant baculovirus-budded virus particles.

    PubMed

    Mori, Takaaki; Kamiya, Koki; Tomita, Masahiro; Yoshimura, Tetsuro; Tsumoto, Kanta

    2014-06-01

    Recombinant transmembrane adenylate cyclase (AC) was incorporated into membranes of giant liposomes using membrane fusion between liposomes and baculovirus-budded virus (BV). AC genes were constructed into transfer vectors in a form fused with fluorescent protein or polyhistidine at the C-terminus. The recombinant BVs were collected by ultracentrifugation and AC expression was verified using western blotting. The BVs and giant liposomes generated using gentle hydration were fused under acidic conditions; the incorporation of AC into giant liposomes was demonstrated by confocal laser scanning microscopy through the emission of fluorescence from their membranes. The AC-expressing BVs were also fused with liposomes containing the substrate (ATP) with/without a specific inhibitor (SQ 22536). An enzyme immunoassay on extracts of the sample demonstrated that cAMP was produced inside the liposomes. This procedure facilitates direct introduction of large transmembrane proteins into artificial membranes without solubilization.

  16. The Baculovirus-Expressed Binding Region of Plasmodium falciparum EBA-140 Ligand and Its Glycophorin C Binding Specificity

    PubMed Central

    Rydzak, Joanna; Kaczmarek, Radoslaw; Czerwinski, Marcin; Lukasiewicz, Jolanta; Tyborowska, Jolanta; Szewczyk, Boguslaw; Jaskiewicz, Ewa

    2015-01-01

    The erythrocyte binding ligand 140 (EBA-140) is a member of the Plasmodium falciparum DBL family of erythrocyte binding proteins, which are considered as prospective candidates for malaria vaccine development. The EBA-140 ligand is a paralogue of the well-characterized P. falciparum EBA-175 protein. They share homology of domain structure, including Region II, which consists of two homologous F1 and F2 domains and is responsible for ligand-erythrocyte receptor interaction during invasion. In this report we describe, for the first time, the glycophorin C specificity of the recombinant, baculovirus-expressed binding region (Region II) of P. falciparum EBA-140 ligand. It was found that the recombinant EBA-140 Region II binds to the endogenous and recombinant glycophorin C, but does not bind to Gerbich-type glycophorin C, neither normal nor recombinant, which lacks amino acid residues 36–63 of its polypeptide chain. Our results emphasize the crucial role of this glycophorin C region in EBA-140 ligand binding. Moreover, the EBA-140 Region II did not bind either to glycophorin D, the truncated form of glycophorin C lacking the N-glycan or to desialylated GPC. These results draw attention to the role of glycophorin C glycans in EBA-140 binding. The full identification of the EBA-140 binding site on glycophorin C molecule, consisting most likely of its glycans and peptide backbone, may help to design therapeutics or vaccines that target the erythrocyte binding merozoite ligands. PMID:25588042

  17. THE EFFECT OF BACULOVIRUS INFECTION ON ECDYSTEROID TITER IN GYPSY MOTH LARVAE (LYMANTRIA DISPAR).

    EPA Science Inventory

    Insect baculovirus carries a gene refered to as egt. This gene encodes an enzyme known as ecdysteroid UDP-glucosyl transferase which catalyzes the sugar conjugation of ecdysteroids. Using a gypsy moth embryonic cell line EGT activity of Lymantria dispar nuclear polyhedrosis virus...

  18. Enzyme-linked immunosorbent assay using a recombinant baculovirus-expressed Bacillus anthracis protective antigen (PA): measurement of human anti-PA antibodies.

    PubMed Central

    Iacono-Connors, L C; Novak, J; Rossi, C; Mangiafico, J; Ksiazek, T

    1994-01-01

    We developed an antigen capture enzyme-linked immunosorbent assay (ELISA) which does not require purified protective antigen (PA) for detection of human antibodies to Bacillus anthracis PA. Lysates of Spodoptera frugiperda (Sf-9) cells infected with recombinant baculovirus containing the PA gene were used as the source of PA to develop the ELISA. Recombinant PA from crude Sf-9 cell lysates or PA purified from B. anthracis Sterne strain was captured by an anti-PA monoclonal antibody coated onto microtiter plates. We demonstrated that human serum antibody titers to PA were identical in the ELISA whether we used crude Sf-9 cell lysates containing recombinant baculovirus-expressed PA or purified Sterne PA. Finally, false-positive results observed in a direct ELISA were eliminated with this antigen capture ELISA. Thus, the antigen capture ELISA with crude preparations of baculovirus-expressed PA is reliable, safe, and inexpensive for determining anti-PA antibody levels in human sera. PMID:7496927

  19. Construction of baculovirus expression vector of miRNAs and its expression in insect cells.

    PubMed

    Huang, Yong; Zou, Quan; Shen, Xing Jia; Yu, Xue Li; Wang, Zhan Bin; Cheng, Xiang Chao

    2012-01-01

    MicroRNAs (miRNAs) are endogenous small non-protein coding RNAs that play important regulatory roles in animals and plants by binding to target transcripts for cleavage or translational repression. The miR-9a is very conservative in animals from flies to humans. Studies indicated that miR-9a is involved in the regulation of neurogenesis in animals. In our study, the baculovirus expression system was used to transcribe a recombinant vector containing miR-9a for further analysis the function ofmiR-9a. The sequence ofpre-miR-9a from silkworm DNA was first cloned into the donor pFastBac. The enhanced green fluorescent protein (EGFP) was used as reporter gene. The recombinant donor plasmid pFastBac-miR-9a was transformed into E.coli DH10Bac/AcNPV forming Bacmid-9a which was transfected into insect cells with cational lipofectin. The transcription of mature miR-9a was detected by Real-time PCR. The results show the recombinant Bacmid-9a was successfully constructed and effectively transcribed miR-9a in infected Sf21 insect cells.

  20. The components of shear stress affecting insect cells used with the baculovirus expression vector system.

    PubMed

    Weidner, Tobias; Druzinec, Damir; Mühlmann, Martina; Buchholz, Rainer; Czermak, Peter

    2017-09-26

    Insect-based expression platforms such as the baculovirus expression vector system (BEVS) are widely used for the laboratory- and industrial-scale production of recombinant proteins. Thereby, major drawbacks to gain high-quality proteins are the lytic infection cycle and the shear sensitivity of infected insect cells due to turbulence and aeration. Smaller bubbles were formerly assumed to be more harmful than larger ones, but we found that cell damage is also dependent on the concentration of protective agents such as Pluronic®. At the appropriate concentration, Pluronic forms a layer around air bubbles and hinders the attachment of cells, thus limiting the damage. In this context, we used microaeration to vary bubble sizes and confirmed that size is not the most important factor, but the total gas surface area in the reactor is. If the surface area exceeds a certain threshold, the concentration of Pluronic is no longer sufficient for cell protection. To investigate the significance of shear forces, a second study was carried out in which infected insect cells were cultivated in a hollow fiber module to protect them from shear forces. Both model studies revealed important aspects of the design and scale-up of BEVS processes for the production of recombinant proteins.

  1. Epitope mapping of the nucleocapsid protein of European and North American isolates of porcine reproductive and respiratory syndrome virus.

    PubMed

    Rodriguez, M J; Sarraseca, J; Garcia, J; Sanz, A; Plana-Durán, J; Ignacio Casal, J

    1997-09-01

    Two major genotypes of porcine reproductive and respiratory syndrome virus (PRRSV) have been described, which correspond to the European and North American isolates. PRRSV nucleocapsid (N) protein has been identified as the most immunodominant viral protein. The N genes from two PRRSV isolates, Olot/91 (European) and Québec 807/94 (North American), were cloned and expressed in: (i) baculovirus under the control of the polyhedrin promoter and (ii) Escherichia coli using the pET3x system. The N protein from both isolates was expressed much more efficiently in E. coli as a fusion protein than in baculovirus. The antigenicity of the protein was similar in both systems and it was recognized by a collection of 48 PRRSV-positive pig sera. The antigenic structure of the PRRSV N protein was investigated using seven monoclonal antibodies (MAbs) and overlapping fragments of the protein expressed in E. coli. Four MAbs recognized two discontinuous epitopes that were present in the partially folded protein, or at least a large fragment comprising the first 78 residues. The other three MAbs revealed the presence of a common antigenic site localized in the central region of the protein (amino acids 50-66). This region is well conserved among different isolates of European and North American origin and is the most hydrophilic region of the protein. However, this epitope, although recognized by the MAbs and many pig sera, is not useful for diagnostic purposes. Moreover, none of the N protein fragments were able to mimic the antigenicity of the entire protein.

  2. Physical mapping of the genomic DNA of the Oryctes rhinoceros baculovirus, KI.

    PubMed

    Mohan, K S; Gopinathan, K P

    1991-11-15

    A non-occluded baculovirus, OBV-KI has been isolated from the insect pest, Oryctes rhinoceros. The viral genome is estimated to be 123 kb, with a G + C content of 43 mol% and no detectible methylated bases. A restriction map of the OBV-KI genome for BamHI, EcoRI, HindIII, PstI, SalI and XbaI has been constructed.

  3. Contributions of immune responses to developmental resistance in Lymantria dispar challenged with baculovirus

    Treesearch

    James McNeil; Diana Cox-Foster; James Slavicek; Kelli Hoover

    2010-01-01

    How the innate immune system functions to defend insects from viruses is an emerging field of study. We examined the impact of melanized encapsulation, a component of innate immunity that integrates both cellular and humoral immune responses, on the success of the baculovirus Lymantria dispar multiple nucleocapsid nucleopolyhedrovirus (LdMNPV) in its...

  4. Protein Structure Prediction by Protein Threading

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Liu, Zhijie; Cai, Liming; Xu, Dong

    The seminal work of Bowie, Lüthy, and Eisenberg (Bowie et al., 1991) on "the inverse protein folding problem" laid the foundation of protein structure prediction by protein threading. By using simple measures for fitness of different amino acid types to local structural environments defined in terms of solvent accessibility and protein secondary structure, the authors derived a simple and yet profoundly novel approach to assessing if a protein sequence fits well with a given protein structural fold. Their follow-up work (Elofsson et al., 1996; Fischer and Eisenberg, 1996; Fischer et al., 1996a,b) and the work by Jones, Taylor, and Thornton (Jones et al., 1992) on protein fold recognition led to the development of a new brand of powerful tools for protein structure prediction, which we now term "protein threading." These computational tools have played a key role in extending the utility of all the experimentally solved structures by X-ray crystallography and nuclear magnetic resonance (NMR), providing structural models and functional predictions for many of the proteins encoded in the hundreds of genomes that have been sequenced up to now.

  5. Identification of Sumoylated Proteins in the Silkworm Bombyx mori

    PubMed Central

    Tang, Xudong; Fu, Xuliang; Hao, Bifang; Zhu, Feng; Xiao, Shengyan; Xu, Li; Shen, Zhongyuan

    2014-01-01

    Small ubiquitin-like modifier (SUMO) modification (SUMOylation) is an important and widely used reversible modification system in eukaryotic cells. It regulates various cell processes, including protein targeting, transcriptional regulation, signal transduction, and cell division. To understand its role in the model lepidoptera insect Bombyx mori, a recombinant baculovirus was constructed to express an enhanced green fluorescent protein (eGFP)-SUMO fusion protein along with ubiquitin carrier protein 9 of Bombyx mori (BmUBC9). SUMOylation substrates from Bombyx mori cells infected with this baculovirus were isolated by immunoprecipitation and identified by LC–ESI-MS/MS. A total of 68 candidate SUMOylated proteins were identified, of which 59 proteins were functionally categorized to gene ontology (GO) terms. Analysis of kyoto encyclopedia of genes and genomes (KEGG) pathways showed that 46 of the identified proteins were involved in 76 pathways that mainly play a role in metabolism, spliceosome and ribosome functions, and in RNA transport. Furthermore, SUMOylation of four candidates (polyubiquitin-C-like isoform X1, 3-hydroxyacyl-CoA dehydrogenase, cyclin-related protein FAM58A-like and GTP-binding nuclear protein Ran) were verified by co-immunoprecipitation in Drosophila schneide 2 cells. In addition, 74% of the identified proteins were predicted to have at least one SUMOylation site. The data presented here shed light on the crucial process of protein sumoylation in Bombyx mori. PMID:25470021

  6. Generation of porcine reproductive and respiratory syndrome (PRRS) virus-like-particles (VLPs) with different protein composition.

    PubMed

    García Durán, Marga; Costa, Sofia; Sarraseca, Javier; de la Roja, Nuria; García, Julia; García, Isabel; Rodríguez, Maria José

    2016-10-01

    The causative agent of Porcine Reproductive and Respiratory Syndrome (PRRS) is an enveloped ssRNA (+) virus belonging to the Arteriviridae family. Gp5 and M proteins form disulfide-linked heterodimers that constitute the major components of PRRSV envelope. Gp2, Gp3, Gp4 and E are the minor structural proteins, being the first three incorporated as multimeric complexes in the virus surface. The disease has become one of the most important causes of economic losses in the swine industry. Despite efforts to design an effective vaccine, the available ones allow only partial protection. In the last years, VLPs have become good vaccine alternatives because of safety issues and their potential to activate both branches of the immunological response. The characteristics of recombinant baculoviruses as heterologous expression system have been exploited for the production of VLPs of a wide variety of viruses. In this work, two multiple baculovirus expression vectors (BEVs) with PRRS virus envelope proteins were engineered in order to generate PRRS VLPs: on the one hand, Gp5 and M cDNAs were cloned to generate the pBAC-Gp5M vector; on the other hand, Gp2, Gp3, Gp4 and E cDNAs have been cloned to generate the pBAC-Gp234E vector. The corresponding recombinant baculoviruses BAC-Gp5M and BAC-Gp234E were employed to produce two types of VLPs: basic Gp5M VLPs, by the simultaneous expression of Gp5 and M proteins; and complete VLPs, by the co-expression of the six PRRS proteins after co-infection. The characterization of VLPs by Western blot confirmed the presence of the recombinant proteins using the available specific antibodies (Abs). The analysis by Electron microscopy showed that the two types of VLPs were indistinguishable between them, being similar in shape and size to the native PRRS virus. This system represents a potential alternative for vaccine development and a useful tool to study the implication of specific PRRS proteins in the response against the virus. Copyright

  7. Structural deformation upon protein-protein interaction: A structural alphabet approach

    PubMed Central

    Martin, Juliette; Regad, Leslie; Lecornet, Hélène; Camproux, Anne-Claude

    2008-01-01

    Background In a number of protein-protein complexes, the 3D structures of bound and unbound partners significantly differ, supporting the induced fit hypothesis for protein-protein binding. Results In this study, we explore the induced fit modifications on a set of 124 proteins available in both bound and unbound forms, in terms of local structure. The local structure is described thanks to a structural alphabet of 27 structural letters that allows a detailed description of the backbone. Using a control set to distinguish induced fit from experimental error and natural protein flexibility, we show that the fraction of structural letters modified upon binding is significantly greater than in the control set (36% versus 28%). This proportion is even greater in the interface regions (41%). Interface regions preferentially involve coils. Our analysis further reveals that some structural letters in coil are not favored in the interface. We show that certain structural letters in coil are particularly subject to modifications at the interface, and that the severity of structural change also varies. These information are used to derive a structural letter substitution matrix that summarizes the local structural changes observed in our data set. We also illustrate the usefulness of our approach to identify common binding motifs in unrelated proteins. Conclusion Our study provides qualitative information about induced fit. These results could be of help for flexible docking. PMID:18307769

  8. Structural deformation upon protein-protein interaction: a structural alphabet approach.

    PubMed

    Martin, Juliette; Regad, Leslie; Lecornet, Hélène; Camproux, Anne-Claude

    2008-02-28

    In a number of protein-protein complexes, the 3D structures of bound and unbound partners significantly differ, supporting the induced fit hypothesis for protein-protein binding. In this study, we explore the induced fit modifications on a set of 124 proteins available in both bound and unbound forms, in terms of local structure. The local structure is described thanks to a structural alphabet of 27 structural letters that allows a detailed description of the backbone. Using a control set to distinguish induced fit from experimental error and natural protein flexibility, we show that the fraction of structural letters modified upon binding is significantly greater than in the control set (36% versus 28%). This proportion is even greater in the interface regions (41%). Interface regions preferentially involve coils. Our analysis further reveals that some structural letters in coil are not favored in the interface. We show that certain structural letters in coil are particularly subject to modifications at the interface, and that the severity of structural change also varies. These information are used to derive a structural letter substitution matrix that summarizes the local structural changes observed in our data set. We also illustrate the usefulness of our approach to identify common binding motifs in unrelated proteins. Our study provides qualitative information about induced fit. These results could be of help for flexible docking.

  9. Characterization of Bombyx mori nucleopolyhedrovirus orf68 gene that encodes a novel structural protein of budded virus.

    PubMed

    Iwanaga, Masashi; Kurihara, Masaaki; Kobayashi, Masahiko; Kang, WonKyung

    2002-05-25

    All lepidopteran baculovirus genomes sequenced to date encode a homolog of the Bombyx mori nucleopolyhedrovirus (BmNPV) orf68 gene, suggesting that it performs an important role in the virus life cycle. In this article we describe the characterization of BmNPV orf68 gene. Northern and Western analyses demonstrated that orf68 gene was expressed as a late gene and encoded a structural protein of budded virus (BV). Immunohistochemical analysis by confocal microscopy showed that ORF68 protein was localized mainly in the nucleus of infected cells. To examine the function of orf68 gene, we constructed orf68 deletion mutant (BmD68) and characterized it in BmN cells and larvae of B. mori. BV production was delayed in BmD68-infected cells. The larval bioassays also demonstrated that deletion of orf68 did not reduce the infectivity, but mutant virus took 70 h longer to kill the host than wild-type BmNPV. In addition, dot-blot analysis showed viral DNA accumulated more slowly in mutant infected cells. Further examination suggested that BmD68 was less efficient in entry and budding from cells, although it seemed to possess normal attachment ability. These results suggest that ORF68 is a BV-associated protein involved in secondary infection from cell-to-cell. (c) 2002 Elsevier Science (USA).

  10. Protein Structure

    ERIC Educational Resources Information Center

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  11. Expression and Self-Assembly in Baculovirus of Porcine Enteric Calicivirus Capsids into Virus-Like Particles and Their Use in an Enzyme-Linked Immunosorbent Assay for Antibody Detection in Swine

    PubMed Central

    Guo, Mingzhang; Qian, Yuan; Chang, Kyeong-Ok; Saif, Linda J.

    2001-01-01

    Porcine enteric calicivirus (PEC) causes diarrhea and intestinal lesions in pigs. PEC strain Cowden grows to low to moderate titers in cell culture but only with the addition of intestinal contents from uninfected gnotobiotic pigs (W. T. Flynn and L. J. Saif, J. Clin. Microbiol. 26:206–212, 1988; A. V. Parwani, W. T. Flynn, K. L. Gadfield, and L. J. Saif, Arch. Virol. 120:115–122, 1991). Cloning and sequence analysis of the PEC Cowden full-length genome revealed that it is most closely related genetically to the human Sapporo-like viruses. In this study, the complete PEC capsid gene was subcloned into the plasmid pBlueBac4.5 and the recombinant baculoviruses were identified by plaque assay and PCR. The PEC capsid protein was expressed in insect (Sf9) cells inoculated with the recombinant baculoviruses, and the recombinant capsid proteins self- assembled into virus-like particles (VLPs) that were released into the cell supernatant and purified by CsCl gradient centrifugation. The PEC VLPs had the same molecular mass (58 kDa) as the native virus capsid and reacted with pig hyperimmune and convalescent-phase sera to PEC Cowden in enzyme-linked immunosorbent assay (ELISA) and Western blotting. The PEC capsid VLPs were morphologically and antigenically similar to the native virus by immune electron microscopy. High titers (1:102,400 to 204,800) of PEC-specific antibodies were induced in guinea pigs inoculated with PEC VLPs, suggesting that the VLPs could be useful for future candidate PEC vaccines. A fixed-cell ELISA and VLP ELISA were developed to detect PEC serum antibodies in pigs. For the fixed-cell ELISA, Sf9 cells were infected with recombinant baculoviruses expressing PEC capsids, followed by cell fixation with formalin. For the VLP ELISA, the VLPs were used for the coating antigen. Our data indicate that both tests were rapid, specific, and reproducible and might be used for large-scale serological investigations of PEC antibodies in swine. PMID:11283075

  12. MicroRNAome of Spodoptera frugiperda cells (Sf9) and its alteration following baculovirus infection.

    PubMed

    Mehrabadi, Mohammad; Hussain, Mazhar; Asgari, Sassan

    2013-06-01

    MicroRNAs (miRNAs) as small non-coding RNAs play important roles in many biological processes such as development, cell signalling and immune response. Studies also suggest that miRNAs are important in host-virus interactions where the host limits virus infection by differentially expressing miRNAs that target essential viral genes. Here, we identified conserved and new miRNAs from Spodoptera frugiperda cells (Sf9) using a combination of deep sequencing and bioinformatics as well as experimental approaches. S. frugiperda miRNAs share common features of miRNAs in other organisms, such as uracil (U) at the 5' end of miRNA. The 5' ends of the miRNAs were more conserved than the 3' ends, revealing evolutionary protection of the seed region in miRNAs. The predominant miRNAs were found to be conserved among arthropods. The majority of homologous miRNAs were found in Bombyx mori, with 76 of the 90 identified miRNAs. We found that seed shifting and arm switching have happened in this insect's miRNAs. Expression levels of the majority of miRNAs changed following baculovirus infection. Results revealed that baculovirus infection mainly led to an overall suppression of cellular miRNAs. We found four different genes being regulated by sfr-miR-184 at the post-transcriptional level. The data presented here further support conservation of miRNAs in insects and other organisms. In addition, the results reveal a differential expression of host miRNAs upon baculovirus infection, suggesting their potential roles in host-virus interactions. Seed shifting and arm switching happened during evolution of miRNAs in different insects and caused miRNA diversification, which led to changes in the target repository of miRNAs.

  13. Full protection against African horsesickness (AHS) in horses induced by baculovirus-derived AHS virus serotype 4 VP2, VP5 and VP7.

    PubMed

    Martínez-Torrecuadrada, J L; Díaz-Laviada, M; Roy, P; Sánchez, C; Vela, C; Sánchez-Vizcaíno, J M; Casal, J I

    1996-06-01

    African horsesickness virus serotype 4 (AHSV-4) outer capsid protein VP2, or VP2 and VP5 plus inner capsid protein VP7, derived from single or dual recombinant baculovirus expression vectors were used in different combinations to immunize horses. When the proteins were purified by affinity chromatography, the combination of all three proteins induced low levels of neutralizing antibodies and conferred protection against virulent virus challenge. However, purified VP2 or VP2 and VP5 in the absence of VP7 failed to induce neutralizing antibodies and protection. Immunization with non-purified proteins enhanced the titres of neutralizing antibodies. Again, the combination of the three proteins was able to confer total protection to immunized horses, which showed absence of viraemia. The antigenicity of recombinant VP2 was analysed with a collection of 30 MAbs. Both purified and unpurified recombinant VP2 proteins showed different antigenic patterns in comparison to that of VP2 on virions. An immunization experiment with four more horses confirmed these results. The vaccine described here would not only prevent the disease, but would drastically reduce the propagation of the virus by vectors.

  14. Laboratory and field evaluations for efficacy of a fast-killing baculovirus isolate from Spodoptera frugiperda

    USDA-ARS?s Scientific Manuscript database

    Three biopesticide parameters were evaluated for a fast-killing isolate (3AP2) Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) and a wild-type isolate (Sf3) of the same baculovirus. Both isolates were evaluated for virus production using in vivo methods, for speed of kill based on bioas...

  15. The octamer-binding proteins form multi-protein--DNA complexes with the HSV alpha TIF regulatory protein.

    PubMed Central

    Kristie, T M; LeBowitz, J H; Sharp, P A

    1989-01-01

    The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions. Images PMID:2556266

  16. The octamer-binding proteins form multi-protein--DNA complexes with the HSV alpha TIF regulatory protein.

    PubMed

    Kristie, T M; LeBowitz, J H; Sharp, P A

    1989-12-20

    The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions.

  17. Production of Japanese encephalitis virus-like particles in insect cells.

    PubMed

    Yamaji, Hideki; Konishi, Eiji

    2013-01-01

    Virus-like particles (VLPs) are composed of one or several recombinant viral surface proteins that spontaneously assemble into particulate structures without the incorporation of virus DNA or RNA. The baculovirus-insect cell system has been used extensively for the production of recombinant virus proteins including VLPs. While the baculovirus-insect cell system directs the transient expression of recombinant proteins in a batch culture, stably transformed insect cells allow constitutive production. In our recent study, a secretory form of Japanese encephalitis (JE) VLPs was successfully produced by Trichoplusia ni BTI-TN-5B1-4 (High Five) cells engineered to coexpress the JE virus (JEV) premembrane (prM) and envelope (E) proteins. A higher yield of E protein was attained with recombinant High Five cells than with the baculovirus-insect cell system. This study demonstrated that recombinant insect cells offer a promising approach to the high-level production of VLPs for use as vaccines and diagnostic antigens.

  18. Avian reovirus microNS protein forms homo-oligomeric inclusions in a microtubule-independent fashion, which involves specific regions of its C-terminal domain.

    PubMed

    Brandariz-Nuñez, Alberto; Menaya-Vargas, Rebeca; Benavente, Javier; Martinez-Costas, Jose

    2010-05-01

    Members of the genus Orthoreovirus replicate in cytoplasmic inclusions termed viral factories. Compelling evidence suggests that the nonstructural protein microNS forms the matrix of the factories and recruits specific viral proteins to these structures. In the first part of this study, we analyzed the properties of avian reovirus factories and microNS-derived inclusions and found that they are nonaggresome cytoplasmic globular structures not associated with the cytoskeleton which do not require an intact microtubule network for formation and maturation. We next investigated the capacity of avian reovirus microNS to form inclusions in transfected and baculovirus-infected cells. Our results showed that microNS is the main component of the inclusions formed by recombinant baculovirus expression. This, and the fact that microNS is able to self-associate inside the cell, suggests that microNS monomers contain all the interacting domains required for inclusion formation. Examination of the inclusion-forming capacities of truncated microNS versions allowed us to identify the region spanning residues 448 to 635 of microNS as the smallest that was inclusion competent, although residues within the region 140 to 380 seem to be involved in inclusion maturation. Finally, we investigated the roles that four different motifs present in microNS(448-635) play in inclusion formation, and the results suggest that the C-terminal tail domain is a key determinant in dictating the initial orientation of monomer-to-monomer contacts to form basal oligomers that control inclusion shape and inclusion-forming efficiency. Our results contribute to an understanding of the generation of structured protein aggregates that escape the cellular mechanisms of protein recycling.

  19. Orgyia pseudotsugata baculovirus p10 and polyhedron envelope protein genes: analysis of their relative expression levels and role in polyhedron structure.

    PubMed

    Gross, C H; Russell, R L; Rohrmann, G F

    1994-05-01

    To investigate the regulation of p10 and polyhedron envelope protein (PEP) gene expression and their role in polyhedron development, Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis viruses lacking these genes were constructed. Recombinant viruses were produced, in which the p10 gene, the PEP gene or both genes were disrupted with the beta-glucuronidase (GUS) or beta-galactosidase (lacZ) genes. GUS activity under the control of the PEP protein promoter was observed later in infection and its maximal expression was less than 10% the level for p10 promoter-GUS constructs. Tissues from O. pseudotsugata larvae infected with these recombinants were examined by electron microscopy. Cells from insects infected with the p10- viruses lacked p10-associated fibrillar structures, but fragments of polyhedron envelope-like structures were observed on the surface of some polyhedra. Immunogold labelling of cells infected with the p10-GUS+ virus with an antibody directed against PEP showed that the PEP was concentrated at the surface of polyhedra. Although polyhedra produced by p10 and PEP gene deletion mutants demonstrated what appeared to be a polyhedron envelope by transmission electron microscopy, scanning electron microscopy showed that they had irregular, pitted surfaces that were different from wild-type polyhedra. These data suggested that both p10 and PEP are important for the proper formation of the periphery of polyhedra.

  20. Improved isolation and purification of functional human Fas receptor extracellular domain using baculovirus-silkworm expression system.

    PubMed

    Muraki, Michiro; Honda, Shinya

    2011-11-01

    To achieve an efficient isolation of human Fas receptor extracellular domain (hFasRECD), a fusion protein of hFasRECD with human IgG1 heavy chain Fc domain containing thrombin cleavage sequence at the junction site was overexpressed using baculovirus-silkworm larvae expression system. The hFasRECD part was separated from the fusion protein by the effective cleavage of the recognition site with bovine thrombin. Protein G column treatment of the reaction mixture and the subsequent cation-exchange chromatography provided purified hFasRECD with a final yield of 13.5mg from 25.0 ml silkworm hemolymph. The functional activity of the product was examined by size-exclusion chromatography analysis. The isolated hFasRECD less strongly interacted with human Fas ligand extracellular domain (hFasLECD) than the Fc domain-bridged counterpart, showing the contribution of antibody-like avidity in the latter case. The purified glycosylated hFasRECD presented several discrete bands in the disulphide-bridge non-reducing SDS-PAGE analysis, and virtually all of the components were considered to participate in the binding to hFasLECD. The attached glycans were susceptible to PNGase F digestion, but mostly resistant to Endo Hf digestion under denaturing conditions. One of the components exhibited a higher susceptibility to PNGase F digestion under non-denaturing conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites.

    PubMed

    Mizutani, Masanori; Iyori, Mitsuhiro; Blagborough, Andrew M; Fukumoto, Shinya; Funatsu, Tomohiro; Sinden, Robert E; Yoshida, Shigeto

    2014-10-01

    A multistage malaria vaccine targeting the pre-erythrocytic and sexual stages of Plasmodium could effectively protect individuals against infection from mosquito bites and provide transmission-blocking (TB) activity against the sexual stages of the parasite, respectively. This strategy could help prevent malaria infections in individuals and, on a larger scale, prevent malaria transmission in communities of endemicity. Here, we describe the development of a multistage Plasmodium vivax vaccine which simultaneously expresses P. vivax circumsporozoite protein (PvCSP) and P25 (Pvs25) protein of this species as a fusion protein, thereby acting as a pre-erythrocytic vaccine and a TB vaccine, respectively. A new-concept vaccine platform based on the baculovirus dual-expression system (BDES) was evaluated. The BDES-Pvs25-PvCSP vaccine displayed correct folding of the Pvs25-PvCSP fusion protein on the viral envelope and was highly expressed upon transduction of mammalian cells in vitro. This vaccine induced high levels of antibodies to Pvs25 and PvCSP and elicited protective (43%) and TB (82%) efficacies against transgenic P. berghei parasites expressing the corresponding P. vivax antigens in mice. Our data indicate that our BDES, which functions as both a subunit and DNA vaccine, can offer a promising multistage vaccine capable of delivering a potent antimalarial pre-erythrocytic and TB response via a single immunization regimen. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. CHARACTERIZATION OF THE GLYCOSYLATED ECDYSTEROIDS IN THE HEMOLYMPH OF BACULOVIRUS-INFECTED GYPSY MOTH LARVAE AND CELLS IN CULTURE

    EPA Science Inventory

    Fourth-instar gypsy moth (Lymantria dispar; Lepidoptera: Lymantriidae) larvae, infected with the gypsy moth baculovirus (LdNPV), show an elevated and prolonged extension of the hemolymph ecdysteroid titer peak associated with molting. The ecdysteroid immunoreactivity associated w...

  3. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.

    PubMed

    Kinjo, Akira R; Nakamura, Haruki

    2013-01-01

    Protein functions are mediated by interactions between proteins and other molecules. One useful approach to analyze protein functions is to compare and classify the structures of interaction interfaces of proteins. Here, we describe the procedures for compiling a database of interface structures and efficiently comparing the interface structures. To do so requires a good understanding of the data structures of the Protein Data Bank (PDB). Therefore, we also provide a detailed account of the PDB exchange dictionary necessary for extracting data that are relevant for analyzing interaction interfaces and secondary structures. We identify recurring structural motifs by classifying similar interface structures, and we define a coarse-grained representation of supersecondary structures (SSS) which represents a sequence of two or three secondary structure elements including their relative orientations as a string of four to seven letters. By examining the correspondence between structural motifs and SSS strings, we show that no SSS string has particularly high propensity to be found interaction interfaces in general, indicating any SSS can be used as a binding interface. When individual structural motifs are examined, there are some SSS strings that have high propensity for particular groups of structural motifs. In addition, it is shown that while the SSS strings found in particular structural motifs for nonpolymer and protein interfaces are as abundant as in other structural motifs that belong to the same subunit, structural motifs for nucleic acid interfaces exhibit somewhat stronger preference for SSS strings. In regard to protein folds, many motif-specific SSS strings were found across many folds, suggesting that SSS may be a useful description to investigate the universality of ligand binding modes.

  4. Structures of BIR domains from human NAIP and cIAP2.

    PubMed

    Herman, Maria Dolores; Moche, Martin; Flodin, Susanne; Welin, Martin; Trésaugues, Lionel; Johansson, Ida; Nilsson, Martina; Nordlund, Pär; Nyman, Tomas

    2009-11-01

    The inhibitor of apoptosis (IAP) family of proteins contains key modulators of apoptosis and inflammation that interact with caspases through baculovirus IAP-repeat (BIR) domains. Overexpression of IAP proteins frequently occurs in cancer cells, thus counteracting the activated apoptotic program. The IAP proteins have therefore emerged as promising targets for cancer therapy. In this work, X-ray crystallography was used to determine the first structures of BIR domains from human NAIP and cIAP2. Both structures harbour an N-terminal tetrapeptide in the conserved peptide-binding groove. The structures reveal that these two proteins bind the tetrapeptides in a similar mode as do other BIR domains. Detailed interactions are described for the P1'-P4' side chains of the peptide, providing a structural basis for peptide-specific recognition. An arginine side chain in the P3' position reveals favourable interactions with its hydrophobic moiety in the binding pocket, while hydrophobic residues in the P2' and P4' pockets make similar interactions to those seen in other BIR domain-peptide complexes. The structures also reveal how a serine in the P1' position is accommodated in the binding pockets of NAIP and cIAP2. In addition to shedding light on the specificity determinants of these two proteins, the structures should now also provide a framework for future structure-based work targeting these proteins.

  5. Pseudotyped baculovirus is an effective gene expression tool for studying molecular function during axolotl limb regeneration.

    PubMed

    Oliveira, Catarina R; Lemaitre, Regis; Murawala, Prayag; Tazaki, Akira; Drechsel, David N; Tanaka, Elly M

    2018-01-15

    Axolotls can regenerate complex structures through recruitment and remodeling of cells within mature tissues. Accessing the underlying mechanisms at a molecular resolution is crucial to understand how injury triggers regeneration and how it proceeds. However, gene transformation in adult tissues can be challenging. Here we characterize the use of pseudotyped baculovirus (BV) as an effective gene transfer method both for cells within mature limb tissue and within the blastema. These cells remain competent to participate in regeneration after transduction. We further characterize the effectiveness of BV for gene overexpression studies by overexpressing Shh in the blastema, which yields a high penetrance of classic polydactyly phenotypes. Overall, our work establishes BV as a powerful tool to access gene function in axolotl limb regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Evolution in Oryctes baculovirus: rate and types of genomic change.

    PubMed

    Crawford, A M; Zelazny, B

    1990-01-01

    Three cloned strains of Oryctes baculovirus were released into a previously unexposed population of the host insect, the coconut palm rhinoceros beetle, Oryctes rhinoceros. The experiment was conducted on Meemu Atoll in the Maldive Islands. Viruses were isolated from the beetle population at 1 year, 1.75 years, and 4 years after release. No changes in genotype were observed in viruses isolated after 1 and 1.75 years. After 4 years, however, three types of genomic change had occurred. A recombinant derived from two of the released strains, an isolate containing a 100-bp insert, and one example of a point mutation were found in the 22 isolates examined.

  7. Isolation of a baculovirus variant that exhibits enhanced polyhedra production stability during serial passage in cell culture

    Treesearch

    James M. Slavicek; Melissa J. Mercer; Mary Ellen Kelly; Nancy Hayes-Plazolles

    1996-01-01

    The formation of few polyhedra mutants during serial propagation of baculoviruses in cell culture encumbers commercial scale production in this system. A Lymantria dispar nuclear polyhedrosis virus (LdMNPV) variant (isolate A21-MPV) has been isolated and the traits of budded virus (BV) production, synthesis of polyhedra, the...

  8. Enhanced effect of fluorescent whitening agent on peroral infection for recombinant baculovirus in the host Bombyx mori L.

    PubMed

    Wang, Bing; Shang, Jinyan; Liu, Xunli; Cui, Weizheng; Wu, Xiaofeng; Zhao, Na

    2007-01-01

    The low efficiency of the oral infectivity of recombinant polyhedrin-negative baculovirus is a major bottleneck in the application of the baculovirus expression system in the silkworm (Bombyx mori L). In this study, the effects of a fluorescent whitening agent on improving the oral infection for the recombinant Bombyx mori nuclear polyhedrosis virus in silkworm larva and their possible mechanism were investigated. The results showed that the peroral infection can be remarkably enhanced by adding VBL into the larval artificial diet. The maximum infection rate reached as high as 90% with the concentration of VBL (1%), which was then considered as optimal. The total protease activity and pH value of the larval intestinal juice were found to be lower when compared to the control, indicating an abnormal physiological change of the larval digestive system by VBL, which, in turn, resulted in improved peroral infection of recombinant virus.

  9. Yellow fever virus envelope protein expressed in insect cells is capable of syncytium formation in lepidopteran cells and could be used for immunodetection of YFV in human sera

    PubMed Central

    2011-01-01

    Background Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Results Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. Conclusions The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine. PMID:21619598

  10. Yellow fever virus envelope protein expressed in insect cells is capable of syncytium formation in lepidopteran cells and could be used for immunodetection of YFV in human sera.

    PubMed

    Barros, Maria C E S; Galasso, Tatiane G C M; Chaib, Antônio J M; Degallier, Nicolas; Nagata, Tatsuya; Ribeiro, Bergmann M

    2011-05-27

    Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine.

  11. Initial preclinical safety of non-replicating human endogenous retrovirus envelope protein-coated baculovirus vector-based vaccines against human papillomavirus.

    PubMed

    Han, Su-Eun; Kim, Mi-Gyeong; Lee, Soondong; Cho, Hee-Jeong; Byun, Youngro; Kim, Sujeong; Kim, Young Bong; Choi, Yongseok; Oh, Yu-Kyoung

    2013-12-01

    Human endogenous retrovirus (HERV) envelope protein-coated, baculovirus vector-based HPV 16 L1 (AcHERV-HPV16L1) is a non-replicating recombinant baculoviral vaccine. Here, we report an initial evaluation of the preclinical safety of AcHERV-HPV16L1 vaccine. In an acute toxicity study, a single administration of AcHERV-HPV16L1 DNA vaccine given intramuscularly (i.m.) to mice at a dose of 1 × 10(8) plaque-forming units (PFU) did not cause significant changes in body weight compared with vehicle-treated controls. It did cause a brief increase in the weights of some organs on day 15 post-treatment, but by day 30, all organ weights were not significantly different from those in the vehicle-treated control group. No hematological changes were observed on day 30 post-treatment. In a range-finding toxicity study with three doses of 1 × 10(7) , 2 × 10(7) and 5 × 10(7) PFU once daily for 5 days, the group treated with 5 × 10(7) PFU showed a transient decrease in the body weights from day 5 to day 15 post-treatment, but recovery to the levels similar to those in the vehicle-treated control group by post-treatment day 20. Organ weights were slightly higher for lymph nodes, spleen, thymus and liver after repeated dosing with 5 × 10(7) PFU on day 15, but had normalized by day 30. Moreover, repeated administration of AcHERV-HPV16L1 did not induce myosin-specific autoantibody in serum, and did not cause immune complex deposition or tissue damage at injection sites. Taken together, these results provide preliminary evidence of the preclinical safety of AcHERV-based HPV16L1 DNA vaccines in mice. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Structures of membrane proteins

    PubMed Central

    Vinothkumar, Kutti R.; Henderson, Richard

    2010-01-01

    In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class. PMID:20667175

  13. BAYESIAN PROTEIN STRUCTURE ALIGNMENT.

    PubMed

    Rodriguez, Abel; Schmidler, Scott C

    The analysis of the three-dimensional structure of proteins is an important topic in molecular biochemistry. Structure plays a critical role in defining the function of proteins and is more strongly conserved than amino acid sequence over evolutionary timescales. A key challenge is the identification and evaluation of structural similarity between proteins; such analysis can aid in understanding the role of newly discovered proteins and help elucidate evolutionary relationships between organisms. Computational biologists have developed many clever algorithmic techniques for comparing protein structures, however, all are based on heuristic optimization criteria, making statistical interpretation somewhat difficult. Here we present a fully probabilistic framework for pairwise structural alignment of proteins. Our approach has several advantages, including the ability to capture alignment uncertainty and to estimate key "gap" parameters which critically affect the quality of the alignment. We show that several existing alignment methods arise as maximum a posteriori estimates under specific choices of prior distributions and error models. Our probabilistic framework is also easily extended to incorporate additional information, which we demonstrate by including primary sequence information to generate simultaneous sequence-structure alignments that can resolve ambiguities obtained using structure alone. This combined model also provides a natural approach for the difficult task of estimating evolutionary distance based on structural alignments. The model is illustrated by comparison with well-established methods on several challenging protein alignment examples.

  14. Induction of an IAP antagonist in Culex quinquefasciatus larvae in response to infection by the baculovirus CuniNPV

    USDA-ARS?s Scientific Manuscript database

    CuniNPV is a member of the Dipteran–specific baculoviruses in the genus Deltabaculovirus that specifically infects mosquito larvae within the genus Culex while species of Aedes and Anopheles are refractory. Infections are restricted to the nuclei of larval midgut epithelial cells with transmission...

  15. Structures of BIR domains from human NAIP and cIAP2

    PubMed Central

    Herman, Maria Dolores; Moche, Martin; Flodin, Susanne; Welin, Martin; Trésaugues, Lionel; Johansson, Ida; Nilsson, Martina; Nordlund, Pär; Nyman, Tomas

    2009-01-01

    The inhibitor of apoptosis (IAP) family of proteins contains key modulators of apoptosis and inflammation that interact with caspases through baculovirus IAP-repeat (BIR) domains. Overexpression of IAP proteins frequently occurs in cancer cells, thus counteracting the activated apoptotic program. The IAP proteins have therefore emerged as promising targets for cancer therapy. In this work, X-ray crystallography was used to determine the first structures of BIR domains from human NAIP and cIAP2. Both structures harbour an N-terminal tetrapeptide in the conserved peptide-binding groove. The structures reveal that these two proteins bind the tetrapeptides in a similar mode as do other BIR domains. Detailed interactions are described for the P1′–P4′ side chains of the peptide, providing a structural basis for peptide-specific recognition. An arginine side chain in the P3′ position reveals favourable interactions with its hydrophobic moiety in the binding pocket, while hydrophobic residues in the P2′ and P4′ pockets make similar interactions to those seen in other BIR domain–peptide complexes. The structures also reveal how a serine in the P1′ position is accommodated in the binding pockets of NAIP and cIAP2. In addition to shedding light on the specificity determinants of these two proteins, the structures should now also provide a framework for future structure-based work targeting these proteins. PMID:19923725

  16. Recognition of the different structural forms of the capsid protein determines the outcome following infection with porcine circovirus type 2.

    PubMed

    Trible, Benjamin R; Suddith, Andrew W; Kerrigan, Maureen A; Cino-Ozuna, Ada G; Hesse, Richard A; Rowland, Raymond R R

    2012-12-01

    Porcine circovirus type 2 (PCV2) capsid protein (CP) is the only protein necessary for the formation of the virion capsid, and recombinant CP spontaneously forms virus-like particles (VLPs). Located within a single CP subunit is an immunodominant epitope consisting of residues 169 to 180 [CP(169-180)], which is exposed on the surface of the subunit, but, in the structural context of the VLP, the epitope is buried and inaccessible to antibody. High levels of anti-CP(169-180) activity are associated with porcine circovirus-associated disease (PCVAD). The purpose of this study was to investigate the role of the immune response to monomer CP in the development of PCVAD. The approach was to immunize pigs with CP monomer, followed by challenge with PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV). To maintain the CP immunogen as a stable monomer, CP(43-233) was fused to ubiquitin (Ub-CP). Size exclusion chromatography showed that Ub-CP was present as a single 33-kDa protein. Pigs immunized with Ub-CP developed a strong antibody response to PCV2, including antibodies against CP(169-180). However, only low levels of virus neutralizing activity were detected, and viremia levels were similar to those of nonimmunized pigs. As a positive control, immunization with baculovirus-expressed CP (Bac-CP) resulted in high levels of virus neutralizing activity, small amounts of anti-CP(169-180) activity, and the absence of viremia in pigs following virus challenge. The data support the role of CP(169-180) as an immunological decoy and illustrate the importance of the structural form of the CP immunogen in determining the outcome following infection.

  17. Modularity in protein structures: study on all-alpha proteins.

    PubMed

    Khan, Taushif; Ghosh, Indira

    2015-01-01

    Modularity is known as one of the most important features of protein's robust and efficient design. The architecture and topology of proteins play a vital role by providing necessary robust scaffolds to support organism's growth and survival in constant evolutionary pressure. These complex biomolecules can be represented by several layers of modular architecture, but it is pivotal to understand and explore the smallest biologically relevant structural component. In the present study, we have developed a component-based method, using protein's secondary structures and their arrangements (i.e. patterns) in order to investigate its structural space. Our result on all-alpha protein shows that the known structural space is highly populated with limited set of structural patterns. We have also noticed that these frequently observed structural patterns are present as modules or "building blocks" in large proteins (i.e. higher secondary structure content). From structural descriptor analysis, observed patterns are found to be within similar deviation; however, frequent patterns are found to be distinctly occurring in diverse functions e.g. in enzymatic classes and reactions. In this study, we are introducing a simple approach to explore protein structural space using combinatorial- and graph-based geometry methods, which can be used to describe modularity in protein structures. Moreover, analysis indicates that protein function seems to be the driving force that shapes the known structure space.

  18. A Novel Ideal Radionuclide Imaging System for Non-invasively Cell Monitoring built on Baculovirus Backbone by Introducing Sleeping Beauty Transposon

    PubMed Central

    Lv, Jing; Pan, Yu; Ju, Huijun; Zhou, Jinxin; Cheng, Dengfeng; Shi, Hongcheng; Zhang, Yifan

    2017-01-01

    Sleeping Beauty (SB) transposon is an attractive tool in stable transgene integration both in vitro and in vivo; and we introduced SB transposon into recombinant sodium-iodide symporter baculovirus system (Bac-NIS system) to facilitate long-term expression of recombinant sodium-iodide symporter. In our study, two hybrid baculovirus systems (Bac-eGFP-SB-NeoR and Bac-NIS-SB-NeoR) were successfully constructed and used to infect U87 glioma cells. After G418 selection screening, the Bac-eGFP-SB-NeoR-U87 cells remained eGFP positive, at the 18th and 196th day post transfection (96.03 ± 0.21% and 97.43 ± 0.81%), while eGFP positive population declined significantly at 18 days in cells transfected with unmodified baculovirus construct. NIS gene expression by Bac-NIS-SB-NeoR-U87 cells was also maintained for 28 weeks as determined by radioiodine uptake assay, reverse transcription-polymerase chain reaction (RT-PCR) and Western Blot (WB) assay. When transplanted in mice, Bac-NIS-SB-NeoR-U87 cells also expressed NIS gene stably as monitored by SPECT imaging for 43 days until the tumor-bearing mice were sacrificed. Herein, we showed that incorporation of SB in Bac-NIS system (hybrid Bac-NIS-SB-NeoR) can achieve a long-term transgene expression and can improve radionuclide imaging in cell tracking and monitoring in vivo. PMID:28262785

  19. Characterization of self-assembled virus-like particles of dromedary camel hepatitis e virus generated by recombinant baculoviruses.

    PubMed

    Zhou, Xianfeng; Kataoka, Michiyo; Liu, Zheng; Takeda, Naokazu; Wakita, Takaji; Li, Tian-Cheng

    2015-12-02

    Dromedary camel hepatitis E virus (DcHEV), a novel hepatitis E virus, has been identified in dromedary camels in Dubai, United Arab Emirates. The antigenicity, pathogenicity and epidemiology of this virus have been unclear. Here we first used a recombinant baculovirus expression system to express the 13 and 111 N-terminus amino-acid-truncated DcHEV ORF2 protein in insect Tn5 cells, and we obtained two types of virus-like particles (VLPs) with densities of 1.300 g/cm(3) and 1.285 g/cm(3), respectively. The small VLPs (Dc4sVLPs) were estimated to be 24 nm in diameter, and were assembled by a protein with the molecular mass 53 kDa. The large VLPs (Dc3nVLPs and Dc4nVLPs) were 35 nm in diameter, and were assembled by a 64-kDa protein. An antigenic analysis demonstrated that DcHEV was cross-reactive with G1, G3-G6, ferret and rat HEVs, and DcHEV showed a stronger cross-reactivity to G1 G3-G6 HEV than it did to rat and ferret HEV. In addition, the antibody against DcHEV-LPs neutralized G1 and G3 HEV in a cell culture system, suggesting that the serotypes of these HEVs are identical. We also found that the amino acid residue Met-358 affects the small DcHEV-LPs assembly. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Building biochips: a protein production pipeline

    NASA Astrophysics Data System (ADS)

    de Carvalho-Kavanagh, Marianne G. S.; Albala, Joanna S.

    2004-06-01

    Protein arrays are emerging as a practical format in which to study proteins in high-throughput using many of the same techniques as that of the DNA microarray. The key advantage to array-based methods for protein study is the potential for parallel analysis of thousands of samples in an automated, high-throughput fashion. Building protein arrays capable of this analysis capacity requires a robust expression and purification system capable of generating hundreds to thousands of purified recombinant proteins. We have developed a method to utilize LLNL-I.M.A.G.E. cDNAs to generate recombinant protein libraries using a baculovirus-insect cell expression system. We have used this strategy to produce proteins for analysis of protein/DNA and protein/protein interactions using protein microarrays in order to understand the complex interactions of proteins involved in homologous recombination and DNA repair. Using protein array techniques, a novel interaction between the DNA repair protein, Rad51B, and histones has been identified.

  1. An eight-year epidemiologic study based on baculovirus-expressed type-specific spike proteins for the differentiation of type I and II feline coronavirus infections

    PubMed Central

    2014-01-01

    Background Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV). FCoVs are divided into two serotypes with markedly different infection rates among cat populations around the world. A baculovirus-expressed type-specific domain of the spike proteins of FCoV was used to survey the infection of the two viruses over the past eight years in Taiwan. Results An immunofluorescence assay based on cells infected with the recombinant viruses that was capable of distinguishing between the two types of viral infection was established. A total of 833 cases from a teaching hospital was surveyed for prevalence of different FCoV infections. Infection of the type I FCoV was dominant, with a seropositive rate of 70.4%, whereas 3.5% of cats were infected with the type II FCoV. In most cases, results derived from serotyping and genotyping were highly agreeable. However, 16.7% (4/24) FIP cats and 9.8% (6/61) clinically healthy cats were found to possess antibodies against both viruses. Moreover, most of the cats (84.6%, 22/26) infected with a genotypic untypable virus bearing a type I FCoV antibody. Conclusion A relatively simple serotyping method to distinguish between two types of FCoV infection was developed. Based on this method, two types of FCoV infection in Taiwan was first carried out. Type I FCoV was found to be predominant compared with type II virus. Results derived from serotyping and genotyping support our current understanding of evolution of disease-related FCoV and transmission of FIP. PMID:25123112

  2. Protein enriched pasta: structure and digestibility of its protein network.

    PubMed

    Laleg, Karima; Barron, Cécile; Santé-Lhoutellier, Véronique; Walrand, Stéphane; Micard, Valérie

    2016-02-01

    Wheat (W) pasta was enriched in 6% gluten (G), 35% faba (F) or 5% egg (E) to increase its protein content (13% to 17%). The impact of the enrichment on the multiscale structure of the pasta and on in vitro protein digestibility was studied. Increasing the protein content (W- vs. G-pasta) strengthened pasta structure at molecular and macroscopic scales but reduced its protein digestibility by 3% by forming a higher covalently linked protein network. Greater changes in the macroscopic and molecular structure of the pasta were obtained by varying the nature of protein used for enrichment. Proteins in G- and E-pasta were highly covalently linked (28-32%) resulting in a strong pasta structure. Conversely, F-protein (98% SDS-soluble) altered the pasta structure by diluting gluten and formed a weak protein network (18% covalent link). As a result, protein digestibility in F-pasta was significantly higher (46%) than in E- (44%) and G-pasta (39%). The effect of low (55 °C, LT) vs. very high temperature (90 °C, VHT) drying on the protein network structure and digestibility was shown to cause greater molecular changes than pasta formulation. Whatever the pasta, a general strengthening of its structure, a 33% to 47% increase in covalently linked proteins and a higher β-sheet structure were observed. However, these structural differences were evened out after the pasta was cooked, resulting in identical protein digestibility in LT and VHT pasta. Even after VHT drying, F-pasta had the best amino acid profile with the highest protein digestibility, proof of its nutritional interest.

  3. Structure-based barcoding of proteins.

    PubMed

    Metri, Rahul; Jerath, Gaurav; Kailas, Govind; Gacche, Nitin; Pal, Adityabarna; Ramakrishnan, Vibin

    2014-01-01

    A reduced representation in the format of a barcode has been developed to provide an overview of the topological nature of a given protein structure from 3D coordinate file. The molecular structure of a protein coordinate file from Protein Data Bank is first expressed in terms of an alpha-numero code and further converted to a barcode image. The barcode representation can be used to compare and contrast different proteins based on their structure. The utility of this method has been exemplified by comparing structural barcodes of proteins that belong to same fold family, and across different folds. In addition to this, we have attempted to provide an illustration to (i) the structural changes often seen in a given protein molecule upon interaction with ligands and (ii) Modifications in overall topology of a given protein during evolution. The program is fully downloadable from the website http://www.iitg.ac.in/probar/. © 2013 The Protein Society.

  4. Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.

    PubMed

    Martin, Juliette; Regad, Leslie; Etchebest, Catherine; Camproux, Anne-Claude

    2008-11-15

    Interresidue protein contacts in proteins structures and at protein-protein interface are classically described by the amino acid types of interacting residues and the local structural context of the contact, if any, is described using secondary structures. In this study, we present an alternate analysis of interresidue contact using local structures defined by the structural alphabet introduced by Camproux et al. This structural alphabet allows to describe a 3D structure as a sequence of prototype fragments called structural letters, of 27 different types. Each residue can then be assigned to a particular local structure, even in loop regions. The analysis of interresidue contacts within protein structures defined using Voronoï tessellations reveals that pairwise contact specificity is greater in terms of structural letters than amino acids. Using a simple heuristic based on specificity score comparison, we find that 74% of the long-range contacts within protein structures are better described using structural letters than amino acid types. The investigation is extended to a set of protein-protein complexes, showing that the similar global rules apply as for intraprotein contacts, with 64% of the interprotein contacts best described by local structures. We then present an evaluation of pairing functions integrating structural letters to decoy scoring and show that some complexes could benefit from the use of structural letter-based pairing functions.

  5. Induction of a robust immunity response against novel duck reovirus in ducklings using a subunit vaccine of sigma C protein

    PubMed Central

    Bi, Zhuangli; Zhu, Yingqi; Chen, Zongyan; Li, Chuanfeng; Wang, Yong; Wang, Guijun; Liu, Guangqing

    2016-01-01

    Novel duck reovirus (NDRV) disease emerged in China in 2011 and continues to cause high morbidity and about 5.0 to 50% mortality in ducklings. Currently there are no approved vaccines for the virus. This study aimed to assess the efficacy of a new vaccine created from the baculovirus and sigma C gene against NDRV. In this study, a recombinant baculovirus containing the sigma C gene was constructed, and the purified protein was used as a vaccine candidate in ducklings. The efficacy of sigma C vaccine was estimated according to humoral immune responses, cellular immune response and protection against NDRV challenge. The results showed that sigma C was highly expressed in Sf9 cells. Robust humoral and cellular immune responses were induced in all ducklings immunized with the recombinant sigma C protein. Moreover, 100% protection against lethal challenge with NDRV TH11 strain was observed. Summary, the recombinant sigma C protein could be utilized as a good candidate against NDRV infection. PMID:27974824

  6. Template-based structure modeling of protein-protein interactions

    PubMed Central

    Szilagyi, Andras; Zhang, Yang

    2014-01-01

    The structure of protein-protein complexes can be constructed by using the known structure of other protein complexes as a template. The complex structure templates are generally detected either by homology-based sequence alignments or, given the structure of monomer components, by structure-based comparisons. Critical improvements have been made in recent years by utilizing interface recognition and by recombining monomer and complex template libraries. Encouraging progress has also been witnessed in genome-wide applications of template-based modeling, with modeling accuracy comparable to high-throughput experimental data. Nevertheless, bottlenecks exist due to the incompleteness of the proteinprotein complex structure library and the lack of methods for distant homologous template identification and full-length complex structure refinement. PMID:24721449

  7. Strep-Tagged Protein Purification.

    PubMed

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). © 2015 Elsevier Inc. All rights reserved.

  8. Mapping monomeric threading to protein-protein structure prediction.

    PubMed

    Guerler, Aysam; Govindarajoo, Brandon; Zhang, Yang

    2013-03-25

    The key step of template-based protein-protein structure prediction is the recognition of complexes from experimental structure libraries that have similar quaternary fold. Maintaining two monomer and dimer structure libraries is however laborious, and inappropriate library construction can degrade template recognition coverage. We propose a novel strategy SPRING to identify complexes by mapping monomeric threading alignments to protein-protein interactions based on the original oligomer entries in the PDB, which does not rely on library construction and increases the efficiency and quality of complex template recognitions. SPRING is tested on 1838 nonhomologous protein complexes which can recognize correct quaternary template structures with a TM score >0.5 in 1115 cases after excluding homologous proteins. The average TM score of the first model is 60% and 17% higher than that by HHsearch and COTH, respectively, while the number of targets with an interface RMSD <2.5 Å by SPRING is 134% and 167% higher than these competing methods. SPRING is controlled with ZDOCK on 77 docking benchmark proteins. Although the relative performance of SPRING and ZDOCK depends on the level of homology filters, a combination of the two methods can result in a significantly higher model quality than ZDOCK at all homology thresholds. These data demonstrate a new efficient approach to quaternary structure recognition that is ready to use for genome-scale modeling of protein-protein interactions due to the high speed and accuracy.

  9. Self-assembly and release of peste des petits ruminants virus-like particles in an insect cell-baculovirus system and their immunogenicity in mice and goats.

    PubMed

    Li, Wenchao; Jin, Hongyan; Sui, Xiukun; Zhao, Zhanzhong; Yang, Chenghuai; Wang, Wenquan; Li, Junping; Li, Gang

    2014-01-01

    Peste des petits ruminants (PPR) is an acute, febrile, viral disease of small ruminants that has a significant economic impact. For many viral diseases, vaccination with virus-like particles (VLPs) has shown considerable promise as a prophylactic approach; however, the processes of assembly and release of peste des petits ruminants virus (PPRV) VLPs are not well characterized, and their immunogenicity in the host is unknown. In this study, VLPs of PPRV were generated in a baculovirus system through simultaneous expression of PPRV matrix (M) protein and hemaglutin in (H) or fusion (F) protein. The released VLPs showed morphology similar to that of the native virus particles. Subcutaneous injection of these VLPs (PPRV-H, PPRV-F) into mice and goats elicited PPRV-specific IgG production, increased the levels of virus neutralizing antibodies, and promoted lymphocyte proliferation. Without adjuvants, the immune response induced by the PPRV-H VLPs was comparable to that obtained using equivalent amounts of PPRV vaccine. Thus, our results demonstrated that VLPs containing PPRV M protein and H or F protein are potential "differentiating infected from vaccinated animals" (DIVA) vaccine candidates for the surveillance and eradication of PPR.

  10. Recent developments in structural proteomics for protein structure determination.

    PubMed

    Liu, Hsuan-Liang; Hsu, Jyh-Ping

    2005-05-01

    The major challenges in structural proteomics include identifying all the proteins on the genome-wide scale, determining their structure-function relationships, and outlining the precise three-dimensional structures of the proteins. Protein structures are typically determined by experimental approaches such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. However, the knowledge of three-dimensional space by these techniques is still limited. Thus, computational methods such as comparative and de novo approaches and molecular dynamic simulations are intensively used as alternative tools to predict the three-dimensional structures and dynamic behavior of proteins. This review summarizes recent developments in structural proteomics for protein structure determination; including instrumental methods such as X-ray crystallography and NMR spectroscopy, and computational methods such as comparative and de novo structure prediction and molecular dynamics simulations.

  11. Exploring representations of protein structure for automated remote homology detection and mapping of protein structure space

    PubMed Central

    2014-01-01

    Background Due to rapid sequencing of genomes, there are now millions of deposited protein sequences with no known function. Fast sequence-based comparisons allow detecting close homologs for a protein of interest to transfer functional information from the homologs to the given protein. Sequence-based comparison cannot detect remote homologs, in which evolution has adjusted the sequence while largely preserving structure. Structure-based comparisons can detect remote homologs but most methods for doing so are too expensive to apply at a large scale over structural databases of proteins. Recently, fragment-based structural representations have been proposed that allow fast detection of remote homologs with reasonable accuracy. These representations have also been used to obtain linearly-reducible maps of protein structure space. It has been shown, as additionally supported from analysis in this paper that such maps preserve functional co-localization of the protein structure space. Methods Inspired by a recent application of the Latent Dirichlet Allocation (LDA) model for conducting structural comparisons of proteins, we propose higher-order LDA-obtained topic-based representations of protein structures to provide an alternative route for remote homology detection and organization of the protein structure space in few dimensions. Various techniques based on natural language processing are proposed and employed to aid the analysis of topics in the protein structure domain. Results We show that a topic-based representation is just as effective as a fragment-based one at automated detection of remote homologs and organization of protein structure space. We conduct a detailed analysis of the information content in the topic-based representation, showing that topics have semantic meaning. The fragment-based and topic-based representations are also shown to allow prediction of superfamily membership. Conclusions This work opens exciting venues in designing novel

  12. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction.

    PubMed

    Cui, Xuefeng; Lu, Zhiwu; Wang, Sheng; Jing-Yan Wang, Jim; Gao, Xin

    2016-06-15

    Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence-structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM-HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods. Our program is freely available for download from http://sfb.kaust.edu.sa/Pages/Software.aspx : xin.gao@kaust.edu.sa Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  13. Structural Genomics of Protein Phosphatases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almo,S.; Bonanno, J.; Sauder, J.

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptionalmore » regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.« less

  14. The multiBac protein complex production platform at the EMBL.

    PubMed

    Berger, Imre; Garzoni, Frederic; Chaillet, Maxime; Haffke, Matthias; Gupta, Kapil; Aubert, Alice

    2013-07-11

    Proteomics research revealed the impressive complexity of eukaryotic proteomes in unprecedented detail. It is now a commonly accepted notion that proteins in cells mostly exist not as isolated entities but exert their biological activity in association with many other proteins, in humans ten or more, forming assembly lines in the cell for most if not all vital functions.(1,2) Knowledge of the function and architecture of these multiprotein assemblies requires their provision in superior quality and sufficient quantity for detailed analysis. The paucity of many protein complexes in cells, in particular in eukaryotes, prohibits their extraction from native sources, and necessitates recombinant production. The baculovirus expression vector system (BEVS) has proven to be particularly useful for producing eukaryotic proteins, the activity of which often relies on post-translational processing that other commonly used expression systems often cannot support.(3) BEVS use a recombinant baculovirus into which the gene of interest was inserted to infect insect cell cultures which in turn produce the protein of choice. MultiBac is a BEVS that has been particularly tailored for the production of eukaryotic protein complexes that contain many subunits.(4) A vital prerequisite for efficient production of proteins and their complexes are robust protocols for all steps involved in an expression experiment that ideally can be implemented as standard operating procedures (SOPs) and followed also by non-specialist users with comparative ease. The MultiBac platform at the European Molecular Biology Laboratory (EMBL) uses SOPs for all steps involved in a multiprotein complex expression experiment, starting from insertion of the genes into an engineered baculoviral genome optimized for heterologous protein production properties to small-scale analysis of the protein specimens produced.(5-8) The platform is installed in an open-access mode at EMBL Grenoble and has supported many

  15. Characterization of protein-protein interaction domains within the baculovirus Autographa californica multiple nucleopolyhedrovirus late expression factor LEF-3.

    PubMed

    Downie, Kelsey; Adetola, Gbolagade; Carstens, Eric B

    2013-11-01

    Autographa californica nucleopolyhedrovirus late expression factor 3 (LEF-3) is required for late viral gene expression probably through its numerous functions related to DNA replication, including nuclear localization of the virus helicase P143 and binding to ssDNA. LEF-3 appears to interact with itself as a homo-oligomer, although the details of this oligomeric structure are not yet known. To examine LEF-3-LEF-3 interactions, a bimolecular fluorescent protein complementation assay was used. Pairs of recombinant plasmids expressing full-length LEF-3 fused to one of two complementary fragments (V1 or V2) of a variant of yellow fluorescent protein named 'Venus' were constructed. Plasmids expressing fusions with complementary fragments of Venus were co-transfected into Sf21 cells and analysed by fluorescence microscopy. Co-transfected plasmids expressing full-length V1-LEF-3 and V2-LEF-3 showed positive fluorescence, confirming the formation of homo-oligomers. A series of truncated V1/V2-LEF-3 fusions was constructed and used to investigate interactions with one another as well as with full-length LEF-3.

  16. Lessons from making the Structural Classification of Proteins (SCOP) and their implications for protein structure modelling.

    PubMed

    Andreeva, Antonina

    2016-06-15

    The Structural Classification of Proteins (SCOP) database has facilitated the development of many tools and algorithms and it has been successfully used in protein structure prediction and large-scale genome annotations. During the development of SCOP, numerous exceptions were found to topological rules, along with complex evolutionary scenarios and peculiarities in proteins including the ability to fold into alternative structures. This article reviews cases of structural variations observed for individual proteins and among groups of homologues, knowledge of which is essential for protein structure modelling. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  17. SDSL-ESR-based protein structure characterization.

    PubMed

    Strancar, Janez; Kavalenka, Aleh; Urbancic, Iztok; Ljubetic, Ajasja; Hemminga, Marcus A

    2010-03-01

    As proteins are key molecules in living cells, knowledge about their structure can provide important insights and applications in science, biotechnology, and medicine. However, many protein structures are still a big challenge for existing high-resolution structure-determination methods, as can be seen in the number of protein structures published in the Protein Data Bank. This is especially the case for less-ordered, more hydrophobic and more flexible protein systems. The lack of efficient methods for structure determination calls for urgent development of a new class of biophysical techniques. This work attempts to address this problem with a novel combination of site-directed spin labelling electron spin resonance spectroscopy (SDSL-ESR) and protein structure modelling, which is coupled by restriction of the conformational spaces of the amino acid side chains. Comparison of the application to four different protein systems enables us to generalize the new method and to establish a general procedure for determination of protein structure.

  18. Structural basis for the development of avian virus capsids that display influenza virus proteins and induce protective immunity.

    PubMed

    Pascual, Elena; Mata, Carlos P; Gómez-Blanco, Josué; Moreno, Noelia; Bárcena, Juan; Blanco, Esther; Rodríguez-Frandsen, Ariel; Nieto, Amelia; Carrascosa, José L; Castón, José R

    2015-03-01

    Bioengineering of viruses and virus-like particles (VLPs) is a well-established approach in the development of new and improved vaccines against viral and bacterial pathogens. We report here that the capsid of a major avian pathogen, infectious bursal disease virus (IBDV), can accommodate heterologous proteins to induce protective immunity. The structural units of the ~70-nm-diameter T=13 IBDV capsid are trimers of VP2, which is made as a precursor (pVP2). The pVP2 C-terminal domain has an amphipathic α helix that controls VP2 polymorphism. In the absence of the VP3 scaffolding protein, 466-residue pVP2 intermediates bearing this α helix assemble into genuine VLPs only when expressed with an N-terminal His6 tag (the HT-VP2-466 protein). HT-VP2-466 capsids are optimal for protein insertion, as they are large enough (cargo space, ~78,000 nm(3)) and are assembled from a single protein. We explored HT-VP2-466-based chimeric capsids initially using enhanced green fluorescent protein (EGFP). The VLP assembly yield was efficient when we coexpressed EGFP-HT-VP2-466 and HT-VP2-466 from two recombinant baculoviruses. The native EGFP structure (~240 copies/virion) was successfully inserted in a functional form, as VLPs were fluorescent, and three-dimensional cryo-electron microscopy showed that the EGFP molecules incorporated at the inner capsid surface. Immunization of mice with purified EGFP-VLPs elicited anti-EGFP antibodies. We also inserted hemagglutinin (HA) and matrix (M2) protein epitopes derived from the mouse-adapted A/PR/8/34 influenza virus and engineered several HA- and M2-derived chimeric capsids. Mice immunized with VLPs containing the HA stalk, an M2 fragment, or both antigens developed full protection against viral challenge. Virus-like particles (VLPs) are multimeric protein cages that mimic the infectious virus capsid and are potential candidates as nonliving vaccines that induce long-lasting protection. Chimeric VLPs can display or include foreign

  19. Structure and non-structure of centrosomal proteins.

    PubMed

    Dos Santos, Helena G; Abia, David; Janowski, Robert; Mortuza, Gulnahar; Bertero, Michela G; Boutin, Maïlys; Guarín, Nayibe; Méndez-Giraldez, Raúl; Nuñez, Alfonso; Pedrero, Juan G; Redondo, Pilar; Sanz, María; Speroni, Silvia; Teichert, Florian; Bruix, Marta; Carazo, José M; Gonzalez, Cayetano; Reina, José; Valpuesta, José M; Vernos, Isabelle; Zabala, Juan C; Montoya, Guillermo; Coll, Miquel; Bastolla, Ugo; Serrano, Luis

    2013-01-01

    Here we perform a large-scale study of the structural properties and the expression of proteins that constitute the human Centrosome. Centrosomal proteins tend to be larger than generic human proteins (control set), since their genes contain in average more exons (20.3 versus 14.6). They are rich in predicted disordered regions, which cover 57% of their length, compared to 39% in the general human proteome. They also contain several regions that are dually predicted to be disordered and coiled-coil at the same time: 55 proteins (15%) contain disordered and coiled-coil fragments that cover more than 20% of their length. Helices prevail over strands in regions homologous to known structures (47% predicted helical residues against 17% predicted as strands), and even more in the whole centrosomal proteome (52% against 7%), while for control human proteins 34.5% of the residues are predicted as helical and 12.8% are predicted as strands. This difference is mainly due to residues predicted as disordered and helical (30% in centrosomal and 9.4% in control proteins), which may correspond to alpha-helix forming molecular recognition features (α-MoRFs). We performed expression assays for 120 full-length centrosomal proteins and 72 domain constructs that we have predicted to be globular. These full-length proteins are often insoluble: Only 39 out of 120 expressed proteins (32%) and 19 out of 72 domains (26%) were soluble. We built or retrieved structural models for 277 out of 361 human proteins whose centrosomal localization has been experimentally verified. We could not find any suitable structural template with more than 20% sequence identity for 84 centrosomal proteins (23%), for which around 74% of the residues are predicted to be disordered or coiled-coils. The three-dimensional models that we built are available at http://ub.cbm.uam.es/centrosome/models/index.php.

  20. Antibody recognition of porcine circovirus type 2 capsid protein epitopes after vaccination, infection, and disease

    USDA-ARS?s Scientific Manuscript database

    Open reading frame 2 (ORF2) of porcine circovirus type 2 (PCV2) codes for the 233-amino-acid capsid protein (CP). Baculovirus-based vaccines that express only ORF2 are protective against clinical disease following experimental challenge or natural infection. The goal of this study was to identify re...

  1. Significance of structural changes in proteins: expected errors in refined protein structures.

    PubMed Central

    Stroud, R. M.; Fauman, E. B.

    1995-01-01

    A quantitative expression key to evaluating significant structural differences or induced shifts between any two protein structures is derived. Because crystallography leads to reports of a single (or sometimes dual) position for each atom, the significance of any structural change based on comparison of two structures depends critically on knowing the expected precision of each median atomic position reported, and on extracting it for each atom, from the information provided in the Protein Data Bank and in the publication. The differences between structures of protein molecules that should be identical, and that are normally distributed, indicating that they are not affected by crystal contacts, were analyzed with respect to many potential indicators of structure precision, so as to extract, essentially by "machine learning" principles, a generally applicable expression involving the highest correlates. Eighteen refined crystal structures from the Protein Data Bank, in which there are multiple molecules in the crystallographic asymmetric unit, were selected and compared. The thermal B factor, the connectivity of the atom, and the ratio of the number of reflections to the number of atoms used in refinement correlate best with the magnitude of the positional differences between regions of the structures that otherwise would be expected to be the same. These results are embodied in a six-parameter equation that can be applied to any crystallographically refined structure to estimate the expected uncertainty in position of each atom. Structure change in a macromolecule can thus be referenced to the expected uncertainty in atomic position as reflected in the variance between otherwise identical structures with the observed values of correlated parameters. PMID:8563637

  2. Advances in Homology Protein Structure Modeling

    PubMed Central

    Xiang, Zhexin

    2007-01-01

    Homology modeling plays a central role in determining protein structure in the structural genomics project. The importance of homology modeling has been steadily increasing because of the large gap that exists between the overwhelming number of available protein sequences and experimentally solved protein structures, and also, more importantly, because of the increasing reliability and accuracy of the method. In fact, a protein sequence with over 30% identity to a known structure can often be predicted with an accuracy equivalent to a low-resolution X-ray structure. The recent advances in homology modeling, especially in detecting distant homologues, aligning sequences with template structures, modeling of loops and side chains, as well as detecting errors in a model, have contributed to reliable prediction of protein structure, which was not possible even several years ago. The ongoing efforts in solving protein structures, which can be time-consuming and often difficult, will continue to spur the development of a host of new computational methods that can fill in the gap and further contribute to understanding the relationship between protein structure and function. PMID:16787261

  3. Trends in structural coverage of the protein universe and the impact of the Protein Structure Initiative.

    PubMed

    Khafizov, Kamil; Madrid-Aliste, Carlos; Almo, Steven C; Fiser, Andras

    2014-03-11

    The exponential growth of protein sequence data provides an ever-expanding body of unannotated and misannotated proteins. The National Institutes of Health-supported Protein Structure Initiative and related worldwide structural genomics efforts facilitate functional annotation of proteins through structural characterization. Recently there have been profound changes in the taxonomic composition of sequence databases, which are effectively redefining the scope and contribution of these large-scale structure-based efforts. The faster-growing bacterial genomic entries have overtaken the eukaryotic entries over the last 5 y, but also have become more redundant. Despite the enormous increase in the number of sequences, the overall structural coverage of proteins--including proteins for which reliable homology models can be generated--on the residue level has increased from 30% to 40% over the last 10 y. Structural genomics efforts contributed ∼50% of this new structural coverage, despite determining only ∼10% of all new structures. Based on current trends, it is expected that ∼55% structural coverage (the level required for significant functional insight) will be achieved within 15 y, whereas without structural genomics efforts, realizing this goal will take approximately twice as long.

  4. Analysis by mutagenesis of the ATP binding site of the gamma subunit of skeletal muscle phosphorylase kinase expressed using a baculovirus system.

    PubMed

    Lee, J H; Maeda, S; Angelos, K L; Kamita, S G; Ramachandran, C; Walsh, D A

    1992-11-03

    Active gamma subunit of skeletal muscle phosphorylase kinase has been obtained by expression of the rat soleus cDNA in a baculovirus system. The protein exhibited the expected pH 6.8/8.2 activity ratio of 0.6, and its activity was insensitive to Ca2+ addition, indicating that it was free gamma subunit and not a gamma subunit-calmodulin complex. It was stimulated approximately 2-fold by Ca(2+)-calmodulin addition, demonstrating that it had retained high-affinity calmodulin binding. By site-directed mutagenesis, we have examined the role of six of the amino acids that constitute the consensus ATP binding site of the protein kinase, which in the gamma subunit is represented by the sequence 26Gly.Arg.Gly.Val.Ser.Ser.Val.Val33. Changes were evaluated by the kinetic determination of the dissociation constants of gamma-ATP, gamma-ADP, gamma-AMP.PCP, and gamma-phosphorylase and the maximum catalytic activity. The mutants Ser26-gamma, Ser29-gamma, Phe30-gamma, and Gly31-gamma each exhibited an essentially identical dissociation constant for gamma subunit phosphorylase, indicating that these mutations had not caused a global alteration in the protein structure but were limited to changes in the nucleotide binding site domain. Substitution of either Val33 (by Gly) or Gly28 (by Ser), two of the most conserved residues in all protein kinases, resulted in enzyme with marginally detectable activity. In noted contrast, the Ser26 mutant, which substituted the first glycine of the consensus glycine trio motif, and which is also very highly conserved, retained at least 25% of the enzymatic activity. The Gly31 substitution, which restored a glycine to a position characteristic for most protein kinases, had little overall effect upon the maximum rate of catalysis. Restoration of Ser30 to the more typical phenylalanine, which is present in most protein kinases, had minimal effect on catalysis. These data provide the first direct evaluation of the roles that different residues play

  5. PDBFlex: exploring flexibility in protein structures

    PubMed Central

    Hrabe, Thomas; Li, Zhanwen; Sedova, Mayya; Rotkiewicz, Piotr; Jaroszewski, Lukasz; Godzik, Adam

    2016-01-01

    The PDBFlex database, available freely and with no login requirements at http://pdbflex.org, provides information on flexibility of protein structures as revealed by the analysis of variations between depositions of different structural models of the same protein in the Protein Data Bank (PDB). PDBFlex collects information on all instances of such depositions, identifying them by a 95% sequence identity threshold, performs analysis of their structural differences and clusters them according to their structural similarities for easy analysis. The PDBFlex contains tools and viewers enabling in-depth examination of structural variability including: 2D-scaling visualization of RMSD distances between structures of the same protein, graphs of average local RMSD in the aligned structures of protein chains, graphical presentation of differences in secondary structure and observed structural disorder (unresolved residues), difference distance maps between all sets of coordinates and 3D views of individual structures and simulated transitions between different conformations, the latter displayed using JSMol visualization software. PMID:26615193

  6. Antigen-capture blocking enzyme-linked immunosorbent assay based on a baculovirus recombinant antigen to differentiate Transmissible gastroenteritis virus from Porcine respiratory coronavirus antibodies.

    PubMed

    López, Lissett; Venteo, Angel; García, Marga; Camuñas, Ana; Ranz, Ana; García, Julia; Sarraseca, Javier; Anaya, Carmen; Rueda, Paloma

    2009-09-01

    A new commercially available antigen-capture, blocking enzyme-linked immunosorbent assay (antigen-capture b-ELISA), based on baculovirus truncated-S recombinant protein of Transmissible gastroenteritis virus (TGEV) and 3 specific monoclonal antibodies, was developed and evaluated by examining a panel of 453 positive Porcine respiratory coronavirus (PRCoV), 31 positive TGEV, and 126 negative field sera by using another commercially available differential coronavirus b-ELISA as the reference technique to differentiate TGEV- from PRCoV-induced antibodies. The recombinant S protein-based ELISA appeared to be 100% sensitive for TGEV and PRCoV detection and highly specific for TGEV and PRCoV detection (100% and 92.06%, respectively), when qualitative results (positive or negative) were compared with those of the reference technique. In variability experiments, the ELISA gave consistent results when the same serum was evaluated on different wells and different plates. These results indicated that truncated recombinant S protein is a suitable alternative to the complete virus as antigen in ELISA assays. The use of recombinant S protein as antigen offers great advantages because it is an easy-to-produce, easy-to-standardize, noninfectious antigen that does not require further purification or concentration. Those advantages represent an important improvement for antigen preparation, in comparison with other assays in which an inactivated virus from mammalian cell cultures is used.

  7. Trends in structural coverage of the protein universe and the impact of the Protein Structure Initiative

    PubMed Central

    Khafizov, Kamil; Madrid-Aliste, Carlos; Almo, Steven C.; Fiser, Andras

    2014-01-01

    The exponential growth of protein sequence data provides an ever-expanding body of unannotated and misannotated proteins. The National Institutes of Health-supported Protein Structure Initiative and related worldwide structural genomics efforts facilitate functional annotation of proteins through structural characterization. Recently there have been profound changes in the taxonomic composition of sequence databases, which are effectively redefining the scope and contribution of these large-scale structure-based efforts. The faster-growing bacterial genomic entries have overtaken the eukaryotic entries over the last 5 y, but also have become more redundant. Despite the enormous increase in the number of sequences, the overall structural coverage of proteins—including proteins for which reliable homology models can be generated—on the residue level has increased from 30% to 40% over the last 10 y. Structural genomics efforts contributed ∼50% of this new structural coverage, despite determining only ∼10% of all new structures. Based on current trends, it is expected that ∼55% structural coverage (the level required for significant functional insight) will be achieved within 15 y, whereas without structural genomics efforts, realizing this goal will take approximately twice as long. PMID:24567391

  8. Building protein-protein interaction networks for Leishmania species through protein structural information.

    PubMed

    Dos Santos Vasconcelos, Crhisllane Rafaele; de Lima Campos, Túlio; Rezende, Antonio Mauro

    2018-03-06

    Systematic analysis of a parasite interactome is a key approach to understand different biological processes. It makes possible to elucidate disease mechanisms, to predict protein functions and to select promising targets for drug development. Currently, several approaches for protein interaction prediction for non-model species incorporate only small fractions of the entire proteomes and their interactions. Based on this perspective, this study presents an integration of computational methodologies, protein network predictions and comparative analysis of the protozoan species Leishmania braziliensis and Leishmania infantum. These parasites cause Leishmaniasis, a worldwide distributed and neglected disease, with limited treatment options using currently available drugs. The predicted interactions were obtained from a meta-approach, applying rigid body docking tests and template-based docking on protein structures predicted by different comparative modeling techniques. In addition, we trained a machine-learning algorithm (Gradient Boosting) using docking information performed on a curated set of positive and negative protein interaction data. Our final model obtained an AUC = 0.88, with recall = 0.69, specificity = 0.88 and precision = 0.83. Using this approach, it was possible to confidently predict 681 protein structures and 6198 protein interactions for L. braziliensis, and 708 protein structures and 7391 protein interactions for L. infantum. The predicted networks were integrated to protein interaction data already available, analyzed using several topological features and used to classify proteins as essential for network stability. The present study allowed to demonstrate the importance of integrating different methodologies of interaction prediction to increase the coverage of the protein interaction of the studied protocols, besides it made available protein structures and interactions not previously reported.

  9. Quantification of the Influence of Protein-Protein Interactions on Adsorbed Protein Structure and Bioactivity

    PubMed Central

    Wei, Yang; Thyparambil, Aby A.; Latour, Robert A.

    2013-01-01

    While protein-surface interactions have been widely studied, relatively little is understood at this time regarding how protein-surface interaction effects are influenced by protein-protein interactions and how these effects combine with the internal stability of a protein to influence its adsorbed-state structure and bioactivity. The objectives of this study were to develop a method to study these combined effects under widely varying protein-protein interaction conditions using hen egg-white lysozyme (HEWL) adsorbed on silica glass, poly(methyl methacrylate), and polyethylene as our model systems. In order to vary protein-protein interaction effects over a wide range, HEWL was first adsorbed to each surface type under widely varying protein solution concentrations for 2 h to saturate the surface, followed by immersion in pure buffer solution for 15 h to equilibrate the adsorbed protein layers in the absence of additionally adsorbing protein. Periodic measurements were made at selected time points of the areal density of the adsorbed protein layer as an indicator of the level of protein-protein interaction effects within the layer, and these values were then correlated with measurements of the adsorbed protein’s secondary structure and bioactivity. The results from these studies indicate that protein-protein interaction effects help stabilize the structure of HEWL adsorbed on silica glass, have little influence on the structural behavior of HEWL on HDPE, and actually serve to destabilize HEWL’s structure on PMMA. The bioactivity of HEWL on silica glass and HDPE was found to decrease in direct proportion to the degree of adsorption-induce protein unfolding. A direct correlation between bioactivity and the conformational state of adsorbed HEWL was less apparent on PMMA, thus suggesting that other factors influenced HEWL’s bioactivity on this surface, such as the accessibility of HEWL’s bioactive site being blocked by neighboring proteins or the surface

  10. Mixture models for protein structure ensembles.

    PubMed

    Hirsch, Michael; Habeck, Michael

    2008-10-01

    Protein structure ensembles provide important insight into the dynamics and function of a protein and contain information that is not captured with a single static structure. However, it is not clear a priori to what extent the variability within an ensemble is caused by internal structural changes. Additional variability results from overall translations and rotations of the molecule. And most experimental data do not provide information to relate the structures to a common reference frame. To report meaningful values of intrinsic dynamics, structural precision, conformational entropy, etc., it is therefore important to disentangle local from global conformational heterogeneity. We consider the task of disentangling local from global heterogeneity as an inference problem. We use probabilistic methods to infer from the protein ensemble missing information on reference frames and stable conformational sub-states. To this end, we model a protein ensemble as a mixture of Gaussian probability distributions of either entire conformations or structural segments. We learn these models from a protein ensemble using the expectation-maximization algorithm. Our first model can be used to find multiple conformers in a structure ensemble. The second model partitions the protein chain into locally stable structural segments or core elements and less structured regions typically found in loops. Both models are simple to implement and contain only a single free parameter: the number of conformers or structural segments. Our models can be used to analyse experimental ensembles, molecular dynamics trajectories and conformational change in proteins. The Python source code for protein ensemble analysis is available from the authors upon request.

  11. SSEP: secondary structural elements of proteins

    PubMed Central

    Shanthi, V.; Selvarani, P.; Kiran Kumar, Ch.; Mohire, C. S.; Sekar, K.

    2003-01-01

    SSEP is a comprehensive resource for accessing information related to the secondary structural elements present in the 25 and 90% non-redundant protein chains. The database contains 1771 protein chains from 1670 protein structures and 6182 protein chains from 5425 protein structures in 25 and 90% non-redundant protein chains, respectively. The current version provides information about the α-helical segments and β-strand fragments of varying lengths. In addition, it also contains the information about 310-helix, β- and ν-turns and hairpin loops. The free graphics program RASMOL has been interfaced with the search engine to visualize the three-dimensional structures of the user queried secondary structural fragment. The database is updated regularly and is available through Bioinformatics web server at http://cluster.physics.iisc.ernet.in/ssep/ or http://144.16.71.148/ssep/. PMID:12824336

  12. Protein Structure Determination using Metagenome sequence data

    PubMed Central

    Ovchinnikov, Sergey; Park, Hahnbeom; Varghese, Neha; Huang, Po-Ssu; Pavlopoulos, Georgios A.; Kim, David E.; Kamisetty, Hetunandan; Kyrpides, Nikos C.; Baker, David

    2017-01-01

    Despite decades of work by structural biologists, there are still ~5200 protein families with unknown structure outside the range of comparative modeling. We show that Rosetta structure prediction guided by residue-residue contacts inferred from evolutionary information can accurately model proteins that belong to large families, and that metagenome sequence data more than triples the number of protein families with sufficient sequences for accurate modeling. We then integrate metagenome data, contact based structure matching and Rosetta structure calculations to generate models for 614 protein families with currently unknown structures; 206 are membrane proteins and 137 have folds not represented in the PDB. This approach provides the representative models for large protein families originally envisioned as the goal of the protein structure initiative at a fraction of the cost. PMID:28104891

  13. Immune responses to baculovirus-displayed enterovirus 71 VP1 antigen.

    PubMed

    Kiener, Tanja K; Premanand, Balraj; Kwang, Jimmy

    2013-04-01

    The increased distribution and neurovirulence of enterovirus 71 is an important health threat for young children in Asia Pacific. Vaccine design has concentrated on inactivated virus with the most advanced undergoing Phase III clinical trials. By using a subunit vaccine approach, production costs could be reduced by lowering the need for biocontainment. In addition, novel mutations could be rapidly incorporated to reflect the emergence of new enterovirus 71 subgenogroups. To circumvent the problems associated with conventional subunit vaccines, the antigen can be displayed on a viral vector that conveys stability and facilitates purification. Additional advantages of viral-vectored subunit vaccines are their ability to stimulate the innate immune system by transducing cells and the possibility of oral or nasal delivery, which dispenses with the need for syringes and medical personnel. Baculovirus-displayed VP1 combines all these benefits with protection that is as efficient as inactivated virus.

  14. Structural anatomy of telomere OB proteins.

    PubMed

    Horvath, Martin P

    2011-10-01

    Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.

  15. An Interactive Introduction to Protein Structure

    ERIC Educational Resources Information Center

    Lee, W. Theodore

    2004-01-01

    To improve student understanding of protein structure and the significance of noncovalent interactions in protein structure and function, students are assigned a project to write a paper complemented with computer-generated images. The assignment provides an opportunity for students to select a protein structure that is of interest and detail…

  16. Development of a sensitive and specific indirect enzyme-linked immunosorbent assay based on a baculovirus recombinant antigen for detection of specific antibodies against Ehrlichia canis.

    PubMed

    López, Lissett; Venteo, Angel; Aguirre, Enara; García, Marga; Rodríguez, Majosé; Amusátegui, Inmaculada; Tesouro, Miguel A; Vela, Carmen; Sainz, Angel; Rueda, Paloma

    2007-11-01

    An indirect enzyme-linked immunosorbent assay (ELISA) based on baculovirus recombinant P30 protein of Ehrlichia canis and the 1BH4 anticanine IgG monoclonal antibody was developed and evaluated by examining a panel of 98 positive and 157 negative sera using the indirect fluorescent antibody (IFA) test as the reference technique. The P30-based ELISA appeared to be sensitive and specific (77.55% and 95.54%, respectively) when qualitative results (positive/negative) were compared with those of the IFA test; the coefficient of correlation (R) between the 2 tests was 0.833. Furthermore, it was possible to establish a mathematical formula for use in comparing the results of both techniques. These results indicate that recombinant P30 antigen-based ELISA is a suitable alternative of the IFA test for simple, consistent, and rapid serodiagnosis of canine ehrlichiosis. Moreover, the use of this recombinant protein as antigen offers a great advantage for antigen preparation in comparison with other techniques in which the whole E. canis organism is used as antigen.

  17. Ensemble-based evaluation for protein structure models.

    PubMed

    Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke

    2016-06-15

    Comparing protein tertiary structures is a fundamental procedure in structural biology and protein bioinformatics. Structure comparison is important particularly for evaluating computational protein structure models. Most of the model structure evaluation methods perform rigid body superimposition of a structure model to its crystal structure and measure the difference of the corresponding residue or atom positions between them. However, these methods neglect intrinsic flexibility of proteins by treating the native structure as a rigid molecule. Because different parts of proteins have different levels of flexibility, for example, exposed loop regions are usually more flexible than the core region of a protein structure, disagreement of a model to the native needs to be evaluated differently depending on the flexibility of residues in a protein. We propose a score named FlexScore for comparing protein structures that consider flexibility of each residue in the native state of proteins. Flexibility information may be extracted from experiments such as NMR or molecular dynamics simulation. FlexScore considers an ensemble of conformations of a protein described as a multivariate Gaussian distribution of atomic displacements and compares a query computational model with the ensemble. We compare FlexScore with other commonly used structure similarity scores over various examples. FlexScore agrees with experts' intuitive assessment of computational models and provides information of practical usefulness of models. https://bitbucket.org/mjamroz/flexscore dkihara@purdue.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  18. Ensemble-based evaluation for protein structure models

    PubMed Central

    Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke

    2016-01-01

    Motivation: Comparing protein tertiary structures is a fundamental procedure in structural biology and protein bioinformatics. Structure comparison is important particularly for evaluating computational protein structure models. Most of the model structure evaluation methods perform rigid body superimposition of a structure model to its crystal structure and measure the difference of the corresponding residue or atom positions between them. However, these methods neglect intrinsic flexibility of proteins by treating the native structure as a rigid molecule. Because different parts of proteins have different levels of flexibility, for example, exposed loop regions are usually more flexible than the core region of a protein structure, disagreement of a model to the native needs to be evaluated differently depending on the flexibility of residues in a protein. Results: We propose a score named FlexScore for comparing protein structures that consider flexibility of each residue in the native state of proteins. Flexibility information may be extracted from experiments such as NMR or molecular dynamics simulation. FlexScore considers an ensemble of conformations of a protein described as a multivariate Gaussian distribution of atomic displacements and compares a query computational model with the ensemble. We compare FlexScore with other commonly used structure similarity scores over various examples. FlexScore agrees with experts’ intuitive assessment of computational models and provides information of practical usefulness of models. Availability and implementation: https://bitbucket.org/mjamroz/flexscore Contact: dkihara@purdue.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307633

  19. Beta-structures in fibrous proteins.

    PubMed

    Kajava, Andrey V; Squire, John M; Parry, David A D

    2006-01-01

    The beta-form of protein folding, one of the earliest protein structures to be defined, was originally observed in studies of silks. It was then seen in early studies of synthetic polypeptides and, of course, is now known to be present in a variety of guises as an essential component of globular protein structures. However, in the last decade or so it has become clear that the beta-conformation of chains is present not only in many of the amyloid structures associated with, for example, Alzheimer's Disease, but also in the prion structures associated with the spongiform encephalopathies. Furthermore, X-ray crystallography studies have revealed the high incidence of the beta-fibrous proteins among virulence factors of pathogenic bacteria and viruses. Here we describe the basic forms of the beta-fold, summarize the many different new forms of beta-structural fibrous arrangements that have been discovered, and review advances in structural studies of amyloid and prion fibrils. These and other issues are described in detail in later chapters.

  20. Projections for fast protein structure retrieval

    PubMed Central

    Bhattacharya, Sourangshu; Bhattacharyya, Chiranjib; Chandra, Nagasuma R

    2006-01-01

    Background In recent times, there has been an exponential rise in the number of protein structures in databases e.g. PDB. So, design of fast algorithms capable of querying such databases is becoming an increasingly important research issue. This paper reports an algorithm, motivated from spectral graph matching techniques, for retrieving protein structures similar to a query structure from a large protein structure database. Each protein structure is specified by the 3D coordinates of residues of the protein. The algorithm is based on a novel characterization of the residues, called projections, leading to a similarity measure between the residues of the two proteins. This measure is exploited to efficiently compute the optimal equivalences. Results Experimental results show that, the current algorithm outperforms the state of the art on benchmark datasets in terms of speed without losing accuracy. Search results on SCOP 95% nonredundant database, for fold similarity with 5 proteins from different SCOP classes show that the current method performs competitively with the standard algorithm CE. The algorithm is also capable of detecting non-topological similarities between two proteins which is not possible with most of the state of the art tools like Dali. PMID:17254310

  1. Protection of chickens from Newcastle disease with a recombinant baculovirus subunit vaccine expressing the fusion and hemagglutinin-neuraminidase proteins

    PubMed Central

    Lee, Youn-Jeong; Sung, Haan-Woo; Choi, Jun-Gu; Lee, Eun-Kyoung; Yoon, Hachung; Kim, Jae-Hong

    2008-01-01

    Recombinant baculoviruses containing the fusion (F) and hemagglutinin-neuraminidase (HN) glycoprotein gene of the viscerotropic velogenic (vv) Newcastle disease virus (NDV) isolate, Kr-005/00, and a lentogenic La Sota strain of the NDV were constructed in an attempt to develop an effective subunit vaccine to the recent epizootic vvNDV. The level of protection was determined by evaluating the clinical signs, mortality, and virus shedding from the oropharynx and cloaca of chickens after a challenge with vvNDV Kr-005/00. The recombinant ND F (rND F) and recombinant HN (rND HN) glycoproteins derived from the velogenic strain provided good protection against the clinical signs and mortality, showing a 0.00 PI value and 100% protection after a booster immunization. On the other hand, the combined rND F + HN glycoprotein derived from the velogenic strain induced complete protection (0.00 PI value and 100% protection) and significantly reduced the amount of virus shedding even after a single immunization. The rND F and rND HN glycoproteins derived from the velogenic strain had a slightly, but not significantly, greater protective effect than the lentogenic strain. These results suggest that the combined rND F + HN glycoprotein derived from vvNDV can be an ideal subunit marker vaccine candidate in chickens in a future ND eradication program. PMID:18716451

  2. The interface of protein structure, protein biophysics, and molecular evolution

    PubMed Central

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  3. Comparative Protein Structure Modeling Using MODELLER.

    PubMed

    Webb, Benjamin; Sali, Andrej

    2014-09-08

    Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. Copyright © 2014 John Wiley & Sons, Inc.

  4. Structural anatomy of telomere OB proteins

    PubMed Central

    Horvath, Martin P.

    2015-01-01

    Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA. PMID:21950380

  5. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu,P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behaviormore » and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.« less

  6. Fourier-based classification of protein secondary structures.

    PubMed

    Shu, Jian-Jun; Yong, Kian Yan

    2017-04-15

    The correct prediction of protein secondary structures is one of the key issues in predicting the correct protein folded shape, which is used for determining gene function. Existing methods make use of amino acids properties as indices to classify protein secondary structures, but are faced with a significant number of misclassifications. The paper presents a technique for the classification of protein secondary structures based on protein "signal-plotting" and the use of the Fourier technique for digital signal processing. New indices are proposed to classify protein secondary structures by analyzing hydrophobicity profiles. The approach is simple and straightforward. Results show that the more types of protein secondary structures can be classified by means of these newly-proposed indices. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Structure based alignment and clustering of proteins (STRALCP)

    DOEpatents

    Zemla, Adam T.; Zhou, Carol E.; Smith, Jason R.; Lam, Marisa W.

    2013-06-18

    Disclosed are computational methods of clustering a set of protein structures based on local and pair-wise global similarity values. Pair-wise local and global similarity values are generated based on pair-wise structural alignments for each protein in the set of protein structures. Initially, the protein structures are clustered based on pair-wise local similarity values. The protein structures are then clustered based on pair-wise global similarity values. For each given cluster both a representative structure and spans of conserved residues are identified. The representative protein structure is used to assign newly-solved protein structures to a group. The spans are used to characterize conservation and assign a "structural footprint" to the cluster.

  8. Efficient protein structure search using indexing methods

    PubMed Central

    2013-01-01

    Understanding functions of proteins is one of the most important challenges in many studies of biological processes. The function of a protein can be predicted by analyzing the functions of structurally similar proteins, thus finding structurally similar proteins accurately and efficiently from a large set of proteins is crucial. A protein structure can be represented as a vector by 3D-Zernike Descriptor (3DZD) which compactly represents the surface shape of the protein tertiary structure. This simplified representation accelerates the searching process. However, computing the similarity of two protein structures is still computationally expensive, thus it is hard to efficiently process many simultaneous requests of structurally similar protein search. This paper proposes indexing techniques which substantially reduce the search time to find structurally similar proteins. In particular, we first exploit two indexing techniques, i.e., iDistance and iKernel, on the 3DZDs. After that, we extend the techniques to further improve the search speed for protein structures. The extended indexing techniques build and utilize an reduced index constructed from the first few attributes of 3DZDs of protein structures. To retrieve top-k similar structures, top-10 × k similar structures are first found using the reduced index, and top-k structures are selected among them. We also modify the indexing techniques to support θ-based nearest neighbor search, which returns data points less than θ to the query point. The results show that both iDistance and iKernel significantly enhance the searching speed. In top-k nearest neighbor search, the searching time is reduced 69.6%, 77%, 77.4% and 87.9%, respectively using iDistance, iKernel, the extended iDistance, and the extended iKernel. In θ-based nearest neighbor serach, the searching time is reduced 80%, 81%, 95.6% and 95.6% using iDistance, iKernel, the extended iDistance, and the extended iKernel, respectively. PMID:23691543

  9. Efficient protein structure search using indexing methods.

    PubMed

    Kim, Sungchul; Sael, Lee; Yu, Hwanjo

    2013-01-01

    Understanding functions of proteins is one of the most important challenges in many studies of biological processes. The function of a protein can be predicted by analyzing the functions of structurally similar proteins, thus finding structurally similar proteins accurately and efficiently from a large set of proteins is crucial. A protein structure can be represented as a vector by 3D-Zernike Descriptor (3DZD) which compactly represents the surface shape of the protein tertiary structure. This simplified representation accelerates the searching process. However, computing the similarity of two protein structures is still computationally expensive, thus it is hard to efficiently process many simultaneous requests of structurally similar protein search. This paper proposes indexing techniques which substantially reduce the search time to find structurally similar proteins. In particular, we first exploit two indexing techniques, i.e., iDistance and iKernel, on the 3DZDs. After that, we extend the techniques to further improve the search speed for protein structures. The extended indexing techniques build and utilize an reduced index constructed from the first few attributes of 3DZDs of protein structures. To retrieve top-k similar structures, top-10 × k similar structures are first found using the reduced index, and top-k structures are selected among them. We also modify the indexing techniques to support θ-based nearest neighbor search, which returns data points less than θ to the query point. The results show that both iDistance and iKernel significantly enhance the searching speed. In top-k nearest neighbor search, the searching time is reduced 69.6%, 77%, 77.4% and 87.9%, respectively using iDistance, iKernel, the extended iDistance, and the extended iKernel. In θ-based nearest neighbor serach, the searching time is reduced 80%, 81%, 95.6% and 95.6% using iDistance, iKernel, the extended iDistance, and the extended iKernel, respectively.

  10. A 'periodic table' for protein structures.

    PubMed

    Taylor, William R

    2002-04-11

    Current structural genomics programs aim systematically to determine the structures of all proteins coded in both human and other genomes, providing a complete picture of the number and variety of protein structures that exist. In the past, estimates have been made on the basis of the incomplete sample of structures currently known. These estimates have varied greatly (between 1,000 and 10,000; see for example refs 1 and 2), partly because of limited sample size but also owing to the difficulties of distinguishing one structure from another. This distinction is usually topological, based on the fold of the protein; however, in strict topological terms (neglecting to consider intra-chain cross-links), protein chains are open strings and hence are all identical. To avoid this trivial result, topologies are determined by considering secondary links in the form of intra-chain hydrogen bonds (secondary structure) and tertiary links formed by the packing of secondary structures. However, small additions to or loss of structure can make large changes to these perceived topologies and such subjective solutions are neither robust nor amenable to automation. Here I formalize both secondary and tertiary links to allow the rigorous and automatic definition of protein topology.

  11. Protein structure recognition: From eigenvector analysis to structural threading method

    NASA Astrophysics Data System (ADS)

    Cao, Haibo

    In this work, we try to understand the protein folding problem using pair-wise hydrophobic interaction as the dominant interaction for the protein folding process. We found a strong correlation between amino acid sequence and the corresponding native structure of the protein. Some applications of this correlation were discussed in this dissertation include the domain partition and a new structural threading method as well as the performance of this method in the CASP5 competition. In the first part, we give a brief introduction to the protein folding problem. Some essential knowledge and progress from other research groups was discussed. This part include discussions of interactions among amino acids residues, lattice HP model, and the designablity principle. In the second part, we try to establish the correlation between amino acid sequence and the corresponding native structure of the protein. This correlation was observed in our eigenvector study of protein contact matrix. We believe the correlation is universal, thus it can be used in automatic partition of protein structures into folding domains. In the third part, we discuss a threading method based on the correlation between amino acid sequence and ominant eigenvector of the structure contact-matrix. A mathematically straightforward iteration scheme provides a self-consistent optimum global sequence-structure alignment. The computational efficiency of this method makes it possible to search whole protein structure databases for structural homology without relying on sequence similarity. The sensitivity and specificity of this method is discussed, along with a case of blind test prediction. In the appendix, we list the overall performance of this threading method in CASP5 blind test in comparison with other existing approaches.

  12. Structures composing protein domains.

    PubMed

    Kubrycht, Jaroslav; Sigler, Karel; Souček, Pavel; Hudeček, Jiří

    2013-08-01

    This review summarizes available data concerning intradomain structures (IS) such as functionally important amino acid residues, short linear motifs, conserved or disordered regions, peptide repeats, broadly occurring secondary structures or folds, etc. IS form structural features (units or elements) necessary for interactions with proteins or non-peptidic ligands, enzyme reactions and some structural properties of proteins. These features have often been related to a single structural level (e.g. primary structure) mostly requiring certain structural context of other levels (e.g. secondary structures or supersecondary folds) as follows also from some examples reported or demonstrated here. In addition, we deal with some functionally important dynamic properties of IS (e.g. flexibility and different forms of accessibility), and more special dynamic changes of IS during enzyme reactions and allosteric regulation. Selected notes concern also some experimental methods, still more necessary tools of bioinformatic processing and clinically interesting relationships. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Current strategies for protein production and purification enabling membrane protein structural biology.

    PubMed

    Pandey, Aditya; Shin, Kyungsoo; Patterson, Robin E; Liu, Xiang-Qin; Rainey, Jan K

    2016-12-01

    Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).

  14. Current strategies for protein production and purification enabling membrane protein structural biology

    PubMed Central

    Pandey, Aditya; Shin, Kyungsoo; Patterson, Robin E.; Liu, Xiang-Qin; Rainey, Jan K.

    2017-01-01

    Membrane proteins are still heavily underrepresented in the protein data bank (PDB) due to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles due to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and/or amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10–15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM). PMID:27010607

  15. Protein flexibility in the light of structural alphabets

    PubMed Central

    Craveur, Pierrick; Joseph, Agnel P.; Esque, Jeremy; Narwani, Tarun J.; Noël, Floriane; Shinada, Nicolas; Goguet, Matthieu; Leonard, Sylvain; Poulain, Pierre; Bertrand, Olivier; Faure, Guilhem; Rebehmed, Joseph; Ghozlane, Amine; Swapna, Lakshmipuram S.; Bhaskara, Ramachandra M.; Barnoud, Jonathan; Téletchéa, Stéphane; Jallu, Vincent; Cerny, Jiri; Schneider, Bohdan; Etchebest, Catherine; Srinivasan, Narayanaswamy; Gelly, Jean-Christophe; de Brevern, Alexandre G.

    2015-01-01

    Protein structures are valuable tools to understand protein function. Nonetheless, proteins are often considered as rigid macromolecules while their structures exhibit specific flexibility, which is essential to complete their functions. Analyses of protein structures and dynamics are often performed with a simplified three-state description, i.e., the classical secondary structures. More precise and complete description of protein backbone conformation can be obtained using libraries of small protein fragments that are able to approximate every part of protein structures. These libraries, called structural alphabets (SAs), have been widely used in structure analysis field, from definition of ligand binding sites to superimposition of protein structures. SAs are also well suited to analyze the dynamics of protein structures. Here, we review innovative approaches that investigate protein flexibility based on SAs description. Coupled to various sources of experimental data (e.g., B-factor) and computational methodology (e.g., Molecular Dynamic simulation), SAs turn out to be powerful tools to analyze protein dynamics, e.g., to examine allosteric mechanisms in large set of structures in complexes, to identify order/disorder transition. SAs were also shown to be quite efficient to predict protein flexibility from amino-acid sequence. Finally, in this review, we exemplify the interest of SAs for studying flexibility with different cases of proteins implicated in pathologies and diseases. PMID:26075209

  16. Protein structure similarity from Principle Component Correlation analysis.

    PubMed

    Zhou, Xiaobo; Chou, James; Wong, Stephen T C

    2006-01-25

    Owing to rapid expansion of protein structure databases in recent years, methods of structure comparison are becoming increasingly effective and important in revealing novel information on functional properties of proteins and their roles in the grand scheme of evolutionary biology. Currently, the structural similarity between two proteins is measured by the root-mean-square-deviation (RMSD) in their best-superimposed atomic coordinates. RMSD is the golden rule of measuring structural similarity when the structures are nearly identical; it, however, fails to detect the higher order topological similarities in proteins evolved into different shapes. We propose new algorithms for extracting geometrical invariants of proteins that can be effectively used to identify homologous protein structures or topologies in order to quantify both close and remote structural similarities. We measure structural similarity between proteins by correlating the principle components of their secondary structure interaction matrix. In our approach, the Principle Component Correlation (PCC) analysis, a symmetric interaction matrix for a protein structure is constructed with relationship parameters between secondary elements that can take the form of distance, orientation, or other relevant structural invariants. When using a distance-based construction in the presence or absence of encoded N to C terminal sense, there are strong correlations between the principle components of interaction matrices of structurally or topologically similar proteins. The PCC method is extensively tested for protein structures that belong to the same topological class but are significantly different by RMSD measure. The PCC analysis can also differentiate proteins having similar shapes but different topological arrangements. Additionally, we demonstrate that when using two independently defined interaction matrices, comparison of their maximum eigenvalues can be highly effective in clustering structurally or

  17. Origins of structure in globular proteins.

    PubMed Central

    Chan, H S; Dill, K A

    1990-01-01

    The principal forces of protein folding--hydrophobicity and conformational entropy--are nonspecific. A long-standing puzzle has, therefore, been: What forces drive the formation of the specific internal architectures in globular proteins? We find that any self-avoiding flexible polymer molecule will develop large amounts of secondary structure, helices and parallel and antiparallel sheets, as it is driven to increasing compactness by any force of attraction among the chain monomers. Thus structure formation arises from the severity of steric constraints in compact polymers. This steric principle of organization can account for why short helices are stable in globular proteins, why there are parallel and anti-parallel sheets in proteins, and why weakly unfolded proteins have some secondary structure. On this basis, it should be possible to construct copolymers, not necessarily using amino acids, that can collapse to maximum compactness in incompatible solvents and that should then have structural organization resembling that of proteins. Images PMID:2385597

  18. Characterization of recombinant Trypanosoma brucei gambiense Translationally Controlled Tumor Protein (rTbgTCTP) and its interaction with Glossina midgut bacteria.

    PubMed

    Bossard, Géraldine; Bartoli, Manon; Fardeau, Marie-Laure; Holzmuller, Philippe; Ollivier, Bernard; Geiger, Anne

    2017-09-03

    In humans, sleeping sickness (i.e. Human African Trypanosomiasis) is caused by the protozoan parasites Trypanosoma brucei gambiense (Tbg) in West and Central Africa, and T. b. rhodesiense in East Africa. We previously showed in vitro that Tbg is able to excrete/secrete a large number of proteins, including Translationally Controlled Tumor Protein (TCTP). Moreover, the tctp gene was described previously to be expressed in Tbg-infected flies. Aside from its involvement in diverse cellular processes, we have investigated a possible alternative role within the interactions occurring between the trypanosome parasite, its tsetse fly vector, and the associated midgut bacteria. In this context, the Tbg tctp gene was synthesized and cloned into the baculovirus vector pAcGHLT-A, and the corresponding protein was produced using the baculovirus Spodoptera frugicola (strain 9) / insect cell system. The purified recombinant protein rTbgTCTP was incubated together with bacteria isolated from the gut of tsetse flies, and was shown to bind to 24 out of the 39 tested bacteria strains belonging to several genera. Furthermore, it was shown to affect the growth of the majority of these bacteria, especially when cultivated under microaerobiosis and anaerobiosis. Finally, we discuss the potential for TCTP to modulate the fly microbiome composition toward favoring trypanosome survival.

  19. Gaia: automated quality assessment of protein structure models.

    PubMed

    Kota, Pradeep; Ding, Feng; Ramachandran, Srinivas; Dokholyan, Nikolay V

    2011-08-15

    Increasing use of structural modeling for understanding structure-function relationships in proteins has led to the need to ensure that the protein models being used are of acceptable quality. Quality of a given protein structure can be assessed by comparing various intrinsic structural properties of the protein to those observed in high-resolution protein structures. In this study, we present tools to compare a given structure to high-resolution crystal structures. We assess packing by calculating the total void volume, the percentage of unsatisfied hydrogen bonds, the number of steric clashes and the scaling of the accessible surface area. We assess covalent geometry by determining bond lengths, angles, dihedrals and rotamers. The statistical parameters for the above measures, obtained from high-resolution crystal structures enable us to provide a quality-score that points to specific areas where a given protein structural model needs improvement. We provide these tools that appraise protein structures in the form of a web server Gaia (http://chiron.dokhlab.org). Gaia evaluates the packing and covalent geometry of a given protein structure and provides quantitative comparison of the given structure to high-resolution crystal structures. dokh@unc.edu Supplementary data are available at Bioinformatics online.

  20. Protein family clustering for structural genomics.

    PubMed

    Yan, Yongpan; Moult, John

    2005-10-28

    A major goal of structural genomics is the provision of a structural template for a large fraction of protein domains. The magnitude of this task depends on the number and nature of protein sequence families. With a large number of bacterial genomes now fully sequenced, it is possible to obtain improved estimates of the number and diversity of families in that kingdom. We have used an automated clustering procedure to group all sequences in a set of genomes into protein families. Bench-marking shows the clustering method is sensitive at detecting remote family members, and has a low level of false positives. This comprehensive protein family set has been used to address the following questions. (1) What is the structure coverage for currently known families? (2) How will the number of known apparent families grow as more genomes are sequenced? (3) What is a practical strategy for maximizing structure coverage in future? Our study indicates that approximately 20% of known families with three or more members currently have a representative structure. The study indicates also that the number of apparent protein families will be considerably larger than previously thought: We estimate that, by the criteria of this work, there will be about 250,000 protein families when 1000 microbial genomes have been sequenced. However, the vast majority of these families will be small, and it will be possible to obtain structural templates for 70-80% of protein domains with an achievable number of representative structures, by systematically sampling the larger families.

  1. Development of an Enzyme Linked Immunosorbent Assay to Detect Chicken Parvovirus Specific Antibodies

    USDA-ARS?s Scientific Manuscript database

    Here we report the development and application of an enzyme linked immunosorbent assay to detect parvovirus-specific antibodies in chicken sera. We used an approach previously described for other parvoviruses to clone and express viral structural proteins in insect cells from recombinant baculovirus...

  2. A structural-alphabet-based strategy for finding structural motifs across protein families

    PubMed Central

    Wu, Chih Yuan; Chen, Yao Chi; Lim, Carmay

    2010-01-01

    Proteins with insignificant sequence and overall structure similarity may still share locally conserved contiguous structural segments; i.e. structural/3D motifs. Most methods for finding 3D motifs require a known motif to search for other similar structures or functionally/structurally crucial residues. Here, without requiring a query motif or essential residues, a fully automated method for discovering 3D motifs of various sizes across protein families with different folds based on a 16-letter structural alphabet is presented. It was applied to structurally non-redundant proteins bound to DNA, RNA, obligate/non-obligate proteins as well as free DNA-binding proteins (DBPs) and proteins with known structures but unknown function. Its usefulness was illustrated by analyzing the 3D motifs found in DBPs. A non-specific motif was found with a ‘corner’ architecture that confers a stable scaffold and enables diverse interactions, making it suitable for binding not only DNA but also RNA and proteins. Furthermore, DNA-specific motifs present ‘only’ in DBPs were discovered. The motifs found can provide useful guidelines in detecting binding sites and computational protein redesign. PMID:20525797

  3. Purification and Functional Characterization of a Protein: Bombyx mori Human Growth Hormone Like Protein in Silkworm Pupa

    PubMed Central

    Lv, Zhengbing; Nie, Zuoming; Chen, Jian; Chen, Hao; Yu, Wei; Gai, Qijing; Zhang, Yaozhou

    2014-01-01

    Human growth hormone (hGH) is a peptide hormone secreted by eosinophils of the human anterior pituitary, and a regulatory factor for a variety of metabolic pathways. A 30-kD protein from the pupa stage of silkworm was detected by Western blotting and confirmed by immunoprecipitation based on its ability to bind to anti-hGH antibody. This protein, named BmhGH-like protein, was purified from fresh silkworm pupas through low-temperature homogenization, filtration, and centrifugation to remove large impurity particles. The supernatants were precipitated, resuspended, and passed through a molecular sieve. Further purification by affinity chromatography and two-dimensional electrophoresis resulted in pure protein for analysis by MS MALDI-TOF-MS analysis. An alignment with predicted proteins indicated that BmhGH-like protein consisted of two lipoproteins, which we named hGH-L1 and hGH-L2. These proteins belong to the β-trefoil superfamily, with β domains similar to the spatial structure of hGH. Assays with K562 cells demonstrated that these proteins could promote cell division in vitro. To further validate the growth-promoting effects, hGH-L2 was cloned from pupa cDNA to create recombinant silkworm baculovirus vBmNPV-hGH-L2, which was used to infect silkworm BmN cells at low titer. Flow cytometric analysis demonstrated that the protein shortened the G0/G1 phase of the cells, and enabled the cells to rapidly traverse the G1/S phase transition point to enter S phase and promote cell division. Discovery of hGH-like protein in silkworm will once again arouse people’s interest in the potential medicinal value of silkworm and establish the basis for the development of new hormone drugs. PMID:25469649

  4. Purification and functional characterization of a protein: Bombyx mori human growth hormone like protein in silkworm pupa.

    PubMed

    Chen, Jianqing; Shu, Tejun; Lv, Zhengbing; Nie, Zuoming; Chen, Jian; Chen, Hao; Yu, Wei; Gai, Qijing; Zhang, Yaozhou

    2014-01-01

    Human growth hormone (hGH) is a peptide hormone secreted by eosinophils of the human anterior pituitary, and a regulatory factor for a variety of metabolic pathways. A 30-kD protein from the pupa stage of silkworm was detected by Western blotting and confirmed by immunoprecipitation based on its ability to bind to anti-hGH antibody. This protein, named BmhGH-like protein, was purified from fresh silkworm pupas through low-temperature homogenization, filtration, and centrifugation to remove large impurity particles. The supernatants were precipitated, resuspended, and passed through a molecular sieve. Further purification by affinity chromatography and two-dimensional electrophoresis resulted in pure protein for analysis by MS MALDI-TOF-MS analysis. An alignment with predicted proteins indicated that BmhGH-like protein consisted of two lipoproteins, which we named hGH-L1 and hGH-L2. These proteins belong to the β-trefoil superfamily, with β domains similar to the spatial structure of hGH. Assays with K562 cells demonstrated that these proteins could promote cell division in vitro. To further validate the growth-promoting effects, hGH-L2 was cloned from pupa cDNA to create recombinant silkworm baculovirus vBmNPV-hGH-L2, which was used to infect silkworm BmN cells at low titer. Flow cytometric analysis demonstrated that the protein shortened the G0/G1 phase of the cells, and enabled the cells to rapidly traverse the G1/S phase transition point to enter S phase and promote cell division. Discovery of hGH-like protein in silkworm will once again arouse people's interest in the potential medicinal value of silkworm and establish the basis for the development of new hormone drugs.

  5. NMR-based automated protein structure determination.

    PubMed

    Würz, Julia M; Kazemi, Sina; Schmidt, Elena; Bagaria, Anurag; Güntert, Peter

    2017-08-15

    NMR spectra analysis for protein structure determination can now in many cases be performed by automated computational methods. This overview of the computational methods for NMR protein structure analysis presents recent automated methods for signal identification in multidimensional NMR spectra, sequence-specific resonance assignment, collection of conformational restraints, and structure calculation, as implemented in the CYANA software package. These algorithms are sufficiently reliable and integrated into one software package to enable the fully automated structure determination of proteins starting from NMR spectra without manual interventions or corrections at intermediate steps, with an accuracy of 1-2 Å backbone RMSD in comparison with manually solved reference structures. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Utilization of protein intrinsic disorder knowledge in structural proteomics

    PubMed Central

    Oldfield, Christopher J.; Xue, Bin; Van, Ya-Yue; Ulrich, Eldon L.; Markley, John L.; Dunker, A. Keith; Uversky, Vladimir N.

    2014-01-01

    Intrinsically disordered proteins (IDPs) and proteins with long disordered regions are highly abundant in various proteomes. Despite their lack of well-defined ordered structure, these proteins and regions are frequently involved in crucial biological processes. Although in recent years these proteins have attracted the attention of many researchers, IDPs represent a significant challenge for structural characterization since these proteins can impact many of the processes in the structure determination pipeline. Here we investigate the effects of IDPs on the structure determination process and the utility of disorder prediction in selecting and improving proteins for structural characterization. Examination of the extent of intrinsic disorder in existing crystal structures found that relatively few protein crystal structures contain extensive regions of intrinsic disorder. Although intrinsic disorder is not the only cause of crystallization failures and many structured proteins cannot be crystallized, filtering out highly disordered proteins from structure-determination target lists is still likely to be cost effective. Therefore it is desirable to avoid highly disordered proteins from structure-determination target lists and we show that disorder prediction can be applied effectively to enrich structure determination pipelines with proteins more likely to yield crystal structures. For structural investigation of specific proteins, disorder prediction can be used to improve targets for structure determination. Finally, a framework for considering intrinsic disorder in the structure determination pipeline is proposed. PMID:23232152

  7. DEPENDENCE OF ECDYSTEROID METABOLISM AND DEVELOPMENT IN HOST LARVAE ON THE TIME OF BACULOVIRUS INFECTION AND THE ACTIVITY OF THE UDP-GLUCOSYL TRANSFERASE GENE.

    EPA Science Inventory

    Infection of fourth-instar gypsy moth (Lymantria dispar, Lepidoptera: Lymantriidae) larvae with the wild-type (Wt) gypsy moth baculovirus, LdNPV on the first day post-molt, or infection of fifth instars on the fifth day post-molt, results in elevated ecdysteroid levels in both he...

  8. The complete genome sequence of a third distinct baculovirus isolated from the true armyworm, Mythimna unipuncta, contains two copies of the lef-7 gene

    USDA-ARS?s Scientific Manuscript database

    A baculovirus isolate from a USDA Forest Service collection was examined by electron microscopy and analysis of its genome sequence. The isolate, formerly referred to as Pseudoletia (Mythimna) sp. nucleopolyhedrovirus #7 (MyspNPV#7), was determined by barcoding PCR to derive from the host species My...

  9. Resource for structure related information on transmembrane proteins

    NASA Astrophysics Data System (ADS)

    Tusnády, Gábor E.; Simon, István

    Transmembrane proteins are involved in a wide variety of vital biological processes including transport of water-soluble molecules, flow of information and energy production. Despite significant efforts to determine the structures of these proteins, only a few thousand solved structures are known so far. Here, we review the various resources for structure-related information on these types of proteins ranging from the 3D structure to the topology and from the up-to-date databases to the various Internet sites and servers dealing with structure prediction and structure analysis. Abbreviations: 3D, three dimensional; PDB, Protein Data Bank; TMP, transmembrane protein.

  10. Overcoming barriers to membrane protein structure determination.

    PubMed

    Bill, Roslyn M; Henderson, Peter J F; Iwata, So; Kunji, Edmund R S; Michel, Hartmut; Neutze, Richard; Newstead, Simon; Poolman, Bert; Tate, Christopher G; Vogel, Horst

    2011-04-01

    After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new approaches to solving membrane protein structures based on recent technological advances. Rational approaches to overcoming the bottlenecks in the field are urgently required as membrane proteins, which typically comprise ~30% of the proteomes of organisms, are dramatically under-represented in the structural database of the Protein Data Bank.

  11. The activity of phenoloxidase in haemolymph plasma is not a predictor of Lymantria dispar resistance to its baculovirus

    PubMed Central

    Kasianov, Nikita S.; Belousova, Irina A.; Pavlushin, Sergey V.; Dubovskiy, Ivan M.; Podgwaite, John D.; Bakhvalov, Stanislav A.

    2017-01-01

    Host innate immunity is one of the factors that determines the resistance of insects to their entomopathogens. In the research reported here we studied whether or not phenoloxidase (PO), a key enzyme in the melanogenesis component of humoral immunity of insects, plays a role in the protection of Lymantria dispar larvae from infection by L. dispar multiple nucleopolyhedrovirus. We studied two types of viral infection: overt and covert. The following lines of investigation were tested: i) the intravital individual estimation of baseline PO activity in haemolymph plasma followed by virus challenging; ii) the specific inhibition of PO activity in vivo by peroral treatment of infected larvae with phenylthiourea (PTU), a competitive inhibitor of PO; iii) the evaluation of PO activity in the haemolymph plasma after larval starvation. Starvation is a stress that activates the covert infection to an overt form. All of these experiments did not show a relationship between PO activity in haemolymph plasma of L. dispar larvae and larval susceptibility to baculovirus. Moreover, starvation-induced activation of covert viral infection to an overt form occurred in 70 percent of virus-carrying larvae against the background of a dramatic increase of PO activity in haemolymph plasma in the insects studied. Our conclusion is that in L. dispar larvae PO activity is not a predictor of host resistance to baculovirus. PMID:28854240

  12. Quality assessment of protein model-structures based on structural and functional similarities

    PubMed Central

    2012-01-01

    Background Experimental determination of protein 3D structures is expensive, time consuming and sometimes impossible. A gap between number of protein structures deposited in the World Wide Protein Data Bank and the number of sequenced proteins constantly broadens. Computational modeling is deemed to be one of the ways to deal with the problem. Although protein 3D structure prediction is a difficult task, many tools are available. These tools can model it from a sequence or partial structural information, e.g. contact maps. Consequently, biologists have the ability to generate automatically a putative 3D structure model of any protein. However, the main issue becomes evaluation of the model quality, which is one of the most important challenges of structural biology. Results GOBA - Gene Ontology-Based Assessment is a novel Protein Model Quality Assessment Program. It estimates the compatibility between a model-structure and its expected function. GOBA is based on the assumption that a high quality model is expected to be structurally similar to proteins functionally similar to the prediction target. Whereas DALI is used to measure structure similarity, protein functional similarity is quantified using standardized and hierarchical description of proteins provided by Gene Ontology combined with Wang's algorithm for calculating semantic similarity. Two approaches are proposed to express the quality of protein model-structures. One is a single model quality assessment method, the other is its modification, which provides a relative measure of model quality. Exhaustive evaluation is performed on data sets of model-structures submitted to the CASP8 and CASP9 contests. Conclusions The validation shows that the method is able to discriminate between good and bad model-structures. The best of tested GOBA scores achieved 0.74 and 0.8 as a mean Pearson correlation to the observed quality of models in our CASP8 and CASP9-based validation sets. GOBA also obtained the best

  13. Quality assessment of protein model-structures based on structural and functional similarities.

    PubMed

    Konopka, Bogumil M; Nebel, Jean-Christophe; Kotulska, Malgorzata

    2012-09-21

    Experimental determination of protein 3D structures is expensive, time consuming and sometimes impossible. A gap between number of protein structures deposited in the World Wide Protein Data Bank and the number of sequenced proteins constantly broadens. Computational modeling is deemed to be one of the ways to deal with the problem. Although protein 3D structure prediction is a difficult task, many tools are available. These tools can model it from a sequence or partial structural information, e.g. contact maps. Consequently, biologists have the ability to generate automatically a putative 3D structure model of any protein. However, the main issue becomes evaluation of the model quality, which is one of the most important challenges of structural biology. GOBA--Gene Ontology-Based Assessment is a novel Protein Model Quality Assessment Program. It estimates the compatibility between a model-structure and its expected function. GOBA is based on the assumption that a high quality model is expected to be structurally similar to proteins functionally similar to the prediction target. Whereas DALI is used to measure structure similarity, protein functional similarity is quantified using standardized and hierarchical description of proteins provided by Gene Ontology combined with Wang's algorithm for calculating semantic similarity. Two approaches are proposed to express the quality of protein model-structures. One is a single model quality assessment method, the other is its modification, which provides a relative measure of model quality. Exhaustive evaluation is performed on data sets of model-structures submitted to the CASP8 and CASP9 contests. The validation shows that the method is able to discriminate between good and bad model-structures. The best of tested GOBA scores achieved 0.74 and 0.8 as a mean Pearson correlation to the observed quality of models in our CASP8 and CASP9-based validation sets. GOBA also obtained the best result for two targets of CASP8, and

  14. Baculovirus directly activates murine NK cells via TLR9.

    PubMed

    Moriyama, T; Suzuki, T; Chang, M O; Kitajima, M; Takaku, H

    2017-04-01

    The importance of natural killer (NK) cells in innate immune responses against tumors or viral infections enhances the appeal of NK cell-based immunotherapeutic approaches. We have recently reported that baculovirus (BV)-infected dendritic cells (DCs; BV-DCs) induce antitumor immunity against established tumors in mice. These antitumor effects were CD8 + T-cell and NK cell dependent; however, they were found to be CD4 + T-cell independent. In this study, we investigated the involvement of Toll-like receptor 9 (TLR9) in the process of BV recognition by NK cells. We found that BV directly stimulated NK cells, induced the expression of the activation marker CD69 and promoted interferon-gamma (IFN-γ) production and cytotoxicity. Moreover, TLR9 knockout in mice (tlr9-/- NK cells) inhibited NK cell responses to BV, indicating that TLR9 may have a relevant role in the BV-induced upregulation of NK cell functions. Our data demonstrated for the first time that NK cells directly recognize BV via TLR9, which provides opportunities for the use of this technique as an effective tool for BV-based immunotherapies against malignancies.

  15. An ambiguity principle for assigning protein structural domains.

    PubMed

    Postic, Guillaume; Ghouzam, Yassine; Chebrek, Romain; Gelly, Jean-Christophe

    2017-01-01

    Ambiguity is the quality of being open to several interpretations. For an image, it arises when the contained elements can be delimited in two or more distinct ways, which may cause confusion. We postulate that it also applies to the analysis of protein three-dimensional structure, which consists in dividing the molecule into subunits called domains. Because different definitions of what constitutes a domain can be used to partition a given structure, the same protein may have different but equally valid domain annotations. However, knowledge and experience generally displace our ability to accept more than one way to decompose the structure of an object-in this case, a protein. This human bias in structure analysis is particularly harmful because it leads to ignoring potential avenues of research. We present an automated method capable of producing multiple alternative decompositions of protein structure (web server and source code available at www.dsimb.inserm.fr/sword/). Our innovative algorithm assigns structural domains through the hierarchical merging of protein units, which are evolutionarily preserved substructures that describe protein architecture at an intermediate level, between domain and secondary structure. To validate the use of these protein units for decomposing protein structures into domains, we set up an extensive benchmark made of expert annotations of structural domains and including state-of-the-art domain parsing algorithms. The relevance of our "multipartitioning" approach is shown through numerous examples of applications covering protein function, evolution, folding, and structure prediction. Finally, we introduce a measure for the structural ambiguity of protein molecules.

  16. An ambiguity principle for assigning protein structural domains

    PubMed Central

    Postic, Guillaume; Ghouzam, Yassine; Chebrek, Romain; Gelly, Jean-Christophe

    2017-01-01

    Ambiguity is the quality of being open to several interpretations. For an image, it arises when the contained elements can be delimited in two or more distinct ways, which may cause confusion. We postulate that it also applies to the analysis of protein three-dimensional structure, which consists in dividing the molecule into subunits called domains. Because different definitions of what constitutes a domain can be used to partition a given structure, the same protein may have different but equally valid domain annotations. However, knowledge and experience generally displace our ability to accept more than one way to decompose the structure of an object—in this case, a protein. This human bias in structure analysis is particularly harmful because it leads to ignoring potential avenues of research. We present an automated method capable of producing multiple alternative decompositions of protein structure (web server and source code available at www.dsimb.inserm.fr/sword/). Our innovative algorithm assigns structural domains through the hierarchical merging of protein units, which are evolutionarily preserved substructures that describe protein architecture at an intermediate level, between domain and secondary structure. To validate the use of these protein units for decomposing protein structures into domains, we set up an extensive benchmark made of expert annotations of structural domains and including state-of-the-art domain parsing algorithms. The relevance of our “multipartitioning” approach is shown through numerous examples of applications covering protein function, evolution, folding, and structure prediction. Finally, we introduce a measure for the structural ambiguity of protein molecules. PMID:28097215

  17. De Novo Protein Structure Prediction

    NASA Astrophysics Data System (ADS)

    Hung, Ling-Hong; Ngan, Shing-Chung; Samudrala, Ram

    An unparalleled amount of sequence data is being made available from large-scale genome sequencing efforts. The data provide a shortcut to the determination of the function of a gene of interest, as long as there is an existing sequenced gene with similar sequence and of known function. This has spurred structural genomic initiatives with the goal of determining as many protein folds as possible (Brenner and Levitt, 2000; Burley, 2000; Brenner, 2001; Heinemann et al., 2001). The purpose of this is twofold: First, the structure of a gene product can often lead to direct inference of its function. Second, since the function of a protein is dependent on its structure, direct comparison of the structures of gene products can be more sensitive than the comparison of sequences of genes for detecting homology. Presently, structural determination by crystallography and NMR techniques is still slow and expensive in terms of manpower and resources, despite attempts to automate the processes. Computer structure prediction algorithms, while not providing the accuracy of the traditional techniques, are extremely quick and inexpensive and can provide useful low-resolution data for structure comparisons (Bonneau and Baker, 2001). Given the immense number of structures which the structural genomic projects are attempting to solve, there would be a considerable gain even if the computer structure prediction approach were applicable to a subset of proteins.

  18. Structural determination of intact proteins using mass spectrometry

    DOEpatents

    Kruppa, Gary [San Francisco, CA; Schoeniger, Joseph S [Oakland, CA; Young, Malin M [Livermore, CA

    2008-05-06

    The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.

  19. Proteins as sponges: a statistical journey along protein structure organization principles.

    PubMed

    Paola, Luisa Di; Paci, Paola; Santoni, Daniele; Ruvo, Micol De; Giuliani, Alessandro

    2012-02-27

    The analysis of a large database of protein structures by means of topological and shape indexes inspired by complex network and fractal analysis shed light on some organizational principles of proteins. Proteins appear much more similar to "fractal" sponges than to closely packed spheres, casting doubts on the tenability of the hydrophobic core concept. Principal component analysis highlighted three main order parameters shaping the protein universe: (1) "size", with the consequent generation of progressively less dense and more empty structures at an increasing number of residues, (2) "microscopic structuring", linked to the existence of a spectrum going from the prevalence of heterologous (different hydrophobicity) to the prevalence of homologous (similar hydrophobicity) contacts, and (3) "fractal shape", an organizing protein data set along a continuum going from approximately linear to very intermingled structures. Perhaps the time has come for seriously taking into consideration the real relevance of time-honored principles like the hydrophobic core and hydrophobic effect.

  20. Use of designed sequences in protein structure recognition.

    PubMed

    Kumar, Gayatri; Mudgal, Richa; Srinivasan, Narayanaswamy; Sandhya, Sankaran

    2018-05-09

    Knowledge of the protein structure is a pre-requisite for improved understanding of molecular function. The gap in the sequence-structure space has increased in the post-genomic era. Grouping related protein sequences into families can aid in narrowing the gap. In the Pfam database, structure description is provided for part or full-length proteins of 7726 families. For the remaining 52% of the families, information on 3-D structure is not yet available. We use the computationally designed sequences that are intermediately related to two protein domain families, which are already known to share the same fold. These strategically designed sequences enable detection of distant relationships and here, we have employed them for the purpose of structure recognition of protein families of yet unknown structure. We first measured the success rate of our approach using a dataset of protein families of known fold and achieved a success rate of 88%. Next, for 1392 families of yet unknown structure, we made structural assignments for part/full length of the proteins. Fold association for 423 domains of unknown function (DUFs) are provided as a step towards functional annotation. The results indicate that knowledge-based filling of gaps in protein sequence space is a lucrative approach for structure recognition. Such sequences assist in traversal through protein sequence space and effectively function as 'linkers', where natural linkers between distant proteins are unavailable. This article was reviewed by Oliviero Carugo, Christine Orengo and Srikrishna Subramanian.

  1. Course 12: Proteins: Structural, Thermodynamic and Kinetic Aspects

    NASA Astrophysics Data System (ADS)

    Finkelstein, A. V.

    1 Introduction 2 Overview of protein architectures and discussion of physical background of their natural selection 2.1 Protein structures 2.2 Physical selection of protein structures 3 Thermodynamic aspects of protein folding 3.1 Reversible denaturation of protein structures 3.2 What do denatured proteins look like? 3.3 Why denaturation of a globular protein is the first-order phase transition 3.4 "Gap" in energy spectrum: The main characteristic that distinguishes protein chains from random polymers 4 Kinetic aspects of protein folding 4.1 Protein folding in vivo 4.2 Protein folding in vitro (in the test-tube) 4.3 Theory of protein folding rates and solution of the Levinthal paradox

  2. Acetylcholinesterase of the sand fly, Phlebotomus papatasi (Scopoli): cDNA sequence, baculovirus expression, and biochemical properties

    PubMed Central

    2013-01-01

    Background Millions of people and domestic animals around the world are affected by leishmaniasis, a disease caused by various species of flagellated protozoans in the genus Leishmania that are transmitted by several sand fly species. Insecticides are widely used for sand fly population control to try to reduce or interrupt Leishmania transmission. Zoonotic cutaneous leishmaniasis caused by L. major is vectored mainly by Phlebotomus papatasi (Scopoli) in Asia and Africa. Organophosphates comprise a class of insecticides used for sand fly control, which act through the inhibition of acetylcholinesterase (AChE) in the central nervous system. Point mutations producing an altered, insensitive AChE are a major mechanism of organophosphate resistance in insects and preliminary evidence for organophosphate-insensitive AChE has been reported in sand flies. This report describes the identification of complementary DNA for an AChE in P. papatasi and the biochemical characterization of recombinant P. papatasi AChE. Methods A P. papatasi Israeli strain laboratory colony was utilized to prepare total RNA utilized as template for RT-PCR amplification and sequencing of cDNA encoding acetylcholinesterase 1 using gene specific primers and 3’-5’-RACE. The cDNA was cloned into pBlueBac4.5/V5-His TOPO, and expressed by baculovirus in Sf21 insect cells in serum-free medium. Recombinant P. papatasi acetylcholinesterase was biochemically characterized using a modified Ellman’s assay in microplates. Results A 2309 nucleotide sequence of PpAChE1 cDNA [GenBank: JQ922267] of P. papatasi from a laboratory colony susceptible to insecticides is reported with 73-83% nucleotide identity to acetylcholinesterase mRNA sequences of Culex tritaeniorhynchus and Lutzomyia longipalpis, respectively. The P. papatasi cDNA ORF encoded a 710-amino acid protein [GenBank: AFP20868] exhibiting 85% amino acid identity with acetylcholinesterases of Cx. pipiens, Aedes aegypti, and 92% amino acid identity for

  3. Introduction to Protein Structure through Genetic Diseases

    ERIC Educational Resources Information Center

    Schneider, Tanya L.; Linton, Brian R.

    2008-01-01

    An illuminating way to learn about protein function is to explore high-resolution protein structures. Analysis of the proteins involved in genetic diseases has been used to introduce students to protein structure and the role that individual mutations can play in the onset of disease. Known mutations can be correlated to changes in protein…

  4. mTM-align: a server for fast protein structure database search and multiple protein structure alignment.

    PubMed

    Dong, Runze; Pan, Shuo; Peng, Zhenling; Zhang, Yang; Yang, Jianyi

    2018-05-21

    With the rapid increase of the number of protein structures in the Protein Data Bank, it becomes urgent to develop algorithms for efficient protein structure comparisons. In this article, we present the mTM-align server, which consists of two closely related modules: one for structure database search and the other for multiple structure alignment. The database search is speeded up based on a heuristic algorithm and a hierarchical organization of the structures in the database. The multiple structure alignment is performed using the recently developed algorithm mTM-align. Benchmark tests demonstrate that our algorithms outperform other peering methods for both modules, in terms of speed and accuracy. One of the unique features for the server is the interplay between database search and multiple structure alignment. The server provides service not only for performing fast database search, but also for making accurate multiple structure alignment with the structures found by the search. For the database search, it takes about 2-5 min for a structure of a medium size (∼300 residues). For the multiple structure alignment, it takes a few seconds for ∼10 structures of medium sizes. The server is freely available at: http://yanglab.nankai.edu.cn/mTM-align/.

  5. The Protein Structure Initiative Structural Biology Knowledgebase Technology Portal: a structural biology web resource.

    PubMed

    Gifford, Lida K; Carter, Lester G; Gabanyi, Margaret J; Berman, Helen M; Adams, Paul D

    2012-06-01

    The Technology Portal of the Protein Structure Initiative Structural Biology Knowledgebase (PSI SBKB; http://technology.sbkb.org/portal/ ) is a web resource providing information about methods and tools that can be used to relieve bottlenecks in many areas of protein production and structural biology research. Several useful features are available on the web site, including multiple ways to search the database of over 250 technological advances, a link to videos of methods on YouTube, and access to a technology forum where scientists can connect, ask questions, get news, and develop collaborations. The Technology Portal is a component of the PSI SBKB ( http://sbkb.org ), which presents integrated genomic, structural, and functional information for all protein sequence targets selected by the Protein Structure Initiative. Created in collaboration with the Nature Publishing Group, the SBKB offers an array of resources for structural biologists, such as a research library, editorials about new research advances, a featured biological system each month, and a functional sleuth for searching protein structures of unknown function. An overview of the various features and examples of user searches highlight the information, tools, and avenues for scientific interaction available through the Technology Portal.

  6. Local backbone structure prediction of proteins

    PubMed Central

    De Brevern, Alexandre G.; Benros, Cristina; Gautier, Romain; Valadié, Hélène; Hazout, Serge; Etchebest, Catherine

    2004-01-01

    Summary A statistical analysis of the PDB structures has led us to define a new set of small 3D structural prototypes called Protein Blocks (PBs). This structural alphabet includes 16 PBs, each one is defined by the (φ, Ψ) dihedral angles of 5 consecutive residues. The amino acid distributions observed in sequence windows encompassing these PBs are used to predict by a Bayesian approach the local 3D structure of proteins from the sole knowledge of their sequences. LocPred is a software which allows the users to submit a protein sequence and performs a prediction in terms of PBs. The prediction results are given both textually and graphically. PMID:15724288

  7. How Structure Defines Affinity in Protein-Protein Interactions

    PubMed Central

    Erijman, Ariel; Rosenthal, Eran; Shifman, Julia M.

    2014-01-01

    Protein-protein interactions (PPI) in nature are conveyed by a multitude of binding modes involving various surfaces, secondary structure elements and intermolecular interactions. This diversity results in PPI binding affinities that span more than nine orders of magnitude. Several early studies attempted to correlate PPI binding affinities to various structure-derived features with limited success. The growing number of high-resolution structures, the appearance of more precise methods for measuring binding affinities and the development of new computational algorithms enable more thorough investigations in this direction. Here, we use a large dataset of PPI structures with the documented binding affinities to calculate a number of structure-based features that could potentially define binding energetics. We explore how well each calculated biophysical feature alone correlates with binding affinity and determine the features that could be used to distinguish between high-, medium- and low- affinity PPIs. Furthermore, we test how various combinations of features could be applied to predict binding affinity and observe a slow improvement in correlation as more features are incorporated into the equation. In addition, we observe a considerable improvement in predictions if we exclude from our analysis low-resolution and NMR structures, revealing the importance of capturing exact intermolecular interactions in our calculations. Our analysis should facilitate prediction of new interactions on the genome scale, better characterization of signaling networks and design of novel binding partners for various target proteins. PMID:25329579

  8. Improved cryoEM-Guided Iterative Molecular Dynamics–Rosetta Protein Structure Refinement Protocol for High Precision Protein Structure Prediction

    PubMed Central

    2016-01-01

    Many excellent methods exist that incorporate cryo-electron microscopy (cryoEM) data to constrain computational protein structure prediction and refinement. Previously, it was shown that iteration of two such orthogonal sampling and scoring methods – Rosetta and molecular dynamics (MD) simulations – facilitated exploration of conformational space in principle. Here, we go beyond a proof-of-concept study and address significant remaining limitations of the iterative MD–Rosetta protein structure refinement protocol. Specifically, all parts of the iterative refinement protocol are now guided by medium-resolution cryoEM density maps, and previous knowledge about the native structure of the protein is no longer necessary. Models are identified solely based on score or simulation time. All four benchmark proteins showed substantial improvement through three rounds of the iterative refinement protocol. The best-scoring final models of two proteins had sub-Ångstrom RMSD to the native structure over residues in secondary structure elements. Molecular dynamics was most efficient in refining secondary structure elements and was thus highly complementary to the Rosetta refinement which is most powerful in refining side chains and loop regions. PMID:25883538

  9. PAMAM dendrimer-baculovirus nanocomplex for microencapsulated adipose stem cell-gene therapy: in vitro and in vivo functional assessment.

    PubMed

    Paul, Arghya; Shao, Wei; Abbasi, Sana; Shum-Tim, Dominique; Prakash, Satya

    2012-09-04

    The present study aims to develop a new stem cell based gene delivery system consisting of human adipose tissue derived stem cells (hASCs) genetically modified with self-assembled nanocomplex of recombinant baculovirus and PAMAM dendrimer (Bac-PAMAM) to overexpress the vascular endothelial growth factor (VEGF). Cells were enveloped into branched PEG surface functionalized polymeric microcapsules for efficient transplantation. In vitro analysis confirmed efficient transduction of hASCs expressing 7.65 ± 0.86 ng functionally active VEGF per 10(6) microencapsulated hASCs (ASC-VEGF). To determine the potential of the developed system, chronically infarcted rat hearts were treated with either empty microcapsules (MC), microencapsulated hASCs expressing MGFP reporter protein (MC+ASC-MGFP), or MC+ASC-VEGF, and analyzed for 10 weeks. Post-transplantation data confirmed higher myocardial VEGF expressions with significantly enhanced neovasculature in the MC+ASC-VEGF group. In addition, the cardiac performance, as measured by percentage ejection fraction, also improved significantly in the MC+ASC-VEGF group (48.6 ± 6.1%) compared to that in MC+ASC-MGFP (38.8 ± 5.3%) and MC groups (31.5 ± 3.3%). Collectively, these data demonstrate the feasibility of this system for improved stem cell therapy applications.

  10. Dynamic Interactions between Bombyx mori Nucleopolyhedrovirus and Its Host Cells Revealed by Transcriptome Analysis

    PubMed Central

    Xue, Jian; Qiao, Nan; Zhang, Wei; Cheng, Ruo-Lin; Zhang, Xiao-Qin; Bao, Yan-Yuan; Xu, Yi-Peng; Gu, Lin-Zhu

    2012-01-01

    Although microarray and expressed sequence tag (EST)-based approaches have been used to profile gene expression during baculovirus infection, the response of host genes to baculovirus infection and the interaction between baculovirus and its host remain largely unknown. To determine the host response to Bombyx mori nucleopolyhedrovirus infection and the dynamic interaction between the virus and its host, eight digital gene expression libraries were examined in a Bm5 cell line before infection and at 1.5, 3, 6, 12, 24, 48, and 96 h postinfection. Gene set enrichment analysis of differentially expressed genes at each time point following infection showed that gene sets including cytoskeleton, transcription, translation, energy metabolism, iron ion metabolism, and the ubiquitin-proteasome pathway were altered after viral infection. In addition, a time course depicting protein-protein interaction networks between the baculovirus and the host were constructed and revealed that viral proteins interact with a multitude of cellular machineries, such as the proteasome, cytoskeleton, and spliceosome. Several viral proteins, including IE2, CG30, PE38, and PK-1/2, were predicted to play key roles in mediating virus-host interactions. Based on these results, we tested the role of the ubiquitin-proteasome pathway and iron ion metabolism in the viral infection cycle. Treatment with a proteasome inhibitor and deferoxamine mesylate in vitro and in vivo confirmed that these pathways regulate viral infection. Taken together, these findings provide new insights into the interaction between the baculovirus and its host and identify molecular mechanisms that can be used to block viral infection and improve baculovirus expression systems. PMID:22532689

  11. Protein structure determination by exhaustive search of Protein Data Bank derived databases.

    PubMed

    Stokes-Rees, Ian; Sliz, Piotr

    2010-12-14

    Parallel sequence and structure alignment tools have become ubiquitous and invaluable at all levels in the study of biological systems. We demonstrate the application and utility of this same parallel search paradigm to the process of protein structure determination, benefitting from the large and growing corpus of known structures. Such searches were previously computationally intractable. Through the method of Wide Search Molecular Replacement, developed here, they can be completed in a few hours with the aide of national-scale federated cyberinfrastructure. By dramatically expanding the range of models considered for structure determination, we show that small (less than 12% structural coverage) and low sequence identity (less than 20% identity) template structures can be identified through multidimensional template scoring metrics and used for structure determination. Many new macromolecular complexes can benefit significantly from such a technique due to the lack of known homologous protein folds or sequences. We demonstrate the effectiveness of the method by determining the structure of a full-length p97 homologue from Trichoplusia ni. Example cases with the MHC/T-cell receptor complex and the EmoB protein provide systematic estimates of minimum sequence identity, structure coverage, and structural similarity required for this method to succeed. We describe how this structure-search approach and other novel computationally intensive workflows are made tractable through integration with the US national computational cyberinfrastructure, allowing, for example, rapid processing of the entire Structural Classification of Proteins protein fragment database.

  12. Classification of proteins: available structural space for molecular modeling.

    PubMed

    Andreeva, Antonina

    2012-01-01

    The wealth of available protein structural data provides unprecedented opportunity to study and better understand the underlying principles of protein folding and protein structure evolution. A key to achieving this lies in the ability to analyse these data and to organize them in a coherent classification scheme. Over the past years several protein classifications have been developed that aim to group proteins based on their structural relationships. Some of these classification schemes explore the concept of structural neighbourhood (structural continuum), whereas other utilize the notion of protein evolution and thus provide a discrete rather than continuum view of protein structure space. This chapter presents a strategy for classification of proteins with known three-dimensional structure. Steps in the classification process along with basic definitions are introduced. Examples illustrating some fundamental concepts of protein folding and evolution with a special focus on the exceptions to them are presented.

  13. Protein structural similarity search by Ramachandran codes

    PubMed Central

    Lo, Wei-Cheng; Huang, Po-Jung; Chang, Chih-Hung; Lyu, Ping-Chiang

    2007-01-01

    Background Protein structural data has increased exponentially, such that fast and accurate tools are necessary to access structure similarity search. To improve the search speed, several methods have been designed to reduce three-dimensional protein structures to one-dimensional text strings that are then analyzed by traditional sequence alignment methods; however, the accuracy is usually sacrificed and the speed is still unable to match sequence similarity search tools. Here, we aimed to improve the linear encoding methodology and develop efficient search tools that can rapidly retrieve structural homologs from large protein databases. Results We propose a new linear encoding method, SARST (Structural similarity search Aided by Ramachandran Sequential Transformation). SARST transforms protein structures into text strings through a Ramachandran map organized by nearest-neighbor clustering and uses a regenerative approach to produce substitution matrices. Then, classical sequence similarity search methods can be applied to the structural similarity search. Its accuracy is similar to Combinatorial Extension (CE) and works over 243,000 times faster, searching 34,000 proteins in 0.34 sec with a 3.2-GHz CPU. SARST provides statistically meaningful expectation values to assess the retrieved information. It has been implemented into a web service and a stand-alone Java program that is able to run on many different platforms. Conclusion As a database search method, SARST can rapidly distinguish high from low similarities and efficiently retrieve homologous structures. It demonstrates that the easily accessible linear encoding methodology has the potential to serve as a foundation for efficient protein structural similarity search tools. These search tools are supposed applicable to automated and high-throughput functional annotations or predictions for the ever increasing number of published protein structures in this post-genomic era. PMID:17716377

  14. Functional classification of protein structures by local structure matching in graph representation.

    PubMed

    Mills, Caitlyn L; Garg, Rohan; Lee, Joslynn S; Tian, Liang; Suciu, Alexandru; Cooperman, Gene; Beuning, Penny J; Ondrechen, Mary Jo

    2018-03-31

    As a result of high-throughput protein structure initiatives, over 14,400 protein structures have been solved by structural genomics (SG) centers and participating research groups. While the totality of SG data represents a tremendous contribution to genomics and structural biology, reliable functional information for these proteins is generally lacking. Better functional predictions for SG proteins will add substantial value to the structural information already obtained. Our method described herein, Graph Representation of Active Sites for Prediction of Function (GRASP-Func), predicts quickly and accurately the biochemical function of proteins by representing residues at the predicted local active site as graphs rather than in Cartesian coordinates. We compare the GRASP-Func method to our previously reported method, structurally aligned local sites of activity (SALSA), using the ribulose phosphate binding barrel (RPBB), 6-hairpin glycosidase (6-HG), and Concanavalin A-like Lectins/Glucanase (CAL/G) superfamilies as test cases. In each of the superfamilies, SALSA and the much faster method GRASP-Func yield similar correct classification of previously characterized proteins, providing a validated benchmark for the new method. In addition, we analyzed SG proteins using our SALSA and GRASP-Func methods to predict function. Forty-one SG proteins in the RPBB superfamily, nine SG proteins in the 6-HG superfamily, and one SG protein in the CAL/G superfamily were successfully classified into one of the functional families in their respective superfamily by both methods. This improved, faster, validated computational method can yield more reliable predictions of function that can be used for a wide variety of applications by the community. © 2018 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  15. The effect of DNA priming-protein boosting on enhancing humoral immunity and protecting mice against lethal HSV infections.

    PubMed

    Soleimanjahi, Hoorieh; Roostaee, Mohammad Hassan; Rasaee, Mohammad Javad; Mahboudi, Fereidoon; Kazemnejad, Anooshirvan; Bamdad, Taravat; Zandi, Keivan

    2006-02-01

    Herpes simplex virus produces primary and latent infections with periodic recurrency. The prime-boost immunization strategies were studied using a DNA vaccine carrying the full-length glycoprotein D-1 gene and a baculovirus-derived recombinant glycoprotein D, both expressing herpes simplex virus glycoprotein D-1 protein. Immunization with recombinant DNAs encoding antigenic proteins could induce cellular and humoral responses by providing antigen expression in vivo. Higher immune response, however, occurred when the recombinant proteins followed DNA inoculation. While all groups of the immunized mice and positive control group could resist virus challenge, a higher virus neutralizing antibody level was detected in the animals receiving recombinant protein following DNA vaccination.

  16. Proteins with Novel Structure, Function and Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2014-01-01

    Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.

  17. Thermostabilisation of membrane proteins for structural studies

    PubMed Central

    Magnani, Francesca; Serrano-Vega, Maria J.; Shibata, Yoko; Abdul-Hussein, Saba; Lebon, Guillaume; Miller-Gallacher, Jennifer; Singhal, Ankita; Strege, Annette; Thomas, Jennifer A.; Tate, Christopher G.

    2017-01-01

    The thermostability of an integral membrane protein in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals suitable for structure determination. However, many mammalian membrane proteins are too unstable for crystallisation. We developed a thermostabilisation strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes approximately 6-12 months to thermostabilise a G protein-coupled receptor (GPCR) containing 300 amino acid residues. The resulting thermostabilised membrane proteins are more easily crystallised and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs, because it is possible to determine multiple structures of the thermostabilised receptors bound to low affinity ligands. Protocols and advice are given on how to develop thermostability assays for membrane proteins and how to combine mutations to make an optimally stable mutant suitable for structural studies. PMID:27466713

  18. Protein docking by the interface structure similarity: how much structure is needed?

    PubMed

    Sinha, Rohita; Kundrotas, Petras J; Vakser, Ilya A

    2012-01-01

    The increasing availability of co-crystallized protein-protein complexes provides an opportunity to use template-based modeling for protein-protein docking. Structure alignment techniques are useful in detection of remote target-template similarities. The size of the structure involved in the alignment is important for the success in modeling. This paper describes a systematic large-scale study to find the optimal definition/size of the interfaces for the structure alignment-based docking applications. The results showed that structural areas corresponding to the cutoff values <12 Å across the interface inadequately represent structural details of the interfaces. With the increase of the cutoff beyond 12 Å, the success rate for the benchmark set of 99 protein complexes, did not increase significantly for higher accuracy models, and decreased for lower-accuracy models. The 12 Å cutoff was optimal in our interface alignment-based docking, and a likely best choice for the large-scale (e.g., on the scale of the entire genome) applications to protein interaction networks. The results provide guidelines for the docking approaches, including high-throughput applications to modeled structures.

  19. Protein structure database search and evolutionary classification.

    PubMed

    Yang, Jinn-Moon; Tung, Chi-Hua

    2006-01-01

    As more protein structures become available and structural genomics efforts provide structural models in a genome-wide strategy, there is a growing need for fast and accurate methods for discovering homologous proteins and evolutionary classifications of newly determined structures. We have developed 3D-BLAST, in part, to address these issues. 3D-BLAST is as fast as BLAST and calculates the statistical significance (E-value) of an alignment to indicate the reliability of the prediction. Using this method, we first identified 23 states of the structural alphabet that represent pattern profiles of the backbone fragments and then used them to represent protein structure databases as structural alphabet sequence databases (SADB). Our method enhanced BLAST as a search method, using a new structural alphabet substitution matrix (SASM) to find the longest common substructures with high-scoring structured segment pairs from an SADB database. Using personal computers with Intel Pentium4 (2.8 GHz) processors, our method searched more than 10 000 protein structures in 1.3 s and achieved a good agreement with search results from detailed structure alignment methods. [3D-BLAST is available at http://3d-blast.life.nctu.edu.tw].

  20. The Structural Biology Knowledgebase: a portal to protein structures, sequences, functions, and methods.

    PubMed

    Gabanyi, Margaret J; Adams, Paul D; Arnold, Konstantin; Bordoli, Lorenza; Carter, Lester G; Flippen-Andersen, Judith; Gifford, Lida; Haas, Juergen; Kouranov, Andrei; McLaughlin, William A; Micallef, David I; Minor, Wladek; Shah, Raship; Schwede, Torsten; Tao, Yi-Ping; Westbrook, John D; Zimmerman, Matthew; Berman, Helen M

    2011-07-01

    The Protein Structure Initiative's Structural Biology Knowledgebase (SBKB, URL: http://sbkb.org ) is an open web resource designed to turn the products of the structural genomics and structural biology efforts into knowledge that can be used by the biological community to understand living systems and disease. Here we will present examples on how to use the SBKB to enable biological research. For example, a protein sequence or Protein Data Bank (PDB) structure ID search will provide a list of related protein structures in the PDB, associated biological descriptions (annotations), homology models, structural genomics protein target status, experimental protocols, and the ability to order available DNA clones from the PSI:Biology-Materials Repository. A text search will find publication and technology reports resulting from the PSI's high-throughput research efforts. Web tools that aid in research, including a system that accepts protein structure requests from the community, will also be described. Created in collaboration with the Nature Publishing Group, the Structural Biology Knowledgebase monthly update also provides a research library, editorials about new research advances, news, and an events calendar to present a broader view of structural genomics and structural biology.

  1. Protein Structure and Function Prediction Using I-TASSER

    PubMed Central

    Yang, Jianyi; Zhang, Yang

    2016-01-01

    I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets. PMID:26678386

  2. Recognition of coarse-grained protein tertiary structure.

    PubMed

    Lezon, Timothy; Banavar, Jayanth R; Maritan, Amos

    2004-05-15

    A model of the protein backbone is considered in which each residue is characterized by the location of its C(alpha) atom and one of a discrete set of conformal (phi, psi) states. We investigate the key differences between a description that offers a locally precise fit to known backbone structures and one that provides a globally accurate fit to protein structures. Using a statistical scoring scheme and threading, a protein's local best-fit conformation is highly recognizable, but its global structure cannot be directly determined from an amino acid sequence. The incorporation of information about the conformal states of neighboring residues along the chain allows one to accurately translate the local structure into a global structure. We present a two-step algorithm, which recognizes up to 95% of the tested protein native-state structures to within a 2.5 A root mean square deviation. Copyright 2004 Wiley-Liss, Inc.

  3. High-Throughput Characterization of Intrinsic Disorder in Proteins from the Protein Structure Initiative

    PubMed Central

    Johnson, Derrick E.; Xue, Bin; Sickmeier, Megan D.; Meng, Jingwei; Cortese, Marc S.; Oldfield, Christopher J.; Le Gall, Tanguy; Dunker, A. Keith; Uversky, Vladimir N.

    2012-01-01

    The identification of intrinsically disordered proteins (IDPs) among the targets that fail to form satisfactory crystal structures in the Protein Structure Initiative represent a key to reducing the costs and time for determining three-dimensional structures of proteins. To help in this endeavor, several Protein Structure Initiative Centers were asked to send samples of both crystallizable proteins and proteins that failed to crystallize. The abundance of intrinsic disorder in these proteins was evaluated via computational analysis using Predictors of Natural Disordered Regions (PONDR®) and the potential cleavage sites and corresponding fragments were determined. Then, the target proteins were analyzed for intrinsic disorder by their resistance to limited proteolysis. The rates of tryptic digestion of sample target proteins were compared to those of lysozyme/myoglobin, apo-myoglobin and α-casein as standards of ordered, partially disordered and completely disordered proteins, respectively. At the next stage, the protein samples were subjected to both far-UV and near-UV circular dichroism (CD) analysis. For most of the samples, a good agreement between CD data, predictions of disorder and the rates of limited tryptic digestion was established. Further experimentation is being performed on a smaller subset of these samples in order to obtain more detailed information on the ordered/disordered nature of the proteins. PMID:22651963

  4. General overview on structure prediction of twilight-zone proteins.

    PubMed

    Khor, Bee Yin; Tye, Gee Jun; Lim, Theam Soon; Choong, Yee Siew

    2015-09-04

    Protein structure prediction from amino acid sequence has been one of the most challenging aspects in computational structural biology despite significant progress in recent years showed by critical assessment of protein structure prediction (CASP) experiments. When experimentally determined structures are unavailable, the predictive structures may serve as starting points to study a protein. If the target protein consists of homologous region, high-resolution (typically <1.5 Å) model can be built via comparative modelling. However, when confronted with low sequence similarity of the target protein (also known as twilight-zone protein, sequence identity with available templates is less than 30%), the protein structure prediction has to be initiated from scratch. Traditionally, twilight-zone proteins can be predicted via threading or ab initio method. Based on the current trend, combination of different methods brings an improved success in the prediction of twilight-zone proteins. In this mini review, the methods, progresses and challenges for the prediction of twilight-zone proteins were discussed.

  5. Comparative Protein Structure Modeling Using MODELLER

    PubMed Central

    Webb, Benjamin; Sali, Andrej

    2016-01-01

    Comparative protein structure modeling predicts the three-dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and how to use the ModBase database of such models, and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. PMID:27322406

  6. Exploring the Universe of Protein Structures beyond the Protein Data Bank

    PubMed Central

    Cossio, Pilar; Trovato, Antonio; Pietrucci, Fabio; Seno, Flavio; Maritan, Amos; Laio, Alessandro

    2010-01-01

    It is currently believed that the atlas of existing protein structures is faithfully represented in the Protein Data Bank. However, whether this atlas covers the full universe of all possible protein structures is still a highly debated issue. By using a sophisticated numerical approach, we performed an exhaustive exploration of the conformational space of a 60 amino acid polypeptide chain described with an accurate all-atom interaction potential. We generated a database of around 30,000 compact folds with at least of secondary structure corresponding to local minima of the potential energy. This ensemble plausibly represents the universe of protein folds of similar length; indeed, all the known folds are represented in the set with good accuracy. However, we discover that the known folds form a rather small subset, which cannot be reproduced by choosing random structures in the database. Rather, natural and possible folds differ by the contact order, on average significantly smaller in the former. This suggests the presence of an evolutionary bias, possibly related to kinetic accessibility, towards structures with shorter loops between contacting residues. Beside their conceptual relevance, the new structures open a range of practical applications such as the development of accurate structure prediction strategies, the optimization of force fields, and the identification and design of novel folds. PMID:21079678

  7. Dissecting the relationship between protein structure and sequence variation

    NASA Astrophysics Data System (ADS)

    Shahmoradi, Amir; Wilke, Claus; Wilke Lab Team

    2015-03-01

    Over the past decade several independent works have shown that some structural properties of proteins are capable of predicting protein evolution. The strength and significance of these structure-sequence relations, however, appear to vary widely among different proteins, with absolute correlation strengths ranging from 0 . 1 to 0 . 8 . Here we present the results from a comprehensive search for the potential biophysical and structural determinants of protein evolution by studying more than 200 structural and evolutionary properties in a dataset of 209 monomeric enzymes. We discuss the main protein characteristics responsible for the general patterns of protein evolution, and identify sequence divergence as the main determinant of the strengths of virtually all structure-evolution relationships, explaining ~ 10 - 30 % of observed variation in sequence-structure relations. In addition to sequence divergence, we identify several protein structural properties that are moderately but significantly coupled with the strength of sequence-structure relations. In particular, proteins with more homogeneous back-bone hydrogen bond energies, large fractions of helical secondary structures and low fraction of beta sheets tend to have the strongest sequence-structure relation. BEACON-NSF center for the study of evolution in action.

  8. Binding free energy analysis of protein-protein docking model structures by evERdock.

    PubMed

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  9. Binding free energy analysis of protein-protein docking model structures by evERdock

    NASA Astrophysics Data System (ADS)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-01

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  10. Protein-protein structure prediction by scoring molecular dynamics trajectories of putative poses.

    PubMed

    Sarti, Edoardo; Gladich, Ivan; Zamuner, Stefano; Correia, Bruno E; Laio, Alessandro

    2016-09-01

    The prediction of protein-protein interactions and their structural configuration remains a largely unsolved problem. Most of the algorithms aimed at finding the native conformation of a protein complex starting from the structure of its monomers are based on searching the structure corresponding to the global minimum of a suitable scoring function. However, protein complexes are often highly flexible, with mobile side chains and transient contacts due to thermal fluctuations. Flexibility can be neglected if one aims at finding quickly the approximate structure of the native complex, but may play a role in structure refinement, and in discriminating solutions characterized by similar scores. We here benchmark the capability of some state-of-the-art scoring functions (BACH-SixthSense, PIE/PISA and Rosetta) in discriminating finite-temperature ensembles of structures corresponding to the native state and to non-native configurations. We produce the ensembles by running thousands of molecular dynamics simulations in explicit solvent starting from poses generated by rigid docking and optimized in vacuum. We find that while Rosetta outperformed the other two scoring functions in scoring the structures in vacuum, BACH-SixthSense and PIE/PISA perform better in distinguishing near-native ensembles of structures generated by molecular dynamics in explicit solvent. Proteins 2016; 84:1312-1320. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Protein sectors: evolutionary units of three-dimensional structure

    PubMed Central

    Halabi, Najeeb; Rivoire, Olivier; Leibler, Stanislas; Ranganathan, Rama

    2011-01-01

    Proteins display a hierarchy of structural features at primary, secondary, tertiary, and higher-order levels, an organization that guides our current understanding of their biological properties and evolutionary origins. Here, we reveal a structural organization distinct from this traditional hierarchy by statistical analysis of correlated evolution between amino acids. Applied to the S1A serine proteases, the analysis indicates a decomposition of the protein into three quasi-independent groups of correlated amino acids that we term “protein sectors”. Each sector is physically connected in the tertiary structure, has a distinct functional role, and constitutes an independent mode of sequence divergence in the protein family. Functionally relevant sectors are evident in other protein families as well, suggesting that they may be general features of proteins. We propose that sectors represent a structural organization of proteins that reflects their evolutionary histories. PMID:19703402

  12. A novel structural tree for wrap-proteins, a subclass of (α+β)-proteins.

    PubMed

    Boshkova, Eugenia A; Gordeev, Alexey B; Efimov, Alexander V

    2014-01-01

    In this paper, a novel structural subclass of (α+β)-proteins is presented. A characteristic feature of these proteins and domains is that they consist of strongly twisted and coiled β-sheets wrapped around one or two α-helices, so they are referred to here as wrap-proteins. It is shown that overall folds of the wrap-proteins can be obtained by stepwise addition of α-helices and/or β-strands to the strongly twisted and coiled β-hairpin taken as the starting structure in modeling. As a result of modeling, a structural tree for the wrap-proteins was constructed that includes 201 folds of which 49 occur in known nonhomologous proteins.

  13. Structural alignment of protein descriptors - a combinatorial model.

    PubMed

    Antczak, Maciej; Kasprzak, Marta; Lukasiak, Piotr; Blazewicz, Jacek

    2016-09-17

    Structural alignment of proteins is one of the most challenging problems in molecular biology. The tertiary structure of a protein strictly correlates with its function and computationally predicted structures are nowadays a main premise for understanding the latter. However, computationally derived 3D models often exhibit deviations from the native structure. A way to confirm a model is a comparison with other structures. The structural alignment of a pair of proteins can be defined with the use of a concept of protein descriptors. The protein descriptors are local substructures of protein molecules, which allow us to divide the original problem into a set of subproblems and, consequently, to propose a more efficient algorithmic solution. In the literature, one can find many applications of the descriptors concept that prove its usefulness for insight into protein 3D structures, but the proposed approaches are presented rather from the biological perspective than from the computational or algorithmic point of view. Efficient algorithms for identification and structural comparison of descriptors can become crucial components of methods for structural quality assessment as well as tertiary structure prediction. In this paper, we propose a new combinatorial model and new polynomial-time algorithms for the structural alignment of descriptors. The model is based on the maximum-size assignment problem, which we define here and prove that it can be solved in polynomial time. We demonstrate suitability of this approach by comparison with an exact backtracking algorithm. Besides a simplification coming from the combinatorial modeling, both on the conceptual and complexity level, we gain with this approach high quality of obtained results, in terms of 3D alignment accuracy and processing efficiency. All the proposed algorithms were developed and integrated in a computationally efficient tool descs-standalone, which allows the user to identify and structurally compare

  14. A Web-Accessible Protein Structure Prediction Pipeline

    DTIC Science & Technology

    2009-06-01

    Abstract Proteins are the molecular basis of nearly all structural, catalytic, sensory, and regulatory functions in living organisms. The biological...sensory, and regulatory functions in living organisms. The structure of a protein is essential in understanding its function at the molecular level...Characterizing sequence-structure and structure-function relationships have been the goals of molecular biology for more than three decades

  15. Proteins without unique 3D structures: biotechnological applications of intrinsically unstable/disordered proteins.

    PubMed

    Uversky, Vladimir N

    2015-03-01

    Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are functional proteins or regions that do not have unique 3D structures under functional conditions. Therefore, from the viewpoint of their lack of stable 3D structure, IDPs/IDPRs are inherently unstable. As much as structure and function of normal ordered globular proteins are determined by their amino acid sequences, the lack of unique 3D structure in IDPs/IDPRs and their disorder-based functionality are also encoded in the amino acid sequences. Because of their specific sequence features and distinctive conformational behavior, these intrinsically unstable proteins or regions have several applications in biotechnology. This review introduces some of the most characteristic features of IDPs/IDPRs (such as peculiarities of amino acid sequences of these proteins and regions, their major structural features, and peculiar responses to changes in their environment) and describes how these features can be used in the biotechnology, for example for the proteome-wide analysis of the abundance of extended IDPs, for recombinant protein isolation and purification, as polypeptide nanoparticles for drug delivery, as solubilization tools, and as thermally sensitive carriers of active peptides and proteins. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Automation of NMR structure determination of proteins.

    PubMed

    Altieri, Amanda S; Byrd, R Andrew

    2004-10-01

    The automation of protein structure determination using NMR is coming of age. The tedious processes of resonance assignment, followed by assignment of NOE (nuclear Overhauser enhancement) interactions (now intertwined with structure calculation), assembly of input files for structure calculation, intermediate analyses of incorrect assignments and bad input data, and finally structure validation are all being automated with sophisticated software tools. The robustness of the different approaches continues to deal with problems of completeness and uniqueness; nevertheless, the future is very bright for automation of NMR structure generation to approach the levels found in X-ray crystallography. Currently, near completely automated structure determination is possible for small proteins, and the prospect for medium-sized and large proteins is good. Copyright 2004 Elsevier Ltd.

  17. Structural perturbation of proteins in low denaturant concentrations.

    PubMed

    Basak, S; Debnath, D; Haque, E; Ray, S; Chakrabarti, A

    2001-01-01

    The presence of very low concentrations of the widely used chemical denaturants, guanidinium chloride and urea, induce changes in the tertiary structure of proteins. We have presented results on such changes in four structurally unrelated proteins to show that such structural perturbations are common irrespective of their origin. Data representative of such structural changes are shown for the monomeric globular proteins such as horseradish peroxidase (HRP) from a plant, human serum albumin (HSA) and prothrombin from ovine blood serum, and for the membrane-associated, worm-like elongated protein, spectrin, from ovine erythrocytes. Structural alterations in these proteins were reflected in quenching studies of tryptophan fluorescence using the widely used quencher acrylamide. Stern-Volmer quenching constants measured in presence of the denaturants, even at concentrations below 100 mM, were higher than those measured in absence of the denaturants. Both steady-state and time-resolved fluorescence emission properties of tryptophan and of the extrinsic probe PRODAN were used for monitoring conformational changes in the proteins in presence of different low concentrations of the denaturants. These results are consistent with earlier studies from our laboratory indicating structural perturbations in proteins at the tertiary level, keeping their native-like secondary structure and their biological activity more or less intact.

  18. The structure of a cholesterol-trapping protein

    Science.gov Websites

    Date February 28, 2003 Date Berkeley Lab Science Beat Berkeley Lab Science Beat The structure of a Institute researchers determined the three-dimensional structure of a protein that controls cholesterol level in the bloodstream. Knowing the structure of the protein, a cellular receptor that ensnares

  19. A novel Multi-Agent Ada-Boost algorithm for predicting protein structural class with the information of protein secondary structure.

    PubMed

    Fan, Ming; Zheng, Bin; Li, Lihua

    2015-10-01

    Knowledge of the structural class of a given protein is important for understanding its folding patterns. Although a lot of efforts have been made, it still remains a challenging problem for prediction of protein structural class solely from protein sequences. The feature extraction and classification of proteins are the main problems in prediction. In this research, we extended our earlier work regarding these two aspects. In protein feature extraction, we proposed a scheme by calculating the word frequency and word position from sequences of amino acid, reduced amino acid, and secondary structure. For an accurate classification of the structural class of protein, we developed a novel Multi-Agent Ada-Boost (MA-Ada) method by integrating the features of Multi-Agent system into Ada-Boost algorithm. Extensive experiments were taken to test and compare the proposed method using four benchmark datasets in low homology. The results showed classification accuracies of 88.5%, 96.0%, 88.4%, and 85.5%, respectively, which are much better compared with the existing methods. The source code and dataset are available on request.

  20. Accurate protein structure modeling using sparse NMR data and homologous structure information.

    PubMed

    Thompson, James M; Sgourakis, Nikolaos G; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L; Szyperski, Thomas; Montelione, Gaetano T; Baker, David

    2012-06-19

    While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining (1)H(N), (13)C, and (15)N backbone and (13)Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2-1.9 Å relative to the conventional determined NMR ensembles and of 0.9-1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments.

  1. An overview of the structures of protein-DNA complexes

    PubMed Central

    Luscombe, Nicholas M; Austin, Susan E; Berman , Helen M; Thornton, Janet M

    2000-01-01

    On the basis of a structural analysis of 240 protein-DNA complexes contained in the Protein Data Bank (PDB), we have classified the DNA-binding proteins involved into eight different structural/functional groups, which are further classified into 54 structural families. Here we present this classification and review the functions, structures and binding interactions of these protein-DNA complexes. PMID:11104519

  2. Structure-Based Druggability Assessment of the Mammalian Structural Proteome with Inclusion of Light Protein Flexibility

    PubMed Central

    Loving, Kathryn A.; Lin, Andy; Cheng, Alan C.

    2014-01-01

    Advances reported over the last few years and the increasing availability of protein crystal structure data have greatly improved structure-based druggability approaches. However, in practice, nearly all druggability estimation methods are applied to protein crystal structures as rigid proteins, with protein flexibility often not directly addressed. The inclusion of protein flexibility is important in correctly identifying the druggability of pockets that would be missed by methods based solely on the rigid crystal structure. These include cryptic pockets and flexible pockets often found at protein-protein interaction interfaces. Here, we apply an approach that uses protein modeling in concert with druggability estimation to account for light protein backbone movement and protein side-chain flexibility in protein binding sites. We assess the advantages and limitations of this approach on widely-used protein druggability sets. Applying the approach to all mammalian protein crystal structures in the PDB results in identification of 69 proteins with potential druggable cryptic pockets. PMID:25079060

  3. Immunogenicity of Newcastle Disease Virus Vectors Expressing Norwalk Virus Capsid Protein in the Presence or Absence of VP2 Protein

    PubMed Central

    Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y.; Samal, Siba K.

    2015-01-01

    Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirs-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. PMID:26099695

  4. Discrete-continuous duality of protein structure space.

    PubMed

    Sadreyev, Ruslan I; Kim, Bong-Hyun; Grishin, Nick V

    2009-06-01

    Recently, the nature of protein structure space has been widely discussed in the literature. The traditional discrete view of protein universe as a set of separate folds has been criticized in the light of growing evidence that almost any arrangement of secondary structures is possible and the whole protein space can be traversed through a path of similar structures. Here we argue that the discrete and continuous descriptions are not mutually exclusive, but complementary: the space is largely discrete in evolutionary sense, but continuous geometrically when purely structural similarities are quantified. Evolutionary connections are mainly confined to separate structural prototypes corresponding to folds as islands of structural stability, with few remaining traceable links between the islands. However, for a geometric similarity measure, it is usually possible to find a reasonable cutoff that yields paths connecting any two structures through intermediates.

  5. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors.

    PubMed

    Felberbaum, Rachael S

    2015-05-01

    The baculovirus expression vector system (BEVS) platform has become an established manufacturing platform for the production of viral vaccines and gene therapy vectors. Nine BEVS-derived products have been approved - four for human use (Cervarix(®), Provenge(®), Glybera(®) and Flublok(®)) and five for veterinary use (Porcilis(®) Pesti, BAYOVAC CSF E2(®), Circumvent(®) PCV, Ingelvac CircoFLEX(®) and Porcilis(®) PCV). The BEVS platform offers many advantages, including manufacturing speed, flexible product design, inherent safety and scalability. This combination of features and product approvals has previously attracted interest from academic researchers, and more recently from industry leaders, to utilize BEVS to develop next generation vaccines, vectors for gene therapy, and other biopharmaceutical complex proteins. In this review, we explore the BEVS platform, detailing how it works, platform features and limitations and important considerations for manufacturing and regulatory approval. To underscore the growth in opportunities for BEVS-derived products, we discuss the latest product developments in the gene therapy and influenza vaccine fields that follow in the wake of the recent product approvals of Glybera(®) and Flublok(®), respectively. We anticipate that the utility of the platform will expand even further as new BEVS-derived products attain licensure. Finally, we touch on some of the areas where new BEVS-derived products are likely to emerge. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hidden Structural Codes in Protein Intrinsic Disorder.

    PubMed

    Borkosky, Silvia S; Camporeale, Gabriela; Chemes, Lucía B; Risso, Marikena; Noval, María Gabriela; Sánchez, Ignacio E; Alonso, Leonardo G; de Prat Gay, Gonzalo

    2017-10-17

    Intrinsic disorder is a major structural category in biology, accounting for more than 30% of coding regions across the domains of life, yet consists of conformational ensembles in equilibrium, a major challenge in protein chemistry. Anciently evolved papillomavirus genomes constitute an unparalleled case for sequence to structure-function correlation in cases in which there are no folded structures. E7, the major transforming oncoprotein of human papillomaviruses, is a paradigmatic example among the intrinsically disordered proteins. Analysis of a large number of sequences of the same viral protein allowed for the identification of a handful of residues with absolute conservation, scattered along the sequence of its N-terminal intrinsically disordered domain, which intriguingly are mostly leucine residues. Mutation of these led to a pronounced increase in both α-helix and β-sheet structural content, reflected by drastic effects on equilibrium propensities and oligomerization kinetics, and uncovers the existence of local structural elements that oppose canonical folding. These folding relays suggest the existence of yet undefined hidden structural codes behind intrinsic disorder in this model protein. Thus, evolution pinpoints conformational hot spots that could have not been identified by direct experimental methods for analyzing or perturbing the equilibrium of an intrinsically disordered protein ensemble.

  7. PBxplore: a tool to analyze local protein structure and deformability with Protein Blocks

    PubMed Central

    Craveur, Pierrick; Joseph, Agnel Praveen; Jallu, Vincent

    2017-01-01

    This paper describes the development and application of a suite of tools, called PBxplore, to analyze the dynamics and deformability of protein structures using Protein Blocks (PBs). Proteins are highly dynamic macromolecules, and a classical way to analyze their inherent flexibility is to perform molecular dynamics simulations. The advantage of using small structural prototypes such as PBs is to give a good approximation of the local structure of the protein backbone. More importantly, by reducing the conformational complexity of protein structures, PBs allow analysis of local protein deformability which cannot be done with other methods and had been used efficiently in different applications. PBxplore is able to process large amounts of data such as those produced by molecular dynamics simulations. It produces frequencies, entropy and information logo outputs as text and graphics. PBxplore is available at https://github.com/pierrepo/PBxplore and is released under the open-source MIT license. PMID:29177113

  8. Seroprevalence of sapovirus in dogs using baculovirus-expressed virus-like particles.

    PubMed

    Melegari, Irene; Marsilio, Fulvio; Di Profio, Federica; Sarchese, Vittorio; Massirio, Ivano; Palombieri, Andrea; D'Angelo, Anna Rita; Lanave, Gianvito; Diakoudi, Georgia; Cavalli, Alessandra; Martella, Vito; Di Martino, Barbara

    2018-06-02

    Caliciviruses of the Sapovirus genus have been recently detected in dogs. Canine sapoviruses (SaVs) have been identified in the stools of young or juvenile animals with gastro-enteric disease at low prevalence (2.0-2.2%), but whether they may have a role as enteric pathogens and to which extent dogs are exposed to SaVs remains unclear. Here, we report the expression in a baculovirus system of virus like-particles (VLPs) of a canine SaV strain, the prototype virus Bari/4076/2007/ITA. The recombinant antigen was used to develop an enzyme-linked immunosorbent assay (ELISA). By screening an age-stratified collection of serum samples from 516 dogs in Italy, IgG antibodies specific for the canine SaV VLPs were detected in 40.3% (208/516) of the sera. Also, as observed for SaV infection in humans, we observed a positive association between seropositivity and age, with the highest prevalence rates in dogs older than 4 years of age. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Protein Structures Revealed at Record Pace

    ScienceCinema

    Hura, Greg

    2017-12-11

    The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.

  10. Protein Structures Revealed at Record Pace

    ScienceCinema

    Greg Hura

    2017-12-09

    The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.

  11. Heterologous expression of proteins from Plasmodium falciparum: results from 1000 genes.

    PubMed

    Mehlin, Christopher; Boni, Erica; Buckner, Frederick S; Engel, Linnea; Feist, Tiffany; Gelb, Michael H; Haji, Lutfiyah; Kim, David; Liu, Colleen; Mueller, Natascha; Myler, Peter J; Reddy, J T; Sampson, Joshua N; Subramanian, E; Van Voorhis, Wesley C; Worthey, Elizabeth; Zucker, Frank; Hol, Wim G J

    2006-08-01

    As part of a structural genomics initiative, 1000 open reading frames from Plasmodium falciparum, the causative agent of the most deadly form of malaria, were tested in an E. coli protein expression system. Three hundred and thirty-seven of these targets were observed to express, although typically the protein was insoluble. Sixty-three of the targets provided soluble protein in yields ranging from 0.9 to 406.6 mg from one liter of rich media. Higher molecular weight, greater protein disorder (segmental analysis, SEG), more basic isoelectric point (pI), and a lack of homology to E. coli proteins were all highly and independently correlated with difficulties in expression. Surprisingly, codon usage and the percentage of adenosines and thymidines (%AT) did not appear to play a significant role. Of those proteins which expressed, high pI and a hypothetical annotation were both strongly and independently correlated with insolubility. The overwhelmingly important role of pI in both expression and solubility appears to be a surprising and fundamental issue in the heterologous expression of P. falciparum proteins in E. coli. Twelve targets which did not express in E. coli from the native gene sequence were codon-optimized through whole gene synthesis, resulting in the (insoluble) expression of three of these proteins. Seventeen targets which were expressed insolubly in E. coli were moved into a baculovirus/Sf-21 system, resulting in the soluble expression of one protein at a high level and six others at a low level. A variety of factors conspire to make the heterologous expression of P. falciparum proteins challenging, and these observations lay the groundwork for a rational approach to prioritizing and, ultimately, eliminating these impediments.

  12. Structural principles within the human-virus protein-protein interaction network

    PubMed Central

    Franzosa, Eric A.; Xia, Yu

    2011-01-01

    General properties of the antagonistic biomolecular interactions between viruses and their hosts (exogenous interactions) remain poorly understood, and may differ significantly from known principles governing the cooperative interactions within the host (endogenous interactions). Systems biology approaches have been applied to study the combined interaction networks of virus and human proteins, but such efforts have so far revealed only low-resolution patterns of host-virus interaction. Here, we layer curated and predicted 3D structural models of human-virus and human-human protein complexes on top of traditional interaction networks to reconstruct the human-virus structural interaction network. This approach reveals atomic resolution, mechanistic patterns of host-virus interaction, and facilitates systematic comparison with the host’s endogenous interactions. We find that exogenous interfaces tend to overlap with and mimic endogenous interfaces, thereby competing with endogenous binding partners. The endogenous interfaces mimicked by viral proteins tend to participate in multiple endogenous interactions which are transient and regulatory in nature. While interface overlap in the endogenous network results largely from gene duplication followed by divergent evolution, viral proteins frequently achieve interface mimicry without any sequence or structural similarity to an endogenous binding partner. Finally, while endogenous interfaces tend to evolve more slowly than the rest of the protein surface, exogenous interfaces—including many sites of endogenous-exogenous overlap—tend to evolve faster, consistent with an evolutionary “arms race” between host and pathogen. These significant biophysical, functional, and evolutionary differences between host-pathogen and within-host protein-protein interactions highlight the distinct consequences of antagonism versus cooperation in biological networks. PMID:21680884

  13. Structural Mass Spectrometry of Proteins Using Hydroxyl Radical Based Protein Footprinting

    PubMed Central

    Wang, Liwen; Chance, Mark R.

    2011-01-01

    Structural MS is a rapidly growing field with many applications in basic research and pharmaceutical drug development. In this feature article the overall technology is described and several examples of how hydroxyl radical based footprinting MS can be used to map interfaces, evaluate protein structure, and identify ligand dependent conformational changes in proteins are described. PMID:21770468

  14. Relation between native ensembles and experimental structures of proteins

    PubMed Central

    Best, Robert B.; Lindorff-Larsen, Kresten; DePristo, Mark A.; Vendruscolo, Michele

    2006-01-01

    Different experimental structures of the same protein or of proteins with high sequence similarity contain many small variations. Here we construct ensembles of “high-sequence similarity Protein Data Bank” (HSP) structures and consider the extent to which such ensembles represent the structural heterogeneity of the native state in solution. We find that different NMR measurements probing structure and dynamics of given proteins in solution, including order parameters, scalar couplings, and residual dipolar couplings, are remarkably well reproduced by their respective high-sequence similarity Protein Data Bank ensembles; moreover, we show that the effects of uncertainties in structure determination are insufficient to explain the results. These results highlight the importance of accounting for native-state protein dynamics in making comparisons with ensemble-averaged experimental data and suggest that even a modest number of structures of a protein determined under different conditions, or with small variations in sequence, capture a representative subset of the true native-state ensemble. PMID:16829580

  15. A protein relational database and protein family knowledge bases to facilitate structure-based design analyses.

    PubMed

    Mobilio, Dominick; Walker, Gary; Brooijmans, Natasja; Nilakantan, Ramaswamy; Denny, R Aldrin; Dejoannis, Jason; Feyfant, Eric; Kowticwar, Rupesh K; Mankala, Jyoti; Palli, Satish; Punyamantula, Sairam; Tatipally, Maneesh; John, Reji K; Humblet, Christine

    2010-08-01

    The Protein Data Bank is the most comprehensive source of experimental macromolecular structures. It can, however, be difficult at times to locate relevant structures with the Protein Data Bank search interface. This is particularly true when searching for complexes containing specific interactions between protein and ligand atoms. Moreover, searching within a family of proteins can be tedious. For example, one cannot search for some conserved residue as residue numbers vary across structures. We describe herein three databases, Protein Relational Database, Kinase Knowledge Base, and Matrix Metalloproteinase Knowledge Base, containing protein structures from the Protein Data Bank. In Protein Relational Database, atom-atom distances between protein and ligand have been precalculated allowing for millisecond retrieval based on atom identity and distance constraints. Ring centroids, centroid-centroid and centroid-atom distances and angles have also been included permitting queries for pi-stacking interactions and other structural motifs involving rings. Other geometric features can be searched through the inclusion of residue pair and triplet distances. In Kinase Knowledge Base and Matrix Metalloproteinase Knowledge Base, the catalytic domains have been aligned into common residue numbering schemes. Thus, by searching across Protein Relational Database and Kinase Knowledge Base, one can easily retrieve structures wherein, for example, a ligand of interest is making contact with the gatekeeper residue.

  16. A Generative Angular Model of Protein Structure Evolution

    PubMed Central

    Golden, Michael; García-Portugués, Eduardo; Sørensen, Michael; Mardia, Kanti V.; Hamelryck, Thomas; Hein, Jotun

    2017-01-01

    Abstract Recently described stochastic models of protein evolution have demonstrated that the inclusion of structural information in addition to amino acid sequences leads to a more reliable estimation of evolutionary parameters. We present a generative, evolutionary model of protein structure and sequence that is valid on a local length scale. The model concerns the local dependencies between sequence and structure evolution in a pair of homologous proteins. The evolutionary trajectory between the two structures in the protein pair is treated as a random walk in dihedral angle space, which is modeled using a novel angular diffusion process on the two-dimensional torus. Coupling sequence and structure evolution in our model allows for modeling both “smooth” conformational changes and “catastrophic” conformational jumps, conditioned on the amino acid changes. The model has interpretable parameters and is comparatively more realistic than previous stochastic models, providing new insights into the relationship between sequence and structure evolution. For example, using the trained model we were able to identify an apparent sequence–structure evolutionary motif present in a large number of homologous protein pairs. The generative nature of our model enables us to evaluate its validity and its ability to simulate aspects of protein evolution conditioned on an amino acid sequence, a related amino acid sequence, a related structure or any combination thereof. PMID:28453724

  17. PDB-UF: database of predicted enzymatic functions for unannotated protein structures from structural genomics.

    PubMed

    von Grotthuss, Marcin; Plewczynski, Dariusz; Ginalski, Krzysztof; Rychlewski, Leszek; Shakhnovich, Eugene I

    2006-02-06

    The number of protein structures from structural genomics centers dramatically increases in the Protein Data Bank (PDB). Many of these structures are functionally unannotated because they have no sequence similarity to proteins of known function. However, it is possible to successfully infer function using only structural similarity. Here we present the PDB-UF database, a web-accessible collection of predictions of enzymatic properties using structure-function relationship. The assignments were conducted for three-dimensional protein structures of unknown function that come from structural genomics initiatives. We show that 4 hypothetical proteins (with PDB accession codes: 1VH0, 1NS5, 1O6D, and 1TO0), for which standard BLAST tools such as PSI-BLAST or RPS-BLAST failed to assign any function, are probably methyltransferase enzymes. We suggest that the structure-based prediction of an EC number should be conducted having the different similarity score cutoff for different protein folds. Moreover, performing the annotation using two different algorithms can reduce the rate of false positive assignments. We believe, that the presented web-based repository will help to decrease the number of protein structures that have functions marked as "unknown" in the PDB file. http://paradox.harvard.edu/PDB-UF and http://bioinfo.pl/PDB-UF.

  18. DNA mimic proteins: functions, structures, and bioinformatic analysis.

    PubMed

    Wang, Hao-Ching; Ho, Chun-Han; Hsu, Kai-Cheng; Yang, Jinn-Moon; Wang, Andrew H-J

    2014-05-13

    DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.

  19. The use of experimental structures to model protein dynamics.

    PubMed

    Katebi, Ataur R; Sankar, Kannan; Jia, Kejue; Jernigan, Robert L

    2015-01-01

    The number of solved protein structures submitted in the Protein Data Bank (PDB) has increased dramatically in recent years. For some specific proteins, this number is very high-for example, there are over 550 solved structures for HIV-1 protease, one protein that is essential for the life cycle of human immunodeficiency virus (HIV) which causes acquired immunodeficiency syndrome (AIDS) in humans. The large number of structures for the same protein and its variants include a sample of different conformational states of the protein. A rich set of structures solved experimentally for the same protein has information buried within the dataset that can explain the functional dynamics and structural mechanism of the protein. To extract the dynamics information and functional mechanism from the experimental structures, this chapter focuses on two methods-Principal Component Analysis (PCA) and Elastic Network Models (ENM). PCA is a widely used statistical dimensionality reduction technique to classify and visualize high-dimensional data. On the other hand, ENMs are well-established simple biophysical method for modeling the functionally important global motions of proteins. This chapter covers the basics of these two. Moreover, an improved ENM version that utilizes the variations found within a given set of structures for a protein is described. As a practical example, we have extracted the functional dynamics and mechanism of HIV-1 protease dimeric structure by using a set of 329 PDB structures of this protein. We have described, step by step, how to select a set of protein structures, how to extract the needed information from the PDB files for PCA, how to extract the dynamics information using PCA, how to calculate ENM modes, how to measure the congruency between the dynamics computed from the principal components (PCs) and the ENM modes, and how to compute entropies using the PCs. We provide the computer programs or references to software tools to accomplish each step

  20. GeneSilico protein structure prediction meta-server.

    PubMed

    Kurowski, Michal A; Bujnicki, Janusz M

    2003-07-01

    Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.

  1. Matt: local flexibility aids protein multiple structure alignment.

    PubMed

    Menke, Matthew; Berger, Bonnie; Cowen, Lenore

    2008-01-01

    Even when there is agreement on what measure a protein multiple structure alignment should be optimizing, finding the optimal alignment is computationally prohibitive. One approach used by many previous methods is aligned fragment pair chaining, where short structural fragments from all the proteins are aligned against each other optimally, and the final alignment chains these together in geometrically consistent ways. Ye and Godzik have recently suggested that adding geometric flexibility may help better model protein structures in a variety of contexts. We introduce the program Matt (Multiple Alignment with Translations and Twists), an aligned fragment pair chaining algorithm that, in intermediate steps, allows local flexibility between fragments: small translations and rotations are temporarily allowed to bring sets of aligned fragments closer, even if they are physically impossible under rigid body transformations. After a dynamic programming assembly guided by these "bent" alignments, geometric consistency is restored in the final step before the alignment is output. Matt is tested against other recent multiple protein structure alignment programs on the popular Homstrad and SABmark benchmark datasets. Matt's global performance is competitive with the other programs on Homstrad, but outperforms the other programs on SABmark, a benchmark of multiple structure alignments of proteins with more distant homology. On both datasets, Matt demonstrates an ability to better align the ends of alpha-helices and beta-strands, an important characteristic of any structure alignment program intended to help construct a structural template library for threading approaches to the inverse protein-folding problem. The related question of whether Matt alignments can be used to distinguish distantly homologous structure pairs from pairs of proteins that are not homologous is also considered. For this purpose, a p-value score based on the length of the common core and average root

  2. Protein Structure Determination from Pseudocontact Shifts Using ROSETTA

    PubMed Central

    Schmitz, Christophe; Vernon, Robert; Otting, Gottfried; Baker, David; Huber, Thomas

    2013-01-01

    Paramagnetic metal ions generate pseudocontact shifts (PCSs) in nuclear magnetic resonance spectra that are manifested as easily measurable changes in chemical shifts. Metals can be incorporated into proteins through metal binding tags, and PCS data constitute powerful long-range restraints on the positions of nuclear spins relative to the coordinate system of the magnetic susceptibility anisotropy tensor (Δχ-tensor) of the metal ion. We show that three-dimensional structures of proteins can reliably be determined using PCS data from a single metal binding site combined with backbone chemical shifts. The program PCS-ROSETTA automatically determines the Δχ-tensor and metal position from the PCS data during the structure calculations, without any prior knowledge of the protein structure. The program can determine structures accurately for proteins of up to 150 residues, offering a powerful new approach to protein structure determination that relies exclusively on readily measurable backbone chemical shifts and easily discriminates between correctly and incorrectly folded conformations. PMID:22285518

  3. Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM.

    PubMed

    Tuncbag, Nurcan; Gursoy, Attila; Nussinov, Ruth; Keskin, Ozlem

    2011-08-11

    Prediction of protein-protein interactions at the structural level on the proteome scale is important because it allows prediction of protein function, helps drug discovery and takes steps toward genome-wide structural systems biology. We provide a protocol (termed PRISM, protein interactions by structural matching) for large-scale prediction of protein-protein interactions and assembly of protein complex structures. The method consists of two components: rigid-body structural comparisons of target proteins to known template protein-protein interfaces and flexible refinement using a docking energy function. The PRISM rationale follows our observation that globally different protein structures can interact via similar architectural motifs. PRISM predicts binding residues by using structural similarity and evolutionary conservation of putative binding residue 'hot spots'. Ultimately, PRISM could help to construct cellular pathways and functional, proteome-scale annotation. PRISM is implemented in Python and runs in a UNIX environment. The program accepts Protein Data Bank-formatted protein structures and is available at http://prism.ccbb.ku.edu.tr/prism_protocol/.

  4. Method for protein structure alignment

    DOEpatents

    Blankenbecler, Richard; Ohlsson, Mattias; Peterson, Carsten; Ringner, Markus

    2005-02-22

    This invention provides a method for protein structure alignment. More particularly, the present invention provides a method for identification, classification and prediction of protein structures. The present invention involves two key ingredients. First, an energy or cost function formulation of the problem simultaneously in terms of binary (Potts) assignment variables and real-valued atomic coordinates. Second, a minimization of the energy or cost function by an iterative method, where in each iteration (1) a mean field method is employed for the assignment variables and (2) exact rotation and/or translation of atomic coordinates is performed, weighted with the corresponding assignment variables.

  5. Improved protein surface comparison and application to low-resolution protein structure data.

    PubMed

    Sael, Lee; Kihara, Daisuke

    2010-12-14

    Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM), which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs). The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed. The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification. Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy.

  6. Improved protein surface comparison and application to low-resolution protein structure data

    PubMed Central

    2010-01-01

    Background Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM), which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs). The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed. Results The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification. Conclusions Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy. PMID:21172052

  7. Visualizing and Clustering Protein Similarity Networks: Sequences, Structures, and Functions.

    PubMed

    Mai, Te-Lun; Hu, Geng-Ming; Chen, Chi-Ming

    2016-07-01

    Research in the recent decade has demonstrated the usefulness of protein network knowledge in furthering the study of molecular evolution of proteins, understanding the robustness of cells to perturbation, and annotating new protein functions. In this study, we aimed to provide a general clustering approach to visualize the sequence-structure-function relationship of protein networks, and investigate possible causes for inconsistency in the protein classifications based on sequences, structures, and functions. Such visualization of protein networks could facilitate our understanding of the overall relationship among proteins and help researchers comprehend various protein databases. As a demonstration, we clustered 1437 enzymes by their sequences and structures using the minimum span clustering (MSC) method. The general structure of this protein network was delineated at two clustering resolutions, and the second level MSC clustering was found to be highly similar to existing enzyme classifications. The clustering of these enzymes based on sequence, structure, and function information is consistent with each other. For proteases, the Jaccard's similarity coefficient is 0.86 between sequence and function classifications, 0.82 between sequence and structure classifications, and 0.78 between structure and function classifications. From our clustering results, we discussed possible examples of divergent evolution and convergent evolution of enzymes. Our clustering approach provides a panoramic view of the sequence-structure-function network of proteins, helps visualize the relation between related proteins intuitively, and is useful in predicting the structure and function of newly determined protein sequences.

  8. Topological properties of complex networks in protein structures

    NASA Astrophysics Data System (ADS)

    Kim, Kyungsik; Jung, Jae-Won; Min, Seungsik

    2014-03-01

    We study topological properties of networks in structural classification of proteins. We model the native-state protein structure as a network made of its constituent amino-acids and their interactions. We treat four structural classes of proteins composed predominantly of α helices and β sheets and consider several proteins from each of these classes whose sizes range from amino acids of the Protein Data Bank. Particularly, we simulate and analyze the network metrics such as the mean degree, the probability distribution of degree, the clustering coefficient, the characteristic path length, the local efficiency, and the cost. This work was supported by the KMAR and DP under Grant WISE project (153-3100-3133-302-350).

  9. Genetic code expansion for multiprotein complex engineering.

    PubMed

    Koehler, Christine; Sauter, Paul F; Wawryszyn, Mirella; Girona, Gemma Estrada; Gupta, Kapil; Landry, Jonathan J M; Fritz, Markus Hsi-Yang; Radic, Ksenija; Hoffmann, Jan-Erik; Chen, Zhuo A; Zou, Juan; Tan, Piau Siong; Galik, Bence; Junttila, Sini; Stolt-Bergner, Peggy; Pruneri, Giancarlo; Gyenesei, Attila; Schultz, Carsten; Biskup, Moritz Bosse; Besir, Hueseyin; Benes, Vladimir; Rappsilber, Juri; Jechlinger, Martin; Korbel, Jan O; Berger, Imre; Braese, Stefan; Lemke, Edward A

    2016-12-01

    We present a baculovirus-based protein engineering method that enables site-specific introduction of unique functionalities in a eukaryotic protein complex recombinantly produced in insect cells. We demonstrate the versatility of this efficient and robust protein production platform, 'MultiBacTAG', (i) for the fluorescent labeling of target proteins and biologics using click chemistries, (ii) for glycoengineering of antibodies, and (iii) for structure-function studies of novel eukaryotic complexes using single-molecule Förster resonance energy transfer as well as site-specific crosslinking strategies.

  10. Designing and benchmarking the MULTICOM protein structure prediction system

    PubMed Central

    2013-01-01

    Background Predicting protein structure from sequence is one of the most significant and challenging problems in bioinformatics. Numerous bioinformatics techniques and tools have been developed to tackle almost every aspect of protein structure prediction ranging from structural feature prediction, template identification and query-template alignment to structure sampling, model quality assessment, and model refinement. How to synergistically select, integrate and improve the strengths of the complementary techniques at each prediction stage and build a high-performance system is becoming a critical issue for constructing a successful, competitive protein structure predictor. Results Over the past several years, we have constructed a standalone protein structure prediction system MULTICOM that combines multiple sources of information and complementary methods at all five stages of the protein structure prediction process including template identification, template combination, model generation, model assessment, and model refinement. The system was blindly tested during the ninth Critical Assessment of Techniques for Protein Structure Prediction (CASP9) in 2010 and yielded very good performance. In addition to studying the overall performance on the CASP9 benchmark, we thoroughly investigated the performance and contributions of each component at each stage of prediction. Conclusions Our comprehensive and comparative study not only provides useful and practical insights about how to select, improve, and integrate complementary methods to build a cutting-edge protein structure prediction system but also identifies a few new sources of information that may help improve the design of a protein structure prediction system. Several components used in the MULTICOM system are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. PMID:23442819

  11. 3D bioprinting of structural proteins.

    PubMed

    Włodarczyk-Biegun, Małgorzata K; Del Campo, Aránzazu

    2017-07-01

    3D bioprinting is a booming method to obtain scaffolds of different materials with predesigned and customized morphologies and geometries. In this review we focus on the experimental strategies and recent achievements in the bioprinting of major structural proteins (collagen, silk, fibrin), as a particularly interesting technology to reconstruct the biochemical and biophysical composition and hierarchical morphology of natural scaffolds. The flexibility in molecular design offered by structural proteins, combined with the flexibility in mixing, deposition, and mechanical processing inherent to bioprinting technologies, enables the fabrication of highly functional scaffolds and tissue mimics with a degree of complexity and organization which has only just started to be explored. Here we describe the printing parameters and physical (mechanical) properties of bioinks based on structural proteins, including the biological function of the printed scaffolds. We describe applied printing techniques and cross-linking methods, highlighting the modifications implemented to improve scaffold properties. The used cell types, cell viability, and possible construct applications are also reported. We envision that the application of printing technologies to structural proteins will enable unprecedented control over their supramolecular organization, conferring printed scaffolds biological properties and functions close to natural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Structural changes of malt proteins during boiling.

    PubMed

    Jin, Bei; Li, Lin; Liu, Guo-Qin; Li, Bing; Zhu, Yu-Kui; Liao, Liao-Ning

    2009-03-09

    Changes in the physicochemical properties and structure of proteins derived from two malt varieties (Baudin and Guangmai) during wort boiling were investigated by differential scanning calorimetry, SDS-PAGE, two-dimensional electrophoresis, gel filtration chromatography and circular dichroism spectroscopy. The results showed that both protein content and amino acid composition changed only slightly during boiling, and that boiling might cause a gradual unfolding of protein structures, as indicated by the decrease in surface hydrophobicity and free sulfhydryl content and enthalpy value, as well as reduced alpha-helix contents and markedly increased random coil contents. It was also found that major component of both worts was a boiling-resistant protein with a molecular mass of 40 kDa, and that according to the two-dimensional electrophoresis and SE-HPLC analyses, a small amount of soluble aggregates might be formed via hydrophobic interactions. It was thus concluded that changes of protein structure caused by boiling that might influence beer quality are largely independent of malt variety.

  13. Dengue-1 Virus Envelope Glycoprotein Gene Expressed in Recombinant Baculovirus Elicits Virus-Neutralizing Antibody in Mice and Protects them from Virus Challenge

    DTIC Science & Technology

    1991-01-01

    8217 terminus of E. When the recombinant virus was grown in Spodoptera frugiperda cells. about I mg of E antigen was made per 10’ cells. Recombinant E antigen...assay with DEN-I virus coprotein gene and its expression in Spodoptera hyperimmune mouse ascitic fluid. This heat-in- frugiperda cells activated...immunization, S. frugiperda cells infected with tion with BstNI (cuts at nucleotides 801 and recombinant baculovirus were pelleted. lysed by 2150). The

  14. Conservation of protein structure over four billion years.

    PubMed

    Ingles-Prieto, Alvaro; Ibarra-Molero, Beatriz; Delgado-Delgado, Asuncion; Perez-Jimenez, Raul; Fernandez, Julio M; Gaucher, Eric A; Sanchez-Ruiz, Jose M; Gavira, Jose A

    2013-09-03

    Little is known about the evolution of protein structures and the degree of protein structure conservation over planetary time scales. Here, we report the X-ray crystal structures of seven laboratory resurrections of Precambrian thioredoxins dating up to approximately four billion years ago. Despite considerable sequence differences compared with extant enzymes, the ancestral proteins display the canonical thioredoxin fold, whereas only small structural changes have occurred over four billion years. This remarkable degree of structure conservation since a time near the last common ancestor of life supports a punctuated-equilibrium model of structure evolution in which the generation of new folds occurs over comparatively short periods and is followed by long periods of structural stasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A hidden markov model derived structural alphabet for proteins.

    PubMed

    Camproux, A C; Gautier, R; Tufféry, P

    2004-06-04

    Understanding and predicting protein structures depends on the complexity and the accuracy of the models used to represent them. We have set up a hidden Markov model that discretizes protein backbone conformation as series of overlapping fragments (states) of four residues length. This approach learns simultaneously the geometry of the states and their connections. We obtain, using a statistical criterion, an optimal systematic decomposition of the conformational variability of the protein peptidic chain in 27 states with strong connection logic. This result is stable over different protein sets. Our model fits well the previous knowledge related to protein architecture organisation and seems able to grab some subtle details of protein organisation, such as helix sub-level organisation schemes. Taking into account the dependence between the states results in a description of local protein structure of low complexity. On an average, the model makes use of only 8.3 states among 27 to describe each position of a protein structure. Although we use short fragments, the learning process on entire protein conformations captures the logic of the assembly on a larger scale. Using such a model, the structure of proteins can be reconstructed with an average accuracy close to 1.1A root-mean-square deviation and for a complexity of only 3. Finally, we also observe that sequence specificity increases with the number of states of the structural alphabet. Such models can constitute a very relevant approach to the analysis of protein architecture in particular for protein structure prediction.

  16. 3D Complex: A Structural Classification of Protein Complexes

    PubMed Central

    Levy, Emmanuel D; Pereira-Leal, Jose B; Chothia, Cyrus; Teichmann, Sarah A

    2006-01-01

    Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes. PMID:17112313

  17. Rebelling for a Reason: Protein Structural “Outliers”

    PubMed Central

    Arumugam, Gandhimathi; Nair, Anu G.; Hariharaputran, Sridhar; Ramanathan, Sowdhamini

    2013-01-01

    Analysis of structural variation in domain superfamilies can reveal constraints in protein evolution which aids protein structure prediction and classification. Structure-based sequence alignment of distantly related proteins, organized in PASS2 database, provides clues about structurally conserved regions among different functional families. Some superfamily members show large structural differences which are functionally relevant. This paper analyses the impact of structural divergence on function for multi-member superfamilies, selected from the PASS2 superfamily alignment database. Functional annotations within superfamilies, with structural outliers or ‘rebels’, are discussed in the context of structural variations. Overall, these data reinforce the idea that functional similarities cannot be extrapolated from mere structural conservation. The implication for fold-function prediction is that the functional annotations can only be inherited with very careful consideration, especially at low sequence identities. PMID:24073209

  18. HARMONY: a server for the assessment of protein structures

    PubMed Central

    Pugalenthi, G.; Shameer, K.; Srinivasan, N.; Sowdhamini, R.

    2006-01-01

    Protein structure validation is an important step in computational modeling and structure determination. Stereochemical assessment of protein structures examine internal parameters such as bond lengths and Ramachandran (φ,ψ) angles. Gross structure prediction methods such as inverse folding procedure and structure determination especially at low resolution can sometimes give rise to models that are incorrect due to assignment of misfolds or mistracing of electron density maps. Such errors are not reflected as strain in internal parameters. HARMONY is a procedure that examines the compatibility between the sequence and the structure of a protein by assigning scores to individual residues and their amino acid exchange patterns after considering their local environments. Local environments are described by the backbone conformation, solvent accessibility and hydrogen bonding patterns. We are now providing HARMONY through a web server such that users can submit their protein structure files and, if required, the alignment of homologous sequences. Scores are mapped on the structure for subsequent examination that is useful to also recognize regions of possible local errors in protein structures. HARMONY server is located at PMID:16844999

  19. The Use of Experimental Structures to Model Protein Dynamics

    PubMed Central

    Katebi, Ataur R.; Sankar, Kannan; Jia, Kejue; Jernigan, Robert L.

    2014-01-01

    Summary The number of solved protein structures submitted in the Protein Data Bank (PDB) has increased dramatically in recent years. For some specific proteins, this number is very high – for example, there are over 550 solved structures for HIV-1 protease, one protein that is essential for the life cycle of human immunodeficiency virus (HIV) which causes acquired immunodeficiency syndrome (AIDS) in humans. The large number of structures for the same protein and its variants include a sample of different conformational states of the protein. A rich set of structures solved experimentally for the same protein has information buried within the dataset that can explain the functional dynamics and structural mechanism of the protein. To extract the dynamics information and functional mechanism from the experimental structures, this chapter focuses on two methods – Principal Component Analysis (PCA) and Elastic Network Models (ENM). PCA is a widely used statistical dimensionality reduction technique to classify and visualize high-dimensional data. On the other hand, ENMs are well-established simple biophysical method for modeling the functionally important global motions of proteins. This chapter covers the basics of these two. Moreover, an improved ENM version that utilizes the variations found within a given set of structures for a protein is described. As a practical example, we have extracted the functional dynamics and mechanism of HIV-1 protease dimeric structure by using a set of 329 PDB structures of this protein. We have described, step by step, how to select a set of protein structures, how to extract the needed information from the PDB files for PCA, how to extract the dynamics information using PCA, how to calculate ENM modes, how to measure the congruency between the dynamics computed from the principal components (PCs) and the ENM modes, and how to compute entropies using the PCs. We provide the computer programs or references to software tools to

  20. Website on Protein Interaction and Protein Structure Related Work

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  1. GeneSilico protein structure prediction meta-server

    PubMed Central

    Kurowski, Michal A.; Bujnicki, Janusz M.

    2003-01-01

    Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta. PMID:12824313

  2. Protein domain assignment from the recurrence of locally similar structures

    PubMed Central

    Tai, Chin-Hsien; Sam, Vichetra; Gibrat, Jean-Francois; Garnier, Jean; Munson, Peter J.

    2010-01-01

    Domains are basic units of protein structure and essential for exploring protein fold space and structure evolution. With the structural genomics initiative, the number of protein structures in the Protein Databank (PDB) is increasing dramatically and domain assignments need to be done automatically. Most existing structural domain assignment programs define domains using the compactness of the domains and/or the number and strength of intra-domain versus inter-domain contacts. Here we present a different approach based on the recurrence of locally similar structural pieces (LSSPs) found by one-against-all structure comparisons with a dataset of 6,373 protein chains from the PDB. Residues of the query protein are clustered using LSSPs via three different procedures to define domains. This approach gives results that are comparable to several existing programs that use geometrical and other structural information explicitly. Remarkably, most of the proteins that contribute the LSSPs defining a domain do not themselves contain the domain of interest. This study shows that domains can be defined by a collection of relatively small locally similar structural pieces containing, on average, four secondary structure elements. In addition, it indicates that domains are indeed made of recurrent small structural pieces that are used to build protein structures of many different folds as suggested by recent studies. PMID:21287617

  3. Classification of protein quaternary structure by functional domain composition

    PubMed Central

    Yu, Xiaojing; Wang, Chuan; Li, Yixue

    2006-01-01

    Background The number and the arrangement of subunits that form a protein are referred to as quaternary structure. Quaternary structure is an important protein attribute that is closely related to its function. Proteins with quaternary structure are called oligomeric proteins. Oligomeric proteins are involved in various biological processes, such as metabolism, signal transduction, and chromosome replication. Thus, it is highly desirable to develop some computational methods to automatically classify the quaternary structure of proteins from their sequences. Results To explore this problem, we adopted an approach based on the functional domain composition of proteins. Every protein was represented by a vector calculated from the domains in the PFAM database. The nearest neighbor algorithm (NNA) was used for classifying the quaternary structure of proteins from this information. The jackknife cross-validation test was performed on the non-redundant protein dataset in which the sequence identity was less than 25%. The overall success rate obtained is 75.17%. Additionally, to demonstrate the effectiveness of this method, we predicted the proteins in an independent dataset and achieved an overall success rate of 84.11% Conclusion Compared with the amino acid composition method and Blast, the results indicate that the domain composition approach may be a more effective and promising high-throughput method in dealing with this complicated problem in bioinformatics. PMID:16584572

  4. Fragger: a protein fragment picker for structural queries.

    PubMed

    Berenger, Francois; Simoncini, David; Voet, Arnout; Shrestha, Rojan; Zhang, Kam Y J

    2017-01-01

    Protein modeling and design activities often require querying the Protein Data Bank (PDB) with a structural fragment, possibly containing gaps. For some applications, it is preferable to work on a specific subset of the PDB or with unpublished structures. These requirements, along with specific user needs, motivated the creation of a new software to manage and query 3D protein fragments. Fragger is a protein fragment picker that allows protein fragment databases to be created and queried. All fragment lengths are supported and any set of PDB files can be used to create a database. Fragger can efficiently search a fragment database with a query fragment and a distance threshold. Matching fragments are ranked by distance to the query. The query fragment can have structural gaps and the allowed amino acid sequences matching a query can be constrained via a regular expression of one-letter amino acid codes. Fragger also incorporates a tool to compute the backbone RMSD of one versus many fragments in high throughput. Fragger should be useful for protein design, loop grafting and related structural bioinformatics tasks.

  5. Meeting Report: Structural Determination of Environmentally Responsive Proteins

    PubMed Central

    Reinlib, Leslie

    2005-01-01

    The three-dimensional structure of gene products continues to be a missing lynchpin between linear genome sequences and our understanding of the normal and abnormal function of proteins and pathways. Enhanced activity in this area is likely to lead to better understanding of how discrete changes in molecular patterns and conformation underlie functional changes in protein complexes and, with it, sensitivity of an individual to an exposure. The National Institute of Environmental Health Sciences convened a workshop of experts in structural determination and environmental health to solicit advice for future research in structural resolution relative to environmentally responsive proteins and pathways. The highest priorities recommended by the workshop were to support studies of structure, analysis, control, and design of conformational and functional states at molecular resolution for environmentally responsive molecules and complexes; promote understanding of dynamics, kinetics, and ligand responses; investigate the mechanisms and steps in posttranslational modifications, protein partnering, impact of genetic polymorphisms on structure/function, and ligand interactions; and encourage integrated experimental and computational approaches. The workshop participants also saw value in improving the throughput and purity of protein samples and macromolecular assemblies; developing optimal processes for design, production, and assembly of macromolecular complexes; encouraging studies on protein–protein and macromolecular interactions; and examining assemblies of individual proteins and their functions in pathways of interest for environmental health. PMID:16263521

  6. Protein structure-structure alignment with discrete Fréchet distance.

    PubMed

    Jiang, Minghui; Xu, Ying; Zhu, Binhai

    2008-02-01

    Matching two geometric objects in two-dimensional (2D) and three-dimensional (3D) spaces is a central problem in computer vision, pattern recognition, and protein structure prediction. In particular, the problem of aligning two polygonal chains under translation and rotation to minimize their distance has been studied using various distance measures. It is well known that the Hausdorff distance is useful for matching two point sets, and that the Fréchet distance is a superior measure for matching two polygonal chains. The discrete Fréchet distance closely approximates the (continuous) Fréchet distance, and is a natural measure for the geometric similarity of the folded 3D structures of biomolecules such as proteins. In this paper, we present new algorithms for matching two polygonal chains in two dimensions to minimize their discrete Fréchet distance under translation and rotation, and an effective heuristic for matching two polygonal chains in three dimensions. We also describe our empirical results on the application of the discrete Fréchet distance to protein structure-structure alignment.

  7. Amino Acid Distribution Rules Predict Protein Fold: Protein Grammar for Beta-Strand Sandwich-Like Structures

    PubMed Central

    Kister, Alexander

    2015-01-01

    We present an alternative approach to protein 3D folding prediction based on determination of rules that specify distribution of “favorable” residues, that are mainly responsible for a given fold formation, and “unfavorable” residues, that are incompatible with that fold, in polypeptide sequences. The process of determining favorable and unfavorable residues is iterative. The starting assumptions are based on the general principles of protein structure formation as well as structural features peculiar to a protein fold under investigation. The initial assumptions are tested one-by-one for a set of all known proteins with a given structure. The assumption is accepted as a “rule of amino acid distribution” for the protein fold if it holds true for all, or near all, structures. If the assumption is not accepted as a rule, it can be modified to better fit the data and then tested again in the next step of the iterative search algorithm, or rejected. We determined the set of amino acid distribution rules for a large group of beta sandwich-like proteins characterized by a specific arrangement of strands in two beta sheets. It was shown that this set of rules is highly sensitive (~90%) and very specific (~99%) for identifying sequences of proteins with specified beta sandwich fold structure. The advantage of the proposed approach is that it does not require that query proteins have a high degree of homology to proteins with known structure. So long as the query protein satisfies residue distribution rules, it can be confidently assigned to its respective protein fold. Another advantage of our approach is that it allows for a better understanding of which residues play an essential role in protein fold formation. It may, therefore, facilitate rational protein engineering design. PMID:25625198

  8. ProTSAV: A protein tertiary structure analysis and validation server.

    PubMed

    Singh, Ankita; Kaushik, Rahul; Mishra, Avinash; Shanker, Asheesh; Jayaram, B

    2016-01-01

    Quality assessment of predicted model structures of proteins is as important as the protein tertiary structure prediction. A highly efficient quality assessment of predicted model structures directs further research on function. Here we present a new server ProTSAV, capable of evaluating predicted model structures based on some popular online servers and standalone tools. ProTSAV furnishes the user with a single quality score in case of individual protein structure along with a graphical representation and ranking in case of multiple protein structure assessment. The server is validated on ~64,446 protein structures including experimental structures from RCSB and predicted model structures for CASP targets and from public decoy sets. ProTSAV succeeds in predicting quality of protein structures with a specificity of 100% and a sensitivity of 98% on experimentally solved structures and achieves a specificity of 88%and a sensitivity of 91% on predicted protein structures of CASP11 targets under 2Å.The server overcomes the limitations of any single server/method and is seen to be robust in helping in quality assessment. ProTSAV is freely available at http://www.scfbio-iitd.res.in/software/proteomics/protsav.jsp. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Sequence-similar, structure-dissimilar protein pairs in the PDB.

    PubMed

    Kosloff, Mickey; Kolodny, Rachel

    2008-05-01

    It is often assumed that in the Protein Data Bank (PDB), two proteins with similar sequences will also have similar structures. Accordingly, it has proved useful to develop subsets of the PDB from which "redundant" structures have been removed, based on a sequence-based criterion for similarity. Similarly, when predicting protein structure using homology modeling, if a template structure for modeling a target sequence is selected by sequence alone, this implicitly assumes that all sequence-similar templates are equivalent. Here, we show that this assumption is often not correct and that standard approaches to create subsets of the PDB can lead to the loss of structurally and functionally important information. We have carried out sequence-based structural superpositions and geometry-based structural alignments of a large number of protein pairs to determine the extent to which sequence similarity ensures structural similarity. We find many examples where two proteins that are similar in sequence have structures that differ significantly from one another. The source of the structural differences usually has a functional basis. The number of such proteins pairs that are identified and the magnitude of the dissimilarity depend on the approach that is used to calculate the differences; in particular sequence-based structure superpositioning will identify a larger number of structurally dissimilar pairs than geometry-based structural alignments. When two sequences can be aligned in a statistically meaningful way, sequence-based structural superpositioning provides a meaningful measure of structural differences. This approach and geometry-based structure alignments reveal somewhat different information and one or the other might be preferable in a given application. Our results suggest that in some cases, notably homology modeling, the common use of nonredundant datasets, culled from the PDB based on sequence, may mask important structural and functional information. We

  10. Constraint Logic Programming approach to protein structure prediction.

    PubMed

    Dal Palù, Alessandro; Dovier, Agostino; Fogolari, Federico

    2004-11-30

    The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known) secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space.

  11. Structural hot spots for the solubility of globular proteins

    PubMed Central

    Ganesan, Ashok; Siekierska, Aleksandra; Beerten, Jacinte; Brams, Marijke; Van Durme, Joost; De Baets, Greet; Van der Kant, Rob; Gallardo, Rodrigo; Ramakers, Meine; Langenberg, Tobias; Wilkinson, Hannah; De Smet, Frederik; Ulens, Chris; Rousseau, Frederic; Schymkowitz, Joost

    2016-01-01

    Natural selection shapes protein solubility to physiological requirements and recombinant applications that require higher protein concentrations are often problematic. This raises the question whether the solubility of natural protein sequences can be improved. We here show an anti-correlation between the number of aggregation prone regions (APRs) in a protein sequence and its solubility, suggesting that mutational suppression of APRs provides a simple strategy to increase protein solubility. We show that mutations at specific positions within a protein structure can act as APR suppressors without affecting protein stability. These hot spots for protein solubility are both structure and sequence dependent but can be computationally predicted. We demonstrate this by reducing the aggregation of human α-galactosidase and protective antigen of Bacillus anthracis through mutation. Our results indicate that many proteins possess hot spots allowing to adapt protein solubility independently of structure and function. PMID:26905391

  12. Tertiary alphabet for the observable protein structural universe.

    PubMed

    Mackenzie, Craig O; Zhou, Jianfu; Grigoryan, Gevorg

    2016-11-22

    Here, we systematically decompose the known protein structural universe into its basic elements, which we dub tertiary structural motifs (TERMs). A TERM is a compact backbone fragment that captures the secondary, tertiary, and quaternary environments around a given residue, comprising one or more disjoint segments (three on average). We seek the set of universal TERMs that capture all structure in the Protein Data Bank (PDB), finding remarkable degeneracy. Only ∼600 TERMs are sufficient to describe 50% of the PDB at sub-Angstrom resolution. However, more rare geometries also exist, and the overall structural coverage grows logarithmically with the number of TERMs. We go on to show that universal TERMs provide an effective mapping between sequence and structure. We demonstrate that TERM-based statistics alone are sufficient to recapitulate close-to-native sequences given either NMR or X-ray backbones. Furthermore, sequence variability predicted from TERM data agrees closely with evolutionary variation. Finally, locations of TERMs in protein chains can be predicted from sequence alone based on sequence signatures emergent from TERM instances in the PDB. For multisegment motifs, this method identifies spatially adjacent fragments that are not contiguous in sequence-a major bottleneck in structure prediction. Although all TERMs recur in diverse proteins, some appear specialized for certain functions, such as interface formation, metal coordination, or even water binding. Structural biology has benefited greatly from previously observed degeneracies in structure. The decomposition of the known structural universe into a finite set of compact TERMs offers exciting opportunities toward better understanding, design, and prediction of protein structure.

  13. Tertiary alphabet for the observable protein structural universe

    PubMed Central

    Mackenzie, Craig O.; Zhou, Jianfu; Grigoryan, Gevorg

    2016-01-01

    Here, we systematically decompose the known protein structural universe into its basic elements, which we dub tertiary structural motifs (TERMs). A TERM is a compact backbone fragment that captures the secondary, tertiary, and quaternary environments around a given residue, comprising one or more disjoint segments (three on average). We seek the set of universal TERMs that capture all structure in the Protein Data Bank (PDB), finding remarkable degeneracy. Only ∼600 TERMs are sufficient to describe 50% of the PDB at sub-Angstrom resolution. However, more rare geometries also exist, and the overall structural coverage grows logarithmically with the number of TERMs. We go on to show that universal TERMs provide an effective mapping between sequence and structure. We demonstrate that TERM-based statistics alone are sufficient to recapitulate close-to-native sequences given either NMR or X-ray backbones. Furthermore, sequence variability predicted from TERM data agrees closely with evolutionary variation. Finally, locations of TERMs in protein chains can be predicted from sequence alone based on sequence signatures emergent from TERM instances in the PDB. For multisegment motifs, this method identifies spatially adjacent fragments that are not contiguous in sequence—a major bottleneck in structure prediction. Although all TERMs recur in diverse proteins, some appear specialized for certain functions, such as interface formation, metal coordination, or even water binding. Structural biology has benefited greatly from previously observed degeneracies in structure. The decomposition of the known structural universe into a finite set of compact TERMs offers exciting opportunities toward better understanding, design, and prediction of protein structure. PMID:27810958

  14. Baculovirus-mediated vascular endothelial growth factor-D(ΔNΔC) gene transfer induces angiogenesis in rabbit skeletal muscle.

    PubMed

    Heikura, Tommi; Nieminen, Tiina; Roschier, Miia M; Karvinen, Henna; Kaikkonen, Minna U; Mähönen, Anssi J; Lesch, Hanna P; Rissanen, Tuomas T; Laitinen, Olli H; Airenne, Kari J; Ylä-Herttuala, Seppo

    2012-01-01

    Occluded arteries and ischemic tissues cannot always be treated by angioplasty, stenting or by-pass-surgery. Under such circumstances, viral gene therapy may be useful in inducing increased blood supply to ischemic area. There is evidence of improved blood flow in ischemic skeletal muscle and myocardium in both animal and human studies using adenoviral vascular endothelial growth factor (VEGF) gene therapy. However, the expression is transient and repeated gene transfers with the same vector are inefficient due to immune responses. Different baculoviral vectors pseudotyped with or without vesicular stomatitis virus glycoprotein (VSV-G) and/or carrying woodchuck hepatitis virus post-transcriptional regulatory element (Wpre) were tested both in vitro and in vivo. VEGF-D(ΔNΔC) was used as therapeutic transgene and lacZ as a control. In vivo efficacy was evaluated as capillary enlargement and transgene expression in New Zealand White (NZW) rabbit skeletal muscle. A statistically significant capillary enlargement was detected 6 days after gene transfer in transduced areas compared to the control gene transfers with baculovirus and adenovirus encoding β-galactosidase (lacZ). Substantially improved gene transfer efficiency was achieved with a modified baculovirus pseudotyped with VSV-G and carrying Wpre. Dose escalation experiments revealed that either too large volume or too many virus particles caused inflammation and necrosis in the target tissue, whereas 10(9) plaque forming units injected in multiple aliquots resulted in transgene expression with only mild immune reactions. We show the first evidence of biologically significant baculoviral gene transfer in skeletal muscle of NZW rabbits using VEGF-D(ΔNΔC) as a therapeutic transgene. Copyright © 2012 John Wiley & Sons, Ltd.

  15. A Template-Based Protein Structure Reconstruction Method Using Deep Autoencoder Learning.

    PubMed

    Li, Haiou; Lyu, Qiang; Cheng, Jianlin

    2016-12-01

    Protein structure prediction is an important problem in computational biology, and is widely applied to various biomedical problems such as protein function study, protein design, and drug design. In this work, we developed a novel deep learning approach based on a deeply stacked denoising autoencoder for protein structure reconstruction. We applied our approach to a template-based protein structure prediction using only the 3D structural coordinates of homologous template proteins as input. The templates were identified for a target protein by a PSI-BLAST search. 3DRobot (a program that automatically generates diverse and well-packed protein structure decoys) was used to generate initial decoy models for the target from the templates. A stacked denoising autoencoder was trained on the decoys to obtain a deep learning model for the target protein. The trained deep model was then used to reconstruct the final structural model for the target sequence. With target proteins that have highly similar template proteins as benchmarks, the GDT-TS score of the predicted structures is greater than 0.7, suggesting that the deep autoencoder is a promising method for protein structure reconstruction.

  16. Canine Parvovirus VP2 Protein Expressed in Silkworm Pupae Self-Assembles into Virus-Like Particles with High Immunogenicity

    PubMed Central

    Wang, Hua-lei; Liang, Meng; Liang, Hongru; Guo, He; Zhao, Pingsen; Yang, Yu-jiao; Zheng, Xue-xing; Zhang, Zhi-fang; Zhao, Yong-kun; Gao, Yu-wei; Yang, Song-tao; Xia, Xian-zhu

    2014-01-01

    The VP2 structural protein of parvovirus can produce virus-like particles (VLPs) by a self-assembly process in vitro, making VLPs attractive vaccine candidates. In this study, the VP2 protein of canine parvovirus (CPV) was expressed using a baculovirus expression system and assembled into parvovirus-like particles in insect cells and pupae. Electron micrographs of VLPs showed that they were very similar in size and morphology when compared to the wild-type parvovirus. The immunogenicity of the VLPs was investigated in mice and dogs. Mice immunized intramuscularly with purified VLPs, in the absence of an adjuvant, elicited CD4+ and CD8+ T cell responses and were able to elicit a neutralizing antibody response against CPV, while the oral administration of raw homogenates containing VLPs to the dogs resulted in a systemic immune response and long-lasting immunity. These results demonstrate that the CPV-VLPs stimulate both cellular and humoral immune responses, and so CPV-VLPs may be a promising candidate vaccine for the prevention of CPV-associated disease. PMID:24465364

  17. Canine parvovirus VP2 protein expressed in silkworm pupae self-assembles into virus-like particles with high immunogenicity.

    PubMed

    Feng, Hao; Hu, Gui-qiu; Wang, Hua-lei; Liang, Meng; Liang, Hongru; Guo, He; Zhao, Pingsen; Yang, Yu-jiao; Zheng, Xue-xing; Zhang, Zhi-fang; Zhao, Yong-kun; Gao, Yu-wei; Yang, Song-tao; Xia, Xian-zhu

    2014-01-01

    The VP2 structural protein of parvovirus can produce virus-like particles (VLPs) by a self-assembly process in vitro, making VLPs attractive vaccine candidates. In this study, the VP2 protein of canine parvovirus (CPV) was expressed using a baculovirus expression system and assembled into parvovirus-like particles in insect cells and pupae. Electron micrographs of VLPs showed that they were very similar in size and morphology when compared to the wild-type parvovirus. The immunogenicity of the VLPs was investigated in mice and dogs. Mice immunized intramuscularly with purified VLPs, in the absence of an adjuvant, elicited CD4(+) and CD8(+) T cell responses and were able to elicit a neutralizing antibody response against CPV, while the oral administration of raw homogenates containing VLPs to the dogs resulted in a systemic immune response and long-lasting immunity. These results demonstrate that the CPV-VLPs stimulate both cellular and humoral immune responses, and so CPV-VLPs may be a promising candidate vaccine for the prevention of CPV-associated disease.

  18. MEGADOCK-Web: an integrated database of high-throughput structure-based protein-protein interaction predictions.

    PubMed

    Hayashi, Takanori; Matsuzaki, Yuri; Yanagisawa, Keisuke; Ohue, Masahito; Akiyama, Yutaka

    2018-05-08

    Protein-protein interactions (PPIs) play several roles in living cells, and computational PPI prediction is a major focus of many researchers. The three-dimensional (3D) structure and binding surface are important for the design of PPI inhibitors. Therefore, rigid body protein-protein docking calculations for two protein structures are expected to allow elucidation of PPIs different from known complexes in terms of 3D structures because known PPI information is not explicitly required. We have developed rapid PPI prediction software based on protein-protein docking, called MEGADOCK. In order to fully utilize the benefits of computational PPI predictions, it is necessary to construct a comprehensive database to gather prediction results and their predicted 3D complex structures and to make them easily accessible. Although several databases exist that provide predicted PPIs, the previous databases do not contain a sufficient number of entries for the purpose of discovering novel PPIs. In this study, we constructed an integrated database of MEGADOCK PPI predictions, named MEGADOCK-Web. MEGADOCK-Web provides more than 10 times the number of PPI predictions than previous databases and enables users to conduct PPI predictions that cannot be found in conventional PPI prediction databases. In MEGADOCK-Web, there are 7528 protein chains and 28,331,628 predicted PPIs from all possible combinations of those proteins. Each protein structure is annotated with PDB ID, chain ID, UniProt AC, related KEGG pathway IDs, and known PPI pairs. Additionally, MEGADOCK-Web provides four powerful functions: 1) searching precalculated PPI predictions, 2) providing annotations for each predicted protein pair with an experimentally known PPI, 3) visualizing candidates that may interact with the query protein on biochemical pathways, and 4) visualizing predicted complex structures through a 3D molecular viewer. MEGADOCK-Web provides a huge amount of comprehensive PPI predictions based on

  19. Fibrous Protein Structures: Hierarchy, History and Heroes.

    PubMed

    Squire, John M; Parry, David A D

    2017-01-01

    During the 1930s and 1940s the technique of X-ray diffraction was applied widely by William Astbury and his colleagues to a number of naturally-occurring fibrous materials. On the basis of the diffraction patterns obtained, he observed that the structure of each of the fibres was dominated by one of a small number of different types of molecular conformation. One group of fibres, known as the k-m-e-f group of proteins (keratin - myosin - epidermin - fibrinogen), gave rise to diffraction characteristics that became known as the α-pattern. Others, such as those from a number of silks, gave rise to a different pattern - the β-pattern, while connective tissues yielded a third unique set of diffraction characteristics. At the time of Astbury's work, the structures of these materials were unknown, though the spacings of the main X-ray reflections gave an idea of the axial repeats and the lateral packing distances. In a breakthrough in the early 1950s, the basic structures of all of these fibrous proteins were determined. It was found that the long protein chains, composed of strings of amino acids, could be folded up in a systematic manner to generate a limited number of structures that were consistent with the X-ray data. The most important of these were known as the α-helix, the β-sheet, and the collagen triple helix. These studies provided information about the basic building blocks of all proteins, both fibrous and globular. They did not, however, provide detailed information about how these molecules packed together in three-dimensions to generate the fibres found in vivo. A number of possible packing arrangements were subsequently deduced from the X-ray diffraction and other data, but it is only in the last few years, through the continued improvements of electron microscopy, that the packing details within some fibrous proteins can now be seen directly. Here we outline briefly some of the milestones in fibrous protein structure determination, the role of the

  20. An Evolutionarily Structured Universe of Protein Architecture

    PubMed Central

    Caetano-Anollés, Gustavo; Caetano-Anollés, Derek

    2003-01-01

    Protein structural diversity encompasses a finite set of architectural designs. Embedded in these topologies are evolutionary histories that we here uncover using cladistic principles and measurements of protein-fold usage and sharing. The reconstructed phylogenies are inherently rooted and depict histories of protein and proteome diversification. Proteome phylogenies showed two monophyletic sister-groups delimiting Bacteria and Archaea, and a topology rooted in Eucarya. This suggests three dramatic evolutionary events and a common ancestor with a eukaryotic-like, gene-rich, and relatively modern organization. Conversely, a general phylogeny of protein architectures showed that structural classes of globular proteins appeared early in evolution and in defined order, the α/β class being the first. Although most ancestral folds shared a common architecture of barrels or interleaved β-sheets and α-helices, many were clearly derived, such as polyhedral folds in the all-α class and β-sandwiches, β-propellers, and β-prisms in all-β proteins. We also describe transformation pathways of architectures that are prevalently used in nature. For example, β-barrels with increased curl and stagger were favored evolutionary outcomes in the all-β class. Interestingly, we found cases where structural change followed the α-to-β tendency uncovered in the tree of architectures. Lastly, we traced the total number of enzymatic functions associated with folds in the trees and show that there is a general link between structure and enzymatic function. PMID:12840035

  1. MetaGO: Predicting Gene Ontology of Non-homologous Proteins Through Low-Resolution Protein Structure Prediction and Protein-Protein Network Mapping.

    PubMed

    Zhang, Chengxin; Zheng, Wei; Freddolino, Peter L; Zhang, Yang

    2018-03-10

    Homology-based transferal remains the major approach to computational protein function annotations, but it becomes increasingly unreliable when the sequence identity between query and template decreases below 30%. We propose a novel pipeline, MetaGO, to deduce Gene Ontology attributes of proteins by combining sequence homology-based annotation with low-resolution structure prediction and comparison, and partner's homology-based protein-protein network mapping. The pipeline was tested on a large-scale set of 1000 non-redundant proteins from the CAFA3 experiment. Under the stringent benchmark conditions where templates with >30% sequence identity to the query are excluded, MetaGO achieves average F-measures of 0.487, 0.408, and 0.598, for Molecular Function, Biological Process, and Cellular Component, respectively, which are significantly higher than those achieved by other state-of-the-art function annotations methods. Detailed data analysis shows that the major advantage of the MetaGO lies in the new functional homolog detections from partner's homology-based network mapping and structure-based local and global structure alignments, the confidence scores of which can be optimally combined through logistic regression. These data demonstrate the power of using a hybrid model incorporating protein structure and interaction networks to deduce new functional insights beyond traditional sequence homology-based referrals, especially for proteins that lack homologous function templates. The MetaGO pipeline is available at http://zhanglab.ccmb.med.umich.edu/MetaGO/. Copyright © 2018. Published by Elsevier Ltd.

  2. Design and structure of an equilibrium protein folding intermediate: a hint into dynamical regions of proteins.

    PubMed

    Ayuso-Tejedor, Sara; Angarica, Vladimir Espinosa; Bueno, Marta; Campos, Luis A; Abián, Olga; Bernadó, Pau; Sancho, Javier; Jiménez, M Angeles

    2010-07-23

    Partly unfolded protein conformations close to the native state may play important roles in protein function and in protein misfolding. Structural analyses of such conformations which are essential for their fully physicochemical understanding are complicated by their characteristic low populations at equilibrium. We stabilize here with a single mutation the equilibrium intermediate of apoflavodoxin thermal unfolding and determine its solution structure by NMR. It consists of a large native region identical with that observed in the X-ray structure of the wild-type protein plus an unfolded region. Small-angle X-ray scattering analysis indicates that the calculated ensemble of structures is consistent with the actual degree of expansion of the intermediate. The unfolded region encompasses discontinuous sequence segments that cluster in the 3D structure of the native protein forming the FMN cofactor binding loops and the binding site of a variety of partner proteins. Analysis of the apoflavodoxin inner interfaces reveals that those becoming destabilized in the intermediate are more polar than other inner interfaces of the protein. Natively folded proteins contain hydrophobic cores formed by the packing of hydrophobic surfaces, while natively unfolded proteins are rich in polar residues. The structure of the apoflavodoxin thermal intermediate suggests that the regions of natively folded proteins that are easily responsive to thermal activation may contain cores of intermediate hydrophobicity. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Identification of Essential Genetic Baculoviral Elements for Recombinant Protein Expression by Transactivation in Sf21 Insect Cells.

    PubMed

    Bleckmann, Maren; Schürig, Margitta; Chen, Fang-Fang; Yen, Zen-Zen; Lindemann, Nils; Meyer, Steffen; Spehr, Johannes; van den Heuvel, Joop

    2016-01-01

    The Baculovirus Expression Vector System (BEVS) is widely used to produce high amounts of recombinant proteins. Nevertheless, generating recombinant baculovirus in high quality is rather time-consuming and labor-intensive. Alternatively, virus-free expression in insect cells did not achieve similar expression levels for most proteins so far. The transactivation method is a promising approach for protein expression in Sf21 cells. It combines advantages of BEVS and plasmid-based expression by activating strong virus-dependent promoters on a transfected plasmid by baculoviral coinfection. Here, we identified expression elements required for transactivation. Therefore, we designed several vectors comprising different viral promoters or promoter combinations and tested them for eGFP expression using the automated BioLector microcultivation system. Remarkably, only the combination of the very late promoter p10 together with the homologous region 5 (hr5) could boost expression during transactivation. Other elements, like p10 alone or the late viral promoter polH, did not respond to transactivation. A new combination of hr5 and p10 with the strongest immediate early OpMNPV viral promoter OpIE2 improved the yield of eGFP by ~25% in comparison to the previous applied hr5-IE1-p10 expression cassette. Furthermore, we observed a strong influence of the transcription termination sequence and vector backbone on the level of expression. Finally, the expression levels for transactivation, BEVS and solely plasmid-based expression were compared for the marker protein eGFP, underlining the potential of transactivation for fast recombinant protein expression in Sf21 cells. In conclusion, essential elements for transactivation could be identified. The optimal elements were applied to generate an improved vector applicable in virus-free plasmid-based expression, transactivation and BEVS.

  4. Structural study of surfactant-dependent interaction with protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in; Kohlbrecher, Joachim

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  5. Structural study of surfactant-dependent interaction with protein

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-06-01

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  6. Structural Elements Regulating AAA+ Protein Quality Control Machines.

    PubMed

    Chang, Chiung-Wen; Lee, Sukyeong; Tsai, Francis T F

    2017-01-01

    Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to their specific functions. A central question in the field is how ATP binding and hydrolysis are coupled to substrate translocation through the central channel of ring-forming AAA+ proteins. In this mini-review, we will discuss structural elements present in AAA+ proteins involved in protein quality control, drawing similarities to their known role in substrate interaction by AAA+ proteins involved in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our current understanding on the inter-relationship of those structural elements and propose a model how ATP binding and hydrolysis might be coupled to polypeptide translocation in protein quality control machines.

  7. Phenotypic Variation in Overwinter Environmental Transmission of a Baculovirus and the Cost of Virulence.

    PubMed

    Fleming-Davies, Arietta E; Dwyer, Greg

    2015-12-01

    A pathogen's ability to persist in the environment is an ecologically important trait, and variation in this trait may promote coexistence of different pathogen strains. We asked whether naturally occurring isolates of the baculovirus that infects gypsy moth larvae varied in their overwinter environmental transmission and whether this variation was consistent with a trade-off or an upper limit to virulence that might promote pathogen diversity. We used experimental manipulations to replicate the natural overwinter infection process, using 16 field-collected isolates. Virus isolates varied substantially in the fraction of larvae infected, leading to differences in overwinter transmission rates. Furthermore, isolates that killed more larvae also had higher rates of early larval death in which no infectious particles were produced, consistent with a cost of high virulence. Our results thus support the existence of a cost that could impose an upper limit to virulence even in a highly virulent pathogen.

  8. Structure prediction of polyglutamine disease proteins: comparison of methods

    PubMed Central

    2014-01-01

    Background The expansion of polyglutamine (poly-Q) repeats in several unrelated proteins is associated with at least ten neurodegenerative diseases. The length of the poly-Q regions plays an important role in the progression of the diseases. The number of glutamines (Q) is inversely related to the onset age of these polyglutamine diseases, and the expansion of poly-Q repeats has been associated with protein misfolding. However, very little is known about the structural changes induced by the expansion of the repeats. Computational methods can provide an alternative to determine the structure of these poly-Q proteins, but it is important to evaluate their performance before large scale prediction work is done. Results In this paper, two popular protein structure prediction programs, I-TASSER and Rosetta, have been used to predict the structure of the N-terminal fragment of a protein associated with Huntington's disease with 17 glutamines. Results show that both programs have the ability to find the native structures, but I-TASSER performs better for the overall task. Conclusions Both I-TASSER and Rosetta can be used for structure prediction of proteins with poly-Q repeats. Knowledge of poly-Q structure may significantly contribute to development of therapeutic strategies for poly-Q diseases. PMID:25080018

  9. Structure of synaptophysin: a hexameric MARVEL-domain channel protein.

    PubMed

    Arthur, Christopher P; Stowell, Michael H B

    2007-06-01

    Synaptophysin I (SypI) is an archetypal member of the MARVEL-domain family of integral membrane proteins and one of the first synaptic vesicle proteins to be identified and cloned. Most all MARVEL-domain proteins are involved in membrane apposition and vesicle-trafficking events, but their precise role in these processes is unclear. We have purified mammalian SypI and determined its three-dimensional (3D) structure by using electron microscopy and single-particle 3D reconstruction. The hexameric structure resembles an open basket with a large pore and tenuous interactions within the cytosolic domain. The structure suggests a model for Synaptophysin's role in fusion and recycling that is regulated by known interactions with the SNARE machinery. This 3D structure of a MARVEL-domain protein provides a structural foundation for understanding the role of these important proteins in a variety of biological processes.

  10. Relationship between Molecular Structure Characteristics of Feed Proteins and Protein In vitro Digestibility and Solubility.

    PubMed

    Bai, Mingmei; Qin, Guixin; Sun, Zewei; Long, Guohui

    2016-08-01

    The nutritional value of feed proteins and their utilization by livestock are related not only to the chemical composition but also to the structure of feed proteins, but few studies thus far have investigated the relationship between the structure of feed proteins and their solubility as well as digestibility in monogastric animals. To address this question we analyzed soybean meal, fish meal, corn distiller's dried grains with solubles, corn gluten meal, and feather meal by Fourier transform infrared (FTIR) spectroscopy to determine the protein molecular spectral band characteristics for amides I and II as well as α-helices and β-sheets and their ratios. Protein solubility and in vitro digestibility were measured with the Kjeldahl method using 0.2% KOH solution and the pepsin-pancreatin two-step enzymatic method, respectively. We found that all measured spectral band intensities (height and area) of feed proteins were correlated with their the in vitro digestibility and solubility (p≤0.003); moreover, the relatively quantitative amounts of α-helices, random coils, and α-helix to β-sheet ratio in protein secondary structures were positively correlated with protein in vitro digestibility and solubility (p≤0.004). On the other hand, the percentage of β-sheet structures was negatively correlated with protein in vitro digestibility (p<0.001) and solubility (p = 0.002). These results demonstrate that the molecular structure characteristics of feed proteins are closely related to their in vitro digestibility at 28 h and solubility. Furthermore, the α-helix-to-β-sheet ratio can be used to predict the nutritional value of feed proteins.

  11. Relationship between Molecular Structure Characteristics of Feed Proteins and Protein In vitro Digestibility and Solubility

    PubMed Central

    Bai, Mingmei; Qin, Guixin; Sun, Zewei; Long, Guohui

    2016-01-01

    The nutritional value of feed proteins and their utilization by livestock are related not only to the chemical composition but also to the structure of feed proteins, but few studies thus far have investigated the relationship between the structure of feed proteins and their solubility as well as digestibility in monogastric animals. To address this question we analyzed soybean meal, fish meal, corn distiller’s dried grains with solubles, corn gluten meal, and feather meal by Fourier transform infrared (FTIR) spectroscopy to determine the protein molecular spectral band characteristics for amides I and II as well as α-helices and β-sheets and their ratios. Protein solubility and in vitro digestibility were measured with the Kjeldahl method using 0.2% KOH solution and the pepsin-pancreatin two-step enzymatic method, respectively. We found that all measured spectral band intensities (height and area) of feed proteins were correlated with their the in vitro digestibility and solubility (p≤0.003); moreover, the relatively quantitative amounts of α-helices, random coils, and α-helix to β-sheet ratio in protein secondary structures were positively correlated with protein in vitro digestibility and solubility (p≤0.004). On the other hand, the percentage of β-sheet structures was negatively correlated with protein in vitro digestibility (p<0.001) and solubility (p = 0.002). These results demonstrate that the molecular structure characteristics of feed proteins are closely related to their in vitro digestibility at 28 h and solubility. Furthermore, the α-helix-to-β-sheet ratio can be used to predict the nutritional value of feed proteins. PMID:26954145

  12. Identification of Conserved Water Sites in Protein Structures for Drug Design.

    PubMed

    Jukič, Marko; Konc, Janez; Gobec, Stanislav; Janežič, Dušanka

    2017-12-26

    Identification of conserved waters in protein structures is a challenging task with applications in molecular docking and protein stability prediction. As an alternative to computationally demanding simulations of proteins in water, experimental cocrystallized waters in the Protein Data Bank (PDB) in combination with a local structure alignment algorithm can be used for reliable prediction of conserved water sites. We developed the ProBiS H2O approach based on the previously developed ProBiS algorithm, which enables identification of conserved water sites in proteins using experimental protein structures from the PDB or a set of custom protein structures available to the user. With a protein structure, a binding site, or an individual water molecule as a query, ProBiS H2O collects similar proteins from the PDB and performs local or binding site-specific superimpositions of the query structure with similar proteins using the ProBiS algorithm. It collects the experimental water molecules from the similar proteins and transposes them to the query protein. Transposed waters are clustered by their mutual proximity, which enables identification of discrete sites in the query protein with high water conservation. ProBiS H2O is a robust and fast new approach that uses existing experimental structural data to identify conserved water sites on the interfaces of protein complexes, for example protein-small molecule interfaces, and elsewhere on the protein structures. It has been successfully validated in several reported proteins in which conserved water molecules were found to play an important role in ligand binding with applications in drug design.

  13. Blind test of physics-based prediction of protein structures.

    PubMed

    Shell, M Scott; Ozkan, S Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A

    2009-02-01

    We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences.

  14. Blind Test of Physics-Based Prediction of Protein Structures

    PubMed Central

    Shell, M. Scott; Ozkan, S. Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A.

    2009-01-01

    We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences. PMID:19186130

  15. A protein tyrosine phosphatase-like protein from baculovirus has RNA 5′-triphosphatase and diphosphatase activities

    PubMed Central

    Takagi, Toshimitsu; Taylor, Gregory S.; Kusakabe, Takahiro; Charbonneau, Harry; Buratowski, Stephen

    1998-01-01

    The superfamily of protein tyrosine phosphatases (PTPs) includes at least one enzyme with an RNA substrate. We recently showed that the RNA triphosphatase domain of the Caenorhabditis elegans mRNA capping enzyme is related to the PTP enzyme family by sequence similarity and mechanism. The PTP most similar in sequence to the capping enzyme triphosphatase is BVP, a dual-specificity PTP encoded by the Autographa californica nuclear polyhedrosis virus. Although BVP previously has been shown to have modest tyrosine and serine/threonine phosphatase activity, we find that it is much more potent as an RNA 5′-phosphatase. BVP sequentially removes γ and β phosphates from the 5′ end of triphosphate-terminated RNA, leaving a 5′-monophosphate end. The activity was specific for polynucleotides; nucleotide triphosphates were not hydrolyzed. A mutant protein in which the active site cysteine was replaced with serine was inactive. Three other dual-specificity PTPs (VH1, VHR, and Cdc14) did not exhibit detectable RNA phosphatase activity. Therefore, capping enzyme and BVP are members of a distinct PTP-like subfamily that can remove phosphates from RNA. PMID:9707557

  16. Protein Structural Analysis via Mass Spectrometry-Based Proteomics

    PubMed Central

    Artigues, Antonio; Nadeau, Owen W.; Rimmer, Mary Ashley; Villar, Maria T.; Du, Xiuxia; Fenton, Aron W.; Carlson, Gerald M.

    2017-01-01

    Modern mass spectrometry (MS) technologies have provided a versatile platform that can be combined with a large number of techniques to analyze protein structure and dynamics. These techniques include the three detailed in this chapter: 1) hydrogen/deuterium exchange (HDX), 2) limited proteolysis, and 3) chemical crosslinking (CX). HDX relies on the change in mass of a protein upon its dilution into deuterated buffer, which results in varied deuterium content within its backbone amides. Structural information on surface exposed, flexible or disordered linker regions of proteins can be achieved through limited proteolysis, using a variety of proteases and only small extents of digestion. CX refers to the covalent coupling of distinct chemical species and has been used to analyze the structure, function and interactions of proteins by identifying crosslinking sites that are formed by small multi-functional reagents, termed crosslinkers. Each of these MS applications is capable of revealing structural information for proteins when used either with or without other typical high resolution techniques, including NMR and X-ray crystallography. PMID:27975228

  17. Recombinant protein vaccines produced in insect cells.

    PubMed

    Cox, Manon M J

    2012-02-27

    The baculovirus-insect cell expression system is a well known tool for the production of complex proteins. The technology is also used for commercial manufacture of various veterinary and human vaccines. This review paper provides an overview of how this technology can be applied to produce a multitude of vaccine candidates. The key advantage of this recombinant protein manufacturing platform is that a universal "plug and play" process may be used for producing a broad range of protein-based prophylactic and therapeutic vaccines for both human and veterinary use while offering the potential for low manufacturing costs. Large scale mammalian cell culture facilities previously established for the manufacturing of monoclonal antibodies that have now become obsolete due to yield improvement could be deployed for the manufacturing of these vaccines. Alternatively, manufacturing capacity could be established in geographic regions that do not have any vaccine production capability. Dependent on health care priorities, different vaccines could be manufactured while maintaining the ability to rapidly convert to producing pandemic influenza vaccine when the need arises. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Implementation of a parallel protein structure alignment service on cloud.

    PubMed

    Hung, Che-Lun; Lin, Yaw-Ling

    2013-01-01

    Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform.

  19. Implementation of a Parallel Protein Structure Alignment Service on Cloud

    PubMed Central

    Hung, Che-Lun; Lin, Yaw-Ling

    2013-01-01

    Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform. PMID:23671842

  20. Rapid search for tertiary fragments reveals protein sequence–structure relationships

    PubMed Central

    Zhou, Jianfu; Grigoryan, Gevorg

    2015-01-01

    Finding backbone substructures from the Protein Data Bank that match an arbitrary query structural motif, composed of multiple disjoint segments, is a problem of growing relevance in structure prediction and protein design. Although numerous protein structure search approaches have been proposed, methods that address this specific task without additional restrictions and on practical time scales are generally lacking. Here, we propose a solution, dubbed MASTER, that is both rapid, enabling searches over the Protein Data Bank in a matter of seconds, and provably correct, finding all matches below a user-specified root-mean-square deviation cutoff. We show that despite the potentially exponential time complexity of the problem, running times in practice are modest even for queries with many segments. The ability to explore naturally plausible structural and sequence variations around a given motif has the potential to synthesize its design principles in an automated manner; so we go on to illustrate the utility of MASTER to protein structural biology. We demonstrate its capacity to rapidly establish structure–sequence relationships, uncover the native designability landscapes of tertiary structural motifs, identify structural signatures of binding, and automatically rewire protein topologies. Given the broad utility of protein tertiary fragment searches, we hope that providing MASTER in an open-source format will enable novel advances in understanding, predicting, and designing protein structure. PMID:25420575

  1. Contemporary Methodology for Protein Structure Determination.

    ERIC Educational Resources Information Center

    Hunkapiller, Michael W.; And Others

    1984-01-01

    Describes the nature and capabilities of methods used to characterize protein and peptide structure, indicating that they have undergone changes which have improved the speed, reliability, and applicability of the process. Also indicates that high-performance liquid chromatography and gel electrophoresis have made purifying proteins and peptides a…

  2. The Structure and Function of Non-Collagenous Bone Proteins

    NASA Technical Reports Server (NTRS)

    Hook, Magnus; McQuillan, David J.

    1997-01-01

    The research done under the cooperative research agreement for the project titled 'The structure and function of non-collagenous bone proteins' represented the first phase of an ongoing program to define the structural and functional relationships of the principal noncollagenous proteins in bone. An ultimate goal of this research is to enable design and execution of useful pharmacological compounds that will have a beneficial effect in treatment of osteoporosis, both land-based and induced by long-duration space travel. The goals of the now complete first phase were as follows: 1. Establish and/or develop powerful recombinant protein expression systems; 2. Develop and refine isolation and purification of recombinant proteins; 3. Express wild-type non-collagenous bone proteins; 4. Express site-specific mutant proteins and domains of wild-type proteins to enhance likelihood of crystal formation for subsequent solution of structure.

  3. MolTalk--a programming library for protein structures and structure analysis.

    PubMed

    Diemand, Alexander V; Scheib, Holger

    2004-04-19

    Two of the mostly unsolved but increasingly urgent problems for modern biologists are a) to quickly and easily analyse protein structures and b) to comprehensively mine the wealth of information, which is distributed along with the 3D co-ordinates by the Protein Data Bank (PDB). Tools which address this issue need to be highly flexible and powerful but at the same time must be freely available and easy to learn. We present MolTalk, an elaborate programming language, which consists of the programming library libmoltalk implemented in Objective-C and the Smalltalk-based interpreter MolTalk. MolTalk combines the advantages of an easy to learn and programmable procedural scripting with the flexibility and power of a full programming language. An overview of currently available applications of MolTalk is given and with PDBChainSaw one such application is described in more detail. PDBChainSaw is a MolTalk-based parser and information extraction utility of PDB files. Weekly updates of the PDB are synchronised with PDBChainSaw and are available for free download from the MolTalk project page http://www.moltalk.org following the link to PDBChainSaw. For each chain in a protein structure, PDBChainSaw extracts the sequence from its co-ordinates and provides additional information from the PDB-file header section, such as scientific organism, compound name, and EC code. MolTalk provides a rich set of methods to analyse and even modify experimentally determined or modelled protein structures. These methods vary in complexity and are thus suitable for beginners and advanced programmers alike. We envision MolTalk to be most valuable in the following applications:1) To analyse protein structures repetitively in large-scale, i.e. to benchmark protein structure prediction methods or to evaluate structural models. The quality of the resulting 3D-models can be assessed by e.g. calculating a Ramachandran-Sasisekharan plot.2) To quickly retrieve information for (a limited number of

  4. Predicting nucleic acid binding interfaces from structural models of proteins.

    PubMed

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  5. Predicting nucleic acid binding interfaces from structural models of proteins

    PubMed Central

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2011-01-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared to patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. PMID:22086767

  6. Understand protein functions by comparing the similarity of local structural environments.

    PubMed

    Chen, Jiawen; Xie, Zhong-Ru; Wu, Yinghao

    2017-02-01

    The three-dimensional structures of proteins play an essential role in regulating binding between proteins and their partners, offering a direct relationship between structures and functions of proteins. It is widely accepted that the function of a protein can be determined if its structure is similar to other proteins whose functions are known. However, it is also observed that proteins with similar global structures do not necessarily correspond to the same function, while proteins with very different folds can share similar functions. This indicates that function similarity is originated from the local structural information of proteins instead of their global shapes. We assume that proteins with similar local environments prefer binding to similar types of molecular targets. In order to testify this assumption, we designed a new structural indicator to define the similarity of local environment between residues in different proteins. This indicator was further used to calculate the probability that a given residue binds to a specific type of structural neighbors, including DNA, RNA, small molecules and proteins. After applying the method to a large-scale non-redundant database of proteins, we show that the positive signal of binding probability calculated from the local structural indicator is statistically meaningful. In summary, our studies suggested that the local environment of residues in a protein is a good indicator to recognize specific binding partners of the protein. The new method could be a potential addition to a suite of existing template-based approaches for protein function prediction. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Infrared light-induced protein crystallization. Structuring of protein interfacial water and periodic self-assembly

    NASA Astrophysics Data System (ADS)

    Kowacz, Magdalena; Marchel, Mateusz; Juknaité, Lina; Esperança, José M. S. S.; Romão, Maria João; Carvalho, Ana Luísa; Rebelo, Luís Paulo N.

    2017-01-01

    We show that a physical trigger, a non-ionizing infrared (IR) radiation at wavelengths strongly absorbed by liquid water, can be used to induce and kinetically control protein (periodic) self-assembly in solution. This phenomenon is explained by considering the effect of IR light on the structuring of protein interfacial water. Our results indicate that the IR radiation can promote enhanced mutual correlations of water molecules in the protein hydration shell. We report on the radiation-induced increase in both the strength and cooperativeness of H-bonds. The presence of a structured dipolar hydration layer can lead to attractive interactions between like-charged biomacromolecules in solution (and crystal nucleation events). Furthermore, our study suggests that enveloping the protein within a layer of structured solvent (an effect enhanced by IR light) can prevent the protein non-specific aggregation favoring periodic self-assembly. Recognizing the ability to affect protein-water interactions by means of IR radiation may have important implications for biological and bio-inspired systems.

  8. Two Year Field Study to Evaluate the Efficacy of Mamestra brassicae Nucleopolyhedrovirus Combined with Proteins Derived from Xestia c-nigrum Granulovirus

    PubMed Central

    Goto, Chie; Mukawa, Shigeyuki; Mitsunaga, Takayuki

    2015-01-01

    Japan has only three registered baculovirus biopesticides despite its long history of studies on insect viruses. High production cost is one of the main hindrances for practical use of baculoviruses. Enhancement of insecticidal effect is one possible way to overcome this problem, so there have been many attempts to develop additives for baculoviruses. We found that alkaline soluble proteins of capsules (GVPs) of Xestia c-nigrum granulovirus can increase infectivity of some viruses including Mamestra brassicae nucleopolyhedrovirus (MabrNPV), and previously reported that MabrNPV mixed with GVPs was highly infectious to three important noctuid pests of vegetables in the following order, Helicoverpa armigera, M. brassicae, and Autographa nigrisigna. In this study, small-plot experiments were performed to assess concentrations of MabrNPV and GVPs at three cabbage fields and a broccoli field for the control of M. brassicae. In the first experiment, addition of GVPs (10 µg/mL) to MabrNPV at 106 OBs/mL resulted in a significant increase in NPV infection (from 53% to 66%). In the second experiment, the enhancing effect of GVP on NPV infection was confirmed at 10-times lower concentrations of MabrNPV. In the third and fourth experiments, a 50% reduction in GVPs (from 10 µg/mL to 5 µg/mL) did not result in a lowering of infectivity of the formulations containing MabrNPV at 105 OBs/mL. These results indicate that GVPs are promising additives for virus insecticides. PMID:25760139

  9. Automated crystallographic system for high-throughput protein structure determination.

    PubMed

    Brunzelle, Joseph S; Shafaee, Padram; Yang, Xiaojing; Weigand, Steve; Ren, Zhong; Anderson, Wayne F

    2003-07-01

    High-throughput structural genomic efforts require software that is highly automated, distributive and requires minimal user intervention to determine protein structures. Preliminary experiments were set up to test whether automated scripts could utilize a minimum set of input parameters and produce a set of initial protein coordinates. From this starting point, a highly distributive system was developed that could determine macromolecular structures at a high throughput rate, warehouse and harvest the associated data. The system uses a web interface to obtain input data and display results. It utilizes a relational database to store the initial data needed to start the structure-determination process as well as generated data. A distributive program interface administers the crystallographic programs which determine protein structures. Using a test set of 19 protein targets, 79% were determined automatically.

  10. Challenging the state of the art in protein structure prediction: Highlights of experimental target structures for the 10th Critical Assessment of Techniques for Protein Structure Prediction Experiment CASP10.

    PubMed

    Kryshtafovych, Andriy; Moult, John; Bales, Patrick; Bazan, J Fernando; Biasini, Marco; Burgin, Alex; Chen, Chen; Cochran, Frank V; Craig, Timothy K; Das, Rhiju; Fass, Deborah; Garcia-Doval, Carmela; Herzberg, Osnat; Lorimer, Donald; Luecke, Hartmut; Ma, Xiaolei; Nelson, Daniel C; van Raaij, Mark J; Rohwer, Forest; Segall, Anca; Seguritan, Victor; Zeth, Kornelius; Schwede, Torsten

    2014-02-01

    For the last two decades, CASP has assessed the state of the art in techniques for protein structure prediction and identified areas which required further development. CASP would not have been possible without the prediction targets provided by the experimental structural biology community. In the latest experiment, CASP10, more than 100 structures were suggested as prediction targets, some of which appeared to be extraordinarily difficult for modeling. In this article, authors of some of the most challenging targets discuss which specific scientific question motivated the experimental structure determination of the target protein, which structural features were especially interesting from a structural or functional perspective, and to what extent these features were correctly reproduced in the predictions submitted to CASP10. Specifically, the following targets will be presented: the acid-gated urea channel, a difficult to predict transmembrane protein from the important human pathogen Helicobacter pylori; the structure of human interleukin (IL)-34, a recently discovered helical cytokine; the structure of a functionally uncharacterized enzyme OrfY from Thermoproteus tenax formed by a gene duplication and a novel fold; an ORFan domain of mimivirus sulfhydryl oxidase R596; the fiber protein gene product 17 from bacteriophage T7; the bacteriophage CBA-120 tailspike protein; a virus coat protein from metagenomic samples of the marine environment; and finally, an unprecedented class of structure prediction targets based on engineered disulfide-rich small proteins. Copyright © 2013 The Authors. Wiley Periodicals, Inc.

  11. Challenging the state-of-the-art in protein structure prediction: Highlights of experimental target structures for the 10th Critical Assessment of Techniques for Protein Structure Prediction Experiment CASP10

    PubMed Central

    Kryshtafovych, Andriy; Moult, John; Bales, Patrick; Bazan, J. Fernando; Biasini, Marco; Burgin, Alex; Chen, Chen; Cochran, Frank V.; Craig, Timothy K.; Das, Rhiju; Fass, Deborah; Garcia-Doval, Carmela; Herzberg, Osnat; Lorimer, Donald; Luecke, Hartmut; Ma, Xiaolei; Nelson, Daniel C.; van Raaij, Mark J.; Rohwer, Forest; Segall, Anca; Seguritan, Victor; Zeth, Kornelius; Schwede, Torsten

    2014-01-01

    For the last two decades, CASP has assessed the state of the art in techniques for protein structure prediction and identified areas which required further development. CASP would not have been possible without the prediction targets provided by the experimental structural biology community. In the latest experiment, CASP10, over 100 structures were suggested as prediction targets, some of which appeared to be extraordinarily difficult for modeling. In this paper, authors of some of the most challenging targets discuss which specific scientific question motivated the experimental structure determination of the target protein, which structural features were especially interesting from a structural or functional perspective, and to what extent these features were correctly reproduced in the predictions submitted to CASP10. Specifically, the following targets will be presented: the acid-gated urea channel, a difficult to predict trans-membrane protein from the important human pathogen Helicobacter pylori; the structure of human interleukin IL-34, a recently discovered helical cytokine; the structure of a functionally uncharacterized enzyme OrfY from Thermoproteus tenax formed by a gene duplication and a novel fold; an ORFan domain of mimivirus sulfhydryl oxidase R596; the fibre protein gp17 from bacteriophage T7; the Bacteriophage CBA-120 tailspike protein; a virus coat protein from metagenomic samples of the marine environment; and finally an unprecedented class of structure prediction targets based on engineered disulfide-rich small proteins. PMID:24318984

  12. From Ramachandran Maps to Tertiary Structures of Proteins.

    PubMed

    DasGupta, Debarati; Kaushik, Rahul; Jayaram, B

    2015-08-27

    Sequence to structure of proteins is an unsolved problem. A possible coarse grained resolution to this entails specification of all the torsional (Φ, Ψ) angles along the backbone of the polypeptide chain. The Ramachandran map quite elegantly depicts the allowed conformational (Φ, Ψ) space of proteins which is still very large for the purposes of accurate structure generation. We have divided the allowed (Φ, Ψ) space in Ramachandran maps into 27 distinct conformations sufficient to regenerate a structure to within 5 Å from the native, at least for small proteins, thus reducing the structure prediction problem to a specification of an alphanumeric string, i.e., the amino acid sequence together with one of the 27 conformations preferred by each amino acid residue. This still theoretically results in 27(n) conformations for a protein comprising "n" amino acids. We then investigated the spatial correlations at the two-residue (dipeptide) and three-residue (tripeptide) levels in what may be described as higher order Ramachandran maps, with the premise that the allowed conformational space starts to shrink as we introduce neighborhood effects. We found, for instance, for a tripeptide which potentially can exist in any of the 27(3) "allowed" conformations, three-fourths of these conformations are redundant to the 95% confidence level, suggesting sequence context dependent preferred conformations. We then created a look-up table of preferred conformations at the tripeptide level and correlated them with energetically favorable conformations. We found in particular that Boltzmann probabilities calculated from van der Waals energies for each conformation of tripeptides correlate well with the observed populations in the structural database (the average correlation coefficient is ∼0.8). An alpha-numeric string and hence the tertiary structure can be generated for any sequence from the look-up table within minutes on a single processor and to a higher level of accuracy

  13. Using linear algebra for protein structural comparison and classification

    PubMed Central

    2009-01-01

    In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in. PMID:21637532

  14. Using linear algebra for protein structural comparison and classification.

    PubMed

    Gomide, Janaína; Melo-Minardi, Raquel; Dos Santos, Marcos Augusto; Neshich, Goran; Meira, Wagner; Lopes, Júlio César; Santoro, Marcelo

    2009-07-01

    In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.

  15. Protein Structure Determination by Assembling Super-Secondary Structure Motifs Using Pseudocontact Shifts.

    PubMed

    Pilla, Kala Bharath; Otting, Gottfried; Huber, Thomas

    2017-03-07

    Computational and nuclear magnetic resonance hybrid approaches provide efficient tools for 3D structure determination of small proteins, but currently available algorithms struggle to perform with larger proteins. Here we demonstrate a new computational algorithm that assembles the 3D structure of a protein from its constituent super-secondary structural motifs (Smotifs) with the help of pseudocontact shift (PCS) restraints for backbone amide protons, where the PCSs are produced from different metal centers. The algorithm, DINGO-PCS (3D assembly of Individual Smotifs to Near-native Geometry as Orchestrated by PCSs), employs the PCSs to recognize, orient, and assemble the constituent Smotifs of the target protein without any other experimental data or computational force fields. Using a universal Smotif database, the DINGO-PCS algorithm exhaustively enumerates any given Smotif. We benchmarked the program against ten different protein targets ranging from 100 to 220 residues with different topologies. For nine of these targets, the method was able to identify near-native Smotifs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Protein 3D Structure Computed from Evolutionary Sequence Variation

    PubMed Central

    Sheridan, Robert; Hopf, Thomas A.; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2011-01-01

    The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing. In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy. We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues., including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7–4.8 Å Cα-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein

  17. Structural studies of human glioma pathogenesis-related protein 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu; Koski, Raymond A.; Bonafé, Nathalie

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structuresmore » of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.« less

  18. Structural Assembly of Multidomain Proteins and Protein Complexes Guided by the Overall Rotational Diffusion Tensor

    PubMed Central

    Ryabov, Yaroslav; Fushman, David

    2008-01-01

    We present a simple and robust approach that uses the overall rotational diffusion tensor as a structural constraint for domain positioning in multidomain proteins and protein-protein complexes. This method offers the possibility to use NMR relaxation data for detailed structure characterization of such systems provided the structures of individual domains are available. The proposed approach extends the concept of using long-range information contained in the overall rotational diffusion tensor. In contrast to the existing approaches, we use both the principal axes and principal values of protein’s rotational diffusion tensor to determine not only the orientation but also the relative positioning of the individual domains in a protein. This is achieved by finding the domain arrangement in a molecule that provides the best possible agreement with all components of the overall rotational diffusion tensor derived from experimental data. The accuracy of the proposed approach is demonstrated for two protein systems with known domain arrangement and parameters of the overall tumbling: the HIV-1 protease homodimer and Maltose Binding Protein. The accuracy of the method and its sensitivity to domain positioning is also tested using computer-generated data for three protein complexes, for which the experimental diffusion tensors are not available. In addition, the proposed method is applied here to determine, for the first time, the structure of both open and closed conformations of Lys48-linked di-ubiquitin chain, where domain motions render impossible accurate structure determination by other methods. The proposed method opens new avenues for improving structure characterization of proteins in solution. PMID:17550252

  19. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions

    DOE PAGES

    Yu, Peiqiang

    2006-01-01

    Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in

  20. Genome Pool Strategy for Structural Coverage of Protein Families

    PubMed Central

    Jaroszewski, Lukasz; Slabinski, Lukasz; Wooley, John; Deacon, Ashley M.; Lesley, Scott A.; Wilson, Ian. A.; Godzik, Adam

    2010-01-01

    As noticed by generations of structural biologists, closely homologous proteins may have substantially different crystallization properties and propensities. These observations can be used to systematically introduce additional dimensionality into crystallization trials by targeting homologous proteins from multiple genomes in a “genome pool” strategy. Through extensive use of our recently introduced “crystallization feasibility score” (Slabinski et al., 2007a), we can explain that the genome pool strategy works well because the crystallization feasibility scores are surprisingly broad within families of homologous proteins, with most families containing a range of optimal to very difficult targets. We also show that some families can be regarded as relatively “easy”, where a significant number of proteins are predicted to have optimal crystallization features, and others are “very difficult”, where almost none are predicted to result in a crystal structure. Thus, the outcome of such variable distributions of such crystallizability' preferences leads to uneven structural coverage of known families, with “easier” or “optimal” families having several times more solved structures than “very difficult” ones. Nevertheless, this latter category can be successfully targeted by increasing the number of genomes that are used to select targets from a given family. On average, adding 10 new genomes to the “genome pool” provides more promising targets for 7 “very difficult” families. In contrast, our crystallization feasibility score does not indicate that any specific microbial genomes can be readily classified as “easier” or “very difficult” with respect to providing suitable candidates for crystallization and structure determination. Finally, our analyses show that specific physicochemical properties of the protein sequence favor successful outcomes for structure determination and, hence, the group of proteins with known 3D

  1. What determines the spectrum of protein native state structures?

    PubMed

    Lezon, Timothy R; Banavar, Jayanth R; Lesk, Arthur M; Maritan, Amos

    2006-05-01

    We present a brief summary of the key factors underlying protein structure, as developed in the investigations of Pauling, Ramachandran, and Rose. We then outline a simplified physical model of proteins that focuses on geometry and symmetry. Although this model superficially appears unrelated to the detailed chemical descriptions commonly applied to proteins, we show that it captures the essential elements of the chemistry and provides a unified framework for understanding the common characteristics of folded proteins. We suggest that the spectrum of protein native state structures is determined by geometry and symmetry and the role of the sequence is to choose its native state structure from this predetermined menu. 2006 Wiley-Liss, Inc.

  2. Distance matrix-based approach to protein structure prediction.

    PubMed

    Kloczkowski, Andrzej; Jernigan, Robert L; Wu, Zhijun; Song, Guang; Yang, Lei; Kolinski, Andrzej; Pokarowski, Piotr

    2009-03-01

    Much structural information is encoded in the internal distances; a distance matrix-based approach can be used to predict protein structure and dynamics, and for structural refinement. Our approach is based on the square distance matrix D = [r(ij)(2)] containing all square distances between residues in proteins. This distance matrix contains more information than the contact matrix C, that has elements of either 0 or 1 depending on whether the distance r (ij) is greater or less than a cutoff value r (cutoff). We have performed spectral decomposition of the distance matrices D = sigma lambda(k)V(k)V(kT), in terms of eigenvalues lambda kappa and the corresponding eigenvectors v kappa and found that it contains at most five nonzero terms. A dominant eigenvector is proportional to r (2)--the square distance of points from the center of mass, with the next three being the principal components of the system of points. By predicting r (2) from the sequence we can approximate a distance matrix of a protein with an expected RMSD value of about 7.3 A, and by combining it with the prediction of the first principal component we can improve this approximation to 4.0 A. We can also explain the role of hydrophobic interactions for the protein structure, because r is highly correlated with the hydrophobic profile of the sequence. Moreover, r is highly correlated with several sequence profiles which are useful in protein structure prediction, such as contact number, the residue-wise contact order (RWCO) or mean square fluctuations (i.e. crystallographic temperature factors). We have also shown that the next three components are related to spatial directionality of the secondary structure elements, and they may be also predicted from the sequence, improving overall structure prediction. We have also shown that the large number of available HIV-1 protease structures provides a remarkable sampling of conformations, which can be viewed as direct structural information about the

  3. Structural and evolutionary analysis of Leishmania Alba proteins.

    PubMed

    da Costa, Kauê Santana; Galúcio, João Marcos Pereira; Leonardo, Elvis Santos; Cardoso, Guelber; Leal, Élcio; Conde, Guilherme; Lameira, Jerônimo

    2017-10-01

    The Alba superfamily proteins share a common RNA-binding domain. These proteins participate in a variety of regulatory pathways by controlling developmental gene expression. They also interact with ribosomal subunits, translation factors, and other RNA-binding proteins. The Leishmania infantum genome encodes two Alba-domain proteins, LiAlba1 and LiAlba3. In this work, we used homology modeling, protein-protein docking, and molecular dynamics (MD) simulations to explore the details of the Alba1-Alba3-RNA complex from Leishmania infantum at the molecular level. In addition, we compared the structure of LiAlba3 with the human ribonuclease P component, Rpp20. We also mapped the ligand-binding residues on the Alba3 surface to analyze its druggability and performed mutational analyses in Alba3 using alanine scanning to identify residues involved in its function and structural stability. These results suggest that the RGG-box motif of LiAlba1 is important for protein function and stability. Finally, we discuss the function of Alba proteins in the context of pathogen adaptation to host cells. The data provided herein will facilitate further translational research regarding Alba structure and function. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Knowledge-based prediction of protein backbone conformation using a structural alphabet.

    PubMed

    Vetrivel, Iyanar; Mahajan, Swapnil; Tyagi, Manoj; Hoffmann, Lionel; Sanejouand, Yves-Henri; Srinivasan, Narayanaswamy; de Brevern, Alexandre G; Cadet, Frédéric; Offmann, Bernard

    2017-01-01

    Libraries of structural prototypes that abstract protein local structures are known as structural alphabets and have proven to be very useful in various aspects of protein structure analyses and predictions. One such library, Protein Blocks, is composed of 16 standard 5-residues long structural prototypes. This form of analyzing proteins involves drafting its structure as a string of Protein Blocks. Predicting the local structure of a protein in terms of protein blocks is the general objective of this work. A new approach, PB-kPRED is proposed towards this aim. It involves (i) organizing the structural knowledge in the form of a database of pentapeptide fragments extracted from all protein structures in the PDB and (ii) applying a knowledge-based algorithm that does not rely on any secondary structure predictions and/or sequence alignment profiles, to scan this database and predict most probable backbone conformations for the protein local structures. Though PB-kPRED uses the structural information from homologues in preference, if available. The predictions were evaluated rigorously on 15,544 query proteins representing a non-redundant subset of the PDB filtered at 30% sequence identity cut-off. We have shown that the kPRED method was able to achieve mean accuracies ranging from 40.8% to 66.3% depending on the availability of homologues. The impact of the different strategies for scanning the database on the prediction was evaluated and is discussed. Our results highlight the usefulness of the method in the context of proteins without any known structural homologues. A scoring function that gives a good estimate of the accuracy of prediction was further developed. This score estimates very well the accuracy of the algorithm (R2 of 0.82). An online version of the tool is provided freely for non-commercial usage at http://www.bo-protscience.fr/kpred/.

  5. Protein thermal denaturation is modulated by central residues in the protein structure network.

    PubMed

    Souza, Valquiria P; Ikegami, Cecília M; Arantes, Guilherme M; Marana, Sandro R

    2016-03-01

    Network structural analysis, known as residue interaction networks or graphs (RIN or RIG, respectively) or protein structural networks or graphs (PSN or PSG, respectively), comprises a useful tool for detecting important residues for protein function, stability, folding and allostery. In RIN, the tertiary structure is represented by a network in which residues (nodes) are connected by interactions (edges). Such structural networks have consistently presented a few central residues that are important for shortening the pathways linking any two residues in a protein structure. To experimentally demonstrate that central residues effectively participate in protein properties, mutations were directed to seven central residues of the β-glucosidase Sfβgly (β-D-glucoside glucohydrolase; EC 3.2.1.21). These mutations reduced the thermal stability of the enzyme, as evaluated by changes in transition temperature (Tm ) and the denaturation rate at 45 °C. Moreover, mutations directed to the vicinity of a central residue also caused significant decreases in the Tm of Sfβgly and clearly increased the unfolding rate constant at 45 °C. However, mutations at noncentral residues or at surrounding residues did not affect the thermal stability of Sfβgly. Therefore, the data reported in the present study suggest that the perturbation of the central residues reduced the stability of the native structure of Sfβgly. These results are in agreement with previous findings showing that networks are robust, whereas attacks on central nodes cause network failure. Finally, the present study demonstrates that central residues underlie the functional properties of proteins. © 2016 Federation of European Biochemical Societies.

  6. Cross-Linking/Mass Spectrometry for Studying Protein Structures and Protein-Protein Interactions: Where Are We Now and Where Should We Go from Here?

    PubMed

    Sinz, Andrea

    2018-05-28

    Structural mass spectrometry (MS) is gaining increasing importance for deriving valuable three-dimensional structural information on proteins and protein complexes, and it complements existing techniques, such as NMR spectroscopy and X-ray crystallography. Structural MS unites different MS-based techniques, such as hydrogen/deuterium exchange, native MS, ion-mobility MS, protein footprinting, and chemical cross-linking/MS, and it allows fundamental questions in structural biology to be addressed. In this Minireview, I will focus on the cross-linking/MS strategy. This method not only delivers tertiary structural information on proteins, but is also increasingly being used to decipher protein interaction networks, both in vitro and in vivo. Cross-linking/MS is currently one of the most promising MS-based approaches to derive structural information on very large and transient protein assemblies and intrinsically disordered proteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Tracing Primordial Protein Evolution through Structurally Guided Stepwise Segment Elongation*

    PubMed Central

    Watanabe, Hideki; Yamasaki, Kazuhiko; Honda, Shinya

    2014-01-01

    The understanding of how primordial proteins emerged has been a fundamental and longstanding issue in biology and biochemistry. For a better understanding of primordial protein evolution, we synthesized an artificial protein on the basis of an evolutionary hypothesis, segment-based elongation starting from an autonomously foldable short peptide. A 10-residue protein, chignolin, the smallest foldable polypeptide ever reported, was used as a structural support to facilitate higher structural organization and gain-of-function in the development of an artificial protein. Repetitive cycles of segment elongation and subsequent phage display selection successfully produced a 25-residue protein, termed AF.2A1, with nanomolar affinity against the Fc region of immunoglobulin G. AF.2A1 shows exquisite molecular recognition ability such that it can distinguish conformational differences of the same molecule. The structure determined by NMR measurements demonstrated that AF.2A1 forms a globular protein-like conformation with the chignolin-derived β-hairpin and a tryptophan-mediated hydrophobic core. Using sequence analysis and a mutation study, we discovered that the structural organization and gain-of-function emerged from the vicinity of the chignolin segment, revealing that the structural support served as the core in both structural and functional development. Here, we propose an evolutionary model for primordial proteins in which a foldable segment serves as the evolving core to facilitate structural and functional evolution. This study provides insights into primordial protein evolution and also presents a novel methodology for designing small sized proteins useful for industrial and pharmaceutical applications. PMID:24356963

  8. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNAmore » binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.« less

  9. Probing Protein Structure in Vivo with FRET

    PubMed Central

    Davis, Trisha; Muller, Eric

    2012-01-01

    Fluorescence resonance energy transfer (FRET) is widely used to construct probes for cellular activities and to complement two-hybrid results that predict protein-protein interactions. The Yeast Resource Center promotes an underutilized potential of FRET as an in vivo tool to position proteins within low resolution structures derived from electron microscopy. The success of this approach using widefield microscopy depends upon the choice of filter sets, standardized image acquisition, a robust metric and controls matched to the structure under investigation. A comparison of various CFP and YFP filter combinations from Chroma and Semrock demonstrated the strength of the Chroma filters when coupled with our FRET metric, termed FretR. Coupling CFP and YFP to a selection of proteins of known structure allowed us to create a standard curve of FretR versus distance. How well other FRET metrics conform was also evaluated. Finally FretR was linked to an approximation of the efficiency of energy transfer. Together this feature set has allowed us to contribute to our understanding of the organization of the yeast spindle pole body, cohesin complex and gamma-tubulin complex.

  10. Crystal structure of mitochondrial respiratory membrane protein complex II.

    PubMed

    Sun, Fei; Huo, Xia; Zhai, Yujia; Wang, Aojin; Xu, Jianxing; Su, Dan; Bartlam, Mark; Rao, Zihe

    2005-07-01

    The mitochondrial respiratory Complex II or succinate:ubiquinone oxidoreductase (SQR) is an integral membrane protein complex in both the tricarboxylic acid cycle and aerobic respiration. Here we report the first crystal structure of Complex II from porcine heart at 2.4 A resolution and its complex structure with inhibitors 3-nitropropionate and 2-thenoyltrifluoroacetone (TTFA) at 3.5 A resolution. Complex II is comprised of two hydrophilic proteins, flavoprotein (Fp) and iron-sulfur protein (Ip), and two transmembrane proteins (CybL and CybS), as well as prosthetic groups required for electron transfer from succinate to ubiquinone. The structure correlates the protein environments around prosthetic groups with their unique midpoint redox potentials. Two ubiquinone binding sites are discussed and elucidated by TTFA binding. The Complex II structure provides a bona fide model for study of the mitochondrial respiratory system and human mitochondrial diseases related to mutations in this complex.

  11. Objective identification of residue ranges for the superposition of protein structures

    PubMed Central

    2011-01-01

    Background The automation of objectively selecting amino acid residue ranges for structure superpositions is important for meaningful and consistent protein structure analyses. So far there is no widely-used standard for choosing these residue ranges for experimentally determined protein structures, where the manual selection of residue ranges or the use of suboptimal criteria remain commonplace. Results We present an automated and objective method for finding amino acid residue ranges for the superposition and analysis of protein structures, in particular for structure bundles resulting from NMR structure calculations. The method is implemented in an algorithm, CYRANGE, that yields, without protein-specific parameter adjustment, appropriate residue ranges in most commonly occurring situations, including low-precision structure bundles, multi-domain proteins, symmetric multimers, and protein complexes. Residue ranges are chosen to comprise as many residues of a protein domain that increasing their number would lead to a steep rise in the RMSD value. Residue ranges are determined by first clustering residues into domains based on the distance variance matrix, and then refining for each domain the initial choice of residues by excluding residues one by one until the relative decrease of the RMSD value becomes insignificant. A penalty for the opening of gaps favours contiguous residue ranges in order to obtain a result that is as simple as possible, but not simpler. Results are given for a set of 37 proteins and compared with those of commonly used protein structure validation packages. We also provide residue ranges for 6351 NMR structures in the Protein Data Bank. Conclusions The CYRANGE method is capable of automatically determining residue ranges for the superposition of protein structure bundles for a large variety of protein structures. The method correctly identifies ordered regions. Global structure superpositions based on the CYRANGE residue ranges allow a

  12. Discrete Haar transform and protein structure.

    PubMed

    Morosetti, S

    1997-12-01

    The discrete Haar transform of the sequence of the backbone dihedral angles (phi and psi) was performed over a set of X-ray protein structures of high resolution from the Brookhaven Protein Data Bank. Afterwards, the new dihedral angles were calculated by the inverse transform, using a growing number of Haar functions, from the lower to the higher degree. New structures were obtained using these dihedral angles, with standard values for bond lengths and angles, and with omega = 0 degree. The reconstructed structures were compared with the experimental ones, and analyzed by visual inspection and statistical analysis. When half of the Haar coefficients were used, all the reconstructed structures were not yet collapsed to a tertiary folding, but they showed yet realized most of the secondary motifs. These results indicate a substantial separation of structural information in the space of Haar transform, with the secondary structural information mainly present in the Haar coefficients of lower degrees, and the tertiary one present in the higher degree coefficients. Because of this separation, the representation of the folded structures in the space of Haar transform seems a promising candidate to encompass the problem of premature convergence in genetic algorithms.

  13. MODBASE, a database of annotated comparative protein structure models

    PubMed Central

    Pieper, Ursula; Eswar, Narayanan; Stuart, Ashley C.; Ilyin, Valentin A.; Sali, Andrej

    2002-01-01

    MODBASE (http://guitar.rockefeller.edu/modbase) is a relational database of annotated comparative protein structure models for all available protein sequences matched to at least one known protein structure. The models are calculated by MODPIPE, an automated modeling pipeline that relies on PSI-BLAST, IMPALA and MODELLER. MODBASE uses the MySQL relational database management system for flexible and efficient querying, and the MODVIEW Netscape plugin for viewing and manipulating multiple sequences and structures. It is updated regularly to reflect the growth of the protein sequence and structure databases, as well as improvements in the software for calculating the models. For ease of access, MODBASE is organized into different datasets. The largest dataset contains models for domains in 304 517 out of 539 171 unique protein sequences in the complete TrEMBL database (23 March 2001); only models based on significant alignments (PSI-BLAST E-value < 10–4) and models assessed to have the correct fold are included. Other datasets include models for target selection and structure-based annotation by the New York Structural Genomics Research Consortium, models for prediction of genes in the Drosophila melanogaster genome, models for structure determination of several ribosomal particles and models calculated by the MODWEB comparative modeling web server. PMID:11752309

  14. Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins.

    PubMed

    Finlay, Darren; Teriete, Peter; Vamos, Mitchell; Cosford, Nicholas D P; Vuori, Kristiina

    2017-01-01

    The heterogeneous group of diseases collectively termed cancer results not just from aberrant cellular proliferation but also from a lack of accompanying homeostatic cell death. Indeed, cancer cells regularly acquire resistance to programmed cell death, or apoptosis, which not only supports cancer progression but also leads to resistance to therapeutic agents. Thus, various approaches have been undertaken in order to induce apoptosis in tumor cells for therapeutic purposes. Here, we will focus our discussion on agents that directly affect the apoptotic machinery itself rather than on drugs that induce apoptosis in tumor cells indirectly, such as by DNA damage or kinase dependency inhibition. As the roles of the Bcl-2 family have been extensively studied and reviewed recently, we will focus in this review specifically on the inhibitor of apoptosis protein (IAP) family. IAPs are a disparate group of proteins that all contain a baculovirus IAP repeat domain, which is important for the inhibition of apoptosis in some, but not all, family members. We describe each of the family members with respect to their structural and functional similarities and differences and their respective roles in cancer. Finally, we also review the current state of IAPs as targets for anti-cancer therapeutics and discuss the current clinical state of IAP antagonists.

  15. Tuning structure of oppositely charged nanoparticle and protein complexes

    NASA Astrophysics Data System (ADS)

    Kumar, Sugam; Aswal, V. K.; Callow, P.

    2014-04-01

    Small-angle neutron scattering (SANS) has been used to probe the structures of anionic silica nanoparticles (LS30) and cationic lyszyme protein (M.W. 14.7kD, I.P. ˜ 11.4) by tuning their interaction through the pH variation. The protein adsorption on nanoparticles is found to be increasing with pH and determined by the electrostatic attraction between two components as well as repulsion between protein molecules. We show the strong electrostatic attraction between nanoparticles and protein molecules leads to protein-mediated aggregation of nanoparticles which are characterized by fractal structures. At pH 5, the protein adsorption gives rise to nanoparticle aggregation having surface fractal morphology with close packing of nanoparticles. The surface fractals transform to open structures of mass fractal morphology at higher pH (7 and 9) on approaching isoelectric point (I.P.).

  16. MEGADOCK: An All-to-All Protein-Protein Interaction Prediction System Using Tertiary Structure Data

    PubMed Central

    Ohue, Masahito; Matsuzaki, Yuri; Uchikoga, Nobuyuki; Ishida, Takashi; Akiyama, Yutaka

    2014-01-01

    The elucidation of protein-protein interaction (PPI) networks is important for understanding cellular structure and function and structure-based drug design. However, the development of an effective method to conduct exhaustive PPI screening represents a computational challenge. We have been investigating a protein docking approach based on shape complementarity and physicochemical properties. We describe here the development of the protein-protein docking software package “MEGADOCK” that samples an extremely large number of protein dockings at high speed. MEGADOCK reduces the calculation time required for docking by using several techniques such as a novel scoring function called the real Pairwise Shape Complementarity (rPSC) score. We showed that MEGADOCK is capable of exhaustive PPI screening by completing docking calculations 7.5 times faster than the conventional docking software, ZDOCK, while maintaining an acceptable level of accuracy. When MEGADOCK was applied to a subset of a general benchmark dataset to predict 120 relevant interacting pairs from 120 x 120 = 14,400 combinations of proteins, an F-measure value of 0.231 was obtained. Further, we showed that MEGADOCK can be applied to a large-scale protein-protein interaction-screening problem with accuracy better than random. When our approach is combined with parallel high-performance computing systems, it is now feasible to search and analyze protein-protein interactions while taking into account three-dimensional structures at the interactome scale. MEGADOCK is freely available at http://www.bi.cs.titech.ac.jp/megadock. PMID:23855673

  17. Linking structural biology with genome research: Beamlines for the Berlin ``Protein Structure Factory'' initiative

    NASA Astrophysics Data System (ADS)

    Illing, Gerd; Saenger, Wolfram; Heinemann, Udo

    2000-06-01

    The Protein Structure Factory will be established to characterize proteins encoded by human genes or cDNAs, which will be selected by criteria of potential structural novelty or medical or biotechnological usefulness. It represents an integrative approach to structure analysis combining bioinformatics techniques, automated gene expression and purification of gene products, generation of a biophysical fingerprint of the proteins and the determination of their three-dimensional structures either by NMR spectroscopy or by X-ray diffraction. The use of synchrotron radiation will be crucial to the Protein Structure Factory: high brilliance and tunable wavelengths are prerequisites for fast data collection, the use of small crystals and multiwavelength anomalous diffraction (MAD) phasing. With the opening of BESSY II, direct access to a third-generation XUV storage ring source with excellent conditions is available nearby. An insertion device with two MAD beamlines and one constant energy station will be set up until 2001.

  18. Automatic classification of protein structures relying on similarities between alignments

    PubMed Central

    2012-01-01

    Background Identification of protein structural cores requires isolation of sets of proteins all sharing a same subset of structural motifs. In the context of an ever growing number of available 3D protein structures, standard and automatic clustering algorithms require adaptations so as to allow for efficient identification of such sets of proteins. Results When considering a pair of 3D structures, they are stated as similar or not according to the local similarities of their matching substructures in a structural alignment. This binary relation can be represented in a graph of similarities where a node represents a 3D protein structure and an edge states that two 3D protein structures are similar. Therefore, classifying proteins into structural families can be viewed as a graph clustering task. Unfortunately, because such a graph encodes only pairwise similarity information, clustering algorithms may include in the same cluster a subset of 3D structures that do not share a common substructure. In order to overcome this drawback we first define a ternary similarity on a triple of 3D structures as a constraint to be satisfied by the graph of similarities. Such a ternary constraint takes into account similarities between pairwise alignments, so as to ensure that the three involved protein structures do have some common substructure. We propose hereunder a modification algorithm that eliminates edges from the original graph of similarities and gives a reduced graph in which no ternary constraints are violated. Our approach is then first to build a graph of similarities, then to reduce the graph according to the modification algorithm, and finally to apply to the reduced graph a standard graph clustering algorithm. Such method was used for classifying ASTRAL-40 non-redundant protein domains, identifying significant pairwise similarities with Yakusa, a program devised for rapid 3D structure alignments. Conclusions We show that filtering similarities prior to standard

  19. The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis.

    PubMed

    Music, Nedzad; Gagnon, Carl A

    2010-12-01

    Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating viral disease affecting the swine industry worldwide. The etiological agent, PRRS virus (PRRSV), possesses a RNA viral genome with nine open reading frames (ORFs). The ORF1a and ORF1b replicase-associated genes encode the polyproteins pp1a and pp1ab, respectively. The pp1a is processed in nine non-structural proteins (nsps): nsp1α, nsp1β, and nsp2 to nsp8. Proteolytic cleavage of pp1ab generates products nsp9 to nsp12. The proteolytic pp1a cleavage products process and cleave pp1a and pp1ab into nsp products. The nsp9 to nsp12 are involved in virus genome transcription and replication. The 3' end of the viral genome encodes four minor and three major structural proteins. The GP(2a), GP₃ and GP₄ (encoded by ORF2a, 3 and 4), are glycosylated membrane associated minor structural proteins. The fourth minor structural protein, the E protein (encoded by ORF2b), is an unglycosylated membrane associated protein. The viral envelope contains two major structural proteins: a glycosylated major envelope protein GP₅ (encoded by ORF5) and an unglycosylated membrane M protein (encoded by ORF6). The third major structural protein is the nucleocapsid N protein (encoded by ORF7). All PRRSV non-structural and structural proteins are essential for virus replication, and PRRSV infectivity is relatively intolerant to subtle changes within the structural proteins. PRRSV virulence is multigenic and resides in both the non-structural and structural viral proteins. This review discusses the molecular characteristics, biological and immunological functions of the PRRSV structural and nsps and their involvement in the virus pathogenesis.

  20. Improved in-cell structure determination of proteins at near-physiological concentration

    PubMed Central

    Ikeya, Teppei; Hanashima, Tomomi; Hosoya, Saori; Shimazaki, Manato; Ikeda, Shiro; Mishima, Masaki; Güntert, Peter; Ito, Yutaka

    2016-01-01

    Investigating three-dimensional (3D) structures of proteins in living cells by in-cell nuclear magnetic resonance (NMR) spectroscopy opens an avenue towards understanding the structural basis of their functions and physical properties under physiological conditions inside cells. In-cell NMR provides data at atomic resolution non-invasively, and has been used to detect protein-protein interactions, thermodynamics of protein stability, the behavior of intrinsically disordered proteins, etc. in cells. However, so far only a single de novo 3D protein structure could be determined based on data derived only from in-cell NMR. Here we introduce methods that enable in-cell NMR protein structure determination for a larger number of proteins at concentrations that approach physiological ones. The new methods comprise (1) advances in the processing of non-uniformly sampled NMR data, which reduces the measurement time for the intrinsically short-lived in-cell NMR samples, (2) automatic chemical shift assignment for obtaining an optimal resonance assignment, and (3) structure refinement with Bayesian inference, which makes it possible to calculate accurate 3D protein structures from sparse data sets of conformational restraints. As an example application we determined the structure of the B1 domain of protein G at about 250 μM concentration in living E. coli cells. PMID:27910948

  1. Design of structurally distinct proteins using strategies inspired by evolution

    DOE PAGES

    Jacobs, T. M.; Williams, B.; Williams, T.; ...

    2016-05-06

    Natural recombination combines pieces of preexisting proteins to create new tertiary structures and functions. In this paper, we describe a computational protocol, called SEWING, which is inspired by this process and builds new proteins from connected or disconnected pieces of existing structures. Helical proteins designed with SEWING contain structural features absent from other de novo designed proteins and, in some cases, remain folded at more than 100°C. High-resolution structures of the designed proteins CA01 and DA05R1 were solved by x-ray crystallography (2.2 angstrom resolution) and nuclear magnetic resonance, respectively, and there was excellent agreement with the design models. Finally, thismore » method provides a new strategy to rapidly create large numbers of diverse and designable protein scaffolds.« less

  2. Structural studies of G protein-coupled receptors.

    PubMed

    Lu, Mengjie; Wu, Beili

    2016-11-01

    G protein-coupled receptors (GPCRs) comprise the largest membrane protein family. These receptors sense a variety of signaling molecules, activate multiple intracellular signal pathways, and act as the targets of over 40% of marketed drugs. Recent progress on GPCR structural studies provides invaluable insights into the structure-function relationship of the GPCR superfamily, deepening our understanding about the molecular mechanisms of GPCR signal transduction. Here, we review recent breakthroughs on GPCR structure determination and the structural features of GPCRs, and take the structures of chemokine receptor CCR5 and purinergic receptors P2Y 1 R and P2Y 12 R as examples to discuss the importance of GPCR structures on functional studies and drug discovery. In addition, we discuss the prospect of GPCR structure-based drug discovery. © 2016 IUBMB Life, 68(11):894-903, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  3. Prelude and Fugue, predicting local protein structure, early folding regions and structural weaknesses.

    PubMed

    Kwasigroch, Jean Marc; Rooman, Marianne

    2006-07-15

    Prelude&Fugue are bioinformatics tools aiming at predicting the local 3D structure of a protein from its amino acid sequence in terms of seven backbone torsion angle domains, using database-derived potentials. Prelude(&Fugue) computes all lowest free energy conformations of a protein or protein region, ranked by increasing energy, and possibly satisfying some interresidue distance constraints specified by the user. (Prelude&)Fugue detects sequence regions whose predicted structure is significantly preferred relative to other conformations in the absence of tertiary interactions. These programs can be used for predicting secondary structure, tertiary structure of short peptides, flickering early folding sequences and peptides that adopt a preferred conformation in solution. They can also be used for detecting structural weaknesses, i.e. sequence regions that are not optimal with respect to the tertiary fold. http://babylone.ulb.ac.be/Prelude_and_Fugue.

  4. 3DProIN: Protein-Protein Interaction Networks and Structure Visualization.

    PubMed

    Li, Hui; Liu, Chunmei

    2014-06-14

    3DProIN is a computational tool to visualize protein-protein interaction networks in both two dimensional (2D) and three dimensional (3D) view. It models protein-protein interactions in a graph and explores the biologically relevant features of the tertiary structures of each protein in the network. Properties such as color, shape and name of each node (protein) of the network can be edited in either 2D or 3D views. 3DProIN is implemented using 3D Java and C programming languages. The internet crawl technique is also used to parse dynamically grasped protein interactions from protein data bank (PDB). It is a java applet component that is embedded in the web page and it can be used on different platforms including Linux, Mac and Window using web browsers such as Firefox, Internet Explorer, Chrome and Safari. It also was converted into a mac app and submitted to the App store as a free app. Mac users can also download the app from our website. 3DProIN is available for academic research at http://bicompute.appspot.com.

  5. GalaxyRefineComplex: Refinement of protein-protein complex model structures driven by interface repacking.

    PubMed

    Heo, Lim; Lee, Hasup; Seok, Chaok

    2016-08-18

    Protein-protein docking methods have been widely used to gain an atomic-level understanding of protein interactions. However, docking methods that employ low-resolution energy functions are popular because of computational efficiency. Low-resolution docking tends to generate protein complex structures that are not fully optimized. GalaxyRefineComplex takes such low-resolution docking structures and refines them to improve model accuracy in terms of both interface contact and inter-protein orientation. This refinement method allows flexibility at the protein interface and in the overall docking structure to capture conformational changes that occur upon binding. Symmetric refinement is also provided for symmetric homo-complexes. This method was validated by refining models produced by available docking programs, including ZDOCK and M-ZDOCK, and was successfully applied to CAPRI targets in a blind fashion. An example of using the refinement method with an existing docking method for ligand binding mode prediction of a drug target is also presented. A web server that implements the method is freely available at http://galaxy.seoklab.org/refinecomplex.

  6. Structure modification and functionality of whey proteins: quantitative structure-activity relationship approach.

    PubMed

    Nakai, S; Li-Chan, E

    1985-10-01

    According to the original idea of quantitative structure-activity relationship, electric, hydrophobic, and structural parameters should be taken into consideration for elucidating functionality. Changes in these parameters are reflected in the property of protein solubility upon modification of whey proteins by heating. Although solubility is itself a functional property, it has been utilized to explain other functionalities of proteins. However, better correlations were obtained when hydrophobic parameters of the proteins were used in conjunction with solubility. Various treatments reported in the literature were applied to whey protein concentrate in an attempt to obtain whipping and gelling properties similar to those of egg white. Mapping simplex optimization was used to search for the best results. Improvement in whipping properties by pepsin hydrolysis may have been due to higher protein solubility, and good gelling properties resulting from polyphosphate treatment may have been due to an increase in exposable hydrophobicity. However, the results of angel food cake making were still unsatisfactory.

  7. DNA microarrays of baculovirus genomes: differential expression of viral genes in two susceptible insect cell lines.

    PubMed

    Yamagishi, J; Isobe, R; Takebuchi, T; Bando, H

    2003-03-01

    We describe, for the first time, the generation of a viral DNA chip for simultaneous expression measurements of nearly all known open reading frames (ORFs) in the best-studied members of the family Baculoviridae, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV). In this study, a viral DNA chip (Ac-BmNPV chip) was fabricated and used to characterize the viral gene expression profile for AcMNPV in different cell types. The viral chip is composed of microarrays of viral DNA prepared by robotic deposition of PCR-amplified viral DNA fragments on glass for ORFs in the NPV genome. Viral gene expression was monitored by hybridization to the DNA fragment microarrays with fluorescently labeled cDNAs prepared from infected Spodoptera frugiperda, Sf9 cells and Trichoplusia ni, TnHigh-Five cells, the latter a major producer of baculovirus and recombinant proteins. A comparison of expression profiles of known ORFs in AcMNPV elucidated six genes (ORF150, p10, pk2, and three late gene expression factor genes lef-3, p35 and lef- 6) the expression of each of which was regulated differently in the two cell lines. Most of these genes are known to be closely involved in the viral life cycle such as in DNA replication, late gene expression and the release of polyhedra from infected cells. These results imply that the differential expression of these viral genes accounts for the differences in viral replication between these two cell lines. Thus, these fabricated microarrays of NPV DNA which allow a rapid analysis of gene expression at the viral genome level should greatly speed the functional analysis of large genomes of NPV.

  8. Membrane protein structure determination — The next generation☆☆☆

    PubMed Central

    Moraes, Isabel; Evans, Gwyndaf; Sanchez-Weatherby, Juan; Newstead, Simon; Stewart, Patrick D. Shaw

    2014-01-01

    The field of Membrane Protein Structural Biology has grown significantly since its first landmark in 1985 with the first three-dimensional atomic resolution structure of a membrane protein. Nearly twenty-six years later, the crystal structure of the beta2 adrenergic receptor in complex with G protein has contributed to another landmark in the field leading to the 2012 Nobel Prize in Chemistry. At present, more than 350 unique membrane protein structures solved by X-ray crystallography (http://blanco.biomol.uci.edu/mpstruc/exp/list, Stephen White Lab at UC Irvine) are available in the Protein Data Bank. The advent of genomics and proteomics initiatives combined with high-throughput technologies, such as automation, miniaturization, integration and third-generation synchrotrons, has enhanced membrane protein structure determination rate. X-ray crystallography is still the only method capable of providing detailed information on how ligands, cofactors, and ions interact with proteins, and is therefore a powerful tool in biochemistry and drug discovery. Yet the growth of membrane protein crystals suitable for X-ray diffraction studies amazingly remains a fine art and a major bottleneck in the field. It is often necessary to apply as many innovative approaches as possible. In this review we draw attention to the latest methods and strategies for the production of suitable crystals for membrane protein structure determination. In addition we also highlight the impact that third-generation synchrotron radiation has made in the field, summarizing the latest strategies used at synchrotron beamlines for screening and data collection from such demanding crystals. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. PMID:23860256

  9. Exploring Protein Dynamics Space: The Dynasome as the Missing Link between Protein Structure and Function

    PubMed Central

    Hensen, Ulf; Meyer, Tim; Haas, Jürgen; Rex, René; Vriend, Gert; Grubmüller, Helmut

    2012-01-01

    Proteins are usually described and classified according to amino acid sequence, structure or function. Here, we develop a minimally biased scheme to compare and classify proteins according to their internal mobility patterns. This approach is based on the notion that proteins not only fold into recurring structural motifs but might also be carrying out only a limited set of recurring mobility motifs. The complete set of these patterns, which we tentatively call the dynasome, spans a multi-dimensional space with axes, the dynasome descriptors, characterizing different aspects of protein dynamics. The unique dynamic fingerprint of each protein is represented as a vector in the dynasome space. The difference between any two vectors, consequently, gives a reliable measure of the difference between the corresponding protein dynamics. We characterize the properties of the dynasome by comparing the dynamics fingerprints obtained from molecular dynamics simulations of 112 proteins but our approach is, in principle, not restricted to any specific source of data of protein dynamics. We conclude that: 1. the dynasome consists of a continuum of proteins, rather than well separated classes. 2. For the majority of proteins we observe strong correlations between structure and dynamics. 3. Proteins with similar function carry out similar dynamics, which suggests a new method to improve protein function annotation based on protein dynamics. PMID:22606222

  10. Expression of p24 gag protein of bovine leukemia virus in insect cells and its use in immunodetection of the disease.

    PubMed

    Larsen, Alejandra; Gonzalez, Ester Teresa; Serena, María Soledad; Echeverría, María Gabriela; Mortola, Eduardo

    2013-06-01

    Bovine leukemia is a common retroviral infection of cattle. The disease is characterized by a strong immunological response to several viral proteins, but the antibodies against p24 and gp51 are predominant. In this study, a recombinant baculovirus containing the gag gene p24 was constructed and the protein, used as antigen, analyzed by western blot and an indirect in-house rp24-ELISA test. This allowed detecting the presence of antibodies for bovine leukemia virus in a panel of cattle sera. The authentication of the protein expands its potential use for different medical applications, from improved diagnosis of the disease to source of antigens to be included in a subunit vaccine.

  11. Applications of graph theory in protein structure identification

    PubMed Central

    2011-01-01

    There is a growing interest in the identification of proteins on the proteome wide scale. Among different kinds of protein structure identification methods, graph-theoretic methods are very sharp ones. Due to their lower costs, higher effectiveness and many other advantages, they have drawn more and more researchers’ attention nowadays. Specifically, graph-theoretic methods have been widely used in homology identification, side-chain cluster identification, peptide sequencing and so on. This paper reviews several methods in solving protein structure identification problems using graph theory. We mainly introduce classical methods and mathematical models including homology modeling based on clique finding, identification of side-chain clusters in protein structures upon graph spectrum, and de novo peptide sequencing via tandem mass spectrometry using the spectrum graph model. In addition, concluding remarks and future priorities of each method are given. PMID:22165974

  12. Integrated Structural Biology for α-Helical Membrane Protein Structure Determination.

    PubMed

    Xia, Yan; Fischer, Axel W; Teixeira, Pedro; Weiner, Brian; Meiler, Jens

    2018-04-03

    While great progress has been made, only 10% of the nearly 1,000 integral, α-helical, multi-span membrane protein families are represented by at least one experimentally determined structure in the PDB. Previously, we developed the algorithm BCL::MP-Fold, which samples the large conformational space of membrane proteins de novo by assembling predicted secondary structure elements guided by knowledge-based potentials. Here, we present a case study of rhodopsin fold determination by integrating sparse and/or low-resolution restraints from multiple experimental techniques including electron microscopy, electron paramagnetic resonance spectroscopy, and nuclear magnetic resonance spectroscopy. Simultaneous incorporation of orthogonal experimental restraints not only significantly improved the sampling accuracy but also allowed identification of the correct fold, which is demonstrated by a protein size-normalized transmembrane root-mean-square deviation as low as 1.2 Å. The protocol developed in this case study can be used for the determination of unknown membrane protein folds when limited experimental restraints are available. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Fast protein tertiary structure retrieval based on global surface shape similarity.

    PubMed

    Sael, Lee; Li, Bin; La, David; Fang, Yi; Ramani, Karthik; Rustamov, Raif; Kihara, Daisuke

    2008-09-01

    Characterization and identification of similar tertiary structure of proteins provides rich information for investigating function and evolution. The importance of structure similarity searches is increasing as structure databases continue to expand, partly due to the structural genomics projects. A crucial drawback of conventional protein structure comparison methods, which compare structures by their main-chain orientation or the spatial arrangement of secondary structure, is that a database search is too slow to be done in real-time. Here we introduce a global surface shape representation by three-dimensional (3D) Zernike descriptors, which represent a protein structure compactly as a series expansion of 3D functions. With this simplified representation, the search speed against a few thousand structures takes less than a minute. To investigate the agreement between surface representation defined by 3D Zernike descriptor and conventional main-chain based representation, a benchmark was performed against a protein classification generated by the combinatorial extension algorithm. Despite the different representation, 3D Zernike descriptor retrieved proteins of the same conformation defined by combinatorial extension in 89.6% of the cases within the top five closest structures. The real-time protein structure search by 3D Zernike descriptor will open up new possibility of large-scale global and local protein surface shape comparison. 2008 Wiley-Liss, Inc.

  14. Bayesian comparison of protein structures using partial Procrustes distance.

    PubMed

    Ejlali, Nasim; Faghihi, Mohammad Reza; Sadeghi, Mehdi

    2017-09-26

    An important topic in bioinformatics is the protein structure alignment. Some statistical methods have been proposed for this problem, but most of them align two protein structures based on the global geometric information without considering the effect of neighbourhood in the structures. In this paper, we provide a Bayesian model to align protein structures, by considering the effect of both local and global geometric information of protein structures. Local geometric information is incorporated to the model through the partial Procrustes distance of small substructures. These substructures are composed of β-carbon atoms from the side chains. Parameters are estimated using a Markov chain Monte Carlo (MCMC) approach. We evaluate the performance of our model through some simulation studies. Furthermore, we apply our model to a real dataset and assess the accuracy and convergence rate. Results show that our model is much more efficient than previous approaches.

  15. Knowledge-based computational intelligence development for predicting protein secondary structures from sequences.

    PubMed

    Shen, Hong-Bin; Yi, Dong-Liang; Yao, Li-Xiu; Yang, Jie; Chou, Kuo-Chen

    2008-10-01

    In the postgenomic age, with the avalanche of protein sequences generated and relatively slow progress in determining their structures by experiments, it is important to develop automated methods to predict the structure of a protein from its sequence. The membrane proteins are a special group in the protein family that accounts for approximately 30% of all proteins; however, solved membrane protein structures only represent less than 1% of known protein structures to date. Although a great success has been achieved for developing computational intelligence techniques to predict secondary structures in both globular and membrane proteins, there is still much challenging work in this regard. In this review article, we firstly summarize the recent progress of automation methodology development in predicting protein secondary structures, especially in membrane proteins; we will then give some future directions in this research field.

  16. Columba: an integrated database of proteins, structures, and annotations.

    PubMed

    Trissl, Silke; Rother, Kristian; Müller, Heiko; Steinke, Thomas; Koch, Ina; Preissner, Robert; Frömmel, Cornelius; Leser, Ulf

    2005-03-31

    Structural and functional research often requires the computation of sets of protein structures based on certain properties of the proteins, such as sequence features, fold classification, or functional annotation. Compiling such sets using current web resources is tedious because the necessary data are spread over many different databases. To facilitate this task, we have created COLUMBA, an integrated database of annotations of protein structures. COLUMBA currently integrates twelve different databases, including PDB, KEGG, Swiss-Prot, CATH, SCOP, the Gene Ontology, and ENZYME. The database can be searched using either keyword search or data source-specific web forms. Users can thus quickly select and download PDB entries that, for instance, participate in a particular pathway, are classified as containing a certain CATH architecture, are annotated as having a certain molecular function in the Gene Ontology, and whose structures have a resolution under a defined threshold. The results of queries are provided in both machine-readable extensible markup language and human-readable format. The structures themselves can be viewed interactively on the web. The COLUMBA database facilitates the creation of protein structure data sets for many structure-based studies. It allows to combine queries on a number of structure-related databases not covered by other projects at present. Thus, information on both many and few protein structures can be used efficiently. The web interface for COLUMBA is available at http://www.columba-db.de.

  17. Structure and Protein-Protein Interaction Studies on Chlamydia trachomatis Protein CT670 (YscO Homolog)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzini, Emily; Singer, Alexander; Singh, Bhag

    2010-07-28

    Comparative genomic studies have identified many proteins that are found only in various Chlamydiae species and exhibit no significant sequence similarity to any protein in organisms that do not belong to this group. The CT670 protein of Chlamydia trachomatis is one of the proteins whose genes are in one of the type III secretion gene clusters but whose cellular functions are not known. CT670 shares several characteristics with the YscO protein of Yersinia pestis, including the neighboring genes, size, charge, and secondary structure, but the structures and/or functions of these proteins remain to be determined. Although a BLAST search withmore » CT670 did not identify YscO as a related protein, our analysis indicated that these two proteins exhibit significant sequence similarity. In this paper, we report that the CT670 crystal, solved at a resolution of 2 {angstrom}, consists of a single coiled coil containing just two long helices. Gel filtration and analytical ultracentrifugation studies showed that in solution CT670 exists in both monomeric and dimeric forms and that the monomer predominates at lower protein concentrations. We examined the interaction of CT670 with many type III secretion system-related proteins (viz., CT091, CT665, CT666, CT667, CT668, CT669, CT671, CT672, and CT673) by performing bacterial two-hybrid assays. In these experiments, CT670 was found to interact only with the CT671 protein (YscP homolog), whose gene is immediately downstream of ct670. A specific interaction between CT670 and CT671 was also observed when affinity chromatography pull-down experiments were performed. These results suggest that CT670 and CT671 are putative homologs of the YcoO and YscP proteins, respectively, and that they likely form a chaperone-effector pair.« less

  18. Superimposition of protein structures with dynamically weighted RMSD.

    PubMed

    Wu, Di; Wu, Zhijun

    2010-02-01

    In protein modeling, one often needs to superimpose a group of structures for a protein. A common way to do this is to translate and rotate the structures so that the square root of the sum of squares of coordinate differences of the atoms in the structures, called the root-mean-square deviation (RMSD) of the structures, is minimized. While it has provided a general way of aligning a group of structures, this approach has not taken into account the fact that different atoms may have different properties and they should be compared differently. For this reason, when superimposed with RMSD, the coordinate differences of different atoms should be evaluated with different weights. The resulting RMSD is called the weighted RMSD (wRMSD). Here we investigate the use of a special wRMSD for superimposing a group of structures with weights assigned to the atoms according to certain thermal motions of the atoms. We call such an RMSD the dynamically weighted RMSD (dRMSD). We show that the thermal motions of the atoms can be obtained from several sources such as the mean-square fluctuations that can be estimated by Gaussian network model analysis. We show that the superimposition of structures with dRMSD can successfully identify protein domains and protein motions, and that it has important implications in practice, e.g., in aligning the ensemble of structures determined by nuclear magnetic resonance.

  19. Utilizing knowledge base of amino acids structural neighborhoods to predict protein-protein interaction sites.

    PubMed

    Jelínek, Jan; Škoda, Petr; Hoksza, David

    2017-12-06

    Protein-protein interactions (PPI) play a key role in an investigation of various biochemical processes, and their identification is thus of great importance. Although computational prediction of which amino acids take part in a PPI has been an active field of research for some time, the quality of in-silico methods is still far from perfect. We have developed a novel prediction method called INSPiRE which benefits from a knowledge base built from data available in Protein Data Bank. All proteins involved in PPIs were converted into labeled graphs with nodes corresponding to amino acids and edges to pairs of neighboring amino acids. A structural neighborhood of each node was then encoded into a bit string and stored in the knowledge base. When predicting PPIs, INSPiRE labels amino acids of unknown proteins as interface or non-interface based on how often their structural neighborhood appears as interface or non-interface in the knowledge base. We evaluated INSPiRE's behavior with respect to different types and sizes of the structural neighborhood. Furthermore, we examined the suitability of several different features for labeling the nodes. Our evaluations showed that INSPiRE clearly outperforms existing methods with respect to Matthews correlation coefficient. In this paper we introduce a new knowledge-based method for identification of protein-protein interaction sites called INSPiRE. Its knowledge base utilizes structural patterns of known interaction sites in the Protein Data Bank which are then used for PPI prediction. Extensive experiments on several well-established datasets show that INSPiRE significantly surpasses existing PPI approaches.

  20. Rapid and reliable protein structure determination via chemical shift threading.

    PubMed

    Hafsa, Noor E; Berjanskii, Mark V; Arndt, David; Wishart, David S

    2018-01-01

    Protein structure determination using nuclear magnetic resonance (NMR) spectroscopy can be both time-consuming and labor intensive. Here we demonstrate how chemical shift threading can permit rapid, robust, and accurate protein structure determination using only chemical shift data. Threading is a relatively old bioinformatics technique that uses a combination of sequence information and predicted (or experimentally acquired) low-resolution structural data to generate high-resolution 3D protein structures. The key motivations behind using NMR chemical shifts for protein threading lie in the fact that they are easy to measure, they are available prior to 3D structure determination, and they contain vital structural information. The method we have developed uses not only sequence and chemical shift similarity but also chemical shift-derived secondary structure, shift-derived super-secondary structure, and shift-derived accessible surface area to generate a high quality protein structure regardless of the sequence similarity (or lack thereof) to a known structure already in the PDB. The method (called E-Thrifty) was found to be very fast (often < 10 min/structure) and to significantly outperform other shift-based or threading-based structure determination methods (in terms of top template model accuracy)-with an average TM-score performance of 0.68 (vs. 0.50-0.62 for other methods). Coupled with recent developments in chemical shift refinement, these results suggest that protein structure determination, using only NMR chemical shifts, is becoming increasingly practical and reliable. E-Thrifty is available as a web server at http://ethrifty.ca .

  1. The use of supramolecular structures as protein ligands.

    PubMed

    Stopa, Barbara; Jagusiak, Anna; Konieczny, Leszek; Piekarska, Barbara; Rybarska, Janina; Zemanek, Grzegorz; Król, Marcin; Piwowar, Piotr; Roterman, Irena

    2013-11-01

    Congo red dye as well as other eagerly self-assembling organic molecules which form rod-like or ribbon-like supramolecular structures in water solutions, appears to represent a new class of protein ligands with possible wide-ranging medical applications. Such molecules associate with proteins as integral clusters and preferentially penetrate into areas of low molecular stability. Abnormal, partly unfolded proteins are the main binding target for such ligands, while well packed molecules are generally inaccessible. Of particular interest is the observation that local susceptibility for binding supramolecular ligands may be promoted in some proteins as a consequence of function-derived structural changes, and that such complexation may alter the activity profile of target proteins. Examples are presented in this paper.

  2. Protein structure estimation from NMR data by matrix completion.

    PubMed

    Li, Zhicheng; Li, Yang; Lei, Qiang; Zhao, Qing

    2017-09-01

    Knowledge of protein structures is very important to understand their corresponding physical and chemical properties. Nuclear Magnetic Resonance (NMR) spectroscopy is one of the main methods to measure protein structure. In this paper, we propose a two-stage approach to calculate the structure of a protein from a highly incomplete distance matrix, where most data are obtained from NMR. We first randomly "guess" a small part of unobservable distances by utilizing the triangle inequality, which is crucial for the second stage. Then we use matrix completion to calculate the protein structure from the obtained incomplete distance matrix. We apply the accelerated proximal gradient algorithm to solve the corresponding optimization problem. Furthermore, the recovery error of our method is analyzed, and its efficiency is demonstrated by several practical examples.

  3. Exploring Human Diseases and Biological Mechanisms by Protein Structure Prediction and Modeling.

    PubMed

    Wang, Juexin; Luttrell, Joseph; Zhang, Ning; Khan, Saad; Shi, NianQing; Wang, Michael X; Kang, Jing-Qiong; Wang, Zheng; Xu, Dong

    2016-01-01

    Protein structure prediction and modeling provide a tool for understanding protein functions by computationally constructing protein structures from amino acid sequences and analyzing them. With help from protein prediction tools and web servers, users can obtain the three-dimensional protein structure models and gain knowledge of functions from the proteins. In this chapter, we will provide several examples of such studies. As an example, structure modeling methods were used to investigate the relation between mutation-caused misfolding of protein and human diseases including epilepsy and leukemia. Protein structure prediction and modeling were also applied in nucleotide-gated channels and their interaction interfaces to investigate their roles in brain and heart cells. In molecular mechanism studies of plants, rice salinity tolerance mechanism was studied via structure modeling on crucial proteins identified by systems biology analysis; trait-associated protein-protein interactions were modeled, which sheds some light on the roles of mutations in soybean oil/protein content. In the age of precision medicine, we believe protein structure prediction and modeling will play more and more important roles in investigating biomedical mechanism of diseases and drug design.

  4. Mining protein loops using a structural alphabet and statistical exceptionality

    PubMed Central

    2010-01-01

    Background Protein loops encompass 50% of protein residues in available three-dimensional structures. These regions are often involved in protein functions, e.g. binding site, catalytic pocket... However, the description of protein loops with conventional tools is an uneasy task. Regular secondary structures, helices and strands, have been widely studied whereas loops, because they are highly variable in terms of sequence and structure, are difficult to analyze. Due to data sparsity, long loops have rarely been systematically studied. Results We developed a simple and accurate method that allows the description and analysis of the structures of short and long loops using structural motifs without restriction on loop length. This method is based on the structural alphabet HMM-SA. HMM-SA allows the simplification of a three-dimensional protein structure into a one-dimensional string of states, where each state is a four-residue prototype fragment, called structural letter. The difficult task of the structural grouping of huge data sets is thus easily accomplished by handling structural letter strings as in conventional protein sequence analysis. We systematically extracted all seven-residue fragments in a bank of 93000 protein loops and grouped them according to the structural-letter sequence, named structural word. This approach permits a systematic analysis of loops of all sizes since we consider the structural motifs of seven residues rather than complete loops. We focused the analysis on highly recurrent words of loops (observed more than 30 times). Our study reveals that 73% of loop-lengths are covered by only 3310 highly recurrent structural words out of 28274 observed words). These structural words have low structural variability (mean RMSd of 0.85 Å). As expected, half of these motifs display a flanking-region preference but interestingly, two thirds are shared by short (less than 12 residues) and long loops. Moreover, half of recurrent motifs exhibit a

  5. Mining protein loops using a structural alphabet and statistical exceptionality.

    PubMed

    Regad, Leslie; Martin, Juliette; Nuel, Gregory; Camproux, Anne-Claude

    2010-02-04

    Protein loops encompass 50% of protein residues in available three-dimensional structures. These regions are often involved in protein functions, e.g. binding site, catalytic pocket... However, the description of protein loops with conventional tools is an uneasy task. Regular secondary structures, helices and strands, have been widely studied whereas loops, because they are highly variable in terms of sequence and structure, are difficult to analyze. Due to data sparsity, long loops have rarely been systematically studied. We developed a simple and accurate method that allows the description and analysis of the structures of short and long loops using structural motifs without restriction on loop length. This method is based on the structural alphabet HMM-SA. HMM-SA allows the simplification of a three-dimensional protein structure into a one-dimensional string of states, where each state is a four-residue prototype fragment, called structural letter. The difficult task of the structural grouping of huge data sets is thus easily accomplished by handling structural letter strings as in conventional protein sequence analysis. We systematically extracted all seven-residue fragments in a bank of 93000 protein loops and grouped them according to the structural-letter sequence, named structural word. This approach permits a systematic analysis of loops of all sizes since we consider the structural motifs of seven residues rather than complete loops. We focused the analysis on highly recurrent words of loops (observed more than 30 times). Our study reveals that 73% of loop-lengths are covered by only 3310 highly recurrent structural words out of 28274 observed words). These structural words have low structural variability (mean RMSd of 0.85 A). As expected, half of these motifs display a flanking-region preference but interestingly, two thirds are shared by short (less than 12 residues) and long loops. Moreover, half of recurrent motifs exhibit a significant level of

  6. HDAPD: a web tool for searching the disease-associated protein structures

    PubMed Central

    2010-01-01

    Background The protein structures of the disease-associated proteins are important for proceeding with the structure-based drug design to against a particular disease. Up until now, proteins structures are usually searched through a PDB id or some sequence information. However, in the HDAPD database presented here the protein structure of a disease-associated protein can be directly searched through the associated disease name keyed in. Description The search in HDAPD can be easily initiated by keying some key words of a disease, protein name, protein type, or PDB id. The protein sequence can be presented in FASTA format and directly copied for a BLAST search. HDAPD is also interfaced with Jmol so that users can observe and operate a protein structure with Jmol. The gene ontological data such as cellular components, molecular functions, and biological processes are provided once a hyperlink to Gene Ontology (GO) is clicked. Further, HDAPD provides a link to the KEGG map such that where the protein is placed and its relationship with other proteins in a metabolic pathway can be found from the map. The latest literatures namely titles, journals, authors, and abstracts searched from PubMed for the protein are also presented as a length controllable list. Conclusions Since the HDAPD data content can be routinely updated through a PHP-MySQL web page built, the new database presented is useful for searching the structures for some disease-associated proteins that may play important roles in the disease developing process for performing the structure-based drug design to against the diseases. PMID:20158919

  7. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    PubMed

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  8. Structure elucidation of dimeric transmembrane domains of bitopic proteins.

    PubMed

    Bocharov, Eduard V; Volynsky, Pavel E; Pavlov, Konstantin V; Efremov, Roman G; Arseniev, Alexander S

    2010-01-01

    The interaction between transmembrane helices is of great interest because it directly determines biological activity of a membrane protein. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One much studied form of membrane proteins known as bitopic protein is a dimer containing two membrane-spanning helices associating laterally. Establishing structure-function relationship as well as rational design of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. At present time, to investigate spatial structure and internal dynamics of such transmembrane helical dimers, several strategies were developed based mainly on a combination of NMR spectroscopy, optical spectroscopy, protein engineering and molecular modeling. These approaches were successfully applied to homo- and heterodimeric transmembrane fragments of several bitopic proteins, which play important roles in normal and in pathological conditions of human organism.

  9. Defining and predicting structurally conserved regions in protein superfamilies

    PubMed Central

    Huang, Ivan K.; Grishin, Nick V.

    2013-01-01

    Motivation: The structures of homologous proteins are generally better conserved than their sequences. This phenomenon is demonstrated by the prevalence of structurally conserved regions (SCRs) even in highly divergent protein families. Defining SCRs requires the comparison of two or more homologous structures and is affected by their availability and divergence, and our ability to deduce structurally equivalent positions among them. In the absence of multiple homologous structures, it is necessary to predict SCRs of a protein using information from only a set of homologous sequences and (if available) a single structure. Accurate SCR predictions can benefit homology modelling and sequence alignment. Results: Using pairwise DaliLite alignments among a set of homologous structures, we devised a simple measure of structural conservation, termed structural conservation index (SCI). SCI was used to distinguish SCRs from non-SCRs. A database of SCRs was compiled from 386 SCOP superfamilies containing 6489 protein domains. Artificial neural networks were then trained to predict SCRs with various features deduced from a single structure and homologous sequences. Assessment of the predictions via a 5-fold cross-validation method revealed that predictions based on features derived from a single structure perform similarly to ones based on homologous sequences, while combining sequence and structural features was optimal in terms of accuracy (0.755) and Matthews correlation coefficient (0.476). These results suggest that even without information from multiple structures, it is still possible to effectively predict SCRs for a protein. Finally, inspection of the structures with the worst predictions pinpoints difficulties in SCR definitions. Availability: The SCR database and the prediction server can be found at http://prodata.swmed.edu/SCR. Contact: 91huangi@gmail.com or grishin@chop.swmed.edu Supplementary information: Supplementary data are available at Bioinformatics

  10. Mixing and Matching Detergents for Membrane Protein NMR Structure Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Columbus, Linda; Lipfert, Jan; Jambunathan, Kalyani

    2009-10-21

    One major obstacle to membrane protein structure determination is the selection of a detergent micelle that mimics the native lipid bilayer. Currently, detergents are selected by exhaustive screening because the effects of protein-detergent interactions on protein structure are poorly understood. In this study, the structure and dynamics of an integral membrane protein in different detergents is investigated by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS). The results suggest that matching of the micelle dimensions to the protein's hydrophobic surface avoids exchange processes that reduce the completeness of the NMR observations. Based onmore » these dimensions, several mixed micelles were designed that improved the completeness of NMR observations. These findings provide a basis for the rational design of mixed micelles that may advance membrane protein structure determination by NMR.« less

  11. The simulation study of protein-protein interfaces based on the 4-helix bundle structure

    NASA Astrophysics Data System (ADS)

    Fukuda, Masaki; Komatsu, Yu; Morikawa, Ryota; Miyakawa, Takeshi; Takasu, Masako; Akanuma, Satoshi; Yamagishi, Akihiko

    2013-02-01

    Docking of two protein molecules is induced by intermolecular interactions. Our purposes in this study are: designing binding interfaces on the two proteins, which specifically interact to each other; and inducing intermolecular interactions between the two proteins by mixing them. A 4-helix bundle structure was chosen as a scaffold on which binding interfaces were created. Based on this scaffold, we designed binding interfaces involving charged and nonpolar amino acid residues. We performed molecular dynamics (MD) simulation to identify suitable amino acid residues for the interfaces. We chose YciF protein as the scaffold for the protein-protein docking simulation. We observed the structure of two YciF protein molecules (I and II), and we calculated the distance between centroids (center of gravity) of the interfaces' surface planes of the molecules I and II. We found that the docking of the two protein molecules can be controlled by the number of hydrophobic and charged amino acid residues involved in the interfaces. Existence of six hydrophobic and five charged amino acid residues within an interface were most suitable for the protein-protein docking.

  12. Structural changes in gluten protein structure after addition of emulsifier. A Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ferrer, Evelina G.; Gómez, Analía V.; Añón, María C.; Puppo, María C.

    2011-06-01

    Food protein product, gluten protein, was chemically modified by varying levels of sodium stearoyl lactylate (SSL); and the extent of modifications (secondary and tertiary structures) of this protein was analyzed by using Raman spectroscopy. Analysis of the Amide I band showed an increase in its intensity mainly after the addition of the 0.25% of SSL to wheat flour to produced modified gluten protein, pointing the formation of a more ordered structure. Side chain vibrations also confirmed the observed changes.

  13. Protein Structure Classification and Loop Modeling Using Multiple Ramachandran Distributions.

    PubMed

    Najibi, Seyed Morteza; Maadooliat, Mehdi; Zhou, Lan; Huang, Jianhua Z; Gao, Xin

    2017-01-01

    Recently, the study of protein structures using angular representations has attracted much attention among structural biologists. The main challenge is how to efficiently model the continuous conformational space of the protein structures based on the differences and similarities between different Ramachandran plots. Despite the presence of statistical methods for modeling angular data of proteins, there is still a substantial need for more sophisticated and faster statistical tools to model the large-scale circular datasets. To address this need, we have developed a nonparametric method for collective estimation of multiple bivariate density functions for a collection of populations of protein backbone angles. The proposed method takes into account the circular nature of the angular data using trigonometric spline which is more efficient compared to existing methods. This collective density estimation approach is widely applicable when there is a need to estimate multiple density functions from different populations with common features. Moreover, the coefficients of adaptive basis expansion for the fitted densities provide a low-dimensional representation that is useful for visualization, clustering, and classification of the densities. The proposed method provides a novel and unique perspective to two important and challenging problems in protein structure research: structure-based protein classification and angular-sampling-based protein loop structure prediction.

  14. Density functional study of molecular interactions in secondary structures of proteins.

    PubMed

    Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki

    2016-01-01

    Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.

  15. Structure and Calcium Binding Properties of a Neuronal Calcium-Myristoyl Switch Protein, Visinin-Like Protein 3.

    PubMed

    Li, Congmin; Lim, Sunghyuk; Braunewell, Karl H; Ames, James B

    2016-01-01

    Visinin-like protein 3 (VILIP-3) belongs to a family of Ca2+-myristoyl switch proteins that regulate signal transduction in the brain and retina. Here we analyze Ca2+ binding, characterize Ca2+-induced conformational changes, and determine the NMR structure of myristoylated VILIP-3. Three Ca2+ bind cooperatively to VILIP-3 at EF2, EF3 and EF4 (KD = 0.52 μM and Hill slope of 1.8). NMR assignments, mutagenesis and structural analysis indicate that the covalently attached myristoyl group is solvent exposed in Ca2+-bound VILIP-3, whereas Ca2+-free VILIP-3 contains a sequestered myristoyl group that interacts with protein residues (E26, Y64, V68), which are distinct from myristate contacts seen in other Ca2+-myristoyl switch proteins. The myristoyl group in VILIP-3 forms an unusual L-shaped structure that places the C14 methyl group inside a shallow protein groove, in contrast to the much deeper myristoyl binding pockets observed for recoverin, NCS-1 and GCAP1. Thus, the myristoylated VILIP-3 protein structure determined in this study is quite different from those of other known myristoyl switch proteins (recoverin, NCS-1, and GCAP1). We propose that myristoylation serves to fine tune the three-dimensional structures of neuronal calcium sensor proteins as a means of generating functional diversity.

  16. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    PubMed

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  17. Geometry motivated alternative view on local protein backbone structures.

    PubMed

    Zacharias, Jan; Knapp, Ernst Walter

    2013-11-01

    We present an alternative to the classical Ramachandran plot (R-plot) to display local protein backbone structure. Instead of the (φ, ψ)-backbone angles relating to the chemical architecture of polypeptides generic helical parameters are used. These are the rotation or twist angle ϑ and the helical rise parameter d. Plots with these parameters provide a different view on the nature of local protein backbone structures. It allows to display the local structures in polar (d, ϑ)-coordinates, which is not possible for an R-plot, where structural regimes connected by periodicity appear disconnected. But there are other advantages, like a clear discrimination of the handedness of a local structure, a larger spread of the different local structure domains--the latter can yield a better separation of different local secondary structure motives--and many more. Compared to the R-plot we are not aware of any major disadvantage to classify local polypeptide structures with the (d, ϑ)-plot, except that it requires some elementary computations. To facilitate usage of the new (d, ϑ)-plot for protein structures we provide a web application (http://agknapp.chemie.fu-berlin.de/secsass), which shows the (d, ϑ)-plot side-by-side with the R-plot. © 2013 The Protein Society.

  18. Hot spot of structural ambivalence in prion protein revealed by secondary structure principal component analysis.

    PubMed

    Yamamoto, Norifumi

    2014-08-21

    The conformational conversion of proteins into an aggregation-prone form is a common feature of various neurodegenerative disorders including Alzheimer's, Huntington's, Parkinson's, and prion diseases. In the early stage of prion diseases, secondary structure conversion in prion protein (PrP) causing β-sheet expansion facilitates the formation of a pathogenic isoform with a high content of β-sheets and strong aggregation tendency to form amyloid fibrils. Herein, we propose a straightforward method to extract essential information regarding the secondary structure conversion of proteins from molecular simulations, named secondary structure principal component analysis (SSPCA). The definite existence of a PrP isoform with an increased β-sheet structure was confirmed in a free-energy landscape constructed by mapping protein structural data into a reduced space according to the principal components determined by the SSPCA. We suggest a "spot" of structural ambivalence in PrP-the C-terminal part of helix 2-that lacks a strong intrinsic secondary structure, thus promoting a partial α-helix-to-β-sheet conversion. This result is important to understand how the pathogenic conformational conversion of PrP is initiated in prion diseases. The SSPCA has great potential to solve various challenges in studying highly flexible molecular systems, such as intrinsically disordered proteins, structurally ambivalent peptides, and chameleon sequences.

  19. Protein structure prediction with local adjust tabu search algorithm

    PubMed Central

    2014-01-01

    Background Protein folding structure prediction is one of the most challenging problems in the bioinformatics domain. Because of the complexity of the realistic protein structure, the simplified structure model and the computational method should be adopted in the research. The AB off-lattice model is one of the simplification models, which only considers two classes of amino acids, hydrophobic (A) residues and hydrophilic (B) residues. Results The main work of this paper is to discuss how to optimize the lowest energy configurations in 2D off-lattice model and 3D off-lattice model by using Fibonacci sequences and real protein sequences. In order to avoid falling into local minimum and faster convergence to the global minimum, we introduce a novel method (SATS) to the protein structure problem, which combines simulated annealing algorithm and tabu search algorithm. Various strategies, such as the new encoding strategy, the adaptive neighborhood generation strategy and the local adjustment strategy, are adopted successfully for high-speed searching the optimal conformation corresponds to the lowest energy of the protein sequences. Experimental results show that some of the results obtained by the improved SATS are better than those reported in previous literatures, and we can sure that the lowest energy folding state for short Fibonacci sequences have been found. Conclusions Although the off-lattice models is not very realistic, they can reflect some important characteristics of the realistic protein. It can be found that 3D off-lattice model is more like native folding structure of the realistic protein than 2D off-lattice model. In addition, compared with some previous researches, the proposed hybrid algorithm can more effectively and more quickly search the spatial folding structure of a protein chain. PMID:25474708

  20. A Structural Perspective on the Modulation of Protein-Protein Interactions with Small Molecules.

    PubMed

    Demirel, Habibe Cansu; Dogan, Tunca; Tuncbag, Nurcan

    2018-05-31

    Protein-protein interactions (PPIs) are the key components in many cellular processes including signaling pathways, enzymatic reactions and epigenetic regulation. Abnormal interactions of some proteins may be pathogenic and cause various disorders including cancer and neurodegenerative diseases. Although inhibiting PPIs with small molecules is a challenging task, it gained an increasing interest because of its strong potential for drug discovery and design. The knowledge of the interface as well as the structural and chemical characteristics of the PPIs and their roles in the cellular pathways are necessary for a rational design of small molecules to modulate PPIs. In this study, we review the recent progress in the field and detail the physicochemical properties of PPIs including binding hot spots with a focus on structural methods. Then, we review recent approaches for structural prediction of PPIs. Finally, we revisit the concept of targeting PPIs in a systems biology perspective and we refer to the non-structural approaches, usually employed when the structural information is not present. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Adventitious viruses in insect cell lines used for recombinant protein expression.

    PubMed

    Geisler, Christoph; Jarvis, Donald L

    2018-04-01

    Insect cells are widely used for recombinant protein expression, typically as hosts for recombinant baculovirus vectors, but also for plasmid-mediated transient transfection or stable genetic transformation. Insect cells are used to express proteins for research, as well as to manufacture biologicals for human and veterinary medicine. Recently, several insect cell lines used for recombinant protein expression were found to be persistently infected with adventitious viruses. This has raised questions about how these infections might affect research performed using those cell lines. Furthermore, these findings raised serious concerns about the safety of biologicals produced using those cell lines. In response, new insect cell lines lacking adventitious viruses have been isolated for use as improved research tools and safer biological manufacturing platforms. Here, we review the scientific and patent literature on adventitious viruses found in insect cell lines, affected cell lines, and new virus-free cell lines. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Solving coiled-coil protein structures

    DOE PAGES

    Dauter, Zbigniew

    2015-02-26

    With the availability of more than 100,000 entries stored in the Protein Data Bank (PDB) that can be used as search models, molecular replacement (MR) is currently the most popular method of solving crystal structures of macromolecules. Significant methodological efforts have been directed in recent years towards making this approach more powerful and practical. This resulted in the creation of several computer programs, highly automated and user friendly, that are able to successfully solve many structures even by researchers who, although interested in structures of biomolecules, are not very experienced in crystallography.

  3. Ultra-high-resolution X-ray structure of proteins.

    PubMed

    Lecomte, C; Guillot, B; Muzet, N; Pichon-Pesme, V; Jelsch, C

    2004-04-01

    The constant advances in synchrotron radiation sources and crystallogenesis methods and the impulse of structural genomics projects have brought biocrystallography to a context favorable to subatomic resolution protein and nucleic acid structures. Thus, as soon as such precision can be frequently obtained, the amount of information available in the precise electron density should also be easily and naturally exploited, similarly to the field of small molecule charge density studies. Indeed, the use of a nonspherical model for the atomic electron density in the refinement of subatomic resolution protein structures allows the experimental description of their electrostatic properties. Some methods we have developed and implemented in our multipolar refinement program MoPro for this purpose are presented. Examples of successful applications to several subatomic resolution protein structures, including the 0.66 angstrom resolution human aldose reductase, are described.

  4. Distribution and Spectroscopy of Green Fluorescent Protein and Acyl-CoA: Cholesterol Acytransferase in Sf21 Insect Cells

    NASA Technical Reports Server (NTRS)

    Richmond, R. C.; Mahtani, H.; Lu, X.; Chang, T. Y.; Malak, H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Acyl-CoA: cholesterol acyltransferase (ACAT) is thought to significantly participate in the pathway of cholesterol esterification that underlies the pathology of artherosclerosis. This enzyme is a membrane protein known to be preferentially bound within the endoplasmic reticulum of mammalian cells, from which location it esterifies cholesterol derived from low density lipoprotein. Cultures of insect cells were separately infected with baculovirus containing the gene for green fluroescent protein (GFP) and with baculovirus containing tandem genes for GFP and ACAT. These infected cultures expressed GFP and the fusion protein GCAT, respectively, with maximum expression occurring on the fourth day after infection. Extraction of GFP- and of GCAT-expressing cells with urea and detergent resulted in recovery of fluorescent protein in aqueous solution. Fluorescence spectra at neutral pH were identical for both GFP and GCAT extracts in aqueous solution, indicating unperturbed tertiary structure for the GFP moiety within GCAT. In a cholesterol esterification assay, GCAT demonstrated ACAT activity, but with less efficiency compared to native ACAT. It was hypothesized that the membrane protein ACAT would lead to differences in localization of GCAT compared to GFP within the respective expressing insect cells. The GFP marker directly and also within the fusion protein GCAT was accordingly used as the intracellular probe that was fluorescently analyzed by the new biophotonics technique of hyperspectral imaging. In that technique, fluorescence imaging was obtained from two dimensional arrays of cells, and regions of interest from within those images were then retrospectively analyzed for the emission spectra that comprises the image. Results of hyperspectral imaging of insect cells on day 4 postinfection showed that GCAT was preferentially localized to the cytoplasm of these cells compared to GFP. Furthermore, the emission spectra obtained for the localized GCAT displayed a peak

  5. Sequential Release of Proteins from Structured Multishell Microcapsules.

    PubMed

    Shimanovich, Ulyana; Michaels, Thomas C T; De Genst, Erwin; Matak-Vinkovic, Dijana; Dobson, Christopher M; Knowles, Tuomas P J

    2017-10-09

    In nature, a wide range of functional materials is based on proteins. Increasing attention is also turning to the use of proteins as artificial biomaterials in the form of films, gels, particles, and fibrils that offer great potential for applications in areas ranging from molecular medicine to materials science. To date, however, most such applications have been limited to single component materials despite the fact that their natural analogues are composed of multiple types of proteins with a variety of functionalities that are coassembled in a highly organized manner on the micrometer scale, a process that is currently challenging to achieve in the laboratory. Here, we demonstrate the fabrication of multicomponent protein microcapsules where the different components are positioned in a controlled manner. We use molecular self-assembly to generate multicomponent structures on the nanometer scale and droplet microfluidics to bring together the different components on the micrometer scale. Using this approach, we synthesize a wide range of multiprotein microcapsules containing three well-characterized proteins: glucagon, insulin, and lysozyme. The localization of each protein component in multishell microcapsules has been detected by labeling protein molecules with different fluorophores, and the final three-dimensional microcapsule structure has been resolved by using confocal microscopy together with image analysis techniques. In addition, we show that these structures can be used to tailor the release of such functional proteins in a sequential manner. Moreover, our observations demonstrate that the protein release mechanism from multishell capsules is driven by the kinetic control of mass transport of the cargo and by the dissolution of the shells. The ability to generate artificial materials that incorporate a variety of different proteins with distinct functionalities increases the breadth of the potential applications of artificial protein-based materials

  6. Bioinformatics and variability in drug response: a protein structural perspective

    PubMed Central

    Lahti, Jennifer L.; Tang, Grace W.; Capriotti, Emidio; Liu, Tianyun; Altman, Russ B.

    2012-01-01

    Marketed drugs frequently perform worse in clinical practice than in the clinical trials on which their approval is based. Many therapeutic compounds are ineffective for a large subpopulation of patients to whom they are prescribed; worse, a significant fraction of patients experience adverse effects more severe than anticipated. The unacceptable risk–benefit profile for many drugs mandates a paradigm shift towards personalized medicine. However, prior to adoption of patient-specific approaches, it is useful to understand the molecular details underlying variable drug response among diverse patient populations. Over the past decade, progress in structural genomics led to an explosion of available three-dimensional structures of drug target proteins while efforts in pharmacogenetics offered insights into polymorphisms correlated with differential therapeutic outcomes. Together these advances provide the opportunity to examine how altered protein structures arising from genetic differences affect protein–drug interactions and, ultimately, drug response. In this review, we first summarize structural characteristics of protein targets and common mechanisms of drug interactions. Next, we describe the impact of coding mutations on protein structures and drug response. Finally, we highlight tools for analysing protein structures and protein–drug interactions and discuss their application for understanding altered drug responses associated with protein structural variants. PMID:22552919

  7. De Novo Proteins with Life-Sustaining Functions Are Structurally Dynamic.

    PubMed

    Murphy, Grant S; Greisman, Jack B; Hecht, Michael H

    2016-01-29

    Designing and producing novel proteins that fold into stable structures and provide essential biological functions are key goals in synthetic biology. In initial steps toward achieving these goals, we constructed a combinatorial library of de novo proteins designed to fold into 4-helix bundles. As described previously, screening this library for sequences that function in vivo to rescue conditionally lethal mutants of Escherichia coli (auxotrophs) yielded several de novo sequences, termed SynRescue proteins, which rescued four different E. coli auxotrophs. In an effort to understand the structural requirements necessary for auxotroph rescue, we investigated the biophysical properties of the SynRescue proteins, using both computational and experimental approaches. Results from circular dichroism, size-exclusion chromatography, and NMR demonstrate that the SynRescue proteins are α-helical and relatively stable. Surprisingly, however, they do not form well-ordered structures. Instead, they form dynamic structures that fluctuate between monomeric and dimeric states. These findings show that a well-ordered structure is not a prerequisite for life-sustaining functions, and suggests that dynamic structures may have been important in the early evolution of protein function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Structure-guided wavelength tuning in far-red fluorescent proteins

    PubMed Central

    Ng, Ho-Leung; Lin, Michael Z.

    2017-01-01

    In recent years, protein engineers have succeeded in tuning the excitation spectra of natural fluorescent proteins from green wavelengths into orange and red wavelengths, resulting in the creation of a series of fluorescent proteins with emission in the far-red portions of the optical spectrum. These results have arisen from the synergistic combination of structural knowledge of fluorescent proteins, chemical intuition, and high-throughput screening methods. Here we review structural features found in autocatalytic far-red fluorescent proteins, and discuss how they add to our understanding of the biophysical mechanisms of wavelength tuning in biological chromophores. PMID:27468111

  9. Making the Bend: DNA Tertiary Structure and Protein-DNA Interactions

    PubMed Central

    Harteis, Sabrina; Schneider, Sabine

    2014-01-01

    DNA structure functions as an overlapping code to the DNA sequence. Rapid progress in understanding the role of DNA structure in gene regulation, DNA damage recognition and genome stability has been made. The three dimensional structure of both proteins and DNA plays a crucial role for their specific interaction, and proteins can recognise the chemical signature of DNA sequence (“base readout”) as well as the intrinsic DNA structure (“shape recognition”). These recognition mechanisms do not exist in isolation but, depending on the individual interaction partners, are combined to various extents. Driving force for the interaction between protein and DNA remain the unique thermodynamics of each individual DNA-protein pair. In this review we focus on the structures and conformations adopted by DNA, both influenced by and influencing the specific interaction with the corresponding protein binding partner, as well as their underlying thermodynamics. PMID:25026169

  10. G-LoSA for Prediction of Protein-Ligand Binding Sites and Structures.

    PubMed

    Lee, Hui Sun; Im, Wonpil

    2017-01-01

    Recent advances in high-throughput structure determination and computational protein structure prediction have significantly enriched the universe of protein structure. However, there is still a large gap between the number of available protein structures and that of proteins with annotated function in high accuracy. Computational structure-based protein function prediction has emerged to reduce this knowledge gap. The identification of a ligand binding site and its structure is critical to the determination of a protein's molecular function. We present a computational methodology for predicting small molecule ligand binding site and ligand structure using G-LoSA, our protein local structure alignment and similarity measurement tool. All the computational procedures described here can be easily implemented using G-LoSA Toolkit, a package of standalone software programs and preprocessed PDB structure libraries. G-LoSA and G-LoSA Toolkit are freely available to academic users at http://compbio.lehigh.edu/GLoSA . We also illustrate a case study to show the potential of our template-based approach harnessing G-LoSA for protein function prediction.

  11. Biology and genomics of viruses within the genus Gammabaculovirus.

    PubMed

    Arif, Basil; Escasa, Shannon; Pavlik, Lillian

    2011-11-01

    Hymenoptera is a very large and ancient insect order encompassing bees, wasps, ants and sawflies. Fossil records indicate that they existed over 200 million years ago and about 100 million years before the appearance of Lepidoptera. Sawflies have been major pests in many parts of the world and some have caused serious forest defoliation in North America. All baculoviruses isolated from sawflies are of the single nucleocapsids phenotype and appear to replicate in midgut cells only. This group of viruses has been shown to be excellent pest control agents and three have been registered in Canada and Britain for this purpose. Sawfly baculoviruses contain the smallest genome of all baculoviruses sequenced so far. Gene orders among sequenced sawfly baculoviruses are co-linear but this is not shared with the genomes of lepidopteran baculoviruses. One distinguishing feature among all sequenced sawfly viruses is the lack of a gene encoding a membrane fusion protein, which brought into question the role of the budded virus phenotype in Gammabaculovirus biology.

  12. Local Structural Differences in Homologous Proteins: Specificities in Different SCOP Classes

    PubMed Central

    Joseph, Agnel Praveen; Valadié, Hélène; Srinivasan, Narayanaswamy; de Brevern, Alexandre G.

    2012-01-01

    The constant increase in the number of solved protein structures is of great help in understanding the basic principles behind protein folding and evolution. 3-D structural knowledge is valuable in designing and developing methods for comparison, modelling and prediction of protein structures. These approaches for structure analysis can be directly implicated in studying protein function and for drug design. The backbone of a protein structure favours certain local conformations which include α-helices, β-strands and turns. Libraries of limited number of local conformations (Structural Alphabets) were developed in the past to obtain a useful categorization of backbone conformation. Protein Block (PB) is one such Structural Alphabet that gave a reasonable structure approximation of 0.42 Å. In this study, we use PB description of local structures to analyse conformations that are preferred sites for structural variations and insertions, among group of related folds. This knowledge can be utilized in improving tools for structure comparison that work by analysing local structure similarities. Conformational differences between homologous proteins are known to occur often in the regions comprising turns and loops. Interestingly, these differences are found to have specific preferences depending upon the structural classes of proteins. Such class-specific preferences are mainly seen in the all-β class with changes involving short helical conformations and hairpin turns. A test carried out on a benchmark dataset also indicates that the use of knowledge on the class specific variations can improve the performance of a PB based structure comparison approach. The preference for the indel sites also seem to be confined to a few backbone conformations involving β-turns and helix C-caps. These are mainly associated with short loops joining the regular secondary structures that mediate a reversal in the chain direction. Rare β-turns of type I’ and II’ are also

  13. MolTalk – a programming library for protein structures and structure analysis

    PubMed Central

    Diemand, Alexander V; Scheib, Holger

    2004-01-01

    Background Two of the mostly unsolved but increasingly urgent problems for modern biologists are a) to quickly and easily analyse protein structures and b) to comprehensively mine the wealth of information, which is distributed along with the 3D co-ordinates by the Protein Data Bank (PDB). Tools which address this issue need to be highly flexible and powerful but at the same time must be freely available and easy to learn. Results We present MolTalk, an elaborate programming language, which consists of the programming library libmoltalk implemented in Objective-C and the Smalltalk-based interpreter MolTalk. MolTalk combines the advantages of an easy to learn and programmable procedural scripting with the flexibility and power of a full programming language. An overview of currently available applications of MolTalk is given and with PDBChainSaw one such application is described in more detail. PDBChainSaw is a MolTalk-based parser and information extraction utility of PDB files. Weekly updates of the PDB are synchronised with PDBChainSaw and are available for free download from the MolTalk project page following the link to PDBChainSaw. For each chain in a protein structure, PDBChainSaw extracts the sequence from its co-ordinates and provides additional information from the PDB-file header section, such as scientific organism, compound name, and EC code. Conclusion MolTalk provides a rich set of methods to analyse and even modify experimentally determined or modelled protein structures. These methods vary in complexity and are thus suitable for beginners and advanced programmers alike. We envision MolTalk to be most valuable in the following applications: 1) To analyse protein structures repetitively in large-scale, i.e. to benchmark protein structure prediction methods or to evaluate structural models. The quality of the resulting 3D-models can be assessed by e.g. calculating a Ramachandran-Sasisekharan plot. 2) To quickly retrieve information for (a limited

  14. Soliton concepts and protein structure

    NASA Astrophysics Data System (ADS)

    Krokhotin, Andrei; Niemi, Antti J.; Peng, Xubiao

    2012-03-01

    Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion from a relatively small number of components. Here we propose that the modular building blocks are made of the dark soliton solution of a generalized discrete nonlinear Schrödinger equation. We find that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop-specific parameters, and we compute their statistical distribution in the Protein Data Bank (PDB). We explicitly construct a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop. The ensuing profiles cover practically all those proteins in PDB that have a resolution which is better than 2.0 Å, with a precision such that the average root-mean-square distance between the loop and its soliton is less than the experimental B-factor fluctuation distance. We also present two examples that describe how the loop library can be employed both to model and to analyze folded proteins.

  15. Soliton concepts and protein structure.

    PubMed

    Krokhotin, Andrei; Niemi, Antti J; Peng, Xubiao

    2012-03-01

    Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion from a relatively small number of components. Here we propose that the modular building blocks are made of the dark soliton solution of a generalized discrete nonlinear Schrödinger equation. We find that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop-specific parameters, and we compute their statistical distribution in the Protein Data Bank (PDB). We explicitly construct a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop. The ensuing profiles cover practically all those proteins in PDB that have a resolution which is better than 2.0 Å, with a precision such that the average root-mean-square distance between the loop and its soliton is less than the experimental B-factor fluctuation distance. We also present two examples that describe how the loop library can be employed both to model and to analyze folded proteins.

  16. SFG analysis of surface bound proteins: a route towards structure determination.

    PubMed

    Weidner, Tobias; Castner, David G

    2013-08-14

    The surface of a material is rapidly covered with proteins once that material is placed in a biological environment. The structure and function of these bound proteins play a key role in the interactions and communications of the material with the biological environment. Thus, it is crucial to gain a molecular level understanding of surface bound protein structure. While X-ray diffraction and solution phase NMR methods are well established for determining the structure of proteins in the crystalline or solution phase, there is not a corresponding single technique that can provide the same level of structural detail about proteins at surfaces or interfaces. However, recent advances in sum frequency generation (SFG) vibrational spectroscopy have significantly increased our ability to obtain structural information about surface bound proteins and peptides. A multi-technique approach of combining SFG with (1) protein engineering methods to selectively introduce mutations and isotopic labels, (2) other experimental methods such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and near edge X-ray absorption fine structure (NEXAFS) to provide complementary information, and (3) molecular dynamic (MD) simulations to extend the molecular level experimental results is a particularly promising route for structural characterization of surface bound proteins and peptides. By using model peptides and small proteins with well-defined structures, methods have been developed to determine the orientation of both backbone and side chains to the surface.

  17. SFG analysis of surface bound proteins: A route towards structure determination

    PubMed Central

    Weidner, Tobias; Castner, David G.

    2013-01-01

    The surface of a material is rapidly covered with proteins once that material is placed in a biological environment. The structure and function of these bound proteins play a key role in the interactions and communications of the material with the biological environment. Thus, it is crucial to gain a molecular level understanding of surface bound protein structure. While X-ray diffraction and solution phase NMR methods are well established for determining the structure of proteins in the crystalline or solution phase, there is not a corresponding single technique that can provide the same level of structural detail about proteins at surfaces or interfaces. However, recent advances in sum frequency generation (SFG) vibrational spectroscopy have significantly increased our ability to obtain structural information about surface bound proteins and peptides. A multi-technique approach of combining SFG with (1) protein engineering methods to selectively introduce mutations and isotopic labels, (2) other experimental methods such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and near edge x-ray absorption fine structure (NEXAFS) to provide complementary information, and (3) molecular dynamic (MD) simulations to extend the molecular level experimental results is a particularly promising route for structural characterization of surface bound proteins and peptides. By using model peptides and small proteins with well-defined structures, methods have been developed to determine the orientation of both backbone and side chains to the surface. PMID:23727992

  18. DNA Nanotubes for NMR Structure Determination of Membrane Proteins

    PubMed Central

    Bellot, Gaëtan; McClintock, Mark A.; Chou, James J; Shih, William M.

    2013-01-01

    Structure determination of integral membrane proteins by solution NMR represents one of the most important challenges of structural biology. A Residual-Dipolar-Coupling-based refinement approach can be used to solve the structure of membrane proteins up to 40 kDa in size, however, a weak-alignment medium that is detergent-resistant is required. Previously, availability of media suitable for weak alignment of membrane proteins was severely limited. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400nm-long six-helix bundles each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, towards collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes via counter ions and small DNA binding molecules. This detergent-resistant liquid-crystal media offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility, and structural programmability. Production of sufficient nanotubes for 4–5 NMR experiments can be completed in one week by a single individual. PMID:23518667

  19. Free-Energy Landscape of Protein-Ligand Interactions Coupled with Protein Structural Changes.

    PubMed

    Moritsugu, Kei; Terada, Tohru; Kidera, Akinori

    2017-02-02

    Protein-ligand interactions are frequently coupled with protein structural changes. Focusing on the coupling, we present the free-energy surface (FES) of the ligand-binding process for glutamine-binding protein (GlnBP) and its ligand, glutamine, in which glutamine binding accompanies large-scale domain closure. All-atom simulations were performed in explicit solvents by multiscale enhanced sampling (MSES), which adopts a multicopy and multiscale scheme to achieve enhanced sampling of systems with a large number of degrees of freedom. The structural ensemble derived from the MSES simulation yielded the FES of the coupling, described in terms of both the ligand's and protein's degrees of freedom at atomic resolution, and revealed the tight coupling between the two degrees of freedom. The derived FES led to the determination of definite structural states, which suggested the dominant pathways of glutamine binding to GlnBP: first, glutamine migrates via diffusion to form a dominant encounter complex with Arg75 on the large domain of GlnBP, through strong polar interactions. Subsequently, the closing motion of GlnBP occurs to form ligand interactions with the small domain, finally completing the native-specific complex structure. The formation of hydrogen bonds between glutamine and the small domain is considered to be a rate-limiting step, inducing desolvation of the protein-ligand interface to form the specific native complex. The key interactions to attain high specificity for glutamine, the "door keeper" existing between the two domains (Asp10-Lys115) and the "hydrophobic sandwich" formed between the ligand glutamine and Phe13/Phe50, have been successfully mapped on the pathway derived from the FES.

  20. Yellow fluorescent protein phiYFPv (Phialidium): structure and structure-based mutagenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pletneva, Nadya V.; Pletnev, Vladimir Z., E-mail: vzpletnev@gmail.com; Souslova, Ekaterina

    The yellow fluorescent protein phiYFPv with improved folding has been developed from the spectrally identical wild-type phiYFP found in the marine jellyfish Phialidium. The yellow fluorescent protein phiYFPv (λ{sub em}{sup max} ≃ 537 nm) with improved folding has been developed from the spectrally identical wild-type phiYFP found in the marine jellyfish Phialidium. The latter fluorescent protein is one of only two known cases of naturally occurring proteins that exhibit emission spectra in the yellow–orange range (535–555 nm). Here, the crystal structure of phiYFPv has been determined at 2.05 Å resolution. The ‘yellow’ chromophore formed from the sequence triad Thr65-Tyr66-Gly67 adoptsmore » the bicyclic structure typical of fluorophores emitting in the green spectral range. It was demonstrated that perfect antiparallel π-stacking of chromophore Tyr66 and the proximal Tyr203, as well as Val205, facing the chromophore phenolic ring are chiefly responsible for the observed yellow emission of phiYFPv at 537 nm. Structure-based site-directed mutagenesis has been used to identify the key functional residues in the chromophore environment. The obtained results have been utilized to improve the properties of phiYFPv and its homologous monomeric biomarker tagYFP.« less