Science.gov

Sample records for badminton racket deflection

  1. The importance of being elastic: deflection of a badminton racket during a stroke.

    PubMed

    Kwan, Maxine; Rasmussen, John

    2010-03-01

    The deflection profiles of a badminton racket during strokes performed by elite and world-class badminton players were recorded by strain gauges and subsequently analysed to determine the role of shaft stiffness in racket performance. Deflection behaviour was consistent in all strokes across all players, suggesting a controlled use of racket elasticity. In addition, all impacts occurred within 100 ms of each other, a duration in which deflection velocity provides an increase in racket velocity, indicating that the players were able to use racket elasticity to their advantage. Since deflection behaviour is a product of the racket-player interaction, further work is required to determine the effects of different racket properties and player techniques on the elastic response of rackets during strokes.

  2. Material selection in a sustainable manufacturing practice of a badminton racket frame using Elimination and Choice Expressing Reality (ELECTRE) Method

    NASA Astrophysics Data System (ADS)

    Firdhaus Che Hassan, Muhammad; Rosli, Mohd Uzair Mohd; Redzuan, Muhammad Afiq Mohd

    2018-05-01

    Badminton is one of the leading sports in the world. It has its own set of rules on the equipments used and general game play. One of the main equipment used is the badminton racket. Each sections of a badminton racket have its own design requirements and one of it is the racket’s material selection. Therefore, material selection is very important to improve the usage of a badminton racket. This study describes the use of the Elimination and Choice Expressing Reality (ELECTRE) method in the material selection of a badminton racket frame with reference to the sustainable manufacturing practice of the frame. By categorizing the materials of the badminton racket frame according to mechanical, physical, chemical and environmental properties, and further detailed sub criteria were set according to the usage of these frames, the ELECTRE I method was used to determine the dominant material. Out of the six materials usually used in the manufacturing of a badminton racket frame, carbon fibre was the dominant material selected from three out of the four properties which are the mechanical, chemical and most importantly the environmental properties, as to comply with the sustainable manufacturing practice of these frames.

  3. Racket sports.

    PubMed

    Jayanthi, Neeru; Esser, Stephen

    2013-01-01

    Tennis may be considered a static and dynamic form of exercise with many well-demonstrated health benefits. Tennis has similar rates of injury to other individual recreational sports and junior competitive sports, without the catastrophic risk of contact/collision sports. Classifying tennis players into junior and elite categories versus adult recreational players may help in outlining volume of play recommendations, exposure risk, and types of injuries. Junior and elite players tend to tolerate higher volumes, have more acute and lower extremity injuries, and have more serious overuse stress injuries. Adult recreational players tend to tolerate lower volumes, have more overuse and upper extremity injuries, and more conditions that are degenerative. Many tennis players also develop asymmetric musculoskeletal adaptations, which may increase risk of specific injury. Tennis-specific evaluations may identify these at-risk segments, help guide preventive strategies including technical errors, and assist in developing return-to-play recommendations. Other racket sports such as squash, badminton, and racquetball have less data available but report both acute and traumatic injuries less commonly seen in tennis.

  4. Coincidence-anticipation timing requirements are different in racket sports.

    PubMed

    Akpinar, Selçuk; Devrilmez, Erhan; Kirazci, Sadettin

    2012-10-01

    The aim of this study was to compare the coincidence-anticipation timing accuracy of athletes of different racket sports with various stimulus velocity requirements. Ninety players (15 girls, 15 boys for each sport) from tennis (M age = 12.4 yr., SD = 1.4), badminton (M age = 12.5 yr., SD = 1.4), and table tennis (M age = 12.4 yr., SD = 1.2) participated in this study. Three different stimulus velocities, low, moderate, and high, were used to simulate the velocity requirements of these racket sports. Tennis players had higher accuracy when they performed under the low stimulus velocity compared to badminton and table tennis players. Badminton players performed better under the moderate speed comparing to tennis and table tennis players. Table tennis players had better performance than tennis and badminton players under the high stimulus velocity. Therefore, visual and motor systems of players from different racket sports may adapt to a stimulus velocity in coincidence-anticipation timing, which is specific to each type of racket sports.

  5. Science and the major racket sports: a review.

    PubMed

    Lees, Adrian

    2003-09-01

    The major racket sports include badminton, squash, table tennis and tennis. The growth of sports science and the commercialization of racket sports in recent years have focused attention on improved performance and this has led to a more detailed study and understanding of all aspects of racket sports. The aim here, therefore, is to review recent developments of the application of science to racket sports. The scientific disciplines of sports physiology and nutrition, notational analysis, sports biomechanics, sports medicine, sports engineering, sports psychology and motor skills are briefly considered in turn. It is evident from these reviews that a great deal of scientific endeavour has been applied to racket sports, but this is variable across both the racket sports and the scientific disciplines. A scientific approach has helped to: implement training programmes to improve players' fitness; guide players in nutritional and psychological preparation for play; inform players of the strategy and tactics used by themselves and their opponents; provide insight into the technical performance of skills; understand the effect of equipment on play; and accelerate the recovery from racket-arm injuries. Racket sports have also posed a unique challenge to scientists and have provided vehicles for developing scientific methodology. Racket sports provide a good model for investigating the interplay between aerobic and anaerobic metabolism and the effect of nutrition, heat and fatigue on performance. They have driven the development of mathematical solutions for multi-segment interactions within the racket arm during the performance of shots, which have contributed to our understanding of the mechanisms of both performance and injury. They have provided a unique challenge to sports engineers in relation to equipment performance and interaction with the player. Racket sports have encouraged developments in notational analysis both in terms of analytical procedures and the

  6. Mechanisms for anterior cruciate ligament injuries in badminton.

    PubMed

    Kimura, Yuka; Ishibashi, Yasuyuki; Tsuda, Eiichi; Yamamoto, Yuji; Tsukada, Harehiko; Toh, Satoshi

    2010-12-01

    A high incidence of anterior cruciate ligament (ACL) injuries related to sports activities has been reported; however, the injury situation of ACL injury in badminton has not been elucidated. This study investigated the mechanism of ACL injury in badminton using a questionnaire. Information on injury mechanism was gathered from interviews with six male and 15 female badminton players who received a non-contact ACL injury playing badminton and underwent ACL reconstruction. The most common injury mechanism (10 of 21 injuries) was single-leg landing after overhead stroke. Nine of 10 players had injured the knee opposite to the racket-hand side. The second most frequent injury mechanism (eight of 21 injuries) was plant-and-cut while side-stepping or backward stepping. All eight players injured the knee of the racket-hand side. Eleven injuries occurred in the rear court, and six of the 11 injuries occurred during single-leg landing after an overhead stroke. The knee opposite to the racket-hand side tended to sustain the ACL injuries during single-leg landing after a backhand overhead stroke, whereas the knee of the racket-hand side tended to be injured by plant-and-cut during side or backward stepping. These injury patterns appear to be due to specific movements during badminton.

  7. [Badminton--unknown sport].

    PubMed

    Zekan-Petrinović, Lidija

    2007-01-01

    For a long time, badminton was considered to be only a slow and light game for children, a game that is played outdoors and is structurally undemanding.Today, it is not an unknown and unrecognised sport, especially after it was included into the Olympics Games in 1992. Badminton is one of the oldest sports in the world. It is suitable for all ages (for children and elderly equally), women and men and even handicapped persons. Beginners can start playing badminton matches early because the basics are learned quickly. As a recreational activity, badminton is very popular in Zagreb. In the last 10 years, a number of halls specialized for badminton or offering badminton as one of available sports activities have been opened in Zagreb. At present, there are over 70 professional playgrounds for training of top contestants but also for the citizens who can play recreational badminton.

  8. Badminton injuries.

    PubMed Central

    Krøner, K; Schmidt, S A; Nielsen, A B; Yde, J; Jakobsen, B W; Møller-Madsen, B; Jensen, J

    1990-01-01

    In a one year period, from 1 January 1986 to 31 December 1986, 4303 patients with sports injuries were treated at Aarhus Amtssygehus and Aarhus Kommunehospital. The mean age was 21.6 years (range 7-72 years) and 2830 were men. Two hundred and seventeen badminton injuries occurred in 208 patients (136 men) with a mean age of 29.6 years (range 7-57 years), constituting 4.1 percent of all sport injuries in Aarhus. Joints and ligaments were injured in 58.5 percent of the patients, most frequently located in the lower limb and significantly more often among patients younger than 30 years of age. Muscle injury occurred in 19.8 percent of the patients. This type of injury was significantly more frequent among patients older than 30 years of age. Most injuries were minor. However, 6.8 percent of the patients were hospitalized and 30.9 percent received additional treatment by a physician. As the risk of injury varies with age, attempts to plan training individually and to institute prophylactic measures should be made. PMID:2078802

  9. The science of badminton: game characteristics, anthropometry, physiology, visual fitness and biomechanics.

    PubMed

    Phomsoupha, Michael; Laffaye, Guillaume

    2015-04-01

    Badminton is a racket sport for two or four people, with a temporal structure characterized by actions of short duration and high intensity. This sport has five events: men's and women's singles, men's and women's doubles, and mixed doubles, each requiring specific preparation in terms of technique, control and physical fitness. Badminton is one of the most popular sports in the world, with 200 million adherents. The decision to include badminton in the 1992 Olympics Game increased participation in the game. This review focuses on the game characteristics, anthropometry, physiology, visual attributes and biomechanics of badminton. Players are generally tall and lean, with an ectomesomorphic body type suited to the high physiological demands of a match. Indeed, a typical match characteristic is a rally time of 7 s and a resting time of 15 s, with an effective playing time of 31%. This sport is highly demanding, with an average heart rate (HR) of over 90% of the player's maximal HR. The intermittent actions during a game are demanding on both the aerobic and anaerobic systems: 60-70% on the aerobic system and approximately 30% on the anaerobic system, with greater demand on the alactic metabolism with respect to the lactic anaerobic metabolism. The shuttlecock has an atypical trajectory, and the players perform specific movements such as lunging and jumping, and powerful strokes using a specific pattern of movement. Lastly, badminton players are visually fit, picking up accurate visual information in a short time. Knowledge of badminton can help to improve coaching and badminton skills.

  10. Badminton: Course Proposal.

    ERIC Educational Resources Information Center

    Yeo, David G.

    A proposal is presented for a Community College of Philadelphia Life Sciences and Allied Health Services course in Badminton. Following a standard cover form, a statement of purpose explains that the course is designed to introduce students to the techniques, knowledge, and strategies of badminton. Next, course goals and a course outline are…

  11. The Bristol "Badminton" Airplane

    NASA Technical Reports Server (NTRS)

    1926-01-01

    The Bristol Badminton, Type 99 airplane has a radial aircooled engine (a Bristol Jupiter 9 cylinder 450 HP.) and three fuel tanks. It is a single seat biplane weighing 1,840 lbs. empty and 2,460 lbs. loaded.

  12. The coupling between gaze behavior and opponent kinematics during anticipation of badminton shots.

    PubMed

    Alder, David; Ford, Paul R; Causer, Joe; Williams, A Mark

    2014-10-01

    We examined links between the kinematics of an opponent's actions and the visual search behaviors of badminton players responding to those actions. A kinematic analysis of international standard badminton players (n = 4) was undertaken as they completed a range of serves. Video of these players serving was used to create a life-size temporal occlusion test to measure anticipation responses. Expert (n = 8) and novice (n = 8) badminton players anticipated serve location while wearing an eye movement registration system. During the execution phase of the opponent's movement, the kinematic analysis showed between-shot differences in distance traveled and peak acceleration at the shoulder, elbow, wrist and racket. Experts were more accurate at responding to the serves compared to novice players. Expert players fixated on the kinematic locations that were most discriminating between serve types more frequently and for a longer duration compared to novice players. Moreover, players were generally more accurate at responding to serves when they fixated vision upon the discriminating arm and racket kinematics. Findings extend previous literature by providing empirical evidence that expert athletes' visual search behaviors and anticipatory responses are inextricably linked to the opponent action being observed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Teaching Badminton to Groups.

    ERIC Educational Resources Information Center

    Nelson, Jonathan E.

    1980-01-01

    Numerous ideas for teaching badminton to large groups are presented. The focus is on drills and techniques for off the court instructional stations. Instead of having students waiting their turn to play, more students can participate actively as they rotate from one station to another. (JN)

  14. Teach Your Child Badminton.

    ERIC Educational Resources Information Center

    Downey, Jake

    This illustrated guide provides basic knowledge that will enable parents to teach their children how to play badminton. Strokes are described functionally--how the player performs the stroke is a matter for individual interpretation. Each lesson is connected to the next in such a way as to encourage learning of strokes and skill development.…

  15. Badminton--Teaching Concepts.

    ERIC Educational Resources Information Center

    Gibbs, Marilyn J.

    1988-01-01

    Teaching four basic badminton concepts along with the usual basic skill shots allows players to develop game strategy awareness as well as mechanical skills. These four basic concepts are: (1) ready position, (2) flight trajectory, (3) early shuttle contact, and (4) camouflage. (IAH)

  16. Tennis Rackets and the Parallel Axis Theorem

    ERIC Educational Resources Information Center

    Christie, Derek

    2014-01-01

    This simple experiment uses an unusual graph straightening exercise to confirm the parallel axis theorem for an irregular object. Along the way, it estimates experimental values for g and the moment of inertia of a tennis racket. We use Excel to find a 95% confidence interval for the true values.

  17. Achilles tendon rupture in badminton.

    PubMed Central

    Kaalund, S; Lass, P; Høgsaa, B; Nøhr, M

    1989-01-01

    The typical badminton player with an Achilles tendon rupture is 36 years old and, despite limbering up, is injured at the rear line in a sudden forward movement. He resumes work within three months and has a slight lack of dorsiflexion in the ankle as the main complication. Most patients resume badminton within one year, but some finish their sports career, mainly due to fear of a new injury. The investigation discusses predisposing factors and prophylactic measures. PMID:2605439

  18. Relationship between tactics and energy expenditure according to level of experience in badminton.

    PubMed

    Dieu, Olivier; Blondeau, Thomas; Vanhelst, Jérémy; Fardy, Paul S; Bui-Xuân, Gilles; Mikulovic, Jacques

    2014-10-01

    Research on racket sports has traditionally focused on expert players and has treated energy expenditure and tactics as independent factors. These prior studies could not assess how energy expenditure and tactics changed as a function of experience and skill. Here, the specific relationship between playing tactics and energy expenditure in badminton were assessed. Participants were classified into five stages of badminton experience on the basis of conative criteria: structural (physical abilities), technical (technical skills), and functional (tactics). The physical activity of 99 players (47 beginners, 15 intermediates, 30 advanced, and 7 experts) was measured using a three-axis accelerometer during a badminton set (21 points, no extra scoring). The results showed that physical activity (counts/sec.) ranged between about 115 (Stage 1) and 155 (Stage 5), and differed significantly across the conative stages. For Stages 2 and 4, defined by an increase in use of tactics, physical activity increased substantially. For Stage 3, defined by a decrease in use of tactics, physical activity decreased significantly. Thus, tactically-oriented play appears to be closely related to physical activity.

  19. Influence of successive badminton matches on muscle strength, power, and body-fluid balance in elite players.

    PubMed

    Abian-Vicen, Javier; Castanedo, Adrián; Abian, Pablo; Gonzalez-Millan, Cristina; Salinero, Juan José; Del Coso, Juan

    2014-07-01

    The aim was to analyze the influence of competitive round on muscle strength, body-fluid balance, and renal function in elite badminton players during a real competition. Body mass, jump height during a countermovement jump, handgrip force, and urine samples were obtained from 13 elite badminton players (6 men and 7 women) before and after the 2nd-round and quarterfinal matches of the national Spanish badminton championship. Sweat rate was determined by using prematch-to-postmatch body-mass change and by weighing individually labeled fluid bottles. Sweat rates were 1.04 ± 0.62 and 0.98 ± 0.43 L/h, while rehydration rate was 0.69 ± 0.26 and 0.91 ± 0.52 L/h for the 2nd round and quarterfinals, respectively. Thus, dehydration was 0.47% ± 1.03% after the 2nd round and 0.23% ± 0.43% after the quarterfinals. There were no differences in prematch-to-postmatch jump height, but jump height was reduced from 37.51 ± 8.83 cm after the 2nd-round game to 34.82 ± 7.37 cm after the quarterfinals (P < .05). No significant differences were found in handgrip force when comparing prepost matches or rounds, although there were significant differences between dominant and nondominant hands (P < .05). The succession of rounds caused the appearance of proteinuria, hematuria, glycosuria, and higher nitrite and ketone concentrations in urine. Rehydration patterns during a real badminton competition were effective to prevent dehydration. A badminton match did not affect jump height or handgrip force, but jump height was progressively reduced by the competitive round. Badminton players' renal responses reflected diminished renal flux due to the high-intensity nature of this racket sport.

  20. Mechanism of Tennis Racket Spin Performance

    NASA Astrophysics Data System (ADS)

    Kawazoe, Yoshihiko; Okimoto, Kenji; Okimoto, Keiko

    Players often say that some strings provide a better grip and more spin than others, but ball spin did not depend on string type, gauge, or tension in pervious laboratory experiments. There was no research work on spin to uncover what is really happening during an actual tennis impact because of the difficulty of performing the appropriate experiments. The present paper clarified the mechanism of top spin and its improvement by lubrication of strings through the use of high-speed video analysis. It also provided a more detailed explanation of spin behavior by comparing a racket with lubricated strings with the famous “spaghetti” strung racket, which was banned in 1978 by the International Tennis Federation because it used plastic spaghetti tubing over the strings to reduce friction, resulting in excessive ball spin. As the main strings stretch and slide sideways more, the ball is given additional spin due to the restoring force parallel to the string face when the main strings spring back and the ball is released from the strings. Herein, we also showed that the additional spin results in a reduction of shock vibrations of the wrist joint during impact.

  1. The Effects of Racket Inertia Tensor on Elbow Loadings and Racket Behavior for Central and Eccentric Impacts

    PubMed Central

    Nesbit, Steven M.; Elzinga, Michael; Herchenroder, Catherine; Serrano, Monika

    2006-01-01

    This paper discusses the inertia tensors of tennis rackets and their influence on the elbow swing torques in a forehand motion, the loadings transmitted to the elbow from central and eccentric impacts, and the racket acceleration responses from central and eccentric impacts. Inertia tensors of various rackets with similar mass and mass center location were determined by an inertia pendulum and were found to vary considerably in all three orthogonal directions. Tennis swing mechanics and impact analyses were performed using a computer model comprised of a full-body model of a human, a parametric model of the racket, and an impact function. The swing mechanics analysis of a forehand motion determined that inertia values had a moderate linear effect on the pronation-supination elbow torques required to twist the racket, and a minor effect on the flexion-extension and valgus-varus torques. The impact analysis found that mass center inertia values had a considerable effect on the transmitted torques for both longitudinal and latitudinal eccentric impacts and significantly affected all elbow torque components. Racket acceleration responses to central and eccentric impacts were measured experimentally and found to be notably sensitive to impact location and mass center inertia values. Key Points Tennis biomechanics. Racket inertia tensor. Impact analysis. Full-body computer model. PMID:24260004

  2. Aerodynamics of badminton shuttlecocks

    NASA Astrophysics Data System (ADS)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  3. Is there a danger for myopia in anti-doping education? Comparative analysis of substance use and misuse in Olympic racket sports calls for a broader approach

    PubMed Central

    2011-01-01

    Background Racket sports are typically not associated with doping. Despite the common characteristics of being non-contact and mostly individual, racket sports differ in their physiological demands, which might be reflected in substance use and misuse (SUM). The aim of this study was to investigate SUM among Slovenian Olympic racket sport players in the context of educational, sociodemographic and sport-specific factors. Methods Elite athletes (N = 187; mean age = 22 ± 2.3; 64% male) representing one of the three racket sports, table tennis, badminton, and tennis, completed a paper-and-pencil questionnaire on substance use habits. Athletes in this sample had participated in at least one of the two most recent competitions at the highest national level and had no significant difference in competitive achievement or status within their sport. Results A significant proportion of athletes (46% for both sexes) reported using nutritional supplements. Between 10% and 24% of the studied males would use doping if the practice would help them achieve better results in competition and if it had no negative health consequences; a further 5% to 10% indicated potential doping behaviour regardless of potential health hazards. Females were generally less oriented toward SUM than their male counterparts with no significant differences between sports, except for badminton players. Substances that have no direct effect on sport performance (if timed carefully to avoid detrimental effects) are more commonly consumed (20% binge drink at least once a week and 18% report using opioids), whereas athletes avoid substances that can impair and threaten athletic achievement by decreasing physical capacities (e.g. cigarettes), violating anti-doping codes or potentially transgressing substance control laws (e.g. opiates and cannabinoids). Regarding doping issues, athletes' trust in their coaches and physicians is low. Conclusion SUM in sports spreads beyond doping-prone sports and drugs that

  4. Is there a danger for myopia in anti-doping education? Comparative analysis of substance use and misuse in Olympic racket sports calls for a broader approach.

    PubMed

    Kondric, Miran; Sekulic, Damir; Petroczi, Andrea; Ostojic, Ljerka; Rodek, Jelena; Ostojic, Zdenko

    2011-10-11

    Racket sports are typically not associated with doping. Despite the common characteristics of being non-contact and mostly individual, racket sports differ in their physiological demands, which might be reflected in substance use and misuse (SUM). The aim of this study was to investigate SUM among Slovenian Olympic racket sport players in the context of educational, sociodemographic and sport-specific factors. Elite athletes (N=187; mean age=22±2.3; 64% male) representing one of the three racket sports, table tennis, badminton, and tennis, completed a paper-and-pencil questionnaire on substance use habits. Athletes in this sample had participated in at least one of the two most recent competitions at the highest national level and had no significant difference in competitive achievement or status within their sport. A significant proportion of athletes (46% for both sexes) reported using nutritional supplements. Between 10% and 24% of the studied males would use doping if the practice would help them achieve better results in competition and if it had no negative health consequences; a further 5% to 10% indicated potential doping behaviour regardless of potential health hazards. Females were generally less oriented toward SUM than their male counterparts with no significant differences between sports, except for badminton players. Substances that have no direct effect on sport performance (if timed carefully to avoid detrimental effects) are more commonly consumed (20% binge drink at least once a week and 18% report using opioids), whereas athletes avoid substances that can impair and threaten athletic achievement by decreasing physical capacities (e.g. cigarettes), violating anti-doping codes or potentially transgressing substance control laws (e.g. opiates and cannabinoids). Regarding doping issues, athletes' trust in their coaches and physicians is low. SUM in sports spreads beyond doping-prone sports and drugs that enhance athletic performance. Current anti

  5. Mathematical modelling and simulation of a tennis racket.

    PubMed

    Brannigan, M; Adali, S

    1981-01-01

    By constructing a mathematical model, we consider the dynamics of a tennis racket hit by a ball. Using this model, known experimental results can be simulated on the computer, and it becomes possible to make a parametric study of a racket. Such a simulation is essential in the study of two important problems related to tennis: computation of the resulting forces and moments transferred to the hand should assist understanding of the medical problem 'tennis elbow'; secondly, simulation will enable a study to be made of the relationships between the impact time, tension in the strings, forces transmitted to the rim and return velocity of the ball, all of which can lead to the optimal design of rackets.

  6. Teaching Badminton Based on Student Skill Levels

    ERIC Educational Resources Information Center

    Wang, Jianyu; Moffit, Jeff

    2009-01-01

    Badminton has been identified as a lifelong activity. It is an inexpensive sport and everyone--children, seniors, and individuals with disabilities--can reach a level of enjoyment in the game after mastering basic skills and tactics. In teaching badminton, teachers need to understand how students develop game play ability from a low level to an…

  7. Understanding Expertise from Elite Badminton Coaches

    ERIC Educational Resources Information Center

    Sheu, Feng-Ru

    2011-01-01

    Badminton is a growing sport with a limited amount of expertise both in players and coaches so attempts are being made to extend the expertise internationally. The purpose of this study is to gain an understanding of coaching expertise in badminton because such an understanding might have implications for a more general understanding of expertise,…

  8. The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players.

    PubMed

    Xu, Huan; Wang, Pin; Ye, Zhuo'er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua

    2016-01-01

    Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent activation was assessed by means of functional magnetic resonance imaging. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex). Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate cortex, right fusiform gyrus

  9. The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players

    PubMed Central

    Xu, Huan; Wang, Pin; Ye, Zhuo’er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua

    2016-01-01

    Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent activation was assessed by means of functional magnetic resonance imaging. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex). Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate cortex, right fusiform gyrus

  10. Joint Kinetics to Assess the Influence of the Racket on a Tennis Player’s Shoulder

    PubMed Central

    Creveaux, Thomas; Dumas, Raphaël; Hautier, Christophe; Macé, Pierre; Chèze, Laurence; Rogowski, Isabelle

    2013-01-01

    This study aimed at investigating the influence of three rackets on shoulder net joint moments, power and muscle activity during the flat tennis serve under field- conditions. A 6-camera Eagle® motion analysis system, operating at 256 Hz, captured racket and dominant upper limb kinematics of the serve in five tennis players under three racket conditions (A: low mass, high balance and polar moment, B: low three moments of inertia, and C: high mass, swingweight and twistweight). The electromyographic activity of six trunk and arm muscles was simultaneously recorded. Shoulder net joint moments and power were computed by 3D inverse dynamics. The results showed that greater shoulder joint power and internal/external rotation peak moments were found to accelerate and decelerate racket A in comparison with the racket C. Moreover, serving with the racket A resulted in less activity in latissimus dorsi muscle during the acceleration phase, and biceps brachii muscle during the follow-through phase when compared with racket C. These initial findings encourage studying the biomechanical measurements to quantify the loads on the body during play in order to reduce them, and then prevent shoulder injuries. Racket specifications may be a critical point for coaches who train players suffering from shoulder pain and chronic upper limb injuries should be considered in relation to the racket specifications of the players. Key Points Light racket required more joint power than heavy one to achieve similar post impact ball velocity. Serving with a light racket resulted in higher shoulder internal and external rotation moments than using a heavy one for similar performance. Chronic shoulder pain should encourage coaches to check for potentially inappropriate racket specifications of their players. PMID:24149804

  11. The effect of motor imagery with specific implement in expert badminton player.

    PubMed

    Wang, Z; Wang, S; Shi, F-Y; Guan, Y; Wu, Y; Zhang, L-L; Shen, C; Zeng, Y-W; Wang, D-H; Zhang, J

    2014-09-05

    Motor skill can be improved with mental simulation. Implements are widely used in daily life and in various sports. However, it is unclear whether the utilization of implements enhances the effect of mental simulation. The present study was designed to investigate the different effects of motor imagery in athletes and novices when they handled a specific implement. We hypothesize that athletes have better motor imagery ability than novices when they hold a specific implement for the sport. This is manifested as higher motor cortical excitability in athletes than novices during motor imagery with the specific implement. Sixteen expert badminton players and 16 novices were compared when they held a specific implement such as a badminton racket and a non-specific implement such as a a plastic bar. Motor imagery ability was measured with a self-evaluation questionnaire. Transcranial magnetic stimulation was used to test the motor cortical excitability during motor imagery. Motor-evoked potentials (MEPs) in the first dorsal interosseous (FDI) and extensor carpi radialis muscles were recorded. Athletes reported better motor imagery than novices when they held a specific implement. Athletes exhibited more MEP facilitation than novices in the FDI muscle with the specific implement applied during motor imagery. The MEP facilitation is correlated with motor imagery ability in athletes. We conclude that the effects of motor imagery with a specific implement are enhanced in athletes compared to novices and the difference between two groups is caused by long-term physical training of athletes with the specific implement. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Kinetics of badminton lunges in four directions.

    PubMed

    Hong, Youlian; Wang, Shao Jun; Lam, Wing Kai; Cheung, Jason Tak Man

    2014-02-01

    The lunge is the most fundamental skill in badminton competitions. Fifteen university-level male badminton players performed lunge maneuvers in four directions, namely, right-forward, left-forward, right-backward, and left-backward, while wearing two different brands of badminton shoes. The test compared the kinetics of badminton shoes in performing typical lunge maneuvers. A force plate and an insole measurement system measured the ground reaction forces and plantar pressures. These measurements were compared across all lunge maneuvers. The left-forward lunge generated significantly higher first vertical impact force (2.34 ± 0.52 BW) than that of the right-backward (2.06 ± 0.60 BW) and left-backward lunges (1.78 ± 0.44 BW); higher second vertical impact force (2.44 ± 0.51 BW) than that of the left-backward lunge (2.07 ± 0.38 BW); and higher maximum anterior-posterior shear force (1.48 ± 0.36 BW) than that of the left-backward lunge (1.18 ± 0.38 BW). Compared with other lunge directions, the left-forward lunge showed higher mean maximum vertical impact anterior-posterior shear forces and their respective maximum loading rates, and the plantar pressure at the total foot and heel regions. Therefore, the left-forward lunge is a critical maneuver for badminton biomechanics and related footwear research because of the high loading magnitude generated during heel impact.

  13. Testing of Badminton-Specific Endurance.

    PubMed

    Madsen, Christian M; Højlyng, Mads; Nybo, Lars

    2016-09-01

    Madsen, CM, Højlyng, M, and Nybo, L. Testing of badminton-specific endurance. J Strength Cond Res 30(9): 2582-2590, 2016-In the present study, a novel intermittent badminton endurance (B-ENDURANCE) test was developed and tested in elite (n = 17) and skilled (n = 9) badminton players and in age-matched physically active men (nonbadminton players; n = 8). In addition, B-ENDURANCE test-retest reproducibility was evaluated in 9 badminton players. The B-ENDURANCE test is an incremental test where each level consists of repeated sequences of badminton-specific actions toward the 4 corners of the court. The subject starts in the center of the court in front of a computer screen and within each sequence, he must, in a randomized order, complete 8 actions as dictated by the computer, providing the audiovisual input and verifying that the appropriate sensor is activated within the allocated time. Recovery time between each sequence is 10 seconds throughout the test, but the time to complete each sequence is gradually decreased until the subjects cannot follow the dictated tempo. The B-ENDURANCE test performance for elite players was better (p ≤ 0.05) compared with the skilled players and nonbadminton players. In addition, the B-ENDURANCE test performance correlated (r = 0.8 and p < 0.0001) with elite players' national single rankings. Test-retest coefficient of variation was 7.9% between the first 2 trials (i.e., without a familiarization trial) but reduced to 2.5% when comparing the second and third trials. In conclusion, the B-ENDURANCE test is relevant for the evaluation of badminton-specific endurance but at least 1 familiarization trial is recommended if the test is used for evaluation of longitudinal changes, e.g., tracking training effects.

  14. Physiological characteristics of badminton match play.

    PubMed

    Faude, Oliver; Meyer, Tim; Rosenberger, Friederike; Fries, Markus; Huber, Günther; Kindermann, Wilfried

    2007-07-01

    The present study aimed at examining the physiological characteristics and metabolic demands of badminton single match play. Twelve internationally ranked badminton players (eight women and four men) performed an incremental treadmill test [VO(2peak = )50.3 +/- 4.1 ml min(-1) kg(-1) (women) and 61.8 +/- 5.9 ml min(-1) kg(-1) (men), respectively]. On a separate day, they played a simulated badminton match of two 15 min with simultaneous gas exchange (breath-by-breath) and heart rate measurements. Additionally, blood lactate concentrations were determined before, after 15 min and at the end of the match. Furthermore, the duration of rallies and rests in between, the score as well as the number of shots per rally were recorded. A total of 630 rallies was analysed. Mean rally and rest duration were 5.5 +/- 4.4 s and 11.4 +/- 6.0 s, respectively, with an average 5.1 +/- 3.9 shots played per rally. Mean oxygen uptake (VO(2)), heart rate (HR), and blood lactate concentrations during badminton matches were 39.6 +/- 5.7 ml min(-1) kg(-1) (73.3% VO(2peak)), 169 +/- 9 min(-1) (89.0% HR(peak)) and 1.9 +/- 0.7 mmol l(-1), respectively. For a single subject 95% confidence intervals for VO(2) and HR during match play were on average 45.7-100.9% VO(2peak) and 78.3-99.8% HR(peak). High average intensity of badminton match play and considerable variability of several physiological variables demonstrate the importance of anaerobic alactacid and aerobic energy production in competitive badminton. A well-developed aerobic endurance capacity seems necessary for fast recovery between rallies or intensive training workouts.

  15. Ultrasonographic investigation of the Achilles tendon in elite badminton players using color Doppler.

    PubMed

    Boesen, Morten Ilum; Boesen, Anders; Koenig, Merete Juhl; Bliddal, Henning; Torp-Pedersen, Soren

    2006-12-01

    The most frequent injuries in badminton players are in the lower extremities, especially in the Achilles tendon. The game of badminton may be related to abnormal intratendinous flow in the Achilles tendon as detected by color Doppler ultrasound. To a certain extent, this blood flow might be physiological, especially when examined after match. Cohort study (prevalence); Level of evidence, 3. Seventy-two elite badminton players were interviewed regarding Achilles tendon pain (achillodynia) in the preceding 3 years. Color Doppler was used to examine the tendons of 64 players before their matches and 46 players after their matches. Intratendinous color Doppler flow was graded from 0 to 4. The Achilles tendon was divided into dominant (eg, right side for right-handed players and vice versa) and nondominant side and classified as midtendon, preinsertional, and calcaneal areas. Of 72 players, 26 had experienced achillodynia in 34 tendons, 18 on the dominant side and 16 on the nondominant side. In 62% of the players with achillodynia, the problems had begun slowly, and the median duration of symptoms was 4 months (range, 0-36 months). Thirty-five percent had ongoing pain in their tendons for a median duration of 12 months (range, 0-12 months). Achillodynia was not associated with the self-reported training load or with sex, age, weight, singles or doubles players, or racket side. Forty-six players were scanned before and after match. At baseline, color Doppler flow was present in the majority of players, and only 7 (16%) players had no color Doppler flow in either tendon. After match, all players had some color Doppler flow in 1 or both tendons. Achillodynia and color Doppler flow were related in the nondominant Achilles tendon (chi-square, P = .008). The grades of Doppler flow also increased significantly after match in the preinsertional area in both the nondominant (P = .0002) and dominant (P = .005) side tendons. A large proportion of the players had experienced

  16. Analysis of Carbon Nanotubes and Graphene Nanoribbons with Folded Racket Shapes

    NASA Astrophysics Data System (ADS)

    Borum, Andy; Plaut, Raymond; Dillard, David

    2011-10-01

    When carbon nanotubes and graphene nanoribbons become long, they may self-fold and form tennis racket-like shapes. This phenomenon is analyzed in two ways by treating a nanotube or nanoribbon as an elastica. First, an approach from adhesion science is used, in which the two sides of the racket handle are assumed to be straight and bonded together with constant or no separation. New analytical results are obtained involving the shape, bending energy, and adhesion energy of the self-folded structures. These relations show that the dimensions of the racket loop are proportional to the square root of the flexural rigidity. The second analysis uses the Lennard-Jones potential to model the van der Waals forces between the two sides of the racket. A nanoribbon is considered, and the interatomic forces are integrated along the length and across the width of the nanoribbon. The resulting integro-differential equations are solved using the finite difference method. The racket handle is found to be in compression and the separation between the two sides of the racket handle decreases in the direction of the racket loop. The results for the Lennard-Jones model approximately satisfy the relationship between the dimensions and the flexural rigidity found using the adhesion model.

  17. Mechanical energy generation and transfer in the racket arm during table tennis topspin backhands.

    PubMed

    Iino, Yoichi; Kojima, Takeji

    2016-06-01

    The ability to generate a high racket speed and a large amount of racket kinetic energy on impact is important for table tennis players. The purpose of this study was to understand how mechanical energy is generated and transferred in the racket arm during table tennis backhands. Ten male advanced right-handed table tennis players hit topspin backhands against pre-impact topspin and backspin balls. The joint kinetics at the shoulder, elbow and wrist of the racket arm was determined using inverse dynamics. A majority of the mechanical energy of the racket arm acquired during forward swing (65 and 77% against topspin and backspin, respectively) was due to energy transfer from the trunk. Energy transfer by the shoulder joint force in the vertical direction was the largest contributor to the mechanical energy of the racket arm against both spins and was greater against backspin than against topspin (34 and 28%, respectively). The shoulder joint force directed to the right, which peaked just before impact, transferred additional energy to the racket. Our results suggest that the upward thrust of the shoulder and the late timing of the axial rotation of the upper trunk are important for an effective topspin backhand.

  18. Musculoskeletal injuries among Malaysian badminton players.

    PubMed

    Shariff, A H; George, J; Ramlan, A A

    2009-11-01

    The purpose of this study was to investigate the pattern of musculoskeletal injuries sustained by Malaysian badminton players. This is a retrospective case notes review of all badminton players who attended the National Sports Institute (NSI) Clinic, Kuala Lumpur, Malaysia, and were diagnosed with musculoskeletal injuries. In a two and a half year period, from January 2005 to June 2007, 469 musculoskeletal injuries were diagnosed among badminton players at the NSI Clinic. The mean age of the players who attended the clinic was 19.2 (range 13-52) years. Approximately 60 percent of the injuries occurred in players younger than 20 years of age. The majority of injuries (91.5 percent) were categorised as mild overuse injury and mostly involved the knee. The majority of the injuries sustained by badminton players in this study were due to overuse, primarily in the knee. The majority of the injuries were diagnosed in younger players and occurred during training/practice sessions. There was no difference in terms of incidence and types of injuries between the genders.

  19. Effect of the racket mass and the rate of strokes on kinematics and kinetics in the table tennis topspin backhand.

    PubMed

    Iino, Yoichi; Kojima, Takeji

    2016-01-01

    The purpose of this study was to investigate the effect of the racket mass and the rate of strokes on the kinematics and kinetics of the trunk and the racket arm in the table tennis topspin backhand. Eight male Division I collegiate table tennis players hit topspin backhands against topspin balls projected at 75 balls · min(-1) and 35 balls · min(-1) using three rackets varying in mass of 153.5, 176 and 201.5 g. A motion capture system was used to obtain trunk and racket arm motion data. The joint torques of the racket arm were determined using inverse dynamics. The racket mass did not significantly affect all the trunk and racket arm kinematics and kinetics examined except for the wrist dorsiflexion torque, which was significantly larger for the large mass racket than for the small mass racket. The racket speed at impact was significantly lower for the high ball frequency than for the low ball frequency. This was probably because pelvis and upper trunk axial rotations tended to be more restricted for the high ball frequency. The result highlights one of the advantages of playing close to the table and making the rally speed fast.

  20. The How To of Badminton from Player to Teacher.

    ERIC Educational Resources Information Center

    Hicks, Virginia

    This book is designed to help beginning and advanced students learn to play badminton in physical education classes, and to provide guidelines for the physical education instructor teaching badminton. It includes chapters on how to perform all the basic skills and advanced techniques, and provides a table which lists common errors and suggestions…

  1. Badminton Instruction for Students in Grades 7-12.

    ERIC Educational Resources Information Center

    Nebraska State Dept. of Education, Lincoln.

    This booklet describes: 1) athletic facilities and equipment needed for badminton, 2) teaching objectives, 3) performance fundamentals, 4) drills that teach skills needed for playing badminton, and 5) lesson progression for high school students. There are also suggestions for working with students with below average eye-hand coordination. (CJ)

  2. Badminton injuries in youth competitive players.

    PubMed

    Goh, S L; Mokhtar, A H; Mohamad Ali, M R

    2013-02-01

    The aim of the study was to examine sports injury pattern and establish cost of injuries in relation to training of 58 competitive badminton players in a Malaysian National Sports School. This one-year prospective observational study recruited all the 13-16 year old students after obtaining informed consent from their appointed guardian. All participants were requested to report any injuries, which were pain or disabilities that occur within the study period (September 1, 2008 to August 31, 2009) either during training or competition. Injured students were to seek treatment from the researcher(s) who made weekly visits and they were then followed up accordingly until they return to full training. Details and progress of the injuries were documented during each visit. Sixty-three injuries were recorded. Soft tissue sprains/strains were the commonest injury (64%). About one third of the injuries occurred in the lower limb especially the knees and was followed by back injuries; 38% of the injuries did not require training modification, half of these injuries resumed training within one week. Upon full training, half of them were still symptomatic. Injury risk was 57%; injury rate was 0.9 injuries/ player/1000 training hours. Badminton injuries mostly involved the lower limb and almost all overuse injuries occurred in the lower limb. However, badminton injuries as a whole were predominantly sprains and strains, and not overuse in nature as widely believed.

  3. Analysis of the characteristics of competitive badminton

    PubMed Central

    Cabello, M; Gonzalez-Badillo, J

    2003-01-01

    Objective: To describe the characteristics of badminton in order to determine the energy requirements, temporal structure, and movements in the game that indicate performance level. To use the findings to plan training with greater precision. Methods: Eleven badminton players (mean (SD) age 21.8 (3.26) years) with international experience from four different countries (France, Italy, Spain, and Portugal) were studied. Two of the Spanish players were monitored in several matches, giving a total of 14 samples, all during the 1999 Spanish International Tournament. Blood lactate concentration was measured with a reflective photometer. Maximum and average heart rates were recorded with a heart rate monitor. Temporal structure and actions during the matches were determined from video recordings. All variables were measured during and after the game and later analysed using a descriptive study. Results: The results confirmed the high demands of the sport, with a maximum heart rate of 190.5 beats/min and an average of 173.5 beats/min during matches over 28 minutes long and performance intervals of 6.4 seconds and rest time of 12.9 seconds between exchanges. Conclusions: The results suggest that badminton is characterised by repetitive efforts of alactic nature and great intensity which are continuously performed throughout the match. An awareness of these characteristics, together with data on the correlations between certain actions such as unforced errors and winning shots and the final result of the match, will aid in more appropriate planning and monitoring of specific training. PMID:12547746

  4. A Study of Shuttlecock's Trajectory in Badminton.

    PubMed

    Chen, Lung-Ming; Pan, Yi-Hsiang; Chen, Yung-Jen

    2009-01-01

    The main purpose of this study was to construct and validate a motion equation for the flight of the badminton and to find the relationship between the air resistance force and a shuttlecock's speed. This research method was based on motion laws of aerodynamics. It applied aerodynamic theories to construct motion equation of a shuttlecock's flying trajectory under the effects of gravitational force and air resistance force. The result showed that the motion equation of a shuttlecock's flight trajectory could be constructed by determining the terminal velocity. The predicted shuttlecock trajectory fitted the measured data fairly well. The results also revealed that the drag force was proportional to the square of a shuttlecock velocity. Furthermore, the angle and strength of a stroke could influence trajectory. Finally, this study suggested that we could use a scientific approach to measure a shuttlecock's velocity objectively when testing the quality of shuttlecocks. And could be used to replace the traditional subjective method of the Badminton World Federation based on players' striking shuttlecocks, as well as applying research findings to improve professional knowledge of badminton player training. Key pointsThe motion equation of a shuttlecock's flying trajectory could be constructed by determining the terminal velocity in aerodynamics.Air drag force is proportional to the square of a shuttlecock velocity. Furthermore, the angle and strength of a stroke could influence trajectory.

  5. Analysis of the tennis racket vibrations during forehand drives: Selection of the mother wavelet.

    PubMed

    Blache, Y; Hautier, C; Lefebvre, F; Djordjevic, A; Creveaux, T; Rogowski, I

    2017-08-16

    The time-frequency analysis of the tennis racket and hand vibrations is of great interest for discomfort and pathology prevention. This study aimed to (i) to assess the stationarity of the vibratory signal of the racket and hand and (ii) to identify the best mother wavelet to perform future time-frequency analysis, (iii) to determine if the stroke spin, racket characteristics and impact zone can influence the selection of the best mother wavelet. A total of 2364 topspin and flat forehand drives were performed by fourteen male competitive tennis players with six different rackets. One tri-axial and one mono-axial accelerometer were taped on the racket throat and dominant hand respectively. The signal stationarity was tested through the wavelet spectrum test. Eighty-nine mother wavelet were tested to select the best mother wavelet based on continuous and discrete transforms. On average only 25±17%, 2±5%, 5±7% and 27±27% of the signal tested respected the hypothesis of stationarity for the three axes of the racket and the hand respectively. Regarding the two methods for the detection of the best mother wavelet, the Daubechy 45 wavelet presented the highest average ranking. No effect of the stroke spin, racket characteristics and impact zone was observed for the selection of the best mother wavelet. It was concluded that alternative approach to Fast Fourier Transform should be used to interpret tennis vibration signals. In the case where wavelet transform is chosen, the Daubechy 45 mother wavelet appeared to be the most suitable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Comparison of Joint Loading in Badminton Lunging between Professional and Amateur Badminton Players

    PubMed Central

    Fu, Lin

    2017-01-01

    The knee and ankle are the two most injured joints associated with the sport of badminton. This study evaluates biomechanical factors between professional and amateur badminton players using an injury mechanism model. The aim of this study was to investigate the kinematic motion and kinetic loading differences of the right knee and ankle while performing a maximal right lunge. Amateur players exhibited greater ankle range of motion (p < 0.05, r = 0.89) and inversion joint moment (p < 0.05, r = 0.54) in the frontal plane as well as greater internal joint rotation moment (p < 0.05, r = 0.28) in the horizontal plane. In contrast, professional badminton players presented a greater knee joint moment in the sagittal (p < 0.05, r = 0.59) and frontal (p < 0.05, r = 0.37) planes, which may be associated with increased knee ligamentous injury risk. To avoid injury, the players need to forcefully extend the knee with internal rotation, strengthen the muscles around the ankle ligament, and maximise joint coordination during training. The injuries recorded and the forces responsible for the injuries seem to have developed during training activity. Training programmes and injury prevention strategies for badminton players should account for these findings to reduce potential injury to the ankle and knee. PMID:28694684

  7. Hip joint kinetics in the table tennis topspin forehand: relationship to racket velocity.

    PubMed

    Iino, Yoichi

    2018-04-01

    The purpose of this study was to determine hip joint kinetics during a table tennis topspin forehand, and to investigate the relationship between the relevant kinematic and kinetic variables and the racket horizontal and vertical velocities at ball impact. Eighteen male advanced table tennis players hit cross-court topspin forehands against backspin balls. The hip joint torque and force components around the pelvis coordinate system were determined using inverse dynamics. Furthermore, the work done on the pelvis by these components was also determined. The peak pelvis axial rotation velocity and the work done by the playing side hip pelvis axial rotation torque were positively related to the racket horizontal velocity at impact. The sum of the work done on the pelvis by the backward tilt torques and the upward joint forces was positively related to the racket vertical velocity at impact. The results suggest that the playing side hip pelvis axial rotation torque exertion is important for acquiring a high racket horizontal velocity at impact. The pelvis backward tilt torques and upward joint forces at both hip joints collectively contribute to the generation of the racket vertical velocity, and the mechanism for acquiring the vertical velocity may vary among players.

  8. The effect of ball impact location on racket and forearm joint angle changes for one-handed tennis backhand groundstrokes.

    PubMed

    King, Mark; Hau, Agnes; Blenkinsop, Glen

    2017-07-01

    Recreational tennis players tend to have higher incidence of tennis elbow, and this has been hypothesised to be related to one-handed backhand technique and off-centre ball impacts on the racket face. This study aimed to investigate for a range of participants the effect of off-longitudinal axis and off-lateral axis ball-racket impact locations on racket and forearm joint angle changes immediately following impact in one-handed tennis backhand groundstrokes. Three-dimensional racket and wrist angular kinematic data were recorded for 14 university tennis players each performing 30 "flat" one-handed backhand groundstrokes. Off-longitudinal axis ball-racket impact locations explained over 70% of the variation in racket rotation about the longitudinal axis and wrist flexion/extension angles during the 30 ms immediately following impact. Off-lateral axis ball-racket impact locations had a less clear cut influence on racket and forearm rotations. Specifically off-longitudinal impacts below the longitudinal axis forced the wrist into flexion for all participants with there being between 11° and 32° of forced wrist flexion for an off-longitudinal axis impact that was 1 ball diameter away from the midline. This study has confirmed that off-longitudinal impacts below the longitudinal axis contribute to forced wrist flexion and eccentric stretch of the wrist extensors and there can be large differences in the amount of forced wrist flexion from individual to individual and between strokes with different impact locations.

  9. The effect of badminton-specific exercise on badminton short-serve performance in competition and practice climates.

    PubMed

    Duncan, Michael J; Chan, Cheryl K Y; Clarke, Neil D; Cox, Martin; Smith, Mike

    2017-03-01

    This study examined the effects of changes in physiological and psychological arousal on badminton short-serve performance in competitive and practice climates. Twenty competitive badminton players (10 males and 10 females) volunteered to participate in the study following ethics approval. After familiarisation, badminton short-serve performance was measured at rest, mid-way through and at the end of a badminton-specific exercise protocol in two conditions; competition vs. practice. Ratings of cognitive and somatic anxiety were assessed at three time points prior to badminton short-serve performance using the Mental Readiness Form 3. Heart rate and rating of perceived exertion (RPE) were assessed during the exercise protocol. Results indicated that better short-serve performance was evident in practice compared to competition (P = .034). RPE values were significantly higher in the competition condition compared to practice (P = .007). Cognitive anxiety intensity was significantly lower post-exercise in the practice condition compared to competition (P = .001). Cognitive anxiety direction showed greater debilitation post-exercise in the competition condition compared to practice (P = .01). Somatic anxiety intensity increased from pre-, to mid- to post-exercise (P = .001) irrespective of condition. This study suggests that badminton serve performance is negatively affected when physiological arousal, via badminton-specific exercise, and cognitive anxiety, via perceived competition, are high.

  10. Correlations between Angular Velocities in Selected Joints and Velocity of Table Tennis Racket during Topspin Forehand and Backhand

    PubMed Central

    Bańkosz, Ziemowit; Winiarski, Sławomir

    2018-01-01

    The aim of this study was to determine the correlations between angular velocities in individual joints and racket velocity for different topspin forehand and backhand strokes in table tennis. Ten elite female table tennis players participated, presenting different kinds of topspin forehands and backhands – after a no-spin ball (FH1, BH1), after a backspin ball (FH2, BH2) and “heavy” topspin (FH3, BH3). Range of motion was measured with the BTS Smart-E (BTS Bioengineering, Milan, Italy) motion analysis system with a specially developed marker placement protocol for the upper body parts and an acoustic sensor attached to the racket to identify ball-racket contact. In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint correlated with racket velocity. Racket velocity was correlated with angular velocities (hip extension on the playing side; hip flexion on the opposite side; ankle flexion) in the case of a topspin forehand performed with maximal force –”heavy” topspin (FH3). In backhand strokes the velocities of arm abduction and shoulder girdle rotation towards the playing side correlated with racket velocity. The angular velocity of internal arm rotation and adduction in shoulder joint may be important components of a coordinated stroke, whilst angular velocity can substantially affect the racket speed when one is changing the type of stroke. Key points The aim of this study was to calculate correlations between racket velocity and the angular velocities of individual joints and for variants of topspin forehand and backhand strokes in table tennis. A novel model was used to estimate range of motion (specially developed placement protocol for upper body markers and identification of a ball-racket contact using an acoustic sensor attached to the racket). In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint were correlated with racket velocity. Correlations between racket

  11. The impact of badminton on health markers in untrained females.

    PubMed

    Patterson, Stephen; Pattison, John; Legg, Hayley; Gibson, Ann-Marie; Brown, Nicola

    2017-06-01

    The purpose of the study was to examine the health effects of 8 weeks of recreational badminton in untrained women. Participants were matched for maximal oxygen uptake (V̇O 2max ) and body fat percentage and assigned to either a badminton (n = 14), running (n = 14) or control group (n = 8). Assessments were conducted pre- and post-intervention with physiological, anthropometric, motivation to exercise and physical self-esteem data collected. Post-intervention, V̇O 2max increased (P < 0.05) by 16% and 14% in the badminton and running groups, respectively, and time to exhaustion increased (P < 0.05) by 19% for both interventions. Maximal power output was increased (P < 0.05) by 13% in the badminton group only. Blood pressure, resting heart rate and heart rate during submaximal running were lower (P < 0.05) in both interventions. Perceptions of physical conditioning increased (P < 0.05) in both interventions. There were increases (P < 0.05) in enjoyment and ill health motives in the running group only, whilst affiliation motives were higher (P < 0.05) for the badminton group only. Findings suggest that badminton should be considered a strategy to improving the health and well-being of untrained females who are currently not meeting physical activity guidelines.

  12. Correlations between Angular Velocities in Selected Joints and Velocity of Table Tennis Racket during Topspin Forehand and Backhand.

    PubMed

    Bańkosz, Ziemowit; Winiarski, Sławomir

    2018-06-01

    The aim of this study was to determine the correlations between angular velocities in individual joints and racket velocity for different topspin forehand and backhand strokes in table tennis. Ten elite female table tennis players participated, presenting different kinds of topspin forehands and backhands - after a no-spin ball (FH1, BH1), after a backspin ball (FH2, BH2) and "heavy" topspin (FH3, BH3). Range of motion was measured with the BTS Smart-E (BTS Bioengineering, Milan, Italy) motion analysis system with a specially developed marker placement protocol for the upper body parts and an acoustic sensor attached to the racket to identify ball-racket contact. In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint correlated with racket velocity. Racket velocity was correlated with angular velocities (hip extension on the playing side; hip flexion on the opposite side; ankle flexion) in the case of a topspin forehand performed with maximal force -"heavy" topspin (FH3). In backhand strokes the velocities of arm abduction and shoulder girdle rotation towards the playing side correlated with racket velocity. The angular velocity of internal arm rotation and adduction in shoulder joint may be important components of a coordinated stroke, whilst angular velocity can substantially affect the racket speed when one is changing the type of stroke.

  13. Effects of forefoot bending stiffness of badminton shoes on agility, comfort perception and lower leg kinematics during typical badminton movements.

    PubMed

    Park, Sang-Kyoon; Lam, Wing-Kai; Yoon, Sukhoon; Lee, Ki-Kwang; Ryu, Jiseon

    2017-09-01

    This study investigated whether an increase in the forefoot bending stiffness of a badminton shoe would positively affect agility, comfort and biomechanical variables during badminton-specific movements. Three shoe conditions with identical shoe upper and sole designs with different bending stiffness (Flexible, Regular and Stiff) were used. Elite male badminton players completed an agility test on a standard badminton court involving consecutive lunges in six directions, a comfort test performed by a pair of participants conducting a game-like practice trial and a biomechanics test involving a random assignment of consecutive right forward lunges. No significant differences were found in agility time and biomechanical variables among the three shoes. The players wearing the shoe with a flexible forefoot outsole demonstrated a decreased perception of comfort in the forefoot cushion compared to regular and stiffer conditions during the comfort test (p < 0.05). The results suggested that the modification of forefoot bending stiffness would influence individual perception of comfort but would not influence performance and lower extremity kinematics during the tested badminton-specific tasks. It was concluded that an optimisation of forefoot structure and materials in badminton shoes should consider the individual's perception to maximise footwear comfort in performance.

  14. Effects of Badminton on Physical Developments of Males with Physical Disability

    ERIC Educational Resources Information Center

    Yüksel, Mehmet Fatih

    2018-01-01

    This study was realized in order to determine the features of the male badminton players with physical disability, and to examine the effects of badminton on physical developments of individuals with physical disability. Totally 59 males voluntarily participated in the study, 35 of whom were male badminton players with physical disability (n = 35,…

  15. The Deflection Question

    NASA Astrophysics Data System (ADS)

    Greenberg, A. H.; Nesvold, E.; van Heerden, E.; Erasmus, N.; Marchis, F.

    2016-12-01

    On 15 February, 2013, a 15 m diameter asteroid entered the Earth's atmosphere over Russia. The resulting shockwave injured nearly 1500 people, and incurred 33 million (USD) in infrastructure damages. The Chelyabinsk meteor served as a forceful demonstration of the threat posed to Earth by the hundreds of potentially hazardous objects (PHOs) that pass near the Earth every year. Although no objects have yet been discovered on an impact course for Earth, an impact is virtually statistically guaranteed at some point in the future. While many impactor deflection technologies have been proposed, humanity has yet to demonstrate the ability to divert an impactor when one is found. Developing and testing any single proposed technology will require significant research time and funding. This leaves open an obvious question - towards which technologies should funding and research be directed, in order to maximize our preparedness for when an impactor is eventually found? To help answer this question, we have created a detailed framework for analyzing various deflection technologies and their effectiveness. Using an n-body integrator (REBOUND), we have simulated the attempted deflections of a population of Earth-impacting objects with a variety of velocity perturbations (∂Vs), and measured the effects that these perturbations had on impact probability. We then mapped the ∂Vs applied in the orbital simulations to the technologies capable of achieving those perturbations, and analyzed which set of technologies would be most effective at preventing a PHO from impacting the earth. As a final step, we used the results of these simulations to train a machine learning algorithm. This algorithm, combined with a simulated PHO population, can predict which technologies are most likely to be needed. The algorithm can also reveal which impactor observables (mass, spin, orbit, etc.) have the greatest effect on the choice of deflection technology. These results can be used as a tool to

  16. Increased knee valgus alignment and moment during single-leg landing after overhead stroke as a potential risk factor of anterior cruciate ligament injury in badminton.

    PubMed

    Kimura, Yuka; Ishibashi, Yasuyuki; Tsuda, Eiichi; Yamamoto, Yuji; Hayashi, Yoshimitsu; Sato, Shuichi

    2012-03-01

    In badminton, knees opposite to the racket-hand side received anterior cruciate ligament (ACL) injuries during single-leg landing after overhead stroke. Most of them occurred in the backhand-side of the rear court. Comparing lower limb biomechanics during single-leg landing after overhead stroke between the forehand-side and backhand-side court may help explain the different injury rates depending on court position. The knee kinematics and kinetics during single-leg landing after overhead stroke following back-stepping were different between the forehand-side and backhand-side court. Controlled laboratory study. Hip, knee and ankle joint kinematic and knee kinetic data were collected for 17 right-handed female college badminton players using a 3-dimensional motion analysis system. Subjects performed single-left-legged landing after an overhead stroke following left and right back-stepping. The kinematic and kinetic data of the left lower extremities during landing were measured and compared between left and right back-steps. Hip flexion and abduction and knee valgus at the initial contact, hip and knee flexion and knee valgus at the maximum knee flexion and the maximum knee valgus moment were significantly larger for the left back-step than the right back-step (p<0.05). Significant differences in joint kinematics and kinetics of the lower extremity during single-leg landing after overhead stroke were observed between different back-step directions. Increased knee valgus angle and moment following back-stepping to the backhand-side might be related to the higher incidence of ACL injury during single-leg landing after overhead stroke.

  17. Expertise of using striking techniques for power stroke in badminton.

    PubMed

    Zhu, Qin

    2013-10-01

    Two striking techniques (fast swing and angled striking) were examined to see if they allowed effective use of string tension for the power stroke in badminton. 12 participants (4 novices, 4 recreational, and 4 expert badminton players) were recorded by a fast-speed camera while striking a shuttlecock with racquets of 8 different string tensions. The peak speed of the shuttlecock, the racquet angle and the shuttlecock angle were analyzed. The results showed that expert players succeeded in using both striking techniques to overcome the constraint of string tension and produce a consistently superior stroke. Failure to use either striking technique resulted in inferior performance that was constrained by string tension. Expertise in badminton allows the necessary motor adjustments based on the affordance perception of the string tension.

  18. Novel speed test for evaluation of badminton-specific movements.

    PubMed

    Madsen, Christian M; Karlsen, Anders; Nybo, Lars

    2015-05-01

    In this study, we developed a novel badminton-specific speed test (BST). The test was designed to mimic match play. The test starts in the center of the court and consists of 5 maximal actions to sensors located in each of the 4 corners of the court. The 20 actions are performed in randomized order as dictated by computer screen shots displayed 1 second after completion of the previous action. We assessed day-to-day variation in elite players, and specificity of the test was evaluated by comparing 30-m sprint performance and time to complete the BST in 20 elite players, 21 skilled players, and 20 age-matched physical active subjects (non-badminton players). Sprint performance was similar across groups, whereas the elite players were significantly (p ≤ 0.05) faster in the BST (total test time: 32.3 ± 1.1 seconds; average: 1.6 seconds per action) than the skilled (34.1 ± 2.0 seconds) and non-badminton players (35.7 ± 1.7 seconds). Day-to-day coefficient of variation (CV) of the BST was 0.7% for the elite players, whereas CV for repeated tests on the same day was 1.7% for elite, 2.6% for skilled, and 2.5% for non-badminton players. On this basis, we suggest that the BST may be valuable for evaluation of short-term maximal movement speed in badminton players. Thus, the BST seems to be sport specific, as it may discriminate between groups (elite, less trained players, and non-badminton players) with similar sprinting performance, and the low test-retest variation may allow for using the BST to evaluate longitudinal changes, for example, training effects or seasonal variations.

  19. Oxygen cost and physiological responses of recreational badminton match play.

    PubMed

    Deka, Pallav; Berg, Kris; Harder, Jeanette; Batelaan, Herman; McGRATH, Melanie

    2017-06-01

    Badminton, as an Olympic sport, is popular worldwide. However, the benefits of recreational badminton match play are not well known. The purpose of the study was to determine the oxygen cost of recreational badminton match play. Heart rate (HR), blood lactate (BL), rating of perceived exertion (RPE), step count and energy expenditure were also assessed. Fourteen male recreational badminton players aged 35.9±6.62 years participated in test sessions to assess oxygen uptake (VO2) and the related physiological responses of match play. During the match play sessions, participants played singles badminton matches for 30 min while wearing a portable metabolic system. VO2 and HR were continuously recorded while blood lactate and RPE were determined following warm-up, at 15 minutes and 30 minutes of match play. Step count was recorded at 15 minutes and 30 minutes of play. VO2 over 30 minutes was 34.4±5.8 mL/kg/min which was 76.1% of maximal oxygen uptake. Across three 10-minute periods of play, VO2 was not significantly different while HR was higher in the third 10-minute period than the first and second 10-minute periods (P=0.001). Mean HR over 30 minutes was 167.9±9.4 bpm. BL was significantly higher at 15 and 30 minutes than following warm-up while RPE of 17.57±1.91 after 30 minutes was significantly higher (P=0.009) than RPE of 15.79±1.63 at 15 minutes. Step count did not vary between the two 15-minute periods of play with a total of 2404±360 steps while energy expenditure over 30 minutes of play was 391.7±66 kcal. Recreational badminton match play can be categorized as vigorous intensity suggesting that it can be a viable means of achieving recommended physical activity and improving aerobic fitness.

  20. Sport specific fitness testing of elite badminton players.

    PubMed Central

    Chin, M K; Wong, A S; So, R C; Siu, O T; Steininger, K; Lo, D T

    1995-01-01

    There is a scarcity of descriptive data on the performance capacity of elite badminton players, whose fitness requirements are quite specific. The purpose of this paper is to investigate the physiological response of elite badminton players in a sport-specific fitness test. Twelve Hong Kong national badminton team players performed a field test on a badminton court. Six light bulbs were connected to a programming device causing individual bulbs to light up in a given sequence. The players were instructed to react to the flashes by running towards them, and striking shuttles mounted in the vicinity of the bulbs. Exercise intensity was controlled by altering the interval between successive lightings. A low correlation (r = 0.65) was found between the results of the field test and the rank-order list of subjects, based on an objective on-field physiological assessment and subjective ranking. This may be explained by the requirements of other factors besides physical fitness which contribute to success in elite level badminton competition. These factors may include, for example, technical skill, mental power, and aesthetic judgements on the court. Maximum mean (s.d.) heart rate data (187(8) beats.min-1) and blood lactate values (10.4(2.9) mmol.l-1) in this study showed that players were under maximal load during the field test. From the testing data, it seems reasonable to speculate that the intensity of level 3 (20 light pulses.min-1; 3.0 s.pulse-1) and level 4 (22 light pulses.min-1; 2.7 s.pulse-1) simulates the requirement of actual games energy expenditure of the Hong Kong badminton players exercising at close to their anaerobic threshold. The results also show that an estimate of fitness can be derived from measurements involving exercise closely resembling that which is specific for the sports activity in question. Improved training advice and guidance may result from such studies. PMID:8800846

  1. Tennis-Badminton-Squash Guide. June 1974-June 1976.

    ERIC Educational Resources Information Center

    Sherman, Patricia, Ed.; And Others

    This guide is a collection of essays by various authors on tennis, badminton, and squash. The document is divided into three sections, one for each sport. The topics covered include general teaching methods, methods to employ for teaching specific skills such as the lob or the backhand, the use of visual aids, conditioning drills, study questions,…

  2. Contextual Interference Effects in Learning Three Badminton Serves.

    ERIC Educational Resources Information Center

    Goode, Sinah; Magill, Richard A.

    1986-01-01

    This study was made to validate results obtained in laboratory research. Thirty female students learned three badminton serves in either a low, mixed, or high interference practice schedule and were given a retention and transfer test. Results are discussed. (Author/MT)

  3. Wearable flex sensor system for multiple badminton player grip identification

    NASA Astrophysics Data System (ADS)

    Jacob, Alvin; Zakaria, Wan Nurshazwani Wan; Tomari, Mohd Razali Bin Md; Sek, Tee Kian; Suberi, Anis Azwani Muhd

    2017-09-01

    This paper focuses on the development of a wearable sensor system to identify the different types of badminton grip that is used by a player during training. Badminton movements and strokes are fast and dynamic, where most of the involved movement are difficult to identify with the naked eye. Also, the usage of high processing optometric motion capture system is expensive and causes computational burden. Therefore, this paper suggests the development of a sensorized glove using flex sensor to measure a badminton player's finger flexion angle. The proposed Hand Monitoring Module (HMM) is connected to a personal computer through Bluetooth to enable wireless data transmission. The usability and feasibility of the HMM to identify different grip types were examined through a series of experiments, where the system exhibited 70% detection ability for the five different grip type. The outcome plays a major role in training players to use the proper grips for a badminton stroke to achieve a more powerful and accurate stroke execution.

  4. Relationship between agility and lower limb muscle strength, targeting university badminton players.

    PubMed

    Sonoda, Takuya; Tashiro, Yuto; Suzuki, Yusuke; Kajiwara, Yu; Zeidan, Hala; Yokota, Yuki; Kawagoe, Mirei; Nakayama, Yasuaki; Bito, Tsubasa; Shimoura, Kanako; Tatsumi, Masataka; Nakai, Kengo; Nishida, Yuichi; Yoshimi, Soyoka; Aoyama, Tomoki

    2018-02-01

    [Purpose] Targeting university badminton players, this study investigated the relationship between agility, which is associated with performance in badminton, and lower limb muscle strength, and examined which muscles influence agility. [Subjects and Methods] A total of 23 male university badminton players were evaluated for side-shuffle test scores and lower limb strength. The relationships between agility, lower limb strength, and duration of experience playing badminton were evaluated using a correlation analysis. Moreover, the relationship between agility and lower limb strength was evaluated by partial correlation analysis, adjusting for the effects of experience of each badminton player. [Results] The agility score correlated with hip extension and ankle plantar flexion strength, with adjustment for badminton experience. [Conclusion] This study suggests that hip extension training and improvement in ankle plantar flexion strength may improve agility.

  5. Effects of the racket polar moment of inertia on dominant upper limb joint moments during tennis serve.

    PubMed

    Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël

    2014-01-01

    This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.

  6. Effects of the Racket Polar Moment of Inertia on Dominant Upper Limb Joint Moments during Tennis Serve

    PubMed Central

    Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël

    2014-01-01

    This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players. PMID:25117871

  7. Critical evaluation of a badminton-specific endurance test.

    PubMed

    Fuchs, Michael; Faude, Oliver; Wegmann, Melissa; Meyer, Tim

    2014-03-01

    To overcome the limitations of traditional 1-dimensional fitness tests in analyzing physiological properties of badminton players, a badminton-specific endurance test (BST) was created. This study aimed at analyzing the influence of various fitness dimensions on BST performance. 18 internationally competing male German badminton players (22.4 ± 3.2 y, 79.2 ± 7.7 kg, 1.84 ± 0.06 m, world-ranking position [WRP] 21-501) completed a straight-sprint test, a change-of-direction speed test, various jump tests (countermovement jump, drop jump, standing long jump), a multistage running test (MST), and the BST. During this on-court field test players have to respond to a computerized sign indicating direction and speed of badminton-specific movements by moving into the corresponding corners. Significant correlations were found between performance in MST and BST (individual anaerobic threshold [IAT], r = .63, P = .005; maximum velocity [Vmax], r = .60, P = .009). A negative correlation (r = -.59, P = .014) was observed between IAT in BST and drop-jump contact time. No further associations between performance indices could be detected. Apart from a small portion explained by MST results (IAT, R2 = .40; Vmax, R2 = .36), the majority of BST performance cannot be explained by the determined physiological correlates. Moreover, it was impossible to predict the WRP of a player on the basis of BST results (r = -.15, P = .55). Neither discipline-specific performance nor basic physiological properties were appropriately reflected by a BST in elite badminton players. This does not substantiate its validity for regular use as a testing tool. However, it may be useful for monitoring on-court training sessions.

  8. Microwave Tower Deflection Monitor

    NASA Astrophysics Data System (ADS)

    Truax, Bruce E.

    1980-10-01

    This paper describes an instrument which is capable of monitoring both the twist and lateral motion of a microwave tower. The Microwave Tower Deflection Monitor (MTDM) gives designers the capability of evaluating towers, both for troubleshooting purposes and comparison with design theory. The MTDM has been designed to operate on a broad range of tower structures in a variety of weather conditions. The instrument measures tower motion by monitoring the position of two retroreflectors mounted on the top of the tower. The two retroreflectors are located by scanning a laser beam in a raster pattern in the vicinity of the reflector. When a retroreflector is struck its position is read by a microprocessor and stored on a magnetic tape. Position resolution of better than .5 cm at 200 ft. has been observed in actual tests.

  9. Flow deflection over a foredune

    NASA Astrophysics Data System (ADS)

    Hesp, Patrick A.; Smyth, Thomas A. G.; Nielsen, Peter; Walker, Ian J.; Bauer, Bernard O.; Davidson-Arnott, Robin

    2015-02-01

    Flow deflection of surface winds is common across coastal foredunes and blowouts. Incident winds approaching obliquely to the dune toe and crestline tend to be deflected towards a more crest-normal orientation across the stoss slope of the foredune. This paper examines field measurements for obliquely incident winds, and compares them to computational fluid dynamics (CFD) modelling of flow deflection in 10° increments from onshore (0°) to alongshore (90°) wind approach angles. The mechanics of flow deflection are discussed, followed by a comparative analysis of measured and modelled flow deflection data that shows strong agreement. CFD modelling of the full range of onshore to alongshore incident winds reveals that deflection of the incident wind flow is minimal at 0° and gradually increases as the incident wind turns towards 30° to the dune crest. The greatest deflection occurs between 30° and 70° incident to the dune crest. The degree of flow deflection depends secondarily on height above the dune surface, with the greatest effect near the surface and toward the dune crest. Topographically forced flow acceleration ("speed-up") across the stoss slope of the foredune is greatest for winds less than 30° (i.e., roughly perpendicular) and declines significantly for winds with more oblique approach angles. There is less lateral uniformity in the wind field when the incident wind approaches from > 60° because the effect of aspect ratio on topographic forcing and streamline convergence is less pronounced.

  10. Assessing Cognitive Performance in Badminton Players: A Reproducibility and Validity Study

    PubMed Central

    van de Water, Tanja; Faber, Irene; Elferink-Gemser, Marije

    2017-01-01

    Abstract Fast reaction and good inhibitory control are associated with elite sports performance. To evaluate the reproducibility and validity of a newly developed Badminton Reaction Inhibition Test (BRIT), fifteen elite (25 ± 4 years) and nine non-elite (24 ± 4 years) Dutch male badminton players participated in the study. The BRIT measured four components: domain-general reaction time, badminton-specific reaction time, domain-general inhibitory control and badminton-specific inhibitory control. Five participants were retested within three weeks on the badminton-specific components. Reproducibility was acceptable for badminton-specific reaction time (ICC = 0.626, CV = 6%) and for badminton-specific inhibitory control (ICC = 0.317, CV = 13%). Good construct validity was shown for badminton-specific reaction time discriminating between elite and non-elite players (F = 6.650, p < 0.05). Elite players did not outscore non-elite players on domain-general reaction time nor on both components of inhibitory control (p > 0.05). Concurrent validity for domain-general reaction time was good, as it was associated with a national ranking for elite (p = 0.70, p < 0.01) and non-elite (p = 0.70, p < 0.05) players. No relationship was found between the national ranking and badminton-specific reaction time, nor both components of inhibitory control (p > 0.05). In conclusion, reproducibility and validity of inhibitory control assessment was not confirmed, however, the BRIT appears a reproducible and valid measure of reaction time in badminton players. Reaction time measured with the BRIT may provide input for training programs aiming to improve badminton players’ performance. PMID:28210347

  11. Assessing Cognitive Performance in Badminton Players: A Reproducibility and Validity Study.

    PubMed

    van de Water, Tanja; Huijgen, Barbara; Faber, Irene; Elferink-Gemser, Marije

    2017-01-01

    Fast reaction and good inhibitory control are associated with elite sports performance. To evaluate the reproducibility and validity of a newly developed Badminton Reaction Inhibition Test (BRIT), fifteen elite (25 ± 4 years) and nine non-elite (24 ± 4 years) Dutch male badminton players participated in the study. The BRIT measured four components: domain-general reaction time, badminton-specific reaction time, domain-general inhibitory control and badminton-specific inhibitory control. Five participants were retested within three weeks on the badminton-specific components. Reproducibility was acceptable for badminton-specific reaction time (ICC = 0.626, CV = 6%) and for badminton-specific inhibitory control (ICC = 0.317, CV = 13%). Good construct validity was shown for badminton-specific reaction time discriminating between elite and non-elite players (F = 6.650, p < 0.05). Elite players did not outscore non-elite players on domain-general reaction time nor on both components of inhibitory control (p > 0.05). Concurrent validity for domain-general reaction time was good, as it was associated with a national ranking for elite (p = 0.70, p < 0.01) and non-elite (p = 0.70, p < 0.05) players. No relationship was found between the national ranking and badminton-specific reaction time, nor both components of inhibitory control (p > 0.05). In conclusion, reproducibility and validity of inhibitory control assessment was not confirmed, however, the BRIT appears a reproducible and valid measure of reaction time in badminton players. Reaction time measured with the BRIT may provide input for training programs aiming to improve badminton players' performance.

  12. Naturalistic decision-making in expert badminton players.

    PubMed

    Macquet, A C; Fleurance, P

    2007-09-01

    This paper reports on a study of naturalistic decision-making in expert badminton players. These decisions are frequently taken under time-pressured conditions, yet normally lead to successful performance. Two male badminton teams participated in this study. Self-confrontation interviews were used to collect data. Inductive data analysis revealed three types of intentions during a rally: to maintain the rally; to take the advantage; and to finish the point. It also revealed eight types of decision taken in this situation: to ensure an action; to observe the opponent's response to an action; to realize a limited choice; to influence the opponent's decision; to put pressure on an opponent; to surprise the opponent; to reproduce an efficient action; and to play wide. A frequent decision was to put pressure on the opponent. Different information and knowledge was linked to specific decisions. The results are discussed in relation to research that has considered naturalistic decision-making.

  13. Decreased shoulder function and pain common in recreational badminton players.

    PubMed

    Fahlström, M; Söderman, K

    2007-06-01

    The aim of this study was to describe the prevalence and consequences of painful conditions in the shoulder region in recreational badminton players. A questionnaire study was performed on 99 players, of whom 57 were also assessed with Constant score. Previous or present pain in the dominant shoulder was reported by 52% of the players. Sixteen percent of the players had on-going shoulder pain associated with badminton play. A majority of these players reported that their training habits were affected by the pain. Total Constant score was lower in the painful shoulders. Furthermore, range of active pain-free shoulder abduction was decreased. However, isometric shoulder strength test showed no differences when compared with pain-free shoulders. Even though the pain caused functional problems, the players were still playing with on-going symptoms. The diagnoses were mostly unknown, although history and clinical tests indicate problems resembling subacromial impingement.

  14. Effect of Carbohydrate and Caffeine Ingestion on Badminton Performance.

    PubMed

    Clarke, Neil D; Duncan, Michael J

    2016-01-01

    To investigate the effect of ingesting carbohydrate and caffeine solutions on measures that are central to success in badminton. Twelve male badminton players performed a badminton serve-accuracy test, coincidence-anticipation timing (CAT), and a choice reaction-time sprint test 60 min before exercise. Participants then consumed 7 mL/kg body mass of either water (PLA), 6.4% carbohydrate solution (CHO), a solution containing a caffeine dose of 4 mg/kg, or 6.4% carbohydrate and 4 mg/kg caffeine (C+C). All solutions were flavored with orange-flavored concentrate. During the 33-min fatigue protocol, participants were provided with an additional 3 mL/kg body mass of solution, which was ingested before the end of the protocol. As soon as the 33-min fatigue protocol was completed, all measures were recorded again. Short-serve accuracy was improved after the ingestion of CHO and C+C compared with PLA (P = .001, η(p)(2) = .50). Long-serve accuracy was improved after the ingestion of C+C compared with PLA (P < .001, η(p)(2) = .53). Absolute error in CAT demonstrated smaller deteriorations after the ingestion of C+C compared with PLA (P < .05; slow, η(p)(2) = .41; fast, η(p)(2) = .31). Choice reaction time improved in all trials with the exception of PLA, which demonstrated a reduction (P < .001, η(p)(2) = .85), although C+C was faster than all trials (P < .001, η(p)(2) = .76). These findings suggest that the ingestion of a caffeinated carbohydrate solution before and during a badminton match can maintain serve accuracy, anticipation timing, and sprinting actions around the court.

  15. Physiological characteristics of elite and sub-elite badminton players.

    PubMed

    Ooi, Cheong Hwa; Tan, Albert; Ahmad, Azwari; Kwong, Kien Weng; Sompong, Ruji; Ghazali, Khairul Aswadi Mohd; Liew, Swee Lee; Chai, Wen Jin; Thompson, Martin William

    2009-12-01

    The aims of this study were to establish the physical and physiological attributes of elite and sub-elite Malaysian male badminton players and to determine whether these attributes discriminate elite players from sub-elite players. Measurements and tests of basic anthropometry, explosive power, anaerobic recovery capacity, badminton-specific movement agility, maximum strength, and aerobic capacity were conducted on two occasions, separated by at least one day. The elite (n = 12) and sub-elite (n = 12) players' characteristics were, respectively: mean age 24.6 years (s = 3.7) and 20.5 years (s = 0.7); mass 73.2 kg (s = 7.6) and 62.7 kg (s = 4.2); stature 1.76 m (s = 0.07) and 1.71 m (s = 0.05); body fat 12.5% (s = 4.8) and 9.5% (s = 3.4); estimated VO(2max) 56.9 ml . kg(-1) . min(-1) (s = 3.7) and 59.5 ml . kg(-1) . min(-1) (s = 5.2). The elite players had greater maximum absolute strength in one-repetition maximum bench press (P = 0.015) compared with the sub-elite players. There were significant differences in instantaneous lower body power estimated from vertical jump height between the elite and sub-elite groups (P < 0.01). However, there was no significant difference between groups in shuttle run tests and on-court badminton-specific movement agility tests. Our results show that elite Malaysian male badminton players are taller, heavier, and stronger than their sub-elite counterparts. The test battery, however, did not allow us to discriminate between the elite and sub-elite players, suggesting that at the elite level tactical knowledge, technical skills, and psychological readiness could be of greater importance.

  16. Assessment of Specificity of the Badcamp Agility test for Badminton Players

    PubMed Central

    de França Bahia Loureiro, Luiz; Costa Dias, Mário Oliveira; Cremasco, Felipe Couto; da Silva, Maicon Guimarães; de Freitas, Paulo Barbosa

    2017-01-01

    Abstract The Badcamp agility test was created to evaluate agility of badminton players. The Badcamp is a valid and reliable test, however, a doubt about the need for the use of this test exists as simpler tests could provide similar information about agility in badminton players. Thus, the aim of this study was to examine the specificity of the Badcamp, comparing the performance of badminton players and athletes from other sports in the Badcamp and the shuttle run agility test (SRAT). Sixty-four young male and female athletes aged between 14 and 16 years participated in the study. They were divided into 4 groups of 16 according to their sport practices: badminton, tennis, team sport (basketball and volleyball), and track and field. We compared the groups in both tests, the Badcamp and SRAT. The results revealed that the group of badminton players was faster compared to all other groups in the Badcamp. However, in the SRAT there were no differences among groups composed of athletes from open skill sports (e.g., badminton, tennis, and team sports), and a considerable reduction of the difference between badminton players and track and field athletes. Thus, we concluded that the Badcamp test is a specific agility test for badminton players and should be considered in evaluating athletes of this sport modality. PMID:28713471

  17. Tennis-Badminton-Squash Guide with Official Rules. June 1972 - June 1974.

    ERIC Educational Resources Information Center

    Knight, Martha, Ed.; And Others

    Rules in tennis, badminton, and squash for girls and women from June 1972 - June 1974 are discussed. Standards in the sports are detailed along with the Division for Girls and Women's Sports (DGWS) statement of beliefs. Specific articles dealing with teaching techniques, officiating techniques, and rules for tennis and badminton are presented.…

  18. Assessment of Specificity of the Badcamp Agility test for Badminton Players.

    PubMed

    de França Bahia Loureiro, Luiz; Costa Dias, Mário Oliveira; Cremasco, Felipe Couto; da Silva, Maicon Guimarães; de Freitas, Paulo Barbosa

    2017-06-01

    The Badcamp agility test was created to evaluate agility of badminton players. The Badcamp is a valid and reliable test, however, a doubt about the need for the use of this test exists as simpler tests could provide similar information about agility in badminton players. Thus, the aim of this study was to examine the specificity of the Badcamp, comparing the performance of badminton players and athletes from other sports in the Badcamp and the shuttle run agility test (SRAT). Sixty-four young male and female athletes aged between 14 and 16 years participated in the study. They were divided into 4 groups of 16 according to their sport practices: badminton, tennis, team sport (basketball and volleyball), and track and field. We compared the groups in both tests, the Badcamp and SRAT. The results revealed that the group of badminton players was faster compared to all other groups in the Badcamp. However, in the SRAT there were no differences among groups composed of athletes from open skill sports (e.g., badminton, tennis, and team sports), and a considerable reduction of the difference between badminton players and track and field athletes. Thus, we concluded that the Badcamp test is a specific agility test for badminton players and should be considered in evaluating athletes of this sport modality.

  19. Changes in Badminton Game Play across Developmental Skill Levels among High School Students

    ERIC Educational Resources Information Center

    Wang, Jianyu; Liu, Wenhao

    2012-01-01

    The study examined changes in badminton game play across developmental skill levels among high school students in a physical education setting. Videotapes of badminton game play of 80 students (40 boys and 40 girls) in the four developmental skill levels (each skill level had 10 boys and 10 girls) were randomly selected from a database associated…

  20. Penetrating missile-type head injury from a defective badminton racquet.

    PubMed

    Pappano, Dante; Murray, Elizabeth; Cimpello, Lynn Babcock; Conners, Gregory

    2009-06-01

    Injuries occurring during badminton are rarely serious and primarily involve the lower extremities. We report an instance wherein a patient suffered serious brain injury related to playing with a defective badminton racquet. The possibility of similar injuries following the separation of the racquet head and shaft from the handle needs to be disseminated.

  1. Altered resting brain function and structure in professional badminton players.

    PubMed

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  2. Altered Resting Brain Function and Structure in Professional Badminton Players

    PubMed Central

    Di, Xin; Zhu, Senhua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan

    2012-01-01

    Abstract Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills. PMID:22840241

  3. A biomechanical analysis of common lunge tasks in badminton.

    PubMed

    Kuntze, Gregor; Mansfield, Neil; Sellers, William

    2010-01-01

    The lunge is regularly used in badminton and is recognized for the high physical demands it places on the lower limbs. Despite its common occurrence, little information is available on the biomechanics of lunging in the singles game. A video-based pilot study confirmed the relatively high frequency of lunging, approximately 15% of all movements, in competitive singles games. The biomechanics and performance characteristics of three badminton-specific lunge tasks (kick, step-in, and hop lunge) were investigated in the laboratory with nine experienced male badminton players. Ground reaction forces and kinematic data were collected and lower limb joint kinetics calculated using an inverse dynamics approach. The step-in lunge was characterized by significantly lower mean horizontal reaction force at drive-off and lower mean peak hip joint power than the kick lunge. The hop lunge resulted in significantly larger mean reaction forces during loading and drive-off phases, as well as significantly larger mean peak ankle joint moments and knee and ankle joint powers than the kick or step-in lunges. These findings indicate that, within the setting of this investigation, the step-in lunge may be beneficial for reducing the muscular demands of lunge recovery and that the hop lunge allows for higher positive power output, thereby presenting an efficient lunging method.

  4. Shuttlecock detection system for fully-autonomous badminton robot with two high-speed video cameras

    NASA Astrophysics Data System (ADS)

    Masunari, T.; Yamagami, K.; Mizuno, M.; Une, S.; Uotani, M.; Kanematsu, T.; Demachi, K.; Sano, S.; Nakamura, Y.; Suzuki, S.

    2017-02-01

    Two high-speed video cameras are successfully used to detect the motion of a flying shuttlecock of badminton. The shuttlecock detection system is applied to badminton robots that play badminton fully autonomously. The detection system measures the three dimensional position and velocity of a flying shuttlecock, and predicts the position where the shuttlecock falls to the ground. The badminton robot moves quickly to the position where the shuttle-cock falls to, and hits the shuttlecock back into the opponent's side of the court. In the game of badminton, there is a large audience, and some of them move behind a flying shuttlecock, which are a kind of background noise and makes it difficult to detect the motion of the shuttlecock. The present study demonstrates that such noises can be eliminated by the method of stereo imaging with two high-speed cameras.

  5. Muscle damage produced during a simulated badminton match in competitive male players.

    PubMed

    Abián, Pablo; Del Coso, Juan; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco; Ruiz-Vicente, Diana; Lara, Beatriz; Soriano, Lidón; Muñoz, Victor; Lorenzo-Capella, Irma; Abián-Vicén, Javier

    2016-01-01

    The purpose of the study was to assess the occurrence of muscle damage after a simulated badminton match and its influence on physical and haematological parameters. Sixteen competitive male badminton players participated in the study. Before and just after a 45-min simulated badminton match, maximal isometric force and badminton-specific running/movement velocity were measured to assess muscle fatigue. Blood samples were also obtained before and after the match. The badminton match did not affect maximal isometric force or badminton-specific velocity. Blood volume and plasma volume were significantly reduced during the match and consequently haematite, leucocyte, and platelet counts significantly increased. Blood myoglobin and creatine kinase concentrations increased from 26.5 ± 11.6 to 197.3 ± 70.2 µg·L(-1) and from 258.6 ± 192.2 to 466.0 ± 296.5 U·L(-1), respectively. In conclusion, a simulated badminton match modified haematological parameters of whole blood and serum blood that indicate the occurrence of muscle fibre damage. However, the level of muscle damage did not produce decreased muscle performance.

  6. An unusual mechanism of ocular trauma in badminton players: two incidental cases.

    PubMed

    Khandelwal, Rekha; Majumdar, Mohana Raja; Gupta, Archana

    2012-08-08

    Badminton is a famous sport usually played without any protective eyewear. Ocular injury from one's own partner in a doubles game, with the shuttlecock, is rare. Two untrained badminton players presented with severe ocular trauma during a smash shot from the partner in a 'doubles' game. Both the players developed blind eye (vision <3/60) in spite of immediate treatment. This article describes an unusual mode of severe blunt trauma with a shuttlecock while playing a 'doubles' game, leading to coup-countercoup injury. In addition, the article highlights the need for awareness of the fatal ocular complications and life-long visual disability, especially in untrained badminton enthusiasts.

  7. Analysis of dehydration and strength in elite badminton players.

    PubMed

    Abián-Vicén, Javier; Del Coso, Juan; González-Millán, Cristina; Salinero, Juan José; Abián, Pablo

    2012-01-01

    The negative effects of dehydration on aerobic activities are well established. However, it is unknown how dehydration affects intermittent sports performance. The purpose of this study was to identify the level of dehydration in elite badminton players and its relation to muscle strength and power production. Seventy matches from the National Spanish badminton championship were analyzed (46 men's singles and 24 women's singles). Before and after each match, jump height and power production were determined during a countermovement jump on a force platform. Participants' body weight and a urine sample were also obtained before and after each match. The amount of liquid that the players drank during the match was also calculated by weighing their individual drinking bottles. Sweat rate during the game was 1.14 ± 0.46 l/h in men and 1.02 ± 0.64 l/h in women. The players rehydrated at a rate of 1.10 ± 0.55 l/h and 1.01 ± 0.44 l/h in the male and female groups respectively. Thus, the dehydration attained during the game was only 0.37 ± 0.50% in men and 0.32 ± 0.83% in women. No differences were found in any of the parameters analyzed during the vertical jump (men: from 31.82 ± 5.29 to 32.90 ± 4.49 W/kg; p>0.05, women: from 26.36 ± 4.73 to 27.25 ± 4.44 W/kg; p>0.05). Post-exercise urine samples revealed proteinuria (60.9% of cases in men and 66.7% in women), leukocyturia (men = 43.5% and women = 50.0%) and erythrocyturia (men = 50.0% and women = 21.7%). Despite a moderate sweat rate, badminton players adequately hydrated during a game and thus the dehydration attained was low. The badminton match did not cause muscle fatigue but it significantly increased the prevalence of proteinuria, leukocyturia and erythrocyturia.

  8. Analysis of Dehydration and Strength in Elite Badminton Players

    PubMed Central

    Abián-Vicén, Javier; Del Coso, Juan; González-Millán, Cristina; Salinero, Juan José; Abián, Pablo

    2012-01-01

    Background The negative effects of dehydration on aerobic activities are well established. However, it is unknown how dehydration affects intermittent sports performance. The purpose of this study was to identify the level of dehydration in elite badminton players and its relation to muscle strength and power production. Methodology Seventy matches from the National Spanish badminton championship were analyzed (46 men’s singles and 24 women’s singles). Before and after each match, jump height and power production were determined during a countermovement jump on a force platform. Participants’ body weight and a urine sample were also obtained before and after each match. The amount of liquid that the players drank during the match was also calculated by weighing their individual drinking bottles. Results and Discussion Sweat rate during the game was 1.14±0.46 l/h in men and 1.02±0.64 l/h in women. The players rehydrated at a rate of 1.10±0.55 l/h and 1.01±0.44 l/h in the male and female groups respectively. Thus, the dehydration attained during the game was only 0.37±0.50% in men and 0.32±0.83% in women. No differences were found in any of the parameters analyzed during the vertical jump (men: from 31.82±5.29 to 32.90±4.49 W/kg; p>0.05, women: from 26.36±4.73 to 27.25±4.44 W/kg; p>0.05). Post-exercise urine samples revealed proteinuria (60.9% of cases in men and 66.7% in women), leukocyturia (men = 43.5% and women = 50.0%) and erythrocyturia (men = 50.0% and women = 21.7%). Conclusions Despite a moderate sweat rate, badminton players adequately hydrated during a game and thus the dehydration attained was low. The badminton match did not cause muscle fatigue but it significantly increased the prevalence of proteinuria, leukocyturia and erythrocyturia. PMID:22666396

  9. A dynamical system perspective to understanding badminton singles game play.

    PubMed

    Chow, Jia Yi; Seifert, Ludovic; Hérault, Romain; Chia, Shannon Jing Yi; Lee, Miriam Chang Yi

    2014-02-01

    By altering the task constraints of cooperative and competitive game contexts in badminton, insights can be obtained from a dynamical systems perspective to investigate the underlying processes that results in either a gradual shift or transition of playing patterns. Positional data of three pairs of skilled female badminton players (average age 20.5±1.38years) were captured and analyzed. Local correlation coefficient, which provides information on the relationship of players' displacement data, between each pair of players was computed for angle and distance from base position. Speed scalar product was in turn established from speed vectors of the players. The results revealed two patterns of playing behaviors (i.e., in-phase and anti-phase patterns) for movement displacement. Anti-phase relation was the dominant coupling pattern for speed scalar relationships among the pairs of players. Speed scalar product, as a collective variable, was different between cooperative and competitive plays with a greater variability in amplitude seen in competitive plays leading to a winning point. The findings from this study provide evidence for increasing stroke variability to perturb existing stable patterns of play and highlights the potential for speed scalar product to be a collective variable to distinguish different patterns of play (e.g., cooperative and competitive). Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Neural Correlates of Expert Behavior During a Domain-Specific Attentional Cueing Task in Badminton Players.

    PubMed

    Wang, Chun-Hao; Tu, Kuo-Cheng

    2017-06-01

    The present study aimed to investigate the neural correlates associated with sports expertise during a domain-specific task in badminton players. We compared event-related potentials activity from collegiate male badminton players and a set of matched athletic controls when they performed a badminton-specific attentional cueing task in which the uncertainty and validity were manipulated. The data showed that, regardless of cue type, the badminton players had faster responses along with greater P3 amplitudes than the athletic controls on the task. Specifically, the contingent negative variation amplitude was smaller for the players than for the controls in the condition involving higher uncertainty. Such an effect, however, was absent in the condition with lower uncertainty. We conclude that expertise in sports is associated with proficient modulation of brain activity during cognitive and motor preparation, as well as response execution, when performing a task related to an individual's specific sport domain.

  11. The Seven Habits of Highly Deflective Colleagues

    ERIC Educational Resources Information Center

    Maher, Michelle; Chaddock, Katherine

    2009-01-01

    The authors define deflection as a strategy to bounce action or responsibility away from oneself and toward another person, time, or place. Although they contend that deflection occurs in all areas of personal and professional life, the authors limit their focus to the deflective colleague ("collega deflectivus") in academe. In this article, the…

  12. AIDA: Asteroid Impact & Deflection Assessment

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew; Michel, Patrick; Ulamec, Stephan; Reed, Cheryl; Galvez, Andres; Carnelli, Ian

    On Feb. 15, 2013, an exceptionally close approach to Earth by the small asteroid 2012 DA14 was eagerly awaited by observers, but another small asteroid impacted Earth over Chelyabinsk, Russia the same day without warning, releasing several hundred kilotons TNT of energy and injuring over 1500 people. These dramatic events remind us of the needs to discover hazardous asteroids and to learn how to mitigate them. The AIDA mission is the first demonstration of a mitigation technique to protect the Earth from a potential asteroid impact, by performing a spacecraft kinetic impact on an asteroid to deflect it from its trajectory. We will provide an update on the status of parallel AIDA mission studies supported by ESA and NASA. AIDA is an international collaboration consisting of two independent but mutually supporting missions, one of which is the asteroid kinetic impactor, and the other is the characterization spacecraft which will orbit the asteroid system to monitor the deflection experiment and measure the results. These two missions are the NASA Double Asteroid Redirection Test (DART), which is the kinetic impactor, and the European Space Agency's Asteroid Impact Monitoring (AIM) mission, which is the characterization spacecraft. The target of the AIDA mission will be a binary asteroid, in which DART will target the secondary, smaller member in order to deflect the binary orbit. The resulting period change can be measured to within 10% by ground-based observations. The asteroid deflection will be measured to higher accuracy, and additional results of the DART impact, like the impact crater, will be studied in great detail by the AIM mission. AIDA will return vital data to determine the momentum transfer efficiency of the kinetic impact and key physical properties of the target asteroid. The two mission components of AIDA, DART and AIM, are each independently valuable, but when combined they provide a greatly increased knowledge return. The AIDA mission will combine

  13. Specific inspiratory muscle warm-up enhances badminton footwork performance.

    PubMed

    Lin, Hua; Tong, Tom Kwokkeung; Huang, Chuanye; Nie, Jinlei; Lu, Kui; Quach, Binh

    2007-12-01

    The effects of inspiratory muscle (IM) warm-up on IM function and on the maximum distance covered in a subsequent incremental badminton-footwork test (FWmax) were examined. Ten male badminton players were recruited to perform identical tests in three different trials in a random order. The control trial did not involve an IM warm-up, whereas the placebo and experimental trials did involve an IM warm-up consisting of two sets of 30-breath manoeuvres with an inspiratory pressure-threshold load equivalent to 15% (PLA) and 40% (IMW) maximum inspiratory mouth pressure, respectively. In the IMW trial, IM function was improved with 7.8%+/-4.0% and 6.9%+/-3.5% increases from control found in maximal inspiratory pressure at zero flow (P0) and maximal rate of P0 development (MRPD), respectively (p<0.05). FWmax was enhanced 6.8%+/-3.7%, whereas the slope of the linear relationship of the increase in the rating of perceived breathlessness for every minute (RPB/min) was reduced (p<0.05). Reduction in blood lactate ([La-]b) accumulation was observed when the test duration was identical to that of the control trial (P<0.05). In the PLA trial, no parameter was changed from control. For the changes (Delta) in parameters in IMW (n=10), negative correlations were found between DeltaP0 and DeltaRPB/min (r2=0.58), DeltaMRPD and DeltaRPB/min (r2=0.48), DeltaRPB/min, and DeltaFWmax (r2=0.55), but not between Delta[La-]b accumulation and DeltaFWmax. Such findings suggest that the IM-specific warm-up improved footwork performance in the subsequent maximum incremental badminton-footwork test. The improved footwork was partly attributable to the reduced breathless sensation resulting from the enhanced IM function, whereas the contribution of the concomitant reduction in [La-]b accumulation was relatively minor.

  14. Badminton injuries--a prospective epidemiological and socioeconomic study.

    PubMed Central

    Høy, K; Lindblad, B E; Terkelsen, C J; Helleland, H E; Terkelsen, C J

    1994-01-01

    During a 1-year period 100 badminton players were registered and treated in the casualty ward of Randers City Hospital, Denmark. The injuries to the badminton players constituted 5% of all sports injuries registered during the same period in the casualty ward. At follow-up questionnaires were sent to all participants. Replies were received from 89 patients. Over the same period all sports participants in the hospital catchment area (30,254) were registered according to their sport affiliation (2620 badminton players-1650 men and 970 women). Of those injured 58% were men (mean age 31 years) and 42% were women (mean age 25 years). Of the injuries 55% occurred in club players, the remainder occurring during company and school sports activities. The active players were classified into three groups according to age: Group 1 under 18 years (31%); Group 2 18-25 years (16%); Group 3 more than 25 years (53%). According to the Abbreviated Injury Scale (AIS) 17% of the injuries were classified as minor, 56% as moderate, and 27% as severe, respectively. Of the severe injuries (AIS = 3) 56% were found in the oldest age group. AIS correlated with time absent from sport (P < 0.001). Nine players (9%) reported that earlier injuries had influenced the actual accident. Most players (96%) trained one to three times a week. Sprains were the injury most commonly diagnosed (56%), fractures accounted for 5%, torn ankle ligaments were found in 10%, and 13% had ruptures to the Achilles tendon. Overall, 21% were admitted to hospital. None of the patients treated as inpatients was kept in hospital for more than 7 days. The injury caused 56% of players to be absent from work of whom 23% were absent for more than 3 weeks. After the injury 12% of the players gave up their sport, and only 4% restarted their training/sport within 1 week. As many as 28% had to avoid training and playing in matches for 8 weeks or more. PMID:7894961

  15. Transparency as a remedy against racketeering: preventing and restraining fraud by exposing Big Tobacco's dirty secrets

    PubMed Central

    Muggli, Monique E; Crystal, Howard M; Klausner, Kim

    2015-01-01

    The 1990s state litigation that resulted in the tobacco industry's initial document disclosure obligations fully expired in 2010. These obligations have been extended and enhanced until 2021 through a federal lawsuit against the tobacco industry over violations of the Racketeer Influenced Corrupt Organizations Act (RICO). In this special communication, we summarise and explain the new legal framework and enhanced document disclosure obligations of the major US tobacco companies. We describe the events leading up to these new requirements, including the tobacco companies’ failed attempt to close the Minnesota Tobacco Document Depository, the release of 100 000 documents onto the companies’ document websites discovered to have been publicly available at the Minnesota Tobacco Document Depository but not online, and the addition of over 2300 documents to those websites, which are also now publicly available at Minnesota after being secured for years in a separate, non-public storage room at the Minnesota Tobacco Document Depository. We also detail the document indexing enhancements and redesign of the University of California, San Francisco's Legacy Tobacco Documents Library website, made possible by the RICO litigation, and which is anticipated to be released in September 2014. Last, we highlight the public health community's continued opportunity to expose the US tobacco industry's efforts to undermine public health through these new search enhancements and improved document accessibility and due to the continuously growing document collection until at least 2021. PMID:25052863

  16. Physiological analysis to quantify training load in badminton.

    PubMed Central

    Majumdar, P; Khanna, G L; Malik, V; Sachdeva, S; Arif, M; Mandal, M

    1997-01-01

    OBJECTIVE: To estimate the training load of specific on court training regimens based on the magnitude of variation of heart rate-lactate response during specific training and to determine the magnitude of variation of biochemical parameters (urea, uric acid, and creatine phosphokinase (CPK)) 12 hours after the specific training programme so as to assess training stress. METHODS: The study was conducted on six national male badminton players. Maximum oxygen consumption (VO2), ventilation (VE), heart rate, and respiratory quotient were measured by a protocol of graded treadmill exercise. Twelve training sessions and 35 singles matches were analysed. Heart rate and blood lactate were monitored during technical training routines and match play. Fasting blood samples collected on two occasions--that is, during off season and 12 hours after specific training--were analysed for serum urea, uric acid, and CPK. RESULTS: Analysis of the on court training regimens showed lactate values of 8-10.5 mmol/l in different phases. The percentage of maximum heart rate ranged from 82% to 100%. Urea, uric acid, and CPK activity showed significant changes from (mean (SD)) 4.93 (0.75) mmol/l to 5.49 (0.84) mmol/l, 0.23 (0.04) to 0.33 (0.06) mmol/l, and 312 (211.8) to 363 (216.4) IU/l respectively. CONCLUSION: Maximum lactate reported in the literature ranges from 3-6 mmol/l. Comparatively high lactate values and high percentage of maximum heart rate found in on court training show a considerable stress on muscular and cardiovascular system. The training load needs appropriate monitoring to avoid over-training. Workouts that are too intensive may interfere with coordination, a factor that is important in sports requiring highly technical skill such as badminton. PMID:9429015

  17. Knocked by the shuttlecock: twelve sight-threatening blunt-eye injuries in Australian badminton players.

    PubMed

    Jao, Kathy K; Atik, Alp; Jamieson, Michael P; Sheales, Mariana P; Lee, Matthew H; Porter, Ashley; Roufas, Athena; Goldberg, Ivan; Zamir, Ehud; White, Andrew; Skalicky, Simon E

    2017-07-01

    Non-penetrating ocular injuries from badminton shuttlecocks can result in severe damage and life-long complications. This case series highlights the morbidity of such injuries, particularly in regard to post-traumatic glaucoma. This is a retrospective case series of 12 patients with shuttlecock-related blunt eye injuries sustained during badminton play without eye protection. By approaching colleagues through conference presentations and networking, the authors have attempted to gather all known cases of shuttlecock ocular injury managed in tertiary ocular emergency departments or private ophthalmological clinics in Victoria and New South Wales, Australia in 2015. This is the first multicentre case series to describe badminton-related ocular injuries in Australia. Our case series demonstrates, in particular, long-term glaucoma-related morbidity for patients over a large age range (16 to 77 years), with one patient requiring ongoing management 26 years following their initial injury. The cases reported further add to the literature promoting awareness of badminton-related ocular injury. We encourage player education and advocacy on badminton-related eye injuries and appropriate use of eye protection to reduce associated morbidity. © 2016 Optometry Australia.

  18. Effects of Badminton Expertise on Representational Momentum: A Combination of Cross-Sectional and Longitudinal Studies

    PubMed Central

    Jin, Hua; Wang, Pin; Fang, Zhuo; Di, Xin; Ye, Zhuo’er; Xu, Guiping; Lin, Huiyan; Cheng, Yongmin; Li, Yongjie; Xu, Yong; Rao, Hengyi

    2017-01-01

    Representational momentum (RM) has been found to be magnified in experts (e.g., sport players) with respect to both real and implied motion in expert-familiar domains. However, it remains unclear whether similar effects can be achieved in expert-unfamiliar domains, especially within the context of implied motion. To answer this question, we conducted two independent experiments using an implied motion paradigm and examined the expert effects of badminton training on RM in both adult and child players. In Experiment 1, we used a cross-sectional design and compared RM between adult professional badminton players and matched controls. The results revealed significantly enhanced RM for adult players, supporting the expert effect in expert-unfamiliar domains for implied motion. However, cross-sectional studies could not ascertain whether the observed expert effect was due to innate factors or expertise acquirement. Therefore, in Experiment 2, we used a longitudinal design and compared RM between two groups of child participants, naming child players who had enrolled professional badminton training program at a sports school and age-matched peer non-players who attended an ordinary primary school without sports training. Before training, there were no differences in RM among child players, their non-player peers, and adult non-players. However, after 4 years of badminton training, child players demonstrated significantly enhanced RM compared to themselves prior to training. The increased RM observed in both adult and child players suggests that badminton expertise modulates implied motion RM. PMID:28970810

  19. An unusual mechanism of ocular trauma in badminton players: two incidental cases

    PubMed Central

    Khandelwal, Rekha; Majumdar, Mohana Raja; Gupta, Archana

    2012-01-01

    Badminton is a famous sport usually played without any protective eyewear. Ocular injury from one's own partner in a doubles game, with the shuttlecock, is rare. Two untrained badminton players presented with severe ocular trauma during a smash shot from the partner in a ‘doubles’ game. Both the players developed blind eye (vision <3/60) in spite of immediate treatment. This article describes an unusual mode of severe blunt trauma with a shuttlecock while playing a ‘doubles’ game, leading to coup-countercoup injury. In addition, the article highlights the need for awareness of the fatal ocular complications and life-long visual disability, especially in untrained badminton enthusiasts. PMID:22878990

  20. From mobsters to managers. RIC0 (Racketeer Influenced and Corrupt Organizations Act) extends its reach beyond the underworld.

    PubMed

    Scott, J S

    1989-10-01

    The federal Racketeer influenced and Corrupt Organizations Act (RICO) was enacted in 1970 to combat the infiltration of organized crime into legitimate businesses operating in interstate commerce. During the first 10 years of its existence, the statute was applied almost exclusively in charges requiring criminal penalties. Section 1964 of RICO, however, allows civil remedies for injuries resulting from certain defined criminal activities. These civil remedies authorize treble damages and a reasonable attorney's fee. The Supreme Court has upheld the extension of this law to apply to general business activities, including hospitals. Hospitals risk involvement in civil RICO litigation as they become increasingly active in alternative healthcare businesses--medical supply operations real estate ventures, etc.--that involve public participation and the sale of securities, partnership units, and other equity interests. A disgruntled investor in a failed venture may initiate litigation. Other areas where hospitals are vulnerable to RICO claims include medical staff grievances, involvement in health maintenance organizations, and profile protest activities. The RICO civil provisions contain five basic elements: injury, person, enterprise, pattern of racketeering activity, and interstate or foreign commerce. Basically, this means that any person injured by the unlawful conduct of a person who is employed by or associated with any enterprise that engages in a pattern of activity which affects interstate commerce is entitled to civil RICO damages.

  1. Directed energy deflection laboratory measurements

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Phillip; Hughes, Gary B.; Meinhold, Peter; Suen, Jonathan; Batliner, Payton; Motta, Caio; Griswold, Janelle; Kangas, Miikka; Johansson, Isbella; Alnawakhtha, Yusuf; Prater, Kenyon; Lang, Alex; Madajian, Jonathan

    2015-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DESTAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  2. Mechanistic interpretation of nondestructive pavement testing deflections

    NASA Astrophysics Data System (ADS)

    Hoffman, M. S.; Thompson, M. R.

    1981-06-01

    A method for the back calculation of material properties in flexible pavements based on the interpretation of surface deflection measurements is proposed. The ILLI-PAVE, a stress-dependent finite element pavement model, was used to generate data for developing algorithms and nomographs for deflection basin interpretation. Twenty four different flexible pavement sections throughout the State of Illinois were studied. Deflections were measured and loading mode effects on pavement response were investigated. The factors controlling the pavement response to different loading modes are identified and explained. Correlations between different devices are developed. The back calculated parameters derived from the proposed evaluation procedure can be used as inputs for asphalt concrete overlay design.

  3. Validation of a Video-based Game-Understanding Test Procedure in Badminton.

    ERIC Educational Resources Information Center

    Blomqvist, Minna T.; Luhtanen, Pekka; Laakso, Lauri; Keskinen, Esko

    2000-01-01

    Reports the development and validation of video-based game-understanding tests in badminton for elementary and secondary students. The tests included different sequences that simulated actual game situations. Players had to solve tactical problems by selecting appropriate solutions and arguments for their decisions. Results suggest that the test…

  4. The Impact of Accountability on Student Performance in a Secondary Physical Education Badminton Unit

    ERIC Educational Resources Information Center

    Lund, Jacalyn; Shanklin, Jennifer

    2011-01-01

    The purpose of this study was to examine the effect of accountability on the quality of student motor responses during a 10-day badminton unit with female high school students enrolled in a required physical education class. Students in the control class participated in the same learning activities taught by the same teacher as the treatment…

  5. Validation of a field test for the non-invasive determination of badminton specific aerobic performance

    PubMed Central

    Wonisch, M; Hofmann, P; Schwaberger, G; von Duvillard, S P; Klein, W

    2003-01-01

    Aim: To develop a badminton specific test to determine on court aerobic and anaerobic performance. Method: The test was evaluated by using a lactate steady state test. Seventeen male competitive badminton players (mean (SD) age 26 (8) years, weight 74 (10) kg, height 179 (7) cm) performed an incremental field test on the badminton court to assess the heart rate turn point (HRTP) and the individual physical working capacity (PWCi) at 90% of measured maximal heart rate (HRmax). All subjects performed a 20 minute steady state test at a workload just below the PWCi. Results: Significant correlations (p<0.05) for Pearson's product moment coefficient were found between the two methods for HR (r = 0.78) and velocity (r = 0.93). The HR at the PWCi (176 (5.5) beats/min) was significantly lower than the HRTP (179 (5.5) beats/min), but no significant difference was found for velocity (1.44 (0.3) m/s, 1.38 (0.4) m/s). The constant exercise test showed steady state conditions for both HR (175 (9) beats/min) and blood lactate concentration (3.1 (1.2) mmol/l). Conclusion: The data indicate that a valid determination of specific aerobic and anaerobic exercise performance for the sport of badminton is possible without HRTP determination. PMID:12663351

  6. Inventing International Citizenship: Badminton School and the Progressive Tradition between the Wars

    ERIC Educational Resources Information Center

    Watkins, Christopher

    2007-01-01

    This article explores an educational experiment mounted at a public school for girls in Bristol in the 1920s and 1930s. In examining the aims and methods of the Badminton School for girls in this period it aims to do two things. The first is to analyse the relationship between the gendered, class-based and nationalist values of the public school…

  7. Neural Correlates of Expert Visuomotor Performance in Badminton Players.

    PubMed

    Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas

    2016-11-01

    Elite/skilled athletes participating in sports that require the initiation of targeted movements in response to visual cues under critical time pressure typically outperform nonathletes in a visuomotor reaction task. However, the exact physiological mechanisms of this advantage remain unclear. Therefore, this study aimed to determine the neurophysiological processes contributing to superior visuomotor performance in athletes using visual evoked potential (VEP). Central and peripheral determinants of visuomotor reaction time were investigated in 15 skilled badminton players and 28 age-matched nonathletic controls. To determine the speed of visual signal perception in the cortex, chromatic and achromatic pattern reversal stimuli were presented, and VEP values were recorded with a 64-channel EEG system. Further, a simple visuomotor reaction task was performed to investigate the transformation of the visual into a motor signal in the brain as well as the timing of muscular activation. Amplitude and latency of VEP (N75, P100, and N145) revealed that the athletes did not significantly differ from the nonathletes. However, visuomotor reaction time was significantly reduced in the athletes compared with nonathletes (athletes = 234.9 ms, nonathletes = 260.3 ms, P = 0.015). This was accompanied by an earlier activation of the premotor and supplementary motor areas (athletes = 163.9 ms, nonathletes = 199.1 ms, P = 0.015) as well as an earlier EMG onset (athletes = 167.5 ms, nonathletes = 206.5 ms, P < 0.001). The latency of premotor and supplementary motor area activation was correlated with EMG onset (r = 0.41) and visuomotor reaction time (r = 0.43). The results of this study indicate that superior visuomotor performance in athletes originates from faster visuomotor transformation in the premotor and supplementary motor cortical regions rather than from earlier perception of visual signals in the visual cortex.

  8. Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players.

    PubMed

    Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas

    2017-06-01

    Athletes participating in ball or racquet sports have to respond to visual stimuli under critical time pressure. Previous studies used visual contrast stimuli to determine visual perception and visuomotor reaction in athletes and nonathletes; however, ball and racquet sports are characterized by motion rather than contrast visual cues. Because visual contrast and motion signals are processed in different cortical regions, this study aimed to determine differences in perception and processing of visual motion between athletes and nonathletes. Twenty-five skilled badminton players and 28 age-matched nonathletic controls participated in this study. Using a 64-channel EEG system, we investigated visual motion perception/processing in the motion-sensitive middle temporal (MT) cortical area in response to radial motion of different velocities. In a simple visuomotor reaction task, visuomotor transformation in Brodmann area 6 (BA6) and BA4 as well as muscular activation (EMG onset) and visuomotor reaction time (VMRT) were investigated. Stimulus- and response-locked potentials were determined to differentiate between perceptual and motor-related processes. As compared with nonathletes, athletes showed earlier EMG onset times (217 vs 178 ms, P < 0.001), accompanied by a faster VMRT (274 vs 243 ms, P < 0.001). Furthermore, athletes showed an earlier stimulus-locked peak activation of MT (200 vs 182 ms, P = 0.002) and BA6 (161 vs 137 ms, P = 0.009). Response-locked peak activation in MT was later in athletes (-7 vs 26 ms, P < 0.001), whereas no group differences were observed in BA6 and BA4. Multiple regression analyses with stimulus- and response-locked cortical potentials predicted EMG onset (r = 0.83) and VMRT (r = 0.77). The athletes' superior visuomotor performance in response to visual motion is primarily related to visual perception and, to a minor degree, to motor-related processes.

  9. Large membrane deflection via capillary force actuation

    NASA Astrophysics Data System (ADS)

    Barth, Christina A.; Hu, Xiaoyu; Mibus, Marcel A.; Reed, Michael L.; Knospe, Carl R.

    2018-06-01

    Experimental results from six prototype devices demonstrate that pressure changes induced in a liquid bridge via electrowetting can generate large deflections (20–75 µm) of an elastomeric membrane similar to those used in lab-on-a-chip microfluidic devices. In all cases deflections are obtained with a low voltage (20 V) and very small power consumption (<1 µW). The effects of variations in the bridge size and membrane dimensions on measured displacements are examined. Theoretical predictions are in good agreement with the measured displacements in those cases where the liquid contact angles could be measured within the devices during electrowetting. Contact angle hysteresis and charge injection into the dielectric layers limited the repeatability of deflection behavior during repeated cycling. Approaches for achieving greater deflections and improved repeatability are discussed.

  10. Optical measurement of unducted fan blade deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1988-01-01

    A nonintrusive optical method for measuring unducted fan (or propeller) blade deflections is described and evaluated. The measurement does not depend on blade surface reflectivity. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained with a single light beam generated by a low-power, helium-neon laser. Quantitiative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured static deflections from a series of high-speed wind tunnel tests of a counterrotating unducted fan model are compared with available, predicted deflections, which are also used to evaluate systematic errors.

  11. Optical measurement of propeller blade deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1988-01-01

    A nonintrusive optical method for measurement of propeller blade deflections is described and evaluated. It does not depend on the reflectivity of the blade surface but only on its opaqueness. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained using a single light beam generated by a low-power helium-neon laser. Quantitative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured deflections from a static and a high-speed test are compared with available predicted deflections which are also used to evaluate systematic errors.

  12. Measurement methods of building structures deflections

    NASA Astrophysics Data System (ADS)

    Wróblewska, Magdalena

    2018-04-01

    Underground mining exploitation is leading to the occurrence of deformations manifested by, in particular, sloping terrain. The structures situated on the deforming subsoil are subject to uneven subsidence which is leading in consequence to their deflection. Before a building rectification process takes place by, e.g. uneven raising, the structure's deflection direction and value is determined so that the structure is restored to its vertical position as a result of the undertaken remedial measures. Deflection can be determined by applying classical as well as modern measurement techniques. The article presents examples of measurement methods used considering the measured elements of building structures' constructions and field measurements. Moreover, for a given example of a mining area, the existing deflections of buildings were compared with mining terrain sloping.

  13. Characteristics of Plantar Loads in Maximum Forward Lunge Tasks in Badminton.

    PubMed

    Hu, Xiaoyue; Li, Jing Xian; Hong, Youlian; Wang, Lin

    2015-01-01

    Badminton players often perform powerful and long-distance lunges during such competitive matches. The objective of this study is to compare the plantar loads of three one-step maximum forward lunges in badminton. Fifteen right-handed male badminton players participated in the study. Each participant performed five successful maximum lunges at three directions. For each direction, the participant wore three different shoe brands. Plantar loading, including peak pressure, maximum force, and contact area, was measured by using an insole pressure measurement system. Two-way ANOVA with repeated measures was employed to determine the effects of the different lunge directions and different shoes, as well as the interaction of these two variables, on the measurements. The maximum force (MF) on the lateral midfoot was lower when performing left-forward lunges than when performing front-forward lunges (p = 0.006, 95% CI = -2.88 to -0.04%BW). The MF and peak pressures (PP) on the great toe region were lower for the front-forward lunge than for the right-forward lunge (MF, p = 0.047, 95% CI = -3.62 to -0.02%BW; PP, p = 0.048, 95% CI = -37.63 to -0.16 KPa) and left-forward lunge (MF, p = 0.015, 95% CI = -4.39 to -0.38%BW; PP, p = 0.008, 95% CI = -47.76 to -5.91 KPa). These findings indicate that compared with the front-forward lunge, left and right maximum forward lunges induce greater plantar loads on the great toe region of the dominant leg of badminton players. The differences in the plantar loads of the different lunge directions may be potential risks for injuries to the lower extremities of badminton players.

  14. Characteristics of Plantar Loads in Maximum Forward Lunge Tasks in Badminton

    PubMed Central

    Hu, Xiaoyue; Li, Jing Xian; Hong, Youlian; Wang, Lin

    2015-01-01

    Background Badminton players often perform powerful and long-distance lunges during such competitive matches. The objective of this study is to compare the plantar loads of three one-step maximum forward lunges in badminton. Methods Fifteen right-handed male badminton players participated in the study. Each participant performed five successful maximum lunges at three directions. For each direction, the participant wore three different shoe brands. Plantar loading, including peak pressure, maximum force, and contact area, was measured by using an insole pressure measurement system. Two-way ANOVA with repeated measures was employed to determine the effects of the different lunge directions and different shoes, as well as the interaction of these two variables, on the measurements. Results The maximum force (MF) on the lateral midfoot was lower when performing left-forward lunges than when performing front-forward lunges (p = 0.006, 95% CI = −2.88 to −0.04%BW). The MF and peak pressures (PP) on the great toe region were lower for the front-forward lunge than for the right-forward lunge (MF, p = 0.047, 95% CI = −3.62 to −0.02%BW; PP, p = 0.048, 95% CI = −37.63 to −0.16 KPa) and left-forward lunge (MF, p = 0.015, 95% CI = −4.39 to −0.38%BW; PP, p = 0.008, 95% CI = −47.76 to −5.91 KPa). Conclusions These findings indicate that compared with the front-forward lunge, left and right maximum forward lunges induce greater plantar loads on the great toe region of the dominant leg of badminton players. The differences in the plantar loads of the different lunge directions may be potential risks for injuries to the lower extremities of badminton players. PMID:26367741

  15. A racket-sport intervention improves behavioral and cognitive performance in children with attention-deficit/hyperactivity disorder.

    PubMed

    Pan, Chien-Yu; Chu, Chia-Hua; Tsai, Chia-Liang; Lo, Shen-Yu; Cheng, Yun-Wen; Liu, Yu-Jen

    2016-10-01

    The present study assessed the effects of a 12-week table tennis exercise on motor skills, social behaviors, and executive functions in children with attention deficit hyperactivity disorder (ADHD). In the first 12-week phase, 16 children (group I) received the intervention, whereas 16 children (group II) did not. A second 12-week phase immediately followed with the treatments reversed. Improvements were observed in executive functions in both groups after the intervention. After the first 12-week phase, some motor and behavioral functions improved in group I. After the second 12-week phase, similar improvements were noted for group II, and the intervention effects achieved in the first phase were persisted in group I. The racket-sport intervention is valuable in promoting motor skills, social behaviors, and executive functions and should be included within the standard-of-care treatment for children with ADHD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Shielded serpentine traveling wave tube deflection structure

    DOEpatents

    Hudson, C.L.; Spector, J.

    1994-12-27

    A shielded serpentine slow wave deflection structure is disclosed having a serpentine signal conductor within a channel groove. The channel groove is formed by a serpentine channel in a trough plate and a ground plane. The serpentine signal conductor is supported at its ends by coaxial feed through connectors. A beam interaction trough intersects the channel groove to form a plurality of beam interaction regions wherein an electron beam may be deflected relative to the serpentine signal conductor. 4 figures.

  17. Miniaturization of flight deflection measurement system

    NASA Technical Reports Server (NTRS)

    Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)

    1990-01-01

    A flight deflection measurement system is disclosed including a hybrid microchip of a receiver/decoder. The hybrid microchip decoder is mounted piggy back on the miniaturized receiver and forms an integral unit therewith. The flight deflection measurement system employing the miniaturized receiver/decoder can be used in a wind tunnel. In particular, the miniaturized receiver/decoder can be employed in a spin measurement system due to its small size and can retain already established control surface actuation functions.

  18. Gender differences in game responses during badminton match play.

    PubMed

    Fernandez-Fernandez, Jaime; de la Aleja Tellez, Jose G; Moya-Ramon, Manuel; Cabello-Manrique, David; Mendez-Villanueva, Alberto

    2013-09-01

    The aim of this study was to evaluate possible gender differences in match play activity pattern [rally duration, rest time between rallies, effective playing time, and strokes performed during a rally] and exercise intensity (heart rate [HR], blood lactate [La], and subjective ratings of perceived exertion [RPE]) during 9 simulated badminton matches in male (n = 8) and female (n = 8) elite junior (16.0 ± 1.4 years) players. Results showed significant differences (all p < 0.05; effect size (ES) = 0.80-1.56) between male and female players in the activity pattern of match play, with male players engaged in longer rallies (6.8 ± 4.8 vs. 5.7 ± 3.1 seconds), executing more strokes per rally (6.4 ± 4.8 vs. 4.7 ± 2.8) and resting more between rallies (10.5 ± 8.8 vs. 8.8 ± 7.2 seconds) than female players. No clear differences (all p > 0.05; ES = -0.33 to 0.08) were observed between female or male players in average HR (174 ± 7 vs. 170 ± 9 b·min(-1)), %HRmax (89.2 ± 4.0% vs. 85.9 ± 4.3%), La (2.5 ± 1.3 vs. 3.2 ± 1.8 mmol·L(-1)), and RPE values (14.2 ± 1.9 vs. 14.6 ± 1.8) during match play, although male players spent more time (moderate effect sizes) at intensities between 81 and 90% HRmax (35.3 ± 17.9 vs. 25.3 ± 13.6; p < 0.05; ES = 0.64) in the second game. There seemed to be a trend toward an increased playing intensity (i.e., higher HR, La, and RPE) from the first to the second game, highlighting the higher exercise intensity experienced during the last part of the match. The clear between-gender differences in activity patterns induced only slightly different physiological responses.

  19. Nonlinear core deflection in injection molding

    NASA Astrophysics Data System (ADS)

    Poungthong, P.; Giacomin, A. J.; Saengow, C.; Kolitawong, C.; Liao, H.-C.; Tseng, S.-C.

    2018-05-01

    Injection molding of thin slender parts is often complicated by core deflection. This deflection is caused by molten plastics race tracking through the slit between the core and the rigid cavity wall. The pressure of this liquid exerts a lateral force of the slender core causing the core to bend, and this bending is governed by a nonlinear fifth order ordinary differential equation for the deflection that is not directly in the position along the core. Here we subject this differential equation to 6 sets of boundary conditions, corresponding to 6 commercial core constraints. For each such set of boundary conditions, we develop an explicit approximate analytical solution, including both a linear term and a nonlinear term. By comparison with finite difference solutions, we find our new analytical solutions to be accurate. We then use these solutions to derive explicit analytical approximations for maximum deflections and for the core position of these maximum deflections. Our experiments on the base-gated free-tip boundary condition agree closely with our new explicit approximate analytical solution.

  20. Effect of Notched Strings on Tennis Racket Spin Performance: Ultrahigh-Speed Video Analysis of Spin Rate, Contact Time, and Post-Impact Ball Velocity

    NASA Astrophysics Data System (ADS)

    Kawazoe, Yoshihiko; Takeda, Yukihiro; Nakagawa, Masamichi

    While some tennis racket strings have more grip than others do, this does not guarantee that they will impart more spin to a tennis ball. Experiments with hand-held rackets are required to determine the longstanding question of how players can discern that different strings behave differently when laboratory tests indicate that they should play the same. In a previous study, we clarified the top-spin mechanism of a tennis racket by using high-speed video analysis on a tennis court for the first time. Furthermore, we improved it by using lubricated notched nylon strings. These experiments revealed that the more the main strings stretch and bend laterally, the more spin is imparted to the ball. This is due to the restoring force being parallel to the string face when the main strings spring back and the ball is released from the strings. Notched strings reduce the spin rate, but this can be effectively counteracted by employing lubricants. Furthermore, we found that imparting more spin reduces shock vibrations on the wrist during impact. The present study revealed that a ball has a 40% lower spin rate when hit with a racket with notched strings than with one with unnotched strings in the case of nylon (it had to be determined whether new strings or lubricated used strings give more spin). The experiments also showed that 30% more spin is imparted to a ball when the string intersections are lubricated by oil than when notched used nylon strings are used. Furthermore, we found that used natural gut notched strings reduced the spin rate by 70% compared to when new natural gut unnotched strings are used. We also investigated different top-spin behaviors obtained when professional and amateur tennis players hit a ball.

  1. Bending of Rectangular Plates with Large Deflections

    NASA Technical Reports Server (NTRS)

    Levy, Samuel

    1942-01-01

    The solution of von Karman's fundamental equations for large deflections of plates is presented for the case of a simply supported rectangular plate under combined edge compression and lateral loading. Numerical solutions are given for square plates and for rectangular plates with a width-span ratio of 3:1. The effective widths under edge compression are compared with effective widths according to von Karman, Bengston, Marguerre, and Cox and with experimental results by Ramberg, McPherson, and Levy. The deflections for a square plate under lateral pressure are compared with experimental and theoretical results by Kaiser. It is found that the effective widths agree closely with Marguerre's formula and with the experimentally observed values and that the deflections agree with the experimental results and with Kaiser's work.

  2. Shielded serpentine traveling wave tube deflection structure

    DOEpatents

    Hudson, Charles L.; Spector, Jerome

    1994-01-01

    A shielded serpentine slow wave deflection structure (10) having a serpene signal conductor (12) within a channel groove (46). The channel groove (46) is formed by a serpentine channel (20) in a trough plate (18) and a ground plane (14). The serpentine signal conductor (12) is supported at its ends by coaxial feed through connectors 28. A beam interaction trough (22) intersects the channel groove (46) to form a plurality of beam interaction regions (56) wherein an electron beam (54) may be deflected relative to the serpentine signal conductor (12).

  3. Lateral-deflection-controlled friction force microscopy

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Kenji; Hamaoka, Satoshi; Shikida, Mitsuhiro; Itoh, Shintaro; Zhang, Hedong

    2014-08-01

    Lateral-deflection-controlled dual-axis friction force microscopy (FFM) is presented. In this method, an electrostatic force generated with a probe-incorporated micro-actuator compensates for friction force in real time during probe scanning using feedback control. This equivalently large rigidity can eliminate apparent boundary width and lateral snap-in, which are caused by lateral probe deflection. The method can evolve FFM as a method for quantifying local frictional properties on the micro/nanometer-scale by overcoming essential problems to dual-axis FFM.

  4. Light deflection in gadolinium molybdate ferroelastic crystals

    NASA Astrophysics Data System (ADS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-02-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.

  5. Stress fracture of the proximal humeral epiphysis in an elite junior badminton player.

    PubMed Central

    Boyd, K T; Batt, M E

    1997-01-01

    An elite junior badminton player presented with a chronic painful dominant shoulder after an intense training course. An acute stress fracture to the proximal humeral epiphysis was found. Two-plane radiography will identify abnormalities of the growth plate but comparative films of the unaffected side may also be required to differentiate subtle changes. Rest with subsequent rehabilitation is the appropriate management of these injuries although ideally they should be subjected to primary prevention. Images Figure 1 Figure 2 PMID:9298564

  6. Stress fracture of the second metacarpal bone in a badminton player.

    PubMed

    Fukuda, Koji; Fujioka, Hiroyuki; Fujita, Ikuo; Uemoto, Harunobu; Hiranaka, Takafumi; Tsuji, Mitsuo; Kurosaka, Masahiro

    2008-07-18

    We present a rare case of stress fracture of the second metacarpal bone. A 14-year-old girl felt pain on the dorsal aspect of the right wrist without any history of major trauma, when she played a smash during a game of badminton. On the radiographs, periosteal reaction was detected on the ulnar aspect of the base of the second metacarpal bone. She was treated conservatively and she returned to the original activity level.

  7. Immediate effects of different types of stretching exercises on badminton jump smash.

    PubMed

    Jang, Hwi S; Kim, Daeho; Park, Jihong

    2018-01-01

    Since different types of stretching exercises may alter athletic performance, we compared the effects of three types of stretching exercises on badminton jump smash. Sixteen male collegiate badminton players performed one of three different stretching exercises in a counterbalanced order on different days. Static stretching had seven typical stretches, while dynamic stretching involved nine dynamic movements, and resistance dynamic stretching was performed with weighted vests and dumbbells. Before and after each stretching exercise, subjects performed 20 trials of jump smashes. Dependent measurements were the jump heights during jump smashes, velocities of jump-smashed shuttlecocks, and drop point of jump-smashed shuttlecocks. To test the effects of each stretching exercise, we performed mixed model ANOVAs and calculated between-time effect sizes (ES). Each stretching exercise improved the jump heights during jump smashes (type main effect: F(2,75)=1.19, P=0.31; static stretching: 22.1%, P<0.01, ES=0.98; dynamic stretching: 30.1%, P<0.01, ES=1.49; resistance dynamic stretching: 17.7%, P=0.03, ES=0.98) and velocities of jump-smashed shuttlecocks (type main effect: F(2,75)=2.18, P=0.12; static stretching: 5.7%, P=0.61, ES=0.39; dynamic stretching: 3.4%, P=0.94, ES=0.28; resistance dynamic stretching: 6%, P=0.50, ES=0.66). However, there were no differences among the stretching exercises for any measurement. The drop point of jump-smashed shuttlecocks did not change (interaction: F(2,75)=0.88, P=0.42). All stretching exercises improved badminton jump smash performance, but we could not determine the best protocol. Since badminton requires high-speed movement and explosive force, we suggest performing dynamic stretching or resistance dynamic stretching.

  8. Shoulder pain -- a common problem in world-class badminton players.

    PubMed

    Fahlström, Martin; Yeap, Joo Seng; Alfredson, Håkan; Söderman, Kerstin

    2006-06-01

    Badminton is a sport that requires a lot of over-shoulder motion, with the shoulder in abduction/external rotation. This questionnaire study on 188 international top-level badminton players during the World Mixed Team Championships showed that previous or present shoulder pain on the dominant side was reported by 52% of the players. Previous shoulder pain was reported by 37% of the players and on-going shoulder pain by 20% of the players. There were no significant differences in the prevalence of shoulder pain between men and women. The majority of the shoulder pain had started gradually. The pain was usually associated with shoulder activity, and stiffness was a common, associated symptom. Furthermore, the shoulder pain was associated with consequences such as sleeping disturbances, changes in training and competition habits, and it also affected activities of daily living. The majority of the players had sought medical advice and had been given different kinds of treatment. The study showed that shoulder pain is a common and significant problem in world-class badminton players, and the consequences are most likely of importance for their training and playing capacity.

  9. The effects of carbohydrate ingestion on the badminton serve after fatiguing exercise.

    PubMed

    Bottoms, Lindsay; Sinclair, Jonathan; Taylor, Katrina; Polman, Remco; Fewtrell, David

    2012-01-01

    The badminton serve requires great skill and may be affected by fatigue. The aim of the present study was to determine whether carbohydrate ingestion affects badminton performance. Nine male badminton players (age 25 ± 7 years, mass 80.6 ± 8.0 kg) attended the laboratory on three occasions. The first visit involved an incremental exercise test to exhaustion to determine peak heart rate. Participants were given 1 L of a carbohydrate-electrolyte drink or a matched placebo during the experimental trials. The accuracy of 10 long and 10 short serves was determined before and after exercise. The fatiguing exercise was 33 min in duration (83 ± 10% and 84 ± 8% peak heart rate for the placebo and carbohydrate trial respectively). Capillary blood samples (20 μL) were taken before and after exercise for determination of blood glucose and lactate. There was deterioration in long serve accuracy with fatigue (P = 0.002), which carbohydrate ingestion had a tendency to prevent (P = 0.077). There was no effect of fatigue (P = 0.402) or carbohydrate ingestion (P = 0.109) on short serve accuracy. There was no difference in blood glucose concentration between trials (P = 0.851). Blood lactate concentration was higher during the placebo trial (P = 0.016). These results suggest that only the long serve is influenced by fatigue and carbohydrate had a tendency to prevent the deterioration in performance.

  10. Application of serum CK and BUN determination in monitoring pre-competition training of badminton athletes.

    PubMed

    Yang, Yun

    2007-02-01

    In order to investigate the feasibility of serum creatine kinase (CK) and blood urea nitrogen (BUN) in monitoring pre-competition training of badminton athletes, the pre-competition training load of 20 badminton athletes was studied, and serum CK and BUN were determined before, immediate and next morning after training. The results showed that after intensive training for one week, serum CK levels were significantly increased by 57.53 mmol/L (P<0.05). After regulation of the training intensity, average serum CK levels were increased by 21.79 mmol/L (P<0.05). BUN contents were increased by 0.83 mmol/L on average with the difference being not significant (P>0.05). After intermittent training, there was significant difference in the average increased levels of serum CK in athletes (P<0.05). There was significant difference before and after regulation of training (P<0.05). The increased levels of BUN were 0.78 mmol/L without significant difference (P>0.05). It was concluded that serum CK was one of the biochemical indicators monitoring the training load sensitivity of badminton athletes, but BUN was of little value in monitoring the training load. Both serum CK and BUN recovered slowly after one-week intensive training and intermittent training, suggesting the metabolic mechanism of human body in training needs further study.

  11. Shoulder rotational profiles in young healthy elite female and male badminton players.

    PubMed

    Couppé, C; Thorborg, K; Hansen, M; Fahlström, M; Bjordal, J M; Nielsen, D; Baun, M; Storgaard, M; Magnusson, S P

    2014-02-01

    The aim of the present study was to profile shoulder passive range of motion (ROM) and isometric strength for external (ER) and internal (IR) rotation as part of a preseason screening in adolescent national badminton players. Passive external range of motion (EROM) and internal range of motion (IROM) were examined on the dominant and nondominant shoulder in 31 adolescent national badminton players (12 females and 19 males) with a standard goniometer. Muscle strength was examined with a hand-held dynamometer in ER and IR. Total range of motion (TROM = EROM+IROM) was lower on the dominant side compared with the nondominant side in both groups (P < 0.001). Males were generally stronger than females in all strength measurements except for IR on the dominant side (P < 0.01). In females, IR dominant side strength was greater compared with IR on the nondominant side (P < 0.05). TROM was reduced on the dominant side compared with the nondominant side in young elite badminton players, irrespective of gender. No rotational strength differences existed between the dominant and nondominant side in male players, but in female players a higher IR strength on the dominant side was not balanced by a higher ER strength. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Ground reaction forces and knee kinetics during single and repeated badminton lunges.

    PubMed

    Lam, Wing Kai; Ding, Rui; Qu, Yi

    2017-03-01

    Repeated movement (RM) lunge that frequently executed in badminton might be used for footwear evaluation. This study examined the influence of single movement (SM) and RM lunges on the ground reaction forces (GRFs) and knee kinetics during the braking phase of a badminton lunge step. Thirteen male university badminton players performed left-forward lunges in both SM and RM sessions. Force platform and motion capturing system were used to measure GRFs and knee kinetics variables. Paired t-test was performed to determine any significant differences between SM and RM lunges regarding mean and coefficient of variation (CV) in each variable. The kinetics results indicated that compared to SM lunges, the RM lunges had shorter contact time and generated smaller maximum loading rate of impact force, peak knee anterior-posterior force, and peak knee sagittal moment but generated larger peak horizontal resultant forces (Ps < 0.05). Additionally, the RM lunges had lower CV for peak knee medial-lateral and vertical forces (Ps < 0.05). These results suggested that the RM testing protocols had a distinct loading response and adaptation pattern during lunge and that the RM protocol showed higher within-trial reliability, which may be beneficial for the knee joint loading evaluation under different interventions.

  13. Treatment of chronic Achilles tendon pain by Kinesio taping in an amateur badminton player.

    PubMed

    Lee, Jung-hoon; Yoo, Won-gyu

    2012-05-01

    To evaluate the effects of Kinesio taping on a patient with chronic Achilles tendon pain. Case report. A 22-year-old male amateur badminton player slipped on the ground as he landed after jumping while playing badminton, resulting in chronic Achilles tendon pain of the dominant (right) leg. We performed Achilles tendon taping (ATT) over 5 weeks. The patient's ultrasonography showed that the tendon thickness was moderately reduced from 0.42 cm to 0.37 cm and that the angles of active dorsiflexion and active plantar flexion without pain increased from 15° to 20° and from 20° to 45°, respectively. The Victorian Institute of Sport Assessment-Achilles (VISA-A) questionnaire score increased from 64 to 95, and the load-induced pain assessment score decreased from 6 to 0. The pain threshold increased from 0.8 kg to 10 kg. The tenderness at 3 kg, assessed on a numeric rating scale, decreased from 7 to 0, and the patient was able to play badminton and soccer without pain. We verified the effect with an increase in the active ankle joint range of motion and the VISA-A questionnaire score, which was achieved by a decrease in tenderness and pain from repeated ATT application. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. How does knee pain affect trunk and knee motion during badminton forehand lunges?

    PubMed

    Huang, Ming-Tung; Lee, Hsing-Hsan; Lin, Cheng-Feng; Tsai, Yi-Ju; Liao, Jen-Chieh

    2014-01-01

    Badminton requires extensive lower extremity movement and a precise coordination of the upper extremity and trunk movements. Accordingly, this study investigated motions of the trunk and the knee, control of dynamic stability and muscle activation patterns of individuals with and without knee pain. Seventeen participants with chronic knee pain and 17 healthy participants participated in the study and performed forehand forward and backward diagonal lunges. This study showed that those with knee pain exhibited smaller knee motions in frontal and horizontal planes during forward lunge but greater knee motions in sagittal plane during backward lunge. By contrast, in both tasks, the injured group showed a smaller value on the activation level of the paraspinal muscles in pre-impact phase, hip-shoulder separation angle, trunk forward inclination range and peak centre of mass (COM) velocity. Badminton players with knee pain adopt a more conservative movement pattern of the knee to minimise recurrence of knee pain. The healthy group exhibit better weight-shifting ability due to a greater control of the trunk and knee muscles. Training programmes for badminton players with knee pain should be designed to improve both the neuromuscular control and muscle strength of the core muscles and the knee extensor with focus on the backward lunge motion.

  15. Effect of core strength training on dynamic balance and agility in adolescent badminton players.

    PubMed

    Ozmen, Tarik; Aydogmus, Mert

    2016-07-01

    The aim of the present study was to investigate effect of core strength training (CST) on core endurance, dynamic balance and agility in adolescent badminton players. Twenty adolescent (age = 10.8 ± 0.3 years; height = 140.6 ± 4.4 cm, weight = 33.9 ± 5.8 kg) badminton players were randomly divided into two groups as training group (TG) and control (CG) group. All subjects were evaluated with Star Excursion Balance Test (SEBT), Illinois Agility Test, and the core endurance tests. The TG completed CST twice a week, for 6 weeks. There were significant increases in (p < 0.05) directions of SEBT and core endurance tests (p < 0.05). However, no significant change was observed for agility (p > 0.05). The CST resulted in significant gains in directions of the SEBT and core endurances in adolescent badminton players, but not in agility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. AIDA: The Asteroid Impact & Deflection Assessment Mission

    NASA Astrophysics Data System (ADS)

    Galvez, A.; Carnelli, I.; Michel, P.; Cheng, A. F.; Reed, C.; Ulamec, S.; Biele, J.; Abell, P.; Landis, R.

    2013-09-01

    The Asteroid Impact and Deflection Assessment (AIDA) mission, a joint effort of ESA, JHU/APL, NASA, OCA, and DLR, is the first demonstration of asteroid deflection and assessment via kinetic impact. AIDA consists of two independent but mutually supporting mission elements, one of which is the asteroid kinetic impactor and the other is the characterization spacecraft. These two missions are, respectively, JHU/APL's Double Asteroid Redirection Test (DART) and the European Space Agency's Asteroid Investigation Mission (AIM) missions. As in the separate DART and AIM studies, the target of this mission is the binary asteroid [65803] Didymos in October, 2022. For a successful joint mission, one spacecraft, DART, would impact the secondary of the Didymos system while AIM would observe and measure any change in the relative orbit. AIM will be the first probe to characterise a binary asteroid, especially from the dynamical point of view, but also considering its interior and subsurface composition. The mission concept focuses on the monitoring aspects i.e., the capability to determine in-situ the key physical properties of a binary asteroid playing a role in the system's dynamic behavior. DART will be the first ever space mission to deflect the trajectory of an asteroid in a measurable way.- It is expected that the deflection can be measured as a change in the relative orbit period with a precision better than 10%. The joint AIDA mission will return vital data to determine the momentum transfer efficiency of the kinetic impact [1,2].

  17. Measuring Deflections Of Propeller And Fan Blades

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1993-01-01

    Method based on measurement of interruptions of laser beam provides information on deflections of blades of airplane propeller or unducted turbofan. Bends and twists deduced from timing of laser-beam shadows. Provides for nonintrusive measurement in wind tunnel or on open test stand.

  18. Impeller deflection and modal finite element analysis.

    SciTech Connect

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options suchmore » as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.« less

  19. Particle beam and crabbing and deflecting structure

    DOEpatents

    Delayen, Jean [Yorktown, VA

    2011-02-08

    A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

  20. Large beam deflection using cascaded prism array

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Tsui, Chi-Leung

    2012-04-01

    Endoscopes have been utilize in the medical field to observe the internals of the human body to assist the diagnosis of diseases, such as breathing disorders, internal bleeding, stomach ulcers, and urinary tract infections. Endoscopy is also utilized in the procedure of biopsy for the diagnosis of cancer. Conventional endoscopes suffer from the compromise between overall size and image quality due to the required size of the sensor for acceptable image quality. To overcome the size constraint while maintaining the capture image quality, we propose an electro-optic beam steering device based on thermal-plastic polymer, which has a small foot-print (~5mmx5mm), and can be easily fabricated using conventional hot-embossing and micro-fabrication techniques. The proposed device can be implemented as an imaging device inside endoscopes to allow reduction in the overall system size. In our previous work, a single prism design has been used to amplify the deflection generated by the index change of the thermal-plastic polymer when a voltage is applied; it yields a result of 5.6° deflection. To further amplify the deflection, a new design utilizing a cascading three-prism array has been implemented and a deflection angle to 29.2° is observed. The new design amplifies the beam deflection, while keeping the advantage of simple fabrication made possible by thermal-plastic polymer. Also, a photo-resist based collimator lens array has been added to reduce and provide collimation of the beam for high quality imaging purposes. The collimator is able to collimate the exiting beam at 4 μm diameter for up to 25mm, which potentially allows high resolution image capturing.

  1. Asteroid Deflection: How, Where and When?

    NASA Astrophysics Data System (ADS)

    Fargion, D.

    2008-10-01

    To deflect impact-trajectory of massive and spinning km^3 asteroid by a few terrestrial radiuses one need a large momentum exchange. The dragging of huge spinning bodies in space by external engine seems difficult or impossible. Our solution is based on the landing of multi screw-rockets, powered by mini-nuclear engines, on the body, that dig a small fraction of the soil surface to use as an exhaust propeller, ejecting it vertically in phase among themselves. Such a mass ejection increases the momentum exchange, their number redundancy guarantees the stability of the system. The slow landing (below ≃ 40 cm s^{-1}) of each engine-unity at those very low gravity field, may be achieved by safe rolling and bouncing along the surface. The engine array tuned activity, overcomes the asteroid angular velocity. Coherent turning of the jet heads increases the deflection efficiency. A procession along its surface may compensate at best the asteroid spin. A small skin-mass (about 2×10^4 tons) may be ejected by mini-nuclear engines. Such prototypes may also build first safe galleries for humans on the Moon. Conclusive deflecting tests might be performed on remote asteroids. The incoming asteroid 99942 Apophis (just 2% of km^3) may be deflected safely a few Earth radiuses. Its encounter maybe not just a hazard but an opportunity, learning how to land, to dig, to build and also to nest safe human station inside. Asteroids amplified deflections by gravity swing may be driven into longest planetary journeys, beginning i.e. with the preliminary landing of future missions on Mars' moon-asteroid Phobos or Deimos.

  2. Asteroid Impact & Deflection Assessment mission: Kinetic impactor

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Michel, P.; Jutzi, M.; Rivkin, A. S.; Stickle, A.; Barnouin, O.; Ernst, C.; Atchison, J.; Pravec, P.; Richardson, D. C.; AIDA Team

    2016-02-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor to deflect an asteroid. AIDA is an international cooperation, consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the ESA Asteroid Impact Mission (AIM) rendezvous mission. The primary goals of AIDA are (i) to test our ability to perform a spacecraft impact on a potentially hazardous near-Earth asteroid and (ii) to measure and characterize the deflection caused by the impact. The AIDA target will be the binary near-Earth asteroid (65803) Didymos, with the deflection experiment to occur in late September, 2022. The DART impact on the secondary member of the binary at 7 km/s is expected to alter the binary orbit period by about 4 minutes, assuming a simple transfer of momentum to the target, and this period change will be measured by Earth-based observatories. The AIM spacecraft will characterize the asteroid target and monitor results of the impact in situ at Didymos. The DART mission is a full-scale kinetic impact to deflect a 150 m diameter asteroid, with known impactor conditions and with target physical properties characterized by the AIM mission. Predictions for the momentum transfer efficiency of kinetic impacts are given for several possible target types of different porosities, using Housen and Holsapple (2011) crater scaling model for impact ejecta mass and velocity distributions. Results are compared to numerical simulation results using the Smoothed Particle Hydrodynamics code of Jutzi and Michel (2014) with good agreement. The model also predicts that the ejecta from the DART impact may make Didymos into an active asteroid, forming an ejecta coma that may be observable from Earth-based telescopes. The measurements from AIDA of the momentum transfer from the DART impact, the crater size and morphology, and the evolution of an ejecta coma will

  3. Quantifying Vocal Mimicry in the Greater Racket-Tailed Drongo: A Comparison of Automated Methods and Human Assessment

    PubMed Central

    Agnihotri, Samira; Sundeep, P. V. D. S.; Seelamantula, Chandra Sekhar; Balakrishnan, Rohini

    2014-01-01

    Objective identification and description of mimicked calls is a primary component of any study on avian vocal mimicry but few studies have adopted a quantitative approach. We used spectral feature representations commonly used in human speech analysis in combination with various distance metrics to distinguish between mimicked and non-mimicked calls of the greater racket-tailed drongo, Dicrurus paradiseus and cross-validated the results with human assessment of spectral similarity. We found that the automated method and human subjects performed similarly in terms of the overall number of correct matches of mimicked calls to putative model calls. However, the two methods also misclassified different subsets of calls and we achieved a maximum accuracy of ninety five per cent only when we combined the results of both the methods. This study is the first to use Mel-frequency Cepstral Coefficients and Relative Spectral Amplitude - filtered Linear Predictive Coding coefficients to quantify vocal mimicry. Our findings also suggest that in spite of several advances in automated methods of song analysis, corresponding cross-validation by humans remains essential. PMID:24603717

  4. The Structure of Morpho-Functional Conditions Determining the Level of Sports Performance of Young Badminton Players

    PubMed Central

    Jaworski, Janusz; Żak, Michał

    2015-01-01

    The aim of the study was to determine the structure of morpho-functional models that determine the level of sports performance in three consecutive stages of training of young badminton players. In the course of the study, 3 groups of young badminton players were examined: 40 preadolescents aged 11–13, 32 adolescents aged 14–16, and 24 adolescents aged 17–19. The scope of the study involved basic anthropometric measurements, computer tests analysing motor coordination abilities, motor skills encompassing speed, muscular power and strength, and cardiorespiratory endurance. Results of the study indicate that the structure of morpho-functional models varies at different stages of sports training. Sets of variables determining sports performance create characteristic complexes of variables that do not constitute permanent models. The dominance of somatic features and coordination abilities in the early stages of badminton training changes for the benefit of speed and strength abilities. PMID:26557205

  5. Background estimation and player detection in badminton video clips using histogram of pixel values along temporal dimension

    NASA Astrophysics Data System (ADS)

    Peng, Yahui; Ma, Xiao; Gao, Xinyu; Zhou, Fangxu

    2015-12-01

    Computer vision is an important tool for sports video processing. However, its application in badminton match analysis is very limited. In this study, we proposed a straightforward but robust histogram-based background estimation and player detection methods for badminton video clips, and compared the results with the naive averaging method and the mixture of Gaussians methods, respectively. The proposed method yielded better background estimation results than the naive averaging method and more accurate player detection results than the mixture of Gaussians player detection method. The preliminary results indicated that the proposed histogram-based method could estimate the background and extract the players accurately. We conclude that the proposed method can be used for badminton player tracking and further studies are warranted for automated match analysis.

  6. Effects of badminton and ice hockey on bone mass in young males: a 12-year follow-up.

    PubMed

    Tervo, Taru; Nordström, Peter; Nordström, Anna

    2010-09-01

    The purpose of the present study was to investigate the influence of different types of weight bearing physical activity on bone mineral density (BMD, g/cm(2)) and evaluate any residual benefits after the active sports career. Beginning at 17 years of age, BMD was measured 5 times, during 12 years, in 19 badminton players, 48 ice hockey players, and 25 controls. During the active career, badminton players gained significantly more BMD compared to ice hockey players at all sites: in their femoral neck (mean difference (Delta) 0.06 g/cm(2), p=0.04), humerus (Delta 0.06 g/cm(2), p=0.01), lumbar spine (Delta 0.08 g/cm(2), p=0.01), and their legs (Delta 0.05 g/cm(2), p=0.003), after adjusting for age at baseline, changes in weight, height, and active years. BMD gains in badminton players were higher also compared to in controls at all sites (Delta 0.06-0.17 g/cm(2), p<0.01 for all). Eleven badminton players and 37 ice hockey players stopped their active career a mean of 6 years before the final follow-up. Both these groups lost significantly more BMD at the femoral neck and lumbar spine compared to the control group (Delta 0.05-0.12 g/cm(2), p<0.05 for all). At the final follow-up, badminton players had significantly higher BMD of the femoral neck, humerus, lumbar spine, and legs (Delta 0.08-0.20 g/cm(2), p<0.01 for all) than both ice hockey players and controls. In summary, the present study may suggest that badminton is a more osteogenic sport compared to ice hockey. The BMD benefits from previous training were partially sustained with reduced activity. Copyright 2010 Elsevier Inc. All rights reserved.

  7. The ingestion of a caffeinated energy drink improves jump performance and activity patterns in elite badminton players.

    PubMed

    Abian, Pablo; Del Coso, Juan; Salinero, Juan José; Gallo-Salazar, Cesar; Areces, Francisco; Ruiz-Vicente, Diana; Lara, Beatriz; Soriano, Lidon; Muñoz, Victor; Abian-Vicen, Javier

    2015-01-01

    The aim of this study was to investigate the effectiveness of a caffeine-containing energy drink to enhance physical and match performance in elite badminton players. Sixteen male and elite badminton players (25.4 ± 7.3 year; 71.8 ± 7.9 kg) participated in a double-blind, placebo-controlled and randomised experiment. On two different sessions, badminton players ingested 3 mg of caffeine per kg of body mass in the form of an energy drink or the same drink without caffeine (placebo). After 60 min, participants performed the following tests: handgrip maximal force production, smash jump without and with shuttlecock, squat jump, countermovement jump and the agility T-test. Later, a 45-min simulated badminton match was played. Players' number of impacts and heart rate was measured during the match. The ingestion of the caffeinated energy drink increased squat jump height (34.5 ± 4.7 vs. 36.4 ± 4.3 cm; P < 0.05), squat jump peak power (P < 0.05), countermovement jump height (37.7 ± 4.5 vs. 39.5 ± 5.1 cm; P < 0.05) and countermovement jump peak power (P < 0.05). In addition, an increased number of total impacts was found during the badminton match (7395 ± 1594 vs. 7707 ± 2033 impacts; P < 0.05). In conclusion, the results show that the use of caffeine-containing energy drink may be an effective nutritional aid to increase jump performance and activity patterns during game in elite badminton players.

  8. White matter tractography using diffusion tensor deflection.

    PubMed

    Lazar, Mariana; Weinstein, David M; Tsuruda, Jay S; Hasan, Khader M; Arfanakis, Konstantinos; Meyerand, M Elizabeth; Badie, Benham; Rowley, Howard A; Haughton, Victor; Field, Aaron; Alexander, Andrew L

    2003-04-01

    Diffusion tensor MRI provides unique directional diffusion information that can be used to estimate the patterns of white matter connectivity in the human brain. In this study, the behavior of an algorithm for white matter tractography is examined. The algorithm, called TEND, uses the entire diffusion tensor to deflect the estimated fiber trajectory. Simulations and imaging experiments on in vivo human brains were performed to investigate the behavior of the tractography algorithm. The simulations show that the deflection term is less sensitive than the major eigenvector to image noise. In the human brain imaging experiments, estimated tracts were generated in corpus callosum, corticospinal tract, internal capsule, corona radiata, superior longitudinal fasciculus, inferior longitudinal fasciculus, fronto-occipital fasciculus, and uncinate fasciculus. This approach is promising for mapping the organizational patterns of white matter in the human brain as well as mapping the relationship between major fiber trajectories and the location and extent of brain lesions. Copyright 2003 Wiley-Liss, Inc.

  9. Deflection of a flexural cantilever beam

    NASA Astrophysics Data System (ADS)

    Sherbourne, A. N.; Lu, F.

    The behavior of a flexural elastoplastic cantilever beam is investigated in which geometric nonlinearities are considered. The result of an elastica analysis by Frisch-Fay (1962) is extended to include postyield behavior. Although a closed-form solution is not possible, as in the elastic case, simple algebraic equations are derived involving only one unknown variable, which can also be expressed in the standard form of elliptic integrals if so desired. The results, in comparison with those of the small deflection analyses, indicate that large deflection analyses are necessary when the relative depth of the beam is very small over the length. The present exact solution can be used as a reference by those who resort to a finite element method for more complicated problems. It can also serve as a building block to other beam problems such as a simply supported beam or a beam with multiple loads.

  10. Simplified method for calculating shear deflections of beams.

    Treesearch

    I. Orosz

    1970-01-01

    When one designs with wood, shear deflections can become substantial compared to deflections due to moments, because the modulus of elasticity in bending differs from that in shear by a large amount. This report presents a simplified energy method to calculate shear deflections in bending members. This simplified approach should help designers decide whether or not...

  11. A biomechanical investigation of right-forward lunging step among badminton players.

    PubMed

    Mei, Qichang; Gu, Yaodong; Fu, Fengqin; Fernandez, Justin

    2017-03-01

    This study presents the kinematics and plantar pressure characteristics of eight elite national-level badminton athletes and eight recreational college-level badminton players while performing a right-forward lunge movement in a laboratory-simulated badminton court. The hypothesis was that recreational players would be significantly different from elite players in kinematics and plantar pressure measures. Vicon ® motion capture and Novel ® insole plantar pressure measurement were simultaneously taken to record the lower extremity kinematics and foot loading during stance. Recreational players showed significantly higher peak pressure in the lateral forefoot (P = 0.002) and force time integral in the lateral forefoot (P = 0.013) and other toes (P = 0.005). Elite athletes showed higher peak pressure in the medial forefoot (P = 0.003), hallux (P = 0.037) and force time integral in the medial forefoot (P = 0.009). The difference in landing techniques for the lunge step between elite athletes and recreational players was observed with peak ankle eversion (-38.2°±2.4° for athletes and -11.1°±3.9° for players, P = 0.015); smaller knee range of motion in the coronal and transverse planes, with differences in peak knee adduction (28.9°±6.8° for athletes and 15.7°±6.2° for players, P = 0.031); peak knee internal rotation (20.3°±1.3° for athletes and 11.8°±3.2° for players, P = 0.029) and peak hip flexion (77.3°±4.1° for athletes and 91.3°±9.3° for players, P = 0.037).

  12. Deflection of Propeller Blades While Running

    NASA Technical Reports Server (NTRS)

    Katzmayr, R

    1922-01-01

    The forces acting on the blades of a propeller proceed from the mass of the propeller and the resistance of the surrounding medium. The magnitude, direction and point of application of the resultant to the propeller blade is of prime importance for the strength calculation. Since it was obviously impracticable to bring any kind of testing device near the revolving propeller, not so much on account of the element of danger as on account of the resulting considerable disturbance of the air flow, the deflection in both cases was photographically recorded and subsequently measured at leisure.

  13. Deflection Missions for Asteroid 2011 AG5

    NASA Technical Reports Server (NTRS)

    Grebow, Daniel; Landau, Damon; Bhaskaran, Shyam; Chodas, Paul; Chesley, Steven; Yeomans, Don; Petropoulos, Anastassios; Sims, Jon

    2012-01-01

    The recently discovered asteroid 2011 AG5 currently has a 1-in-500 chance of impacting Earth in 2040. In this paper, we discuss the potential of future observations of the asteroid and their effects on the asteroid's orbital uncertainty. Various kinetic impactor mission scenarios, relying on both conventional chemical as well as solar-electric propulsion, are presented for deflecting the course of the asteroid safely away from Earth. The times for the missions range from pre-keyhole passage (pre-2023), and up to five years prior to the 2040 Earth close approach. We also include a brief discussion on terminal guidance, and contingency options for mission planning.

  14. Sports Adaptations for Unilateral and Bilateral Upper-Limb Amputees: Archery/Badminton/Baseball/Softball/Bowling/Golf/Table Tennis.

    ERIC Educational Resources Information Center

    Cowart, Jim

    1979-01-01

    The booklet discusses sports adaptations for unilateral and bilateral upper limb amputees. Designs for adapted equipment are illustrated and information on adaptations are described for archery (including an archery release aid and a stationary bow holder); badminton (serving tray); baseball/softball (adaptations for catching, throwing, and…

  15. Event-related potential effects of superior action anticipation in professional badminton players.

    PubMed

    Jin, Hua; Xu, Guiping; Zhang, John X; Gao, Hongwei; Ye, Zuoer; Wang, Pin; Lin, Huiyan; Mo, Lei; Lin, Chong-De

    2011-04-04

    The ability to predict the trajectory of a ball based on the opponent's body kinematics has been shown to be critical to high-performing athletes in many sports. However, little is known about the neural correlates underlying such superior ability in action anticipation. The present event-related potential study compared brain responses from professional badminton players and non-player controls when they watched video clips of badminton games and predicted a ball's landing position. Replicating literature findings, the players made significantly more accurate judgments than the controls and showed better action anticipation. Correspondingly, they showed enlarged amplitudes of two ERP components, a P300 peaking around 350ms post-stimulus with a parietal scalp distribution and a P2 peaking around 250ms with a posterior-occipital distribution. The P300 effect was interpreted to reflect primed access and/or directing of attention to game-related memory representations in the players facilitating their online judgment of related actions. The P2 effect was suggested to reflect some generic learning effects. The results identify clear neural responses that differentiate between different levels of action anticipation associated with sports expertise. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Light deflection and Gauss-Bonnet theorem: definition of total deflection angle and its applications

    NASA Astrophysics Data System (ADS)

    Arakida, Hideyoshi

    2018-05-01

    In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild-de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle α of the light ray by constructing a quadrilateral Σ^4 on the optical reference geometry M^opt determined by the optical metric \\bar{g}_{ij}. On the basis of the definition of the total deflection angle α and the Gauss-Bonnet theorem, we derive two formulas to calculate the total deflection angle α ; (1) the angular formula that uses four angles determined on the optical reference geometry M^opt or the curved (r, φ ) subspace M^sub being a slice of constant time t and (2) the integral formula on the optical reference geometry M^opt which is the areal integral of the Gaussian curvature K in the area of a quadrilateral Σ ^4 and the line integral of the geodesic curvature κ _g along the curve C_{Γ}. As the curve C_{Γ}, we introduce the unperturbed reference line that is the null geodesic Γ on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting Γ vertically onto the curved (r, φ ) subspace M^sub. We demonstrate that the two formulas give the same total deflection angle α for the Schwarzschild and the Schwarzschild-de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein-Shapiro's formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild-de Sitter case, there appear order O(Lambda;m) terms in addition to the Schwarzschild-like part, while order O(Λ) terms disappear.

  17. Relationship Between Frequency and Deflection Angle in the DNA Prism

    PubMed Central

    Chen, Zhen; Dorfman, Kevin D.

    2013-01-01

    The DNA prism is a modification of the standard pulsed-field electrophoresis protocol to provide a continuous separation, where the DNA are deflected at an angle that depends on their molecular weight. The standard switchback model for the DNA prism predicts a monotonic increase in the deflection angle as a function of the frequency for switching the field until a plateau regime is reached. However, experiments indicate that the deflection angle achieves a maximum value before decaying to a size-independent value at high frequencies. Using Brownian dynamics simulations, we show that the maximum in the deflection angle is related to the reorientation time for the DNA and the decay in deflection angle at high frequencies is due to inadequate stretching. The generic features of the dependence of the deflection angle on molecular weight, switching frequency, and electric field strength explain a number of experimental phenomena. PMID:23410375

  18. Optical measurement of propeller blade deflections in a spin facility

    NASA Technical Reports Server (NTRS)

    Ramsey, John K.; Meyn, Erwin H.; Mehmed, Oral; Kurkov, Anatole P.

    1990-01-01

    A nonintrusive optical system for measuring propeller blade deflections has been used in the NASA Lewis dynamic spin facility. Deflection of points at the leading and trailing edges of a blade section can be obtained with a narrow light beam from a low power helium-neon laser. A system used to measure these deflections at three spanwise locations is described. Modifications required to operate the lasers in a near-vacuum environment are also discussed.

  19. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.

    1998-09-29

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available. 5 figs.

  20. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.

    1998-01-01

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available.

  1. Coherent Bichromatic Force Deflection of Molecules

    NASA Astrophysics Data System (ADS)

    Kozyryev, Ivan; Baum, Louis; Aldridge, Leland; Yu, Phelan; Eyler, Edward E.; Doyle, John M.

    2018-02-01

    We demonstrate the effect of the coherent optical bichromatic force on a molecule, the polar free radical strontium monohydroxide (SrOH). A dual-frequency retroreflected laser beam addressing the X˜2Σ+↔A˜2Π1 /2 electronic transition coherently imparts momentum onto a cryogenic beam of SrOH. This directional photon exchange creates a bichromatic force that transversely deflects the molecules. By adjusting the relative phase between the forward and counterpropagating laser beams we reverse the direction of the applied force. A momentum transfer of 70 ℏk is achieved with minimal loss of molecules to dark states. Modeling of the bichromatic force is performed via direct numerical solution of the time-dependent density matrix and is compared with experimental observations. Our results open the door to further coherent manipulation of molecular motion, including the efficient optical deceleration of diatomic and polyatomic molecules with complex level structures.

  2. Force-deflection behavior of piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Singh, Ashok K.; Nagpal, Pawan

    2001-11-01

    In the present endeavour, force - deflection behavior of various piezoelectric actuator configurations has been analyzed for performance comparison. The response of stack actuator has been simulated using MATLAB Simulink, in a stack actuator-pendulum configuration. During simulation, stack actuator has been used in charge control feedback mode, because of the advantage of low hysteresis, and high linearity. The model incorporates three compensation blocks, viz 1) a PID position controller, 2) a PI piezoelectric current controller, and 3) a dynamic force feedback. A typical stack actuator, having 130 layers, 1.20x10-4 m thickness, 3.46x10-5m2 cross sectional area, of PZT-5H type, has been utilized for simulation. The response of the system has been tested by applying a sinusoidal input of frequency 500 Hz, and waveform amplitude of 1x10-3V.

  3. Igniter adapter-to-igniter chamber deflection test

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Testing was performed to determine the maximum RSRM igniter adapter-to-igniter chamber joint deflection at the crown of the inner joint primary seal. The deflection data was gathered to support igniter inner joint gasket resiliency predictions which led to launch commit criteria temperature determinations. The proximity (deflection) gage holes for the first test (Test No. 1) were incorrectly located; therefore, the test was declared a non-test. Prior to Test No. 2, test article configuration was modified with the correct proximity gage locations. Deflection data were successfully acquired during Test No. 2. However, the proximity gage deflection measurements were adversely affected by temperature increases. Deflections measured after the temperature rise at the proximity gages were considered unreliable. An analysis was performed to predict the maximum deflections based on the reliable data measured before the detectable temperature rise. Deflections to the primary seal crown location were adjusted to correspond to the time of maximum expected operating pressure (2,159 psi) to account for proximity gage bias, and to account for maximum attach and special bolt relaxation. The maximum joint deflection for the igniter inner joint at the crown of the primary seal, accounting for all significant correction factors, was 0.0031 in. (3.1 mil). Since the predicted (0.003 in.) and tested maximum deflection values were sufficiently close, the launch commit criteria was not changed as a result of this test. Data from this test should be used to determine if the igniter inner joint gasket seals are capable of maintaining sealing capability at a joint displacement of (1.4) x (0.0031 in.) = 0.00434 inches. Additional testing should be performed to increase the database on igniter deflections and address launch commit criteria temperatures.

  4. Teach Deflection Concepts with Hacksaw Blades and Rubber Bands

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2013-01-01

    Technology and engineering educators can use a simple hacksaw blade to help students learn about deflection, as that which occurs in a beam. Here the beam is fixed at one end and allowed to deflect in a manner that is easy to see and measure--the hacksaw blade represents a cantilever, an overhanging structure. This simple and very inexpensive…

  5. 75 FR 12981 - Eligibility for Commercial Flats Failing Deflection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ..., customers expressed concerns about the potential additional postage due for pieces failing the deflection... Service proposed to change the price eligibilities applicable for pieces that fail the deflection... to the comments, a summary of the changes and revisions to the applicable prices for pieces that do...

  6. Plastic and Large-Deflection Analysis of Nonlinear Structures

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Hayduk, R. J.; Robinson, M. P.; Durling, B. J.; Pifko, A.; Levine, H. S.; Armen, H. J.; Levy, A.; Ogilvie, P.

    1982-01-01

    Plastic and Large Deflection Analysis of Nonlinear Structures (PLANS) system is collection of five computer programs for finite-element static-plastic and large deflection analysis of variety of nonlinear structures. System considers bending and membrane stresses, general three-dimensional bodies, and laminated composites.

  7. Deflection Measurements on Propeller 5503 in Ahead and Crashback

    DTIC Science & Technology

    2016-10-01

    the dots on the blade that were visible for the run . Not all points could be determined for each picture during each run . One issue discovered with...Channel (LCC) in February and April of 2009. The deflection of the blades was measured using defocused particle image velocimetry. Comparisons were made... Blade Deflection Measurement CalTech

  8. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Deflection temperature test. 7.47 Section 7.47 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.47 Deflection...

  9. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Deflection temperature test. 7.47 Section 7.47 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.47 Deflection...

  10. Study on the causes and methods of influencing concrete deflection

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Zhou, Xiang; Tang, Jinyu

    2017-09-01

    Under the long-term effect of static load on reinforced concrete beam, the stiffness decreases and the deformation increases with time. Therefore, the calculation of deflection is more complicated. According to the domestic and foreign research results by experiment the flexural deflection of reinforced concrete, creep, age, the thickness of the protective layer, the relative slip, the combination of steel yielding factors of reinforced concrete deflection are summarized, analyzed the advantages and disadvantages of the traditional direct measurement of deflection, that by increasing the beam height, increasing the moment of inertia, ncrease prestressed reinforcement ratio, arching, reduce the load, and other measures to reduce the deflection of prestressed construction, improve the reliability of structure.

  11. Intelligent deflection routing in buffer-less networks.

    PubMed

    Haeri, Soroush; Trajković, Ljiljana

    2015-02-01

    Deflection routing is employed to ameliorate packet loss caused by contention in buffer-less architectures such as optical burst-switched networks. The main goal of deflection routing is to successfully deflect a packet based only on a limited knowledge that network nodes possess about their environment. In this paper, we present a framework that introduces intelligence to deflection routing (iDef). iDef decouples the design of the signaling infrastructure from the underlying learning algorithm. It consists of a signaling and a decision-making module. Signaling module implements a feedback management protocol while the decision-making module implements a reinforcement learning algorithm. We also propose several learning-based deflection routing protocols, implement them in iDef using the ns-3 network simulator, and compare their performance.

  12. AIDA: the Asteroid Impact & Deflection Assessment mission

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste

    2016-07-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to assess the possibility of deflecting an asteroid trajectory by using a kinetic impactor. The European Asteroid Impact Mission (AIM) is under Phase A/B1 study at ESA from March 2015 until summer 2016. AIM is set to rendez-vous with the asteroid system a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft to fully characterize the smaller of the two binary components. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions: AIM will release a set of CubeSats in deep space and a lander on the surface of the smaller asteroid and for the first time, deep-space inter-satellite linking will be demonstrated between the main spacecraft, the CubeSats, and the lander, and data will also be transmitted from interplanetary space to Earth by a laser communication system. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Small asteroids are believed to result from collisions and other processes (e.g., spinup, shaking) that made them what they are now. Having direct information on their surface and internal properties will allow us to understand how these processes work and transform these small bodies as well as, for this particular case, how a binary system forms. So far, our understanding of the collisional process and the validation of numerical simulations of the impact process rely on impact experiments at laboratory scales. With DART, thanks to the characterization of the

  13. Evidence of accumulated stress in Achilles and anterior knee tendons in elite badminton players.

    PubMed

    Boesen, Anders Ploug; Boesen, Morten Ilum; Koenig, Merete Juhl; Bliddal, Henning; Torp-Pedersen, Soren; Langberg, Henning

    2011-01-01

    Tendon-related injuries are a major problem, but the aetiology of tendinopathies is unknown. In tendinopathies as well as during unaccustomed loading, intra-tendinous flow can be detected indicating that extensive loading can provoke intra-tendinous flow. The aim of present study is to evaluate the vascular response as indicated by colour Doppler (CD) activity in both the Achilles and patella tendon after loading during high-level badminton matches. The Achilles tendon was subdivided into a mid-tendon, pre-insertional, and insertional region and the anterior knee tendons into a quadriceps-, patella- and tuberositas region. Intra-tendinous flow was measured using both a semi-quantitative grading system (CD grading) and a quantitative scoring system (CF) on colour Doppler. Intra-tendinous flow in the Achilles and anterior knee tendons was examined in fourteen single players before tournament and after 1st and 2nd match, respectively on both the dominant and non-dominant side. All players had abnormal intra-tendinous flow (Colour Doppler ≥ grade 2) in at least one tendon in at least one scan during the tournament. At baseline, only two of the 14 players had normal flow in all the tendons examined. After 1st match, tendencies to higher intra-tendinous flow were observed in both the dominant patella tendon and non-dominant quadriceps tendon (P-values n.s.). After 2nd match, intra-tendinous flow was significant increased in the dominant patella tendon (P = 0.009). In all other locations, there was a trend towards a stepwise increase in intra-tendinous flow. The preliminary results indicate that high amount of intra-tendinous flow was found in elite badminton players at baseline and was increased after repetitive loading, especially in the patella tendon (dominant leg). The colour Doppler measurement can be used to determine changes in intra-tendinous flow after repetitive loading.

  14. Visual but not motor processes predict simple visuomotor reaction time of badminton players.

    PubMed

    Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas

    2018-03-01

    The athlete's brain exhibits significant functional adaptations that facilitate visuomotor reaction performance. However, it is currently unclear if the same neurophysiological processes that differentiate athletes from non-athletes also determine performance within a homogeneous group of athletes. This information can provide valuable help for athletes and coaches aiming to optimize existing training regimes. Therefore, this study aimed to identify the neurophysiological correlates of visuomotor reaction performance in a group of skilled athletes. In 36 skilled badminton athletes, electroencephalography (EEG) was used to investigate pattern reversal and motion onset visual-evoked potentials (VEPs) as well as visuomotor reaction time (VMRT) during a simple reaction task. Stimulus-locked and response-locked event-related potentials (ERPs) in visual and motor regions as well as the onset of muscle activation (EMG onset) were determined. Correlation and multiple regression analyses identified the neurophysiological parameters predicting EMG onset and VMRT. For pattern reversal stimuli, the P100 latency and age best predicted EMG onset (r = 0.43; p = .003) and VMRT (r = 0.62; p = .001). In the motion onset experiment, EMG onset (r = 0.80; p < .001) and VMRT (r = 0.78; p < .001) were predicted by N2 latency and age. In both conditions, cortical potentials in motor regions were not correlated with EMG onset or VMRT. It is concluded that previously identified neurophysiological parameters differentiating athletes from non-athletes do not necessarily determine performance within a homogeneous group of athletes. Specifically, the speed of visual perception/processing predicts EMG onset and VMRT in skilled badminton players while motor-related processes, although differentiating athletes from non-athletes, are not associated simple with visuomotor reaction performance.

  15. Does shoe heel design influence ground reaction forces and knee moments during maximum lunges in elite and intermediate badminton players?

    PubMed

    Lam, Wing-Kai; Ryue, Jaejin; Lee, Ki-Kwang; Park, Sang-Kyoon; Cheung, Jason Tak-Man; Ryu, Jiseon

    2017-01-01

    Lunge is one frequently executed movement in badminton and involves a unique sagittal footstrike angle of more than 40 degrees at initial ground contact compared with other manoeuvres. This study examined if the shoe heel curvature design of a badminton shoe would influence shoe-ground kinematics, ground reaction forces, and knee moments during lunge. Eleven elite and fifteen intermediate players performed five left-forward maximum lunge trials with Rounded Heel Shoe (RHS), Flattened Heel Shoe (FHS), and Standard Heel Shoes (SHS). Shoe-ground kinematics, ground reaction forces, and knee moments were measured by using synchronized force platform and motion analysis system. A 2 (Group) x 3 (Shoe) ANOVA with repeated measures was performed to determine the effects of different shoes and different playing levels, as well as the interaction of two factors on all variables. Shoe effect indicated that players demonstrated lower maximum vertical loading rate in RHS than the other two shoes (P < 0.05). Group effect revealed that elite players exhibited larger footstrike angle, faster approaching speed, lower peak horizontal force and horizontal loading rates but higher vertical loading rates and larger peak knee flexion and extension moments (P < 0.05). Analysis of Interactions of Group x Shoe for maximum and mean vertical loading rates (P < 0.05) indicated that elite players exhibited lower left maximum and mean vertical loading rates in RHS compared to FHS (P < 0.01), while the intermediate group did not show any Shoe effect on vertical loading rates. These findings indicate that shoe heel curvature would play some role in altering ground reaction force impact during badminton lunge. The differences in impact loads and knee moments between elite and intermediate players may be useful in optimizing footwear design and training strategy to minimize the potential risks for impact related injuries in badminton.

  16. A Prospective Epidemiological Study of Injuries in Japanese National Tournament-Level Badminton Players From Junior High School to University.

    PubMed

    Miyake, Eiji; Yatsunami, Mitsunobu; Kurabayashi, Jun; Teruya, Koji; Sekine, Yasuhiro; Endo, Tatsuaki; Nishida, Ryuichiro; Takano, Nao; Sato, Seiko; Jae Kyung, Han

    2016-03-01

    Injury prevention programs have recently been created for various sports. However, a longitudinal study on badminton injuries, as assessed by a team's dedicated medical staff, at the gymnasium has not been performed. We aimed to perform the first such study to measure the injury incidence, severity and type as the first step in creating a badminton injury prevention program. A prospective, longitudinal survey was conducted between April 2012 and March 2013 with 133 national tournament-level badminton players from junior high school to university in Japan with the teams' physical therapists at the gymnasium. Injury incidence was measured as the injury rate (IR) for every 1,000 hour (1000 hour) and IR for every 1,000 athlete exposures (1000 AE). Severity was classified in 5 levels by the number of days the athlete was absent from practice or matches. Injury types were categorized as trauma or overuse. Practice (IR) (1,000 hour) was significantly higher in female players than in male players; the rates increased with increasing age. IR (1,000 AE) was significantly higher in matches than in practice in both sexes of all ages, except for female junior high school students and injuries were most frequent for high school students in matches. The majority of the injuries were slight (83.8%); overuse injuries occurred approximately 3 times more than trauma. This is the first study in which medical staff assessed injuries in badminton, providing value through benchmark data. Injury prevention programs are particularly necessary for female university students in practice and high school students in matches.

  17. Doppler ultrasonography of the anterior knee tendons in elite badminton players: colour fraction before and after match.

    PubMed

    Koenig, M J; Torp-Pedersen, S; Boesen, M I; Holm, C C; Bliddal, H

    2010-02-01

    Anterior knee tendon problems are seldom reported in badminton players although the game is obviously stressful to the lower extremities. Painful anterior knee tendons are common among elite badminton players. The anterior knee tendons exhibit colour Doppler activity. This activity increases after a match. Painful tendons have more Doppler activity than tendons without pain. Cohort study. 72 elite badminton players were interviewed about training, pain and injuries. The participants were scanned with high-end ultrasound equipment. Colour Doppler was used to examine the tendons of 64 players before a match and 46 players after a match. Intratendinous colour Doppler flow was measured as colour fraction (CF). The tendon complex was divided into three loci: the quadriceps tendon, the proximal patellar tendon and the insertion on the tibial tuberosity. Interview: Of the 72 players, 62 players had problems with 86 tendons in the lower extremity. Of these 86 tendons, 48 were the anterior knee tendons. Ultrasound: At baseline, the majority of players (87%) had colour Doppler flow in at least one scanning position. After a match, the percentage of the knee complexes involved did not change. CF increased significantly in the dominant leg at the tibial tuberosity; single players had a significantly higher CF after a match at the tibial tuberosity and in the patellar tendon both before and after a match. Painful tendons had the highest colour Doppler activity. Most elite badminton players had pain in the anterior knee tendons and intratendinous Doppler activity both before and after match. High levels of Doppler activity were associated with self-reported ongoing pain.

  18. Relationships Between Results Of An Internal And External Match Load Determining Method In Male, Singles Badminton Players.

    PubMed

    Abdullahi, Yahaya; Coetzee, Ben; Van den Berg, Linda

    2017-07-03

    The study purpose was to determine relationships between results of internal and external match load determining methods. Twenty-one players, who participated in selected badminton championships during the 2014/2015 season served as subjects. The heart rate (HR) values and GPS data of each player were obtained via a fix Polar HR Transmitter Belt and MinimaxX GPS device. Moderate significant Spearman's rank correlations were found between HR and absolute duration (r = 0.43 at a low intensity (LI) and 0.44 at a high intensity (HI)), distance covered (r = 0.42 at a HI) and player load (PL) (r = 0.44 at a HI). Results also revealed an opposite trend for external and internal measures of load as the average relative HR value was found to be the highest for the HI zone (54.1%) compared to the relative measures of external load where average values (1.29-9.89%) were the lowest for the HI zone. In conclusion, our findings show that results of an internal and external badminton match load determining method are more related to each other in the HI zone than other zones and that the strength of relationships depend on the duration of activities that are performed in especially LI and HI zones. Overall, trivial to moderate relationships between results of an internal and external match load determining method in male, singles badminton players reaffirm the conclusions of others that these constructs measure distinctly different demands and should therefore be measured concurrently to fully understand the true requirements of badminton match play.

  19. A Prospective Epidemiological Study of Injuries in Japanese National Tournament-Level Badminton Players From Junior High School to University

    PubMed Central

    Miyake, Eiji; Yatsunami, Mitsunobu; Kurabayashi, Jun; Teruya, Koji; Sekine, Yasuhiro; Endo, Tatsuaki; Nishida, Ryuichiro; Takano, Nao; Sato, Seiko; Jae Kyung, Han

    2016-01-01

    Background: Injury prevention programs have recently been created for various sports. However, a longitudinal study on badminton injuries, as assessed by a team’s dedicated medical staff, at the gymnasium has not been performed. Objectives: We aimed to perform the first such study to measure the injury incidence, severity and type as the first step in creating a badminton injury prevention program. Patients and Methods: A prospective, longitudinal survey was conducted between April 2012 and March 2013 with 133 national tournament-level badminton players from junior high school to university in Japan with the teams’ physical therapists at the gymnasium. Injury incidence was measured as the injury rate (IR) for every 1,000 hour (1000 hour) and IR for every 1,000 athlete exposures (1000 AE). Severity was classified in 5 levels by the number of days the athlete was absent from practice or matches. Injury types were categorized as trauma or overuse. Results: Practice (IR) (1,000 hour) was significantly higher in female players than in male players; the rates increased with increasing age. IR (1,000 AE) was significantly higher in matches than in practice in both sexes of all ages, except for female junior high school students and injuries were most frequent for high school students in matches. The majority of the injuries were slight (83.8%); overuse injuries occurred approximately 3 times more than trauma. Conclusions: This is the first study in which medical staff assessed injuries in badminton, providing value through benchmark data. Injury prevention programs are particularly necessary for female university students in practice and high school students in matches. PMID:27217933

  20. Does shoe heel design influence ground reaction forces and knee moments during maximum lunges in elite and intermediate badminton players?

    PubMed Central

    Cheung, Jason Tak-Man; Ryu, Jiseon

    2017-01-01

    Background Lunge is one frequently executed movement in badminton and involves a unique sagittal footstrike angle of more than 40 degrees at initial ground contact compared with other manoeuvres. This study examined if the shoe heel curvature design of a badminton shoe would influence shoe-ground kinematics, ground reaction forces, and knee moments during lunge. Methods Eleven elite and fifteen intermediate players performed five left-forward maximum lunge trials with Rounded Heel Shoe (RHS), Flattened Heel Shoe (FHS), and Standard Heel Shoes (SHS). Shoe-ground kinematics, ground reaction forces, and knee moments were measured by using synchronized force platform and motion analysis system. A 2 (Group) x 3 (Shoe) ANOVA with repeated measures was performed to determine the effects of different shoes and different playing levels, as well as the interaction of two factors on all variables. Results Shoe effect indicated that players demonstrated lower maximum vertical loading rate in RHS than the other two shoes (P < 0.05). Group effect revealed that elite players exhibited larger footstrike angle, faster approaching speed, lower peak horizontal force and horizontal loading rates but higher vertical loading rates and larger peak knee flexion and extension moments (P < 0.05). Analysis of Interactions of Group x Shoe for maximum and mean vertical loading rates (P < 0.05) indicated that elite players exhibited lower left maximum and mean vertical loading rates in RHS compared to FHS (P < 0.01), while the intermediate group did not show any Shoe effect on vertical loading rates. Conclusions These findings indicate that shoe heel curvature would play some role in altering ground reaction force impact during badminton lunge. The differences in impact loads and knee moments between elite and intermediate players may be useful in optimizing footwear design and training strategy to minimize the potential risks for impact related injuries in badminton. PMID:28334016

  1. Perceiving the affordance of string tension for power strokes in badminton: expertise allows effective use of all string tensions.

    PubMed

    Zhu, Qin

    2013-01-01

    Affordances mean opportunities for action. These affordances are important for sports performance and relevant to the abilities developed by skilled athletes. In racquet sports such as badminton, different players prefer widely different string tension because it is believed to provide opportunities for effective strokes. The current study examined whether badminton players can perceive the affordance of string tension for power strokes and whether the perception of affordance itself changed as a function of skill level. The results showed that string tension constrained the striking performance of both novice and recreational players, but not of expert players. When perceptual capability was assessed, perceptual mode did not affect perception of the optimal string tension. Skilled players successfully perceived the affordance of string tension, but only experts were concerned about saving energy. Our findings demonstrated that perception of the affordance of string tension in badminton was determined by action abilities. Furthermore, experts could adjust the action to maintain a superior level of performance based on the perception of affordance.

  2. Effects of acute L-carnitine intake on metabolic and blood lactate levels of elite badminton players.

    PubMed

    Eroğlu, Hüseyin; Senel, Omer; Güzel, Nevin A

    2008-04-01

    Purpose of this study is to research the effects of acute L-Carnitine intake on badminton players' metabolic and blood lactate values. A total of 16 Turkish national badminton players (8 male, 8 female) were voluntarily participated into study. MaxVO2, MET, energy consumption, HR (heart rate), VE (minute ventilation), R (respiratory exchange ratio), AT (anaerobic threshold), oxygen pulse and blood lactate (LA) of subjects were measured by Sensormedics VmaxST and Accutrend Lactate Analyzer. The participants were subjected to the test protocol twice before and after 2g of L-Carnitine intake. The data were evaluated by the use of SPSS 13.0 for Windows. No significant differences were found between 1st. (without L-Carnitine intake) and 2nd. (with L-Carnitine intake) measurements of female participants as regards to all measured parameters. There was a significant difference in EMHR (exercise maximum heart rate) of males between two measurements (p<0.05). However the differences in other parameters were not significant. AT values of female subjects were not significant difference (p>0.05). Respiratory exchange ratio of males was significantly different at anaerobic threshold (p<0.05). Results of this study show that L-carnitine intake one hour prior to the exercise has no effect on the metabolic and blood lactate values of badminton players.

  3. Development of an Agility Test for Badminton Players and Assessment of Its Validity and Test-Retest Reliability.

    PubMed

    Loureiro, Luiz de França Bahia; de Freitas, Paulo Barbosa

    2016-04-01

    Badminton requires open and fast actions toward the shuttlecock, but there is no specific agility test for badminton players with specific movements. To develop an agility test that simultaneously assesses perception and motor capacity and examine the test's concurrent and construct validity and its test-retest reliability. The Badcamp agility test consists of running as fast as possible to 6 targets placed on the corners and middle points of a rectangular area (5.6 × 4.2 m) from the start position located in the center of it, following visual stimuli presented in a luminous panel. The authors recruited 43 badminton players (17-32 y old) to evaluate concurrent (with shuttle-run agility test--SRAT) and construct validity and test-retest reliability. Results revealed that Badcamp presents concurrent and construct validity, as its performance is strongly related to SRAT (ρ = 0.83, P < .001), with performance of experts being better than nonexpert players (P < .01). In addition, Badcamp is reliable, as no difference (P = .07) and a high intraclass correlation (ICC = .93) were found in the performance of the players on 2 different occasions. The findings indicate that Badcamp is an effective, valid, and reliable tool to measure agility, allowing coaches and athletic trainers to evaluate players' athletic condition and training effectiveness and possibly detect talented individuals in this sport.

  4. Asteroid Deflection Mission Design Considering On-Ground Risks

    NASA Astrophysics Data System (ADS)

    Rumpf, Clemens; Lewis, Hugh G.; Atkinson, Peter

    The deflection of an Earth-threatening asteroid requires high transparency of the mission design process. The goal of such a mission is to move the projected point of impact over the face of Earth until the asteroid is on a miss trajectory. During the course of deflection operations, the projected point of impact will match regions that were less affected before alteration of the asteroid’s trajectory. These regions are at risk of sustaining considerable damage if the deflecting spacecraft becomes non-operational. The projected impact point would remain where the deflection mission put it at the time of mission failure. Hence, all regions that are potentially affected by the deflection campaign need to be informed about this risk and should be involved in the mission design process. A mission design compromise will have to be found that is acceptable to all affected parties (Schweickart, 2004). A software tool that assesses the on-ground risk due to deflection missions is under development. It will allow to study the accumulated on-ground risk along the path of the projected impact point. The tool will help determine a deflection mission design that minimizes the on-ground casualty and damage risk due to deflection operations. Currently, the tool is capable of simulating asteroid trajectories through the solar system and considers gravitational forces between solar system bodies. A virtual asteroid may be placed at an arbitrary point in the simulation for analysis and manipulation. Furthermore, the tool determines the asteroid’s point of impact and provides an estimate of the population at risk. Validation has been conducted against the solar system ephemeris catalogue HORIZONS by NASA’s Jet Propulsion Laboratory (JPL). Asteroids that are propagated over a period of 15 years show typical position discrepancies of 0.05 Earth radii relative to HORIZONS’ output. Ultimately, results from this research will aid in the identification of requirements for

  5. Relationship between Autonomic Markers of Heart Rate and Subjective Indicators of Recovery Status in Male, Elite Badminton Players

    PubMed Central

    Bisschoff, Christo A.; Coetzee, Ben; Esco, Michael R.

    2016-01-01

    The primary aim of the study was to determine if heart rate variability (HRV), and heart rate recovery (HRR) are related to several subjective indicators of recovery status (muscle soreness, hydration status, sleep quality and quantity as well as pre-competition mood states) for different match periods in male, elite, African, singles badminton players. HRV and HRR were measured in twenty-two badminton players before (pre-match), during (in-match), after (post-match) and during rest periods (in-match rest) of 46 national and international matches. Muscle soreness, hydration status, and sleep quality and quantity were measured on a daily basis whereas mood states were measured just before each match via questionnaires. Prior to each match warm-up, players were fitted with a Fix Polar Heart Rate Transmitter Belt to record heart rate every second during each match and HRR during service breaks and after matches. Kubios HRV software was used for final HRV analyses from the series of R-R-intervals. A strong, significant canonical correlation (Rc = 0.96, p = 0.014) was found between HRV, HRR and subjective indicators of recovery status for the in-match period, but only strong, non-significant relationships were observed for pre-match (Rc = 0.98, p = 0.626) and post-match periods (Rc = 0.98, p = 0.085) and a low non-significant relationship (Rc = 0.69, p = 0.258) for the in-match rest period. Canonical functions accounted for between 47.89% and 96.43% of the total variation between the two canonical variants. Results further revealed that Ln-HFnu, the energy index and vigour were the most prominent variables in the relationship between the autonomic markers of heart rate and recovery-related variables. In conclusion, this study proved that subjective indicators of recovery status influence HRV and HRR measures obtained in a competitive badminton environment and should therefore be incorporated in protocols that evaluate these ANS-related parameters. Key points Subjective

  6. Electrical Deflection of Polar Liquid Streams: A Misunderstood Demonstration

    NASA Astrophysics Data System (ADS)

    Ziaei-Moayyed, Maryam; Goodman, Edward; Williams, Peter

    2000-11-01

    The electrical deflection of polar liquid streams, commonly used as a textbook illustration of the behavior of polar molecules, is shown to be due to the formation of electrically charged droplets in the polar liquid stream, induced by a nearby charged object, rather than any force exerted on molecular dipoles. Streams of water and polar organic liquids could be deflected in a uniform electric field, which could not have exerted any force on dipolar species. Water and polar organic liquid streams formed within a grounded, electrically screened region could not be deflected after exiting the screened region, demonstrating that there is no electrical force on uncharged polar liquid droplets. Induced charging was observed also in insulating polar organic liquids and is suggested to be due to ionic impurities. A weak deflection of a stream of a nonpolar liquid (tetrachloroethylene) was also observed, indicating that such impurity effects are quite general, even in nonpolar liquids.

  7. Shielded helix traveling wave cathode ray tube deflection structure

    DOEpatents

    Norris, N.J.; Hudson, C.L.

    1992-12-15

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse. 13 figs.

  8. Shielded helix traveling wave cathode ray tube deflection structure

    DOEpatents

    Norris, Neil J.; Hudson, Charles L.

    1992-01-01

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse.

  9. Possible influences on bullet trajectory deflection in ballistic gelatine.

    PubMed

    Riva, Fabiano; Kerkhoff, Wim; Bolck, Annabel; Mattijssen, Erwin J A T

    2017-02-01

    The influence of the distance to the top and bottom of a gelatine block and to bullet tracks from previously fired shots on a bullet's trajectory, when passing through ballistic gelatine, was studied. No significant difference in deflection was found when trajectories of 9mm Luger bullets, fired at a 3.5cm distance to the top and bottom of a gelatine block and to bullet tracks from previously fired shots, were compared to trajectories of bullets fired 7cm or more away from any of the aforementioned aspects. A surprisingly consistent 6.5° absolute deflection angle was found when these bullets passed through 22.5 to 23.5cm of ballistic gelatine. The projection angle, determined by the direction of the deflection, appeared to be random. The consistent absolute angle, in combination with the random projection angle, resulted in a cone-like deflection pattern. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  10. Review of Chest Deflection Measurement Techniques and Transducers

    DOT National Transportation Integrated Search

    1978-06-01

    A summary is presented of measurement techniques and transducers that have been used, or are presently available and exhibit potential for use in the measurement of dynamic chest deflection. Various techniques and transducers are evaluated for their ...

  11. Measurement of vertical track deflection from a moving rail car.

    DOT National Transportation Integrated Search

    2013-02-01

    The University of Nebraska has been conducting research sponsored by the Federal Railroad Administrations Office of Research and Development to develop a system that measures vertical track deflection/modulus from a moving rail car. Previous work ...

  12. High bandwidth deflection readout for atomic force microscopes.

    PubMed

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62fm/√Hz.

  13. High bandwidth deflection readout for atomic force microscopes

    NASA Astrophysics Data System (ADS)

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62 fm / √{ Hz } .

  14. Superconducting multi-cell trapped mode deflecting cavity

    DOEpatents

    Lunin, Andrei; Khabiboulline, Timergali; Gonin, Ivan; Yakovlev, Vyacheslav; Zholents, Alexander

    2017-10-10

    A method and system for beam deflection. The method and system for beam deflection comprises a compact superconducting RF cavity further comprising a waveguide comprising an open ended resonator volume configured to operate as a trapped dipole mode; a plurality of cells configured to provide a high operating gradient; at least two pairs of protrusions configured for lowering surface electric and magnetic fields; and a main power coupler positioned to optimize necessary coupling for an operating mode and damping lower dipole modes simultaneously.

  15. Comparison of Spinal Needle Deflection in a Ballistic Gel Model.

    PubMed

    Rand, Ethan; Christolias, George; Visco, Christopher; R Singh, Jaspal

    2016-10-01

    Percutaneous diagnostic and therapeutic procedures are commonly used in the treatment of spinal pain. The success of these procedures depends on the accuracy of needle placement, which is influenced by needle size and shape. The purpose of this study is to examine and quantify the deviation of commonly used spinal needles based on needle tip design and gauge, using a ballistic gel tissue simulant. Six needles commonly used in spinal procedures (Quincke, Short Bevel, Chiba, Tuohy, Hustead, Whitacre) were selected for use in this study. Ballistic gel samples were made in molds of two depths, 40mm and 80 mm. Each needle was mounted in a drill press to ensure an accurate needle trajectory. Distance of deflection was recorded for each needle. In comparing the mean deflection of 22 gauge needles of all types at 80 mm of depth, deflection was greatest among beveled needles [Short Bevel (9.96 ± 0.77 mm), Quincke (8.89 ± 0.17 mm), Chiba (7.71 ± 1.16 mm)], moderate among epidural needles [Tuohy (7.64 ± 0.16 mm) and least among the pencil-point needles [Whitacre (0.73 ± 0.34 mm)]. Increased gauge (25 g) led to a significant increase in deflection among beveled needles. The direction of deflection was away from the bevel with Quincke, Chiba and Short Beveled needles and toward the bevel of the Tuohy and Hustead needles. Deflection of the Whitacre pencil-point needle was minimal. There is clinical utility in knowing the relative deflection of various needle tips. When a procedure requires a needle to be steered around obstacles, or along non-collinear targets, the predictable and large amount of deflection obtained through use of a beveled spinal needle may prove beneficial.

  16. Comparison of Spinal Needle Deflection in a Ballistic Gel Model

    PubMed Central

    Rand, Ethan; Christolias, George; Visco, Christopher; R. Singh, Jaspal

    2016-01-01

    Background Percutaneous diagnostic and therapeutic procedures are commonly used in the treatment of spinal pain. The success of these procedures depends on the accuracy of needle placement, which is influenced by needle size and shape. Objectives The purpose of this study is to examine and quantify the deviation of commonly used spinal needles based on needle tip design and gauge, using a ballistic gel tissue simulant. Materials and Methods Six needles commonly used in spinal procedures (Quincke, Short Bevel, Chiba, Tuohy, Hustead, Whitacre) were selected for use in this study. Ballistic gel samples were made in molds of two depths, 40mm and 80 mm. Each needle was mounted in a drill press to ensure an accurate needle trajectory. Distance of deflection was recorded for each needle. Results In comparing the mean deflection of 22 gauge needles of all types at 80 mm of depth, deflection was greatest among beveled needles [Short Bevel (9.96 ± 0.77 mm), Quincke (8.89 ± 0.17 mm), Chiba (7.71 ± 1.16 mm)], moderate among epidural needles [Tuohy (7.64 ± 0.16 mm) and least among the pencil-point needles [Whitacre (0.73 ± 0.34 mm)]. Increased gauge (25 g) led to a significant increase in deflection among beveled needles. The direction of deflection was away from the bevel with Quincke, Chiba and Short Beveled needles and toward the bevel of the Tuohy and Hustead needles. Deflection of the Whitacre pencil-point needle was minimal. Conclusions There is clinical utility in knowing the relative deflection of various needle tips. When a procedure requires a needle to be steered around obstacles, or along non-collinear targets, the predictable and large amount of deflection obtained through use of a beveled spinal needle may prove beneficial. PMID:27847693

  17. Displacement and Deflection of AN Optical Beam by Airborne Ultrasound

    NASA Astrophysics Data System (ADS)

    Caron, James N.

    2008-02-01

    Gas-Coupled Laser Acoustic Detection enables laser-based sensing of ultrasound from a solid without contact of the surface, and independent of the optical properties of the solid surface. The interaction between the probe beam and acoustic field has typically been modeled as creating a deflection in the optical beam. This paper describes this interaction as a combination of displacement and deflection. Sensing displacement can significantly decrease the system's dependence of length.

  18. Catastrophic Disruption Threshold and Maximum Deflection from Kinetic Impact

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.

    2017-12-01

    The use of a kinetic impactor to deflect an asteroid on a collision course with Earth was described in the NASA Near-Earth Object Survey and Deflection Analysis of Alternatives (2007) as the most mature approach for asteroid deflection and mitigation. The NASA DART mission will demonstrate asteroid deflection by kinetic impact at the Potentially Hazardous Asteroid 65803 Didymos in October, 2022. The kinetic impactor approach is considered to be applicable with warning times of 10 years or more and with hazardous asteroid diameters of 400 m or less. In principle, a larger kinetic impactor bringing greater kinetic energy could cause a larger deflection, but input of excessive kinetic energy will cause catastrophic disruption of the target, leaving possibly large fragments still on collision course with Earth. Thus the catastrophic disruption threshold limits the maximum deflection from a kinetic impactor. An often-cited rule of thumb states that the maximum deflection is 0.1 times the escape velocity before the target will be disrupted. It turns out this rule of thumb does not work well. A comparison to numerical simulation results shows that a similar rule applies in the gravity limit, for large targets more than 300 m, where the maximum deflection is roughly the escape velocity at momentum enhancement factor β=2. In the gravity limit, the rule of thumb corresponds to pure momentum coupling (μ=1/3), but simulations find a slightly different scaling μ=0.43. In the smaller target size range that kinetic impactors would apply to, the catastrophic disruption limit is strength-controlled. A DART-like impactor won't disrupt any target asteroid down to significantly smaller size than the 50 m below which a hazardous object would not penetrate the atmosphere in any case unless it is unusually strong.

  19. Double deflection system for an electron beam device

    DOEpatents

    Parker, Norman W.; Golladay, Steven D.; Crewe, Albert V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations.

  20. Observing Bridge Dynamic Deflection in Green Time by Information Technology

    NASA Astrophysics Data System (ADS)

    Yu, Chengxin; Zhang, Guojian; Zhao, Yongqian; Chen, Mingzhi

    2018-01-01

    As traditional surveying methods are limited to observe bridge dynamic deflection; information technology is adopted to observe bridge dynamic deflection in Green time. Information technology used in this study means that we use digital cameras to photograph the bridge in red time as a zero image. Then, a series of successive images are photographed in green time. Deformation point targets are identified and located by Hough transform. With reference to the control points, the deformation values of these deformation points are obtained by differencing the successive images with a zero image, respectively. Results show that the average measurement accuracies of C0 are 0.46 pixels, 0.51 pixels and 0.74 pixels in X, Z and comprehensive direction. The average measurement accuracies of C1 are 0.43 pixels, 0.43 pixels and 0.67 pixels in X, Z and comprehensive direction in these tests. The maximal bridge deflection is 44.16mm, which is less than 75mm (Bridge deflection tolerance value). Information technology in this paper can monitor bridge dynamic deflection and depict deflection trend curves of the bridge in real time. It can provide data support for the site decisions to the bridge structure safety.

  1. Post mitigation impact risk analysis for asteroid deflection demonstration missions

    NASA Astrophysics Data System (ADS)

    Eggl, Siegfried; Hestroffer, Daniel; Thuillot, William; Bancelin, David; Cano, Juan L.; Cichocki, Filippo

    2015-08-01

    Even though mankind believes to have the capabilities to avert potentially disastrous asteroid impacts, only the realization of mitigation demonstration missions can validate this claim. Such a deflection demonstration attempt has to be cost effective, easy to validate, and safe in the sense that harmless asteroids must not be turned into potentially hazardous objects. Uncertainties in an asteroid's orbital and physical parameters as well as those additionally introduced during a mitigation attempt necessitate an in depth analysis of deflection mission designs in order to dispel planetary safety concerns. We present a post mitigation impact risk analysis of a list of potential kinetic impactor based deflection demonstration missions proposed in the framework of the NEOShield project. Our results confirm that mitigation induced uncertainties have a significant influence on the deflection outcome. Those cannot be neglected in post deflection impact risk studies. We show, furthermore, that deflection missions have to be assessed on an individual basis in order to ensure that asteroids are not inadvertently transported closer to the Earth at a later date. Finally, we present viable targets and mission designs for a kinetic impactor test to be launched between the years 2025 and 2032.

  2. Study on pipe deflection by using numerical method

    NASA Astrophysics Data System (ADS)

    Husaini; Zaki Mubarak, Amir; Agustiar, Rizki

    2018-05-01

    Piping systems are widely used in a refinery or oil and gas industry. The piping system must be properly designed to avoid failure or leakage. Pipe stress analysis is conducted to analyze the loads and critical stress occurred, so that the failure of the pipe can be avoided. In this research, it is analyzed the deflection of a pipe by using Finite Element Method. The pipe is made of A358 / 304SS SCH10S Stainless Steel. It is 16 inches in size with the distance between supports is 10 meters. The fluid flown is Liquid Natural Gas (LNG) with the range of temperature of -120 ° C to -170 ° C, and a density of 461.1 kg / m 3. The flow of LNG causes deflection of the pipe. The pipe deflection must be within the permissible tolerable range. The objective is to analyze the deflection occurred in the piping system. Based on the calculation and simulation, the deflection is 4.4983 mm, which is below the maximum limit of deflection allowed, which is 20.3 mm.

  3. Deflection-Compensating Beam for use inside a Cylinder

    NASA Technical Reports Server (NTRS)

    Goodman, Dwight; Myers, Neill; Herren, Kenneth

    2008-01-01

    A design concept for a beam for a specific application permits variations and options for satisfying competing requirements to minimize certain deflections under load and to minimize the weight of the beam. In the specific application, the beam is required to serve as a motion-controlled structure for supporting a mirror for optical testing in the lower third portion of a horizontal, cylindrical vacuum chamber. The cylindrical shape of the chamber is fortuitous in that it can be (and is) utilized as an essential element of the deflection-minimizing design concept. The beam is, more precisely, a table-like structure comprising a nominally flat, horizontal portion with vertical legs at its ends. The weights of the beam and whatever components it supports are reacted by the contact forces between the lower ends of the legs and the inner cylindrical chamber wall. Whereas the bending moments arising from the weights contribute to a beam deflection that is concave with its lowest point at midlength, the bending moments generated by the contact forces acting on the legs contribute to a beam deflection that is convex with its highest point at midlength. In addition, the bending of the legs in response to the weights causes the lower ends of the legs to slide downward on the cylindrical wall. By taking the standard beam-deflection equations, combining them with the geometric relationships among the legs and the horizontal portion of the beam, and treating the sliding as a component of deflection, it is possible to write an equation for the net vertical deflection as a function of the load and of position along the beam. A summary of major conclusions drawn from the equation characterization is included.

  4. Achilles tendon shape and echogenicity on ultrasound among active badminton players.

    PubMed

    Malliaras, P; Voss, C; Garau, G; Richards, P; Maffulli, N

    2012-04-01

    The relationship between Achilles tendon ultrasound abnormalities, including a spindle shape and heterogeneous echogenicity, is unclear. This study investigated the relationship between these abnormalities, tendon thickness, Doppler flow and pain. Sixty-one badminton players (122 tendons, 36 men, and 25 women) were recruited. Achilles tendon thickness, shape (spindle, parallel), echogenicity (heterogeneous, homogeneous) and Doppler flow (present or absent) were measured bilaterally with ultrasound. Achilles tendon pain (during or after activity over the last week) and pain and function [Victorian Institute of Sport Achilles Assessment (VISA-A)] were measured. Sixty-eight (56%) tendons were parallel with homogeneous echogenicity (normal), 22 (18%) were spindle shaped with homogeneous echogenicity, 16 (13%) were parallel with heterogeneous echogenicity and 16 (13%) were spindle shaped with heterogeneous echogenicity. Spindle shape was associated with self-reported pain (P<0.05). Heterogeneous echogenicity was associated with lower VISA-A scores than normal tendon (P<0.05). There was an ordinal relationship between normal tendon, parallel and heterogeneous and spindle shaped and heterogeneous tendons with regard to increasing thickness and likelihood of Doppler flow. Heterogeneous echogenicity with a parallel shape may be a physiological phase and may develop into heterogeneous echogenicity with a spindle shape that is more likely to be pathological. © 2010 John Wiley & Sons A/S.

  5. The relevance of body positioning and its training effect on badminton smash.

    PubMed

    Li, Shiming; Zhang, Zhao; Wan, Bingjun; Wilde, Brandie; Shan, Gongbing

    2017-02-01

    One of the dominant skills in badminton is the forehand overhead smash, which consists of 1/5 attacks during games. Empirical evidences show that one has to adjust the body position in relation to the coming shuttlecock to produce a powerful and accurate smash. Therefore, positioning is a fundamental aspect influencing smash quality. Unfortunately, a search of literature has shown that there is a dearth/lack of study on this fundamental aspect. The goals of this study were to determine the influence of positioning and training experience on smash quality in order to discover information that could help learn/acquire the skill. Using 3D motion capture and full-body biomechanical modelling, 14 skilled and 15 novice players were analysed. Results have revealed that the body positioning has direct influence on shuttlecock release angle and clearance height of the offensive player. The results also suggest that, for training the positioning of beginners, one could conduct a self-selected comfort position towards a statically hanged shuttlecock and then step one foot back - a practical reference marker for learning. As one gains experience through repetitive training, improved limbs' coordination would increase smash quality further. We hope our findings will benefit practitioners for developing effective training programmes for beginners.

  6. Deflection load characteristics of laser-welded orthodontic wires.

    PubMed

    Watanabe, Etsuko; Stigall, Garrett; Elshahawy, Waleed; Watanabe, Ikuya

    2012-07-01

    To compare the deflection load characteristics of homogeneous and heterogeneous joints made by laser welding using various types of orthodontic wires. Four kinds of straight orthodontic rectangular wires (0.017 inch × 0.025 inch) were used: stainless-steel (SS), cobalt-chromium-nickel (Co-Cr-Ni), beta-titanium alloy (β-Ti), and nickel-titanium (Ni-Ti). Homogeneous and heterogeneous end-to-end joints (12 mm long each) were made by Nd:YAG laser welding. Two types of welding methods were used: two-point welding and four-point welding. Nonwelded wires were also used as a control. Deflection load (N) was measured by conducting the three-point bending test. The data (n  =  5) were statistically analyzed using analysis of variance/Tukey test (P < .05). The deflection loads for control wires measured were as follows: SS: 21.7 ± 0.8 N; Co-Cr-Ni: 20.0 ± 0.3 N; β-Ti: 13.9 ± 1.3 N; and Ni-Ti: 6.6 ± 0.4 N. All of the homogeneously welded specimens showed lower deflection loads compared to corresponding control wires and exhibited higher deflection loads compared to heterogeneously welded combinations. For homogeneous combinations, Co-Cr-Ni/Co-Cr-Ni showed a significantly (P < .05) higher deflection load than those of the remaining homogeneously welded groups. In heterogeneous combinations, SS/Co-Cr-Ni and β-Ti/Ni-Ti showed higher deflection loads than those of the remaining heterogeneously welded combinations (significantly higher for SS/Co-Cr-Ni). Significance (P < .01) was shown for the interaction between the two factors (materials combination and welding method). However, no significant difference in deflection load was found between four-point and two-point welding in each homogeneous or heterogeneous combination. Heterogeneously laser-welded SS/Co-Cr-Ni and β-Ti/Ni-Ti wires provide a deflection load that is comparable to that of homogeneously welded orthodontic wires.

  7. Development of sacrificial support fixture using deflection analysis

    NASA Astrophysics Data System (ADS)

    Ramteke, Ashwini M.; Ashtankar, Kishor M.

    2018-04-01

    Sacrificial support fixtures are the structures used to hold the part during machining while rotating the part about the fourth axis of CNC machining. In Four axis CNC machining part is held in a indexer which is rotated about the fourth axis of rotation. So using traditional fixturing devices to hold the part during machining such as jigs, v blocks and clamping plates needs a several set ups, manufacturing time which increase the cost associated with it. Since the part is rotated about the axis of rotation in four axis CNC machining so using traditional fixturing devices to hold the part while machining we need to reorient the fixture each time for particular orientation of part about the axis of rotation. So our proposed methodology of fixture design eliminates the cost associate with the complicated fixture design for customized parts which in turn reduces the time of manufacturing of the fixtures. But while designing the layout of the fixtures it is found out that the machining the part using four axis CNC machining the accurate machining of the part is directly proportional to the deflection produced in a part. So to machine an accurate part the deflection produced in a part should be minimum. We assume that the deflection produced in a part is a result of the deflection produced in a sacrificial support fixture while machining. So this paper provides the study of the deflection checking in a part machined using sacrificial support fixture by using FEA analysis.

  8. Analysis of Deflection Enhancement Using Epsilon Assembly Microcantilevers Based Sensors

    PubMed Central

    Khaled, Abdul-Rahim A.; Vafai, Kambiz

    2011-01-01

    The present work analyzes theoretically and verifies the advantage of utilizing ɛ-microcantilever assemblies in microsensing applications. The deflection profile of these innovative ɛ-assembly microcantilevers is compared with that of the rectangular microcantilever and modified triangular microcantlever. Various force-loading conditions are considered. The theorem of linear elasticity for thin beams is used to obtain the deflections. The obtained defections are validated against an accurate numerical solution utilizing finite element method with maximum deviation less than 10 percent. It is found that the ɛ-assembly produces larger deflections than the rectangular microcantilever under the same base surface stress and same extension length. In addition, the ɛ-microcantilever assembly is found to produce larger deflection than the modified triangular microcantilever. This deflection enhancement is found to increase as the ɛ-assembly’s free length decreases for various types of force loading conditions. Consequently, the ɛ-microcantilever is shown to be superior in microsensing applications as it provides favorable high detection capability with a reduced susceptibility to external noises. Finally, this work paves a way for experimentally testing the ɛ-assembly to show whether detective potential of microsensors can be increased. PMID:22163694

  9. Steps for arm and trunk actions of overhead forehand stroke used in badminton games across skill levels.

    PubMed

    Wang, Jianyu; Liu, Wenhao; Moffit, Jeffrey

    2009-08-01

    The purpose of this study was to examine arm and trunk actions in overhead forehand strokes used in badminton games across skill levels. The participants were 80 students (40 boys, 40 girls) who were randomly selected from video recordings of 300 students ages 16 to 19 years. The videotaped performances of overhead forehand strokes were coded based on three steps of arm action (elbow flexion, elbow and humeral flexion, and upward backswing) and three steps of trunk action (no trunk action, forward-backward movement, and trunk rotation). Students across the four skill levels exhibited different patterns of arm and trunk actions. Students at advanced levels used more mature arm and trunk actions.

  10. The Asteroid Impact Mission - Deflection Demonstration (AIM - D2)

    NASA Astrophysics Data System (ADS)

    Küppers, M.; Michel, P.; Carnelli, I.

    2017-09-01

    The Asteroid Impact Mission (AIM) is ESA's contribution to the international Asteroid Impact Deflection Assessment (AIDA) cooperation, targeting the demonstration of deflection of a hazardous near-earth asteroid. AIM will also be the first in-depth investigation of a binary asteroid and make measurements that are relevant for the preparation of asteroid resource utilisation. AIM is foreseen to rendezvous with the binary near-Earth asteroid (65803) Didymos and to observe the system before, during, and after the impact of NASA's Double Asteroid Redirection Test (DART) spacecraft. Here we describe the observations to be done by the simplified version Asteroid Impact Mission - Deflection Demonstration (AIM-D2) and show that most of the original AIM objectives can still be achieved.

  11. Optical caliper with compensation for specimen deflection and method

    DOEpatents

    Bernacki, B.E.

    1997-12-09

    An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors. 2 figs.

  12. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  13. Nuclear cycler: An incremental approach to the deflection of asteroids

    NASA Astrophysics Data System (ADS)

    Vasile, Massimiliano; Thiry, Nicolas

    2016-04-01

    This paper introduces a novel deflection approach based on nuclear explosions: the nuclear cycler. The idea is to combine the effectiveness of nuclear explosions with the controllability and redundancy offered by slow push methods within an incremental deflection strategy. The paper will present an extended model for single nuclear stand-off explosions in the proximity of elongated ellipsoidal asteroids, and a family of natural formation orbits that allows the spacecraft to deploy multiple bombs while being shielded by the asteroid during the detonation.

  14. Fast scan control for deflection type mass spectrometers

    NASA Technical Reports Server (NTRS)

    Yeager, P. R.; Gaetano, G.; Hughes, D. B. (Inventor)

    1974-01-01

    A high speed scan device is reported that allows most any scanning sector mass spectrometer to measure preselected gases at a very high sampling rate. The device generates a rapidly changing staircase output which is applied to the accelerator of the spectrometer and it also generates defocusing pulses that are applied to one of the deflecting plates of the spectrometer which when shorted to ground deflects the ion beam away from the collector. A defocusing pulse occurs each time there is a change in the staircase output.

  15. Optical caliper with compensation for specimen deflection and method

    DOEpatents

    Bernacki, Bruce E.

    1997-01-01

    An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors.

  16. The effect of badminton training on the ability of same-domain action anticipation for adult novices: Evidence from behavior and ERPs.

    PubMed

    Liu, Ting; Shao, Mengling; Yin, Desheng; Li, Yongjie; Yang, Nan; Yin, Ruru; Leng, Ying; Jin, Hua; Hong, Haixiao

    2017-11-01

    Many transverse studies have found that athletes can better anticipate the outcome of sequential actions belonging to their domain of motor expertise than non-athletes. However, few studies have causally investigated this issue. Using badminton training as an example, the present study attempted to explore whether sports training affected the same-domain action anticipation ability of adult novices and the related neural mechanisms. To address this issue, participants in the training group attended a 12-week badminton training course (1h/time, 3 times/week). Both the training and control groups were asked to view badminton video clips and predict the landing position of a shuttle before and after 12 weeks. Compared to the control group, the training group showed a decrease in the inverse efficiency score, indicating that badminton training did improve trainees' action anticipation ability. Furthermore, the training group produced larger N2 and P3 components of event-related potential after the training. These findings suggest that sport training may affect inhibitory processes and memory encoding during same-domain action anticipation. Copyright © 2017. Published by Elsevier B.V.

  17. Evaluating the Relation between Dominant and Non-Dominant Hand Perimeters and Handgrip Strength of Basketball, Volleyball, Badminton and Handball Athletes

    ERIC Educational Resources Information Center

    Kaplan, Defne Öcal

    2016-01-01

    In this study, it's aimed to evaluate the relation between dominant and non-dominant hand perimeters and handgrip strength of basketball, volleyball, badminton and handball athletes. Totally 101 active athletes (49 females, 52 male), of the average age in female 20±1.42 years, in male 21±1.99 years, joined to this study. Height, body weight, BMI…

  18. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    DOEpatents

    Hagen, E.C.; Hudson, C.L.

    1995-07-25

    A new deflection structure which deflects a beam of charged particles, such as an electron beam, includes a serpentine set for transmitting a deflection field, and a shielding frame for housing the serpentine set. The serpentine set includes a vertical serpentine deflection element and a horizontal serpentine deflection element. These deflection elements are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage, through which the electron beam passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame includes a plurality of ground blocks, and forms an internal serpentine trough within these ground blocks, for housing the serpentine set. The deflection structure further includes a plurality of feedthrough connectors which are inserted through the shielding frame, and which are electrically connected to the serpentine set. 10 figs.

  19. Risk Factors of Tendo-Achilles Injury in Football, Cricket and Badminton Players at Dhaka, Bangladesh.

    PubMed

    Khan, M J; Giasuddin, A S M; Khalil, M I

    2015-04-01

    Achilles tendon is the tendon connecting the heel with the calf muscles. Tendo-achilles injury (TAI) in players is common in games. The frequency of TAI is unknown and aetiology is controversial: The present descriptive cross-sectional study was done to determine the prevalence of TAI and associated factors contributing to it in football, cricket and badminton. From January to June 2012, male players (n = 131), age -17-35 years, were selected by purposive sampling technique from renowned sporting clubs at Dhaka, Bangladesh. TAI was diagnosed through structured questionnaire and interviewing the respondents. The analysis by Statistical Package for Social Sciences (SPSS) programme revealed that 11.5% players suffered from TAI, i.e. prevalence was 115 per 1000 respondents. Most injuries (70/131; 53.4%) occurred in the playground and (59/131; 45.3%) happened in practice field. Injuries among the players of third division were higher, i.e. about 36% (p = 0.000). TAI was significantly dependent on occupation (p = 0.046), BMI (p = 0.008), divisional status (p = 0.023), game type (p = 0.043), ground condition (p = 0.05) and injury severity (p = 0.000). The injured players referred for treatment to the physiotherapist was highest (9/15, i.e. 60%) followed by the physicians (5/15, i.e. 33%) (p = 0.000). The associations of TAI with various factors were discussed suggesting effective measures be taken and treatment, particularly physiotherapy, be given to injured players. However, there is a need of team work with sports medicine specialist also to enable the injured players to continue their professional games.

  20. Differences in tendon properties in elite badminton players with or without patellar tendinopathy.

    PubMed

    Couppé, C; Kongsgaard, M; Aagaard, P; Vinther, A; Boesen, M; Kjaer, M; Magnusson, S P

    2013-03-01

    The aim of this study was to examine the structural and mechanical properties of the patellar tendon in elite male badminton players with and without patellar tendinopathy. Seven players with unilateral patellar tendinopathy (PT group) on the lead extremity (used for forward lunge) and nine players with no current or previous patellar tendinopathy (CT group) were included. Magnetic resonance imaging was used to assess distal patellar tendon dimensions. Patellar tendon mechanical properties were assessed using simultaneous tendon force and deformation measurements. Distal tendon cross-sectional area (CSA) normalized for body weight (mm(2) /kg(2/3) ) was lower in the PT group compared with the CT group on both the non-lead extremity (6.1 ± 0.3 vs 7.4 ± 0.2, P < 0.05) and the lead extremity (6.5 ± 0.6 vs 8.4 ± 0.3, P < 0.05). Distal tendon stress was higher in the PT group compared with the CT group for both the non-lead extremity (31 ± 1 vs 27 ± 1 MPa, P < 0.05) and the lead extremity (32 ± 3 vs 21 ± 3 MPa, P < 0.01). Conclusively, the PT group had smaller distal patellar tendon CSA on both the injured (lead extremity) and the uninjured side (non-lead extremity) compared with the CT group. Subsequently, the smaller CSA yielded a greater distal patellar tendon stress in the PT group. Therefore, a small tendon CSA may predispose to the development of tendinopathy. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  1. High-intensity stepwise conditioning programme for improved exercise responses and agility performance of a badminton player with knee pain.

    PubMed

    Chen, Bob; Mok, Damon; Lee, Winson C C; Lam, Wing Kai

    2015-02-01

    To examine the effect of a high-intensity stepwise conditioning programme combined with multiple recovery measures on physical fitness, agility, and knee pain symptoms of an injured player. A single case study. University-based conditioning training laboratory. One 26-year-old male world-class badminton player (height, 190.0 cm; weight, 79.3 kg; left dominant hand; playing experience, 16 years; former world champion) with patellar tendinosis and calcification of his left knee. The player received seven conditioning sessions over three weeks. During the programme, there was a gradual increase in training duration and load across sessions while cold therapy, manual stretches and massage were administered after each session to minimise inflammation. The training outcome was evaluated with three different testing methods: standard step test, badminton-specific agility test, and tension-pain rating. The conditioning programme reduced knee pain symptoms and improved actual performance and cardiopulmonary fitness during the agility task. The player was able to return to sport and compete within a month. A high-intensity stepwise conditioning programme improved the physical fitness while sufficient recovery measures minimised any possible undesirable effects and promoted faster return to elite level competition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Acute effects of a loaded warm-up protocol on change of direction speed in professional badminton players.

    PubMed

    Maloney, Sean J; Turner, Anthony N; Miller, Stuart

    2014-10-01

    It has previously been shown that a loaded warm-up may improve power performances. We examined the acute effects of loaded dynamic warm-up on change of direction speed (CODS), which had not been previously investigated. Eight elite badminton players participated in three sessions during which they performed vertical countermovement jump and CODS tests before and after undertaking the dynamic warm-up. The three warm-up conditions involved wearing a weighted vest (a) equivalent to 5% body mass, (b) equivalent to 10% body mass, and (c) a control where a weighted vest was not worn. Vertical jump and CODS performances were then tested at 15 seconds and 2, 4, and 6 minutes post warm-up. Vertical jump and CODS significantly improved following all warm-up conditions (P < .05). Post warm-up vertical jump performance was not different between conditions (P = .430). Post warm-up CODS was significantly faster following the 5% (P = .02) and 10% (P < .001) loaded conditions compared with the control condition. In addition, peak CODS test performances, independent of recovery time, were faster than the control condition following the 10% loaded condition (P = .012). In conclusion, the current study demonstrates that a loaded warm-up augmented CODS, but not vertical jump performance, in elite badminton players.

  3. Biomechanical analysis of knee and trunk in badminton players with and without knee pain during backhand diagonal lunges.

    PubMed

    Lin, Cheng-Feng; Hua, Shiang-Hua; Huang, Ming-Tung; Lee, Hsing-Hsan; Liao, Jen-Chieh

    2015-01-01

    The contribution of core neuromuscular control to the dynamic stability of badminton players with and without knee pain during backhand lunges has not been investigated. Accordingly, this study compared the kinematics of the lower extremity, the trunk movement, the muscle activation and the balance performance of knee-injured and knee-uninjured badminton players when performing backhand stroke diagonal lunges. Seventeen participants with chronic knee pain (injured group) and 17 healthy participants (control group) randomly performed two diagonal backhand lunges in the forward and backward directions, respectively. This study showed that the injured group had lower frontal and horizontal motions of the knee joint, a smaller hip-shoulder separation angle and a reduced trunk tilt angle. In addition, the injured group exhibited a greater left paraspinal muscle activity, while the control group demonstrated a greater activation of the vastus lateralis, vastus medialis and medial gastrocnemius muscle groups. Finally, the injured group showed a smaller distance between centre of mass (COM) and centre of pressure, and a lower peak COM velocity when performing the backhand backward lunge tasks. In conclusion, the injured group used reduced knee and trunk motions to complete the backhand lunge tasks. Furthermore, the paraspinal muscles contributed to the lunge performance of the individuals with knee pain, whereas the knee extensors and ankle plantar flexor played a greater role for those without knee pain.

  4. Charge control switch responsive to cell casing deflection

    NASA Technical Reports Server (NTRS)

    Fischell, Robert E. (Inventor)

    1981-01-01

    A switch structure, adapted for sensing the state-of-charge of a rechargeable cell, includes a contact element which detects cell casing deflection that occurs as a result of an increase in gaseous pressure within the cell when the cell is returned to its fully charged state during a recharging operation.

  5. Electrically-induced stresses and deflection in multiple plates

    SciTech Connect

    Hu, Jih-Perng; Tichler, P.R.

    Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis has been made to evaluate themore » magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.« less

  6. Electrically-induced stresses and deflection in multiple plates

    NASA Astrophysics Data System (ADS)

    Hu, Jih-Perng; Tichler, P. R.

    1992-04-01

    Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis was made to evaluate the magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.

  7. Static Force-Deflection Properties of Automobile Steering Components

    DOT National Transportation Integrated Search

    1987-06-01

    This report provides the static force-deflection test results for 28 steering columns and 24 steering wheels used in domestic and import passener cars from model year 1975 to 1985. The steering columns and wheels tested include approzimately 90 perce...

  8. AIDA DART asteroid deflection test: Planetary defense and science objectives

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew F.; Rivkin, Andrew S.; Michel, Patrick; Atchison, Justin; Barnouin, Olivier; Benner, Lance; Chabot, Nancy L.; Ernst, Carolyn; Fahnestock, Eugene G.; Kueppers, Michael; Pravec, Petr; Rainey, Emma; Richardson, Derek C.; Stickle, Angela M.; Thomas, Cristina

    2018-08-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is an international cooperation between NASA and ESA. NASA plans to provide the Double Asteroid Redirection Test (DART) mission which will perform a kinetic impactor experiment to demonstrate asteroid impact hazard mitigation. ESA proposes to provide the Hera mission which will rendezvous with the target to monitor the deflection, perform detailed characterizations, and measure the DART impact outcomes and momentum transfer efficiency. The primary goals of AIDA are (i) to demonstrate the kinetic impact technique on a potentially hazardous near-Earth asteroid and (ii) to measure and characterize the deflection caused by the impact. The AIDA target will be the binary asteroid (65803) Didymos, which is of spectral type Sq, with the deflection experiment to occur in October, 2022. The DART impact on the secondary member of the binary at ∼6 km/s changes the orbital speed and the binary orbit period, which can be measured by Earth-based observatories with telescope apertures as small as 1 m. The DART impact will in addition alter the orbital and rotational states of the Didymos binary, leading to excitation of eccentricity and libration that, if measured by Hera, can constrain internal structure of the target asteroid. Measurements of the DART crater diameter and morphology can constrain target properties like cohesion and porosity based on numerical simulations of the DART impact.

  9. Mission Design and Optimal Asteroid Deflection for Planetary Defense

    NASA Technical Reports Server (NTRS)

    Sarli, Bruno V.; Knittel, Jeremy M.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    Planetary defense is a topic of increasing interest for many reasons, which has been mentioned in "Vision and Voyages for Planetary Science in the Decade 2013-2022''. However, perhaps one of the most significant rationales for asteroid studies is the number of close approaches that have been documented recently. A space mission with a planetary defense objective aims to deflect the threatening body as far as possible from Earth. The design of a mission that optimally deflects an asteroid has different challenges: speed, precision, and system trade-off. This work addresses such issues and develops a fast transcription of the problem that can be implemented into an optimization tool, which allows for a broader trade study of different mission concepts with a medium fidelity. Such work is suitable for a mission?s preliminary study. It is shown, using the fictitious asteroid impact scenario 2017 PDC, that the complete tool is able to account for the orbit sensitivity to small perturbations and quickly optimize a deflection trajectory. The speed in which the tool operates allows for a trade study between the available hardware. As a result, key deflection dates and mission strategies are identified for the 2017 PDC.

  10. Mission Design and Optimal Asteroid Deflection for Planetary Defense

    NASA Technical Reports Server (NTRS)

    Sarli, Bruno V.; Knittel, Jeremy M.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    Planetary defense is a topic of increasing interest for many reasons, which has been mentioned in "Vision and Voyages for Planetary Science in the Decade 2013-2022". However, perhaps one of the most significant rationales for asteroid studies is the number of close approaches that have been documented recently. A space mission with a planetary defense objective aims to deflect the threatening body as far as possible from Earth. The design of a mission that optimally deflects an asteroid has different challenges: speed, precision, and system trade-off. This work addresses such issues and develops a fast transcription of the problem that can be implemented into an optimization tool, which allows for a broader trade study of different mission concepts with a medium fidelity. Such work is suitable for a mission's preliminary study. It is shown, using the fictitious asteroid impact scenario 2017 PDC, that the complete tool is able to account for the orbit sensitivity to small perturbations and quickly optimize a deflection trajectory. The speed in which the tool operates allows for a trade study between the available hardware. As a result, key deflection dates and mission strategies are identified for the 2017 PDC.

  11. Evaluation of temperature effects on bituminous pavement deflections in Virginia.

    DOT National Transportation Integrated Search

    1976-01-01

    Eight satellite projects with asphaltic layer thicknesses varying from 3.5 inches (88 mm) to 13.5 inches (338 mm) were tested for dynaflect deflections during the four seasons of 1974-75. The projects were located throughout Virginia. The evaluation ...

  12. Re-rounding of deflected thermoplastic conduit, phase I.

    DOT National Transportation Integrated Search

    2017-03-01

    Shad Sargand (ORCID 0000-0002-1633-1045), Andrew Russ (ORCID 0000-0001-7743-2109), and Kevin White (0000-0002-2902-2524) This study investigated the potential benefits of re-rounding of thermoplastic pipe, a process for reducing the deflection of ins...

  13. The effect of asteroid topography on surface ablation deflection

    NASA Astrophysics Data System (ADS)

    McMahon, Jay W.; Scheeres, Daniel J.

    2017-02-01

    Ablation techniques for deflecting hazardous asteroids deposit energy into the asteroid's surface, causing an effective thrust on the asteroid as the ablating material leaves normal to the surface. Although it has long been recognized that surface topography plays an important role in determining the deflection capabilities, most studies to date have ignored this aspect of the model. This paper focuses on understanding the topography for real asteroid shapes, and how this topography can change the deflection performance of an ablation technique. The near Earth asteroids Golevka, Bennu, and Itokawa are used as the basis for this study, as all three have high-resolution shape models available. This paper shows that naive targeting of an ablation method without accounting for the surface topography can lower the deflection performance by up to 20% in the cases studied in terms of the amount of acceleration applied in the desired direction. If the ablation thrust level is assumed to be 100 N, as used elsewhere in the literature, this misapplication of thrust translates to tens of kilometers per year in decreased semimajor axis change. However, if the ablation method can freely target any visible point on the surface of the asteroid, almost all of this performance can be recovered.

  14. Deflections from two types of Human Surrogates in Oblique Side Impacts

    PubMed Central

    Yoganandan, Narayan; Pintar, Frank A.

    2008-01-01

    The objective of the study was to obtain time-dependent thoracic and abdominal deflections of an anthropomorphic test device, the WorldSID dummy, in oblique impact using sled tests, and compare with post mortem human subject (PMHS) data. To simulate the oblique loading vector, the load wall was configured such that the thorax and abdominal plates were offset by twenty or thirty degrees. Deflections were obtained from a chestband placed at the middle thoracic level and five internal deflection transducers. Data were compared from the chestband and the transducer located at the same level of the thorax. In addition, data were compared with deflections from similar PMHS tests obtained using chestbands placed at the level of the axilla, xyphoid process, and tenth rib, representing the upper thorax, middle thorax, and abdominal region of the biological specimen. Peak deflections ranged from 30 to 85 mm in the dummy tests. Peak deflections ranged from 60 to 115 mm in PMHS. Under both obliquities, dummy deflection-time histories at the location along the chestband in close proximity to the internal deflection transducer demonstrated similar profiles. However, the peak deflection magnitudes from the chestband were approximately 20 mm greater than those from the internal transducer. Acknowledging that the chestband measures external deflections in contrast to the transducer which records internal ribcage deformations, peak deflections match from the two sensors. Deflection time histories were also similar between the dummy and PMHS in terms of morphology, although thoracic deflection magnitudes from the dummy matched more closely with PMHS than abdominal deflection magnitudes. The dummy deformed in such a way that peak deflections occurred along the lateral vector. This was in contrast to PMHS tests wherein maximum deflections occurred along the antero-lateral direction, suggesting differing deformation responses in the two models. In addition, peak deflections occurred

  15. Computation of wind tunnel model deflections. [for transport type solid wing

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.; Gloss, B. B.

    1981-01-01

    The experimental deflections for a transport type solid wing model were measured for several single point load conditions. These deflections were compared with those obtained by structural modeling of the wing by using plate and solid elements of Structural Performance Analysis and Redesign (SPAR) program. The solid element representation of the wing showed better agreement with the experimental deflections than the plate representation. The difference between the measured and calculated deflections is about 5 percent.

  16. Relationship between Autonomic Markers of Heart Rate and Subjective Indicators of Recovery Status in Male, Elite Badminton Players.

    PubMed

    Bisschoff, Christo A; Coetzee, Ben; Esco, Michael R

    2016-12-01

    The primary aim of the study was to determine if heart rate variability (HRV), and heart rate recovery (HRR) are related to several subjective indicators of recovery status (muscle soreness, hydration status, sleep quality and quantity as well as pre-competition mood states) for different match periods in male, elite, African, singles badminton players. HRV and HRR were measured in twenty-two badminton players before (pre-match), during (in-match), after (post-match) and during rest periods (in-match rest) of 46 national and international matches. Muscle soreness, hydration status, and sleep quality and quantity were measured on a daily basis whereas mood states were measured just before each match via questionnaires. Prior to each match warm-up, players were fitted with a Fix Polar Heart Rate Transmitter Belt to record heart rate every second during each match and HRR during service breaks and after matches. Kubios HRV software was used for final HRV analyses from the series of R-R-intervals. A strong, significant canonical correlation (Rc = 0.96, p = 0.014) was found between HRV, HRR and subjective indicators of recovery status for the in-match period, but only strong, non-significant relationships were observed for pre-match (Rc = 0.98, p = 0.626) and post-match periods (Rc = 0.98, p = 0.085) and a low non-significant relationship (Rc = 0.69, p = 0.258) for the in-match rest period. Canonical functions accounted for between 47.89% and 96.43% of the total variation between the two canonical variants. Results further revealed that Ln-HFnu, the energy index and vigour were the most prominent variables in the relationship between the autonomic markers of heart rate and recovery-related variables. In conclusion, this study proved that subjective indicators of recovery status influence HRV and HRR measures obtained in a competitive badminton environment and should therefore be incorporated in protocols that evaluate these ANS-related parameters.

  17. Ion Beam Deflection (AKA Push-Me/Pull-You)

    NASA Technical Reports Server (NTRS)

    Brophy, John

    2013-01-01

    The Ion Beam Deflection provides the following potential advantages over other asteroid deflection systems. Like the gravity tractor, it doesn't require despinning of the asteroid. Unlike the gravity tractor, it provides a significantly higher coupling force that is independent of the asteroid size. The concept could be tested as part of the baseline Asteroid Redirect Robotic Mission. The thrust and total impulse are entirely within the design of the SEP vehicle. The total impulse is potentially competitive with kinetic impactors and eliminates the need for a second rendezvous spacecraft.?Gridded ion thrusters provide beam divergence angles of a few degrees enabling long stand-off distances from the asteroid. Mitigating control issues. Minimizing back-sputter contamination risks

  18. Calculating the momentum enhancement factor for asteroid deflection studies

    DOE PAGES

    Heberling, Tamra; Gisler, Galen; Plesko, Catherine; ...

    2017-10-17

    The possibility of kinetic-impact deflection of threatening near-Earth asteroids will be tested for the first time in the proposed AIDA (Asteroid Impact Deflection Assessment) mission, involving NASAs DART (Double Asteroid Redirection Test). The impact of the DART spacecraft onto the secondary of the binary asteroid 65803 Didymos at a speed of 5 to 7 km/s is expected to alter the mutual orbit by an observable amount. Furthermore, the velocity transferred to the secondary depends largely on the momentum enhancement factor, typically referred to as beta. Here, we use two hydrocodes developed at Los Alamos, RAGE and PAGOSA, to calculate anmore » approximate value for beta in laboratory-scale benchmark experiments. Convergence studies comparing the two codes show the importance of mesh size in estimating this crucial parameter.« less

  19. Method and apparatus for deflection measurements using eddy current effects

    NASA Astrophysics Data System (ADS)

    Chern, Engmin J.

    1993-05-01

    A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.

  20. Horizontal deflection of single particle in a paramagnetic fluid.

    PubMed

    Liu, S; Yi, Xiang; Leaper, M; Miles, N J

    2014-06-01

    This paper describes the horizontal deflection behaviour of a single particle in paramagnetic fluids under a high-gradient superconducting magnetic field. A glass box was designed to carry out experiments and test assumptions. It was found that the particles were deflected away from the magnet bore centre and particles with different density and/or susceptibility settled at a certain position on the container floor due to the combined forces of gravity and magneto-Archimedes as well as lateral buoyant (displacement) force. Matlab was chosen to simulate the movement of the particle in the magnetic fluid, the simulation results were in good accordance with experimental data. The results presented here, though, are still very much in their infancy, which could potentially form the basis of a new approach to separating materials based on a combination of density and susceptibility.

  1. Calculating the momentum enhancement factor for asteroid deflection studies

    SciTech Connect

    Heberling, Tamra; Gisler, Galen; Plesko, Catherine

    The possibility of kinetic-impact deflection of threatening near-Earth asteroids will be tested for the first time in the proposed AIDA (Asteroid Impact Deflection Assessment) mission, involving NASAs DART (Double Asteroid Redirection Test). The impact of the DART spacecraft onto the secondary of the binary asteroid 65803 Didymos at a speed of 5 to 7 km/s is expected to alter the mutual orbit by an observable amount. Furthermore, the velocity transferred to the secondary depends largely on the momentum enhancement factor, typically referred to as beta. Here, we use two hydrocodes developed at Los Alamos, RAGE and PAGOSA, to calculate anmore » approximate value for beta in laboratory-scale benchmark experiments. Convergence studies comparing the two codes show the importance of mesh size in estimating this crucial parameter.« less

  2. Method and apparatus for deflection measurements using eddy current effects

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J. (Inventor)

    1993-01-01

    A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.

  3. Random deflections of a string on an elastic foundation.

    NASA Technical Reports Server (NTRS)

    Sanders, J. L., Jr.

    1972-01-01

    The paper is concerned with the problem of a taut string on a random elastic foundation subjected to random loads. The boundary value problem is transformed into an initial value problem by the method of invariant imbedding. Fokker-Planck equations for the random initial value problem are formulated and solved in some special cases. The analysis leads to a complete characterization of the random deflection function.

  4. Deflection and fragmentation of near-earth asteroids

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.; Harris, Alan W.

    1992-01-01

    The collision with earth of near-earth asteroids or comet nuclei poses a potential threat to mankind. Objects about 100 m in diameter could be diverted from an earth-crossing trajectory by the impact of a rocket-launched mass, but for larger bodies nuclear explosions seem to be the only practical means of deflection. Fragmentation of the body by nuclear charges is less efficient or secure.

  5. Isotope separation by selective charge conversion and field deflection

    DOEpatents

    Hickman, Robert G.

    1978-01-01

    A deuterium-tritium separation system wherein a source beam comprised of positively ionized deuterium (D.sup.+) and tritium (T.sup.+) is converted at different charge-exchange cell sections of the system to negatively ionized deuterium (D.sup.-) and tritium (T.sup.-). First, energy is added to the beam to accelerate the D.sup.+ ions to the velocity that is optimum for conversion of the D.sup.+ ions to D.sup.- ions in a charge-exchange cell. The T.sup.+ ions are accelerated at the same time, but not to the optimum velocity since they are heavier than the D.sup.+ ions. The T.sup.+ ions are, therefore, not converted to T.sup.- ions when the D.sup.+ ions are converted to D.sup.- ions. This enables effective separation of the beam by deflection of the isotopes with an electrostatic field, the D.sup.- ions being deflected in one direction and the T.sup.+ ions being deflected in the opposite direction. Next, more energy is added to the deflected beam of T.sup.+ ions to bring the T.sup.+ ions to the optimum velocity for their conversion to T.sup.- ions. In a particular use of the invention, the beams of D.sup.- and T.sup.- ions are separately further accelerated and then converted to energetic neutral particles for injection as fuel into a thermonuclear reactor. The reactor exhaust of D.sup.+ and T.sup.+ and the D.sup.+ and T.sup.+ that was not converted in the respective sections is combined with the source beam and recycled through the system to increase the efficiency of the system.

  6. Fast Acting Optical Beam Detection and Deflection System.

    DTIC Science & Technology

    1987-12-07

    should be as low as possible for the same reason. Liquids generally have lower densities and lower acoustic velocities than crystals and glasses . It may...deflection angle. Liquids, with their low sound velocities have higher M values than solids and the best solids are those ( glasses and crystals) which...small glass windows on either side and a thick angled acoustic absorber placed at the back of the cell to absorb most of the forward wave (figure 18

  7. Photothermal Deflection Spectroscopy of materials for energy applications

    NASA Astrophysics Data System (ADS)

    Johnson, Stephen; Day, James; Couch, Brandon; Heller, Brandon; Hart, Blake; Transylvania University Team

    A new photothermal deflection spectroscopy (PDS) setup has been constructed at Transylvania University. This poster will focus on the photothermal behavior of nanomaterials such as quantum dots as well as organic photovoltaic materials. With respect to organic photovoltaic materials, this work aims to understand differences in photothermal behavior between the solution and solid-film phases, where changes in photothermal spectra give insight into changes in electronic structure. A general overview of the PDS capabilities at Transylvania will also be given.

  8. Galactic magnetic deflections and Centaurus A as a UHECR source

    SciTech Connect

    Farrar, Glennys R.; Jansson, Ronnie; Feain, Ilana J.

    2013-01-01

    We evaluate the validity of leading models of the Galactic magnetic field for predicting UHECR deflections from Cen A. The Jansson-Farrar 2012 GMF model (JF12), which includes striated and random components as well as an out-of-plane contribution to the regular field not considered in other models, gives by far the best fit globally to all-sky data including the WMAP7 22 GHz synchrotron emission maps for Q, U and I and ≈ 40,000 extragalactic Rotation Measures (RMs). Here we test the models specifically in the Cen A region, using 160 well-measured RMs and the Polarized Intensity from WMAP, nearby but outsidemore » the Cen A radio lobes. The JF12 model predictions are in excellent agreement with the observations, justifying confidence in its predictions for deflections of UHECRs from Cen A. We find that up to six of the 69 Auger events above 55 EeV are consistent with originating in Cen A and being deflected ≤ 18°; in this case three are protons and three have Z = 2−4. Others of the 13 events within 18° must have another origin. In order for a random extragalactic magnetic field between Cen A and the Milky Way to appreciably alter these conclusions, its strength would have to be ∼>80 nG — far larger than normally imagined.« less

  9. Simulations of hypervelocity impacts for asteroid deflection studies

    NASA Astrophysics Data System (ADS)

    Heberling, T.; Ferguson, J. M.; Gisler, G. R.; Plesko, C. S.; Weaver, R.

    2016-12-01

    The possibility of kinetic-impact deflection of threatening near-earth asteroids will be tested for the first time in the proposed AIDA (Asteroid Impact Deflection Assessment) mission, involving two independent spacecraft, NASAs DART (Double Asteroid Redirection Test) and ESAs AIM (Asteroid Impact Mission). The impact of the DART spacecraft onto the secondary of the binary asteroid 65803 Didymos, at a speed of 5 to 7 km/s, is expected to alter the mutual orbit by an observable amount. The velocity imparted to the secondary depends on the geometry and dynamics of the impact, and especially on the momentum enhancement factor, conventionally called beta. We use the Los Alamos hydrocodes Rage and Pagosa to estimate beta in laboratory-scale benchmark experiments and in the large-scale asteroid deflection test. Simulations are performed in two- and three-dimensions, using a variety of equations of state and strength models for both the lab-scale and large-scale cases. This work is being performed as part of a systematic benchmarking study for the AIDA mission that includes other hydrocodes.

  10. Comparison of Ball-And-Racket Impact Force in Two-Handed Backhand Stroke Stances for Different-Skill-Level Tennis Players.

    PubMed

    Lo, Kuo-Cheng; Hsieh, Yung-Chun

    2016-06-01

    This study compared the kinetic roles of the upper extremities in racket impact force generation between the open stance (OS) and square stance (SS) for tennis players with different skill levels in two-handed backhand strokes. Twelve male tennis players were divided into an advanced group (AG) (L3-L2 skill level) and intermediate group (IG) (L7-L6 skill level), and their data were used in a three-dimensional kinetic analysis. Their motions were captured using 21 reflective markers attached to anatomic landmarks for two-handed backhand stroke motion data collection. During the acceleration phase, significant differences were not observed between both stances, but they were observed between the groups with different skill levels for the force of the upper extremities (p = 0.027). The joint forces were significantly lower in the AG than in the IG. Players performing the SS had significantly larger pronation and supination of the wrist joint moment than those in the OS (p = 0.032) during the acceleration phase, irrespective of the playing level. Higher internal rotation moment after impact was observed at each joint, particularly among young intermediate tennis players, regardless of their stance. The AG demonstrated a higher joint force and moment at every joint compared with the IG at impact. Moreover, the AG demonstrated superior stroke efficiency and effectively reduced joint moment after impact and sports injury. Key pointsAdvanced players, regardless of open stance or square stance, have larger joint force and moment at each joint before ball impact resulting in better stroke efficiency and reduced chance of injury.Intermediate players, regardless of stance, have higher internal rotation moment at each joint instead of larger joint force as compared to advanced players before ball impact. The higher internal rotation moment will induce higher joint impact force which makes the player injury-prone.Young intermediate tennis players may want to avoid excessive

  11. Operational characteristics of a translation screen grid beam deflection system for a 5-cm Kaufman thruster

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.; Hudson, W. R.

    1972-01-01

    Measurements of beam deflection angle with respect to spring positioning power and accelerator impingement current as a function of deflection angle were made on a 5-cm diameter system. Response time measurements on the translational grid beam deflection system showed that the time for the maximum deflection angle analyzed (+16.4 deg to -16.4 deg) could be reduced by a factor of nine by increasing the heating power applied to the positioning spring from 4 to 16 watts. At 14 watts the response time for maximum deflection was about 1 minute.

  12. Changes in the Game Characteristics of a Badminton Match: A Longitudinal Study through the Olympic Game Finals Analysis in Men’s Singles

    PubMed Central

    Laffaye, Guillaume; Phomsoupha, Michael; Dor, Frédéric

    2015-01-01

    The goal of this study was to analyze, through a longitudinal study, the Olympic Badminton Men’s singles finals from the Barcelona Games (1992) to the London Games (2012) to assess some changes of the Badminton game characteristics. Six Olympic finals have been analyzed based on the official video of the Olympic Games (OG) through the temporal structure and with a notational approach. In total, 537 rallies and 5537 strokes have been analyzed. The results show a change in the game’s temporal structure: a significant difference in the rally time, rest time and number of shots per rally (all p<0.0001; 0.09 < η2 < 0.16). Moreover, the shot frequency shows a 34.0% increase (p<0.000001; η2 = 0.17), whereas the work density revealed a 58.2% decrease (from 78% to 30.8%) as well as the effective playing time (-34.5% from 34.7±1.4% to 22.7±1.4%). This argues for an increase in the intensity of the game and a necessity for the player to use a longer resting time to recover. Lastly, the strokes distribution and the percentage of unforced and forced mistakes did not show any differences throughout the OG analysis, except for the use of the clear. This results impact on the way the training of Badminton players should be designed, especially in the temporal structure and intensity. Key points Badminton game has become faster, with an important increase in the shot frequency (+34%) The effective playing time has decreased between first to last Olympic Games (-34.5%) The strokes distribution and the percentage of unforced and forced errors show no differences through the OG analysis, except for the use of the clear PMID:26335338

  13. Changes in the Game Characteristics of a Badminton Match: A Longitudinal Study through the Olympic Game Finals Analysis in Men's Singles.

    PubMed

    Laffaye, Guillaume; Phomsoupha, Michael; Dor, Frédéric

    2015-09-01

    The goal of this study was to analyze, through a longitudinal study, the Olympic Badminton Men's singles finals from the Barcelona Games (1992) to the London Games (2012) to assess some changes of the Badminton game characteristics. Six Olympic finals have been analyzed based on the official video of the Olympic Games (OG) through the temporal structure and with a notational approach. In total, 537 rallies and 5537 strokes have been analyzed. The results show a change in the game's temporal structure: a significant difference in the rally time, rest time and number of shots per rally (all p<0.0001; 0.09 < η(2) < 0.16). Moreover, the shot frequency shows a 34.0% increase (p<0.000001; η(2) = 0.17), whereas the work density revealed a 58.2% decrease (from 78% to 30.8%) as well as the effective playing time (-34.5% from 34.7±1.4% to 22.7±1.4%). This argues for an increase in the intensity of the game and a necessity for the player to use a longer resting time to recover. Lastly, the strokes distribution and the percentage of unforced and forced mistakes did not show any differences throughout the OG analysis, except for the use of the clear. This results impact on the way the training of Badminton players should be designed, especially in the temporal structure and intensity. Key pointsBadminton game has become faster, with an important increase in the shot frequency (+34%)The effective playing time has decreased between first to last Olympic Games (-34.5%)The strokes distribution and the percentage of unforced and forced errors show no differences through the OG analysis, except for the use of the clear.

  14. Loading differences in single-leg landing in the forehand- and backhand-side courts after an overhead stroke in badminton: A novel tri-axial accelerometer research.

    PubMed

    Sasaki, Shogo; Nagano, Yasuharu; Ichikawa, Hiroshi

    2018-05-10

    Anterior cruciate ligament (ACL) injuries in badminton commonly occur during single-leg landing after an overhead stroke in the backhand-side court. This study compared differences in trunk acceleration and kinematic variables during single-leg landing in the forehand- and backhand-side courts after an overhead stroke. Eighteen female junior badminton players performed two singles games while wearing a tri-axial accelerometer. The moment that over 4g of resultant acceleration was generated was determined using synchronised video cameras. Trunk lateral inclination and hip abduction angles at the point of landing with over 4g of resultant acceleration were analysed. Mediolateral acceleration in the backhand-side court was greater than that in the opposite-side court (p < 0.001, ES = 0.840). Both trunk lateral angles were larger than those previously reported in injured participants and the hip abduction angle in the backhand-side court was larger than that in the forehand-side court (p < 0.001, ES = 2.357). The lateral and vertical acceleration in the backhand-side court showed moderate-to-strong correlations with the trunk and hip angles. The mediolateral physical demand and high-risk posture in the backhand-side court may be associated with a higher incidence of knee injuries during badminton games.

  15. The 2017 Eclipse: Centenary of the Einstein Light Deflection Experiment

    NASA Astrophysics Data System (ADS)

    Kennefick, Daniel

    2017-01-01

    August 21st, 2017 will see a total eclipse of the Sun visible in many parts of the United States. Coincidentally this date marks the centenary of the first observational attempt to test Einstein's General Theory of Relativity by measuring gravitational deflection of light by the Sun. This was attempted by the Kodaikanal Observatory in India during the conjunction of Regulus with the Sun in daylight on August 21st, 1917. The observation was attempted at the urging of the amateur German-British astronomer A. F. Lindemann, with his son, F. A. Lindemann, a well-known physicist, who later played a significant role as Churchill's science advisor during World War II. A century later Regulus will once again be in conjunction with the Sun, but by a remarkable coincidence, this will occur during a solar eclipse! Efforts will be made to measure the star deflection during the eclipse and the experiment is contrasted with the famous expeditions of 1919 which were the first to actually measure the light deflection, since the 1917 effort did not meet with success. Although in recent decades there have been efforts made to suggest that the 1919 eclipse team, led by Arthur Stanley Eddington and Sir Frank Watson Dyson, over-interpreted their results in favor of Einstein this talk will argue that such claims are wrong-headed. A close study of their data analysis reveals that they had good grounds for the decisions they made and this conclusion is reinforced by comparison with a modern re-analysis of the plates by the Greenwich Observatory conducted in 1977.

  16. Deflection by kinetic impact: Sensitivity to asteroid properties

    SciTech Connect

    Bruck Syal, Megan; Michael Owen, J.; Miller, Paul L.

    Impacting an asteroid with a spacecraft traveling at high speed delivers an impulsive change in velocity to the body. In certain circumstances, this strategy could be used to deflect a hazardous asteroid, moving its orbital path off of an Earth-impacting course. However, the efficacy of momentum delivery to asteroids by hypervelocity impact is sensitive to both the impact conditions (particularly velocity) and specific characteristics of the target asteroid. We numerically model asteroid response to kinetic impactors under a wide range of initial conditions, using an Adaptive Smoothed Particle Hydrodynamics code. Impact velocities spanning 1–30 km/s were investigated, yielding, for amore » particular set of assumptions about the modeled target material, a power-law dependence consistent with a velocity-scaling exponent of μ = 0.44. Target characteristics including equation of state, strength model, porosity, rotational state, and shape were varied, and corresponding changes in asteroid response were documented. Moreover, the kinetic-impact momentum-multiplication factor, β, decreases with increasing asteroid cohesion and increasing porosity. Although increased porosity lowers β, larger porosities result in greater deflection velocities, as a consequence of reduced target masses for asteroids of fixed size. Porosity also lowers disruption risk for kinetic impacts near the threshold of disruption. Including fast (P = 2.5 h) and very fast (P = 100 s) rotation did not significantly alter β but did affect the risk of disruption by the impact event. Asteroid shape is found to influence the efficiency of momentum delivery, as local slope conditions can change the orientation of the crater ejecta momentum vector. Our results emphasize the need for asteroid characterization studies to bracket the range of target conditions expected at near-Earth asteroids while also highlighting some of the principal uncertainties associated with the kinetic-impact deflection

  17. Deflection by kinetic impact: Sensitivity to asteroid properties

    DOE PAGES

    Bruck Syal, Megan; Michael Owen, J.; Miller, Paul L.

    2016-05-01

    Impacting an asteroid with a spacecraft traveling at high speed delivers an impulsive change in velocity to the body. In certain circumstances, this strategy could be used to deflect a hazardous asteroid, moving its orbital path off of an Earth-impacting course. However, the efficacy of momentum delivery to asteroids by hypervelocity impact is sensitive to both the impact conditions (particularly velocity) and specific characteristics of the target asteroid. We numerically model asteroid response to kinetic impactors under a wide range of initial conditions, using an Adaptive Smoothed Particle Hydrodynamics code. Impact velocities spanning 1–30 km/s were investigated, yielding, for amore » particular set of assumptions about the modeled target material, a power-law dependence consistent with a velocity-scaling exponent of μ = 0.44. Target characteristics including equation of state, strength model, porosity, rotational state, and shape were varied, and corresponding changes in asteroid response were documented. Moreover, the kinetic-impact momentum-multiplication factor, β, decreases with increasing asteroid cohesion and increasing porosity. Although increased porosity lowers β, larger porosities result in greater deflection velocities, as a consequence of reduced target masses for asteroids of fixed size. Porosity also lowers disruption risk for kinetic impacts near the threshold of disruption. Including fast (P = 2.5 h) and very fast (P = 100 s) rotation did not significantly alter β but did affect the risk of disruption by the impact event. Asteroid shape is found to influence the efficiency of momentum delivery, as local slope conditions can change the orientation of the crater ejecta momentum vector. Our results emphasize the need for asteroid characterization studies to bracket the range of target conditions expected at near-Earth asteroids while also highlighting some of the principal uncertainties associated with the kinetic-impact deflection

  18. Deflected mirage mediation: a phenomenological framework for generalized supersymmetry breaking.

    PubMed

    Everett, Lisa L; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M

    2008-09-05

    We present a general phenomenological framework for dialing between gravity mediation, gauge mediation, and anomaly mediation. The approach is motivated from recent developments in moduli stabilization, which suggest that gravity mediated terms can be effectively loop suppressed and thus comparable to gauge and anomaly mediated terms. The gauginos exhibit a mirage unification behavior at a "deflected" scale, and gluinos are often the lightest colored sparticles. The approach provides a rich setting in which to explore generalized supersymmetry breaking at the CERN Large Hadron Collider.

  19. Transit time spreads in biased paracentric hemispherical deflection analyzers

    NASA Astrophysics Data System (ADS)

    Sise, Omer; Zouros, Theo J. M.

    2016-02-01

    The biased paracentric hemispherical deflection analyzers (HDAs) are an alternative to conventional (centric) HDAs maintaining greater dispersion, lower angular aberrations, and hence better energy resolution without the use of any additional fringing field correctors. In the present work, the transit time spread of the biased paracentric HDA is computed over a wide range of analyzer parameters. The combination of high energy resolution with good time resolution and simplicity of design makes the biased paracentric analyzers very promising for both coincidence and singles spectroscopy applications.

  20. THE HELIOCENTRIC DISTANCE WHERE THE DEFLECTIONS AND ROTATIONS OF SOLAR CORONAL MASS EJECTIONS OCCUR

    SciTech Connect

    Kay, C.; Opher, M., E-mail: ckay@bu.edu

    2015-10-01

    Understanding the trajectory of a coronal mass ejection (CME), including any deflection from a radial path, and the orientation of its magnetic field is essential for space weather predictions. Kay et al. developed a model, Forecasting a CME’s Altered Trajectory (ForeCAT), of CME deflections and rotation due to magnetic forces, not including the effects of reconnection. ForeCAT is able to reproduce the deflection of observed CMEs. The deflecting CMEs tend to show a rapid increase of their angular momentum close to the Sun, followed by little to no increase at farther distances. Here we quantify the distance at which themore » CME deflection is “determined,” which we define as the distance after which the background solar wind has negligible influence on the total deflection. We consider a wide range in CME masses and radial speeds and determine that the deflection and rotation of these CMEs can be well-described by assuming they propagate with constant angular momentum beyond 10 R{sub ⊙}. The assumption of constant angular momentum beyond 10 R{sub ⊙} yields underestimates of the total deflection at 1 AU of only 1%–5% and underestimates of the rotation of 10%. Since the deflection from magnetic forces is determined by 10 R{sub ⊙}, non-magnetic forces must be responsible for any observed interplanetary deflections or rotations where the CME has increasing angular momentum.« less

  1. Associations between abnormal ultrasound color Doppler measures and tendon pain symptoms in badminton players during a season: a prospective cohort study.

    PubMed

    Boesen, Anders Ploug; Boesen, Morten Ilum; Torp-Pedersen, Soren; Christensen, Robin; Boesen, Lars; Hölmich, Per; Nielsen, Michael Bachmann; Koenig, Merete Juhl; Hartkopp, Andreas; Ellegaard, Karen; Bliddal, Henning; Langberg, Henning

    2012-03-01

    Color Doppler ultrasound is widely used to examine intratendinous flow in individuals with overuse tendon problems, but the association between color Doppler and pain is still unclear. Intratendinous flow is present and associated with pain in badminton players, and intratendinous flow and pain increase during a badminton season. Cohort study (prognosis); Level of evidence, 2. Ninety-five semiprofessional badminton players were included in the study at a tournament at the start of the badminton season. All players were interviewed regarding pain. The anterior knee tendons and Achilles tendons were studied. Each tendon was scored using a quantitative grading system (grades 0-5) and a qualitative scoring system (color fraction) using color Doppler ultrasound. Eight months later, 86 of the players (91%) were retested by the same investigators during an equivalent badminton tournament (including 1032 tendon regions; 86 players with 4 tendons each with 3 regions), thus forming the study group. At the start of the season, 24 players (28%) experienced pain in 37 tendons (11%), and at the end of the season, 31 players (36%) experienced pain in 51 tendons (15%), which was a statistically significant increase (P = .0002). Abnormal flow was found in 230 tendon regions in 71 players (83%) at the start of the season compared with 78 tendon regions in 41 players (48%) at the follow-up. The decrease in abnormal flow was statistically significant (P < .0001). Of the 37 painful tendons at the start of the season, 25 had abnormal flow (68%). In contrast, 131 tendons (85%) with abnormal flow at the start of the season were pain free. At the end of the season, 18 of the 51 painful tendons (35%) had abnormal flow. Ninety-six of the 131 pain-free tendons (73%) with abnormal flow at the start of the season were normalized (no pain and normal flow) at the end of the season. It was not possible to verify any association between intratendinous flow and pain at the start of the season or at

  2. Exploration of Piezoelectric Bimorph Deflection in Synthetic Jet Actuators

    NASA Astrophysics Data System (ADS)

    Housley, Kevin; Amitay, Michael

    2017-11-01

    The design of piezoelectric bimorphs for synthetic jet actuators could be improved by greater understanding of the deflection of the bimorphs; both their mode shapes and the resulting volume change inside the actuator. The velocity performance of synthetic jet actuators is dependent on this volume change and the associated internal pressure changes. Knowledge of these could aid in refining the geometry of the cavity to improve efficiency. Phase-locked jet velocities and maps of displacement of the surface of the bimorph were compared between actuators of varying diameter. Results from a bimorph of alternate stiffness were also compared. Bimorphs with higher stiffness exhibited a more desirable (0,1) mode shape, which produced a high volume change inside of the actuator cavity. Those with lower stiffness allowed for greater displacement of the surface, initially increasing the volume change, but exhibited higher mode shapes at certain frequency ranges. These higher node shapes sharply reduced the volume change and negatively impacted the velocity of the jet at those frequencies. Adjustments to the distribution of stiffness along the radius of the bimorph could prevent this and allow for improved deflection without the risk of reaching higher modes.

  3. Deflection of resilient materials for reduction of floor impact sound.

    PubMed

    Lee, Jung-Yoon; Kim, Jong-Mun

    2014-01-01

    Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor.

  4. Distribution of flexural deflection in the worldwide outer rise area

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Jun; Lin, Jing-Yi; Lin, Yi-Chin; Chin, Shao-Jinn; Chen, Yen-Fu

    2015-04-01

    The outer rise on the fringe of a subduction system is caused by an accreted load on the flexed oceanic lithosphere. The magnitude of the deflection is usually linked to the stress state beard by the oceanic plate. In a coupled subduction zone, the stress is abundantly accumulated across the plate boundary which should affect the flexural properties of the subducted plate. Thus, the variation of the outer rise in shape may reflect the seismogenic characteristics of the subduction system. In this study, we intent to find the correlation between the flexure deflection (Wb) of the outer rise and the subduction zone properties by comparing several slab parameters and the Wb distribution. The estimation of Wb is performed based on the available bathymetry data and the statistic analysis of earthquakes is from the global ISC earthquake catalog for the period of 1900-2015. Our result shows a progressive change of Wb in space, suggesting a robust calculation. The average Wb of worldwise subduction system spreads from 348 to 682 m. No visible distinction in the ranging of Wb was observed for different subduction zones. However, in a weak coupling subduction system, the standard variation of Wb has generally larger value. Relatively large Wb generally occurs in the center of the trench system, whereas small Wb for the two ends of trench. The comparison of Wb and several slab parameters shows that the Wb may be correlated with the maximal magnitude and the number of earthquakes. Otherwise, no clear relationship with other parameters can be obtained.

  5. Deflection of Resilient Materials for Reduction of Floor Impact Sound

    PubMed Central

    Lee, Jung-Yoon; Kim, Jong-Mun

    2014-01-01

    Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor. PMID:25574491

  6. Use Deflected Trailing Edge to Improve the Aerodynamic Performance and Develop Low Solidity LPT Cascade

    NASA Astrophysics Data System (ADS)

    Chao, Li; Peigang, Yan; Xiangfeng, Wang; Wanjin, Han; Qingchao, Wang

    2017-08-01

    This paper investigates the feasibility of improving the aerodynamic performance of low pressure turbine (LPT) blade cascades and developing low solidity LPT blade cascades through deflected trailing edge. A deflected trailing edge improved aerodynamic performance of both LPT blade cascades and low solidity LPT blade cascades. For standard solidity LPT cascades, deflecting the trailing edge can decrease the energy loss coefficient by 20.61 % for a Reynolds number (Re) of 25,000 and freestream turbulence intensities (FSTI) of 1 %. For a low solidity LPT cascade, aerodynamic performance was also improved by deflecting the trailing edge. Solidity of the LPT cascade can be reduced by 12.5 % for blades with a deflected trailing edge without a drop in efficiency. Here, the flow control mechanism surrounding a deflected trailing edge was also revealed.

  7. Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Övgün, Ali; Saavedra, Joel; Vásquez, Yerko; González, P. A.

    2018-06-01

    In this paper, we study the weak gravitational lensing in the spacetime of rotating regular black hole geometries such as Ayon-Beato-García (ABG), Bardeen, and Hayward black holes. We calculate the deflection angle of light using the Gauss-Bonnet theorem (GBT) and show that the deflection of light can be viewed as a partially topological effect in which the deflection angle can be calculated by considering a domain outside of the light ray applied to the black hole optical geometries. Then, we demonstrate also the deflection angle via the geodesics formalism for these black holes to verify our results and explore the differences with the Kerr solution. These black holes have, in addition to the total mass and rotation parameter, different parameters of electric charge, magnetic charge, and deviation parameter. We find that the deflection of light has correction terms coming from these parameters, which generalizes the Kerr deflection angle.

  8. Prediction of the Aerodynamic Characteristics of Cruciform Missiles Including Effects of Roll Angle and Control Deflection

    DTIC Science & Technology

    1986-08-01

    CHARACTERISTICS OF CRU.CIFORM MISSILES INCLUDING EFFECTS OF ROLL ANGLE AND CONTROL DEFLECTION N by Daniel J. Lesieutre Michael R. Mendenhall Susana M. Nazario...ANGLE AND CONTROL DEFLECTION Daniel J. Lesieutre Michael R. Mendenhal. Susana M. Nazario Nielsen Engineering & Research, Inc.00 Mountain View, CA 94043...Lo PREDICTION OF THE AERODYNAMIC CHARACTERISTICS OF CRU.CIFORM MISSILES - INCLUDING EFFECTS OF ROLL ANGLE AND CONTROL DEFLECTION by Daniel J

  9. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    DOEpatents

    Hagen, Edward C.; Hudson, Charles L.

    1995-01-01

    A new deflection structure (12) which deflects a beam of charged particles, uch as an electron beam (15), includes a serpentine set (20) for transmitting a deflection field, and a shielding frame (25) for housing the serpentine set (20). The serpentine set (20) includes a vertical serpentine deflection element (22) and a horizontal serpentine deflection element (24). These deflection elements (22, 24) are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage (75), through which the electron beam (15) passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame (25) includes a plurality of ground blocks (26, 28, 30, 32), and forms an internal serpentine trough (77) within these ground blocks, for housing the serpentine set (20). The deflection structure (12) further includes a plurality of feedthrough connectors (35, 37, 35I, 37I), which are inserted through the shielding frame (25), and which are electrically connected to the serpentine set (20).

  10. Estimating needle tip deflection in biological tissue from a single transverse ultrasound image: application to brachytherapy.

    PubMed

    Rossa, Carlos; Sloboda, Ron; Usmani, Nawaid; Tavakoli, Mahdi

    2016-07-01

    This paper proposes a method to predict the deflection of a flexible needle inserted into soft tissue based on the observation of deflection at a single point along the needle shaft. We model the needle-tissue as a discretized structure composed of several virtual, weightless, rigid links connected by virtual helical springs whose stiffness coefficient is found using a pattern search algorithm that only requires the force applied at the needle tip during insertion and the needle deflection measured at an arbitrary insertion depth. Needle tip deflections can then be predicted for different insertion depths. Verification of the proposed method in synthetic and biological tissue shows a deflection estimation error of [Formula: see text]2 mm for images acquired at 35 % or more of the maximum insertion depth, and decreases to 1 mm for images acquired closer to the final insertion depth. We also demonstrate the utility of the model for prostate brachytherapy, where in vivo needle deflection measurements obtained during early stages of insertion are used to predict the needle deflection further along the insertion process. The method can predict needle deflection based on the observation of deflection at a single point. The ultrasound probe can be maintained at the same position during insertion of the needle, which avoids complications of tissue deformation caused by the motion of the ultrasound probe.

  11. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Deflection

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Dixit, S. N.; Shore, B. W.; Chambers, D. M.; Britten, J. A.; Kavaya, M. J.

    1999-01-01

    LIDAR systems require a light transmitting system for sending a laser light pulse into space and a receiving system for collecting the retro-scattered light, separating it from the outgoing beam and analyzing the received signal for calculating wind velocities. Currently, a shuttle manifested coherent LIDAR experiment called SPARCLE (SPAce Readiness Coherent Lidar Experiment) includes a silicon wedge (or prism) in its design in order to deflect the outgoing beam 30 degrees relative to the incident direction. The intent of this paper is to present two optical design approaches that may enable the replacement of the optical wedge component (in future, larger aperture, post-SPARCLE missions) with a surface relief transmission diffraction grating. Such a grating could be etched into a lightweight, flat, fused quartz substrate. The potential advantages of a diffractive beam deflector include reduced weight, reduced power requirements for the driving scanning motor, reduced optical sensitivity to thermal gradients, and increased dynamic stability.

  12. Self-contained instrument for measuring subterranean tunnel wall deflection

    DOEpatents

    Rasmussen, Donald Edgar; Hof, Jr., Peter John

    1978-01-01

    The deflection of a subterranean tunnel is measured with a rod-like, self-contained instrument that is adapted to be inserted into a radially extending bore of the tunnel adjacent an end of the tunnel where the tunnel is being dug. One end of the instrument is anchored at the end of the bore remote from the tunnel wall, while the other end of the intrument is anchored adjacent the end of the wall in proximity to the tunnel wall. The two ends of the instrument are linearly displaceable relative to each other; the displacement is measured by a transducer means mounted on the instrument. Included in the instrument is a data storage means including a paper tape recorder periodically responsive to a parallel binary signal indicative of the measured displacement.

  13. Direct measurement of Vorticella contraction force by micropipette deflection.

    PubMed

    France, Danielle; Tejada, Jonathan; Matsudaira, Paul

    2017-02-01

    The ciliated protozoan Vorticella convallaria is noted for its exceptionally fast adenosine triphosphate-independent cellular contraction, but direct measurements of contractile force have proven difficult given the length scale, speed, and forces involved. We used high-speed video microscopy to image live Vorticella stalled in midcontraction by deflection of an attached micropipette. Stall forces correlate with both distance contracted and the resting stalk length. Estimated isometric forces range from 95 to 177 nanonewtons (nN), or 1.12 nN·μm -1 of the stalk. Maximum velocity and work are also proportional to distance contracted. These parameters constrain proposed biochemical/physical models of the contractile mechanism. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  14. Small Deflection Energy Analyzer for Energy and Angular Distributions

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.

    2009-01-01

    The development of the Small Deflection Energy Analyzer (SDEA) charged-particle spectrometer for energy and angle distributions responds to a longstanding need to measure the wind velocity vector in Earth s thermosphere, and to obtain the ion-drift vector in the ionosphere. The air and ions above 120 km are endowed with bulk velocities and temperatures just like air near the ground, but with separate spatial and temporal variations. It is important to understand these not only for study of the physics and chemistry of the Sun-Earth connection, but also for spacecraft orbit predictions, and communications through the ionosphere. The SDEA consists of a pair of parallel conducting plates separated by a small distance, with an entrance slit on one end, and an exit slit on the other. A voltage applied to these plates develops an electric field between the plates, and this field deflects ions passing through it. If an ion has too little energy, it will strike one of the plates. If it has too much, it will strike the back wall. An ion with the amount of energy being searched for will have its trajectory bent just enough to exit the back slit. The SDEA units are compact, rectangular, and operate with low voltages. The units can be built up into small arrays. These arrays could be used either to widen the field of view or to sharpen an existing one. This approach can also be used to obtain angular distributions in two planes simultaneously, thus cutting down the ion source power requirements in half. This geometry has enabled a new mass-spectrometer concept that can provide miniaturized mass spectrometers for use in industrial plants, air-pollution monitoring, and noxious-gas detection.

  15. Theory of using magnetic deflections to combine charged particle beams

    SciTech Connect

    Steckbeck, Mackenzie K.; Doyle, Barney Lee

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these twomore » magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: B s= 1/2(r c/r s) B c, where B s and B c are the magnetic fields in the steering and bending magnet and r c/r s is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.« less

  16. Planetary Defense: Options for Deflection of Near Earth Objects

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Statham, G.; Hopkins, R.; Chapman, J.; White, S.; Bonometti, J.; Alexander, R.; Fincher, S.; Polsgrove, T.; Kalkstein, M.

    2003-01-01

    Several recent near-miss encounters with asteroids and comets have focused attention on the threat of a catastrophic impact with the Earth. This document reviews the historical impact record and current understanding of the number and location of Near Earth Objects (NEO's) to address their impact probability. Various ongoing projects intended to survey and catalog the NEO population are also reviewed. Details are then given of an MSFC-led study, intended to develop and assess various candidate systems for protection of the Earth against NEOs. An existing program, used to model the NE0 threat, was extensively modified and is presented here. Details of various analytical tools, developed to evaluate the performance of proposed technologies for protection against the NEO threat, are also presented. Trajectory tools, developed to model the outbound path a vehicle would take to intercept or rendezvous with a target asteroid or comet, are described. Also, details are given of a tool that was created to model both the un-deflected inbound path of an NE0 as well as the modified, post-deflection, path. The number of possible options available for protection against the NE0 threat was too numerous for them to all be addressed within the study; instead, a representative selection were modeled and evaluated. The major output from this work was a novel process by which the relative effectiveness of different threat mitigation concepts can be evaluated during future, more detailed, studies. In addition, several new or modified mathematical models were developed to analyze various proposed protection systems. A summary of the major lessons learned during this study is presented, as are recommendations for future work. It is hoped that this study will serve to raise the level attention about this very real threat and also demonstrate that successful defense is both possible and practicable, provided appropriate steps are taken.

  17. Current deflection NDE for pipeline inspection and monitoring

    NASA Astrophysics Data System (ADS)

    Jarvis, Rollo; Cawley, Peter; Nagy, Peter B.

    2016-02-01

    Failure of oil and gas pipelines can often be catastrophic, therefore routine inspection for time dependent degradation is essential. In-line inspection is the most common method used; however, this requires the insertion and retrieval of an inspection tool that is propelled by the fluid in the pipe and risks becoming stuck, so alternative methods must often be employed. This work investigates the applicability of a non-destructive evaluation technique for both the detection and growth monitoring of defects, particularly corrosion under insulation. This relies on injecting an electric current along the pipe and indirectly measuring the deflection of current around defects from perturbations in the orthogonal components of the induced magnetic flux density. An array of three orthogonally oriented anisotropic magnetoresistive sensors has been used to measure the magnetic flux density surrounding a 6'' schedule-40 steel pipe carrying 2 A quasi-DC axial current. A finite element model has been developed that predicts the perturbations in magnetic flux density caused by current deflection which has been validated by experimental results. Measurements of the magnetic flux density at 50 mm lift-off from the pipe surface are stable and repeatable to the order of 100 pT which suggests that defect detection or monitoring growth of corrosion-type defects may be possible with a feasible magnitude of injected current. Magnetic signals are additionally incurred by changes in the wall thickness of the pipe due to manufacturing tolerances, and material property variations. If a monitoring scheme using baseline subtraction is employed then the sensitivity to defects can be improved while avoiding false calls.

  18. Planetary Defense From Space: Part 2 (Simple) Asteroid Deflection Law

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2006-06-01

    A system of two space bases housing missiles for an efficient Planetary Defense of the Earth from asteroids and comets was firstly proposed by this author in 2002. It was then shown that the five Lagrangian points of the Earth Moon system lead naturally to only two unmistakable locations of these two space bases within the sphere of influence of the Earth. These locations are the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). In fact, placing missiles based at L1 and L3 would enable the missiles to deflect the trajectory of incoming asteroids by hitting them orthogonally to their impact trajectory toward the Earth, thus maximizing the deflection at best. It was also shown that confocal conics are the only class of missile trajectories fulfilling this “best orthogonal deflection” requirement. The mathematical theory developed by the author in the years 2002 2004 was just the beginning of a more expanded research program about the Planetary Defense. In fact, while those papers developed the formal Keplerian theory of the Optimal Planetary Defense achievable from the Earth Moon Lagrangian points L1 and L3, this paper is devoted to the proof of a simple “(small) asteroid deflection law” relating directly the following variables to each other:the speed of the arriving asteroid with respect to the Earth (known from the astrometric observations);the asteroid's size and density (also supposed to be known from astronomical observations of various types);the “security radius” of the Earth, that is, the minimal sphere around the Earth outside which we must force the asteroid to fly if we want to be safe on Earth. Typically, we assume the security radius to equal about 10,000 km from the Earth center, but this number might be changed by more refined analyses, especially in the case of “rubble pile” asteroids;the distance from the Earth of the two Lagrangian points L1 and L3 where the

  19. Athletic training in badminton players modulates the early C1 component of visual evoked potentials: a preliminary investigation.

    PubMed

    Jin, Hua; Xu, Guiping; Zhang, John X; Ye, Zuoer; Wang, Shufang; Zhao, Lun; Lin, Chong-De; Mo, Lei

    2010-12-01

    One basic question in brain plasticity research is whether individual life experience in the normal population can affect very early sensory-perceptual processing. Athletes provide a possible model to explore plasticity of the visual cortex as athletic training in confrontational ball games is quite often accompanied by training of the visual system. We asked professional badminton players to watch video clips related to their training experience and predict where the ball would land and examined whether they differed from non-player controls in the elicited C1, a visual evoked potential indexing V1 activity. Compared with controls, the players made judgments significantly more accurately, albeit not faster. An early ERP component peaking around 65 ms post-stimulus with a scalp topography centering at the occipital pole (electrode Oz) was observed in both groups and interpreted as the C1 component. With comparable latency, amplitudes of this component were significantly enhanced for the players than for the non-players, suggesting that it can be modulated by long-term physical training. The results present a clear case of experience-induced brain plasticity in primary visual cortex for very early sensory processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Quality inspection guided laser processing of irregular shape objects by stereo vision measurement: application in badminton shuttle manufacturing

    NASA Astrophysics Data System (ADS)

    Qi, Li; Wang, Shun; Zhang, Yixin; Sun, Yingying; Zhang, Xuping

    2015-11-01

    The quality inspection process is usually carried out after first processing of the raw materials such as cutting and milling. This is because the parts of the materials to be used are unidentified until they have been trimmed. If the quality of the material is assessed before the laser process, then the energy and efforts wasted on defected materials can be saved. We proposed a new production scheme that can achieve quantitative quality inspection prior to primitive laser cutting by means of three-dimensional (3-D) vision measurement. First, the 3-D model of the object is reconstructed by the stereo cameras, from which the spatial cutting path is derived. Second, collaborating with another rear camera, the 3-D cutting path is reprojected to both the frontal and rear views of the object and thus generates the regions-of-interest (ROIs) for surface defect analysis. An accurate visual guided laser process and reprojection-based ROI segmentation are enabled by a global-optimization-based trinocular calibration method. The prototype system was built and tested with the processing of raw duck feathers for high-quality badminton shuttle manufacture. Incorporating with a two-dimensional wavelet-decomposition-based defect analysis algorithm, both the geometrical and appearance features of the raw feathers are quantified before they are cut into small patches, which result in fully automatic feather cutting and sorting.

  1. Arc Deflection Length Affected by Transverse Rotating Magnetic Field with Lateral Gas

    NASA Astrophysics Data System (ADS)

    Shiino, Toru; Ishii, Yoko; Yamamoto, Shinji; Iwao, Toru; High Current Energy Laboratory (HiCEL) Team

    2016-10-01

    Gas metal arc welding using shielding gas is often used in the welding industry. However, the arc deflection affected by lateral gas is problem because of inappropriate heat transfer. Shielding gas is used in order to prevent the instability affected by the arc deflection. However, the shielding gas causes turbulence, then blowhole of weld defect occurs because the arc affected by the instability is contaminated by the air. Thus, the magnetic field is applied to the arc in order to stabilize the arc using low amount of shielding gas. The method of applying the transverse rotating magnetic field (RMF) to the arc is one of the methods to prevent the arc instability. The RMF drives the arc because of electromagnetic force. The driven arc is considered to be prevented to arc deflection of lateral gas because the arc is restrained by the magnetic field because of the driven arc. In addition, it is assume the RMF prevented to the arc deflection of lateral gas from the multiple directions. In this paper, the arc deflection length affected by the RMF with lateral gas was elucidated in order to know the effect of the RMF for arc stabilization. Specifically, the arc deflection length affected by the magnetic frequency and the magnetic flux density is measured by high speed video camera. As a result, the arc deflection length decreases with increasing magnetic frequency, and the arc deflection length increases with increasing the magnetic flux density.

  2. Graphical methods for determining moduli of pavement and sublayers from deflection data.

    DOT National Transportation Integrated Search

    1978-01-01

    In this investigation a relationship between the ratio of the moduli of two layers in a two-layer pavement system and the ratio of deflections in a load deflected basin was developed. Charts correlating the relationship between these ratios are given...

  3. Determination of angle of light deflection in higher-derivative gravity theories

    NASA Astrophysics Data System (ADS)

    Xu, Chenmei; Yang, Yisong

    2018-03-01

    Gravitational light deflection is known as one of three classical tests of general relativity and the angle of deflection may be computed explicitly using approximate or exact solutions describing the gravitational force generated from a point mass. In various generalized gravity theories, however, such explicit determination is often impossible due to the difficulty in obtaining an exact expression for the deflection angle. In this work, we present some highly effective globally convergent iterative methods to determine the angle of semiclassical gravitational deflection in higher- and infinite-derivative formalisms of quantum gravity theories. We also establish the universal properties that the deflection angle always stays below the classical Einstein angle and is a strictly decreasing function of the incident photon energy, in these formalisms.

  4. A small-gap electrostatic micro-actuator for large deflections

    PubMed Central

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  5. Directed energy deflection laboratory measurements of common space based targets

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Philip; Hughes, Gary B.; Meinhold, Peter; Batliner, Payton; Motta, Caio; Madajian, Jonathan; Mercer, Whitaker; Knowles, Patrick

    2016-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DESTAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds a common space target sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 , which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed. Results vary depending on the material tested and are limited to measurements of 1 axis, so

  6. Directed Energy Deflection Laboratory Measurements of Asteroids and Space Debris

    NASA Astrophysics Data System (ADS)

    Brashears, T.; Lubin, P. M.

    2016-12-01

    We report on laboratory studies of the effectiveness of directed energy planetary and space defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" or a space debris sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 µN/Woptical, though we assume a more conservative value of 80 µN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 µN/Woptical in our deflection modeling. Our measurements discussed here yield about 60 µN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  7. Restructuring opens new doors. Business ventures redirect deflected revenue.

    PubMed

    Moore, R F

    1989-01-01

    To fulfill its mission of caring for the sick and the poor while remaining competitive, St. Vincent's Medical Center, Jacksonville, FL, underwent corporate restructuring in 1983. Three existing entities--the medical center, a skilled nursing facility, and a fund-raising foundation--incorporated under St. Vincent dePaul Community Stewardship Services, Inc. One of the goals was to make optimal use of existing facilities and expertise while also creating channels to redirect deflected revenue to the corporate mission of service to the poor. Among its projects St. Vincent's established 12 ambulatory care facilities; offered use of its laboratory to physicians' offices, nursing homes, and other entities needing fast, high-quality service; developed a mobile magnetic resonance imaging service; created a nurse staffing business; and entered into services-oriented, price-competitive, for-profit operations. By assuming some of the broad-based responsibilities for planning, financing, marketing, and providing administrative and legal support, the parent company has freed the entities under it to concentrate on the jobs they do best: the delivery of healthcare products and services and the generation of referrals to the medical staff and, in turn, to the medical center.

  8. Moth tails divert bat attack: evolution of acoustic deflection.

    PubMed

    Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y

    2015-03-03

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.

  9. Comet deflection by directed energy: a finite element analysis

    NASA Astrophysics Data System (ADS)

    Madajian, Jonathan; Griswold, Janelle; Gandra, Anush; Hughes, Gary B.; Zhang, Qicheng; Rupert, Nic; Lubin, Philip

    2016-09-01

    Comets and Asteroids are viable threats to our planet; if these space rocks are smaller than 25 meters, they burn up in the atmosphere, but if they are wider than 25 meters they can cause damage to the impact area. Anything more than one to two kilometers can have worldwide effects, furthermore a mile-wide asteroid travelling at 30,000 miles per hour has the energy equal to a megaton bomb and is very likely to wipe out most of the life on Earth. Residents near Chelyabinsk, Russia experienced the detrimental effects of a collision with a Near-Earth Asteroid (NEA) on 15 February 2013 as a 20 m object penetrated the atmosphere above that city. The effective yield from this object was approximately 1/2 Megaton TNT equivalent (Mt), or that of a large strategic warhead. The 1908 Tunguska event, also over Russia, is estimated to have had a yield of approximately 15 Mt and had the potential to kill millions of people had it come down over a large city1. In the face of such danger a planetary defense system is necessary and this paper proposes a design for such a system. DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) is a phased array laser system that can be used to oblate, deflect and de-spin asteroids and comets.

  10. Gravitational and relativistic deflection of X-ray superradiance

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Te; Ahrens, Sven

    2015-03-01

    Einstein predicted that clocks at different altitudes tick at various rates under the influence of gravity. This effect has been observed using 57Fe Mössbauer spectroscopy over an elevation of 22.5 m (ref. 1) or by comparing accurate optical clocks at different heights on a submetre scale. However, challenges remain in finding novel methods for the detection of gravitational and relativistic effects on more compact scales. Here, we investigate a scheme that potentially allows for millimetre- to submillimetre-scale studies of the gravitational redshift by probing a nuclear crystal with X-rays. Also, a rotating crystal can force interacting X-rays to experience inhomogeneous clock tick rates within it. We find that an association of gravitational redshift and special-relativistic time dilation with quantum interference is manifested by a time-dependent deflection of X-rays. The scheme suggests a table-top solution for probing gravitational and special-relativistic effects, which should be within the reach of current experimental technology.

  11. Operating Deflection Shapes for the Space Shuttle Partial Stack Rollout

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Kappus, Kathy

    2005-01-01

    In November of 2003 a rollout test was performed to gain a better understanding of the dynamic environment for the Space Shuttle during transportation from the Vehicle Assembly Building to the launch pad. This was part of a study evaluating the methodology for including the rollout dynamic loads in the Space Shuttle fatigue life predictions. The rollout test was conducted with a partial stack consisting of the Crawler Transporter, Mobile Launch Platform, and the Solid Rocket Boosters with an interconnecting crossbeam. Instrumentation included over 100 accelerometers. Data was recorded for steady state speeds, start-ups and stops, and ambient wind excitations with the vehicle at idle. This paper will describe the operating deflection shape analysis performed using the measured acceleration response data. The response data for the steady state speed runs were dominated by harmonics of the forcing frequencies, which were proportional to the vehicle speed. Assuming a broadband excitation for the wind, analyses of the data sets with the vehicle at idle were used to estimate the natural frequencies and corresponding mode shapes. Comparisons of the measured modal properties with numerical predictions are presented.

  12. Plasma Deflection Test Setup for E-Sail Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Andersen, Allen; Vaughn, Jason; Schneider, Todd; Wright, Ken

    2016-01-01

    The Electronic Sail or E-Sail is a novel propulsion concept based on momentum exchange between fast solar wind protons and the plasma sheath of long positively charged conductors comprising the E-Sail. The effective sail area increases with decreasing plasma density allowing an E-Sail craft to continue to accelerate at predicted ranges well beyond the capabilities of existing electronic or chemical propulsion spacecraft. While negatively charged conductors in plasmas have been extensively studied and flown, the interaction between plasma and a positively charged conductor is not well studied. We present a plasma deflection test method using a differential ion flux probe (DIFP). The DIFP measures the angle and energy of incident ions. The plasma sheath around a charged body can measured by comparing the angular distribution of ions with and without a positively charged test body. These test results will be used to evaluate numerical calculations of expected thrust per unit length of conductor in the solar wind plasma. This work was supported by a NASA Space Technology Research Fellowship.

  13. Deflection of light to second order in conformal Weyl gravity

    SciTech Connect

    Sultana, Joseph, E-mail: joseph.sultana@um.edu.mt

    2013-04-01

    We reexamine the deflection of light in conformal Weyl gravity obtained in Sultana and Kazanas (2010), by extending the calculation based on the procedure by Rindler and Ishak, for the bending angle by a centrally concentrated spherically symmetric matter distribution, to second order in M/R, where M is the mass of the source and R is the impact parameter. It has recently been reported in Bhattacharya et al. (JCAP 09 (2010) 004; JCAP 02 (2011) 028), that when this calculation is done to second order, the term γr in the Mannheim-Kazanas metric, yields again the paradoxical contribution γR (where themore » bending angle is proportional to the impact parameter) obtained by standard formalisms appropriate to asymptotically flat spacetimes. We show that no such contribution is obtained for a second order calculation and the effects of the term γr in the metric are again insignificant as reported in our earlier work.« less

  14. Recovering bridge deflections from collocated acceleration and strain measurements

    NASA Astrophysics Data System (ADS)

    Bell, M.; Ma, T. W.; Xu, N. S.

    2015-04-01

    In this research, an internal model based method is proposed to estimate the displacement profile of a bridge subjected to a moving traffic load using a combination of acceleration and strain measurements. The structural response is assumed to be within the linear range. The deflection profile is assumed to be dominated by the fundamental mode of the bridge, therefore only requiring knowledge of the first mode. This still holds true under a multiple vehicle loading situation as the high mode shapes don't impact the over all response of the structure. Using the structural modal parameters and partial knowledge of the moving vehicle load, the internal models of the structure and the moving load can be respectively established, which can be used to form an autonomous state-space representation of the system. The structural displacements, velocities, and accelerations are the states of such a system, and it is fully observable when the measured output contains structural accelerations and strains. Reliable estimates of structural displacements are obtained using the standard Kalman filtering technique. The effectiveness and robustness of the proposed method has been demonstrated and evaluated via numerical simulation of a simply supported single span concrete bridge subjected to a moving traffic load.

  15. Comparing deflection measurements of a magnetically steerable catheter using optical imaging and MRI

    SciTech Connect

    Lillaney, Prasheel, E-mail: Prasheel.Lillaney@ucsf.edu; Caton, Curtis; Martin, Alastair J.

    2014-02-15

    Purpose: Magnetic resonance imaging (MRI) is an emerging modality for interventional radiology, giving clinicians another tool for minimally invasive image-guided interventional procedures. Difficulties associated with endovascular catheter navigation using MRI guidance led to the development of a magnetically steerable catheter. The focus of this study was to mechanically characterize deflections of two different prototypes of the magnetically steerable catheterin vitro to better understand their efficacy. Methods: A mathematical model for deflection of the magnetically steerable catheter is formulated based on the principle that at equilibrium the mechanical and magnetic torques are equal to each other. Furthermore, two different image basedmore » methods for empirically measuring the catheter deflection angle are presented. The first, referred to as the absolute tip method, measures the angle of the line that is tangential to the catheter tip. The second, referred to the base to tip method, is an approximation that is used when it is not possible to measure the angle of the tangent line. Optical images of the catheter deflection are analyzed using the absolute tip method to quantitatively validate the predicted deflections from the mathematical model. Optical images of the catheter deflection are also analyzed using the base to tip method to quantitatively determine the differences between the absolute tip and base to tip methods. Finally, the optical images are compared to MR images using the base to tip method to determine the accuracy of measuring the catheter deflection using MR. Results: The optical catheter deflection angles measured for both catheter prototypes using the absolute tip method fit very well to the mathematical model (R{sup 2} = 0.91 and 0.86 for each prototype, respectively). It was found that the angles measured using the base to tip method were consistently smaller than those measured using the absolute tip method. The deflection angles

  16. Crack deflection: Implications for the growth of long and short fatigue cracks

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    1983-11-01

    The influences of crack deflection on the growth rates of nominally Mode I fatigue cracks are examined. Previous theoretical analyses of stress intensity solutions for kinked elastic cracks are reviewed. Simple elastic deflection models are developed to estimate the growth rates of nonlinear fatigue cracks subjected to various degrees of deflection, by incorporating changes in the effective driving force and in the apparent propagation rates. Experimental data are presented for intermediate-quenched and step-quenched conditions of Fe/2Si/0.1C ferrite-martensite dual phase steel, where variations in crack morphology alone influence considerably the fatigue crack propagation rates and threshold stress intensity range values. Such results are found to be in good quantitative agreement with the deflection model predictions of propagation rates for nonlinear cracks. Experimental information on crack deflection, induced by variable amplitude loading, is also provided for 2020-T651 aluminum alloy. It is demonstrated with the aid of elastic analyses and experiments that crack deflection models offer a physically-appealing rationale for the apparently slower growth rates of long fatigue cracks subjected to constant and variable amplitude loading and for the apparent deceleration and/or arrest of short cracks. The changes in the propagation rates of deflected fatigue cracks are discussed in terms of the local mode of crack advance, microstructure, effective driving force, growth mechanisms, mean stress, slip characteristics, and crack closure.

  17. Can We Predict CME Deflections Based on Solar Magnetic Field Configuration Alone?

    NASA Astrophysics Data System (ADS)

    Kay, C.; Opher, M.; Evans, R. M.

    2013-12-01

    Accurate space weather forecasting requires knowledge of the trajectory of coronal mass ejections (CMEs), including predicting CME deflections close to the Sun and through interplanetary space. Deflections of CMEs occur due to variations in the background magnetic field or solar wind speed, magnetic reconnection, and interactions with other CMEs. Using our newly developed model of CME deflections due to gradients in the background solar magnetic field, ForeCAT (Kay et al. 2013), we explore the questions: (a) do all simulated CMEs ultimately deflect to the minimum in the background solar magnetic field? (b) does the majority of the deflection occur in the lower corona below 4 Rs? ForeCAT does not include temporal variations in the magnetic field of active regions (ARs), spatial variations in the background solar wind speed, magnetic reconnection, or interactions with other CMEs. Therefore we focus on the effects of the steady state solar magnetic field. We explore two different Carrington Rotations (CRs): CR 2029 (April-May 2005) and CR 2077 (November-December 2008). Little is known about how the density and magnetic field fall with distance in the lower corona. We consider four density models derived from observations (Chen 1996, Mann et al. 2003, Guhathakurta et al. 2006, Leblanc et al. 1996) and two magnetic field models (PFSS and a scaled model). ForeCAT includes drag resulting from both CME propagation and deflection through the background solar wind. We vary the drag coefficient to explore the effect of drag on the deflection at 1 AU.

  18. Experiments on Ion Beam Deflection Using Ion Optics with Slit Apertures

    NASA Astrophysics Data System (ADS)

    Okawa, Yasushi; Hayakawa, Yukio; Kitamura, Shoji

    2004-03-01

    An experimental investigation on ion beam deflection by grid translation was performed. The ion beam deflection in ion optics is a desired technology for ion thrusters because thrust vector control utilizing this technique can eliminate the need for conventional gimbaling devices and thus reduce propulsion system mass. A grid translation mechanism consisting of a piezoelectric motor, a ceramic lever, and carbon-based grids with slit apertures was fabricated and high repeatability in beam deflection characteristics was obtained using this mechanism. Results showed that the beam deflection angle was proportional to the grid translation distance and independent of slit width and grid voltage. A numerical simulation successfully reproduced the beam deflection characteristics in a qualitative and quantitative sense. A maximum beam deflection angle of approximately plus or minus 6 degrees, which was comparable to that of the ordinary gimbaling devices used in space, was obtained without a severe drain current. Therefore, the beam deflection by grid translation is promising as a thrust vectoring method in ion thrusters.

  19. Real-world injury patterns associated with Hybrid III sternal deflections in frontal crash tests.

    PubMed

    Brumbelow, Matthew L; Farmer, Charles M

    2013-01-01

    This study investigated the relationship between the peak sternal deflection measurements recorded by the Hybrid III 50th percentile male anthropometric test device (ATD) in frontal crash tests and injury and fatality outcomes for drivers in field crashes. ATD sternal deflection data were obtained from the Insurance Institute for Highway Safety's 64 km/h, 40 percent overlap crashworthiness evaluation tests for vehicles with seat belt crash tensioners, load limiters, and good-rated structure. The National Automotive Sampling System Crashworthiness Data System (NASS-CDS) was queried for frontal crashes of these vehicles in which the driver was restrained by a seat belt and air bag. Injury probability curves were calculated by frontal crash type using the injuries coded in NASS-CDS and peak ATD sternal deflection data. Fatality Analysis Reporting System (FARS) front-to-front crashes with exactly one driver death were also studied to determine whether the difference in measured sternal deflections for the 2 vehicles was related to the odds of fatality. For center impacts, moderate overlaps, and large overlaps in NASS-CDS, the probability of the driver sustaining an Abbreviated Injury Scale (AIS) score ≥ 3 thoracic injury, or any nonextremity AIS ≥ 3 injury, increased with increasing ATD sternal deflection measured in crash tests. For small overlaps, however, these probabilities decreased with increasing deflection. For FARS crashes, the fatally injured driver more often was in the vehicle with the lower measured deflection in crash tests (55 vs. 45%). After controlling for other factors, a 5-mm difference in measured sternal deflections between the 2 vehicles was associated with a fatality odds ratio of 0.762 for the driver in the vehicle with the greater deflection (95% confidence interval = 0.373, 1.449). Restraint systems that reduce peak Hybrid III sternal deflection in a moderate overlap crash test are beneficial in real-world crashes with similar or greater

  20. Comparative study on the wake deflection behind yawed wind turbine models

    NASA Astrophysics Data System (ADS)

    Schottler, Jannik; Mühle, Franz; Bartl, Jan; Peinke, Joachim; Adaramola, Muyiwa S.; Sætran, Lars; Hölling, Michael

    2017-05-01

    In this wind tunnel campaign, detailed wake measurements behind two different model wind turbines in yawed conditions were performed. The wake deflections were quantified by estimating the rotor-averaged available power within the wake. By using two different model wind turbines, the influence of the rotor design and turbine geometry on the wake deflection caused by a yaw misalignment of 30° could be judged. It was found that the wake deflections three rotor diameters downstream were equal while at six rotor diameters downstream insignificant differences were observed. The results compare well with previous experimental and numerical studies.

  1. An oilspill trajectory analysis model with a variable wind deflection angle

    USGS Publications Warehouse

    Samuels, W.B.; Huang, N.E.; Amstutz, D.E.

    1982-01-01

    The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.

  2. Serviceability-related issues for bridge live load deflection and construction closure pours.

    DOT National Transportation Integrated Search

    2015-06-01

    This study investigated the design criteria and practices in an effort to improve the quality of bridge designs in the : State of Maryland and beyond. This first criterion investigated was the live load deflection for steel bridges. The : second desi...

  3. Using geologic maps and seismic refraction in pavement-deflection analysis

    DOT National Transportation Integrated Search

    1999-10-01

    The researchers examined the relationship between three data types -- geologic maps, pavement deflection, and seismic refraction data -- from diverse geologic settings to determine whether geologic maps and seismic data might be used to interpret def...

  4. A study of girder deflections during bridge deck construction : final report.

    DOT National Transportation Integrated Search

    1971-01-01

    Problems involved in obtaining the desired thickness of bridge decks were investigated. The study, which was limited to decks which were longitudinally screeded during construction, included (1) field measurements of the girder deflections during con...

  5. Effect of the cosmological constant on the deflection angle by a rotating cosmic string

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Övgün, Ali

    2018-03-01

    We report the effect of the cosmological constant and the internal energy density of a cosmic string on the deflection angle of light in the spacetime of a rotating cosmic string with internal structure. We first revisit the deflection angle by a rotating cosmic string and then provide a generalization using the geodesic equations and the Gauss-Bonnet theorem. We show there is an agreement between the two methods when employing higher-order terms of the linear mass density of the cosmic string. By modifying the integration domain for the global conical topology, we resolve the inconsistency between these two methods previously reported in the literature. We show that the deflection angle is not affected by the rotation of the cosmic string; however, the cosmological constant Λ strongly affects the deflection angle, which generalizes the well-known result.

  6. Analysis for lateral deflection of railroad track under quasi-static loading

    DOT National Transportation Integrated Search

    2013-10-15

    This paper describes analyses to examine the lateral : deflection of railroad track subjected to quasi-static loading. : Rails are assumed to behave as beams in bending. Movement : of the track in the lateral plane is constrained by idealized : resis...

  7. Experimental results for a two-dimensional supersonic inlet used as a thrust deflecting nozzle

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Burstadt, Paul L.

    1984-01-01

    Nearly all supersonic V/STOL aircraft concepts are dependent on the thrust deflecting capability of a nozzle. In one unique concept, referred to as the reverse flow dual fan, not only is there a thrust deflecting nozzle for the fan and core engine exit flow, but because of the way the propulsion system operates during vertical takeoff and landing, the supersonic inlet is also used as a thrust deflecting nozzle. This paper presents results of an experimental study to evaluate the performance of a supersonic inlet used as a thrust deflecting nozzle for this reverse flow dual fan concept. Results are presented in terms of nozzle thrust coefficient and thrust vector angle for a number of inlet/nozzle configurations. Flow visualization and nozzle exit flow survey results are also shown.

  8. Photographer; NACA North American F-100A NASA-200 Super Sabre airplane - wing leading edge deflected

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Photographer; NACA North American F-100A NASA-200 Super Sabre airplane - wing leading edge deflected 60 degrees for increased lift with boundary=layer control; takeoff preformance was improved 10% (mar 1960)

  9. Evaluation of pavement design in Virginia based on layered deflections, subgrade and its moisture content.

    DOT National Transportation Integrated Search

    1974-01-01

    Studies were conducted to relate the deflection of flexible pavements to such environmental factors as temperature and moisture content of the pavements and their subgrade soils. Also considered were the thickness and the relative positions of the di...

  10. Thoracic Injury Risk Curves for Rib Deflections of the SID-IIs Build Level D.

    PubMed

    Irwin, Annette L; Crawford, Greg; Gorman, David; Wang, Sikui; Mertz, Harold J

    2016-11-01

    Injury risk curves for SID-IIs thorax and abdomen rib deflections proposed for future NCAP side impact evaluations were developed from tests conducted with the SID-IIs FRG. Since the floating rib guide is known to reduce the magnitude of the peak rib deflections, injury risk curves developed from SID-IIs FRG data are not appropriate for use with SID-IIs build level D. PMHS injury data from three series of sled tests and one series of whole-body drop tests are paired with thoracic rib deflections from equivalent tests with SID-IIs build level D. Where possible, the rib deflections of SID-IIs build level D were scaled to adjust for differences in impact velocity between the PMHS and SID-IIs tests. Injury risk curves developed by the Mertz-Weber modified median rank method are presented and compared to risk curves developed by other parametric and non-parametric methods.

  11. The Deflector Selector: A Machine Learning Framework for Prioritizing Deflection Technology Development

    NASA Astrophysics Data System (ADS)

    Nesvold, E. R.; Erasmus, N.; Greenberg, A.; van Heerden, E.; Galache, J. L.; Dahlstrom, E.; Marchis, F.

    2017-02-01

    We present a machine learning model that can predict which asteroid deflection technology would be most effective, given the likely population of impactors. Our model can help policy and funding agencies prioritize technology development.

  12. Development of a laser-based sensor to measure true road surface deflection.

    DOT National Transportation Integrated Search

    2017-04-01

    The high-speed measurement of accurate pavement surface deflections under a moving wheel at a networklevel : still remains a challenge in pavement engineering. This goal cannot be accomplished with stationary deflectionmeasuring : devices. Engineers ...

  13. Assessment of continuous deflection measurement devices in Louisiana - rolling wheel deflectometer : final report 581.

    DOT National Transportation Integrated Search

    2017-09-01

    The use of the Rolling Wheel Deflectometer (RWD), which measures deflections at highway speeds, offers the potential to characterize the structural capacity of pavements without delays and in a cost-effective way. The objective of this study was twof...

  14. Development of a Rolling Dynamic Deflectometer for Continuous Deflection Testing of Pavements

    DOT National Transportation Integrated Search

    1998-05-01

    A rolling dynamic deflectometer (RDD) was developed as a nondestructive method for determining continuous deflection profiles of pavements. Unlike other commonly used pavement testing methods, the RDD performs continuous rather than discrete measurem...

  15. Nonlinear load-deflection behavior of abutment backwalls with varying height and soil density.

    DOT National Transportation Integrated Search

    2011-12-01

    We address the scaling of abutment wall lateral response with wall height and compaction condition through testing and analytical work. The : analytical work was undertaken to develop hyperbolic curves representing the load-deflection response of bac...

  16. Measurement of morphing wing deflection by a cross-coherence fiber optic interferometric technique

    NASA Astrophysics Data System (ADS)

    Tomić, Miloš C.; Djinović, Zoran V.; Scheerer, Michael; Petricevic, Slobodan J.

    2018-01-01

    A fiber-optic interferometric technique aimed at measuring the deflection of aircrafts’ morphing wings is presented. The wing deflection induces a strain in the sensing fiber optic coils that are firmly fixed onto the wing. A change of the phase angle of the light propagating through the fiber is measured by an ‘all-in-fiber’ Michelson interferometer based on a 3 × 3 fiber-optic coupler. Two light sources of different coherence lengths and wavelengths are simultaneously used to ensure a wide measurement range and high accuracy. A new technique for determination of the zero deflection point using the cross-correlation of the two interferograms is proposed. The experiments performed on a specimen made of a carbon-fiber-reinforced plastic honeycomb structure demonstrated a relative uncertainty <1% and a precision of about 0.06° in the measuring range ±5° of the morphing wing deflection.

  17. Thermal stresses and deflections of cross-ply laminated plates using refined plate theories

    SciTech Connect

    Khdeir, A.A.; Reddy, J.N.

    1991-12-01

    Exact analytical solutions of refined plate theories are developed to study the thermal stresses and deflections of cross-ply rectangular plates. The state-space approach in conjunction with the Levy method is used to solve exactly the governing equations of the theories under various boundary conditions. Numerical results of the higher-order theory of Reddy for thermal stresses and deflections are compared with those obtained using the classical and first-order plate theories. 14 refs.

  18. Design and development of a chopping and deflecting system for the high current injector at IUAC

    NASA Astrophysics Data System (ADS)

    Kedia, Sanjay Kumar; Mehta, R.

    2018-05-01

    The Low Energy Beam Transport (LEBT) section of the High Current Injector (HCI) incorporates a Chopping cum Deflecting System (CDS). The CDS comprises of a deflecting system and a pair of slits that will remove dark current and produce time bunched beam of 60 ns at different repetition rates of 4, 2, 1, 0.5, 0.25 and 0.125 MHz. The distinguishing feature of the design is the use of a multi-plate deflecting structure with low capacitance to optimize the electric field, which in turn results in higher efficiency in terms of achievable ion current. To maximize the effective electric field and its uniformity, the gap between the deflecting plates has been varied and a semi-circular contour has been incorporated on the deflecting plates. Due to this the electric field variation is less than ±0.5% within the plate length. The length of deflecting plates was chosen to maximize the transmission efficiency. Since the velocity of the charged particles in the LEBT section is constant, therefore the separation between two successive sets of deflecting plates has been kept constant to match the ions transient time within the gap which is nearly 32 ns. A square pulse has been chosen, instead of a sinusoidal one, to increase the transmission efficiency and to decrease the tailing effect. The loaded capacitance of the structure was kept <10 pF to achieve fast rise/fall time of the applied voltage signal. A Python code has been developed to verify the various design parameters. The simulation also shows that one can get an efficient deflection of undesired particles resulting in >90% transmission efficiency with in the bunch length. Various simulation codes like Solid Works, TRACE 3D, CST MWS and homebrew Python codes were used to validate the design.

  19. Solutions of the heat conduction equation in multilayers for photothermal deflection experiments

    NASA Technical Reports Server (NTRS)

    Mcgahan, William A.; Cole, K. D.

    1992-01-01

    Analytical expressions for temperature and laser beam deflection in multilayer medium is derived using Green function techniques. The approach is based on calculation of the normal component of heat fluxes across the boundaries, from which either the beam deflections or the temperature anywhere in space can be found. A general expression for the measured signals for the case of four-quadrant detection is also presented and compared with previous calculations of detector response for finite probe beams.

  20. Thermal stresses and deflections of cross-ply laminated plates using refined plate theories

    NASA Technical Reports Server (NTRS)

    Khdeir, A. A.; Reddy, J. N.

    1991-01-01

    Exact analytical solutions of refined plate theories are developed to study the thermal stresses and deflections of cross-ply rectangular plates. The state-space approach in conjunction with the Levy method is used to solve exactly the governing equations of the theories under various boundary conditions. Numerical results of the higher-order theory of Reddy for thermal stresses and deflections are compared with those obtained using the classical and first-order plate theories.

  1. Grid-translation beam deflection systems for 5-cm and 30-cm diameter Kaufman thrusters.

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1972-01-01

    A 5-cm grid translation mechanism has been developed capable of 10-deg beam deflection. A 2026-hour endurance test was run at a preset 10-deg deflection angle, and an extrapolated lifetime of better than 10,000 hours was obtained. Response time data for grid translation are presented. Preliminary results for a 30-cm diameter system are given, and results of a theoretical analysis of a dished grid system are discussed.

  2. Grid-translation beam deflection systems for 5-cm and 30-cm diameter Kaufman thrusters

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1972-01-01

    A 5-cm grid translation mechanism has been developed capable of 10 deg beam deflection. A 2026-hour endurance test was run at a preset 10 deg deflection angle and an extrapolated lifetime of better than 10,000 hours obtained. Response time data for grid translation are presented. Preliminary results for a 30-cm diameter system are given and results of a theoretical analysis of a dished grid system are discussed.

  3. Comparison of Theory and Experiment on Aeroacoustic Loads and Deflections

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.; Bourgine, A.; Bonomi, B.

    1999-01-01

    The correlation of acoustic pressure loads induced by a turbulent wake on a nearby structural panel is considered: this problem is relevant to the acoustic fatigue of aircraft, rocket and satellite structures. Both the correlation of acoustic pressure loads and the panel deflections, were measured in an 8-m diameter transonic wind tunnel. Using the measured correlation of acoustic pressures, as an input to a finite-element aeroelastic code, the panel response was reproduced. The latter was also satisfactorily reproduced, using again the aeroelastic code, with input given by a theoretical formula for the correlation of acoustic pressures; the derivation of this formula, and the semi-empirical parameters which appear in it, are included in this paper. The comparison of acoustic responses in aeroacoustic wind tunnels (AWT) and progressive wave tubes (PWT) shows that much work needs to be done to bridge that gap; this is important since the PWT is the standard test means, whereas the AWT is more representative of real flight conditions but also more demanding in resources. Since this may be the first instance of successful modelling of acoustic fatigue, it may be appropriate to list briefly the essential ``positive'' features and associated physical phenomena: (i) a standard aeroelastic structural code can predict acoustic fatigue, provided that the correlation of pressure loads be adequately specified; (ii) the correlation of pressure loads is determined by the interference of acoustic waves, which depends on the exact evaluation of multiple scattering integrals, involving the statistics of random phase shifts; (iii) for the relatively low frequencies (one to a few hundred Hz) of aeroacoustic fatigue, the main cause of random phase effects is scattering by irregular wakes, which are thin on wavelength scale, and appear as partially reflecting rough interfaces. It may also be appropriate to mention some of the ``negative'' features, to which may be attached illusory

  4. Deflection-Based Structural Loads Estimation From the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Lokos, William A.

    2005-01-01

    Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. This technique was examined using a reliable strain and structural deformation measurement system. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.

  5. Deflection-Based Aircraft Structural Loads Estimation with Comparison to Flight

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Lokos, William A.

    2005-01-01

    Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. With a reliable strain and structural deformation measurement system this technique was examined. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.

  6. USING ForeCAT DEFLECTIONS AND ROTATIONS TO CONSTRAIN THE EARLY EVOLUTION OF CMEs

    SciTech Connect

    Kay, C.; Opher, M.; Colaninno, R. C.

    2016-08-10

    To accurately predict the space weather effects of the impacts of coronal mass ejection (CME) at Earth one must know if and when a CME will impact Earth and the CME parameters upon impact. In 2015 Kay et al. presented Forecasting a CME’s Altered Trajectory (ForeCAT), a model for CME deflections based on the magnetic forces from the background solar magnetic field. Knowing the deflection and rotation of a CME enables prediction of Earth impacts and the orientation of the CME upon impact. We first reconstruct the positions of the 2010 April 8 and the 2012 July 12 CMEs frommore » the observations. The first of these CMEs exhibits significant deflection and rotation (34° deflection and 58° rotation), while the second shows almost no deflection or rotation (<3° each). Using ForeCAT, we explore a range of initial parameters, such as the CME’s location and size, and find parameters that can successfully reproduce the behavior for each CME. Additionally, since the deflection depends strongly on the behavior of a CME in the low corona, we are able to constrain the expansion and propagation of these CMEs in the low corona.« less

  7. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    PubMed Central

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C. F.; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964

  8. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    PubMed

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  9. Experimental Estimating Deflection of a Simple Beam Bridge Model Using Grating Eddy Current Sensors

    PubMed Central

    Lü, Chunfeng; Liu, Weiwen; Zhang, Yongjie; Zhao, Hui

    2012-01-01

    A novel three-point method using a grating eddy current absolute position sensor (GECS) for bridge deflection estimation is proposed in this paper. Real spatial positions of the measuring points along the span axis are directly used as relative reference points of each other rather than using any other auxiliary static reference points for measuring devices in a conventional method. Every three adjacent measuring points are defined as a measuring unit and a straight connecting bar with a GECS fixed on the center section of it links the two endpoints. In each measuring unit, the displacement of the mid-measuring point relative to the connecting bar measured by the GECS is defined as the relative deflection. Absolute deflections of each measuring point can be calculated from the relative deflections of all the measuring units directly without any correcting approaches. Principles of the three-point method and displacement measurement of the GECS are introduced in detail. Both static and dynamic experiments have been carried out on a simple beam bridge model, which demonstrate that the three-point deflection estimation method using the GECS is effective and offers a reliable way for bridge deflection estimation, especially for long-term monitoring. PMID:23112583

  10. Numerical Study on Deflection Behaviour of Concrete Beams Reinforced with GFRP Bars

    NASA Astrophysics Data System (ADS)

    Mohamed, Osama A.; Khattab, Rania; Hawat, Waddah Al

    2017-10-01

    Fiber-Reinforced Polymer (FRP) bars are gaining popularity as sustainable alternatives to conventional reinforcing steel bars in reinforced concrete applications. The production of FRP bars has lower environmental impact compared to steel reinforcing bars. In addition, the non-corroding FRP materials can potentially decrease the cost or need for maintenance of reinforced concrete structural elements, especially in harsh environmental conditions that can impact both concrete and reinforcement. FRP bars offer additional favourable properties including high tensile strength and low unit weight. However, the mechanical properties of FRP bars can lead to large crack widths and deflections. The objective of this study is to investigate the deflection behaviour of concrete beams reinforced with Glass FRP (GFRP) bars as a longitudinal main reinforcement. Six concrete beams reinforced with GFRP bars were modelled using the finite element computer program ANSYS. The main variable considered in the study is the reinforcement ratio. The deflection equations in current North American codes including ACI 440.1R-06, ACI 440.1R-15 and CSA S806-12 are used to compute deflections, and these are compared to numerical results. It was concluded in this paper that deflections predicted by ACI 440.1R-06 equations are lower than the numerical analysis results while ACI 440.1R-15 is in agreement with numerical analysis with tendency to be conservative. The values of deflections estimated by CSA S806-12 formulas are consistent with results of numerical analysis.

  11. Experimental estimating deflection of a simple beam bridge model using grating eddy current sensors.

    PubMed

    Lü, Chunfeng; Liu, Weiwen; Zhang, Yongjie; Zhao, Hui

    2012-01-01

    A novel three-point method using a grating eddy current absolute position sensor (GECS) for bridge deflection estimation is proposed in this paper. Real spatial positions of the measuring points along the span axis are directly used as relative reference points of each other rather than using any other auxiliary static reference points for measuring devices in a conventional method. Every three adjacent measuring points are defined as a measuring unit and a straight connecting bar with a GECS fixed on the center section of it links the two endpoints. In each measuring unit, the displacement of the mid-measuring point relative to the connecting bar measured by the GECS is defined as the relative deflection. Absolute deflections of each measuring point can be calculated from the relative deflections of all the measuring units directly without any correcting approaches. Principles of the three-point method and displacement measurement of the GECS are introduced in detail. Both static and dynamic experiments have been carried out on a simple beam bridge model, which demonstrate that the three-point deflection estimation method using the GECS is effective and offers a reliable way for bridge deflection estimation, especially for long-term monitoring.

  12. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    NASA Technical Reports Server (NTRS)

    Hernandez, Sonia; Barbee, Brent W.

    2011-01-01

    There are currently over 8,000 known near-Earth asteroids (NEAs), and more are being discovered on a continual basis. More than 1,200 of these are classified as Potentially Hazardous Asteroids (PHAs) because their Minimum Orbit Intersection Distance (MOID) with Earth's orbit is <= 0.05 AU and their estimated diameters are >= 150 m. To date, 178 Earth impact structures have been discovered, indicating that our planet has previously been struck with devastating force by NEAs and will be struck again. Such collisions are aperiodic events and can occur at any time. A variety of techniques have been proposed to defend our planet from NEA impacts by deflecting the incoming asteroid. However, none of these techniques have been tested. Unless rigorous testing is conducted to produce reliable asteroid deflection systems, we will be forced to deploy completely untested -- and therefore unreliable -- deflection missions when a sizable asteroid on a collision course with Earth is discovered. Such missions will have a high probability of failure. We propose to address this problem with a campaign of deflection technology test missions deployed to harmless NEAs. The objective of these missions is to safely evaluate and refine the mission concepts and asteroid deflection system designs. Our current research focuses on the kinetic impactor, one of the simplest proposed asteroid deflection techniques in which a spacecraft is sent to collide with an asteroid at high relative velocity. By deploying test missions in the near future, we can characterize the performance of this deflection technique and resolve any problems inherent to its execution before needing to rely upon it during a true emergency. In this paper we present the methodology and results of our survey, including lists of NEAs for which safe and effective kinetic impactor test missions may be conducted within the next decade. Full mission designs are also presented for the NEAs which offer the best mission opportunities.

  13. The effect of cracking on the deflection basin of flexible pavements

    NASA Astrophysics Data System (ADS)

    Omar, Hadi Mohamed

    Because of the rapid development of hardware and software during the past decade, it is now possible to use an analytical-empirical (or mechanistic) method of structural pavement evaluation on a routine basis. One reason for using this approach is the increased need for pavement maintenance and rehabilitation. To make the right choice from many potentially feasible maintenance and rehabilitation measures, the engineer must base his decision on a rational evaluation of the mechanical properties of the materials in the existing pavement structure. One of the parameters in terms of pavement response are the deflections; these are of interest to this particular study. The Falling Weight Deflectometer (FWD) has been developed specifically for the purpose of obtaining deflection measurements in order to determine the in-situ elastic moduli. The profile of the deflection at the surface of the pavement is known as the deflection basin, because it resembles a bowl-shaped depression. The magnitude of the deflections and the basin shape are functions of the number of layers making up the pavement cross section, their thicknesses, and their moduli values. A variety of multi-layered linear elastic pavement models are available for use at this present time. A general-purpose finite-element program called ANSYS developed by Swanson Analysis System is very powerful and is capable of solving a layered system such as the pavement. A finite element model was developed to study the effect of the crack on the predicted deflection bowls. A general-purpose finite-element program was used in this study due to its ability to solve this problem and because of the availability of the program. A hypothetical crack problem was assumed and modeled in different ways. The crack depth, crack width, and distance of the crack from the loading point were among the many parameters that were investigated. Considering the shape of the deflection basin, it is very important to study the effect of the

  14. The Deflector Selector: A Machine Learning Framework for Prioritizing Hazardous Object Deflection Technology Development

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika; Greenberg, Adam; Erasmus, Nicolas; Van Heerden, Elmarie; Galache, J. L.; Dahlstrom, Eric; Marchis, Franck

    2018-01-01

    Several technologies have been proposed for deflecting a hazardous Solar System object on a trajectory that would otherwise impact the Earth. The effectiveness of each technology depends on several characteristics of the given object, including its orbit and size. The distribution of these parameters in the likely population of Earth-impacting objects can thus determine which of the technologies are most likely to be useful in preventing a collision with the Earth. None of the proposed deflection technologies has been developed and fully tested in space. Developing every proposed technology is currently prohibitively expensive, so determining now which technologies are most likely to be effective would allow us to prioritize a subset of proposed deflection technologies for funding and development. We will present a new model, the Deflector Selector, that takes as its input the characteristics of a hazardous object or population of such objects and predicts which technology would be able to perform a successful deflection. The model consists of a machine-learning algorithm trained on data produced by N-body integrations simulating the deflections. We will describe the model and present the results of tests of the effectiveness of nuclear explosives, kinetic impactors, and gravity tractors on three simulated populations of hazardous objects.

  15. Aerodynamic performance of a wing with a deflected tip-mounted reverse half-delta wing

    NASA Astrophysics Data System (ADS)

    Lee, T.; Su, Y. Y.

    2012-11-01

    The impact of a tip-mounted 65°-sweep reverse half-delta wing (RHDW), set at different deflections, on the aerodynamic performance of a rectangular NACA 0012 wing was investigated experimentally at Re = 2.45 × 105. This study is a continuation of the work of Lee and Su (Exp Fluids 52(6):1593-1609, 2012) on the passive control of wing tip vortex by the use of a reverse half-delta wing. The present results show that for RHDW deflection with -5° ≤ δ ≤ +15°, the lift was found to increase nonlinearly with increasing δ compared to the baseline wing. The lift increment was accompanied by an increased total drag. For negative RHDW deflection with δ < -5°, the RHDW-induced lift decrement was, however, accompanied by an improved drag. The deflected RHDW also significantly modified and weakened the tip vortex, leading to a persistently lowered lift-induced drag, regardless of its deflection, compared to the baseline wing. Physical mechanisms responsible for the observed RHDW-induced phenomenon were also discussed.

  16. Effect of electrical spot welding on load deflection rate of orthodontic wires.

    PubMed

    Alavi, Shiva; Abrishami, Arezoo

    2015-01-01

    One of the methods used for joining metals together is welding, which can be carried out using different techniques such as electric spot welding. This study evaluated the effect of electric spot welding on the load deflection rate of stainless steel and chromium-cobalt orthodontic wires. In this experimental-laboratory study, load deflection rate of 0.016 × 0.022 inch stainless steel and chromium cobalt wires were evaluated in five groups (n =18): group one: Stainless steel wires, group two: chromium-cobalt wires, group three: stainless steel wires welded to stainless steel wires, group four: Stainless steel wires welded to chromium-cobalt wires, group five: chromium-cobalt wire welded to chromium-cobalt wires. Afterward, the forces induced by the samples in 0.5 mm, 1 mm, 1.5 mm deflection were measured using a universal testing machine. Then mean force measured for each group was compared with other groups. The data were analyzed using repeated measure analysis of variance (ANOVA), one-way ANOVA, and paired t-test by the SPSS software. The significance level was set as 0.05. The Tukey test showed that there were significant differences between the load deflection rates of welded groups compared to control ones (P < 0.001). Considering the limitation of this study, the electric spot welding process performed on stainless steel and chromium-cobalt wires increased their load deflection rates.

  17. Numerical and experimental investigation of plasma plume deflection with MHD flow control

    NASA Astrophysics Data System (ADS)

    Kai, ZHAO; Feng, LI; Baigang, SUN; Hongyu, YANG; Tao, ZHOU; Ruizhi, SUN

    2018-04-01

    This paper presents a composite magneto hydrodynamics (MHD) method to control the low-temperature micro-ionized plasma flow generated by injecting alkali salt into the combustion gas to realize the thrust vector of an aeroengine. The principle of plasma flow with MHD control is analyzed. The feasibility of plasma jet deflection is investigated using numerical simulation with MHD control by loading the User-Defined Function model. A test rig with plasma flow controlled by MHD is established. An alkali salt compound with a low ionization energy is injected into combustion gas to obtain the low-temperature plasma flow. Finally, plasma plume deflection is obtained in different working conditions. The results demonstrate that plasma plume deflection with MHD control can be realized via numerical simulation. A low-temperature plasma flow can be obtained by injecting an alkali metal salt compound with low ionization energy into a combustion gas at 1800–2500 K. The vector angle of plasma plume deflection increases with the increase of gas temperature and the magnetic field intensity. It is feasible to realize the aim of the thrust vector of aeroengine by using MHD to control plasma flow deflection.

  18. Feasibility study on a strain based deflection monitoring system for wind turbine blades

    NASA Astrophysics Data System (ADS)

    Lee, Kyunghyun; Aihara, Aya; Puntsagdash, Ganbayar; Kawaguchi, Takayuki; Sakamoto, Hiraku; Okuma, Masaaki

    2017-01-01

    The bending stiffness of the wind turbine blades has decreased due to the trend of wind turbine upsizing. Consequently, the risk of blades breakage by hitting the tower has increased. In order to prevent such incidents, this study proposes a deflection monitoring system that can be installed to already operating wind turbine's blades. The monitoring system is composed of an estimation algorithm to detect blade deflection and a wireless sensor network as a hardware equipment. As for the estimation method for blade deflection, a strain-based estimation algorithm and an objective function for optimal sensor arrangement are proposed. Strain-based estimation algorithm is using a linear correlation between strain and deflections, which can be expressed in a form of a transformation matrix. The objective function includes the terms of strain sensitivity and condition number of the transformation matrix between strain and deflection. In order to calculate the objective function, a simplified experimental model of the blade is constructed by interpolating the mode shape of a blade from modal testing. The interpolation method is effective considering a practical use to operating wind turbines' blades since it is not necessary to establish a finite element model of a blade. On the other hand, a sensor network with wireless connection with an open source hardware is developed. It is installed to a 300 W scale wind turbine and vibration of the blade on operation is investigated.

  19. Simplified Model to Predict Deflection and Natural Frequency of Steel Pole Structures

    NASA Astrophysics Data System (ADS)

    Balagopal, R.; Prasad Rao, N.; Rokade, R. P.

    2018-04-01

    Steel pole structures are suitable alternate to transmission line towers, due to difficulty encountered in finding land for the new right of way for installation of new lattice towers. The steel poles have tapered cross section and they are generally used for communication, power transmission and lighting purposes. Determination of deflection of steel pole is important to decide its functionality requirement. The excessive deflection of pole may affect the signal attenuation and short circuiting problems in communication/transmission poles. In this paper, a simplified method is proposed to determine both primary and secondary deflection based on dummy unit load/moment method. The predicted deflection from proposed method is validated with full scale experimental investigation conducted on 8 m and 30 m high lighting mast, 132 and 400 kV transmission pole and found to be in close agreement with each other. Determination of natural frequency is an important criterion to examine its dynamic sensitivity. A simplified semi-empirical method using the static deflection from the proposed method is formulated to determine its natural frequency. The natural frequency predicted from proposed method is validated with FE analysis results. Further the predicted results are validated with experimental results available in literature.

  20. Characterization of the protective capacity of flooring systems using force-deflection profiling.

    PubMed

    Glinka, Michal N; Karakolis, Thomas; Callaghan, Jack P; Laing, Andrew C

    2013-01-01

    'Safety floors' aim to decrease the risk of fall-related injuries by absorbing impact energy during falls. Ironically, excessive floor deflection during walking or standing may increase fall risk. In this study we used a materials testing system to characterize the ability of a range of floors to absorb energy during simulated head and hip impacts while resisting deflection during simulated single-leg stance. We found that energy absorption for all safety floors (mean (SD)=14.8 (4.9)J) and bedside mats (25.1 (9.3)J) was 3.2- to 5.4-fold greater than the control condition (commercial carpet). While footfall deflections were not significantly different between safety floors (1.8 (0.7)mm) and the control carpet (3.7 (0.6)mm), they were significantly higher for two bedside mats. Finally, all of the safety floors, and two bedside mats, displayed 3-10 times the energy-absorption-to-deflection ratios observed for the baseline carpet. Overall, these results suggest that the safety floors we tested effectively addressed two competing demands required to reduce fall-related injury risk; namely the ability to absorb substantial impact energy without increasing footfall deflections. This study contributes to the literature suggesting that safety floors are a promising intervention for reducing fall-related injury risk in older adults. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. The Deflector Selector: A machine learning framework for prioritizing hazardous object deflection technology development

    NASA Astrophysics Data System (ADS)

    Nesvold, E. R.; Greenberg, A.; Erasmus, N.; van Heerden, E.; Galache, J. L.; Dahlstrom, E.; Marchis, F.

    2018-05-01

    Several technologies have been proposed for deflecting a hazardous Solar System object on a trajectory that would otherwise impact the Earth. The effectiveness of each technology depends on several characteristics of the given object, including its orbit and size. The distribution of these parameters in the likely population of Earth-impacting objects can thus determine which of the technologies are most likely to be useful in preventing a collision with the Earth. None of the proposed deflection technologies has been developed and fully tested in space. Developing every proposed technology is currently prohibitively expensive, so determining now which technologies are most likely to be effective would allow us to prioritize a subset of proposed deflection technologies for funding and development. We present a new model, the Deflector Selector, that takes as its input the characteristics of a hazardous object or population of such objects and predicts which technology would be able to perform a successful deflection. The model consists of a machine-learning algorithm trained on data produced by N-body integrations simulating the deflections. We describe the model and present the results of tests of the effectiveness of nuclear explosives, kinetic impactors, and gravity tractors on three simulated populations of hazardous objects.

  2. An improved equivalent circuit model of a four rod deflecting cavity

    NASA Astrophysics Data System (ADS)

    Apsimon, R.; Burt, G.

    2017-03-01

    In this paper we present an improved equivalent circuit model for a four rod deflecting cavity which calculates the frequencies of the first four modes of the cavity as well as the RT/Q for the deflecting mode. Equivalent circuit models of RF cavities give intuition and understanding about how the cavity operates and what changes can be made to modify the frequency, without the need for RF simulations, which can be time-consuming. We parameterise a generic four rod deflecting cavity into a geometry consisting of simple shapes. Equations are derived for the line impedance of the rods and the capacitance between the rods and these are used to calculate the resonant frequency of the deflecting dipole mode as well as the lower order mode and the model is bench-marked against two test cases; the CEBAF separator and the HL-LHC 4-rod LHC crab cavity. CST and the equivalent circuit model agree within 4% for both cavities with the LOM frequency and within 1% for the deflecting frequency. RT/Q differs between the model and CST by 37% for the CEBAF separator and 25% for the HL-LHC 4-rod crab cavity; however this is sufficient for understanding how to optimise the cavity design. The model has then been utilised to suggest a method of separating the modal frequencies in the HL-LHC crab cavity and to suggest design methodologies to optimise the cavity geometries.

  3. Fusion of electromagnetic trackers to improve needle deflection estimation: simulation study.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2013-10-01

    We present a needle deflection estimation method to anticipate needle bending during insertion into deformable tissue. Using limited additional sensory information, our approach reduces the estimation error caused by uncertainties inherent in the conventional needle deflection estimation methods. We use Kalman filters to combine a kinematic needle deflection model with the position measurements of the base and the tip of the needle taken by electromagnetic (EM) trackers. One EM tracker is installed on the needle base and estimates the needle tip position indirectly using the kinematic needle deflection model. Another EM tracker is installed on the needle tip and estimates the needle tip position through direct, but noisy measurements. Kalman filters are then employed to fuse these two estimates in real time and provide a reliable estimate of the needle tip position, with reduced variance in the estimation error. We implemented this method to compensate for needle deflection during simulated needle insertions and performed sensitivity analysis for various conditions. At an insertion depth of 150 mm, we observed needle tip estimation error reductions in the range of 28% (from 1.8 to 1.3 mm) to 74% (from 4.8 to 1.2 mm), which demonstrates the effectiveness of our method, offering a clinically practical solution.

  4. Deflection test evaluation of different lots of the same nickel-titanium wire commercial brand

    PubMed Central

    Neves, Murilo Gaby; Lima, Fabrício Viana Pereira; Gurgel, Júlio de Araújo; Pinzan-Vercelino, Célia Regina Maio; Rezende, Fernanda Soares; Brandão, Gustavo Antônio Martins

    2016-01-01

    Introduction: The aim of this in vitro study was to compare the elastic properties of the load-deflection ratio of orthodontic wires of different lot numbers and the same commercial brand. Methods: A total of 40 nickel-titanium (NiTi) wire segments (Morelli OrtodontiaTM - Sorocaba, SP, Brazil), 0.016-in in diameter were used. Groups were sorted according to lot numbers (lots 1, 2, 3 and 4). 28-mm length segments from the straight portion (ends) of archwires were used. Deflection tests were performed in an EMIC universal testing machine with 5-N load cell at 1 mm/minute speed. Force at deactivation was recorded at 0.5, 1, 2 and 3 mm deflection. Analysis of variance (ANOVA) was used to compare differences between group means. Results: When comparing the force of groups at the same deflection (3, 2 and 1 mm), during deactivation, no statistical differences were found. Conclusion: There are no changes in the elastic properties of different lots of the same commercial brand; thus, the use of different lots of the orthodontic wires used in this research does not compromise the final outcomes of the load-deflection ratio. PMID:27007760

  5. Deflection test evaluation of different lots of the same nickel-titanium wire commercial brand.

    PubMed

    Neves, Murilo Gaby; Lima, Fabrício Viana Pereira; Gurgel, Júlio de Araújo; Pinzan-Vercelino, Célia Regina Maio; Rezende, Fernanda Soares; Brandão, Gustavo Antônio Martins

    2016-01-01

    The aim of this in vitro study was to compare the elastic properties of the load-deflection ratio of orthodontic wires of different lot numbers and the same commercial brand. A total of 40 nickel-titanium (NiTi) wire segments (Morelli Ortodontia™--Sorocaba, SP, Brazil), 0.016-in in diameter were used. Groups were sorted according to lot numbers (lots 1, 2, 3 and 4). 28-mm length segments from the straight portion (ends) of archwires were used. Deflection tests were performed in an EMIC universal testing machine with 5-N load cell at 1 mm/minute speed. Force at deactivation was recorded at 0.5, 1, 2 and 3 mm deflection. Analysis of variance (ANOVA) was used to compare differences between group means. When comparing the force of groups at the same deflection (3, 2 and 1 mm), during deactivation, no statistical differences were found. There are no changes in the elastic properties of different lots of the same commercial brand; thus, the use of different lots of the orthodontic wires used in this research does not compromise the final outcomes of the load-deflection ratio.

  6. Simultaneous Optical Measurements of Axial and Tangential Steady-State Blade Deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Dhadwal, Harbans S.

    1999-01-01

    Currently, the majority of fiber-optic blade instrumentation is being designed and manufactured by aircraft-engine companies for their own use. The most commonly employed probe for optical blade deflection measurements is the spot probe. One of its characteristics is that the incident spot on a blade is not fixed relative to the blade, but changes depending on the blade deformation associated with centrifugal and aerodynamic loading. While there are geometrically more complicated optical probe designs in use by different engine companies, this paper offers an alternate solution derived from a probe-mount design feature that allows one to change the probe axial position until the incident spot contacts either a leading or a trailing edge. By tracing the axial position of either blade edge one is essentially extending the deflection measurement to two dimensions, axial and tangential. The blade deflection measurements were obtained during a wind tunnel test of a fan prototype.

  7. Relativistic deflection of background starlight measures the mass of a nearby white dwarf star.

    PubMed

    Sahu, Kailash C; Anderson, Jay; Casertano, Stefano; Bond, Howard E; Bergeron, Pierre; Nelan, Edmund P; Pueyo, Laurent; Brown, Thomas M; Bellini, Andrea; Levay, Zoltan G; Sokol, Joshua; Dominik, Martin; Calamida, Annalisa; Kains, Noé; Livio, Mario

    2017-06-09

    Gravitational deflection of starlight around the Sun during the 1919 total solar eclipse provided measurements that confirmed Einstein's general theory of relativity. We have used the Hubble Space Telescope to measure the analogous process of astrometric microlensing caused by a nearby star, the white dwarf Stein 2051 B. As Stein 2051 B passed closely in front of a background star, the background star's position was deflected. Measurement of this deflection at multiple epochs allowed us to determine the mass of Stein 2051 B-the sixth-nearest white dwarf to the Sun-as 0.675 ± 0.051 solar masses. This mass determination provides confirmation of the physics of degenerate matter and lends support to white dwarf evolutionary theory. Copyright © 2017, American Association for the Advancement of Science.

  8. Predicting Large Deflections of Multiplate Fuel Elements Using a Monolithic FSI Approach

    DOE PAGES

    Curtis, Franklin G.; Freels, James D.; Ekici, Kivanc

    2017-10-26

    As part of the Global Threat Reduction Initiative, the Oak Ridge National Laboratory is evaluating conversion of fuel for the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium. Currently, multiphysics simulations that model fluid-structure interaction phenomena are being performed to ensure the safety of the reactor with the new fuel type. A monolithic solver that fully couples fluid and structural dynamics is used to model deflections in the new design. A classical experiment is chosen to validate the capabilities of the current solver and the method. Here, a single-plate simulation with various boundary conditions as well asmore » a five-plate simulation are presented. Finally, use of the monolithic solver provides stable solutions for the large deflections and the tight coupling of the fluid and structure and the maximum deflections are captured accurately.« less

  9. Deflection Analysis of the Space Shuttle External Tank Door Drive Mechanism

    NASA Technical Reports Server (NTRS)

    Tosto, Michael A.; Trieu, Bo C.; Evernden, Brent A.; Hope, Drew J.; Wong, Kenneth A.; Lindberg, Robert E.

    2008-01-01

    Upon observing an abnormal closure of the Space Shuttle s External Tank Doors (ETD), a dynamic model was created in MSC/ADAMS to conduct deflection analyses for assessing whether the Door Drive Mechanism (DDM) was subjected to excessive additional stress, and more importantly, to evaluate the magnitude of the induced step or gap with respect to shuttle s body tiles. To model the flexibility of the DDM, a lumped parameter approximation was used to capture the compliance of individual parts within the drive linkage. These stiffness approximations were then validated using FEA and iteratively updated in the model to converge on the actual distributed parameter equivalent stiffnesses. The goal of the analyses is to determine the deflections in the mechanism and whether or not the deflections are in the region of elastic or plastic deformation. Plastic deformation may affect proper closure of the ETD and would impact aero-heating during re-entry.

  10. Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Byrdsong, Thomas A.; Adams, Richard R.; Sandford, Maynard C.

    1990-01-01

    Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report.

  11. An Experimental and Computational Analysis of Primary Cilia Deflection Under Fluid Flow

    PubMed Central

    Downs, Matthew E.; Nguyen, An M.; Herzog, Florian A.; Hoey, David A.; Jacobs, Christopher R.

    2013-01-01

    In this work we have developed a novel model of the deflection of primary cilia experiencing fluid flow accounting for phenomena not previously considered. Specifically, we developed a large rotation formulation that accounts for rotation at the base of the cilium, the initial shape of the cilium and fluid drag at high deflection angles. We utilized this model to analyze full three dimensional datasets of primary cilia deflecting under fluid flow acquired with high-speed confocal microscopy. We found a wide variety of previously unreported bending shapes and behaviors. We also analyzed post-flow relaxation patterns. Results from our combined experimental and theoretical approach suggest that the average flexural rigidity of primary cilia might be higher than previously reported (Schwartz et al. 1997). In addition our findings indicate the mechanics of primary cilia are richly varied and mechanisms may exist to alter their mechanical behavior. PMID:22452422

  12. Solar Wind Deflection by Mass Loading in the Martian Magnetosheath Based on MAVEN Observations

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Pätzold, M.; Halekas, J. S.; Mcfadden, J.; Connerney, J. E. P.; Jakosky, B. M.; Vaisberg, O.; Zelenyi, L.

    2018-03-01

    Mars Atmosphere and Volatile EvolutioN observations at Mars show clear signatures of the shocked solar wind interaction with the extended oxygen atmosphere and hot corona displayed in a lateral deflection of the magnetosheath flow in the direction opposite to the direction of the solar wind motional electric field. The value of the velocity deflection reaches ˜50 km/s. The occurrence of such deflection is caused by the "Lorentz-type" force due to a differential streaming of the solar wind protons and oxygen ions originating from the extended oxygen corona. The value of the total deceleration of the magnetosheath flow due to mass loading is estimated as ˜40 km/s.

  13. Using traffic speed deflectometer to measure deflections and evaluate bearing capacity of asphalt road pavements at network level

    NASA Astrophysics Data System (ADS)

    Březina, Ilja; Stryk, Josef; Grošek, Jiří

    2017-09-01

    The paper deals with diagnostics of bearing capacity of asphalt pavements by a Traffic Speed Deflectometer (TSD device), which allows to measure pavement deflections continually at the traffic speed on the basis of dynamic loading induced by moving wheel of a reference axle at the speed of up to 80 km/h. The paper aims to inform of a new method to measure road pavement deflections, describes the principles of measuring pavement deflections by TSD device, and presents results of comparative measurements between FWD (Falling Weight Deflectometer) and TSD devices organized by CDV in Italy and Slovakia. Particular attention was paid to the difference between deflections measured by FWD and TSD devices.

  14. Deflection and Flexural Strength Effects on the Roughness of Aesthetic-Coated Orthodontic Wires.

    PubMed

    Albuquerque, Cibele Gonçalves de; Correr, Américo Bortolazzo; Venezian, Giovana Cherubini; Santamaria, Milton; Tubel, Carlos Alberto; Vedovello, Silvia Amélia Scudeler

    2017-01-01

    The aim was to evaluate the flexural strength and the effects of deflection on the surface roughness of esthetic orthodontic wires. The sample consisted of 70 archwire 0.014-inch: polytetrafluorethylene (PTFE)-coated Nickel-Titanium (Niti) archwires (Titanol Cosmetic-TC, Flexy Super Elastic Esthetic-FSE, esthetic Nickel Titanium Wire-ANT); epoxy resin-coated Niti archwires (Spectra-S, Niticosmetic-TEC); gold and rhodium coated Niti (Sentalloy-STC) and a control group (superelastic Niti (Nitinol-NS). The initial roughness was evaluated with a rugosimeter. After that, the wires were submitted to flexural test in an universal testing machine. Each wire was deflected up to 2 mm at a speed of 1 mm/min. After flexural test, the roughness of the wires was evaluted on the same surface as that used for the initial evaluation. The data of roughness and flexural strength were analyzed by one-way ANOVA and Tukey's test (a=0.05). Student t-test compared roughness before and after deflection (a =0.05). The roughness of S and ANT (epoxy resin and PTFE-coated wires, respectively), before and after deflection, was significantly higher than the other groups (p<0.05). Wire deflection significantly increased the roughness of the wires S and STC (p<0.05). The flexural strength of groups FSE and NS (PTFE and uncoated) was higher compared with that of the other groups (p<0.05). We concluded that the roughness and flexural strength of the orthodontic wires does not depend on the type of the esthetic coating, but it is influenced by the method of application of this coating. The deflection can increase the roughness of the esthetic orthodontic wires.

  15. The effect of ligation on the load deflection characteristics of nickel titanium orthodontic wire.

    PubMed

    Kasuya, Shugo; Nagasaka, Satoshi; Hanyuda, Ai; Ishimura, Sadao; Hirashita, Ayao

    2007-12-01

    This study examined the effect of ligation on the load-deflection characteristics of nickel-titanium (NiTi) orthodontic wire. A modified three-point bending system was used for bending the NiTi round wire, which was inserted and ligated in the slots of three brackets, one of which was bonded to each of the three bender rods. Three different ligation methods, stainless steel ligature (SSL), slot lid (SL), and elastomeric ligature (EL), were employed, as well as a control with neither bracket nor ligation (NBL). The tests were repeated five times under each condition. Comparisons were made of load-deflection curve, load at maximum deflection of 2,000 microm, and load at a deflection of 1,500 microm during unloading. Analysis of Variance (ANOVA) and Dunnett's test were conducted to determine method difference (alpha = 0.05). The interaction between deflection and ligation was tested, using repeated-measures ANOVA (alpha = 0.05). The load values of the ligation groups were two to three times greater than the NBL group at a deflection of 1,500 microm during unloading: 4.37 N for EL, 3.90 N for SSL, 3.02 N for SL, and 1.49 N for NBL (P < 0.01). For the EL, a plateau region disappeared in the unloading curve. SL showed the smallest load. The ligation of the bracket wire may make NiTi wire exhibit a significantly heavier load than that traditionally expected. NiTi wire exhibited the majority of its true superelasticity with SL, whereas EL may act as a restraint on its superelasticity.

  16. Laser-driven deflection arrangements and methods involving charged particle beams

    DOEpatents

    Plettner, Tomas [San Ramon, CA; Byer, Robert L [Stanford, CA

    2011-08-09

    Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.

  17. Comparison between Deflection and Vibration Characteristics of Rectangular and Trapezoidal profile Microcantilevers

    PubMed Central

    Ansari, Mohd. Zahid; Cho, Chongdu; Kim, Jooyong; Bang, Booun

    2009-01-01

    Arrays of microcantilevers are increasingly being used as physical, biological, and chemical sensors in various applications. To improve the sensitivity of microcantilever sensors, this study analyses and compares the deflection and vibration characteristics of rectangular and trapezoidal profile microcantilevers. Three models of each profile are investigated. The cantilevers are analyzed for maximum deflection, fundamental resonant frequency and maximum stress. The surface stress is modelled as in-plane tensile force applied on the top edge of the microcantilevers. A commercial finite element analysis software ANSYS is used to analyze the designs. Results show paddled trapezoidal profile microcantilevers have better sensitivity. PMID:22574041

  18. Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Sandford, Maynard C.; Eckstrom, Clinton V.

    1991-01-01

    Transonic steady and unsteady pressure tests were conducted on a large elastic wing. The wing has a supercritical airfoil, a full span aspect ratio of 10.3, a leading edge sweepback angle of 28.8 degrees, and two inboard and one outboard trailing edge control surfaces. Only the outboard control surface was deflected statically and dynamically to generate steady and unsteady flow over the wing. The unsteady surface pressure and dynamic deflection measurements of this elastic wing are presented to permit correlations of the experimental data with theoretical predictions.

  19. North-south asymmetry in the magnetic deflection of polar coronal hole jets

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Zimbardo, G.; Patsourakos, S.; Bothmer, V.; Nakariakov, V. M.

    2015-11-01

    Context. Measurements of the sunspots area, of the magnetic field in the interplanetary medium, and of the heliospheric current sheet (HCS) position, reveal a possible north-south (N-S) asymmetry in the magnetic field of the Sun. This asymmetry could cause the bending of the HCS of the order of 5-10 deg in the southward direction, and it appears to be a recurrent characteristic of the Sun during the minima of solar activity. Aims: We study the N-S asymmetry as inferred from measurements of the deflection of polar coronal hole jets when they propagate throughout the corona. Methods: Since the corona is an environment where the magnetic pressure is greater than the kinetic pressure (β ≪ 1), we can assume that the magnetic field controls the dynamics of plasma. On average, jets follow magnetic field lines during their propagation, highlighting their local direction. We measured the position angles at 1 R⊙ and at 2 R⊙ of 79 jets, based on the Solar TErrestrial RElations Observatory (STEREO) ultraviolet and white-light coronagraph observations during the solar minimum period March 2007-April 2008. The average jet deflection is studied both in the plane perpendicular to the line of sight and, for a reduced number of jets, in 3D space. The observed jet deflection is studied in terms of an axisymmetric magnetic field model comprising dipole (g1), quadrupole (g2), and esapole (g3) moments. Results: We found that the propagation of the jets is not radial, which is in agreement with the deflection due to magnetic field lines. Moreover, the amount of the deflection is different between jets over the north and those from the south pole. A comparison of jet deflections and field line tracing shows that a ratio g2/g1 ≃ -0.5 for the quadrupole and a ratio g3/g1 ≃ 1.6-2.0 for the esapole can describe the field. The presence of a non-negligible quadrupole moment confirms the N-S asymmetry of the solar magnetic field for the considered period. Conclusions: We find that the

  20. A single axis electrostatic beam deflection system for a 5-cm diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1972-01-01

    A single-axis electrostatic beam deflection system has been tested on a 5-cm diameter mercury ion thruster at a thrust level of about 0.43 mlb (25 mA beam current at 1400 volts). The accelerator voltage was 500 volts. Beam deflection capability of plus or minus 10 deg was demonstrated. A life test of 1367 hours was run at the above conditions. Results of the test indicated that the system could possibly perform for upwards of 10,000 hours.

  1. Approximate analysis of containment/deflection ring responses to engine rotor fragment impact.

    NASA Technical Reports Server (NTRS)

    Wu, R. W.-H.; Witmer, E. A.

    1973-01-01

    The transient responses of containment and/or deflection rings to impact from an engine rotor-blade fragment are analyzed. Energy and momentum considerations are employed in an approximate analysis to predict the collision-induced velocities which are imparted to the fragment and to the affected ring segment. This collision analysis is combined with the spatial finite-element representation of the ring and a temporal finite-difference solution procedure to predict the resulting large transient elastic-plastic deformations of containment/deflection rings. Some comparisons with experimental data are given.

  2. Large Deflection of Ideal Pseudo-Elastic Shape Memory Alloy Cantilever Beam

    NASA Astrophysics Data System (ADS)

    Cui, Shitang; Hu, Liming; Yan, Jun

    This paper deals with the large deflections of pseudo-elastic shape memory alloy cantilever beams subjected to a concentrated load at the free end. Because of the large deflections, geometry nonlinearity arises and this analysis employs the nonlinear bending theory. The exact expression of curvature is used in the moment-curvature relationship. As a vertical force at the tip of cantilever, curvature and bending moment distribution expressions are deduced. The curvature changed distinctly when the surface material undergoes phase transformation. The length of phase transformation region was affected greatly with the force at the free end.

  3. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Hernandez, Sonia

    2012-01-01

    Earth has previously been struck with devastating force by near-Earth asteroids (NEAs) and will be struck again. Telescopic search programs aim to provide advance warning of such an impact, but no techniques or systems have yet been tested for deflecting an incoming NEA. To begin addressing this problem, we have analyzed the more than 8000 currently known NEAs to identify those that offer opportunities for safe and meaningful near-term tests of the proposed kinetic impact asteroid deflection technique. In this paper we present our methodology and results, including complete mission designs for the best kinetic impactor test mission opportunities.

  4. Static deflection analysis of non prismatic multilayer p-NEMS cantilevers under electrical load

    SciTech Connect

    Pavithra, M., E-mail: pavithramasi78@gmail.com; Muruganand, S.

    2016-04-13

    Deflection of Euler-Bernoulli non prismatic multilayer piezoelectric nano electromechanical (p-NEMS) cantilever beams have been studied theoretically for various profiles of p-NEMS cantilevers by applying the electrical load. This problem has been answered by applying the boundary conditions derived by simple polynomials. This method is applied for various profiles like rectangular and trapezoidal by varying the thickness of the piezoelectric layer as well as the material. The obtained results provide the better deflection for trapezoidal profile with ZnO piezo electric layer of suitable nano cantilevers for nano scale applications.

  5. Cuspal Deflection of Premolars Restored with Bulk-Fill Composite Resins.

    PubMed

    Behery, Haytham; El-Mowafy, Omar; El-Badrawy, Wafa; Saleh, Belal; Nabih, Sameh

    2016-01-01

    This in vitro study compared cuspal deflection of premolars restored with three bulk-fill composite resins to that of incrementally-restored ones with a low-shrinkage silorane-based restorative material. Forty freshly-extracted intact human upper premolars were used. Reference points at buccal and palatal cusp tips were acid-etched and composite rods were horizontally bonded to them (TPH-Spectra-HV, Dentsply). Two acrylic resin guiding paths were made for each premolar to guide beaks of a digital micrometer used for cuspal deflection measurements. Standardized MOD cavities, 3 mm wide bucco-lingually and 3.5 mm deep, were prepared on each premolar. Prepared teeth were then equally divided into four groups (n = 10) and each group was assigned to one of four composite resin (QuiXX, Dentsply; X-tra fil, Voco; Tetric EvoCeram Bulk Fill, Ivoclar Vivadent; low-shrinkage Filtek LS, 3M/ESPE). Adper Single Bond-Plus, 3M/ESPE was used with all bulk-fill restoratives. LS-System Adhesive, 3M/ESPE was used with Filtek LS. For each prepared premolar, cuspal deflection was measured in microns as the difference between two readings between reference points before and after restoration completion. Means and SDs were calculated and data statistically-analyzed using One-way ANOVA and Tukey's test. Filtek LS showed the lowest mean cuspal deflection value 6.4(0.84)μm followed by Tetric EvoCeram Bulk Fill 10.1(1.2) μm and X-tra fil 12.4(1.35)μm, while QuiXX showed the highest mean 13(1.05)μm. ANOVA indicated significant difference among mean values of groups (p < 0.001). Tukey's test indicated no significant difference in mean values between QuiXX and X-tra fil (p = 0.637). Tetric EvoCeram Bulk Fill had significantly lower mean cuspal deflection compared with the two other bulk-fill composite resins tested. Filtek LS had the lowest significant mean cuspal deflection in comparison to all tested bulk-fill restoratives. The use of Tetric EvoCeram Bulk fill composite resin

  6. Methodology for determining elevon deflections to trim and maneuver the DAST vehicle with negative static margin

    NASA Technical Reports Server (NTRS)

    Perry, B., III

    1982-01-01

    The relationships between elevon deflection and static margin using elements from static and dynamic stability and control and from classical control theory are emphasized. Expressions are derived and presented for calculating elevon deflections required to trim the vehicle in lg straight-and-level flight and to perform specified longitudinal and lateral maneuvers. Applications of this methodology are made at several flight conditions for the ARW-2 wing. On the basis of these applications, it appears possible to trim and maneuver the vehicle with the existing elevons at -15% static margin.

  7. Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2016-05-03

    We present an experimental study of a high-gradient metallic accelerating structure at sub-THz frequencies, where we investigated the physics of rf breakdowns. Wakefields in the structure were excited by an ultrarelativistic electron beam. We present the first quantitative measurements of gradients and metal vacuum rf breakdowns in sub-THz accelerating cavities. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measured the deflecting forces by observing the displacement and changes in the shape of the electron bunch. This behavior can be exploited for subfemtosecond beam diagnostics.

  8. Rapid Inversion of Angular Deflection Data for Certain Axisymmetric Refractive Index Distributions

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.; Greenberg, P. S.

    1994-01-01

    Certain functions useful for representing axisymmetric refractive-index distributions are shown to have exact solutions for Abel transformation of the resulting angular deflection data. An advantage of this procedure over direct numerical Abel inversion is that least-squares curve fitting is a smoothing process that reduces the noise sensitivity of the computation

  9. Large-deflection statics analysis of active cardiac catheters through co-rotational modelling.

    PubMed

    Peng Qi; Chen Qiu; Mehndiratta, Aadarsh; I-Ming Chen; Haoyong Yu

    2016-08-01

    This paper presents a co-rotational concept for large-deflection formulation of cardiac catheters. Using this approach, the catheter is first discretized with a number of equal length beam elements and nodes, and the rigid body motions of an individual beam element are separated from its deformations. Therefore, it is adequate for modelling arbitrarily large deflections of a catheter with linear elastic analysis at the local element level. A novel design of active cardiac catheter of 9 Fr in diameter at the beginning of the paper is proposed, which is based on the contra-rotating double helix patterns and is improved from the previous prototypes. The modelling section is followed by MATLAB simulations of various deflections when the catheter is exerted different types of loads. This proves the feasibility of the presented modelling approach. To the best knowledge of the authors, it is the first to utilize this methodology for large-deflection static analysis of the catheter, which will enable more accurate control of robot-assisted cardiac catheterization procedures. Future work would include further experimental validations.

  10. Measurement of Refractive Index Gradients by Deflection of a Laser Beam

    ERIC Educational Resources Information Center

    Barnard, A. J.; Ahlborn, B.

    1975-01-01

    In this simple experiment for an undergraduate laboratory a laser beam is passed through the mixing zone of two liquids with different refractive indices. The spatial variation of the refractive index, at different times during the mixing, can be determined from the observed deflection of the beam. (Author)

  11. Environmental Deflection: The Impact of Toxicant Exposures on the Aging Epigenome.

    PubMed

    Kochmanski, Joseph; Montrose, Luke; Goodrich, Jaclyn M; Dolinoy, Dana C

    2017-04-01

    Epigenetic drift and age-related methylation have both been used in the literature to describe changes in DNA methylation that occurs with aging. However, ambiguity remains regarding the exact definition of both of these terms, and neither of these fields of study explicitly considers the impact of environmental factors on the aging epigenome. Recent twin studies have demonstrated longitudinal, pair-specific discordance in DNA methylation patterns, suggesting an effect of the environment on age-related methylation and/or epigenetic drift. Supporting this idea, other new reports have shown clear environment- and toxicant-mediated shifts away from the baseline rates of age-related methylation and epigenetic drift within an organism, a process we now term "environmental deflection." By defining and delineating environmental deflection, this contemporary review aims to highlight the effects of specific toxicological factors on the rate of DNA methylation changes that occur over the life course. In an effort to inform future epigenetics-based toxicology studies, a field of research now classified as toxicoepigenetics, we provide clear definitions and examples of "epigenetic drift" and "age-related methylation," summarize the recent evidence for environmental deflection of the aging epigenome, and discuss the potential functional effects of environmental deflection. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Exploring of PST-TBPM in Monitoring Bridge Dynamic Deflection in Vibration

    NASA Astrophysics Data System (ADS)

    Zhang, Guojian; Liu, Shengzhen; Zhao, Tonglong; Yu, Chengxin

    2018-01-01

    This study adopts digital photography to monitor bridge dynamic deflection in vibration. Digital photography used in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, a digital camera is used to monitor the bridge in static as a zero image. Then, the digital camera is used to monitor the bridge in vibration every three seconds as the successive images. Based on the reference system, PST-TBPM is used to calculate the images to obtain the bridge dynamic deflection in vibration. Results show that the average measurement accuracies are 0.615 pixels and 0.79 pixels in X and Z direction. The maximal deflection of the bridge is 7.14 pixels. PST-TBPM is valid in solving the problem-the photographing direction not perpendicular to the bridge. Digital photography used in this study can assess the bridge health through monitoring the bridge dynamic deflection in vibration. The deformation trend curves depicted over time also can warn the possible dangers.

  13. Wind loading analysis and strategy for deflection reduction on HET wide field upgrade

    NASA Astrophysics Data System (ADS)

    South, Brian J.; Soukup, Ian M.; Worthington, Michael S.; Zierer, Joseph J.; Booth, John A.; Good, John M.

    2010-07-01

    Wind loading can be a detrimental source of vibration and deflection for any large terrestrial optical telescope. The Hobby-Eberly Telescope* (HET) in the Davis Mountains of West Texas is undergoing a Wide Field Upgrade (WFU) in support of the Dark Energy Experiment (HETDEX) that will greatly increase the size of the instrumentation subjected to operating wind speeds of up to 20.1 m/s (45 mph). A non-trivial consideration for this telescope (or others) is to quantify the wind loads and resulting deflections of telescope structures induced under normal operating conditions so that appropriate design changes can be made. A quasi-static computational fluid dynamics (CFD) model was generated using wind speeds collected on-site as inputs to characterize dynamic wind forces on telescope structures under various conditions. The CFD model was refined until predicted wind speed and direction inside the dome agreed with experimental data. The dynamic wind forces were then used in static loading analysis to determine maximum deflections under typical operating conditions. This approach also allows for exploration of operating parameters without impact to the observation schedule of the telescope. With optimum combinations of parameters (i.e. dome orientation, tracker position, and louver deployment), deflections due to current wind conditions can be significantly reduced. Furthermore, the upper limit for operating wind speed could be increased, provided these parameters are monitored closely. This translates into increased image quality and observing time.

  14. Determining elastic moduli of materials in pavement systems by surface deflection data : a feasibility study.

    DOT National Transportation Integrated Search

    1975-01-01

    The determination of the elastic, or Young's, modulus, E, of the materials in each layer in an n-layered pavement system given the number, order, thicknesses, and Poisson's ratios of the layers, and the surface load and deflection data, is not possib...

  15. New method for the detection of light deflection by solar gravity.

    PubMed

    Shapiro, I I

    1967-08-18

    The prediction of Einstein's theory of general relativity that light will be deflected by the sun may be tested by sending radio waves from the earth to Venus or Mercury when either passes behind the sun and detecting the echoes with a radar interferometer.

  16. A load balancing bufferless deflection router for network-on-chip

    NASA Astrophysics Data System (ADS)

    Xiaofeng, Zhou; Zhangming, Zhu; Duan, Zhou

    2016-07-01

    The bufferless router emerges as an interesting option for cost-efficient in network-on-chip (NoC) design. However, the bufferless router only works well under low network load because deflection more easily occurs as the injection rate increases. In this paper, we propose a load balancing bufferless deflection router (LBBDR) for NoC that relieves the effect of deflection in bufferless NoC. The proposed LBBDR employs a balance toggle identifier in the source router to control the initial routing direction of X or Y for a flit in the network. Based on this mechanism, the flit is routed according to XY or YX routing in the network afterward. When two or more flits contend the same one desired output port a priority policy called nearer-first is used to address output ports allocation contention. Simulation results show that the proposed LBBDR yields an improvement of routing performance over the reported bufferless routing in the flit deflection rate, average packet latency and throughput by up to 13%, 10% and 6% respectively. The layout area and power consumption compared with the reported schemes are 12% and 7% less respectively. Project supported by the National Natural Science Foundation of China (Nos. 61474087, 61322405, 61376039).

  17. The Remote Observing Working Group for the Asteroid Impact and Deflection Assessment (AIDA)

    NASA Astrophysics Data System (ADS)

    Rivkin, A. S.; Pravec, P.; Thomas, C. A.; Thirouin, A.; Snodgrass, C.; Green, S.; Licandro, J.; Sickafoose, A. A.; Erasmus, N.; Howell, E. S.; Osip, D.; Thomas-Osip, J.; Moskovitz, N.; Scheirich, P.; Oszkiewicz, D.; Richardson, D. C.; Polishook, D.; Ryan, W. H.; Busch, M. W.

    2017-09-01

    The Asteroid Impact and Deflection Assessment (AIDA) is a joint US-European mission concept designed to demonstrate the effectiveness of an kinetic impactor for planetary defense. Ground-based observing is a key component to AIDA and critical for its success. We present the observing campaign we have been conducting of the asteroid Didymos, the AIDA target, and plans for future work.

  18. Method for ultrafast optical deflection enabling optical recording via serrated or graded light illumination

    DOEpatents

    Heebner, John E [Livermore, CA

    2009-09-08

    In one general embodiment, a method for deflecting an optical signal input into a waveguide is provided. In operation, an optical input signal is propagated through a waveguide. Additionally, an optical control signal is applied to a mask positioned relative to the waveguide such that the application of the optical control signal to the mask is used to influence the optical input signal propagating in the waveguide. Furthermore, the deflected optical input signal output from the waveguide is detected in parallel on an array of detectors. In another general embodiment, a beam deflecting structure is provided for deflecting an optical signal input into a waveguide, the structure comprising at least one wave guiding layer for guiding an optical input signal and at least one masking layer including a pattern configured to influence characteristics of a material of the guiding layer when an optical control signal is passed through the masking layer in a direction of the guiding layer. In another general embodiment, a system is provided including a waveguide, an attenuating mask positioned on the waveguide, and an optical control source positioned to propagate pulsed laser light towards the attenuating mask and the waveguide such that a pattern of the attenuating mask is applied to the waveguide and material properties of at least a portion of the waveguide are influenced.

  19. DEFLECTION OF A HETEROGENEOUS WIDE-BEAM UNDER UNIFORM PRESSURE LOAD

    SciTech Connect

    T. V. Holschuh; T. K. Howard; W. R. Marcum

    2014-07-01

    Oregon State University (OSU) and the Idaho National Laboratory (INL) are currently collaborating on a test program which entails hydro-mechanical testing of a generic plate type fuel element, or generic test plate assembly (GTPA), for the purpose of qualitatively demonstrating mechanical integrity of uranium-molybdenum monolithic plates as compared to that of uranium aluminum dispersion, and aluminum fuel plates onset by hydraulic forces. This test program supports ongoing work conducted for/by the Global Threat Reduction Initiative (GTRI) Fuels Development Program. This study’s focus supports the ongoing collaborative effort by detailing the derivation of an analytic solution for deflection of a heterogeneousmore » plate under a uniform, distributed load in order to predict the deflection of test plates in the GTPA. The resulting analytical solutions for three specific boundary condition sets are then presented against several test cases of a homogeneous plate. In all test cases considered, the results for both homogeneous and heterogeneous plates are numerically identical to one another, demonstrating correct derivation of the heterogeneous solution. Two additional problems are presents herein that provide a representative deflection profile for the plates under consideration within the GTPA. Furthermore, qualitative observations are made about the influence of a more-rigid internal fuel-meat region and its influence on the overall deflection profile of a plate. Present work is being directed to experimentally confirm the analytical solution’s results using select materials.« less

  20. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths.

    PubMed

    Olofsson, Martin; Vallin, Adrian; Jakobsson, Sven; Wiklund, Christer

    2010-05-24

    Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function. Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head. In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities.

  1. Evaluation of deflection forces of orthodontic wires with different ligation types.

    PubMed

    Henriques, José Fernando Castanha; Higa, Rodrigo Hitoshi; Semenara, Nayara Thiago; Janson, Guilherme; Fernandes, Thais Maria Freire; Sathler, Renata

    2017-07-03

    The aim of this study was to evaluate deflection forces of orthodontic wires of different alloys engaged into conventional brackets using several ligation types. Stainless steel, conventional superelastic nickel-titanium and thermally activated nickel-titanium archwires tied into conventional brackets by a ring-shaped elastomeric ligature (RSEL), a 8-shaped elastomeric ligature (8SEL) and a metal ligature (ML) were tested. A clinical simulation device was created especially for this study and forces were measured with an Instron Universal Testing Machine. For the testing procedure, the block representing the maxillary right central incisor was moved 0.5 and 1 mm bucco-lingually at a constant speed of 2 mm/min, and the forces released by the wires were recorded, in accordance with the ISO 15841 guidelines. In general, the RSEL showed lighter forces, while 8SEL and ML showed higher values. At the 0.5 mm deflection, the 8SEL presented the greatest force, but at the 1.0 mm deflection the ML had a statistically similar force. Based on our evaluations, to obtain lighter forces, the thermally activated nickel-titanium wire with the RSEL are recommended, while the steel wire with the 8SEL or the ML are recommended when larger forces are desired. The ML exhibited the highest force increase with increased deflections, compared with the elastomeric ligatures.

  2. Deflection by Kinetic Impact or Nuclear Ablation: Sensitivity to Asteroid Properties

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.

    2015-12-01

    Impulsive deflection of a threatening asteroid can be achieved by deploying either a kinetic impactor or a standoff nuclear device to impart a modest velocity change to the body. Response to each of these methods is sensitive to the individual asteroid's characteristics, some of which may not be well constrained before an actual deflection mission. Numerical simulations of asteroid deflection, using both hypervelocity impacts and nuclear ablation of the asteroid's surface, provide detailed information on asteroid response under a range of initial conditions. Here we present numerical results for the deflection of asteroids by both kinetic and nuclear methods, focusing on the roles of target body composition, strength, porosity, rotational state, shape, and internal structure. These results provide a framework for evaluating the planetary defense-related value of future asteroid characterization missions and capture some of the uncertainty that may be present in a real threat scenario. Part of this work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 12-ERD-005, performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675914.

  3. Deflection monitoring for a box girder based on a modified conjugate beam method

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Zhi; Wu, Gang; Xing, Tuo

    2017-08-01

    After several years of operation, a box girder bridge would commonly experience excessive deflection, which endangers the bridge’s life span as well as the safety of vehicles travelling on it. In order to avoid potential risks, it is essential to constantly monitor the defection of box girders. However, currently, the direct deflection monitoring methods are limited by the complicated environments beneath the bridges, such as rivers or other traffic lanes, which severely impede the layouts of the sensors. The other indirect deflection monitoring methods mostly do not thoroughly consider the inherent shear lag effect and shear deformation in the box girder, resulting in a rather large error. Under these circumstances, a deflection monitoring method suiting box girders is proposed in this article, based on the conjugate beam method and distributed long-gauge fibre Bragg grating (FBG) sensor. A lab experiment was conducted to verify the reliability and feasibility of this method under practical application. Further, the serviceability under different span-depth ratios and web thicknesses was examined through a finite element model.

  4. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaguang; Wei, Yujie

    Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.

  5. Temperature and deflection data from the asymmetric heating of cross-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Hyer, Michael W.; Cooper, David E.; Tompkins, S. S.; Cohen, David

    1987-01-01

    Data generated while heating several cross-ply graphite-epoxy tubes on one side, along their lengths, and cooling them on the other side are presented. This heating arrangement produces a circumferential temperature gradient, and the data show that the gradient can be represented by a cosinusoidal temperature distribution. The thermally induced bending deflections caused by the temperature gradient are also presented.

  6. A deflectable guiding catheter for real-time MRI-guided interventions.

    PubMed

    Bell, Jamie A; Saikus, Christina E; Ratnayaka, Kanishka; Wu, Vincent; Sonmez, Merdim; Faranesh, Anthony Z; Colyer, Jessica H; Lederman, Robert J; Kocaturk, Ozgur

    2012-04-01

    To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. The catheter shaft incorporated Kevlar braiding. A 180° deflection was attained with a 5-cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057" lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements. Copyright © 2011 Wiley Periodicals, Inc.

  7. A deflectable guiding catheter for real-time MRI-guided interventions

    PubMed Central

    Bell, Jamie A.; Saikus, Christina E.; Ratnakaya, Kanishka; Wu, Vincent; Sonmez, Merdim; Faranesh, Anthony Z.; Colyer, Jessica H.; Lederman, Robert J.; Kocaturk, Ozgur

    2011-01-01

    Purpose To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. Materials and Methods The catheter shaft incorporated Kevlar braiding. 180° deflection was attained with a 5 cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively-coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. Results Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. Conclusion Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057” lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements. PMID:22128071

  8. TV Trouble-Shooting Manual. Volumes 7-8. Part 3: Synchronisation and Deflection Circuits. Student and Instructor's Manuals.

    ERIC Educational Resources Information Center

    Mukai, Masaaki; Kobayashi, Ryozo

    These volumes are, respectively, the self-instructional student manual and the teacher manual that cover the third set of training topics in this course for television repair technicians. Both contain identical information on synchronization and deflection circuits, including sections on the principle of synchronized deflection, synchronization…

  9. The physics of badminton

    NASA Astrophysics Data System (ADS)

    Cohen, Caroline; Darbois Texier, Baptiste; Quéré, David; Clanet, Christophe

    2015-06-01

    The conical shape of a shuttlecock allows it to flip on impact. As a light and extended particle, it flies with a pure drag trajectory. We first study the flip phenomenon and the dynamics of the flight and then discuss the implications on the game. Lastly, a possible classification of different shots is proposed.

  10. A Kinematic Model for Vertical Axis Rotation within the Mina Deflection of the Walker Lane

    NASA Astrophysics Data System (ADS)

    Gledhill, T.; Pluhar, C. J.; Johnson, S. A.; Lindeman, J. R.; Petronis, M. S.

    2016-12-01

    The Mina Deflection, at the boundary between the Central and Southern Walker Lane, spans the California-Nevada border and includes a heavily-faulted Pliocene volcanic field overlying Miocene ignimbrites. The dextral Walker Lane accommodates 25% of relative Pacific-North America plate motion and steps right across the sinistral Mina deflection. Ours and previous work shows that the Mina Deflection partially accommodates deformation by vertical-axis rotation of up to 99.9o ± 6.1o rotation since 11 Ma. This rotation is evident in latite ignimbrite of Gilbert et al. (1971), which we have formalized as three members of Tuff of Huntoon Creek (THC). The welded, basal, normal-polarity Huntoon Valley Member of THC is overlain by the unwelded to partially-welded, reversed-polarity Adobe Hills Mbr. This member includes internal breaks suggesting multiple eruptive phases, but the paleomagnetic results from each are statistically indistinguishable, meaning that they were likely erupted in rapid succession (within a few centuries of one another). THC ends with a welded member exhibiting very shallow inclination and south declination that we call Excursional Mbr. One of the upper members has been dated at 11.17 ± 0.04 Ma. These Miocene units are overlain by Pliocene basalts, Quaternary alluvium, and lacustrine deposits. Our paleomagnetic results show a gradient between the zero rotation domain and high rotation across a 20km baseline. A micropolar model, based on 25 years of earthquake data from the Northern and Southern California Seismic Network, suggest the Mina Deflection is currently experiencing transpressional seismogenic deformation (Unruh et al., 2003). Accepting Unruh's model and assuming continuous rotation since 11 Ma, we propose a kinematic model for the western Mina Deflection that accommodates 90o of vertical axis rotation from N-S to ENE-WSW oriented blocks.

  11. Experimental Study of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Aeroshell with Axisymmetric Surface Deflection Patterns

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Hollingsworth, Kevin E.

    2017-01-01

    A wind tunnel test program was conducted to obtain aeroheating environment data on Hypersonic Inflatable Aerodynamic Decelerator aeroshells with flexible thermal protection systems. Data were obtained on a set of rigid wind tunnel models with surface deflection patterns of various heights that simulated a range of potential in-flight aeroshell deformations. Wind tunnel testing was conducted at Mach 6 at unit Reynolds numbers from 2.1 × 10(exp 6)/ft to 8.3 × 10(exp 6)/ft and angles of attack from 0 deg to 18 deg. Boundary-layer transition onset and global surface heating distribution measurements were performed using phosphor thermography and flow field images were obtained through schlieren photography. Surface deflections were found to both promote early transition of the boundary layer and to augment heating levels for both laminar and turbulent flows. A complimentary computational flow field study was also performed to provide heating predictions for comparison with the measurements as well as boundary layer flow field properties for use in correlating the data. Correlations of the wind tunnel data were developed to predict deflection effects on boundary layer transition and surface heating and were applied to both the wind tunnel test conditions and to the trajectory of NASA's successful IRVE-3 flight test. In general, the correlations produced at least qualitative agreement with the wind tunnel data, although the heating levels were underpredicted for some of the larger surface deflections. For the flight conditions, the correlations suggested that peak heating levels on the leeward side conical flank of the IRVE-3 vehicle may have exceeded those at nose for times late in the trajectory after the peak heating time point. However, the flight estimates were based on a conservative assumption of surface deflection magnitude (i.e., larger) than likely was produced in flight.

  12. The Deflector Selector: A Machine Learning Framework for Prioritizing Deflection Technology Development

    NASA Astrophysics Data System (ADS)

    Van Heerden, Elmarie; Erasmus, Nicolas; Greenberg, Adam; Nesvold, Erika; Galache, Jose Luis; Dahlstrom, Eric; Marchis, Franck

    2016-10-01

    On 15 February, 2013, a ~15 m diameter asteroid entered the Earth's atmosphere over Russia. The resulting shockwave injured nearly 1500 people, and incurred ~33 million (USD) in infrastructure damages. The Chelyabinsk meteor served as a forceful demonstration of the threat posed to Earth by the hundreds of potentially hazardous objects (PHOs) that pass near the Earth every year. Although no objects have yet been discovered on an impact course for Earth, an impact is virtually statistically guaranteed at some point in the future. While many impactor deflection technologies have been proposed, humanity has yet to demonstrate the ability to divert an impactor when one is found. Developing and testing any single proposed technology will require significant research time and funding. This leaves open an obvious question - towards which technologies should funding and research be directed, in order to maximize our preparedness for when an impactor is eventually found?To help answer this question, we have created a detailed framework for analyzing various deflection technologies and their effectiveness. Using an n-body integrator (REBOUND), we have simulated the attempted deflections of a population of Earth-impacting objects with a variety of velocity perturbations (∂Vs), and measured the effects that these perturbations had on impact probability. We then mapped the ∂Vs applied in the orbital simulations to the technologies capable of achieving those perturbations, and analyzed which set of technologies would be most effective at preventing a PHO from impacting the earth. As a final step, we used the results of these simulations to train a machine learning algorithm. This algorithm, combined with a simulated PHO population, can predict which technologies are most likely to be needed. The algorithm can also reveal which impactor observables (mass, spin, orbit, etc.) have the greatest effect on the choice of deflection technology. These results can be used as a tool to

  13. Safety and performance of a novel embolic deflection device in patients undergoing transcatheter aortic valve replacement: results from the DEFLECT I study.

    PubMed

    Baumbach, Andreas; Mullen, Michael; Brickman, Adam M; Aggarwal, Suneil K; Pietras, Cody G; Forrest, John K; Hildick-Smith, David; Meller, Stephanie M; Gambone, Louise; den Heijer, Peter; Margolis, Pauliina; Voros, Szilard; Lansky, Alexandra J

    2015-05-01

    This study aimed to evaluate the safety and performance of the TriGuard™ Embolic Deflection Device (EDD), a nitinol mesh filter positioned in the aortic arch across all three major cerebral artery take-offs to deflect emboli away from the cerebral circulation, in patients undergoing transcatheter aortic valve replacement (TAVR). The prospective, multicentre DEFLECT I study (NCT01448421) enrolled 37 consecutive subjects undergoing TAVR with the TriGuard EDD. Subjects underwent clinical and cognitive follow-up to 30 days; cerebral diffusion-weighted magnetic resonance imaging (DW-MRI) was performed pre-procedure and at 4±2 days post procedure. The device performed as intended with successful cerebral coverage in 80% (28/35) of cases. The primary safety endpoint (in-hospital EDD device- or EDD procedure-related cardiovascular mortality, major stroke disability, life-threatening bleeding, distal embolisation, major vascular complications, or need for acute cardiac surgery) occurred in 8.1% of subjects (VARC-defined two life-threatening bleeds and one vascular complication). The presence of new cerebral ischaemic lesions on post-procedure DW-MRI (n=28) was similar to historical controls (82% vs. 76%, p=NS). However, an exploratory analysis found that per-patient total lesion volume was 34% lower than reported historical data (0.2 vs. 0.3 cm3), and 89% lower in patients with complete (n=17) versus incomplete (n=10) cerebral vessel coverage (0.05 vs. 0.45 cm3, p=0.016). Use of the first-generation TriGuard EDD during TAVR is safe, and device performance was successful in 80% of cases during the highest embolic-risk portions of the TAVR procedure. The potential of the TriGuard EDD to reduce total cerebral ischaemic burden merits further randomised investigation.

  14. Frequency and deflection analysis of cenosphere/glass fiber interply hybrid composite cantilever beam

    NASA Astrophysics Data System (ADS)

    Bharath, J.; Joladarashi, Sharnappa; Biradar, Srikumar; Kumar, P. Naveen

    2018-04-01

    Interply hybrid laminates contain plies made of two or more different composite systems. Hybrid composites have unique features that can be used to meet specified design requirements in a more cost-effective way than nonhybrid composites. They offer many advantages over conventional composites including balanced strength and stiffness, enhanced bending and membrane mechanical properties, balanced thermal distortion stability, improved fatigue/impact resistance, improved fracture toughness and crack arresting properties, reduced weight and cost. In this paper an interply hybrid laminate composite containing Cenosphere reinforced polymer composite core and glass fiber reinforced polymer composite skin is analysied and effect of volume fraction of filler on frequency and load v/s deflection of hybrid composite are studied. Cenosphere reinforced polymer composite has increased specific strength, specific stiffness, specific density, savings in cost and weight. Glass fiber reinforced polymer composite has higher torsional rigidity when compared to metals. These laminate composites are fabricated to meet several structural applications and hence there is a need to study their vibration and deflection properties. Experimental investigation starts with fabrication of interply hybrid composite with cores of cenosphere reinforced epoxy composite volume fractions of CE 15, CE 25, CE15_UC as per ASTM E756-05C, and glasss fiber reinforced epoxy skin, cast product of required dimension by selecting glass fibre of proper thickness which is currently 0.25mm E-glass bidirectional woven glass fabric having density 2500kg/m3, in standard from cast parts of size 230mmX230mmX5mm in an Aluminum mould. Modal analysis of cantilever beam is performed to study the variation of natural frequency with strain gauge and the commercially available Lab-VIEW software and deflection in each of the cases by optical Laser Displacement Measurement Sensor to perform Load versus Deflection Analysis

  15. Guided asteroid deflection by kinetic impact: Mapping keyholes to an asteroid's surface

    NASA Astrophysics Data System (ADS)

    Chesley, S.; Farnocchia, D.

    2014-07-01

    The kinetic impactor deflection approach is likely to be the optimal deflection strategy in most real-world cases, given the likelihood of decades of warning time provided by asteroid search programs and the probable small size of the next confirmed asteroid impact that would require deflection. However, despite its straightforward implementation, the kinetic impactor approach can have its effectiveness limited by the astrodynamics that govern the impactor spacecraft trajectory. First, the deflection from an impact is maximized when the asteroid is at perihelion, while an impact near perihelion can in some cases be energetically difficult to implement. Additionally, the asteroid change in velocity Δ V should aligned with the target's heliocentric velocity vector in order to maximize the deflection at a potential impact some years in the future. Thus the relative velocity should be aligned with or against the heliocentric velocity, which implies that the impactor and asteroid orbits should be tangent at the point of impact. However, for natural bodies such as meteorites colliding with the Earth, the relative velocity vectors tend to cluster near the sunward or anti- sunward directions, far from the desired direction. This is because there is generally a significant crossing angle between the orbits of the impactor and target and an impact at tangency is unusual. The point is that hitting the asteroid is not enough, but rather we desire to hit the asteroid at a point when the asteroid and spacecraft orbits are nearly tangent and when the asteroid is near perihelion. However, complicating the analysis is the fact that the impact of a spacecraft on an asteroid would create an ejecta plume that is roughly normal to the surface at the point of impact. This escaping ejecta provides additional momentum transfer that generally adds to the effectiveness of a kinetic deflection. The ratio β between the ejecta momentum and the total momentum (ejecta plus spacecraft) can

  16. Long-Term Deflection Prediction from Computer Vision-Measured Data History for High-Speed Railway Bridges

    PubMed Central

    Lee, Jaebeom; Lee, Young-Joo

    2018-01-01

    Management of the vertical long-term deflection of a high-speed railway bridge is a crucial factor to guarantee traffic safety and passenger comfort. Therefore, there have been efforts to predict the vertical deflection of a railway bridge based on physics-based models representing various influential factors to vertical deflection such as concrete creep and shrinkage. However, it is not an easy task because the vertical deflection of a railway bridge generally involves several sources of uncertainty. This paper proposes a probabilistic method that employs a Gaussian process to construct a model to predict the vertical deflection of a railway bridge based on actual vision-based measurement and temperature. To deal with the sources of uncertainty which may cause prediction errors, a Gaussian process is modeled with multiple kernels and hyperparameters. Once the hyperparameters are identified through the Gaussian process regression using training data, the proposed method provides a 95% prediction interval as well as a predictive mean about the vertical deflection of the bridge. The proposed method is applied to an arch bridge under operation for high-speed trains in South Korea. The analysis results obtained from the proposed method show good agreement with the actual measurement data on the vertical deflection of the example bridge, and the prediction results can be utilized for decision-making on railway bridge maintenance. PMID:29747421

  17. Long-Term Deflection Prediction from Computer Vision-Measured Data History for High-Speed Railway Bridges.

    PubMed

    Lee, Jaebeom; Lee, Kyoung-Chan; Lee, Young-Joo

    2018-05-09

    Management of the vertical long-term deflection of a high-speed railway bridge is a crucial factor to guarantee traffic safety and passenger comfort. Therefore, there have been efforts to predict the vertical deflection of a railway bridge based on physics-based models representing various influential factors to vertical deflection such as concrete creep and shrinkage. However, it is not an easy task because the vertical deflection of a railway bridge generally involves several sources of uncertainty. This paper proposes a probabilistic method that employs a Gaussian process to construct a model to predict the vertical deflection of a railway bridge based on actual vision-based measurement and temperature. To deal with the sources of uncertainty which may cause prediction errors, a Gaussian process is modeled with multiple kernels and hyperparameters. Once the hyperparameters are identified through the Gaussian process regression using training data, the proposed method provides a 95% prediction interval as well as a predictive mean about the vertical deflection of the bridge. The proposed method is applied to an arch bridge under operation for high-speed trains in South Korea. The analysis results obtained from the proposed method show good agreement with the actual measurement data on the vertical deflection of the example bridge, and the prediction results can be utilized for decision-making on railway bridge maintenance.

  18. Deflected Pathways: Becoming Aggressive, Socially Withdrawn, or Prosocial with Peers During the Transition to Adolescence

    PubMed Central

    Monahan, Kathryn C.; Booth-LaForce, Cathryn

    2014-01-01

    Although research has suggested strong continuity in children's adaptive or maladaptive behavior with peers across the transition to adolescence, less is known about deflected developmental pathways of peer social competence across this transition. This study investigates how mother-child and best friend relationship quality predict the deflection of youth from adaptive to maladaptive behavior with peers or the reverse. Using data from the NICHD Study of Early Child Care and Youth Development (N=1055), high-quality friendships were associated with changes in peer social competence from 3rd to 6th grade. More positive and fewer negative interactions with a friend were linked with becoming more prosocial with peers, whereas less positive interactions with a friend were linked to becoming aggressive or withdrawn. PMID:27231420

  19. Fiber optic system for deflection and damage detection in morphing wing structures

    NASA Astrophysics Data System (ADS)

    Scheerer, M.; Djinovic, Z.; Schüller, M.

    2013-04-01

    Within the EC Clean Sky - Smart Fixed Wing Aircraft initiative concepts for actuating morphing wing structures are under development. In order for developing a complete integrated system including the actuation, the structure to be actuated and the closed loop control unit a hybrid deflection and damage monitoring system is required. The aim of the project "FOS3D" is to develop and validate a fiber optic sensing system based on low-coherence interferometry for simultaneous deflection and damage monitoring. The proposed system uses several distributed and multiplexed fiber optic Michelson interferometers to monitor the strain distribution over the actuated part. In addition the same sensor principle will be used to acquire and locate the acoustic emission signals originated from the onset and growth of defects like impact damages, cracks and delamination's. Within this paper the authors present the concept, analyses and first experimental results of the mentioned system.

  20. Laminated beams: deflection and stress as a function of epoxy shear modulus

    SciTech Connect

    Bialek, J.

    1976-01-01

    The large toroidal field coil deflections observed during the PLT power test are due to the poor shear behavior of the insulation material used between layers of copper. Standard techniques for analyzing such laminated structures do not account for this effect. This paper presents an analysis of laminated beams that corrects this deficiency. The analysis explicitly models the mechanical behavior of each layer in a laminated beam and hence avoids the pitfalls involved in any averaging technique. In particular, the shear modulus of the epoxy in a laminated beam (consisting of alternate layers of metal and epoxy) may span themore » entire range of values from zero to classical. Solution of the governing differential equations defines the stress, strain, and deflection for any point within a laminated beam. The paper summarizes these governing equations and also includes a parametric study of a simple laminated beam.« less

  1. The Penn State Safety Floor: Part I--Design parameters associated with walking deflections.

    PubMed

    Casalena, J A; Ovaert, T C; Cavanagh, P R; Streit, D A

    1998-08-01

    A new flooring system has been developed to reduce peak impact forces to the hips when humans fall. The new safety floor is designed to remain relatively rigid under normal walking conditions, but to deform elastically when impacted during a fall. Design objectives included minimizing peak force experienced by the femur during a fall-induced impact, while maintaining a maximum of 2 mm of floor deflection during walking. Finite Element Models (FEMs) were developed to capture the complex dynamics of impact response between two deformable bodies. Validation of the finite element models included analytical calculations of theoretical buckling column response, experimental quasi-static loading of full-scale flooring prototypes, and flooring response during walking trials. Finite Element Method results compared well with theoretical and experimental data. Both finite element and experimental data suggest that the proposed safety floor can effectively meet the design goal of 2 mm maximum deflection during walking, while effectively reducing impact forces during a fall.

  2. Tests of a D vented thrust deflecting nozzle behind a simulated turbofan engine

    NASA Technical Reports Server (NTRS)

    Watson, T. L.

    1982-01-01

    A D vented thrust deflecting nozzle applicable to subsonic V/STOL aircraft was tested behind a simulated turbofan engine in the verticle thrust stand. Nozzle thrust, fan operating characteristics, nozzle entrance conditions, and static pressures were measured. Nozzle performance was measured for variations in exit area and thrust deflection angle. Six core nozzle configurations, the effect of core exit axial location, mismatched core and fan stream nozzle pressure ratios, and yaw vane presence were evaluated. Core nozzle configuration affected performance at normal and engine out operating conditions. Highest vectored nozzle performance resulted for a given exit area when core and fan stream pressure were equal. Its is concluded that high nozzle performance can be maintained at both normal and engine out conditions through control of the nozzle entrance Mach number with a variable exit area.

  3. Multi-beamlet investigation of the deflection compensation methods of SPIDER beamlets

    SciTech Connect

    Baltador, C., E-mail: carlo.baltador@igi.cnr.it; Veltri, P.; Agostinetti, P.

    2016-02-15

    SPIDER (Source for Production of Ions of Deuterium Extracted from a Rf plasma) is an ion source test bed designed to extract and accelerate a negative ion current up to 40 A and 100 kV whose first beam is expected by the end of 2016. Two main effects perturb beamlet optics during the acceleration stage: space charge repulsion and the deflection induced by the permanent magnets (called co-extracted electron suppression magnets) embedded in the EG. The purpose of this work is to evaluate and compare benefits, collateral effects, and limitations of electrical and magnetic compensation methods for beamlet deflection. Themore » study of these methods has been carried out by means of numerical modeling tools: multi-beamlet simulations have been performed for the first time.« less

  4. Optimization of deflection of a big NEO through impact with a small one.

    PubMed

    Zhu, Kaijian; Huang, Weiping; Wang, Yuncai; Niu, Wei; Wu, Gongyou

    2014-01-01

    Using a small near-Earth object (NEO) to impact a larger and potentially threatening NEO has been suggested as an effective method to avert a collision with Earth. This paper develops a procedure for analysis of the technique for specific NEOs. First, an optimization method is used to select a proper small body from the database. Some principles of optimality are achieved with the optimization process. Then, the orbit of the small body is changed to guarantee that it flies toward and impacts the big threatening NEO. Kinetic impact by a spacecraft is chosen as the strategy of deflecting the small body. The efficiency of this method is compared with that of a direct kinetic impact to the big NEO by a spacecraft. Finally, a case study is performed for the deflection of the Apophis NEO, and the efficiency of the method is assessed.

  5. Optimization of Deflection of a Big NEO through Impact with a Small One

    PubMed Central

    Zhu, Kaijian; Huang, Weiping; Wang, Yuncai; Niu, Wei; Wu, Gongyou

    2014-01-01

    Using a small near-Earth object (NEO) to impact a larger and potentially threatening NEO has been suggested as an effective method to avert a collision with Earth. This paper develops a procedure for analysis of the technique for specific NEOs. First, an optimization method is used to select a proper small body from the database. Some principles of optimality are achieved with the optimization process. Then, the orbit of the small body is changed to guarantee that it flies toward and impacts the big threatening NEO. Kinetic impact by a spacecraft is chosen as the strategy of deflecting the small body. The efficiency of this method is compared with that of a direct kinetic impact to the big NEO by a spacecraft. Finally, a case study is performed for the deflection of the Apophis NEO, and the efficiency of the method is assessed. PMID:25525627

  6. Connection between black-hole quasinormal modes and lensing in the strong deflection limit.

    PubMed

    Stefanov, Ivan Zh; Yazadjiev, Stoytcho S; Gyulchev, Galin G

    2010-06-25

    The purpose of the current Letter is to give some relations between gravitational lensing in the strong-deflection limit and the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. On the one side, the relations obtained can give a physical interpretation of the strong-deflection limit parameters. On the other side, they also give an alternative method for the measurement of the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. They could be applied to the localization of the sources of gravitational waves and could tell us what frequencies of the gravitational waves we could expect from a black hole acting simultaneously as a gravitational lens and a source of gravitational waves.

  7. Deflection of jets induced by jet-cloud and jet-galaxy interactions

    NASA Astrophysics Data System (ADS)

    Mendoza, S.; Longair, M. S.

    2001-06-01

    The model first introduced by Raga & Cantó in which astrophysical jets are deflected on passing through an isothermal high-density region is generalized by taking into account gravitational effects on the motion of the jet as it crosses the high-density cloud. The problem is also generalized for relativistic jets in which gravitational effects induced by the cloud are neglected. Two further cases, classical and relativistic, are discussed for the cases in which the jet is deflected on passing through the interstellar gas of a galaxy in which a dark matter halo dominates the gravitational potential. The criteria for the stability of jets due to the formation of internal shocks are also discussed.

  8. Characterization of micron-sized, optical coating defects by photothermal deflection microscopy

    NASA Astrophysics Data System (ADS)

    Abate, J. A.; Schmid, A. W.; Guardalben, M. G.; Smith, D. J.; Jacobs, S. D.

    1984-04-01

    Information about the localized absorbing defects in optical thin films is required for a better understanding of laser induced damage. Photothermal deflection microscopy offers a nondestructive optical diagnostic which yields spatially resolved absorption data on simple and multiple layer AR and HR dielectric coatings. The computer controlled apparatus used to generate absorption maps of dielectric thin films and an experiment in which a partial correlation between localized absorption sites and damage caused by nanosecond laser irradiation at 351 nm is established are described. An absolute calibration of absorption for our measurement technique is presented here. Micron sized absorbtive defects of Cu were introduced into our coatings to provide a means of calibration. Also presented here are some preliminary data on the modification of the absorption signatures measured by photothermal deflection as a function of the location of the defect within the coating layers.

  9. Mixed-mode crack tip loading and crack deflection in 1D quasicrystals

    NASA Astrophysics Data System (ADS)

    Wang, Zhibin; Scheel, Johannes; Ricoeur, Andreas

    2016-12-01

    Quasicrystals (QC) are a new class of materials besides crystals and amorphous solids and have aroused much attention of researchers since they were discovered. This paper presents a generalized fracture theory including the J-integral and crack closure integrals, relations between J1, J2 and the stress intensity factors as well as the implementation of the near-tip stress and displacement solutions of 1D QC. Different crack deflection criteria, i.e. the J-integral and maximum circumferential stress criteria, are investigated for mixed-mode loading conditions accounting for phonon-phason coupling. One focus is on the influence of phason stress intensity factors on crack deflection angles.

  10. Short x-ray pulse generation using deflecting cavities at the Advanced Photon Source.

    SciTech Connect

    Sajaev, V.; Borland, M.; Chae, Y.-C.

    2007-11-11

    Storage-ring-based third-generation light sources can provide intense radiation pulses with durations as short as 100 ps. However, there is growing interest within the synchrotron radiation user community in performing experiments with much shorter X-ray pulses. Zholents et al. [Nucl. Instr. and Meth. A 425 (1999) 385] recently proposed using RF orbit deflection to generate sub-ps X-ray pulses. In this scheme, two deflecting cavities are used to deliver a longitudinally dependent vertical kick to the beam. An optical slit can then be used to slice out a short part of the radiation pulse. Implementation of this scheme is planned for onemore » APS beamline in the near future. In this paper, we summarize our feasibility study of this method and the expected X-ray beam parameters. We find that a pulse length of less than two picoseconds can be achieved.« less

  11. Monitoring electrostatically-induced deflection, strain and doping in suspended graphene using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Metten, Dominik; Froehlicher, Guillaume; Berciaud, Stéphane

    2017-03-01

    Electrostatic gating offers elegant ways to simultaneously strain and dope atomically thin membranes. Here, we report on a detailed in situ Raman scattering study on graphene, suspended over a Si/SiO2 substrate. In such a layered structure, the intensity of the Raman G- and 2D-mode features of graphene are strongly modulated by optical interference effects and allow an accurate determination of the electrostatically-induced membrane deflection, up to irreversible collapse. The membrane deflection is successfully described by an electromechanical model, which we also use to provide useful guidelines for device engineering. In addition, electrostatically-induced tensile strain is determined by examining the softening of the Raman features. Due to a small residual charge inhomogeneity, we find that non-adiabatic anomalous phonon softening is negligible compared to strain-induced phonon softening. These results open perspectives for innovative Raman scattering-based readout schemes in two-dimensional nanoresonators.

  12. The complete process of large elastic-plastic deflection of a cantilever

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoqiang; Yu, Tongxi

    1986-11-01

    An extension of the Elastica theory is developed to study the large deflection of an elastic-perfectly plastic horizontal cantilever beam subjected to a vertical concentrated force at its tip. The entire process is divided into four stages: I.elastic in the whole cantilever; II.loading and developing of the plastic region; III.unloading in the plastic region; and IV.reverse loading. Solutions for stages I and II are presented in a closed form. A combination of closed-form solution and numerical integration is presented for stage III. Finally, stage IV is qualitatively studied. Computed results are given and compared with those from small-deflection theory and from the Elastica theory.

  13. Multi-beamlet investigation of the deflection compensation methods of SPIDER beamlets

    NASA Astrophysics Data System (ADS)

    Baltador, C.; Veltri, P.; Agostinetti, P.; Chitarin, G.; Serianni, G.

    2016-02-01

    SPIDER (Source for Production of Ions of Deuterium Extracted from a Rf plasma) is an ion source test bed designed to extract and accelerate a negative ion current up to 40 A and 100 kV whose first beam is expected by the end of 2016. Two main effects perturb beamlet optics during the acceleration stage: space charge repulsion and the deflection induced by the permanent magnets (called co-extracted electron suppression magnets) embedded in the EG. The purpose of this work is to evaluate and compare benefits, collateral effects, and limitations of electrical and magnetic compensation methods for beamlet deflection. The study of these methods has been carried out by means of numerical modeling tools: multi-beamlet simulations have been performed for the first time.

  14. Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions

    PubMed Central

    Park, Yong-Lae; Elayaperumal, Santhi; Daniel, Bruce; Ryu, Seok Chang; Shin, Mihye; Savall, Joan; Black, Richard J.; Moslehi, Behzad; Cutkosky, Mark R.

    2015-01-01

    We describe a MRI-compatible biopsy needle instrumented with optical fiber Bragg gratings for measuring bending deflections of the needle as it is inserted into tissues. During procedures, such as diagnostic biopsies and localized treatments, it is useful to track any tool deviation from the planned trajectory to minimize positioning errors and procedural complications. The goal is to display tool deflections in real time, with greater bandwidth and accuracy than when viewing the tool in MR images. A standard 18 ga × 15 cm inner needle is prepared using a fixture, and 350-μm-deep grooves are created along its length. Optical fibers are embedded in the grooves. Two sets of sensors, located at different points along the needle, provide an estimate of the bent profile, as well as temperature compensation. Tests of the needle in a water bath showed that it produced no adverse imaging artifacts when used with the MR scanner. PMID:26405428

  15. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  16. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, Mark E.; Hudson, Charles L.

    1993-01-01

    An improved ultra-high bandwidth helical coil deflection structure for a hode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  17. Theory, simulation and experiments for precise deflection control of radiotherapy electron beams.

    PubMed

    Figueroa, R; Leiva, J; Moncada, R; Rojas, L; Santibáñez, M; Valente, M; Velásquez, J; Young, H; Zelada, G; Yáñez, R; Guillen, Y

    2018-03-08

    Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing device´s components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used to predict megavoltage electron beam control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Deflection of light to second order: A tool for illustrating principles of general relativity

    NASA Astrophysics Data System (ADS)

    Bodenner, Jeremiah; Will, Clifford M.

    2003-08-01

    We calculate the deflection of light by a spherically symmetric body in general relativity, to second order in the quantity GM/dc2, where M is the mass of the body and d is a measure of the distance of closest approach of the ray. Using three different coordinate systems for the Schwarzschild metric we show that the answers for the deflection, while the same at order GM/dc2, differ at order (GM/dc2)2. We demonstrate that all three expressions are really the same by expressing them in terms of measurable, coordinate-independent quantities. These results provide concrete illustrations of the meaning of coordinates and coordinate invariance, which may be useful in teaching general relativity.

  19. PLASTIC-SASS--A COMPUTER PROGRAM FOR STRESSES AND DEFLECTIONS IN A REACTOR SUBASSEMBLY UNDER THERMAL, HYDRAULIC, AND FUEL EXPANSION LOADS

    SciTech Connect

    Friedrich, C.M.

    1963-05-01

    PLASTlC-SASS, an ALTAC-3 computer program that determines stresses and deflections in a flat-plate, rectangular reactor subassembly is described. Elastic, plastic, and creep properties are used to calculate the results of temperature, pressure, and fuel expansion. Plate deflections increase or decrease local channel thicknesses and thus produce a hydraulic load which is a function of fuel plate deflection. (auth)

  20. Deflection measurement system for the hybrid iii six-year-old biofidelic abdomen.

    PubMed

    Gregory, T Stan; Howes, Meghan K; Rouhana, Stephen W; Hardy, Warren N

    2012-01-01

    Motor vehicle collisions are the leading cause of death for children ages 5 to 14. Enhancement of child occupant protection is partly dependent on the ability to accurately assess the interaction of child-size occupants with restraint systems. Booster seat design and belt fit are evaluated using child anthropomorphic test devices, such as the Hybrid III 6-year-old dummy., A biofidelic abdomen for the Hybrid III 6-year-old dummy is being developed by the Ford Motor Company to enhance the dummy’s ability to assess injury risk and further quantify submarining risk by measuring abdominal deflection. A practical measurement system for the biofidelic abdominal insert has been developed and demonstrated for three dimensional determination of abdominal deflection. Quantification of insert deflection is achieved via differential signal measurement using electrodes mounted within a conductive medium. Signal amplitude is proportional to the distance between the electrodes. A microcontroller is used to calculate distances between ventral electrodes and a dorsal electrode in three dimensions. This system has been calibrated statically, and its performance demonstrated in a series of sled tests. Deflection measurements from the instrumented abdominal insert indicate performance differences between two booster seat designs, yielding an average peak anterior to posterior displacement of the abdomen of 1.0 ± 3.4 mm and 31.2 ± 7.2 mm for the seats, respectively. Implementation of a 6-year-old abdominal insert with the ability to evaluate submarining potential will likely help safety researchers further enhance booster seat design and interaction with vehicle restraint systems , and help to further understand child occupant injury risk in automobile collisions.

  1. Shape Tracking of a Dexterous Continuum Manipulator Utilizing Two Large Deflection Shape Sensors

    PubMed Central

    Farvardin, Amirhossein; Grupp, Robert; Murphy, Ryan J.; Taylor, Russell H.; Iordachita, Iulian

    2016-01-01

    Dexterous continuum manipulators (DCMs) can largely increase the reachable region and steerability for minimally and less invasive surgery. Many such procedures require the DCM to be capable of producing large deflections. The real-time control of the DCM shape requires sensors that accurately detect and report large deflections. We propose a novel, large deflection, shape sensor to track the shape of a 35 mm DCM designed for a less invasive treatment of osteolysis. Two shape sensors, each with three fiber Bragg grating sensing nodes is embedded within the DCM, and the sensors’ distal ends fixed to the DCM. The DCM centerline is computed using the centerlines of each sensor curve. An experimental platform was built and different groups of experiments were carried out, including free bending and three cases of bending with obstacles. For each experiment, the DCM drive cable was pulled with a precise linear slide stage, the DCM centerline was calculated, and a 2D camera image was captured for verification. The reconstructed shape created with the shape sensors is compared with the ground truth generated by executing a 2D–3D registration between the camera image and 3D DCM model. Results show that the distal tip tracking accuracy is 0.40 ± 0.30 mm for the free bending and 0.61 ± 0.15 mm, 0.93 ± 0.05 mm and 0.23 ± 0.10 mm for three cases of bending with obstacles. The data suggest FBG arrays can accurately characterize the shape of large-deflection DCMs. PMID:27761103

  2. Method and apparatus for reducing rotor blade deflections, loads, and/or peak rotational speed

    DOEpatents

    Moroz, Emilian Mieczyslaw; Pierce, Kirk Gee

    2006-10-17

    A method for reducing at least one of loads, deflections of rotor blades, or peak rotational speed of a wind turbine includes storing recent historical pitch related data, wind related data, or both. The stored recent historical data is analyzed to determine at least one of whether rapid pitching is occurring or whether wind speed decreases are occurring. A minimum pitch, a pitch rate limit, or both are imposed on pitch angle controls of the rotor blades conditioned upon results of the analysis.

  3. Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source.

    PubMed

    Barnes, Ronald A; Maswadi, Saher; Glickman, Randolph; Shadaram, Mehdi

    2014-01-20

    The goal of this paper is to demonstrate the unique capability of measuring the vector or angular information of propagating acoustic waves using an optical sensor. Acoustic waves were generated using photoacoustic interaction and detected by the probe beam deflection technique. Experiments and simulations were performed to study the interaction of acoustic emissions with an optical sensor in a coupling medium. The simulated results predict the probe beam and wavefront interaction and produced simulated signals that are verified by experiment.

  4. All-optical optoacoustic microscopy system based on probe beam deflection technique

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher M.; Tsyboulskic, Dmitri; Roth, Caleb C.; Glickman, Randolph D.; Beier, Hope T.; Oraevsky, Alexander A.; Ibey, Bennett L.

    2016-03-01

    It is difficult to achieve sub-micron resolution in backward mode OA microscopy using conventional piezoelectric detectors, because of wavefront distortions caused by components placed in the optical path, between the sample and the objective lens, that are required to separate the acoustic wave from the optical beam. As an alternate approach, an optoacoustic microscope (OAM) was constructed using the probe beam deflection technique (PBDT) to detect laserinduced acoustic signals. The all-optical OAM detects laser-generated pressure waves using a probe beam passing through a coupling medium, such as water, filling the space between the microscope objective lens and sample. The acoustic waves generated in the sample propagate through the coupling medium, causing transient changes in the refractive index that deflect the probe beam. These deflections are measured with a high-speed, balanced photodiode position detector. The deflection amplitude is directly proportional to the magnitude of the acoustic pressure wave, and provides the data required for image reconstruction. The sensitivity of the PBDT detector expressed as noise equivalent pressure was 12 Pa, comparable to that of existing high-performance ultrasound detectors. Because of the unimpeded working distance, a high numerical aperture objective lens, i.e. NA = 1, was employed in the OAM to achieve near diffraction-limited lateral resolution of 0.5 μm at 532nm. The all-optical OAM provides several benefits over current piezoelectric detector-based systems, such as increased lateral and axial resolution, higher sensitivity, robustness, and potentially more compatibility with multimodal instruments.

  5. Toward Identifying Needed Investments in Modeling and Simulation Tools for NEO Deflection Planning

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.

    2009-01-01

    Its time: a) To bring planetary scientists, deflection system investigators and vehicle designers together on the characterization/mitigation problem. b) To develop a comprehensive trade space of options. c) To trade options under a common set of assumptions and see what comparisons on effectiveness can be made. d) To explore the synergy that can be had with proposed scientific and exploration architectures while interest in NEO's are at an all time high.

  6. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events (POSTPRINT)

    DTIC Science & Technology

    2012-09-20

    coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks...the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven...interplanetary CME (ICME) drivers. Most such driverless shocks occur only from CMEs near the solar limbs, but these disk-center CMEs were located adjacent to CHs

  7. Improvement of Latvian Geoid Model Using GNSS/Levelling, GOCE Data and Vertical Deflection Measurements

    NASA Astrophysics Data System (ADS)

    Janpaule, Inese; Haritonova, Diana; Balodis, Janis; Zarins, Ansis; Silabriedis, Gunars; Kaminskis, Janis

    2015-03-01

    Development of a digital zenith telescope prototype, improved zenith camera construction and analysis of experimental vertical deflection measurements for the improvement of the Latvian geoid model has been performed at the Institute of Geodesy and Geoinformatics (GGI), University of Latvia. GOCE satellite data was used to compute geoid model for the Riga region, and European gravimetric geoid model EGG97 and 102 data points of GNSS/levelling were used as input data in the calculations of Latvian geoid model.

  8. Effect of flap deflection on the lift coefficient of wings operating in a biplane configuration

    NASA Technical Reports Server (NTRS)

    Stasiak, J.

    1977-01-01

    Biplane models with a lift flap were tested in a wind tunnel to study the effect of flap deflection on the aerodynamic coefficient of the biplane as well as of the individual wings. Optimization of the position flap was carried out, and the effect of changes in the chord length of the lower wing was determined for the aerodynamic structure of a biplane with a lift flap on the upper wing.

  9. Effects of differential and symmetrical aileron deflection on the aerodynamic characteristics of an NASA supercritical-wing research airplane model

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.

    1975-01-01

    An investigation has been conducted in the Langley 8 foot transonic pressure tunnel to determine the effects of differential and symmetrical aileron deflection on the longitudinal and lateral directional aerodynamic characteristics of an 0.087 scale model of an NASA supercritical wing research airplane (TF-8A). Tests were conducted at Mach numbers from 0.25 to 0.99 in order to determine the effects of differential aileron deflection and at Mach numbers of 0.25 and 0.50 to determine the effects of symmetrical aileron (flap) deflection. The angle of attack range for all tests varied from approximately -12 deg to 20 deg.

  10. Design Criteria for Deflection Capacity of conventionally Reinforced Concrete Slabs. Phase I. State-of-the-Art Report.

    DTIC Science & Technology

    1980-10-01

    Previous Investigations 9 3.2 Ockleston’s Work 9 3.3 Wood’s Work 11 3.3.1 Experimental Investigation 11 3.3.2 Analytical investigation 13 3.3.3 Load...Deflection Relationship 16 3.4 Sawczuck’s Work 17 3.5 Park’s Work on Compressive Membrane Action 19 3.5.1 Experimental Investigation 19 3.5.2 Analysis of...DEFLECTION CAPACITY 104 8.1 Idealized Load-Deflection Behavior of a Restrained Strip 104 8.2 A Comparison with Experimental Results 110 9. DEVELOPMENT OF

  11. Time-to-space mapping of a continuous light wave with picosecond time resolution based on an electrooptic beam deflection.

    PubMed

    Hisatake, S; Kobayashi, T

    2006-12-25

    We demonstrate a time-to-space mapping of an optical signal with a picosecond time resolution based on an electrooptic beam deflection. A time axis of the optical signal is mapped into a spatial replica by the deflection. We theoretically derive a minimum time resolution of the time-to-space mapping and confirm it experimentally on the basis of the pulse width of the optical pulses picked out from the deflected beam through a narrow slit which acts as a temporal window. We have achieved the minimum time resolution of 1.6+/-0.2 ps.

  12. Experiments on Frequency Dependence of the Deflection of Light in Yang-Mills Gravity

    NASA Astrophysics Data System (ADS)

    Hao, Yun; Zhu, Yiyi; Hsu, Jong-Ping

    2018-01-01

    In Yang-Mills gravity based on flat space-time, the eikonal equation for a light ray is derived from the modified Maxwell's wave equations in the geometric-optics limit. One obtains a Hamilton-Jacobi type equation, GLµv∂µΨ∂vΨ = 0 with an effective Riemannian metric tensor GLµv. According to Yang-Mills gravity, light rays (and macroscopic objects) move as if they were in an effective curved space-time with a metric tensor. The deflection angle of a light ray by the sun is about 1.53″ for experiments with optical frequencies ≈ 1014Hz. It is roughly 12% smaller than the usual value 1.75″. However, the experimental data in the past 100 years for the deflection of light by the sun in optical frequencies have uncertainties of (10-20)% due to large systematic errors. If one does not take the geometric-optics limit, one has the equation, GLµv[∂µΨ∂vΨcosΨ+ (∂µ∂vΨ)sinΨ] = 0, which suggests that the deflection angle could be frequency-dependent, according to Yang-Mills gravity. Nowadays, one has very accurate data in the radio frequencies ≈ 109Hz with uncertainties less than 0.1%. Thus, one can test this suggestion by using frequencies ≈ 1012 Hz, which could have a small uncertainty 0.1% due to the absence of systematic errors in the very long baseline interferometry.

  13. Simultaneous intrinsic and extrinsic calibration of a laser deflecting tilting mirror in the projective voltage space.

    PubMed

    Schneider, Adrian; Pezold, Simon; Baek, Kyung-Won; Marinov, Dilyan; Cattin, Philippe C

    2016-09-01

    PURPOSE  : During the past five decades, laser technology emerged and is nowadays part of a great number of scientific and industrial applications. In the medical field, the integration of laser technology is on the rise and has already been widely adopted in contemporary medical applications. However, it is new to use a laser to cut bone and perform general osteotomy surgical tasks with it. In this paper, we describe a method to calibrate a laser deflecting tilting mirror and integrate it into a sophisticated laser osteotome, involving next generation robots and optical tracking. METHODS  : A mathematical model was derived, which describes a controllable deflection mirror by the general projective transformation. This makes the application of well-known camera calibration methods possible. In particular, the direct linear transformation algorithm is applied to calibrate and integrate a laser deflecting tilting mirror into the affine transformation chain of a surgical system. RESULTS  : Experiments were performed on synthetic generated calibration input, and the calibration was tested with real data. The determined target registration errors in a working distance of 150 mm for both simulated input and real data agree at the declared noise level of the applied optical 3D tracking system: The evaluation of the synthetic input showed an error of 0.4 mm, and the error with the real data was 0.3 mm.

  14. Electric Solar Wind Sail Kinetic Energy Impactor for Asteroid Deflection Missions

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kouhei; Yamakawa, Hiroshi

    2016-03-01

    An electric solar wind sail uses the natural solar wind stream to produce low but continuous thrust by interacting with a number of long thin charged tethers. It allows a spacecraft to generate a thrust without consuming any reaction mass. The aim of this paper is to investigate the use of a spacecraft with such a propulsion system to deflect an asteroid with a high relative velocity away from an Earth collision trajectory. To this end, we formulate a simulation model for the electric solar wind sail. By summing thrust vectors exerted on each tether, a dynamic model which gives the relation between the thrust and sail attitude is proposed. Orbital maneuvering by fixing the sail's attitude and changing tether voltage is considered. A detailed study of the deflection of fictional asteroids, which are assumed to be identified 15 years before Earth impact, is also presented. Assuming a spacecraft characteristic acceleration of 0.5 mm/s 2, and a projectile mass of 1,000 kg, we show that the trajectory of asteroids with one million tons can be changed enough to avoid a collision with the Earth. Finally, the effectiveness of using this method of propulsion in an asteroid deflection mission is evaluated in comparison with using flat photonic solar sails.

  15. On Possibility of Direct Asteroid Deflection by Electric Solar Wind Sail

    NASA Astrophysics Data System (ADS)

    Merikallio, Sini; Janhunen, Pekka

    2010-05-01

    The Electric Solar Wind Sail (E-sail) is a new propulsion method for interplanetary travel which was invented in 2006 and is currently under development. The E-sail uses charged tethers to extract momentum from the solar wind particles to obtain propulsive thrust. According to current estimates, the E-sail is 2-3 orders of magnitude better than traditional propulsion methods (chemical rockets and ion engines) in terms of produced lifetime-integrated impulse per propulsion system mass. Here we analyze the problem of using the E-sail for directly deflecting an Earth-threatening asteroid. The problem then culminates into how to attach the E-sail device to the asteroid. We assess a number of alternative attachment strategies and arrive at a recommendation of using the gravity tractor method because of its workability for a wide variety of asteroid types. We also consider possible techniques to scale up the E-sail force beyond the baseline one Newton level to deal with more imminent or larger asteroid or cometary threats. As a baseline case we consider a 3 million ton asteroid which can be deflected with a baseline 1 N E-sail in 5-10 years. Once developed, the E-sail would appear to provide a safe and reasonably low-cost way of deflecting dangerous asteroids and other heavenly bodies in cases where the collision threat becomes known several years in advance.

  16. North-South Asymmetry in the Magnetic Deflection of Polar Coronal Jets

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Zimbardo, Gaetano; Bothmer, Volker; Patsourakos, Spiros

    Solar jets observed with the Extreme Ultra-Violet Imager (EUVI) and CORonagraphs (COR) instruments aboard the STEREO mission provide a tool to probe and understand the magnetic structure of the corona. Since the corona is an environment where the magnetic pressure is greater than the kinetic pressure, the magnetic field controls the dynamics of plasma and, on average, jets during their propagation trace the magnetic field lines. We discuss the North-South asymmetry of the magnetic field of the Sun as inferred from measurements of the deflection of polar coronal hole jets when they propagate throughout the corona. We measured the position angle at 1 and at 2 solar radii for the 79 jets of the catalogue of Nisticò et al. (2009), based on the STEREO ultraviolet and visible observations, and we found that the propagation is not radial. The average jet deflection is studied both in the plane perpendicular to the line of sight, and, for a reduced number of jets in the three dimensional (3D) space. We find that the magnetic deflection of jets is larger in the North than in the South, with an asymmetry which is consistent with the N-S asymmetry of the heliospheric magnetic field inferred from the Ulysses in situ measurements, and gives clues to the study of the large scale solar magnetic field.

  17. Deflected jet experiments in a turbulent combustor flowfield. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ferrell, G. B.; Lilley, D. G.

    1985-01-01

    Experiments were conducted to characterize the time-mean and turbulent flow field of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the tracjectory and spread pattern of the jet. A six-position single hot-wire technique was used to measure the velocities and turbulent stresses in nonswirling crossflow cases. In these cases, measurements confirmed that the deflected jet is symmetrical about the vertical plan passing through the crossflow axis, and the jet penetration was found to be reduced from that of comparable velocity ratio infinite crossflow cases. In the swirling crossflow cases, the flow visualization techniques enabled gross flow field characterization to be obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow.

  18. Cupula displacement, hair bundle deflection, and physiological responses in the transparent semicircular canal of young eel.

    PubMed

    Rüsch, A; Thurm, U

    1989-03-01

    The transparent labyrinth of young eels (Anguilla anguilla L.) was used in toto for studying the configuration of cupula displacement, deflection of the hair bundle, and correlated changes in transepithelial voltage (delta TEV) and nerve activity (delta NA) in the semicircular canal. Microcapillaries were introduced into the canal through holes produced by a microthermocauter. Mechanical stimulation was applied either by injection of fluid into the ampulla or by electromagnetically displacing ferrofluid as a piston within the canal. Motion of individual kinocilia, stained cupulae or the ferrofluid piston was analysed by double-exposed microphotographs, photodiodes, or a video-system. The three-dimensional cupula displacement configuration was found to be piston- to diaphragm-like. Hair bundles at different sites on the crista exhibit differences in amplitude and time course of deflection. The transfer factor between shifts of the canal fluid and the tips of the kinocilia is 0.4-0.6. Displacements in opposite directions induce delta TEV and delta NA of opposite sign. Various tests confirmed delta TEV to reflect receptor potential responses. Nerve activity adapts to a tonic response with a time constant of 6.4 s. No similar adaptation occurred in delta TEV. Stimulus-response curves of TEV- and NA-responses are similar and sigmoid in shape with saturation at ciliary deflections of roughly +6 degrees and -3 degrees.

  19. Evaluation of force released by deflection of orthodontic wires in conventional and self-ligating brackets.

    PubMed

    Higa, Rodrigo Hitoshi; Semenara, Nayara Thiago; Henriques, José Fernando Castanha; Janson, Guilherme; Sathler, Renata; Fernandes, Thais Maria Freire

    2016-01-01

    The aim of the study was to evaluate deflection forces of rectangular orthodontic wires in conventional (MorelliTM), active (In-Ovation RTM) and passive (Damon 3MXTM) self-ligating brackets. Two brands of stainless steel and nickel-titanium (NiTi) wires (MorelliTM and GACTM), in addition to OrmcoTM copper-nickel-titanium wires were used. Specimens were assembled in a clinical simulation device especially designed for this study and tested in an Instron universal testing machine. For the testing procedures, an acrylic structure representative of the maxillary right central incisor was lingually moved in activations of 0 to 1 mm, with readings of the force released by deflection in unloading of 0.5, 0.8 and 1 mm at a constant speed of 2 mm/min. Inter-bracket forces with stainless steel, NiTi and CuNiTi were individually compared by two-way ANOVA, followed by Tukey's tests. Results showed that there were lower forces in conventional brackets, followed by active and passive self-ligating brackets. Within the brands, only for NiTi wires, the MorelliTM brand presented higher forces than GACTM wires. Bracket systems provide different degrees of deflection force, with self-ligating brackets showing the highest forces.

  20. Expressions for optical scalars and deflection angle at second order in terms of curvature scalars

    NASA Astrophysics Data System (ADS)

    Crisnejo, Gabriel; Gallo, Emanuel

    2018-04-01

    We present formal expressions for the optical scalars in terms of the curvature scalars in the weak gravitational lensing regime at second order in perturbations of a flat background without mentioning the extension of the lens or their shape. Also, by considering the thin lens approximation for static and axially symmetric configurations we obtain an expression for the second-order deflection angle which generalizes our previous result presented by Gallo and Moreschi [Phys. Rev. D 83, 083007 (2011)., 10.1103/PhysRevD.83.083007]. As applications of these formulas we compute the optical scalars for some known family of metrics, and we recover expressions for the deflection angle. In contrast to other works in the subject, our formalism allows a straightforward identification of how the different components of the curvature tensor contribute to the optical scalars and deflection angle. We also discuss in what sense the Schwarzschild solution can be thought as a true thin lens at second order.

  1. Spacecraft formation flying for Earth-crossing object deflections using a power limited laser ablating

    NASA Astrophysics Data System (ADS)

    Yoo, Sung-Moon; Song, Young-Joo; Park, Sang-Young; Choi, Kyu-Hong

    2009-06-01

    A formation flying strategy with an Earth-crossing object (ECO) is proposed to avoid the Earth collision. Assuming that a future conceptual spacecraft equipped with a powerful laser ablation tool already rendezvoused with a fictitious Earth collision object, the optimal required laser operating duration and direction histories are accurately derived to miss the Earth. Based on these results, the concept of formation flying between the object and the spacecraft is applied and analyzed as to establish the spacecraft's orbital motion design strategy. A fictitious "Apophis"-like object is established to impact with the Earth and two major deflection scenarios are designed and analyzed. These scenarios include the cases for the both short and long laser operating duration to avoid the Earth impact. Also, requirement of onboard laser tool's for both cases are discussed. As a result, the optimal initial conditions for the spacecraft to maintain its relative trajectory to the object are discovered. Additionally, the discovered optimal initial conditions also satisfied the optimal required laser operating conditions with no additional spacecraft's own fuel expenditure to achieve the spacecraft formation flying with the ECO. The initial conditions founded in the current research can be used as a spacecraft's initial rendezvous points with the ECO when designing the future deflection missions with laser ablation tools. The results with proposed strategy are expected to make more advances in the fields of the conceptual studies, especially for the future deflection missions using powerful laser ablation tools.

  2. Study of Tensile Properties and Deflection Temperature of Polypropylene/Subang Pineapple Leaf Fiber Composites

    NASA Astrophysics Data System (ADS)

    Hafizhah, R.; Juwono, A. L.; Roseno, S.

    2017-05-01

    The development of eco-friendly composites has been increasing in the past four decades because the requirement of eco-friendly materials has been increasing. Indonesia has a lot of natural fiber resources and, pineapple leaf fiber is one of those fibers. This study aimed to determine the influence of weight fraction of pineapple leaf fibers, that were grown at Subang, to the tensile properties and the deflection temperature of polypropylene/Subang pineapple leaf fiber composites. Pineapple leaf fibers were pretreated by alkalization, while polypropylene pellets, as the matrix, were extruded into sheets. Hot press method was used to fabricate the composites. The results of the tensile test and Heat Deflection Temperature (HDT) test showed that the composites that contained of 30 wt.% pineapple leaf fiber was the best composite. The values of tensile strength, modulus of elasticity and deflection temperature were (64.04 ± 3.91) MPa; (3.98 ± 0.55) GPa and (156.05 ± 1.77) °C respectively, in which increased 187.36%, 198.60%, 264.72% respectively from the pristine polypropylene. The results of the observation on the fracture surfaces showed that the failure modes were fiber breakage and matrix failure.

  3. Challenges of Deflecting an Asteroid or Comet Nucleus with a Nuclear Burst

    NASA Astrophysics Data System (ADS)

    Bradley, P. A.; Plesko, C. S.; Clement, R. R. C.; Conlon, L. M.; Weaver, R. P.; Guzik, J. A.; Pritchett-Sheats, L. A.; Huebner, W. F.

    2010-01-01

    There are many natural disasters that humanity has to deal with over time. These include earthquakes, tsunamis, hurricanes, floods, asteroid strikes, and so on. Some of these disasters occur slowly enough that some advance warning is possible for affected areas. In this case, the response is to evacuate the affected area and deal with the damage later. The Katrina and Rita hurricane evacuations on the U.S. Gulf Coast in 2005 demonstrated the chaos that can result from such a response. In contrast with other natural disasters, it is likely that an asteroid or comet nucleus on a collision course with Earth will be detected with enough warning time to possibly deflect it away. Thanks to Near-Earth Object (NEO) surveys, people are working towards a goal of cataloging at least 90% of all near-Earth objects with diameters larger than ~140 meters in the next fifteen years. The important question then, is how to mitigate the threat from an asteroid or comet nucleus found to be on a collision course with Earth. In this paper, we briefly review some possible deflection methods, describe their good and bad points, and then embark on a more detailed description of using nuclear munitions in a standoff mode to deflect the asteroid or comet nucleus before it can hit Earth.

  4. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  5. A generalized analytical approach to the coupled effect of SMA actuation and elastica deflection

    NASA Astrophysics Data System (ADS)

    Sreekumar, M.; Singaperumal, M.

    2009-11-01

    A compliant miniature parallel manipulator made of superelastic nitinol pipe as its central pillar and actuated by three symmetrically attached shape memory alloy (SMA) wires is under development. The mobility for the platform is obtained by the selective actuation of one or two wires at a time. If one wire is actuated, the other two unactuated wires provide the counter effect. Similarly, if two wires are actuated simultaneously or in a differential manner, the third unactuated wire resists the movement of the platform. In an earlier work of the authors, the static displacement analysis was presented without considering the effect of unactuated wires. In this contribution, the force-displacement analysis is presented considering the effect of both actuated and unactuated wires. Subsequently, an attempt has been made to obtain a generalized approach from which six types of actuation methods are identified using a group of conditional parameters. Each method leads to a set of large deflection expressions suitable for a particular actuation method. As the large deflection expressions derived for the mechanism are nonlinear and involve interdependent parameters, their simplified form using a parametric approximation have also been obtained using Howell's algorithm. The generalized approach and the solution algorithm developed can be applied to any kind of compliant mechanism having large deflection capabilities, including planar and spatial MEMS devices and stability analysis of long slender columns supported by wires or cables. The procedure developed is also suitable for the static analysis of spatial compliant mechanisms actuated by multiple SMA actuators.

  6. Deflected Propagation of CMEs and Its Importance on the CME Arrival Forecasting

    NASA Astrophysics Data System (ADS)

    Wang, Yuming; Zhuang, Bin; Shen, Chenglong

    2017-04-01

    As the most important driver of severe space weather, coronal mass ejections (CMEs) and their geoeffectiveness have been studied intensively. Previous statistical studies have shown that not all the front-side halo CMEs are geoeffective, and not all non-recurrent geomagnetic storms can be tracked back to a CME. These phenomena may cause some failed predictions of the geoeffectiveness of CMEs. The recent notable event exhibiting such a failure was on 2015 March 15 when a fast CME originated from the west hemisphere. Space Weather Prediction Center (SWPC) of NOAA initially forecasted that the CME would at most cause a very minor geomagnetic disturbance labeled as G1. However, the CME produced the largest geomagnetic storm so far, at G4 level with the provisional Dst value of -223 nT, in the current solar cycle 24 [e.g., Kataoka et al., 2015; Wang et al., 2016]. Such an unexpected phenomenon naturally raises the first question for the forecasting of the geoeffectiveness of a CME, i.e., whether or not a CME will hit the Earth even though we know the source location and initial kinematic properties of the CME. A full understanding of the propagation trajectory, e.g., the deflected propagation, of a CME from the Sun to 1 AU is the key. With a few cases, we show the importance of the deflection effect in the space weather forecasting. An automated CME arrival forecasting system containing a deflected propagation model is presented.

  7. Rotational and translational considerations in kinetic impact deflection of potentially hazardous asteroids

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; Xu, Bo; Circi, Christian; Zhang, Lei

    2017-04-01

    Kinetic impact may be the most reliable and easily implemented method to deflect hazardous asteroids using current technology. Depending on warning time, it can be effective on asteroids with diameters of a few hundred meters. Current impact deflection research often focuses on the orbital dynamics of asteroids. In this paper, we use the ejection outcome of a general oblique impact to calculate how an asteroid's rotational and translational state changes after impact. The results demonstrate how small impactors affect the dynamical state of small asteroids having a diameter of about 100 m. According to these consequences, we propose using several small impactors to hit an asteroid continuously and gently, making the deflection mission relatively flexible. After calculating the rotational variation, we find that the rotational state, especially of slender non-porous asteroids, can be changed significantly. This gives the possibility of using multiple small impactors to mitigate a potentially hazardous asteroid by spinning it up into pieces, or to despin one for future in-situ investigation (e.g., asteroid retrieval or mining).

  8. Deflection of light by black holes and massless wormholes in massive gravity

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Sarkar, Nayan; Rahaman, Farook; Banerjee, Ayan; Hansraj, Sudan

    2018-04-01

    Weak gravitational lensing by black holes and wormholes in the context of massive gravity (Bebronne and Tinyakov, JHEP 0904:100, 2009) theory is studied. The particular solution examined is characterized by two integration constants, the mass M and an extra parameter S namely `scalar charge'. These black hole reduce to the standard Schwarzschild black hole solutions when the scalar charge is zero and the mass is positive. In addition, a parameter λ in the metric characterizes so-called `hair'. The geodesic equations are used to examine the behavior of the deflection angle in four relevant cases of the parameter λ . Then, by introducing a simple coordinate transformation r^λ =S+v^2 into the black hole metric, we were able to find a massless wormhole solution of Einstein-Rosen (ER) (Einstein and Rosen, Phys Rev 43:73, 1935) type with scalar charge S. The programme is then repeated in terms of the Gauss-Bonnet theorem in the weak field limit after a method is established to deal with the angle of deflection using different domains of integration depending on the parameter λ . In particular, we have found new analytical results corresponding to four special cases which generalize the well known deflection angles reported in the literature. Finally, we have established the time delay problem in the spacetime of black holes and wormholes, respectively.

  9. Photothermal laser deflection, an innovative technique to measure particles in exhausts

    NASA Astrophysics Data System (ADS)

    Hess, Cecil F.

    1993-10-01

    Photothermal Laser Deflection (PLD) is an analytical technique to measure in real-time the mass concentration of particles and gaseous exhaust pollutants in a variety of combustion devices (e.g., gas turbine engines and rockets). PLD uses a pump laser to locally heat the particle or gaseous species, thus changing the refractive index of the surrounding gas to form a thermal lens. A probe laser beam travelling through the thermal lens is temporarily deflected, and the amount of deflection is proportional to the species mass concentration. The experiments and analyses conducted during phase 1 demonstrated the feasibility of PLD in measuring the mass concentration of both soot particles and NO2 at a repetition rate of 25 HZ. PLD response was linear at soot concentrations from 0.3 to 10 mg/cubic meters at NO2 concentrations from approximately 6 to 208 ppm. Strategies to measure lower concentrations have been defined and include focusing the probe beam onto the face of the bi-cell detector. The large dynamic range, fast acquisition rate, and ability to measure particulate and gaseous pollutants makes PLD superior to other available methods.

  10. Calculation of unsteady airfoil loads with and without flap deflection at -90 degrees incidence

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1991-01-01

    A method has been developed for calculating the viscous flow about airfoils with and without deflected flaps at -90 deg incidence. This unique method provides for the direct solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body-fitted computational mesh incorporating a staggered grid method. The vorticity is determined at the node points, and the velocity components are defined at the mesh-cell sides. The staggered-grid orientation provides for accurate representation of vorticity at the node points and for the conservation of mass at the mesh-cell centers. The method provides for the direct solution of the flow field and satisfies the conservation of mass to machine zero at each time-step. The results of the present analysis and experimental results obtained for a XV-15 airfoil are compared. The comparisons indicate that the calculated drag reduction caused by flap deflection and the calculated average surface pressure are in excellent agreement with the measured results. Comparisons of the numerical results of the present method for several airfoils demonstrate the significant influence of airfoil curvature and flap deflection on the predicted download.

  11. Gravitational starlight deflection measurements during the 21 August 2017 total solar eclipse

    NASA Astrophysics Data System (ADS)

    Bruns, Donald G.

    2018-04-01

    Precise star positions near the Sun were measured during the 21 August 2017 total solar eclipse in order to measure their gravitational deflections. The equipment, procedures, and analysis are described in detail. A portable refractor, a CCD camera, and a computerized mount were set up in Wyoming. Detailed calibrations were necessary to improve accuracy and precision. Nighttime measurements taken just before the eclipse provided cubic optical distortion corrections. Calibrations based on star field images 7.4° on both sides of the Sun taken during totality gave linear and quadratic plate constants. A total of 45 images of the sky surrounding the Sun were acquired during the middle part of totality, with an integrated exposure of 22 s. The deflection analysis depended on accurate star positions from the USNO’s UCAC5 star catalog. The final result was a deflection coefficient L  =  1.7512 arcsec, in perfect agreement with the theoretical value, with an uncertainty of only 3%.

  12. Rapid design and optimization of low-thrust rendezvous/interception trajectory for asteroid deflection missions

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Zhu, Yongsheng; Wang, Yukai

    2014-02-01

    Asteroid deflection techniques are essential in order to protect the Earth from catastrophic impacts by hazardous asteroids. Rapid design and optimization of low-thrust rendezvous/interception trajectories is considered as one of the key technologies to successfully deflect potentially hazardous asteroids. In this paper, we address a general framework for the rapid design and optimization of low-thrust rendezvous/interception trajectories for future asteroid deflection missions. The design and optimization process includes three closely associated steps. Firstly, shape-based approaches and genetic algorithm (GA) are adopted to perform preliminary design, which provides a reasonable initial guess for subsequent accurate optimization. Secondly, Radau pseudospectral method is utilized to transcribe the low-thrust trajectory optimization problem into a discrete nonlinear programming (NLP) problem. Finally, sequential quadratic programming (SQP) is used to efficiently solve the nonlinear programming problem and obtain the optimal low-thrust rendezvous/interception trajectories. The rapid design and optimization algorithms developed in this paper are validated by three simulation cases with different performance indexes and boundary constraints.

  13. The influence of asymmetric convections on typhoon cyclonic deflection tracks across Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, L. H.; Su, S. H.

    2016-12-01

    This study focus on the mechanisms of typhoon cyclonic deflection tracks (CDT) approaching the east coast of Taiwan. We analyzed for 84 landfall typhoons which has 49 CDT cases, 18 cases are with very large deflection angles (DA) ( > 20°) and another 7 cases are with cyclonic looping tracks (CLT). Most of the large DA and CLT cases are with relatively slow translation speeds of 4 m s-1 and occurred near the east coast, north of 23 °N in Taiwan. The Weather Research and Forecasting (WRF) Model was used to simulate the typhoon CDT cases. We use the potential vorticity (PV) tendency diagnosis to analyze the typhoon movements, and decompose the wave number one component of PV tendencies into horizontal advection (HA), vertical advection (VA) and diabatic heating (DH) terms. The northern landfall storms have significant vorticity stretching and subsidence warming to the south of the storm. The subsidence warming suppresses convections and produces heating asymmetries for the typhoon structure. The vorticity stretching (VA effect) and diabatic heating asymmetries (DH effect) which lead the southwestward deflection storm motion. The HA effect in general does not contribute to the CDT. Our results highlight the effects of vorticity stretching and asymmetric convective heating in producing the CDT to north of 23 °N near the east coast of Taiwan.

  14. Weak deflection gravitational lensing for photons coupled to Weyl tensor in a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Cao, Wei-Guang; Xie, Yi

    2018-03-01

    Beyond the Einstein-Maxwell model, electromagnetic field might couple with gravitational field through the Weyl tensor. In order to provide one of the missing puzzles of the whole physical picture, we investigate weak deflection lensing for photons coupled to the Weyl tensor in a Schwarzschild black hole under a unified framework that is valid for its two possible polarizations. We obtain its coordinate-independent expressions for all observables of the geometric optics lensing up to the second order in the terms of ɛ which is the ratio of the angular gravitational radius to angular Einstein radius of the lens. These observables include bending angle, image position, magnification, centroid and time delay. The contributions of such a coupling on some astrophysical scenarios are also studied. We find that, in the cases of weak deflection lensing on a star orbiting the Galactic Center Sgr A*, Galactic microlensing on a star in the bulge and astrometric microlensing by a nearby object, these effects are beyond the current limits of technology. However, measuring the variation of the total flux of two weak deflection lensing images caused by the Sgr A* might be a promising way for testing such a coupling in the future.

  15. Modelling Extortion Racket Systems: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Nardin, Luis G.; Andrighetto, Giulia; Székely, Áron; Conte, Rosaria

    Mafias are highly powerful and deeply entrenched organised criminal groups that cause both economic and social damage. Overcoming, or at least limiting, their harmful effects is a societally beneficial objective, which renders its dynamics understanding an objective of both scientific and political interests. We propose an agent-based simulation model aimed at understanding how independent and combined effects of legal and social norm-based processes help to counter mafias. Our results show that legal processes are effective in directly countering mafias by reducing their activities and changing the behaviour of the rest of population, yet they are not able to change people's mind-set that renders the change fragile. When combined with social norm-based processes, however, people's mind-set shifts towards a culture of legality rendering the observed behaviour resilient to change.

  16. Deflection angle detecting system for the large-angle and high-linearity fast steering mirror using quadrant detector

    NASA Astrophysics Data System (ADS)

    Ni, Yingxue; Wu, Jiabin; San, Xiaogang; Gao, Shijie; Ding, Shaohang; Wang, Jing; Wang, Tao

    2018-02-01

    A deflection angle detecting system (DADS) using a quadrant detector (QD) is developed to achieve the large deflection angle and high linearity for the fast steering mirror (FSM). The mathematical model of the DADS is established by analyzing the principle of position detecting and error characteristics of the QD. Based on this mathematical model, the method of optimizing deflection angle and linearity of FSM is demonstrated, which is proved feasible by simulation and experimental results. Finally, a QD-based FSM is designed and tested. The results show that it achieves 0.72% nonlinearity, ±2.0 deg deflection angle, and 1.11-μrad resolution. Therefore, the application of this method will be beneficial to design the FSM.

  17. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Electron beam deflection, focusing, and collimation by a femtosecond laser lens

    NASA Astrophysics Data System (ADS)

    Minogin, V. G.

    2009-11-01

    This work examines spatial separation of femtosecond electron bunches using the ponderomotive potential created by femtosecond laser pulses. It is shown that ponderomotive optical potentials are capable of effectively deflecting, focusing, and collimating narrow femtosecond electron bunches.

  18. The Significance of the Influence of the CME Deflection in Interplanetary Space on the CME Arrival at Earth

    NASA Astrophysics Data System (ADS)

    Zhuang, Bin; Wang, Yuming; Shen, Chenglong; Liu, Siqing; Wang, Jingjing; Pan, Zonghao; Li, Huimin; Liu, Rui

    2017-08-01

    As one of the most violent astrophysical phenomena, coronal mass ejections (CMEs) have strong potential space weather effects. However, not all Earth-directed CMEs encounter the Earth and produce geo-effects. One reason is the deflected propagation of CMEs in interplanetary space. Although there have been several case studies clearly showing such deflections, it has not yet been statistically assessed how significantly the deflected propagation would influence the CME’s arrival at Earth. We develop an integrated CME-arrival forecasting (iCAF) system, assembling the modules of CME detection, three-dimensional (3D) parameter derivation, and trajectory reconstruction to predict whether or not a CME arrives at Earth, and we assess the deflection influence on the CME-arrival forecasting. The performance of iCAF is tested by comparing the two-dimensional (2D) parameters with those in the Coordinated Data Analysis Workshop (CDAW) Data Center catalog, comparing the 3D parameters with those of the gradual cylindrical shell model, and estimating the success rate of the CME Earth-arrival predictions. It is found that the 2D parameters provided by iCAF and the CDAW catalog are consistent with each other, and the 3D parameters derived by the ice cream cone model based on single-view observations are acceptable. The success rate of the CME-arrival predictions by iCAF with deflection considered is about 82%, which is 19% higher than that without deflection, indicating the importance of the CME deflection for providing a reliable forecasting. Furthermore, iCAF is a worthwhile project since it is a completely automatic system with deflection taken into account.

  19. Nanocantilevers with Adjustable Static Deflection and Significantly Tunable Spectrum Resonant Frequencies for Applications in Nanomechanical Mass Sensors

    PubMed Central

    Stachiv, Ivo; Sittner, Petr

    2018-01-01

    Nanocantilevers have become key components of nanomechanical sensors that exploit changes in their resonant frequencies or static deflection in response to the environment. It is necessary that they can operate at a given, but adjustable, resonant frequency and/or static deflection ranges. Here we propose a new class of nanocantilevers with a significantly tunable spectrum of the resonant frequencies and changeable static deflection utilizing the unique properties of a phase-transforming NiTi film sputtered on the usual nanotechnology cantilever materials. The reversible frequency tuning and the adjustable static deflection are obtained by intentionally changing the Young’s modulus and the interlayer stress of the NiTi film during its phase transformation, while the usual cantilever elastic materials guarantee a high frequency actuation (up to tens of MHz). By incorporating the NiTi phase transformation characteristic into the classical continuum mechanics theory we present theoretical models that account for the nanocantilever frequency shift and variation in static deflection caused by a phase transformation of NiTi film. Due to the practical importance in nanomechanical sensors, we carry out a complete theoretical analysis and evaluate the impact of NiTi film on the cantilever Young’s modulus, static deflection, and the resonant frequencies. Moreover, the importance of proposed NiTi nanocantilever is illustrated on the nanomechanical based mass sensors. Our findings will be of value in the development of advanced nanotechnology sensors with intentionally-changeable physical and mechanical properties. PMID:29462996

  20. Force delivery of NiTi orthodontic arch wire at different magnitude of deflections and temperatures: A finite element study.

    PubMed

    Razali, M F; Mahmud, A S; Mokhtar, N

    2018-01-01

    NiTi arch wires are used widely in orthodontic treatment due to its superelastic and biocompatibility properties. In brackets configuration, the force released from the arch wire is influenced by the sliding resistances developed on the arch wire-bracket contact. This study investigated the evolution of the forces released by a rectangular NiTi arch wire towards possible intraoral temperature and deflection changes. A three dimensional finite element model was developed to measure the force-deflection behavior of superelastic arch wire. Finite element analysis was used to distinguish the martensite fraction and phase state of arch wire microstructure in relation to the magnitude of wire deflection. The predicted tensile and bending results from the numerical model showed a good agreement with the experimental results. As contact developed between the wire and bracket, binding influenced the force-deflection curve by changing the martensitic transformation plateau into a slope. The arch wire recovered from greater magnitude of deflection released lower force than one recovered from smaller deflection. In contrast, it was observed that the plateau slope increased from 0.66N/mm to 1.1N/mm when the temperature was increased from 26°C to 46°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. MODELING SUPERSONIC-JET DEFLECTION IN THE HERBIG–HARO 110-270 SYSTEM WITH HIGH-POWER LASERS

    SciTech Connect

    Yuan, Dawei; Li, Yutong; Lu, Xin

    Herbig–Haro (HH) objects associated with newly born stars are typically characterized by two high Mach number jets ejected in opposite directions. However, HH 110 appears to only have a single jet instead of two. Recently, Kajdi et al. measured the proper motions of knots in the whole system and noted that HH 110 is a continuation of the nearby HH 270. It has been proved that the HH 270 collides with the surrounding mediums and is deflected by 58°, reshaping itself as HH 110. Although the scales of the astrophysical objects are very different from the plasmas created in themore » laboratory, similarity criteria of physical processes allow us to simulate the jet deflection in the HH 110/270 system in the laboratory with high power lasers. A controllable and repeatable laboratory experiment could give us insight into the deflection behavior. Here we show a well downscaled experiment in which a laser-produced supersonic-jet is deflected by 55° when colliding with a nearby orthogonal side-flow. We also present a two-dimensional hydrodynamic simulation with the Euler program, LARED-S, to reproduce the deflection. Both are in good agreement. Our results show that the large deflection angle formed in the HH 110/270 system is probably due to the ram pressure from a flow–flow collision model.« less

  2. Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy.

    PubMed

    Oborn, B M; Dowdell, S; Metcalfe, P E; Crozier, S; Mohan, R; Keall, P J

    2015-05-01

    This paper investigates, via magnetic modeling and Monte Carlo simulation, the ability to deliver proton beams to the treatment zone inside a split-bore MRI-guided proton therapy system. Field maps from a split-bore 1 T MRI-Linac system are used as input to geant4 Monte Carlo simulations which model the trajectory of proton beams during their paths to the isocenter of the treatment area. Both inline (along the MRI bore) and perpendicular (through the split-bore gap) orientations are simulated. Monoenergetic parallel and diverging beams of energy 90, 195, and 300 MeV starting from 1.5 and 5 m above isocenter are modeled. A phase space file detailing a 2D calibration pattern is used to set the particle starting positions, and their spatial location as they cross isocenter is recorded. No beam scattering, collimation, or modulation of the proton beams is modeled. In the inline orientation, the radial symmetry of the solenoidal style fringe field acts to rotate the protons around the beam's central axis. For protons starting at 1.5 m from isocenter, this rotation is 19° (90 MeV) and 9.8° (300 MeV). A minor focusing toward the beam's central axis is also seen, but only significant, i.e., 2 mm shift at 150 mm off-axis, for 90 MeV protons. For the perpendicular orientation, the main MRI field and near fringe field act as the strongest to deflect the protons in a consistent direction. When starting from 1.5 m above isocenter shifts of 135 mm (90 MeV) and 65 mm (300 MeV) were observed. Further to this, off-axis protons are slightly deflected toward or away from the central axis in the direction perpendicular to the main deflection direction. This leads to a distortion of the phase space pattern, not just a shift. This distortion increases from zero at the central axis to 10 mm (90 MeV) and 5 mm (300 MeV) for a proton 150 mm off-axis. In both orientations, there is a small but subtle difference in the deflection and distortion pattern between protons fired parallel to the

  3. Load deflection characteristics and force level of nickel titanium initial archwires.

    PubMed

    Lombardo, Luca; Marafioti, Matteo; Stefanoni, Filippo; Mollica, Francesco; Siciliani, Giuseppe

    2012-05-01

    To investigate and compare the characteristics of commonly used types of traditional and heat-activated initial archwire by plotting their load/deflection graphs and quantifying three suitable parameters describing the discharge plateau phase. Forty-eight archwires (22 nickel titanium [NiTi] and 26 heat-activated) of cross-sectional diameter ranging from 0.010 to 0.016 inch were obtained from seven different manufacturers. A modified three-point wire-bending test was performed on three analogous samples of each type of archwire at a constant temperature (37.0°C). For each resulting load/deflection curve, the plateau section was isolated, along with the mean value of the average plateau force, the plateau length, and the plateau slope for each type of wire obtained. Statistically significant differences were found between almost all wires for the three parameters considered. Statistically significant differences were also found between traditional and heat-activated archwires, the latter of which generated longer plateaus and lighter average forces. The increase in average force seen with increasing diameter tended to be rather stable, although some differences were noted between traditional and heat-activated wires. Although great variation was seen in the plateau behavior, heat-activated versions appear to generate lighter forces over greater deflection plateaus. On average, the increase in plateau force was roughly 50% when the diameter was increased by 0.002 inch (from 0.012 to 0.014 and from 0.014 to 0.016 inch) and about 150% when the diameter was increased by 0.004 inch (from 0.012 to 0.016), with differences between traditional and heat-activated wires noted in this case.

  4. Integrated Blowoff and Breakup Calculations for Asteroid Deflection by Nuclear Ablation

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.; Owen, M.; Dearborn, D. S.; Miller, P. L.

    2016-12-01

    When the warning timing is short, hazardous asteroids or comets can only be deflected off of an Earth-impacting trajectory by a nuclear device [1]. Here we model asteroid response to a standoff nuclear explosion, a problem which requires sub-millimeter spatial resolution at the body's surface to fully capture x-ray energy deposition. The first stage of the calculation focuses on modeling blowoff momentum from vaporized material, using a problem domain confined to the uppermost surface of the asteroid. Once the blowoff momentum transfer process is complete, the problem is remapped into a coarser resolution and the remainder of the asteroid body is added to the calculation, so that asteroid response can be tracked over longer timescales. This two-stage approach enables an integrated assessment of both the efficacy of momentum delivery and damage incurred by the bulk of the asteroid. Investigating the degree of post-ablation fracture, fragmentation, and fragment dispersion is necessary for modeling the outcomes of cases intended to fully fragment and disperse the body (disruption), as well as cases where the bulk of the asteroid should remain intact (deflection). We begin with 500-m spherical asteroids but also extend our analysis to radar-derived asteroid shape models. [1] Dearborn, D.S.P., Miller, P.L., 2014. Deflecting or Disrupting a Threatening Object, in: Pelton, J.N., Allahdadi, F. (Eds.), Handbook of Cosmic Hazards and Planetary Defense, Springer. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344. LLNL-ABS-699631.

  5. Nanoindenting the Chelyabinsk Meteorite to Learn about Impact Deflection Effects in asteroids

    SciTech Connect

    Moyano-Cambero, Carles E.; Trigo-Rodríguez, Josep M.; Martínez-Jiménez, Marina

    The Chelyabinsk meteorite is a highly shocked, low porosity, ordinary chondrite, probably similar to S- or Q-type asteroids. Therefore, nanoindentation experiments on this meteorite allow us to obtain key data to understand the physical properties of near-Earth asteroids. Tests at different length scales provide information about the local mechanical properties of the minerals forming this meteorite: reduced Young’s modulus, hardness, elastic recovery, and fracture toughness. Those tests are also useful to understand the potential to deflect threatening asteroids using a kinetic projectile. We found that the differences in mechanical properties between regions of the meteorite, which increase or reduce themore » efficiency of impacts, are not a result of compositional differences. A low mean particle size, attributed to repetitive shock, can increase hardness, while low porosity promotes a higher momentum multiplication. Momentum multiplication is the ratio between the change in momentum of a target due to an impact, and the momentum of the projectile, and therefore, higher values imply more efficient impacts. In the Chelyabinsk meteorite, the properties of the light-colored lithology materials facilitate obtaining higher momentum multiplication values, compared to the other regions described for this meteorite. Also, we found a low value of fracture toughness in the shock-melt veins of Chelyabinsk, which would promote the ejection of material after an impact and therefore increase the momentum multiplication. These results are relevant to the growing interest in missions to test asteroid deflection, such as the recent collaboration between the European Space Agency and NASA, known as the Asteroid Impact and Deflection Assessment mission.« less

  6. K-Ar geochronology of basement rocks on the northern flank of the Huancabama deflection, Ecuador

    USGS Publications Warehouse

    Feininger, Tomas; Silberman, M.L.

    1982-01-01

    The Huancabamba deflection, a major Andean orocline located at the Ecuador-Peru border, constitutes an important geologic boundary on the Pacific coast of South America. Crust to the north of the deflection is oceanic and the basement is composed of basic igneous rocks of Cretaceous age, whereas crust to the south is continental and felsic rocks of Precambrian to Cretaceous age make up the basement. The northern flank of the Huancabamba Deflection in El Oro Province, Ecuador, is underlain by Precambrian polymetamorphic basic rocks of the Piedras Group; shale, siltstone, sandstone, and their metamorphosed equivalents in the Tahuin Group (in part of Devonian age); concordant syntectonic granitic rocks; quartz diorite and alaskite of the Maroabeli pluton; a protrusion of serpentinized harzburgite that contains a large inclusion of blueschist-facies metamorphic rocks, the Raspas Formation, and metamorphic rocks north of the La Palma fault. Biotite from gneiss of the Tahuin Group yields a Late Triassic K-Ar age (210 ? 8 m.y.). This is interpreted as an uplift age and is consistent with a regional metamorphism of Paleozoic age. A nearby sample from the Piedras Group that yielded a hornblende K-Ar age of 196 ? 8 m.y. was affected by the same metamorphic event. Biotite from quartz diorite of the mesozonal Maroabeli pluton yields a Late Triassic age (214 ? 6 m.y.) which is interpreted as an uplift age which may be only slightly younger than the age of magmatic crystallization. Emplacement of the pluton may postdate regional metamorphism of the Tahuin Group. Phengite from politic schist of the Raspas Formation yields an Early Cretaceous K-Ar age (132 ? 5 m.y.). This age is believed to date the isostatic rise of the encasing serpentinized harzburgite as movement along a subjacent subduction zone ceased, and it is synchronous with the age of the youngest lavas of a coeval volcanic arc in eastern Ecuador. A Late Cretaceous K-Ar age (74.4 ? 1.1 m.y.) from hornblende in

  7. Comparison of Theoretical Stresses and Deflections of Multicell Wings with Experimental Results Obtained from Plastic Models

    NASA Technical Reports Server (NTRS)

    Zender, George W

    1956-01-01

    The experimental deflections and stresses of six plastic multicell-wing models of unswept, delta, and swept plan form are presented and compared with previously published theoretical results obtained by the electrical analog method. The comparisons indicate that the theory is reliable except for the evaluation of stresses in the vicinity of the leading edge of delta wings and the leading and trailing edges of swept wings. The stresses in these regions are questionable, apparently because of simplifications employed in idealizing the actual structure for theoretical purposes and because of local effects of concentrated loads.

  8. Noncontacting devices to indicate deflection and vibration of turbopump internal rotating parts

    NASA Technical Reports Server (NTRS)

    Hamilton, D. B.; Ensminger, D.; Grieser, D. R.; Plummer, A. M.; Saccocio, E. J.; Kissel, J. W.

    1973-01-01

    The research is reported which was conducted to develop devices for measuring vibrations and deflections of parts, such as impellers, shafts, turbine wheels, and inducers in operating turbopumps. Three devices were developed to the breadboard stage: ultrasonic Doppler transducer, flash X-rays, and light-pipe reflectance. It was found that the X-ray technique is applicable to the shaft assembly and the turbine seal of the J-2 pump, and the light-pipe-reflectance device appears to be ideal for cryogenic pump sections.

  9. Guide Vanes for Deflecting Fluid Currents with Small Loss of Energy

    NASA Technical Reports Server (NTRS)

    Krober, G

    1933-01-01

    The transverse momentum of the deflected air stream to be absorbed is divided between the intermediate and outside walls, so that the pressure increase on each wall is much smaller and the danger of separation is diminished. The formation of secondary vortices is also diminished. By taking as the basis profiles with high c(sub a), such as have proved practically favorable, it is not possible to find a satisfactory form of grid simply on the assumption that the flow is potential. The requirements called for the most uniform possible velocity distribution behind the bend and the smallest possible losses.

  10. Post Deflection Impact Risk Analysis of the Double Asteroid Redirection Test (DART)

    NASA Astrophysics Data System (ADS)

    Eggl, S.; Hestroffer, D.

    2017-09-01

    Collisions between potentially hazardous near-Earth objects and our planet are among the few natural disasters that can be avoided by human intervention. The complexity of such an endeavor necessitates an asteroid orbit deflection test mission, however, ensuring all relevant knowledge is present when an asteroid on a collision course with the Earth is indeed discovered. The double asteroid redirection test (DART) mission concept currently investigated by NASA would serve such a purpose. The aim of our research is to make certain that DART does not turn a previously harmless asteroid into a potentially dangerous one.

  11. Effect of Different Composite Restorations on the Cuspal Deflection of Premolars Restored with Different Insertion Techniques- An In vitro Study.

    PubMed

    Singhal, Sakshi; Gurtu, Anuraag; Singhal, Anurag; Bansal, Rashmi; Mohan, Sumit

    2017-08-01

    This study was conducted to assess the effect of different composite materials on the cuspal deflection of premolars restored with bulk placement of resin composite in comparison to horizontal incremental placement and modified tangential incremental placement. The aim of this study was to evaluate the cuspal deflection caused by different composite materials when different insertion techniques were used. Two different composite materials were used that is Tetric N Ceram (Ivoclar Vivadent marketing, India) and SonicFill TM (Kerr Sybron Dental). Forty standardized Mesio-Occluso-Distal (MOD) preparations were prepared on maxillary first premolars. Each group was divided according to composite insertion technique (n=10), as follows: Group I - bulk insertion using Tetric N Ceram, Group II - Horizontal incremental insertion technique using Tetric N Ceram, Group III- Modified tangential incremental technique using Tetric N Ceram, and Group IV- bulk insertion using SonicFill TM . Preparations were acid-etched, and bonded with adhesive resin to provide micro mechanical attachment before restoration using a uniform etching and bonding protocol in all the groups. All groups received the same total photo-polymerization time. Cuspal deflection was measured during the restorative procedure using customized digital micrometer assembly. One-way ANOVA test was applied for the analysis of significant difference between the groups, p-value less than 0.05 was considered statistically significant. The average cuspal deflections for the different groups were as follows: Group I 0.045±0.018, Group II 0.029±0.009, Group III 0.018±0.005 and Group IV 0.017±0.004. The intergroup comparison revealed statistically significant difference. A measurable amount of cuspal deflection was present in all the four studied groups. In general, bulkfill restoration technique with conventional composite showed significantly highest cusp deflection. There were no significant differences in cuspal

  12. The Development of Pulsed Photoacoustic and Photothermal Deflection Spectroscopy as Diagnostic Tools for Combustion.

    NASA Astrophysics Data System (ADS)

    Rose, Allen Howard

    The application of Photoacoustic Deflection Spectroscopy (PADS) and Photothermal Deflection Spectroscopy (PTDS) to the combustion environment has been made to determine the usefulness of these techniques in combustion diagnostics. Both theoretical models and experimental techniques have been developed. With these tools, PADS and PTDS, one can measure absolute species concentration, temperature, and flow velocity in the combustion environment. These techniques are nonintrusive, with a high sensitivity and excellent spatial and temporal resolution. With PADS it is possible to measure OH concentrations down to 1times 10^{14} OH molecules/cm^3 in a single shot and temperatures to an accuracy of ^{ ~}+/- 100{rm K}. With PTDS it is possible to measure OH concentrations down to 3times 10^{12} OH molecules/cm^3 in a single shot and velocities to an accuracy of ^{ ~}+/- 1{rm m/s} in a flame. Higher accuracies can be obtained with further improvements in the experimental apparatus. The disadvantages are: (1) the need for a strong absorbing species within the combustion environment to generate these signals, (2) the lack of knowledge about the major molecular species concentrations in the combustion environment, and (3) the lack of knowledge about the thermodynamic properties of these major species at combustion temperatures. PADS and PTDS would complement other techniques such as coherent anti-Stokes Raman spectroscopy (CARS), laser-induced fluorescence spectroscopy (LIFS), and optogalvanic spectroscopy.

  13. Challenges of deflecting an asteroid or cometary nucleus with a nuclear burst

    SciTech Connect

    Bradley, Paul A; Plesko, Cathy S; Clement, Ryan R C

    2009-01-01

    There are many natural disasters that humanity has to deal with over time. These include earthquakes, tsunami, hurricanes, floods, asteroid strikes, and so on. Many of these disasters occur slowly enough that some advance warning of which areas will be affected is possible. However, in almost all cases, the response is to evacuate the area to be affected and deal with the damage later. The evacuations for hurricanes Katrina and Rita on the US Gulf Coast in 2005 demonstrated the chaos that can result. In contrast with other natural disasters. it is likely that an asteroid or cometary nucleus onmore » a collision course with Earth is likely to be detected with enough warning time to possibly deflect it away from the collision course. Thanks to near-Earth object (NEO) surveys, people are working towards a goal of cataloging at least 90% of all near-Earth objects with diameters larger than {approx}140 meters in the next decade. The question is how to mitigate the threat from an asteroid or cometary nucleus found to be on a collision course. We briefly review some possible methods, describing their good and bad points, and then embark on a more detailed description of using a nuclear munition in standoff mode to deflect an asteroid or cometary nucleus before it can hit Earth.« less

  14. Tensile Properties and Deflection Temperature of Polypropylene/Sumberejo Kenaf Fiber Composites with Fiber Content Variation

    NASA Astrophysics Data System (ADS)

    Ollivia, S. L.; Juwono, A. L.; Roseno, Seto

    2017-05-01

    The use of synthetic fibers as reinforcement in composites has disadvantage which are unsustainable and an adverse impact on the environment. An alternative reinforcement for composites is natural fiber. Polypropylene and Sumberejo kenaf fibers were used respectively as the matrix and reinforcement. The aim of this research was to obtain the optimum tensile properties and deflection temperature with the variation of kenaf fiber fractions. Polypropylene/kenaf fiber composites were fabricated by hot press method. The kenaf fiber was soaked in NaOH solution before being used as the reinforcement and polypropylene was extruded before being used as the matrix. The weight fractions were varied to produce composites and pristine polypropylene samples were also prepared for comparison. The optimum tensile strength, modulus and deflection temperature were found in the composites with the 40 wt% kenaf fiber fraction with an increase up to 80% and 170% compared to the pristine polypropylene with the values of (60.3 ± 4,3) MPa and (159.1 ± 1,8) °C respectively. The Scanning Electron Microscope observation results in the fracture surface of the composites with the 40 wt% fiber fraction showed a relatively good bonding interface between fibers and the matrix and the failure modes were fiber breakage and matrix failures.

  15. Realization of Deflection-type Bridge instruments to determine soil moisture using Research-Based Learning

    NASA Astrophysics Data System (ADS)

    Yuliza, E.; Munir, M. M.; Abdullah, M.; Khairurrijal

    2016-08-01

    It is clear that the quality of education is directly related to the quality of teachers and the teaching methods. One of the teaching methods that can improve the quality of education is research-based learning (RBL) method. In this method, students act as the center of learning while teachers become the guides that provide direction and advice. RBL is a learning method that combines cooperative learning, problem solving, authentic learning, contextual case study and inquiry approach discovery. The main goal of this method is to construct a student that can think critically, analyze and evaluate problems, and find a new science from these problems (learning by doing). In this paper, RBL is used to improve the understanding about measurement using deflection-type Bridge that is implemented in the determination of ground water changes. In general, there are three stages that have been done. Firstly the exposure stage, then the experience stage and lastly the capstone stage. The exposure stage aims to increase the knowledge and the comprehension of student about the topic through understanding the basics concepts, reviewing the literature and others. The understanding gained in the exposure stage is being used for application and analysis at the experience stage. While the final stage is the publication of research results both verbally and in writing. Based on the steps that have been conducted, it can be showed that deflection-type Bridge can be utilized in soil moisture meter.

  16. Studies on deflection area vectors of QRS and T and ventricular gradient in right ventricular hypertrophy.

    PubMed

    Kawaguchi, Y

    1985-04-01

    QRS deflection area vector (Aqrs), T deflection area vector (At) and ventricular gradient (G) in right ventricular hypertrophy were studied in 53 subjects divided on the basis of cardiac catheterization data into four subgroups; normal controls, mild MS group, right ventricular pressure overload group and right ventricular volume overload group. Aqrs, At and G of the four subgroups were calculated using a microcomputer and compared. Aqrs in right ventricular pressure overload group and volume overload group was shifted to the right and slightly anteriorly from that in normal control group. At in right ventricular pressure overload group and volume overload group was shifted slightly upwards and significantly posteriorly from that in the normal control and mild MS groups. G in right ventricular pressure overload group and volume overload group was shifted to the right and significantly posteriorly from that in normal control and mild MS groups. Using multivariative analysis, we developed criteria for diagnosing right ventricular hypertrophy with At: 0.059At(Z) - 0.0145 [At] - 0.2608 less than or equal to 0. Application of this criteria achieved 82.4% (28 of 34) sensitivity in the patients with right ventricular hypertrophy and 90.9% (10 of 11) specificity in the normal control subjects.

  17. On the transfer of radiation at asteroidal surfaces in relation to their orbit deflection - II

    NASA Astrophysics Data System (ADS)

    Yabushita, Shin

    1998-08-01

    The efficiency of absorption of X-rays generated by a nuclear explosion at the surface of an asteroid, estimated earlier, is used to calculate the explosion yield needed to deflect the orbit of an asteroid. Following the work of Ahrens & Harris, it is shown that a recoil velocity of 1 cm s^-1 is required to deflect an asteroid from a collision course with the Earth, and the necessary yield of explosion energy is estimated. If it is assumed that the scaling law between the energy and the diameter of the resulting crater, obtained from experiments carried out on the Earth, remains valid on the asteroid surface, where gravity is much weaker, an explosion energy of 8 and 800 megaton (Mton) equivalent of TNT would be required for asteroids of diameter 1 and 10 km respectively. If, on the other hand, the crater diameter is proportional to a certain power of the gravity g, the power being determined from a dimension analysis, 130 kton and 12 Mton would be required to endow asteroids of diameters 1 and 10 km with the required velocity, respectively. The result indicates that in order to estimate the required explosion energy, a better understanding of cratering under gravity much weaker than on the Earth would be required.

  18. Integrated Fiber-Optic Light Probe: Measurement of Static Deflections in Rotating Turbomachinery

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1998-01-01

    At the NASA Lewis Research Center, in cooperation with Integrated Fiber Optic Systems, Inc., an integrated fiber-optic light probe system was designed, fabricated, and tested for monitoring blade tip deflections, vibrations, and to some extent, changes in the blade tip clearances of a turbomachinery fan or a compressor rotor. The system comprises a set of integrated fiber-optic light probes that are positioned to detect the passing blade tip at the leading and trailing edges. In this configuration, measurements of both nonsynchronous blade vibrations and steady-state blade deflections can be made from the timing information provided by each light probe-consisting of an integrated fiber-optic transmitting channel and numerical aperture receiving fibers, all mounted in the same cylindrical housing. With integrated fiber-optic technology, a spatial resolution of 50 mm is possible while the outer diameter is kept below 2.5 mm. To evaluate these probes, we took measurements in a single-stage compressor facility and an advanced fan rig in Lewis' 9- by 15-Foot Low-Speed Wind Tunnel.

  19. Integrated fiber optic light probe: Measurement of static deflections in rotating turbomachinery

    NASA Astrophysics Data System (ADS)

    Dhadwal, Harbans S.; Mehmud, Ali; Khan, Romel; Kurkov, Anatole

    1996-02-01

    This paper describes the design, fabrication, and testing of an integrated fiber optic light probe system for monitoring blade tip deflections, vibrational modes, and changes in blade tip clearances in the compressor stage of rotating turbomachinery. The system comprises a set of integrated fiber optic light probes which are positioned to detect the passing blade tip at the leading and the trailing edges. In this configuration measurements of both blade vibrations and steady-state blade deflection can be obtained from the timing information provided by each light probe, which comprises an integrated fiber optic transmitting channel and a number of high numerical aperture receiving fibers, all mounted in the same cylindrical housing. A spatial resolution of 50 μm is possible with the integrated fiber optic technology, while keeping the outer diameter below 2.5 mm. Additionally, one fiber sensor provides a capability of monitoring changes in the blade tip clearance of the order of 10 μm. Measurements from a single stage compressor facility and an engine-fan rig in a 9 ft×15 ft subsonic wind tunnel are presented.

  20. A fiber Bragg grating sensor system for estimating the large deflection of a lightweight flexible beam

    NASA Astrophysics Data System (ADS)

    Peng, Te; Yang, Yangyang; Ma, Lina; Yang, Huayong

    2016-10-01

    A sensor system based on fiber Bragg grating (FBG) is presented which is to estimate the deflection of a lightweight flexible beam, including the tip position and the tip rotation angle. In this paper, the classical problem of the deflection of a lightweight flexible beam of linear elastic material is analysed. We present the differential equation governing the behavior of a physical system and show that this equation although straightforward in appearance, is in fact rather difficult to solve due to the presence of a non-linear term. We used epoxy glue to attach the FBG sensors to specific locations upper and lower surface of the beam in order to measure local strain measurements. A quasi-distributed FBG static strain sensor network is designed and established. The estimation results from FBG sensors are also compared to reference displacements from the ANSYS simulation results and the experimental results obtained in the laboratory in the static case. The errors of the estimation by FBG sensors are analysed for further error-correction and option-design. When the load weight is 20g, the precision is the highest, the position errors ex and ex are 0.19%, 0.14% respectively, the rotation error eθ, is 1.23%.

  1. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface.

    PubMed

    Zhu, Z; Liu, H; Wang, D; Li, Y X; Guan, C Y; Zhang, H; Shi, J H

    2016-11-22

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell's law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping.

  2. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  3. Small-body deflection techniques using spacecraft: Techniques in simulating the fate of ejecta

    NASA Astrophysics Data System (ADS)

    Schwartz, Stephen R.; Yu, Yang; Michel, Patrick; Jutzi, Martin

    2016-04-01

    We define a set of procedures to numerically study the fate of ejecta produced by the impact of an artificial projectile with the aim of deflecting an asteroid. Here we develop a simplified, idealized model of impact conditions that can be adapted to fit the details of specific deflection-test scenarios, such as what is being proposed for the AIDA project. Ongoing studies based upon the methodology described here can be used to inform observational strategies and safety conditions for an observing spacecraft. To account for ejecta evolution, the numerical strategies we are employing are varied and include a large N-Body component, a smoothed-particle hydrodynamics (SPH) component, and an application of impactor scaling laws. Simulations that use SPH-derived initial conditions show high-speed ejecta escaping at low angles of inclination, and very slowly moving ejecta lofting off the surface at higher inclination angles, some of which reimpacts the small-body surface. We are currently investigating the realism of this and other models' behaviors. Next steps will include the addition of solar perturbations to the model and applying the protocol developed here directly to specific potential mission concepts such as the proposed AIDA scenario.

  4. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface

    PubMed Central

    Zhu, Z.; Liu, H.; Wang, D.; Li, Y. X.; Guan, C. Y.; Zhang, H.; Shi, J. H.

    2016-01-01

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping. PMID:27874053

  5. Deflecting Rayleigh surface acoustic waves by a meta-ridge with a gradient phase shift

    NASA Astrophysics Data System (ADS)

    Xu, Yanlong; Yang, Zhichun; Cao, Liyun

    2018-05-01

    We propose a non-resonant meta-ridge to deflect Rayleigh surface acoustic waves (RSAWs) according to the generalized Snell’s law with a gradient phase shift. The gradient phase shift is predicted by an analytical formula, which is related to the path length of the traveling wave. The non-resonant meta-ridge is designed based on the characteristics of the RSAW: it only propagates along the interface with a penetration depth, and it is dispersion-free with a constant phase velocity. To guarantee that the characteristics are still valid when RSAWs propagate in a three-dimensional (3D) structure, grooves are employed to construct the supercell of the meta-ridge. The horizontal length, inclined angle, and thickness of the ridge, along with the filling ratio of the groove, are parametrically examined step by step to investigate their influences on the propagation of RSAWs. The final 3D meta-ridges are designed theoretically and their capability of deflecting the incident RSAWs are validated numerically. The study presents a new method to control the trajectory of RSAWs, which will be conducive to developing innovative devices for surface acoustic waves.

  6. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    PubMed Central

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-01-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air. PMID:26574164

  7. Kalman filter-based EM-optical sensor fusion for needle deflection estimation.

    PubMed

    Jiang, Baichuan; Gao, Wenpeng; Kacher, Daniel; Nevo, Erez; Fetics, Barry; Lee, Thomas C; Jayender, Jagadeesan

    2018-04-01

    In many clinical procedures such as cryoablation that involves needle insertion, accurate placement of the needle's tip at the desired target is the major issue for optimizing the treatment and minimizing damage to the neighboring anatomy. However, due to the interaction force between the needle and tissue, considerable error in intraoperative tracking of the needle tip can be observed as needle deflects. In this paper, measurements data from an optical sensor at the needle base and a magnetic resonance (MR) gradient field-driven electromagnetic (EM) sensor placed 10 cm from the needle tip are used within a model-integrated Kalman filter-based sensor fusion scheme. Bending model-based estimations and EM-based direct estimation are used as the measurement vectors in the Kalman filter, thus establishing an online estimation approach. Static tip bending experiments show that the fusion method can reduce the mean error of the tip position estimation from 29.23 mm of the optical sensor-based approach to 3.15 mm of the fusion-based approach and from 39.96 to 6.90 mm, at the MRI isocenter and the MRI entrance, respectively. This work established a novel sensor fusion scheme that incorporates model information, which enables real-time tracking of needle deflection with MRI compatibility, in a free-hand operating setup.

  8. A Novel Laser and Video-Based Displacement Transducer to Monitor Bridge Deflections

    PubMed Central

    Vicente, Miguel A.; Gonzalez, Dorys C.; Minguez, Jesus; Schumacher, Thomas

    2018-01-01

    The measurement of static vertical deflections on bridges continues to be a first-level technological challenge. These data are of great interest, especially for the case of long-term bridge monitoring; in fact, they are perhaps more valuable than any other measurable parameter. This is because material degradation processes and changes of the mechanical properties of the structure due to aging (for example creep and shrinkage in concrete bridges) have a direct impact on the exhibited static vertical deflections. This paper introduces and evaluates an approach to monitor displacements and rotations of structures using a novel laser and video-based displacement transducer (LVBDT). The proposed system combines the use of laser beams, LED lights, and a digital video camera, and was especially designed to capture static and slow-varying displacements. Contrary to other video-based approaches, the camera is located on the bridge, hence allowing to capture displacements at one location. Subsequently, the sensing approach and the procedure to estimate displacements and the rotations are described. Additionally, laboratory and in-service field testing carried out to validate the system are presented and discussed. The results demonstrate that the proposed sensing approach is robust, accurate, and reliable, and also inexpensive, which are essential for field implementation. PMID:29587380

  9. Application of digital image correlation for long-distance bridge deflection measurement

    NASA Astrophysics Data System (ADS)

    Tian, Long; Pan, Bing; Cai, Youfa; Liang, Hui; Zhao, Yan

    2013-06-01

    Due to its advantages of non-contact, full-field and high-resolution measurement, digital image correlation (DIC) method has gained wide acceptance and found numerous applications in the field of experimental mechanics. In this paper, the application of DIC for real-time long-distance bridge deflection detection in outdoor environments is studied. Bridge deflection measurement using DIC in outdoor environments is more challenging than regular DIC measurements performed under laboratory conditions. First, much more image noise due to variations in ambient light will be presented in the images recorded in outdoor environments. Second, how to select the target area becomes a key factor because long-distance imaging results in a large field of view of the test object. Finally, the image acquisition speed of the camera must be high enough (larger than 100 fps) to capture the real-time dynamic motion of a bridge. In this work, the above challenging issues are addressed and several improvements were made to DIC method. The applicability was demonstrated by real experiments. Experimental results indicate that the DIC method has great potentials in motion measurement in various large building structures.

  10. A Novel Laser and Video-Based Displacement Transducer to Monitor Bridge Deflections.

    PubMed

    Vicente, Miguel A; Gonzalez, Dorys C; Minguez, Jesus; Schumacher, Thomas

    2018-03-25

    The measurement of static vertical deflections on bridges continues to be a first-level technological challenge. These data are of great interest, especially for the case of long-term bridge monitoring; in fact, they are perhaps more valuable than any other measurable parameter. This is because material degradation processes and changes of the mechanical properties of the structure due to aging (for example creep and shrinkage in concrete bridges) have a direct impact on the exhibited static vertical deflections. This paper introduces and evaluates an approach to monitor displacements and rotations of structures using a novel laser and video-based displacement transducer (LVBDT). The proposed system combines the use of laser beams, LED lights, and a digital video camera, and was especially designed to capture static and slow-varying displacements. Contrary to other video-based approaches, the camera is located on the bridge, hence allowing to capture displacements at one location. Subsequently, the sensing approach and the procedure to estimate displacements and the rotations are described. Additionally, laboratory and in-service field testing carried out to validate the system are presented and discussed. The results demonstrate that the proposed sensing approach is robust, accurate, and reliable, and also inexpensive, which are essential for field implementation.

  11. Photogrammetric Deflection Measurements for the Tiltrotor Test Rig (TTR) Multi-Component Rotor Balance Calibration

    NASA Technical Reports Server (NTRS)

    Solis, Eduardo; Meyn, Larry

    2016-01-01

    Calibrating the internal, multi-component balance mounted in the Tiltrotor Test Rig (TTR) required photogrammetric measurements to determine the location and orientation of forces applied to the balance. The TTR, with the balance and calibration hardware attached, was mounted in a custom calibration stand. Calibration loads were applied using eleven hydraulic actuators, operating in tension only, that were attached to the forward frame of the calibration stand and the TTR calibration hardware via linkages with in-line load cells. Before the linkages were installed, photogrammetry was used to determine the location of the linkage attachment points on the forward frame and on the TTR calibration hardware. Photogrammetric measurements were used to determine the displacement of the linkage attachment points on the TTR due to deflection of the hardware under applied loads. These measurements represent the first photogrammetric deflection measurements to be made to support 6-component rotor balance calibration. This paper describes the design of the TTR and the calibration hardware, and presents the development, set-up and use of the photogrammetry system, along with some selected measurement results.

  12. Deflection Analysis of the Space Shuttle External Tank Door Drive Mechanism

    NASA Technical Reports Server (NTRS)

    Tosto, Michael A.; Trieu, Bo C.; Evernden, Brent A.; Hope, Drew J.; Wong, Kenneth A.; Lindberg, Robert E.

    2008-01-01

    Upon observing an abnormal closure of the Space Shuttle s External Tank Doors (ETD), a dynamic model was created in MSC/ADAMS to conduct deflection analyses of the Door Drive Mechanism (DDM). For a similar analysis, the traditional approach would be to construct a full finite element model of the mechanism. The purpose of this paper is to describe an alternative approach that models the flexibility of the DDM using a lumped parameter approximation to capture the compliance of individual parts within the drive linkage. This approach allows for rapid construction of a dynamic model in a time-critical setting, while still retaining the appropriate equivalent stiffness of each linkage component. As a validation of these equivalent stiffnesses, finite element analysis (FEA) was used to iteratively update the model towards convergence. Following this analysis, deflections recovered from the dynamic model can be used to calculate stress and classify each component s deformation as either elastic or plastic. Based on the modeling assumptions used in this analysis and the maximum input forcing condition, two components in the DDM show a factor of safety less than or equal to 0.5. However, to accurately evaluate the induced stresses, additional mechanism rigging information would be necessary to characterize the input forcing conditions. This information would also allow for the classification of stresses as either elastic or plastic.

  13. The effect of cycling deflection on the injection-molded thermoplastic denture base resins.

    PubMed

    Hamanaka, Ippei; Iwamoto, Misa; Lassila, Lippo Vj; Vallittu, Pekka K; Shimizu, Hiroshi; Takahashi, Yutaka

    2016-01-01

    The aim of this study was to evaluate the effect of cycling deflection on the flexural behavior of injection-molded thermoplastic resins. Six injection-molded thermoplastic resins (two polyamides, two polyesters, one polycarbonate, one polymethyl methacrylate) and, as a control, a conventional heat-polymerized denture based polymer of polymethyl methacrylate (PMMA) were used in this study. The cyclic constant magnitude (1.0 mm) of 5000 cycles was applied using a universal testing machine to demonstrate plasticization of the polymer. Loading was carried out in water at 23ºC with eight specimens per group (n = 8). Cycling load (N) and deformation (mm) were measured. Force required to deflect the specimens during the first loading cycle and final loading cycle was statistically significantly different (p < 0.05) with one polyamide based polymer (Valplast) and PMMA based polymers (Acrytone and Acron). The other polyamide based polymer (LucitoneFRS), polyester based polymers (EstheShot and EstheShotBright) and polycarbonate based polymer (ReigningN) did not show significant differences (p > 0.05). None of the materials fractured during the loading test. One polyamide based polymer (Valplast) displayed the highest deformation and PMMA based polymers (Acrytone and Acron) exhibited the second highest deformation among the denture base materials. It can be concluded that there were considerable differences in the flexural behavior of denture base polymers. This may contribute to the fatigue resistance of the materials.

  14. Tracking CMEs using data from the Solar Stormwatch project; observing deflections and other properties

    NASA Astrophysics Data System (ADS)

    Jones, Shannon R.; Barnard, Luke A.; Scott, Christopher J.; Owens, Mathew J.; Wilkinson, Julia

    2017-09-01

    With increasing technological dependence, society is becoming ever more affected by changes in the near-Earth space environment caused by space weather. The primary driver of these hazards are coronal mass ejections (CMEs). Solar Stormwatch is a citizen science project in which volunteers participated in several activities which characterized CMEs in the remote sensing images from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument package on the twin STEREO spacecraft. Here we analyze the results of the "Track-it-back" activity, in which CMEs were tracked back through the COR1, COR2, and EUVI images. Analysis of the COR1, COR2, and EUVI data together allows CMEs to be studied consistently throughout the whole field of view spanned by these instruments (out to 15 RS). A total of 4783 volunteers took part in this activity, creating a data set containing 23,801 estimates of CME timing, location, and size. We used these data to produce a catalogue of 41 CMEs, which is the first to consistently track CMEs through each of these instruments. We assess how the CME speeds, propagation directions, and widths vary as the CMEs propagate through the fields of view of the different imagers. In particular, we compare the observed CME deflections between the COR1 and COR2 fields of view to the separation between the CME source region and the heliospheric current sheet (HCS), demonstrating that in general, these CMEs appear to deflect toward the HCS, consistent with other modeling studies of CME propagation.

  15. Positively deflected anomaly mediation in the light of the Higgs boson discovery

    NASA Astrophysics Data System (ADS)

    Okada, Nobuchika; Tran, Hieu Minh

    2013-02-01

    Anomaly-mediated supersymmetry breaking (AMSB) is a well-known mechanism for flavor-blind transmission of supersymmetry breaking from the hidden sector to the visible sector. However, the pure AMSB scenario suffers from a serious drawback, namely, the tachyonic slepton problem, and needs to be extended. The so-called (positively) deflected AMSB is a simple extension to solve the problem and also provides us with the usual neutralino lightest superpartner as a good candidate for dark matter in the Universe. Motivated by the recent discovery of the Higgs boson at the Large Hadron Collider (LHC) experiments, we perform the parameter scan in the deflected AMSB scenario by taking into account a variety of phenomenological constraints, such as the dark matter relic density and the observed Higgs boson mass around 125-126 GeV. We identify the allowed parameter region and list benchmark mass spectra. We find that in most of the allowed parameter regions, the dark matter neutralino is Higgsino-like and its elastic scattering cross section with nuclei is within the future reach of the direct dark matter search experiments, while (colored) sparticles are quite heavy and their discovery at the LHC is challenging.

  16. The influence of distal-end heat treatment on deflection of nickel-titanium archwire.

    PubMed

    Silva, Marcelo Faria da; Pinzan-Vercelino, Célia Regina Maia; Gurgel, Júlio de Araújo

    2016-01-01

    The aim of this in vitro study was to evaluate the deflection-force behavior of nickel-titanium (NiTi) orthodontic wires adjacent to the portion submitted to heat treatment. A total of 106 segments of NiTi wires (0.019 x 0.025-in) and heat-activated NiTi wires (0.016 x 0.022-in) from four commercial brands were tested. The segments were obtained from 80 archwires. For the experimental group, the distal portion of each segmented archwire was subjected to heat treatment (n = 40), while the other distal portion of the same archwire was used as a heating-free control group (n = 40). Deflection tests were performed in a temperature-controlled universal testing machine. Unpaired Student's t-tests were applied to determine if there were differences between the experimental and control groups for each commercial brand and size of wire. Statistical significance was set at p < 0.05. There were no statistically significant differences between the tested groups with the same size and brand of wire. Heat treatment applied to the distal ends of rectangular NiTi archwires does not permanently change the elastic properties of the adjacent portions.

  17. The influence of distal-end heat treatment on deflection of nickel-titanium archwire

    PubMed Central

    da Silva, Marcelo Faria; Pinzan-Vercelino, Célia Regina Maia; Gurgel, Júlio de Araújo

    2016-01-01

    Objective: The aim of this in vitro study was to evaluate the deflection-force behavior of nickel-titanium (NiTi) orthodontic wires adjacent to the portion submitted to heat treatment. Material and Methods: A total of 106 segments of NiTi wires (0.019 x 0.025-in) and heat-activated NiTi wires (0.016 x 0.022-in) from four commercial brands were tested. The segments were obtained from 80 archwires. For the experimental group, the distal portion of each segmented archwire was subjected to heat treatment (n = 40), while the other distal portion of the same archwire was used as a heating-free control group (n = 40). Deflection tests were performed in a temperature-controlled universal testing machine. Unpaired Student's t-tests were applied to determine if there were differences between the experimental and control groups for each commercial brand and size of wire. Statistical significance was set at p < 0.05. Results: There were no statistically significant differences between the tested groups with the same size and brand of wire. Conclusions: Heat treatment applied to the distal ends of rectangular NiTi archwires does not permanently change the elastic properties of the adjacent portions. PMID:27007766

  18. The vacuole model: new terms in the second order deflection of light

    SciTech Connect

    Bhattacharya, Amrita; Nandi, Kamal K.; Garipova, Guzel M.

    2011-02-01

    The present paper is an extension of a recent work (Bhattacharya et al. 2010) to the Einstein-Strauss vacuole model with a cosmological constant, where we work out the light deflection by considering perturbations up to order M{sup 3} and confirm the light bending obtained previously in their vacuole model by Ishak et al. (2008). We also obtain another local coupling term −5πM{sup 2}Λ/8 related to Λ, in addition to the one obtained by Sereno (2008, 2009). We argue that the vacuole method for light deflection is exclusively suited to cases where the cosmological constant Λ disappears from the path equation.more » However, the original Rindler-Ishak method (2007) still applies even if a certain parameter γ of Weyl gravity does not disappear. Here, using an alternative prescription, we obtain the known term −γR/2, as well as another new local term 3πγM/2 between M and γ. Physical implications are compared, where we argue that the repulsive term −γR/2 can be masked by the Schwarzschild term 2M/R in the halo regime supporting attractive property of the dark matter.« less

  19. Modeling and Validation of the Three Dimensional Deflection of an MRI-Compatible Magnetically-Actuated Steerable Catheter

    PubMed Central

    Liu, Taoming; Poirot, Nate Lombard; Franson, Dominique; Seiberlich, Nicole; Griswold, Mark A.; Çavuşoğlu, M. Cenk

    2016-01-01

    Objective This paper presents the three dimensional kinematic modeling of a novel steerable robotic ablation catheter system. The catheter, embedded with a set of current-carrying micro-coils, is actuated by the magnetic forces generated by the magnetic field of the magnetic resonance imaging (MRI) scanner. Methods This paper develops a 3D model of the MRI actuated steerable catheter system by using finite differences approach. For each finite segment, a quasi-static torque-deflection equilibrium equation is calculated using beam theory. By using the deflection displacements and torsion angles, the kinematic model of the catheter system is derived. Results The proposed models are validated by comparing the simulation results of the proposed model with the experimental results of a hardware prototype of the catheter design. The maximum tip deflection error is 4.70 mm and the maximum root-mean-square (RMS) error of the shape estimation is 3.48 mm. Conclusion The results demonstrate that the proposed model can successfully estimate the deflection motion of the catheter. Significance The presented three dimensional deflection model of the magnetically controlled catheter design paves the way to efficient control of the robotic catheter for treatment of atrial fibrillation. PMID:26731519

  20. Development of liquid-environment frequency modulation atomic force microscope with low noise deflection sensor for cantilevers of various dimensions

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Jarvis, Suzanne P.

    2006-04-01

    We have developed a liquid-environment frequency modulation atomic force microscope (FM-AFM) with a low noise deflection sensor for a wide range of cantilevers with different dimensions. A simple yet accurate equation describing the theoretical limit of the optical beam deflection method in air and liquid is presented. Based on the equation, we have designed a low noise deflection sensor. Replaceable microscope objective lenses are utilized for providing a high magnification optical view (resolution: <3μm) as well as for focusing a laser beam (laser spot size: ˜10μm). Even for a broad range of cantilevers with lengths from 35to125μm, the sensor provides deflection noise densities of less than 11fm/√Hz in air and 16fm/√Hz in water. In particular, a cantilever with a length of 50μm gives the minimum deflection noise density of 5.7fm/√Hz in air and 7.3fm/√Hz in water. True atomic resolution of the developed FM-AFM is demonstrated by imaging mica in water.