Sample records for baghouses

  1. BAGHOUSE FILTRATION PRODUCTS VERIFICATION TESTING, HOW IT BENEFITS THE BOILER BAGHOUSE OPERATOR

    EPA Science Inventory

    The paper describes the Environmental Technology Verification (ETV) Program for baghouse filtration products developed by the Air Pollution Control Technology Verification Center, one of six Centers under the ETV Program, and discusses how it benefits boiler baghouse operators. A...

  2. 40 CFR 63.1657 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pressure drop across each baghouse cell, or across the baghouse if it is not possible to monitor each cell individually, to ensure the pressure drop is within the normal operating range identified in the baghouse... detection system if the furnace primary and/or tapping emissions are ducted to a negative pressure baghouse...

  3. Prediction of particulate loading in exhaust from fabric filter baghouses with one or more failed bags.

    PubMed

    Qin, Wenjun; Dekermenjian, Manuel; Martin, Richard J

    2006-08-01

    Loss of filtration efficiency in a fabric filter baghouse is typically caused by bag failure, in one form or another. The degree of such failure can be as minor as a pinhole leak or as major as a fully involved baghouse fire. In some cases, local air pollution regulations or federal hazardous waste laws may require estimation of the total quantity of particulate matter released to the environment as a result of such failures. In this paper, a technique is presented for computing the dust loading in the baghouse exhaust when one or more bags have failed. The algorithm developed is shown to be an improvement over a previously published result, which requires empirical knowledge of the variation in baghouse pressure differential with bag failures. An example calculation is presented for a baghouse equipped with 200 bags. The prediction shows that a small percentage of failed bags can cause a relatively large proportion of the gas flow to bypass the active bags, which, in turn, leads to high outlet dust loading and low overall collection efficiency from the baghouse.

  4. Effect of baghouse fines on compaction of bituminous concrete.

    DOT National Transportation Integrated Search

    1981-01-01

    Four bituminous mixes were tested in the laboratory to determine the effect of variations in the concentration of baghouse fines on the density and tenderness of bituminous mixes. On the basis of results indicating that the gradation of baghouse fine...

  5. Prediction of particulate loading in exhaust from fabric filter baghouses with one or more failed bags

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenjun Qin; Manuel Dekermenjian; Richard J. Martin

    2006-08-15

    Loss of filtration efficiency in a fabric filter baghouse is typically caused by bag failure, in one form or another. The degree of such failure can be as minor as a pinhole leak or as major as a fully involved baghouse fire. In some cases, local air pollution regulations or federal hazardous waste laws may require estimation of the total quantity of particulate matter released to the environment as a result of such failures. In this paper, a technique is presented for computing the dust loading in the baghouse exhaust when one or more bags have failed. The algorithm developedmore » is shown to be an improvement over a previously published result, which requires empirical knowledge of the variation in baghouse pressure differential with bag failures. An example calculation is presented for a baghouse equipped with 200 bags. The prediction shows that a small percentage of failed bags can cause a relatively large proportion of the gas flow to bypass the active bags, which, in turn, leads to high outlet dust loading and low overall collection efficiency from the baghouse. 10 refs., 5 figs., 3 tabs.« less

  6. 40 CFR 63.548 - Monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... bag leak detection and corrective action plans for all baghouses (fabric filters) that are used to... the baghouse through visual inspection of the baghouse interior for air leaks. (8) Quarterly... operation of a bag leak detection system. (d) The procedures specified in the standard operating procedures...

  7. TEST QA PLAN FOR THE VERIFICATION TESTING OF BAGHOUSE FILTRATION PRODUCTS

    EPA Science Inventory

    Baghouses and their accompanying filter media are a leading particulate control technique for industrial sources. Increasingly emphasis on higher removal efficiencies has helped the baghouse to be even more competitive when compared to other control devices. At present there is n...

  8. 40 CFR 63.7740 - What are my monitoring requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a bag leak detection system according to the requirements in § 63.7741(b). (c) For each baghouse... the proper functioning of removal mechanisms. (3) Check the compressed air supply for pulse-jet... integrity of the baghouse through quarterly visual inspections of the baghouse interior for air leaks. (8...

  9. Environmental Technology Verification, Baghouse Filtration Products TTG Inc., TG800 Filtration Media (Tested August 2012)

    EPA Science Inventory

    Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...

  10. Donaldson Company, Inc., Dura-Life #0701607 Filtration Media(Tested October 2011) (ETV Baghouse Filtration Products) Verification Report

    EPA Science Inventory

    Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...

  11. Environmental Technology Verification; Baghouse Filtration Products TTG Inc., TG100 Filtration Media (Tested August 2012)

    EPA Science Inventory

    Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...

  12. Effect of percentage baghouse fines on the amount and type of anti-stripping agent required to control moisture sensitivity : final report.

    DOT National Transportation Integrated Search

    2003-06-30

    This study investigated the effect of moisture and amount of baghouse fines on AC mixes. Two : types of baghouse fines, each with a different gradation, were used in varying concentrations to prepare : laboratory samples. The binder used was PG64-22 ...

  13. Environmental Technology Verification Report and Statement for Baghouse Filtration Products, W. L. Gore & Associates, Inc. 5117 High Durability PPS Laminate Filtration Media (Tested March-April 2012)

    EPA Science Inventory

    Baghouses are air pollution control devices used to control particulate emissions from stationary sources and are among the technologies evaluated by the APCT Center. Baghouses and their accompanying filter media have long been one of the leading particulate control techniques fo...

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BAGHOUSE FILTRATION PRODUCTS—SOUTHERN FILTER MEDIA, LLC, PE-16/M-SPES FILTER SAMPLE

    EPA Science Inventory

    The U.S. EPA has created the Environmental Technology Verification program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The program tested the performance of baghouse filtrati...

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT--BAGHOUSE FILTRATION PRODUCTS, W.L. GORE ASSOC., INC.

    EPA Science Inventory

    The U.S. Environmental Protection Agency Air Pollution Control Technology (APCT) Verification Center evaluates the performance of baghouse filtration products used primarily to control PM2.5 emissions. This verification statement summarizes the test results for W.L. Gore & Assoc....

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - TETRATEC PTFE TECHNOLOGIES TETRATEX 8005

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - INSPEC FIBRES 5512BRF FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - MENARDI-CRISWELL 50-504 FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  19. The Development and Testing of a Prototype Mini-Baghouse to Control the Release of Respirable Crystalline Silica from Sand Movers

    PubMed Central

    Alexander, Barbara M.; Esswein, Eric J.; Gressel, Michael G.; Kratzer, Jerry L.; Feng, H. Amy; King, Bradley; Miller, Arthur L.; Cauda, Emanuele

    2016-01-01

    Inhalation of respirable crystalline silica (RCS) is a significant risk to worker health during well completions operations (which include hydraulic fracturing) at conventional and unconventional oil and gas extraction sites. RCS is generated by pneumatic transfer of quartz-containing sand during hydraulic fracturing operations. National Institute for Occupational Safety and Health (NIOSH) researchers identified concentrations of RCS at hydraulic fracturing sites that exceed 10 times the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) and up to 50 times the NIOSH Recommended Exposure Limit (REL). NIOSH research identified at least seven point sources of dust release at contemporary oil and gas extraction sites where RCS aerosols were generated. NIOSH researchers recommend the use of engineering controls wherever they can be implemented to limit the RCS released. A control developed to address one of the largest sources of RCS aerosol generation is the NIOSH mini-baghouse assembly, mounted on the thief hatches on top of the sand mover. This manuscript details the results of a trial of the NIOSH mini-baghouse at a sand mine in Arkansas, November 18 – 21, 2013. During the trial, area air samples were collected at 12 locations on and around a sand mover with and without the mini-baghouse control installed. Analytical results for respirable dust and RCS indicate the use of the mini-baghouse effectively reduced both respirable dust and RCS downwind of the thief hatches. Reduction of airborne respirable dust ranged from 85% to 98%; reductions in airborne RCS ranged from 79% to 99%. A bulk sample of dust collected by the baghouse assembly showed the likely presence of freshly fractured quartz, a particularly hazardous form of RCS. Planned future design enhancements will increase the performance and durability of the mini-baghouse, including an improved bag clamp mechanism and upgraded filter fabric with a modified air-to-cloth ratio. Future trials are planned to determine additional respirable dust and RCS concentration reductions achieved through these design changes. PMID:27003622

  20. Use of lime as antistrip additive for mitigating moisture susceptibility of asphalt mixes containing baghouse fines.

    DOT National Transportation Integrated Search

    2005-08-31

    This study investigated the effectiveness of hydrated lime as an antistrip additive for mixes : containing excess baghouse fines. Wet process of lime addition was used without marination. One percent : lime was added to asphalt mixes containing 5.5% ...

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - AIR PURATOR CORPORATION HUYGLAS 1405M FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - BHA GROUP, INC. QG061 FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - STANDARD FILTER CORPORATION PE16ZU FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  4. 40 CFR 63.1383 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... facility must prepare for each glass-melting furnace, rotary spin manufacturing line, and flame attenuation... initial performance tests. (b)(1) Where a baghouse is used to control PM emissions from a glass-melting... baghouse), the system instrumentation and alarm may be shared among the monitors. (v) A triboelectric bag...

  5. 40 CFR 63.7330 - What are my monitoring requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... relative change in particulate matter loadings using a bag leak detection system according to the... integrity of the baghouse through quarterly visual inspections of the baghouse interior for air leaks; and... must at all times monitor the pressure drop and water flow rate using a CPMS according to the...

  6. Assessment of potential concerns associated with the use of cement kiln baghouse dust in FDOT concrete mixes.

    DOT National Transportation Integrated Search

    2013-08-01

    As a means of controlling mercury (Hg) stack emissions at cement kiln operations, some facilities have proposed or have instituted a practice known as dust shuttling, where baghouse filter dust (BFD) is routed to be blended with the final cement prod...

  7. 40 CFR 63.1549 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the practices described in the standard operating procedures manual required under § 63.1544(a) for... described in the standard operating procedures manual for baghouses required under § 63.1547(a). (6) If an... in the standard operating procedures manual for baghouses required under § 63.1547(a), including an...

  8. 40 CFR 63.1549 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the practices described in the standard operating procedures manual required under § 63.1544(a) for... described in the standard operating procedures manual for baghouses required under § 63.1547(a). (6) If an... in the standard operating procedures manual for baghouses required under § 63.1547(a), including an...

  9. Mineral phases and metals in baghouse dust from secondary aluminum production

    EPA Science Inventory

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78...

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, BAGHOUSE FILTRATION PRODUCTS, BHA GROUP, INC., QP131 FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, BAGHOUSE FILTRATION PRODUCTS, W.L. GORE & ASSOCIATES, INC., L4427 FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - W.L. GORE & ASSOCIATES, INC. L4347 FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, BAGHOUSE FILTRATION PRODUCTS, POLYMER GROUP, INC., DURAPEX PET FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - ALBANY INTERNATIONAL CORP. INDUSTRIAL PROCESS TECHNOLOGIES PRIMATEX PLUS I FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BAGHOUSE FILTRATION PRODUCTS, W.L. GORE & ASSOCIATES, INC. LYSB3 FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size for particles equal to or smaller than...

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, BAGHOUSE FILTRATION PRODUCTS, TETRATEC PTFE PRODUCTS, TETRATEX 6212 FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size of those particles equal to and smalle...

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - BASF CORPORATION AX/BA-14/9-SAXP FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BAGHOUSE FILTRATION PRODUCTS, BWF AMERICA, INC. GRADE 700 MPS POLYESTER FELT FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) Verification Center. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of the size for particles equal to or smaller than...

  19. 40 CFR 63.11465 - What are the standards for new and existing sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Metals Processing Area Sources Standards, Compliance, and Monitoring Requirements § 63.11465 What are the... through a fabric filter or baghouse that achieves a particulate matter (PM) control efficiency of at least... affected source through a fabric filter or baghouse that achieves a PM control efficiency of at least 99.5...

  20. 40 CFR 63.1453 - How do I demonstrate continuous compliance with the emission limitations, work practice standards...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... percent opacity. (c) Baghouses. For each baghouse subject to the operating limit for the bag leak... that the bag leak detection system alarm does not sound for more than 5 percent of the operating time... malfunction of the bag leak detection system are not included in the calculation. (ii) Alarms that occur...

  1. Technical Requirements for On-Site Thermal Desorption of Solid Media Contaminated with Hazardous Chlorinated Organics

    DTIC Science & Technology

    1997-09-18

    scrubbers , detectable dioxin/furans may occur, since dioxin/furans are much more soluble in organics than in water. Carbon adsorption is frequently...air pollution control device is required. Acid gases may be controlled by using a wet or dry scrubber or by using a coated baghouse. Operating...unit: 1. exit treated waste temperature; 2. baghouse pressure drop, venturi pressure drop, or drop in liquid/gas ratio; 3. waste feed rate; 4

  2. Intra- and inter-unit variation in fly ash petrography and mercury adsorption: Examples from a western Kentucky power station

    USGS Publications Warehouse

    Hower, J.C.; Finkelman, R.B.; Rathbone, R.F.; Goodman, J.

    2000-01-01

    Fly ash was collected from eight mechanical and 10 baghouse hoppers at each of the twin 150-MW wall-fired units in a western Kentucky power station. The fuel burned at that time was a blend of many low-sulfur, high-volatile bituminous Central Appalachian coals. The baghouse ash showed less variation between units than the mechanical hoppers. The mechanical fly ash, coarser than the baghouse ash, showed significant differences in the amount of total carbon and in the ratio of isotropic coke to both total carbon and total coke - the latter excluding inertinite and other unburned, uncoked coal. There was no significant variation in proportions of inorganic fly ash constituents. The inter-unit differences in the amount and forms of mechanical fly ash carbon appear to be related to differences in pulverizer efficiency, leading to greater amounts of coarse coal, therefore unburned carbon, in one of the units. Mercury capture is a function of both the total carbon content and the gas temperature at the point of fly ash separation, mercury content increasing with an increase in carbon for a specific collection system. Mercury adsorption on fly ash carbon increases at lower flue-gas temperatures. Baghouse fly ash, collected at a lower temperature than the higher-carbon mechanically separated fly ash, contains a significantly greater amount of Hg.

  3. Cost-effective particulate control options at Potomac Electric Power Company's Dickerson Station: An integrated approach to current and future particulate limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christoffersen, S.W.; Rouse, G.T.; Krasnopoler, M.J.

    1998-07-01

    The Dickerson Generating Station evaluated several particulate control options to identify the most cost-effective option. The study's goals were to: eliminate the particulate scrubber and its high maintenance costs, and incorporate flexibility for low-sulfur coal and possible stricter emission limits. Each of the three Dickerson 190 MW units has a small 37-year-old electrostatic precipitator and a wet particulate scrubber. The study evaluated alternatives to replace the scrubber and enhance ESP performance: Existing ESP alternatives--Extend height of existing ESP; Flue gas conditioning. Scrubber stream alternatives--Partial-flow ESP or pulse jet baghouse. Full-flow alternatives--Supplemental ESP; COHPAC baghouse; replacement ESP or baghouse. A technicalmore » and economic prescreening eliminated some of the options. Capital, operating, and life cycle costs were estimated for the remaining options to determine the most cost-effective alternative. This paper will present the technical and economic evaluations done for this study, including performance and costs.« less

  4. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jean Bustard; Charles Lindsey; Paul Brignac

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particlemore » control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.« less

  5. Development of guidelines for optimum baghouse fluid-dynamic-system design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eskinazi, D.; Gilbert, G.B.

    1982-06-01

    In recent years, the utility industry has turned to fabric filters as an alternative technology to electrostatic precipitators for particulate emission control from pulverized coal-fired power plants. One aspect of baghouse technology which appears to be of major importance in minimizing the size, cost, and operating pressure drop is the development of ductwork and compartment designs which achieve uniform gas and dust flow distribution to individual compartments and bags within a compartment. The objective of this project was to perform an experimental modeling program to develop design guidelines for optimizing the fluid mechanic performance of baghouses. Tasks included formulation ofmore » the appropriate modeling techniques for analysis of the flow of dust-laden gas through the collector system and extensive experimental analysis of fabric filter duct system design. A matrix of geometric configurations and operating conditions was experimentally investigated to establish the characteristics of an optimum system, to identify the level of fluid mechanic sophistication in current designs, and to experimentally develop new ideas and improved designs. Experimental results indicate that the design of the inlet and outlet manifolds, hopper entrance, hopper region below the tubesheet, and the compartment outlet have not been given sufficient attention. Unsteady flow patterns, poor velocity profiles, recirculation zones, and excessive pressure losses may be associated with these regions. It is evident from the results presented here that the fluid mechanic design of fabric filter systems can be improved significantly.« less

  6. Spray-dry desulfurization of flue gas from heavy oil combustion.

    PubMed

    Scala, Fabrizio; Lancia, Amedeo; Nigro, Roberto; Volpicelli, Gennaro

    2005-01-01

    An experimental investigation on sulfur dioxide removal in a pilot-scale spray dryer from the flue gas generated by combustion of low-sulfur (S) heavy oil is reported. A limewater slurry was sprayed through an ultrasonic two-fluid atomizer in the spray-dry chamber, and the spent sorbent was collected downstream in a pulse-jet baghouse together with fly ash. Flue gas was sampled at different points to measure the desulfurization efficiency after both the spray-dry chamber and the baghouse. Parametric tests were performed to study the effect of the following variables: gas inlet temperature, difference between gas outlet temperature and adiabatic saturation temperature, lime-to-S ratio, and average size of lime particles in the slurry. Results indicated that spray drying is an effective technology for the desulfurization of low-S fuel oil flue gas, provided operating conditions are chosen carefully. In particular, the lowest gas inlet and outlet temperatures compatible with baghouse operation should be selected, as should a sufficiently high lime-to-S ratio. The attainment of a small lime particle size in the slurry is critical for obtaining a high desulfurization efficiency. A previously presented spray-dry flue gas desulfurization model was used to simulate the pilot-scale desulfurization tests, to check the ability of the model to predict the S capture data and its usefulness as a design tool, minimizing the need for pilot-scale experimentation. Comparison between model and experimental results was fairly good for the whole range of calcium/S ratios considered.

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM; BAGHOUSE FILTRATION PRODUCTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) Program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techno...

  8. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, July 1, 1996--September 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, T.; Sjostrom, S.; Smith, J.

    1996-11-06

    The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine themore » mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.« less

  9. Study on Dezincification and De-Lead of Blast Furnace Dust by Fluidized Reduction Experiment

    NASA Astrophysics Data System (ADS)

    Yang, Shufeng; Liu, Chengsong; Gao, Xiaojie; Li, Jingshe

    In the blast furnace process, the dust entrained in the blast furnace gas enters into the down-comer, flows through the gravity dust separator (to eliminate coarse particles) and then is collected in a bag-house. The powder collected by the baghouse is called bag dust, while both fractions are called blast furnace dust whose main components are C and Fe. The dust also contains small amounts of nonferrous metals such as Zn and Pb, which have some value. Also, due to the small particle size and low density the dust is easily suspended in air and so can endanger human health. Therefore it is necessary to develop a process to both treat the dust to recover the metal values and to dispose of the residue — preferably by recycling to the blast furnace itself via the sinter strand. These objectives will result in good economic, environmental and social benefits [1].

  10. Characteristics of inhalable particulate matter concentration and size distribution from power plants in China.

    PubMed

    Yi, Honghong; Hao, Jiming; Duan, Lei; Li, Xinghua; Guo, Xingming

    2006-09-01

    In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 microm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38-99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1-1 microm. In this size range, ESP and baghouse collection efficiencies are 85.79-98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.

  11. 40 CFR 63.1547 - Monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standard operating procedures manual that describes in detail the procedures for inspection, maintenance...) The standard operating procedures manual for baghouses required by paragraph (a) of this section shall... specified in the standard operating procedures manual for inspections and routine maintenance shall, at a...

  12. 40 CFR 63.1547 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standard operating procedures manual that describes in detail the procedures for inspection, maintenance...) The standard operating procedures manual for baghouses required by paragraph (a) of this section shall... specified in the standard operating procedures manual for inspections and routine maintenance shall, at a...

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION OF BAGHOUSE FILTRATION PRODUCTS

    EPA Science Inventory

    The Environmental Technology Verification Program (ETV) was started by EPA in 1995 to generate independent credible data on the performance of innovative technologies that have potential to improve protection of public health and the environment. ETV does not approve or certify p...

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT--BAGHOUSE FILTRATION PRODUCTS, DONALDSON COMPANY, INC., 6282 FILTRATION MEDIA

    EPA Science Inventory

    The Environmental Technology Verification (ETV) Program, established by the U.S. EPA, is designed to accelerate the developmentand commercialization of new or improved technologies through third-party verification and reporting of performance. The Air Pollution Control Technology...

  15. Environmental Technology Verification: Baghouse Filtration Products--Donaldson Co., Inc., Tetratec #6255-3 Filtration Media

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. ETV seeks to ach...

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BAGHOUSE FILTRATION PRODUCTS--DONALDSON COMPANY, INC. 6277 FILTRATION MEDIA

    EPA Science Inventory

    The U.S. Environmental Protection Agency has created the Environmental Technology Verification Program to facilitate the deployment of innovative or improved environmental technologies through high quality, peer reviewed data on technology performance to those involved in the des...

  17. Environmental Technology Verification Report -- Baghouse filtration products, GE Energy QG061 filtration media ( tested May 2007)

    EPA Science Inventory

    EPA has created the Environmental Technology Verification Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The Air Pollution Control Technology Verification Center, a cente...

  18. Environmental Technology Verification: Baghouse Filtration Products--TDC Filter Manufacturing, Inc., SB025 Filtration Media

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. ETV seeks to ach...

  19. 40 CFR 63.549 - Notification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall submit the fugitive dust control standard operating procedures manual required under § 63.545(a) and the standard operating procedures manual for baghouses required under § 63.548(a) to the... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission...

  20. 40 CFR 63.548 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) You must prepare, and at all times operate according to, a standard operating procedures manual that...) You must submit the standard operating procedures manual for baghouses required by paragraph (a) of... that you specify in the standard operating procedures manual for inspections and routine maintenance...

  1. 40 CFR 63.1547 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... according to, a standard operating procedures manual that describes in detail the procedures for inspection...) The standard operating procedures manual for baghouses required by paragraph (a) of this section must... specified in the standard operating procedures manual for inspections and routine maintenance must, at a...

  2. 40 CFR 63.549 - Notification requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shall submit the fugitive dust control standard operating procedures manual required under § 63.545(a) and the standard operating procedures manual for baghouses required under § 63.548(a) to the... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission...

  3. 40 CFR 63.1547 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... according to, a standard operating procedures manual that describes in detail the procedures for inspection...) The standard operating procedures manual for baghouses required by paragraph (a) of this section must... specified in the standard operating procedures manual for inspections and routine maintenance must, at a...

  4. 40 CFR 63.548 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) You must prepare, and at all times operate according to, a standard operating procedures manual that...) You must submit the standard operating procedures manual for baghouses required by paragraph (a) of... that you specify in the standard operating procedures manual for inspections and routine maintenance...

  5. 40 CFR 63.1547 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... according to, a standard operating procedures manual that describes in detail the procedures for inspection...) The standard operating procedures manual for baghouses required by paragraph (a) of this section must... specified in the standard operating procedures manual for inspections and routine maintenance must, at a...

  6. 40 CFR 63.548 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) You must prepare, and at all times operate according to, a standard operating procedures manual that...) You must submit the standard operating procedures manual for baghouses required by paragraph (a) of... that you specify in the standard operating procedures manual for inspections and routine maintenance...

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BAGHOUSE FILTRATION PRODUCTS--DONALDSON COMPANY, INC., TETRATEC #6255 FILTRATION MEDIA

    EPA Science Inventory

    The Environmental Technology Verification (ETV) Program, established by the U.S. EPA, is designed to accelerate the development and commercialization of new or improved technologies through third-party verification and reporting of performance. The Air Pollution Control Technolog...

  8. LIME SPRAY DRYER FLUE GAS DESULFURIZATION COMPUTER MODEL USERS MANUAL

    EPA Science Inventory

    The report describes a lime spray dryer/baghouse (FORTRAN) computer model that simulates SO2 removal and permits study of related impacts on design and economics as functions of design parameters and operating conditions for coal-fired electric generating units. The model allows ...

  9. 40 CFR 63.1548 - Notification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... submit the fugitive dust control standard operating procedures manual required under § 63.1544(a) and the standard operating procedures manual for baghouses required under § 63.1547(a) to the Administrator or... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission...

  10. 40 CFR 63.550 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recordkeeping required as part of the practices described in the standard operating procedures manual for... part of the practices described in the standard operating procedures manual for baghouses required... period, including an explanation of the periods when the procedures outlined in the standard operating...

  11. 40 CFR 63.550 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recordkeeping required as part of the practices described in the standard operating procedures manual for... part of the practices described in the standard operating procedures manual for baghouses required... period, including an explanation of the periods when the procedures outlined in the standard operating...

  12. 40 CFR 63.1548 - Notification requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... submit the fugitive dust control standard operating procedures manual required under § 63.1544(a) and the standard operating procedures manual for baghouses required under § 63.1547(a) to the Administrator or... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission...

  13. Secondary Aluminum Processing Waste: Baghouse Dust Characterization and Reactivity

    EPA Science Inventory

    Results presented in this document are of particular importance when trying to understand concerns associated with the disposal of BHD in MSW landfills. The MSW decomposition process is exothermic, creating landfill temperatures that are typically greater than 37° C with the pos...

  14. Environmental Technology Verification: Baghouse Filtration Products--Sinoma Science & Technology Co. Ltd FT-806 Filtration Media

    EPA Science Inventory

    EPA created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. It seeks to achieve this goal by providing high-quality, peer r...

  15. 40 CFR 60.273 - Emission monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Inspecting the baghouse for air leaks, torn or broken bags or filter media, or any other condition that may....273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... installs and continuously operates a bag leak detection system according to paragraph (e) of this section...

  16. 40 CFR 63.7830 - What are my monitoring requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalent means. (vi) Make monthly visual checks of bag tension on reverse air and shaker-type baghouses to....7830 Section 63.7830 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED...

  17. 40 CFR 60.273 - Emission monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Inspecting the baghouse for air leaks, torn or broken bags or filter media, or any other condition that may....273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... installs and continuously operates a bag leak detection system according to paragraph (e) of this section...

  18. 40 CFR 60.273a - Emission monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following: (1) Inspecting the baghouse for air leaks, torn or broken bags or filter media, or any other....273a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... by a certified visible emission observer and the owner installs and continuously operates a bag leak...

  19. 40 CFR 60.273 - Emission monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Inspecting the baghouse for air leaks, torn or broken bags or filter media, or any other condition that may....273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... installs and continuously operates a bag leak detection system according to paragraph (e) of this section...

  20. 40 CFR 60.273a - Emission monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following: (1) Inspecting the baghouse for air leaks, torn or broken bags or filter media, or any other....273a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... by a certified visible emission observer and the owner installs and continuously operates a bag leak...

  1. 40 CFR 60.273a - Emission monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following: (1) Inspecting the baghouse for air leaks, torn or broken bags or filter media, or any other....273a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... by a certified visible emission observer and the owner installs and continuously operates a bag leak...

  2. 40 CFR 63.7830 - What are my monitoring requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equivalent means. (vi) Make monthly visual checks of bag tension on reverse air and shaker-type baghouses to...? 63.7830 Section 63.7830 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  3. 40 CFR 63.7830 - What are my monitoring requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalent means. (vi) Make monthly visual checks of bag tension on reverse air and shaker-type baghouses to...? 63.7830 Section 63.7830 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  4. Flue Dust Agglomeration in the Secondary Lead Industry

    NASA Astrophysics Data System (ADS)

    Schwitzgebel, Klaus

    1981-01-01

    A secondary lead smelter produces several tons of bag-house dust a day. Appropriate handling of this dust is mandatory to meet the proposed OSHA and EPA workroom and ambient standards. Dust agglomeration proved a successful approach. Dusts with a high concentration of PbCl2, or compounds containing PbCl2 can be agglomerated at much lower temperatures than samples with low PbCl2 concentrations. The chlorine sources are polyvinyl chloride (PVC) battery plate separators. Since PVC is used in Europe to a much greater extent than in the U.S., the composition of feedstock must be considered in equipment selection at U.S. secondary smelters. The vapor pressure characteristics of PbCl2 favor its evaporation at blast furnace temperatures. Condensation occurs in the gas cooling system. Recycling of baghouse dust leads to a buildup of PbCl2 in the smelter. Its removal from the system is eventually necessary through leaching, if charges with a high PVC content are processed.

  5. Environmental Technology Verification Report: Baghouse Filtration Products, Donaldson Company, Inc. Tetratex® 6282 Filtration Media (Tested March - April 2011)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. ETV seeks to ach...

  6. Environmental Technology Verification Report: Baghouse Filtration Products, Donaldson Company, Inc. Tetratex® 6277 Filtration Media (Tested March 2011)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. ETV seeks to ach...

  7. Environmental Technology Verification: Baghouse filtration products--W.L. Gore & Associates L3650 filtration media (tested November--December 2009)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. ETV seeks to ach...

  8. Environmental Technology Verification Report: Baghouse Filtration Products, Donaldson Company, Inc. Tetratex® 6262 Filtration Media (Tested March 2011)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. ETV seeks to ach...

  9. 40 CFR 63.1549 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... recordkeeping required as part of the practices described in the standard operating procedures manual for... as part of the practices described in the standard operating procedures manual for baghouses required... procedures outlined in the standard operating procedures manual required by § 63.1544(a) were not followed...

  10. 40 CFR 63.1549 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recordkeeping required as part of the practices described in the standard operating procedures manual for... as part of the practices described in the standard operating procedures manual for baghouses required... procedures outlined in the standard operating procedures manual required by § 63.1544(a) were not followed...

  11. 40 CFR 63.1549 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recordkeeping required as part of the practices described in the standard operating procedures manual for... as part of the practices described in the standard operating procedures manual for baghouses required... procedures outlined in the standard operating procedures manual required by § 63.1544(a) were not followed...

  12. 40 CFR 63.7331 - What are the installation, operation, and maintenance requirements for my monitors?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air... baghouse applied to pushing emissions, you must install, operate, and maintain each bag leak detection...

  13. STOCK YARD LOOKING SOUTHEAST SHOWING OVERHEAD YARD CRANE RAIL, THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STOCK YARD LOOKING SOUTHEAST SHOWING OVERHEAD YARD CRANE RAIL, THE MALLEABLE CUPOLAS AND EMISSION RECOVERY SYSTEM, OLD SHED ROOF THAT COVERED THE EARLIER MALLEABLE CUPOLA CHARGING CRANE, MALLEABLE FOUNDRY, AND POLLUTION CONTROL BAGHOUSE. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  14. 40 CFR 63.9600 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) through (vi) of this section. (i) Inspecting the baghouse for air leaks, torn or broken bags or filter... requirements? 63.9600 Section 63.9600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  15. 40 CFR 63.9600 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) through (vi) of this section. (i) Inspecting the baghouse for air leaks, torn or broken bags or filter... requirements? 63.9600 Section 63.9600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  16. 40 CFR 63.7790 - What emission limitations must I meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) For each venturi scrubber applied to meet any particulate emission limit in Table 1 to this subpart, you must maintain the hourly average pressure drop and scrubber water flow rate at or above the... other than a baghouse, venturi scrubber, or electrostatic precipitator must submit a description of the...

  17. 40 CFR 63.7330 - What are my monitoring requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and... each baghouse applied to pushing emissions from a coke oven battery, you must at all times monitor the...(i). (e) For each by-product coke oven battery, you must monitor at all times the opacity of...

  18. 40 CFR 63.7330 - What are my monitoring requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and... each baghouse applied to pushing emissions from a coke oven battery, you must at all times monitor the...(i). (e) For each by-product coke oven battery, you must monitor at all times the opacity of...

  19. 40 CFR 63.7330 - What are my monitoring requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and... each baghouse applied to pushing emissions from a coke oven battery, you must at all times monitor the...(i). (e) For each by-product coke oven battery, you must monitor at all times the opacity of...

  20. 40 CFR 63.7330 - What are my monitoring requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... baghouse applied to pushing emissions from a coke oven battery, you must at all times monitor the relative...(i). (e) For each by-product coke oven battery, you must monitor at all times the opacity of...

  1. 40 CFR Appendix Xi to Part 266 - Lead-Bearing Materials That May be Processed in Exempt Lead Smelters

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... analyses Acid filters Baghouse bags Clothing (e.g., coveralls, aprons, shoes, hats, gloves) Sweepings Air filter bags and cartridges Respiratory cartridge filters Shop abrasives Stacking boards Waste shipping... pallets Water treatment sludges, filter cakes, residues, and solids Emission control dusts, sludges...

  2. 40 CFR Appendix Xi to Part 266 - Lead-Bearing Materials That May be Processed in Exempt Lead Smelters

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... analyses Acid filters Baghouse bags Clothing (e.g., coveralls, aprons, shoes, hats, gloves) Sweepings Air filter bags and cartridges Respiratory cartridge filters Shop abrasives Stacking boards Waste shipping... pallets Water treatment sludges, filter cakes, residues, and solids Emission control dusts, sludges...

  3. 40 CFR Appendix Xi to Part 266 - Lead-Bearing Materials That May be Processed in Exempt Lead Smelters

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... analyses Acid filters Baghouse bags Clothing (e.g., coveralls, aprons, shoes, hats, gloves) Sweepings Air filter bags and cartridges Respiratory cartridge filters Shop abrasives Stacking boards Waste shipping... pallets Water treatment sludges, filter cakes, residues, and solids Emission control dusts, sludges...

  4. 40 CFR Appendix Xi to Part 266 - Lead-Bearing Materials That May be Processed in Exempt Lead Smelters

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... analyses Acid filters Baghouse bags Clothing (e.g., coveralls, aprons, shoes, hats, gloves) Sweepings Air filter bags and cartridges Respiratory cartridge filters Shop abrasives Stacking boards Waste shipping... pallets Water treatment sludges, filter cakes, residues, and solids Emission control dusts, sludges...

  5. 40 CFR 49.5512 - Federal Implementation Plan Provisions for Four Corners Power Plant, Navajo Nation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Plant including associated air pollution control equipment in a manner consistent with good air... judicial or administrative proceeding. (2) Air pollution control equipment includes baghouses, particulate... part 75. (7) Malfunction means any sudden and unavoidable failure of air pollution control equipment or...

  6. 40 CFR 49.5512 - Federal Implementation Plan Provisions for Four Corners Power Plant, Navajo Nation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Plant including associated air pollution control equipment in a manner consistent with good air... judicial or administrative proceeding. (2) Air pollution control equipment includes baghouses, particulate... part 75. (7) Malfunction means any sudden and unavoidable failure of air pollution control equipment or...

  7. 40 CFR 49.5512 - Federal Implementation Plan Provisions for Four Corners Power Plant, Navajo Nation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Plant including associated air pollution control equipment in a manner consistent with good air... judicial or administrative proceeding. (2) Air pollution control equipment includes baghouses, particulate... part 75. (7) Malfunction means any sudden and unavoidable failure of air pollution control equipment or...

  8. The Evolution of Improved Baghouse Filter Media as Observed in the Environmental Technology Verification Program

    EPA Science Inventory

    The U.S. EPA implemented the Environmental Technology Verification (ETV) program in 1995 to generate independent and credible data on the performance of innovative technologies that have the potential to improve protection of public health and the environment. Results are publicl...

  9. 40 CFR Appendix Xi to Part 266 - Lead-Bearing Materials That May be Processed in Exempt Lead Smelters

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... analyses Acid filters Baghouse bags Clothing (e.g., coveralls, aprons, shoes, hats, gloves) Sweepings Air filter bags and cartridges Respiratory cartridge filters Shop abrasives Stacking boards Waste shipping... pallets Water treatment sludges, filter cakes, residues, and solids Emission control dusts, sludges...

  10. 40 CFR 63.550 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., corrective action, report, or record, according to § 63.10(b)(1). (b) The standard operating procedures... standard operating procedures manual for baghouses required under § 63.548(a). (4) Electronic records of... required as part of the practices described in the standard operating procedures manual required under § 63...

  11. 40 CFR 63.550 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., corrective action, report, or record, according to § 63.10(b)(1). (b) The standard operating procedures... standard operating procedures manual for baghouses required under § 63.548(a). (4) Electronic records of... required as part of the practices described in the standard operating procedures manual required under § 63...

  12. 40 CFR 63.550 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., corrective action, report, or record, according to § 63.10(b)(1). (b) The standard operating procedures... standard operating procedures manual for baghouses required under § 63.548(a). (4) Electronic records of... required as part of the practices described in the standard operating procedures manual required under § 63...

  13. 40 CFR 63.9631 - What are my monitoring requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... inspections, vibration detectors, or equivalent means. (b) Except as provided in paragraph (c) of this section... average opacity of emissions exiting each control device stack according to the requirements in § 63.9633... pollution control device other than a baghouse, wet scrubber, dry electrostatic precipitator, or wet...

  14. 40 CFR 63.9631 - What are my monitoring requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... inspections, vibration detectors, or equivalent means. (b) Except as provided in paragraph (c) of this section... average opacity of emissions exiting each control device stack according to the requirements in § 63.9633... pollution control device other than a baghouse, wet scrubber, dry electrostatic precipitator, or wet...

  15. 40 CFR 63.9631 - What are my monitoring requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... inspections, vibration detectors, or equivalent means. (b) Except as provided in paragraph (c) of this section... average opacity of emissions exiting each control device stack according to the requirements in § 63.9633... pollution control device other than a baghouse, wet scrubber, dry electrostatic precipitator, or wet...

  16. 40 CFR 62.14454 - How must I monitor the required parameters?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... installed in each baghouse compartment or cell. (7) For negative pressure or induced air FF, the bag leak...) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND... use an air pollution control device that includes a FF and are not demonstrating compliance using PM...

  17. 40 CFR 62.14454 - How must I monitor the required parameters?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... installed in each baghouse compartment or cell. (7) For negative pressure or induced air FF, the bag leak...) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND... use an air pollution control device that includes a FF and are not demonstrating compliance using PM...

  18. Environmental Technology Verification--Baghouse Filtration Products: GE Energy QG061 Filtration Media (Tested September 2008)

    EPA Science Inventory

    This report reviews the filtration and pressure drop performance of GE Energy's QG061 filtration media. Environmental Technology Verification (ETV) testing of this technology/product was conducted during a series of tests in September 2008. The objective of the ETV Program is to ...

  19. 40 CFR 63.7790 - What emission limitations must I meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) For each venturi scrubber applied to meet any particulate emission limit in Table 1 to this subpart, you must maintain the hourly average pressure drop and scrubber water flow rate at or above the... other than a baghouse, venturi scrubber, or electrostatic precipitator must submit a description of the...

  20. PROCEEDINGS: EIGHTH SYMPOSIUM ON THE TRANSFER AND UTILIZATION OF PARTICULATE CONTROL TECHNOLOGY - VOLUME 2. BAGHOUSES AND PARTICULATE CONTROL FOR NEW APPLICATIONS

    EPA Science Inventory

    The two-volume proceedings describe the latest research and development efforts to improve particulate control devices, while treating traditional concerns of operational cost and compliance. Overall, particulate control remains a key issue in the cost and applicability of furnac...

  1. 40 CFR 60.2165 - What monitoring equipment must I install and what parameters must I monitor?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... installed in each baghouse compartment or cell. For negative pressure or induced air fabric filters, the bag... test. (g) For waste-burning kilns not equipped with a wet scrubber, in place of hydrogen chloride..., maintain, and operate a continuous emission monitoring system for monitoring hydrogen chloride emissions...

  2. 40 CFR 63.7830 - What are my monitoring requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) of this section. (1) Install, operate, and maintain a bag leak detection system according to § 63... § 63.7832; or (2) If you do not install and operate a bag leak detection system, you must install... bag leak detection system and COMS are not required for a baghouse that meets the requirements in...

  3. 40 CFR 52.1628 - Interstate pollutant transport and regional haze provisions; what are the FIP requirements for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... midnight. Air pollution control equipment includes baghouses, particulate or gaseous scrubbers, and any... owner or operator shall submit a plan to the Regional Administrator that identifies the air pollution... shall, to the extent practicable, maintain and operate the unit including associated air pollution...

  4. 40 CFR 52.1628 - Interstate pollutant transport and regional haze provisions; what are the FIP requirements for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... midnight. Air pollution control equipment includes baghouses, particulate or gaseous scrubbers, and any... owner or operator shall submit a plan to the Regional Administrator that identifies the air pollution... shall, to the extent practicable, maintain and operate the unit including associated air pollution...

  5. 40 CFR 52.1628 - Interstate pollutant transport and regional haze provisions; what are the FIP requirements for...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... midnight. Air pollution control equipment includes baghouses, particulate or gaseous scrubbers, and any... owner or operator shall submit a plan to the Regional Administrator that identifies the air pollution... shall, to the extent practicable, maintain and operate the unit including associated air pollution...

  6. 40 CFR 63.1459 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... device that collects particulate matter by filtering the gas stream through bags. A baghouse is also... converter bath. Capture system means the collection of components used to capture gases and fumes released from one or more emission points, and to convey the captured gases and fumes to a control device. A...

  7. 40 CFR 63.1656 - Performance testing, test methods, and compliance demonstrations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... points. (2) Method 2 to determine the volumetric flow rate of the stack gas. (3) Method 3 to determine... matter concentration and volumetric flow rate of the stack gas for positive pressure baghouses without...) Determine the particulate matter concentration and volumetric flow rate using Method 5 or 5D, as applicable...

  8. 40 CFR 63.1656 - Performance testing, test methods, and compliance demonstrations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... points. (2) Method 2 to determine the volumetric flow rate of the stack gas. (3) Method 3 to determine... matter concentration and volumetric flow rate of the stack gas for positive pressure baghouses without...) Determine the particulate matter concentration and volumetric flow rate using Method 5 or 5D, as applicable...

  9. 40 CFR 63.1656 - Performance testing, test methods, and compliance demonstrations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... points. (2) Method 2 to determine the volumetric flow rate of the stack gas. (3) Method 3 to determine... matter concentration and volumetric flow rate of the stack gas for positive pressure baghouses without...) Determine the particulate matter concentration and volumetric flow rate using Method 5 or 5D, as applicable...

  10. Assessment of potential concerns associated with the use of cement kiln baghouse dust in FDOT concrete mixes : [summary].

    DOT National Transportation Integrated Search

    2013-08-01

    The 100+ cement plants in the U.S. emit about 7% of the nations mercury (Hg) air pollution from stationary sources. In 2010, the Environmental Protection Agency released new rules for cement plant Hg emissions which will reduce them greatly by 201...

  11. 40 CFR 62.14690 - What monitoring equipment must I install and what parameters must I monitor?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... each baghouse compartment or cell. For negative pressure or induced air fabric filters, the bag leak... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS... subpart, you must install, calibrate, maintain, and continuously operate a bag leak detection system as...

  12. 40 CFR 62.14690 - What monitoring equipment must I install and what parameters must I monitor?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... each baghouse compartment or cell. For negative pressure or induced air fabric filters, the bag leak... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS... subpart, you must install, calibrate, maintain, and continuously operate a bag leak detection system as...

  13. 40 CFR 63.11468 - What are the monitoring requirements for new and existing sources?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... baghouse, including but not limited to air leaks, torn or broken bags or filter media, or any other...) Inspecting the fabric filter for air leaks, torn or broken bags or filter media, or any other condition that... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR...

  14. 40 CFR 63.11468 - What are the monitoring requirements for new and existing sources?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... baghouse, including but not limited to air leaks, torn or broken bags or filter media, or any other...) Inspecting the fabric filter for air leaks, torn or broken bags or filter media, or any other condition that... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR...

  15. 40 CFR 63.11468 - What are the monitoring requirements for new and existing sources?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... baghouse, including but not limited to air leaks, torn or broken bags or filter media, or any other...) Inspecting the fabric filter for air leaks, torn or broken bags or filter media, or any other condition that... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR...

  16. 40 CFR 62.14690 - What monitoring equipment must I install and what parameters must I monitor?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... each baghouse compartment or cell. For negative pressure or induced air fabric filters, the bag leak... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS... subpart, you must install, calibrate, maintain, and continuously operate a bag leak detection system as...

  17. 40 CFR 63.11468 - What are the monitoring requirements for new and existing sources?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... baghouse, including but not limited to air leaks, torn or broken bags or filter media, or any other...) Inspecting the fabric filter for air leaks, torn or broken bags or filter media, or any other condition that... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR...

  18. 40 CFR 63.11468 - What are the monitoring requirements for new and existing sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... baghouse, including but not limited to air leaks, torn or broken bags or filter media, or any other... identified in the site-specific monitoring plan required by paragraph (c)(2) of this section. (vii) You must... submit to the Administrator or delegated authority for approval a site-specific monitoring plan for each...

  19. 40 CFR 60.2165 - What monitoring equipment must I install and what parameters must I monitor?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... installed in each baghouse compartment or cell. For negative pressure or induced air fabric filters, the bag... hydrogen chloride testing with EPA Method 321 at 40 CFR part 63, appendix A, an owner or operator must install, calibrate, maintain, and operate a CEMS for monitoring hydrogen chloride emissions discharged to...

  20. 40 CFR 60.2730 - What monitoring equipment must I install and what parameters must I monitor?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... detection system must be installed in each baghouse compartment or cell. For negative pressure or induced... scrubber, in place of hydrogen chloride testing with EPA Method 321 at 40 CFR part 63, appendix A, an owner... for monitoring hydrogen chloride emissions discharged to the atmosphere and record the output of the...

  1. 40 CFR 60.2165 - What monitoring equipment must I install and what parameters must I monitor?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... leak detection system must be installed in each baghouse compartment or cell. For negative pressure or... scrubber, in place of hydrogen chloride testing with EPA Method 321 at 40 CFR part 63, appendix A, an owner... for monitoring hydrogen chloride emissions discharged to the atmosphere and record the output of the...

  2. 40 CFR 63.11412 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Chromium Compounds Other Requirements and Information § 63.11412 What definitions apply to this subpart? Terms used in this subpart are defined in the CAA, in 40 CFR 63.2, and in this section as follows: Bag... matter (dust loadings) in the exhaust of a baghouse to detect bag leaks and other upset conditions. A bag...

  3. 40 CFR 63.11412 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Chromium Compounds Other Requirements and Information § 63.11412 What definitions apply to this subpart? Terms used in this subpart are defined in the CAA, in 40 CFR 63.2, and in this section as follows: Bag... matter (dust loadings) in the exhaust of a baghouse to detect bag leaks and other upset conditions. A bag...

  4. Introduction of a Population Balance Based Design Problem in a Particle Science and Technology Course for Chemical Engineers

    ERIC Educational Resources Information Center

    Ehrman, Sheryl H.; Castellanos, Patricia; Dwivedi, Vivek; Diemer, R. Bertrum

    2007-01-01

    A particle technology design problem incorporating population balance modeling was developed and assigned to senior and first-year graduate students in a Particle Science and Technology course. The problem focused on particle collection, with a pipeline agglomerator, Cyclone, and baghouse comprising the collection system. The problem was developed…

  5. 40 CFR 63.7740 - What are my monitoring requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... positive pressure baghouse equipped with a stack that is applied to meet any PM or total metal HAP..., regardless of type, that is applied to meet any PM or total metal HAP emissions limitation in this subpart... detectors, or equivalent means. (d) For each wet scrubber subject to the operating limits in § 63.7690(b)(2...

  6. 40 CFR 63.7740 - What are my monitoring requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pressure baghouse equipped with a stack that is applied to meet any PM or total metal HAP emissions..., that is applied to meet any PM or total metal HAP emissions limitation in this subpart, you must... detectors, or equivalent means. (d) For each wet scrubber subject to the operating limits in § 63.7690(b)(2...

  7. 40 CFR 63.7740 - What are my monitoring requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... positive pressure baghouse equipped with a stack that is applied to meet any PM or total metal HAP..., regardless of type, that is applied to meet any PM or total metal HAP emissions limitation in this subpart... detectors, or equivalent means. (d) For each wet scrubber subject to the operating limits in § 63.7690(b)(2...

  8. 77 FR 30248 - Approval and Promulgation of Implementation Plans; State of Idaho; Regional Haze State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... range (or deciview), which is the greatest distance, in kilometers or miles, at which a dark object can... Comprehensive Air Quality Model with Extensions (CAMx) and Particulate Matter Source Apportionment Technology... air for NO X , wet flue gas desulfurization for SO 2 and the existing baghouse for particulate matter...

  9. 40 CFR 63.1446 - What alternative emission limitation may I meet for my combined gas streams?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... than a baghouse or venturi wet scrubber applied to meet any total particulate matter emission limit in... than 5 percent of the total operating time in any semiannual reporting period. (d) For each venturi wet scrubber applied to meet any total particulate matter emission limit in paragraph (b) of this section, you...

  10. 40 CFR 63.7833 - How do I demonstrate continuous compliance with the emission limitations that apply to me?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... baghouse equipped with a bag leak detection system, operating and maintaining each bag leak detection... requirements. If you increase or decrease the sensitivity of the bag leak detection system beyond the limits... event of a bag leak detection system alarm or when the hourly average opacity exceeded 5 percent, the...

  11. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  12. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, S.; Lawson, D.B.

    1994-02-15

    A process for recovering zinc-rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered by distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10 C, separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream. 1 figure.

  13. 40 CFR 63.11149 - What are the standards and compliance requirements for new sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... discharge to the atmosphere exhaust gases that contain total PM in excess of 0.6 pound per ton of copper... collected gas stream to a baghouse or other PM control device. (3) You must operate one or more capture... paragraph as an alternative to the requirements in 40 CFR 63.6(e)(3). In the event of an emergency situation...

  14. Evaluation of Plastic Media Blasting Equipment

    DTIC Science & Technology

    1987-04-01

    the differential pressure across the filter element or by a timer with a differential pressure switch override. The timer and the differential pressure ...automatic. The mechanism should be activated by the differential pressure across the filter element or by a timer with a differential pressure switch override...The timer and the differential pressure switch settings should be adjustable. The dust then falls to the bottom of the baghouse for

  15. JV Task 107- Pilot-Scale Emission Control Technology Testing for Constellation Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Jones; Brandon Pavlish; Stephen Sollom

    2007-06-30

    An Indonesian, Colombian, and Russian coal were tested in the Energy & Environmental Research Center's combustion test facility for their performance and an evaluation of mercury release and capture with selected additives in both electrostatic precipitator and baghouse configurations. Sorbents included the carbon-based materials NORIT DARCO Hg, Sorbent Technologies B-PAC and B-PAC LC, STI Rejects provided by Constellation Energy, and Envergex e-Sorb, along with ChemMod's high-temperature additive. Each coal was evaluated over several days and compared. Ash-fouling tests were conducted, and mercury levels were monitored using continuous mercury monitors (CMMs). The Ontario Hydro mercury sampling method was also utilized. Themore » Indonesian coal had the lowest ash content, lowest sulfur content, and lowest energy content of the three coals tested. The Colombian coal had the highest mercury content and did contain a significant level of selenium which can interfere with the ability of a CMM to monitor mercury in the gas stream. All sorbents displayed very favorable results. In most cases, mercury removal greater than 86% could be obtained. The Indonesian coal displayed the best mercury removal with sorbent addition. A maximum removal of 97% was measured with this coal using Envergex's carbon-based sorbent at a rate of 4 lb/Macf across an electrostatic precipitator. The high ash and selenium content of the Colombian coal caused it to be a problematic fuel, and ash plugging of the test furnace was a real concern. Problems with the baghouse module led to limited testing. Results indicated that native capture across the baghouse for each coal type was significant enough not to warrant sorbent addition necessary. The fouling potential was the lowest for the Indonesian coal. Low sulfur content contributes to the poor potential for fouling, as witnessed by the lack of deposits during testing. The Russian and Colombian coals had a much higher potential for fouling primarily because of their high ash contents, but the potential was highest for the Colombian coal. Of the three coals tested, the Colombian would be the least desirable.« less

  16. Air quality as a constraint to the use of coal in California

    NASA Technical Reports Server (NTRS)

    Austin, T. C.

    1978-01-01

    Low-NOx burners, wet scrubbing systems, baghouses and ammonia injection systems are feasible for use on large combustion sources such as utility boilers. These devices, used in combination with coal handling techniques which minimize fugitive dust and coal transportation related emissions, should enable new power plants and large industrial boilers to burn coal without the adverse air quality impacts for which coal became notorious.

  17. Cogeneration Systems.

    DTIC Science & Technology

    1980-06-01

    43 3000 TYPICAL MID-1978 COSTS, all overhead included 2000- Type of System: Double alkali flue gas desulfurization plus baghouse particulate removal...Figures 5, 6, and 8 also provide cost estimating data for oil- and natural gas -fired steam turbine systems. Figure 5 shows the steam- generating station of...to the ownership and operation of the system. For systems burning oil or natural gas , fuel will typically constitute 65-90% of the total life cycle

  18. Fuel-Burning Technology Alternatives for the Army.

    DTIC Science & Technology

    1985-01-01

    control 0.85 2,287,000 Flue gas desulfurization 0.68 3,410,000 Total 12,478,000 *Capital cost estimate...34......... . . Particulate and sulfur dioxide control are needed. A baghouse and flue gas desulfurization (FD) scrubber system must be installed. Each item’s cost in...direct cost) Contingency (20% of 1,253,000 direct and indirect costs) Subtotal 7,518,000 Particulate control 1,342,000 Flue gas desulfurization

  19. Mineral phases and metals in baghouse dust from secondary aluminum production.

    PubMed

    Huang, Xiao-Lan; El Badawy, Amro M; Arambewela, Mahendranath; Adkins, Renata; Tolaymat, Thabet

    2015-09-01

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 μg L(-1) As; >1000 μg L(-1) Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). Published by Elsevier Ltd.

  20. Particulate Air Pollution Control for Army Coal-Fired Boiler Plants.

    DTIC Science & Technology

    1983-03-01

    Army flue gas . The condensed material usually is sticky and emissions control . Of the current new technologies. traps the flyash on the bag, where it... control device is made a matter of convenience. The location Flue gas temperature control is an important factor of other components is given the prime...consideration. *in the application of baghouses to flue gas particulate This often results in the particle-laden gas being forced control . Bag

  1. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover

    DTIC Science & Technology

    2002-06-01

    typical of dewatering equipment used in the utility flue gas desulfurization industry to achieve high gypsum solids concentrations commercially...experience in the flue gas desulfurization industry, 1998. 22 Letter to B. Bunner, Delta-T Corporation, Williamsburg, VA, from A. Bowser, Komline...see Figure 16). Flue gas from the combustor preheats the entering combustion air then enters a baghouse to remove particulates, which are landfilled

  2. The National Shipbuilding Research Program: Contaminated Sediment Management Guide for NSRP Shipyards. Appendix 5: Treatment Technologies

    DTIC Science & Technology

    1999-10-22

    soils, baghouse ash, and cyclone ash) were collected every 30 minutes. Composite samples of both water and oil were also collected from each run every 30...Pthalate) > 99.99 %. EmissionslByProducts: Typical flue gas compositions (COZ. N2, H20. etc.) with trace pollutants within permit levels. Description...and polysilicates react in alkali conditions to form “gcopolymers”. In general, the “ geopolymers ” physically stabilize tbe contaminants, heavy metals

  3. Mercury mass balance at a wastewater treatment plant employing sludge incineration with offgas mercury control.

    PubMed

    Balogh, Steven J; Nollet, Yabing H

    2008-01-15

    Efforts to reduce the deliberate use of mercury (Hg) in modern industrialized societies have been largely successful, but the minimization and control of Hg in waste streams are of continuing importance. Municipal wastewater treatment plants are collection points for domestic, commercial, and industrial wastewaters, and Hg removal during wastewater treatment is essential for protecting receiving waters. Subsequent control of the Hg removed is also necessary to preclude environmental impacts. We present here a mass balance for Hg at a large metropolitan wastewater treatment plant that has recently been upgraded to provide for greater control of the Hg entering the plant. The upgrade included a new fluidized bed sludge incineration facility equipped with activated carbon addition and baghouse carbon capture for the removal of Hg from the incinerator offgas. Our results show that Hg discharges to air and water from the plant represented less than 5% of the mass of Hg entering the plant, while the remaining Hg was captured in the ash/carbon residual stream exiting the new incineration process. Sub-optimum baghouse operation resulted in some of the Hg escaping collection there and accumulating with the ash/carbon particulate matter in the secondary treatment tanks. Overall, the treatment process is effective in removing Hg from wastewater and sequestering it in a controllable stream for secure disposal.

  4. Novel dry-desulfurization process using Ca(OH)2/fly ash sorbent in a circulating fluidized bed.

    PubMed

    Matsushima, Norihiko; Li, Yan; Nishioka, Masateru; Sadakata, Masayoshi; Qi, Haiying; Xu, Xuchang

    2004-12-15

    A dry-desulfurization process using Ca(OH)2/fly ash sorbent and a circulating fluidized bed (CFB) was developed. Its aim was to achieve high SO2 removal efficiency without humidification and production of CaSO4 as the main byproduct. The CaSO4 produced could be used to treat alkalized soil. An 83% SO2 removal rate was demonstrated, and a byproduct with a high CaSO4 content was produced through baghouse ash. These results indicated that this process could remove SO2 in flue gas with a high efficiency under dry conditions and simultaneously produce soil amendment. It was shown that NO and NO2 enhanced the SO2 removal rate markedly and that NO2 increased the amount of CaSO4 in the final product more than NO. These results confirmed that the significant effects of NO and NO2 on the SO2 removal rate were due to chain reactions that occurred under favorable conditions. The amount of baghouse ash produced increased as the reaction progressed, indicating that discharge of unreacted Ca(OH)2 from the reactor was suppressed. Hence, unreacted Ca(OH)2 had a long residence time in the CFB, resulting in a high SO2 removal rate. It was also found that 350 degrees C is the optimum reaction temperature for dry desulfurization in the range tested (320-380 degrees C).

  5. Detailed Analysis of Alternatives Report. Version 2.0. Technology Descriptions. Volume 7.

    DTIC Science & Technology

    1993-07-01

    capacity is 25 to 50 tons/hour. Off-gas treatment consists of a partial quench, baghouse, and venturi scrubber . The quench blowdown stream is treated...particulate removal, and a caustic quench step to remove acid gases with a venturi scrubber for additional particulate removal (Figure 7.1-1). The sequence can...quench step to remove acid gases with a venturi scrubber for additional particulate removal. The sequence can be modified to include off gas to stack gas

  6. Mineral phases and metals in baghouse dust from secondary ...

    EPA Pesticide Factsheets

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 µgL-1 As; >1000 µgL-1 Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). The objective of this study was to investigate BHD from SAP facilities in the U.S. by determining the mineral phases and the metal (Al, As, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb, Se and Zn) content of the sample

  7. Characteristics of ash and particle emissions during bubbling fluidised bed combustion of three types of residual forest biomass.

    PubMed

    Ribeiro, João Peres; Vicente, Estela Domingos; Alves, Célia; Querol, Xavier; Amato, Fulvio; Tarelho, Luís A C

    2017-04-01

    Combustion of residual forest biomass (RFB) derived from eucalypt (Eucalyptus globulus), pine (Pinus pinaster) and golden wattle (Acacia longifolia) was evaluated in a pilot-scale bubbling fluidised bed reactor (BFBR). During the combustion experiments, monitoring of temperature, pressure and exhaust gas composition has been made. Ash samples were collected at several locations along the furnace and flue gas treatment devices (cyclone and bag filter) after each combustion experiment and were analysed for their unburnt carbon content and chemical composition. Total suspended particles (TSP) in the combustion flue gas were evaluated at the inlet and outlet of cyclone and baghouse filter and further analysed for organic and elemental carbon, carbonates and 57 chemical elements. High particulate matter collection efficiencies in the range of 94-99% were observed for the baghouse, while removal rates of only 1.4-17% were registered for the cyclone. Due to the sand bed, Si was the major element in bottom ashes. Fly ashes, in particular those from eucalypt combustion, were especially rich in CaO, followed by relevant amounts of SiO 2 , MgO and K 2 O. Ash characteristics varied among experiments, showing that their inorganic composition strongly depends on both the biomass composition and combustion conditions. Inorganic constituents accounted for TSP mass fractions up to 40 wt%. Elemental carbon, organic matter and carbonates contributed to TSP mass fractions in the ranges 0.58-44%, 0.79-78% and 0.01-1.7%, respectively.

  8. Alternative E ammonia feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentz, M.J.; Wright, R.A.

    1999-07-01

    Power plants are using more Ammonia for increasing precipitator and baghouse efficiency, for SCR and SNCR processes, and for controlling acid stack plumes and dewpoint corrosion. These simple systems inject ammonia and air into the furnace or the precipitator or baghouse inlet ductwork. The common feedstocks in use today are Anhydrous ammonia [NH{sub 3}] and Aqueous ammonia [NH{sub 4}OH], both defined as poison gases by US authorities and most Western nations. Storage and handling procedures for these products are strictly regulated. Wilhelm Environmental Technologies Inc. is developing use of solid, formed or prilled Urea [CO(NH{sub 2}){sub 2}] as the feedstock.more » When heated in moist air, Urea sublimes to ammonia [NH{sub 3}] and carbon dioxide [CO{sub 2}]. Urea is stored and handled without restrictions or environmental concerns. Urea is a more expensive feedstock than NH{sub 3}, but much less expensive than [NH{sub 4}OH]. The design, and operating results, of a pilot system at Jacksonville Electric St. John's River Plant [Unit 2] are described. The pilot plant successfully sublimed Urea up to 100 pounds/hour. Further testing is planned. Very large ammonia use may favor NH{sub 3}, but smaller quantities can be produced at attractive prices with Urea based ammonia systems. Storage costs are far less. Many fluidized-bed boilers can use pastille or solid urea metered directly into the existing cyclones for NO{sub x} control. This is more economical than aqueous ammonia or aqueous urea based technology.« less

  9. US Steel Gary Works land based pushing emissions control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randolph, R.A.; Price, C.A.

    1983-01-01

    To meet air quality standards at its Gary Works Coke Plant in Gary, Indiana, US Steel Corporation has installed pushing emission control systems for its five (77) oven, three meter coke batteries. The pushing emission control system consists of a hooded coke guide, single spot catch car, stationary emission capture ducts and remote gas cleaning baghouse with precoat capabilities. The system is providing effective emission control. In addition, there are corollary benefits. The operation of the single spot catch cars is easier and safer and coke moisture variables have been reduced.

  10. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios

    DTIC Science & Technology

    1999-07-01

    handled as a dry solid. This approach was recommended by vendors and is typical of dewatering equipment used in the utility flue gas desulfurization ...in a large continuous stirred- tank reactor (CSTR). 21 H. Majdeski, personal experience in the flue gas desulfurization industry, 1998. 22 Letter to B...defined as the percentage of the feed heat that is converted to steam heat, is 62% (see Figure 15). Flue gas from the dryer cyclone enters a baghouse to

  11. Technology could deliver 90% Hg reduction from coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maize, K.

    2009-07-15

    Reducing mercury emissions at coal-fired power plants by 90% has been considered the holy grail of mercury control. A new technology promises to get used there, but at a price. This is a mixture of chemical approaches, including activated carbon injection into the gases coming off the combustor along with injection of trona or calcium carbonate to reduce sulfur trioxide in the exhaust gases. The trick according to Babcock and Wilcox's manager Sam Kumar, to 'capture the mercury as a particulate on the carbon and then capture the particulate' in an electrostatic precipitator or a fabric filter baghouse. 2 figs.

  12. Electric furnace dust: Can you bury the hazard?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManus, G.J.

    1996-04-01

    Electric furnace waste treatment is moving into high gear, but the exact direction is unclear. On one hand, there is a trend toward complete recycling of the dust captured in furnace baghouses. Iron units as well as zinc and other elements are being reclaimed. On the other side, recent actions by regulators indicate recycling may not be required at all. With the correct chemical stabilization, it appears, dust may simply be placed in ordinary landfill. This paper describes three processes for waste treatment of furnace dust: Super Detox, a process for zinc removal from galvanized scrap before melting, and themore » INMETCO process.« less

  13. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration planmore » was completed. (VC)« less

  14. Evaluation of an improved prototype mini-baghouse to control the release of respirable crystalline silica from sand movers.

    PubMed

    Alexander, Barbara M; Esswein, Eric J; Gressel, Michael G; Kratzer, Jerry L; Feng, H Amy; Miller, Arthur L; Cauda, Emanuele; Heil, Graeham

    2018-01-01

    The OSHA final rule on respirable crystalline silica (RCS) will require hydraulic fracturing companies to implement engineering controls to limit workers' exposure to RCS. RCS is generated by pneumatic transfer of quartz-containing sand during hydraulic fracturing operations. Chronic inhalation of RCS can lead to serious disease, including silicosis and lung cancer. NIOSH research identified at least seven sources where RCS aerosols were generated at hydraulic fracturing sites. NIOSH researchers developed an engineering control to address one of the largest sources of RCS aerosol generation, RCS escaping from thief hatches on the top of sand movers. The control, the NIOSH Mini-Baghouse Retrofit Assembly (NMBRA), mounts on the thief hatches. Unlike most commercially available engineering controls, the NMBRA has no moving parts and requires no power source. This article details the results of an evaluation of generation 3 of the NMBRA at a sand mine in Arkansas from May 19-21, 2015. During the evaluation, 168 area air samples were collected at 12 locations on and around a sand mover with and without the NMBRA installed. Analytical results for respirable dust and RCS indicated the use of the NMBRA effectively reduced concentrations of both respirable dust and RCS downwind of the thief hatches. Reductions of airborne respirable dust were estimated at 99+%; reductions in airborne RCS ranged from 98-99%. Analysis of bulk samples of the dust showed the likely presence of freshly fractured quartz, a particularly hazardous form of RCS. Use of an improved filter fabric and a larger area of filter cloth led to substantial improvements in filtration and pressures during these trials, as compared to the generation 2 NMBRA. Planned future design enhancements, including a weather cover, will increase the performance and durability of the NMBRA. Future trials are planned to evaluate the long-term operability of the technology.

  15. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States

    USGS Publications Warehouse

    Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.

    2013-01-01

    Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The 20-acre White Farm Equipment Dump site is an active landfill near the north border of Charles City in Floyd County, Iowa. Drainage from the site toward the northwest and south feeds into adjacent wetland areas. The Charles City municipal wells, located 700 feet east of the site, obtain water from the deep, confined Cedar Valley aquifer. Additionally, six shallow drinking water wells that draw from an uncontrolled water table are 1,000 feet downgradient from the site. Intermittently since 1971, approximately 650,000 cubic yards of wet scrubber sludges, foundry sands, baghouse dusts, and other industrial wastes were disposed of onsite.more » The primary contaminants of concern affecting the soil, debris, and ground water are VOCs including benzene and toluene; and metals including arsenic, lead, and chromium.« less

  17. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, Deborah A.; Farthing, George A.

    1998-08-18

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  18. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, Deborah A.; Farthing, George A.

    1998-09-29

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  19. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, D.A.; Farthing, G.A.

    1998-08-18

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  20. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, D.A.; Farthing, G.A.

    1998-09-29

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  1. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, F.E.; Hedenhag, J.G.; Marchant, S.K.

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, airmore » toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.« less

  2. Engineering evaluation of the use of the Timberline condensing economizer for particulate collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, T.; Serry, H.

    1980-12-01

    The possible use of the Timberline Industries condensing economizer as a particulate collection device on commercial sector boilers which are being converted to coal-oil mixture (COM) firing has been considered. The saturation temperature of the water vapor in the flue gas has been estimated as a function of excess air and ambient relative humidity. Also, boiler stack losses have been estimated for a variety of operating conditions including stack temperatures below the dew point. The condensing economizer concept will be limited to applications which can use the low temperature heat including water heating and forced air space heating. The potentialmore » particulate collection efficiency, water disposal, and similar heat recovery devices are discussed. A cost analysis is presented which indicates that the economizer system is not competitive with a cyclone but is competitive with a baghouse. The use of the cyclone is limited by collection efficiency. The measurement of COM flyash particle size distribution is recommended.« less

  3. Revamping AK-Ashland gas cleaning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandes, H.; Koerbel, R.; Haberkamp, K.

    1995-07-01

    AK Steel`s (formerly Armco) BOF shop was using a static precipitator for the primary collection. The system was designed for full combustion in the gas collecting hoods. No secondary dust collection was in place. A detailed study on alternative solutions led to a completely different system in 1990, and an order was awarded to Mannesmann Demag Corp. (MDC) in Dec. 1990. The new gas collection system is using suppressed combustion with the capability to collect Co at a later stage. The gas cleaning uses the Mannesmann Demag Baumco scrubber with a venturi throat for gas flow control. All auxiliary components,more » water treatment plant, electric substations and sludge handling were designed and supplied by MDC. The secondary dust collection covers the hot metal and scrap charging into the BOF`s, reladling, desulfurization and deslagging by a pulse jet baghouse. All emission limits set by the EPA and guaranteed by MDC have been met by the systems installed.« less

  4. Study of composition change and agglomeration of flue gas cleaning residue from a fluidized bed waste incinerator.

    PubMed

    Lievens, P; Verbinnen, B; Bollaert, P; Alderweireldt, N; Mertens, G; Elsen, J; Vandecasteele, C

    2011-10-01

    Blocking of the collection hoppers of the baghouse filters in a fluidized bed incinerator for co-incineration of high calorific industrial solid waste and sludge was observed. The composition of the flue gas cleaning residue (FGCR), both from a blocked hopper and from a normal hopper, was investigated by (differential) thermogravimetric analysis, quantitative X-ray powder diffraction and wet chemical analysis. The lower elemental carbon concentration and the higher calcium carbonate concentration of the agglomerated sample was the result of oxidation of carbon and subsequent reaction of CO2 with CaO. The evolved heat causes a temperature increase, with the decomposition of CaOHCl as a consequence. The formation of calcite and calcium chloride and the evolution of heat caused agglomeration of the FGCR. Activated lignite coke was replaced by another adsorption agent with less carbon, so the auto-ignition temperature increased; since then no further block formation has occurred.

  5. Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Derenne; Robin Stewart

    2009-09-30

    This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{submore » x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.« less

  6. Conventional crops and organic amendments for Pb, Cd and Zn treatment at a severely contaminated site.

    PubMed

    Pichtel, J; Bradway, D J

    2008-03-01

    The ability of selected plants and amendments to treat Pb, Cd and Zn accumulations from a metalliferous waste disposal site was studied both in the greenhouse and field. Spinach (Spinacea oleracea), cabbage (Brassica oleracea), and a grass-legume mix (red fescue, Festuca rubra; ryegrass, Lolium perenne); and bean (Vicia faba) were grown in the greenhouse on blast furnace slag or baghouse dust amended with composted peat (CP). All plant species accumulated Pb, Cd and Zn to varying degrees. Total soil metal concentrations had a marked influence on plant uptake. Topdressing versus incorporating CP had a significant (p<0.05) effect on spinach and cabbage tissue metal concentrations. Soil Pb and Zn tended to shift towards less bioavailable forms after treatment with CP. Field plots were treated with CP, farmyard manure (FYM), or inorganic fertilizer. Dry matter production of spinach, cabbage and a grass-legume mix was greatest on either the CP or FYM treatments. Phytostabilization in combination with organic amendments may be the most appropriate technology to ensure stabilization of soil metals at this site.

  7. Use of natural radionuclides to determine the time range of the accidental melting of an orphan radioactive source in a steel recycling plant.

    PubMed

    Cantaluppi, Chiara; Ceccotto, Federica; Cianchi, Aldo

    2012-02-01

    In the rare event that an orphan radioactive source is melted in an Electric Arc Furnace steel recycling plant, the radionuclides present are partitioned in the different products, by-products and waste. As a consequence of an unforeseen melting of a radiocesium source, cesium radioisotopes can be found in the dust, together with many natural radionuclides from the decay of radon and thoron, which are present in the atmosphere, picked up from the off-gas evacuation system and associated with the dust of the air filtration system ("baghouse"). In this work we verified that the activity concentration of ²¹²Pb in this dust is essentially constant in a specific factory so that it is possible to use it to date back to the time of the accidental melting of the orphan radioactive source. The main features of this method are described below, together with the application to a particular case in which this method was used for dating the moment in which the dust was contaminated with ¹³⁷Cs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Public health assessment for Rockwool Industries, Belton, Bell County, Texas, Region 6, CERCLIS number TXD066379645. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-08-03

    The Rockwool Industries, Inc. (RWI) National Priorities List site is a 100 acre site one-mile east of downtown Belton in Bell County, Texas. The Facility manufactured two types of mineral wool insulation: Blow wool and batt wool. Three main contaminant source areas have been identified at the site. Source 1, in the middle portion of the site, includes contaminated soil associated with the South Shot Pile. Source 2, in the northern portion of the site, includes contaminated soils associated with the Cemetery Shot Pile. Source 3, in the northwest portion of the site includes contaminated soils associated with the Cemeterymore » Shot Pile. The primary waste types at the site include spent iron shot and baghouse dust. Secondary waste types include boiler blowdown water, stormwater runoff, recovered groundwater, and bricks. The Texas Department of Health (TDH) and the Agency for Toxic Substances and Disease Registry (ATSDR) evaluated the environmental information available for the site and identified several exposure situations for evaluation. These exposure situations include possible contact with site contaminants in the soil, surface water, sediment, and groundwater. The potential for exposure to site contaminants through the food chain was also examined. A brief review of the evaluation, organized by hazard category, is presented.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, T.; Melick, T.; Morrison, D.

    The objective of this DOE sponsored project was to successfully fire coal-water slurry in a fire-tube boiler that was designed for oil/gas firing and establish a data base that will be relevant to a large number of existing installations. Firing slurry in a fire-tube configuration is a very demanding application because of the extremely high heat release rates and the correspondingly low furnace volume where combustion can be completed. Recognizing that combustion efficiency is the major obstacle when firing slurry in a fire-tube boiler, the program was focused on innovative approaches for improving carbon burnout without major modifications to themore » boiler. The boiler system was successfully designed and operated to fire coal-water slurry for extended periods of time with few slurry related operational problems. The host facility was a 3.8 million Btu/hr Cleaver-Brooks fire-tube boiler located on the University of Alabama Campus. A slurry atomizer was designed that provided outstanding atomization and was not susceptible to pluggage. The boiler was operated for over 1000 hours and 12 shipments of slurry were delivered. The new equipment engineered for the coal-water slurry system consisted of the following: combustion air and slurry heaters; cyclone; baghouse; fly ash reinjection system; new control system; air compressor; CWS/gas burner and gas valve train; and storage tank and slurry handling system.« less

  10. Status and perspectives for the electron beam technology for flue gases treatment

    NASA Astrophysics Data System (ADS)

    Frank, Norman W.

    The electron-beam process is one of the most effective methods of removing SO 2 and NO x from industrial flue gases. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam, thereby causing reactions which convert the SO 2 and NO x to ammonium sulfate and ammonium sulfate-nitrate. These salts may the be collected from the flue gas by means of such conventional collectors as an electrostatic precipitator or baghouse. This process has numerous advantages over currently-used conventional processes as follows: (1) the process simultaneously removes SO 2 and NO x from flue gas at high efficiency levels; (2) it is a dry process which is easily controlled and has excellent load-following capability; (3) stack-gas reheat is not required; (4) the pollutants are converted into a saleable agricultural fertilizer; (5) the process has low capital and operating cost requirements. The history of the process is shown with a summary of the work that is presently underway. All of the current work is for the purpose of fine tuning the process for commercial usage. It is believed that with current testing and improvements, the process will be very competitive with existing processes and it will find its place in an environmental conscious world.

  11. An investigation on polycyclic aromatic hydrocarbon emissions from pulverized coal combustion systems

    PubMed

    Pisupati; Wasco; Scaroni

    2000-05-29

    Results from a series of tests conducted to study the emission of polynuclear or polycyclic aromatic hydrocarbons (PAHs) from bench-scale and small industrial, water-tube boiler are discussed. A Middle Kittanning, and Upper Freeport seam coals were used in the study. Samples were extracted from the reactor outlet and from the inlet and outlet sides of the research boiler's (RB) baghouse using EPA promulgated methods.Only acenaphthene and fluoranthene were detected in down-fired combustor (DFC) samples. In addition to these two, naphthalene was detected in the RB samples. Emission factors ranged from 80 to 320 &mgr;g/kg of fuel fired. Although there were minor trends in the emissions' data, given the reproducibility limits for PAH compounds, no significant differences were found in the emissions with respect to the fuel type or form (pulverized coal (PC) vs. coal-water slurry fuel (CWSF), and raw vs. cleaned coal) and firing conditions (high and low excess air). The PAH emissions showed a decrease with increase in the firing rate.A bench-scale drop-tube reactor (DTR) was used to study the effects of temperature and residence time on PAH formation. The results revealed near constant PAH concentrations in the solid-phase samples, while the PAH concentrations in the vapor-phase samples increased as a function of temperature. At a temperature of around 1300 degrees C, the rate of PAH formation was exceeded by the rate of PAH oxidation, and PAH concentrations in the vapor phase began to decrease.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In this quarterly technical progress report, UTSI reports on progress on a multitask contract to develop the necessary technology for the steam bottoming plant of the MHD Steam Combined Cycle power plant. A Proof-Of-Concept (POC) test was conducted during the quarter and the results are reported. This POC test was terminated after 88 hours of operation due to the failure of the coal pulverizer main shaft. Preparations for the test and post-test activities are summarized. Modifications made to the dry electrostatic precipitator (ESP) are described and measurements of its performance are reported. The baghouse performance is summarized, together with actionsmore » being taken to improve bag cleaning using reverse air. Data on the wet ESP performance is included at two operating conditions, including verification that it met State of Tennessee permit conditions for opacity with all the flow through it. The results of experiments to determine the effect of potassium seed on NO{sub x} emissions and secondary combustion are reported. The status of efforts to quantify the detailed mass balance for all POC testing is summarized. The work to develop a predictive ash deposition model is discussed and results compared with deposition actually encountered during the test. Plans to measure the kinetics of potassium and sulfur on flames like the secondary combustor, are included. Advanced diagnostic work by both UTSI and MSU is reported. Efforts to develop the technology for a high temperature air heater using ceramic tubes are summarized.« less

  13. A pilot study of mercury liberation and capture from coal-fired power plant fly ash.

    PubMed

    Li, Jin; Gao, Xiaobing; Goeckner, Bryna; Kollakowsky, Dave; Ramme, Bruce

    2005-03-01

    The coal-fired electric utility generation industry has been identified as the largest anthropogenic source of mercury (Hg) emissions in the United States. One of the promising techniques for Hg removal from flue gas is activated carbon injection (ACI). The aim of this project was to liberate Hg bound to fly ash and activated carbon after ACI and provide high-quality coal combustion products for use in construction materials. Both bench- and pilot-scale tests were conducted to liberate Hg using a thermal desorption process. The results indicated that up to 90% of the Hg could be liberated from the fly ash or fly-ash-and-activated-carbon mixture using a pilot-scale apparatus (air slide) at 538 degrees C with a very short retention time (less than 1 min). Scanning electron microscope (SEM) evaluation indicated no significant change in fly ash carbon particle morphology following the thermal treatment. Fly ash particles collected in the baghouse of the pilot-scale apparatus were smaller in size than those collected at the exit of the air slide. A similar trend was observed in carbon particles separated from the fly ash using froth flotation. The results of this study suggest a means for power plants to reduce the level of Hg in coal-combustion products and potentially recycle activated carbon while maintaining the resale value of fly ash. This technology is in the process of being patented.

  14. Environmental assessment of a watertube boiler firing a coal-water slurry. Volume 1. Technical results. Final report, January 1984-March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.; Waterland, L.R.

    1986-02-01

    The report describes results from field testing a watertube industrial boiler firing a coal/water slurry (CWS) containing about 60% coal. Emission measurements included continuous monitoring of flue-gas emissions; source assessment sampling system (SASS) sampling of the flue-gas, with subsequent analysis of samples to obtain total flue-gas organics in two boiling point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue-gas concentrations of 73 trace elements: EPA Methods 5/8 sampling for particulate, SO/sub 2/, and SO/sub 3/ emissions; and grab sampling of fuel and ash for inorganic composition. NOx, SO/sub 2/, CO, andmore » TUHC emissions were in the 230-310, 880-960, 170-200, and 1-3 ppm ranges (corrected to 3% 02), respectively, over the two tests performed. Particulate levels at the boiler outlet (upstream of the unit's baghouse) were 7.3 g/dscm in the comprehensive test. Coarse particulate (>3 micrometers) predominated. Total organic emissions were almost 50 mg/dscm, with about 70% of the organic matter in the nonvolatile (>300 C) boiling point range. The bottom ash organic content was 8 mg/g, 80% of which was in the nonvolatile range. Of the PAHs, only naphthalene was detected in the flue gas particulate, with emission levels of 8.6 micrograms/dscm. Several PAHs were found in the bottom ash.« less

  15. Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants

    NASA Astrophysics Data System (ADS)

    Sengupta, Ishita

    Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.

  16. Cadmium in forest ecosystems around lead smelters in Missouri.

    PubMed Central

    Gale, N L; Wixson, B G

    1979-01-01

    The development of Missouri's new lead belt within the past decase has provided an excellent opportunity to study the dissemination and effects of heavy metals in a deciduous forest ecosystem. Primary lead smelters within the new lead belt have been identified as potential sources of cadmium as well as lead, zinc, and copper. Sintering and blast furnace operations tend to produce significant quantities of small particulates highly enriched in cadmium and other heavy metals. At one smelter, samples of stack particulate emissions indicate that as ms accompanied by 0.44 lb zinc, 4.66 lb lead, and 0.01 lb copper/hr. These point-source emissions, as well as a number of other sources of fugitive (wind blown) and waterborne emissions contribute to a significant deposition of cadmium in the surrounding forest and stream beds. Mobilization of vagrant heavy metals may be significantly increased by contact of baghouse dusts or scrubber slurries with acidic effluents emanating from acid plants designed to produce H2SO4 as a smelter by-product. Two separate drainage forks within the Crooked Creek watershed permit some comparisons of the relative contributions of cadmium by air-borne versus water-borne contaminants. Cadmium and other heavy metals have been found to accumulate in the forest litter and partially decomposed litter along stream beds. Greater solubility, lower levels of complexation with organic ligands in the litter, and greater overall mobility of cadmium compared with lead, zinc, and copper result in appreciable contributions of dissolved cadmium to the watershed runoff. The present paper attempts to define the principle sources and current levels of heavy metal contamination and summarizes the efforts undertaken by the industry to curtail the problem. PMID:488037

  17. Source Apportionment of Particulate Matter Collected Upwind and Downwind of a Steel Facility in Granite City, IL (USA)

    NASA Astrophysics Data System (ADS)

    Duvall, R. M.; Norris, G. A.; Willis, R. D.; Turner, J. R.; Kaleel, R.; Sweitzer, T.; Preston, B.; Hays, M. D.

    2009-04-01

    St. Louis is currently in nonattainment of the annual PM2.5 National Ambient Air Quality Standard (NAAQS). Granite City Steel Works (GSCW), located in Granite City, IL is considered to be a significant source impacting the St. Louis area and the largest PM2.5 point source contributor. Twelve grab samples were collected in and around the steel facility including the basic oxygen furnace, steel and iron slag crushing, coal pulverizing, baghouse dust, paved road dust, and unpaved road dust. The bulk samples were resuspended in a resuspension chamber using a PM2.5 cutpoint and collected on Teflon, quartz and polycarbonate filters. Fine particulate matter (PM) samples (12-hr and 24-hr) were collected upwind and downwind of GSCW from October 13 to December 13, 2007 to identify sources contributing to nonattainment in St. Louis. The samples were analyzed for trace metals (X-Ray Fluorescence), ions (Ion Chromatography), elemental and organic carbon (thermal optical analysis), and organic species (solvent extraction Gas Chromatography/Mass Spectrometry). Source apportionment was conducted using the EPA Chemical Mass Balance (CMB) Model (v 8.2). Major sources impacting the 12-hr samples included the blast oxygen furnace, secondary sulfate, and road dust. Higher excess steel and coke works contributions were associated with higher wind speeds (greater than 5 mph) and more variability in source impacts was observed. Major sources impacting the 24-hr samples included secondary sulfate and motor vehicles (diesel and gasoline). Contributions were similar between the coke and steel works sources. Disclaimer: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

  18. Lead exposure and birth outcomes in five communities in Shoshone County, Idaho.

    PubMed

    Berkowitz, Zahava; Price-Green, Patricia; Bove, Frank J; Kaye, Wendy E

    2006-03-01

    This study examined birth outcomes in five towns in Shoshone County, Idaho, where residents were exposed to high levels of lead in air emissions during a 6-month period after a fire had damaged the main baghouse (pollution-control device) of a local lead smelter plant in September 1973. We studied birth certificate data of 169,878 live singleton infants born to mothers who resided in Idaho at the time of delivery. The outcomes evaluated were preterm infants, small-for-gestational-age (SGA) infants, low birthweight among term infants (TLBW), and mean birthweight among term infants (TMBW). The study compared births in the five towns in Shoshone County (exposed group) to births in the rest of Idaho during three exposure periods: "pre-fire," January 1, 1970-August 31, 1973; "high exposure," September 1, 1973-December 31, 1974; and "post-fire," January 1, 1975-December 31, 1981. During the high-exposure period, the exposed group had an increased prevalence of TLBW (OR=2.4; 90% CI: 1.6-3.6) and SGA (OR=1.9; 90% CI: 1.3-2.8) compared with the rest of Idaho. During the pre- and post-fire periods, the ORs for TLBW were 0.8 and 1.3, respectively, and for SGA, 1.0, and 1.3, respectively. During the high-exposure period, TMBW for the exposed group was 71 g lower than in the comparison group. The TMBW in the exposed group was 8 g lower in the pre-fire period and 26 g lower in the post-fire period than in the comparison group. The study found no increased risk for preterm birth in the exposed group. Maternal exposures to airborne lead emissions appeared to be associated with increased risks for SGA, TLBW, and reduced TMBW.

  19. Gasification of Simplex briquets: briquet production. Vol. 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    A 7-ton/hr briquetting plant was installed at International Briquetting in Baltimore, Maryland, and used to produce 360 tons of Simplex briquets from Pittsburgh No. 8 seam, Champion No. 1 mine caking coal and shredded, air-classified Baltimore County refuse. The production of these briquets was funded by the Department of Energy, through the US Bureau of Mines, and a consortium comprised of the New York State Energy Research and Development Authority and the Empire State Electric Energy Research Company. This report describes the briquetting plant and discusses the problems that were encountered in producing the briquets. The following modifications are recommendedmore » for future Simplex briquetting plants: drying equipment should be installed on the RDF feed system to ensure that the RDF moisture is below 18%; the crushed coal must be dried to less than 4% moisture to ensure its free flow in the bins; magnets should be installed above the coal and RDF feed conveyors to remove any tramp metal; a 3/4-inch screen should be installed over the coal feed bin to remove any oversize rocks or lump coal; the RDF handling system and turbulizer discharge to the press should all be enclosed for dust control (the enclosures should be vented to a baghouse); only heavy duty apron conveyors should be used where belt conveyors are needed; briquetts should be cured if they are going to be stored in containers where they might sweat; and a screen with 1 1/4-inch openings should be used to remove the fines from 2 1/4-inch briquets (this screen should be sufficiently large to prevent briquets from crowding together on the screen).« less

  20. Advanced Hybrid Particulate Collector Project Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.J.

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the bestmore » method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting« less

  1. Engineering study for a melting, casting, rolling and fabrication facility for recycled contaminated stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Castermore » for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems.« less

  2. Operating and environmental performances of commercial-scale waste gasification and melting technology.

    PubMed

    Tanigaki, Nobuhiro; Fujinaga, Yasuka; Kajiyama, Hirohisa; Ishida, Yoshihiro

    2013-11-01

    Gasification technologies for waste processing are receiving increased interest. A lot of gasification technologies, including gasification and melting, have been developed in Japan and Europe. However, the flue gas and heavy metal behaviors have not been widely reported, even though those of grate furnaces have been reported. This article reports flue gas components of gasification and melting technology in different flue gas treatment systems. Hydrogen chloride concentrations at the inlet of the bag filter ranged between 171 and 180 mg Nm(-3) owing to de-acidification by limestone injection to the gasifier. More than 97.8% of hydrogen chlorides were removed by a bag filter in both of the flue gas treatment systems investigated. Sulfur dioxide concentrations at the inlet of the baghouse were 4.8 mg Nm(-3) and 12.7 mg Nm(-3), respectively. Nitrogen oxides are highly decomposed by a selective catalytic reduction system. Owing to the low regenerations of polychlorinated dibenzo-p-dioxins and furans, and the selective catalytic reduction system, the concentrations of polychlorinated dibenzo-p-dioxins and furans at the stacks were significantly lower without activated carbon injection. More than 99% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 97.6% and 96.5%, respectively. Most high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that the slag is stable and contains few harmful heavy metals, such as lead. The heavy metal distribution behaviors are almost the same regardless of the compositions of the processed waste. These results indicate that the gasification of municipal solid waste constitutes an ideal approach to environmental conservation and resource recycling.

  3. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristicsmore » of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.« less

  4. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristicsmore » of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.« less

  5. Petropower energia project under way in Chile promises refiner better economics at lower cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    Construction of the Republic of Chile`s first public/private industrial partnership project is well under way. Ground was broken for the $232-million Petropower Energia Limitada project early this year, shortly after the final contract between the parties - Foster Wheeler Power Systems, Inc. (FWPS); Petrox S.A. Refineria de Petroleo and Empresa Nacional del Petroleo (ENAP) - was signed. The Petropower project, located adjacent to Petrox`s 84,000-b/d refinery in Talcahuano, represents the first project ever to combine petroleum coking technology with cogeneration technology in a single project financing. Petropower is 85% owned by FWPS, 7.5% by ENAP, the Chilean national oil companymore » and parent of Petrox S.A. When completed in mid-1998, the Petropower project will enable Petrox to refine heavier crudes and enhance the refinery`s flexibility and economics. The project will consist of a delayed coking facility (a 12,000-b/d delayed coking unit and a 7,000-b/d hydrotreating plant) and a 67-MW (59 MW net) cogeneration plant. The coke produced will fuel a Foster Wheeler proprietary-design circulating fluidized-bed (CFB) boiler which will generate all the high-pressure steam and electric power needs of the Petrox refinery. This unit will be the first circulating fluidized-bed boiler to be built in Latin America. The cogeneration facility, using limestone as a reagent and equipped with a baghouse, will control SO{sub x} emissions from combustion of the green coke fuel and easily meet all Chilean environmental standards. Moreover, by constructing the cogeneration facility, Petrox will not have to proceed with capital improvements to existing facilities to ensure a reliable source of steam and electricity, resulting in substantial savings for Petrox. The cogeneration plant provides a permanent {open_quotes}disposal{close_quotes} for all coke produced by the delayed coker, thereby solving any future problems of unwanted or excess coke.« less

  6. Better gas tight access doors for power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutledge, C.K.; Emsbo, J.

    1996-12-31

    This paper presents useful information concerning access doors for equipment at power plants and similar industries. Such doors are used for: Boilers and Boiler Penthouses Economizers and Air Heaters Gas Ducts and Precipitators Baghouses, Absorbers and Stacks. Easy access into such equipment by personnel enhances the speed and thoroughness with which inspections and maintenance tasks are performed. This paper shows how to select and correctly install new doors or replace older models which may cumbersome to operate or unable to seal properly. Good, gas tight access doors should not be overlooked as a contributor to top performance at power plants.more » Loss of efficiency or interior deterioration due to leakage are obvious targets and should be of prime concern. However, the ease of access may be equally important. Lasting reliability of any type of industrial equipment is usually a function of two things: First, the quality and care in design, manufacture and installation. Second, the ability and dedication to maintain the equipment. If the ability or dedication to maintain the equipment is diminished it will impact on the lasting reliability of even the best designed equipment. Extensive engineering efforts, many pages of specifications and large sums of money are used on new power plants to assure practical, adequate and safe access to all parts of the equipment. Many times this is in stark contrast to the money and efforts used on the access doors, through which personnel has to enter for inspection and maintenance. This paper highlights the basic functions which should be expected from all types of access doors. The special functions which should be expected from all types of access doors. The special functions required by individual door types are also explained. This includes all the door types serving the different applications all the way along the gas passage from the high temperature boiler doors to the corrosion resistant doors for absorbers and stacks.« less

  7. Very low emissions of airborne particulate pollutants measured from two municipal solid waste incineration plants in Switzerland

    NASA Astrophysics Data System (ADS)

    Setyan, Ari; Patrick, Michael; Wang, Jing

    2017-10-01

    A field campaign has been performed in two municipal solid waste incineration (MSWI) plants in Switzerland, at Hinwil (ZH) and Giubiasco (TI). The aim was to measure airborne pollutants at different locations of the abatement systems (including those released from the stacks into the atmosphere) and at a near-field (∼1 km) downwind site, in order to assess the efficiency of the abatement systems and the environmental impact of these plants. During this study, we measured the particle number concentration with a condensation particle counter (CPC), and the size distribution with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS). We also sampled particles on filters for subsequent analyses of the morphology, size and elemental composition with a scanning electron microscope coupled to an energy dispersive X-ray spectroscope (SEM/EDX), and of water soluble ions by ion chromatography (IC). Finally, volatile organic compounds (VOCs) were sampled on adsorbing cartridges and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS), and a portable gas analyzer was used to monitor NO, SO2, CO, CO2, and O2. The particle concentration decreased significantly at two locations of the plants: at the electrostatic precipitator and the bag-house filter. The particle concentrations measured at the stacks were very low (<100 #/cm3), stressing the efficiency of the abatement system of the two plants. At Hinwil, particles sampled at the stack were mainly constituted of NaCl and KCl, two salts known to be involved in the corrosion process in incinerators. At Giubiasco, no significant differences were observed for the morphology and chemical composition of the particles collected in the ambient background and at the downwind site, suggesting that the incineration plant released very limited amounts of particles to the surrounding areas.

  8. Recovery of value-added products from red mud and foundry bag-house dust

    NASA Astrophysics Data System (ADS)

    Hammond, Keegan

    "Waste is wasted if you waste it, otherwise it is a resource. Resource is wasted if you ignore it and do not conserve it with holistic best practices and reduce societal costs. Resource is for the transformation of people and society." Red mud is a worldwide problem with reserves in the hundreds of millions of tons and tens of millions of tons being added annually. Currently there is not an effective way to deal with this byproduct of the Bayer Process, the primary means of refining bauxite ore in order to provide alumina. This alumina is then treated by electrolysis using the Hall-Heroult process to produce elemental aluminum. The resulting mud is a mixture of solid and metallic oxides, and has proven to be a great disposal problem. This disposal problem is compounded by the fact that the typical bauxite processing plant produces up to three times as much red mud as alumina. Current practice of disposal is to store red mud in retention ponds until an economical fix can be discovered. The danger associated with this current method of storage is immense to the surrounding communities and environment, thus the interest from the Center for Resource Recovery and Recycling (CR3). The purpose of this document is to explain one way to remove the value added materials, primarily iron, from the Jamaican red mud using both pyrometallurgical and hydrometallurgical approaches. In the beginning, soda ash and carbon roasting were completed simultaneously at 800°C. This type of roasting produced results that were unacceptable. After the soda ash roast was completed independently of carbon roasting, a water wash produced results that separations of alumina at 90%, Iron at 99%, calcium at 99%, titanium t 100%, and sodium by 74%. Smelting produced separations of 97% for alumina, 99% for iron, 87% for sodium, 94% for calcium and 72% for titanium.

  9. Greenidge Multi-Pollutant Control Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connell, Daniel

    2008-10-18

    The Greenidge Multi-Pollutant Control Project was conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electric generating units (EGUs). There are about 400 units in the United States with capacities of 50-300 MW that currently are not equipped with selective catalytic reduction (SCR), flue gas desulfurization (FGD), or mercury control systems. Many of these units, which collectively represent more than 55 GWmore » of installed capacity, are difficult to retrofit for deep emission reductions because of space constraints and unfavorable economies of scale, making them increasingly vulnerable to retirement or fuel switching in the face of progressively more stringent environmental regulations. The Greenidge Project sought to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs by offering a combination of deep emission reductions, low capital costs, small space requirements, applicability to high-sulfur coals, mechanical simplicity, and operational flexibility. The multi-pollutant control system includes a NO{sub x}OUT CASCADE{reg_sign} hybrid selective non-catalytic reduction (SNCR)/in-duct SCR system for NO{sub x} control and a Turbosorp{reg_sign} circulating fluidized bed dry scrubbing system (with a new baghouse) for SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter control. Mercury removal is provided as a co-benefit of the in-duct SCR, dry scrubber, and baghouse, and by injection of activated carbon upstream of the scrubber, if required. The multi-pollutant control system was installed and tested on the 107-MW{sub e}, 1953-vintage AES Greenidge Unit 4 by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. About 44% of the funding for the project was provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and the remaining 56% was provided by AES Greenidge. Project goals included reducing high-load NO{sub x} emissions to {le} 0.10 lb/mmBtu; reducing SO{sub 2}, SO{sub 3}, HCl, and HF emissions by at least 95%; and reducing Hg emissions by at least 90% while the unit fired 2-4% sulfur eastern U.S. bituminous coal and co-fired up to 10% biomass. This report details the final results from the project. The multi-pollutant control system was constructed in 2006, with a total plant cost of $349/kW and a footprint of 0.4 acre - both substantially less than would have been required to retrofit AES Greenidge Unit 4 with a conventional SCR and wet scrubber. Start-up of the multi-pollutant control system was completed in March 2007, and the performance of the system was then evaluated over an approximately 18-month period of commercial operation. Guarantee tests conducted in March-June 2007 demonstrated attainment of all of the emission reduction goals listed above. Additional tests completed throughout the performance evaluation period showed 96% SO{sub 2} removal, 98% mercury removal (with no activated carbon injection), 95% SO{sub 3} removal, and 97% HCl removal during longer-term operation. Greater than 95% SO{sub 2} removal efficiency was observed even when the unit fired high-sulfur coals containing up to 4.8 lb SO{sub 2}/mmBtu. Particulate matter emissions were reduced by more than 98% relative to the emission rate observed prior to installation of the technology. The performance of the hybrid SNCR/SCR system was affected by problems with large particle ash, ammonia slip, and nonideal combustion characteristics, and high-load NO{sub x} emissions averaged 0.14 lb/mmBtu during long-term operation. Nevertheless, the system has reduced the unit's overall NO{sub x} emissions by 52% on a lb/mmBtu basis. The commercial viability of the multi-pollutant control system was demonstrated at AES Greenidge Unit 4. The system, which remains in service after the conclusion of the project, has enabled the unit to satisfy its permit requirements while continuing to operate profitably. As a result of the success at AES Greenidge Unit 4, three additional deployments of the Turbosorp{reg_sign} technology had been announced by the end of the project.« less

  10. Characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption

    USGS Publications Warehouse

    Lu, Y.; Rostam-Abadi, M.; Chang, R.; Richardson, C.; Paradis, J.

    2007-01-01

    Nine fly ash samples were collected from the particulate collection devices (baghouse or electrostatic precipitator) of four full-scale pulverized coal (PC) utility boilers burning eastern bituminous coals (EB-PC ashes) and three cyclone utility boilers burning either Powder River Basin (PRB) coals or PRB blends,(PRB-CYC ashes). As-received fly ash samples were mechanically sieved to obtain six size fractions. Unburned carbon (UBC) content, mercury content, and Brunauer-Emmett-Teller (BET)-N2 surface areas of as-received fly ashes and their size fractions were measured. In addition, UBC particles were examined by scanning electron microscopy, high-resolution transmission microscopy, and thermogravimetry to obtain information on their surface morphology, structure, and oxidation reactivity. It was found that the UBC particles contained amorphous carbon, ribbon-shaped graphitic carbon, and highly ordered graphite structures. The mercury contents of the UBCs (Hg/UBC, in ppm) in raw ash samples were comparable to those of the UBC-enriched samples, indicating that mercury was mainly adsorbed on the UBC in fly ash. The UBC content decreased with a decreasing particle size range for all nine ashes. There was no correlation between the mercury and UBC contents of different size fractions of as-received ashes. The mercury content of the UBCs in each size fraction, however, generally increased with a decreasing particle size for the nine ashes. The mercury contents and surface areas of the UBCs in the PRB-CYC ashes were about 8 and 3 times higher than UBCs in the EB-PC ashes, respectively. It appeared that both the particle size and surface area of UBC could contribute to mercury capture. The particle size of the UBC in PRB-CYC ash and thus the external mass transfer was found to be the major factor impacting the mercury adsorption. Both the particle size and surface reactivity of the UBC in EB-PC ash, which generally had a lower carbon oxidation reactivity than the PRB-PC ashes, appeared to be important for the mercury adsorption. ?? 2007 American Chemical Society.

  11. The ADESORB Process for Economical Production of Sorbents for Mercury Removal from Coal Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Stewart

    The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital costmore » technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be significant shortages in supply if response to new demand is not well-timed.« less

  12. Mercury-impacted scrap metal: Source and nature of the mercury.

    PubMed

    Finster, Molly E; Raymond, Michelle R; Scofield, Marcienne A; Smith, Karen P

    2015-09-15

    The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 °C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent of associated releases, represent a practical research need that is essential for improving the environmental management of Hg-impacted scrap and assessing measures to protect workers from potential health and safety hazards that might be posed by mercury and Hg-impacted scrap. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finster, Molly E; Raymond, Michelle R.; Scofield, Marcienne A.

    The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations,more » or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350°C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent of associated releases, represent a practical research need that is essential for improving the environmental management of Hg-impacted scrap and assessing measures to protect workers from potential health and safety hazards that might be posed by mercury and Hg-impacted scrap.« less

  14. Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yogeshwar Sahai

    2007-07-31

    Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Cleanmore » Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy conservation. In this program, the salt metal interactions were studies and the emissions at laboratory scale at OSU were monitored. The goal of the project was to obtain a fundamental understanding, based on first principles, of the pollutant formation that occurs when the salts are used in furnaces. This information will be used to control process parameters so that emissions are consistently below the required levels. The information obtained in these experiments will be used in industrial furnaces at aluminum plants and which will help in optimizing the process.« less

  15. Globally sustainable manganese metal production and use.

    PubMed

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also reduces the quantity of solid wastes generated during processing. Secondary aluminum facilities have reported hazardous waste generation management issues due to baghouse dusts from rotary furnaces processing selenium contaminated manganese alloys. Environmental impacts resulting from industry are represented by emission inventories of chemical releases to the air, water, and soil. The U.S. metals industry releases reported to EPA Toxic Release Inventory indicate the primary metals industry is the major source of metal air toxic emissions, exceeding electric utility air toxic emissions. The nonferrous metals industry is reported to be the Organization for Economic Co-operation and Development (OECD) most intensive airborne and land pollution source of bioaccumulative metals. However, total waste emissions from industries in the OECD countries have declined due to improving energy consumption. Emission registers and access are improving around the world. However, environmental databases for metal particulates have low confidence ratings since the majority of air toxic emissions are not reported, not monitored, or are estimated based on worst-case emission factors. Environmental assessments including biological monitoring are necessary to validate mandated particulate metal emission reductions and control technologies during metal processing.

  16. JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas Hajicek; Jay Gunderson; Ann Henderson

    2007-08-15

    Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before itmore » could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash handling. A more efficient downstream sulfur scrubber capable of operation at a much lower Ca/S ratio would result in significantly higher boiler efficiency for this coal. At the operating temperature of a typical CFBC, bed agglomeration and convective pass fouling are not likely to be significant problems with this fuel. Compared to pulverized coal-firing, CFBC technology is clearly the better choice for this fuel. It provides more efficient sulfur capture, lower NO{sub x} emissions, better solids-handling capability, and can utilize a wetter feedstock, requiring less crushing and sizing. The lower operating temperature of CFBC boilers (820 C) reduces the risk of fouling and agglomeration. Care must be taken to minimize heat loss in the system to accommodate the low heating value of the coal.« less

  17. Risks to children from exposure to lead in air during remedial or removal activities at Superfund sites: a case study of the RSR lead smelter Superfund site.

    PubMed

    Khoury, Ghassan A; Diamond, Gary L

    2003-01-01

    Superfund sites that are contaminated with lead and undergoing remedial action generate lead-enriched dust that can be released into the air. Activities that can emit lead-enriched dust include demolition of lead smelter buildings, stacks, and baghouses; on-site traffic of heavy construction vehicles; and excavation of soil. Typically, air monitoring stations are placed around the perimeter of a site of an ongoing remediation to monitor air lead concentrations that might result from site emissions. The National Ambient Air Quality (NAAQ) standard, established in 1978 to be a quarterly average of 1.5 microg/m(3), is often used as a trigger level for corrective action to reduce emissions. This study explored modeling approaches for assessing potential risks to children from air lead emissions from the RSR Superfund site in West Dallas, TX, during demolition and removal of a smelter facility. The EPA Integrated Exposure Uptake Biokinetic (IEUBK) model and the International Commission of Radiologic Protection (ICRP) lead model were used to simulate blood lead concentrations in children, based on monitored air lead concentrations. Although air lead concentrations at monitoring stations located in the downwind community intermittently exceeded the NAAQ standard, both models indicated that exposures to children in the community areas did not pose a significant long-term or acute risk. Long-term risk was defined as greater than 5% probability of a child having a long-term blood lead concentration that exceeded 10 microg/dl, which is the CDC and the EPA blood lead concern level. Short-term or acute risk was defined as greater than 5% probability of a child having a blood lead concentration on any given day that exceeded 20 microg/dl, which is the CDC trigger level for medical evaluation (this is not intended to imply that 20 microg/dl is a threshold for health effects in children exposed acutely to airborne lead). The estimated potential long-term and short-term exposures at the downwind West Dallas community did not result in more than 5% of children exceeding the target blood lead levels. The models were also used to estimate air lead levels for short-term and long-term exposures that would not exceed specified levels of risk (risk-based concentrations, RBCs). RBCs were derived for various daily exposure durations (3 or 8 h/day) and frequencies (1-7 days/week). RBCs based on the ICRP model ranged from 0.3 (7 days/week, 8 h/day) to 4.4 microg/m(3) (1 day/week, 3 h/day) for long-term exposures and were lower than those based on the IEUBK model. For short-term exposures, the RBCs ranged from 3.5 to 29.0 microg/m(3). Recontamination of remediated residential yards from deposition of air lead emitted during remedial activities at the RSR Superfund site was also examined. The predicted increase in soil concentration due to lead deposition at the monitoring station, which represented the community at large, was 3.0 mg/kg. This potential increase in soil lead concentration was insignificant, less than 1% increase, when compared to the clean-up level of 500 mg/kg developed for residential yards at the site.

  18. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connell, Daniel P

    2009-01-12

    The Greenidge Multi-Pollutant Control Project is being conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electrical generating units (EGUs). The multi-pollutant control system includes a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NOx emissions by {ge}60%, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, andmore » HF by {ge}95%. Mercury removal of {ge}90% is also targeted via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The technology is particularly well suited, because of its relatively low capital and maintenance costs and small space requirements, to meet the needs of coal-fired units with capacities of 50-300 MWe. There are about 440 such units in the United States that currently are not equipped with SCR, flue gas desulfurization (FGD), or mercury control systems. These smaller units are a valuable part of the nation's energy infrastructure, constituting about 60 GW of installed capacity. However, with the onset of the Clean Air Interstate Rule, Clean Air Mercury Rule, and various state environmental actions requiring deep reductions in emissions of SO{sub 2}, NO{sub x}, and mercury, the continued operation of these units increasingly depends upon the ability to identify viable air pollution control retrofit options for them. The large capital costs and sizable space requirements associated with conventional technologies such as SCR and wet FGD make these technologies unattractive for many smaller units. The Greenidge Project aims to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.« less

Top