Science.gov

Sample records for bak mediated apoptosis

  1. TRIM22-Mediated Apoptosis is Associated with Bak Oligomerization in Monocytes

    PubMed Central

    Chen, Chi; Zhao, DongYan; Fang, Shu; Chen, QiXing; Cheng, BaoLi; Fang, XiangMing; Shu, Qiang

    2017-01-01

    Monocyte apoptosis is a key mechanism that orchestrates host immune responses during sepsis. TRIM22 is constitutively expressed at high levels in monocytes and plays important roles in the antiviral response and inflammation. Overexpression of TRIM22 interferes with the clonogenic growth of monocytic cells, suggesting that TRIM22 may regulate monocyte survival. However, the effect of TRIM22 on monocyte apoptosis remains unknown. In the present report, lipopolysaccharides (LPS)-primed human peripheral blood monocytes expressing higher levels of TRIM22 were more sensitive to apoptosis. This phenomenon was also observed in TRIM22-overexpressing THP-1 monocytes and was associated with the activation of caspase-9 and caspase-3, as well as the increased expression and oligomerization of the pro-apoptotic protein Bak. Similar expression patterns of TRIM22 and Bak were also observed in LPS-primed, apoptotic human peripheral blood monocytes. In addition, the deletion of either the RING domain or the SPRY domain of TRIM22 significantly attenuated TRIM22-mediated monocyte apoptosis and decreased Bak expression and oligomerization. Furthermore, in monocytes from septic patients, TRIM22 levels were down-regulated and positively correlated with Bak levels. Taken together, these results indicate that TRIM22 plays a critical role in monocyte apoptosis by regulating Bak oligomerization and may have a potential function in the pathogenesis of sepsis. PMID:28079123

  2. Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria.

    PubMed

    Arnoult, Damien; Bartle, Laura M; Skaletskaya, Anna; Poncet, Delphine; Zamzami, Naoufal; Park, Peter U; Sharpe, Juanita; Youle, Richard J; Goldmacher, Victor S

    2004-05-25

    We report that the cytomegalovirus-encoded cell death suppressor vMIA binds Bax and prevents Bax-mediated mitochondrial membrane permeabilization by sequestering Bax at mitochondria in the form of a vMIA-Bax complex. vMIA mutants with a defective mitochondria-targeting domain retain their Bax-binding function but not their ability to suppress mitochondrial membrane permeabilization or cell death. vMIA does not seem to either specifically associate with Bak or suppress Bak-mediated mitochondrial membrane permeabilization. Recent evidence suggests that the contribution of Bax and Bak in the mitochondrial apoptotic signaling pathway depends on the distinct phenotypes of cells, and it appears from our data that vMIA is capable of suppressing apoptosis in cells in which this pathway is dominated by Bax, but not in cells where Bak also plays a role.

  3. Bak and Bax Function To Limit Adenovirus Replication through Apoptosis Induction

    PubMed Central

    Cuconati, Andrea; Degenhardt, Kurt; Sundararajan, Ramya; Anschel, Alan; White, Eileen

    2002-01-01

    Adenovirus infection and expression of E1A induces both proliferation and apoptosis, the latter of which is blocked by the adenovirus Bcl-2 homologue E1B 19K. The mechanism of apoptosis induction and the role that it plays in productive infection are not known. Unlike apoptosis mediated by death receptors, infection with proapoptotic E1B 19K mutant viruses did not induce cleavage of Bid but nonetheless induced changes in Bak and Bax conformation, Bak-Bax interaction, caspase 9 and 3 activation, and apoptosis. In wild-type-adenovirus-infected cells, in which E1B 19K inhibits apoptosis, E1B 19K was bound to Bak, precluding Bak-Bax interaction and changes in Bax conformation. Infection with E1B 19K mutant viruses induced apoptosis in wild-type and Bax- or Bak-deficient baby mouse kidney cells but not in those deficient for both Bax and Bak. Furthermore, Bax and Bak deficiency dramatically increased E1A expression and virus replication. Thus, Bax- and Bak-mediated apoptosis severely limits adenoviral replication, demonstrating that Bax and Bak function as an antiviral response at the cellular level. PMID:11932420

  4. Bak and Bax function to limit adenovirus replication through apoptosis induction.

    PubMed

    Cuconati, Andrea; Degenhardt, Kurt; Sundararajan, Ramya; Anschel, Alan; White, Eileen

    2002-05-01

    Adenovirus infection and expression of E1A induces both proliferation and apoptosis, the latter of which is blocked by the adenovirus Bcl-2 homologue E1B 19K. The mechanism of apoptosis induction and the role that it plays in productive infection are not known. Unlike apoptosis mediated by death receptors, infection with proapoptotic E1B 19K mutant viruses did not induce cleavage of Bid but nonetheless induced changes in Bak and Bax conformation, Bak-Bax interaction, caspase 9 and 3 activation, and apoptosis. In wild-type-adenovirus-infected cells, in which E1B 19K inhibits apoptosis, E1B 19K was bound to Bak, precluding Bak-Bax interaction and changes in Bax conformation. Infection with E1B 19K mutant viruses induced apoptosis in wild-type and Bax- or Bak-deficient baby mouse kidney cells but not in those deficient for both Bax and Bak. Furthermore, Bax and Bak deficiency dramatically increased E1A expression and virus replication. Thus, Bax- and Bak-mediated apoptosis severely limits adenoviral replication, demonstrating that Bax and Bak function as an antiviral response at the cellular level.

  5. JNK-Bcl-2/Bcl-xL-Bax/Bak Pathway Mediates the Crosstalk between Matrine-Induced Autophagy and Apoptosis via Interplay with Beclin 1

    PubMed Central

    Yang, Jiong; Yao, Shukun

    2015-01-01

    Autophagy is associated with drug resistance which has been a threat in chemotherapy of hepatocellular carcinoma (HCC). The interconnected molecular regulators between autophagy and apoptosis serve as switching points critical to the ultimate outcome of the cell. Our study was performed to investigate the crosstalk between autophagy and apoptosis in HCC after the treatment of matrine. Flow cytometry and TUNEL (terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling) assay were used to detect apoptosis in vitro and in vivo, respectively. Bax oligomerization and Cytochrome c release assay were performed. Immunoprecipitation and siRNA transfection were used to detect the interplay between Bcl-2/Bcl-xL,Bax, and Beclin 1. Our results showed that: (1) matrine not only activated caspase and PARP (poly ADP-ribose polymerase) cleavage, but also triggered autophagy as shown by the increased levels of LC3II, Beclin 1, and PI3KC3, and the decreased level of p62; (2) matrine treatment promoted the JNK-Bcl-2/Bcl-xL-Bax/Bak pathway; (3) Bax was oligomerized, the mitochondrial membrane potential altered, and Cytochrome c was released subsequently; (4) Bax interacts with Beclin 1 and inhibits autophagy, which may be a new crosstalk point; and (5) finally, we showed that matrine suppressed the growth of a MHCC97L xenograft in vivo for the first time. In conclusion, the JNK-Bcl-2/Bcl-xL-Bax/Bak pathway mediates the crosstalk between matrine-induced autophagy and apoptosis via interplay with Beclin 1. PMID:26516844

  6. Spontaneous and drug-induced apoptosis is mediated by conformational changes of Bax and Bak in B-cell chronic lymphocytic leukemia.

    PubMed

    Bellosillo, Beatriz; Villamor, Neus; López-Guillermo, Armando; Marcé, Silvia; Bosch, Francesc; Campo, Elias; Montserrat, Emili; Colomer, Dolors

    2002-09-01

    The role of Bax and Bak, 2 proapoptotic proteins of the Bcl-2 family, was analyzed in primary B-cell chronic lymphocytic leukemia (CLL) cells following in vitro treatment with fludarabine, dexamethasone, or the combination of fludarabine with cyclophosphamide and mitoxantrone (FCM). A strong correlation was found between the number of apoptotic cells and the percentage of cells stained with antibodies recognizing conformational changes of Bax (n = 33; r = 0.836; P <.001) or Bak (n = 10; r = 0.948; P <.001). Preincubation of CLL cells with Z-VAD.fmk (N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone), a broad caspase inhibitor, abolished caspase-3 activation, exposure of phosphatidylserine residues, and reactive oxygen species generation; partially reversed the loss of transmembrane mitochondrial potential (DeltaPsim); but did not affect Bax or Bak conformational changes. These results indicate that the conformational changes of Bax and Bak occur upstream of caspase activation or are caspase independent. Following drug-induced apoptosis, Bax integrates into mitochondria, as demonstrated by fluorescence microscopy and Western blot, without changes in the total amount of Bax or Bak protein. Fludarabine and FCM induce p53 stabilization, but do not seem to be essential in inducing Bax and Bak conformational changes, as they are also observed in dexamethasone-treated CLL cells. These results demonstrate that, in CLL cells, the change in the intracellular localization of Bax from cytosol to mitochondria and the conformational changes of Bax and Bak are among the early steps in the induction of cell death.

  7. Artemisinin induces caspase-8/9-mediated and Bax/Bak-independent apoptosis in human lung adenocarcinoma (ASTC-a-1) cells.

    PubMed

    Xiao, Feng-Lian; Gao, Wei-Jie; Liu, Cheng-Yi; Wang, Xiao-Ping; Chen, Tong-Sheng

    2011-01-01

    Artemisinin (ARTE), an antimalarial phytochemical component from the sweet wormwood plant, has been shown a potential anticancer activity by inducing cell apoptosis. The aim of this report is to explore the mechanism of ARTE-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. Cell counting kit (CCK-8) assay showed that ARTE induced cytotoxcity in a dose- and time-dependent manner. Confocal microscopy fluorescence imaging of cells stained with Hoechst 33258 and flow cytometry (FCM) analysis of cells stained with Annexin V-FITC/propidium iodide (PI) showed that ARTE induced reactive oxygen species (ROS)-dependent apoptosis. Confocal fluorescence resonance energy transfer (FRET) imaging of single living cells expressing SCAT3, SCAT9 or CFP-Bid-YFP and fluorometic substrate assay showed that ARTE induced the activation of caspase-3, -8 and -9. Moreover, inhibition of caspase-8 or -9 completely blocked ARTE-induced apoptosis which was only partially attenuated by caspase-3 inhibitor. Interestingly, silencing Bax and Bak by RNA interference (RNAi) did not attenuate ARTE-induced apoptosis. Collectively, ARTE induces caspase-dependent but Bax/Bak-independent apoptosis in ASTC-a-1 cells.

  8. Sevoflurane post-conditioning protects primary rat cortical neurons against oxygen-glucose deprivation/resuscitation via down-regulation in mitochondrial apoptosis axis of Bid, Bim, Puma-Bax and Bak mediated by Erk1/2.

    PubMed

    Zhang, Li-Min; Zhao, Xiao-Chun; Sun, Wen-Bo; Li, Rui; Jiang, Xiao-Jing

    2015-10-15

    Temporal post-conditioning helps provide neuroprotection against brain injury secondary to ischemia-reperfusion and is considered an effective intervention, but the exact mechanism of sevoflurane post-conditioning is unclear. The essential axis involves activator Bid, Bim, Puma (BH3s), Bax, and Bak; activates the mitochondrial death program; and might be involved in a cell death signal. Extracellular signal-related kinases 1/2 (Erk1/2) play a pivotal role in cell growth and proliferation. We hypothesized that sevoflurane post-conditioning might inhibit Bid, Bim, Puma, Bax, and Bak expression and is activated by phosphor-Erk1/2 to decrease neuronal death. To test this hypothesis, we exposed primary cortical neuron cultures to oxygen-glucose deprivation for 1h, along with resuscitation for 24h (OGD/R). MTT assays, propidium iodide uptake (PI), JC-1 fluorescence, and Western blot indicated the following: decreased cell viability (P<0.05); increased cell death (P<0.05); decreased mitochondrial membrane potential (P<0.05); and decreased Bid, Bim, Puma, Bax, and Bak expression with OGD/R exposure. Inhibition of Erk1/2 phosphorylation could attenuate sevoflurane post-conditioning that mediated an increase in neuronal viability and mitochondrial membrane potential, as well as a decrease in cell death and Bid, Bim, Puma, Bax, and Bak expression after OGD/R treatment. The results demonstrated that sevoflurane post-conditioning caused a marked decrease in cortical neuronal death secondary to OGD/R exposure through the downregulation of the mitochondrial apoptosis axis involving Bid, Bim, Puma, Bax, and Bak that was mediated by the phosphorylation/activation of Erk1/2.

  9. Disordered clusters of Bak dimers rupture mitochondria during apoptosis

    PubMed Central

    Uren, Rachel T; O’Hely, Martin; Iyer, Sweta; Bartolo, Ray; Shi, Melissa X; Brouwer, Jason M; Alsop, Amber E; Dewson, Grant; Kluck, Ruth M

    2017-01-01

    During apoptosis, Bak and Bax undergo major conformational change and form symmetric dimers that coalesce to perforate the mitochondrial outer membrane via an unknown mechanism. We have employed cysteine labelling and linkage analysis to the full length of Bak in mitochondria. This comprehensive survey showed that in each Bak dimer the N-termini are fully solvent-exposed and mobile, the core is highly structured, and the C-termini are flexible but restrained by their contact with the membrane. Dimer-dimer interactions were more labile than the BH3:groove interaction within dimers, suggesting there is no extensive protein interface between dimers. In addition, linkage in the mobile Bak N-terminus (V61C) specifically quantified association between dimers, allowing mathematical simulations of dimer arrangement. Together, our data show that Bak dimers form disordered clusters to generate lipidic pores. These findings provide a molecular explanation for the observed structural heterogeneity of the apoptotic pore. DOI: http://dx.doi.org/10.7554/eLife.19944.001 PMID:28182867

  10. Phylogenetically Distant Viruses Use the Same BH3-Only Protein Puma to Trigger Bax/Bak-Dependent Apoptosis of Infected Mouse and Human Cells

    PubMed Central

    Papaianni, Emanuela; El Maadidi, Souhayla; Schejtman, Andrea; Neumann, Simon; Maurer, Ulrich; Marino-Merlo, Francesca; Mastino, Antonio; Borner, Christoph

    2015-01-01

    Viruses can trigger apoptosis of infected host cells if not counteracted by cellular or viral anti-apoptotic proteins. These protective proteins either inhibit the activation of caspases or they act as Bcl-2 homologs to prevent Bax/Bak-mediated outer mitochondrial membrane permeabilization (MOMP). The exact mechanism by which viruses trigger MOMP has however remained enigmatic. Here we use two distinct types of viruses, a double stranded DNA virus, herpes simplex virus-1 (HSV-1) and a positive sense, single stranded RNA virus, Semliki Forest virus (SFV) to show that the BH3-only protein Puma is the major mediator of virus-induced Bax/Bak activation and MOMP induction. Indeed, when Puma was genetically deleted or downregulated by shRNA, mouse embryonic fibroblasts and IL-3-dependent monocytes as well as human colon carcinoma cells were as resistant to virus-induced apoptosis as their Bax/Bak double deficient counterparts (Bax/Bak-/-). Puma protein expression started to augment after 2 h postinfection with both viruses. Puma mRNA levels increased as well, but this occurred after apoptosis initiation (MOMP) because it was blocked in cells lacking Bax/Bak or overexpressing Bcl-xL. Moreover, none of the classical Puma transcription factors such as p53, p73 or p65 NFκB were involved in HSV-1-induced apoptosis. Our data suggest that viruses use a Puma protein-dependent mechanism to trigger MOMP and apoptosis in host cells. PMID:26030884

  11. Phylogenetically Distant Viruses Use the Same BH3-Only Protein Puma to Trigger Bax/Bak-Dependent Apoptosis of Infected Mouse and Human Cells.

    PubMed

    Papaianni, Emanuela; El Maadidi, Souhayla; Schejtman, Andrea; Neumann, Simon; Maurer, Ulrich; Marino-Merlo, Francesca; Mastino, Antonio; Borner, Christoph

    2015-01-01

    Viruses can trigger apoptosis of infected host cells if not counteracted by cellular or viral anti-apoptotic proteins. These protective proteins either inhibit the activation of caspases or they act as Bcl-2 homologs to prevent Bax/Bak-mediated outer mitochondrial membrane permeabilization (MOMP). The exact mechanism by which viruses trigger MOMP has however remained enigmatic. Here we use two distinct types of viruses, a double stranded DNA virus, herpes simplex virus-1 (HSV-1) and a positive sense, single stranded RNA virus, Semliki Forest virus (SFV) to show that the BH3-only protein Puma is the major mediator of virus-induced Bax/Bak activation and MOMP induction. Indeed, when Puma was genetically deleted or downregulated by shRNA, mouse embryonic fibroblasts and IL-3-dependent monocytes as well as human colon carcinoma cells were as resistant to virus-induced apoptosis as their Bax/Bak double deficient counterparts (Bax/Bak-/-). Puma protein expression started to augment after 2 h postinfection with both viruses. Puma mRNA levels increased as well, but this occurred after apoptosis initiation (MOMP) because it was blocked in cells lacking Bax/Bak or overexpressing Bcl-xL. Moreover, none of the classical Puma transcription factors such as p53, p73 or p65 NFκB were involved in HSV-1-induced apoptosis. Our data suggest that viruses use a Puma protein-dependent mechanism to trigger MOMP and apoptosis in host cells.

  12. MCMV-mediated Inhibition of the Pro-apoptotic Bak Protein Is Required for Optimal In Vivo Replication

    PubMed Central

    Fleming, Peter; Kvansakul, Marc; Voigt, Valentina; Kile, Benjamin T.; Kluck, Ruth M.; Huang, David C. S.; Degli-Esposti, Mariapia A.; Andoniou, Christopher E.

    2013-01-01

    Successful replication and transmission of large DNA viruses such as the cytomegaloviruses (CMV) family of viruses depends on the ability to interfere with multiple aspects of the host immune response. Apoptosis functions as a host innate defence mechanism against viral infection, and the capacity to interfere with this process is essential for the replication of many viruses. The Bcl-2 family of proteins are the principle regulators of apoptosis, with two pro-apoptotic members, Bax and Bak, essential for apoptosis to proceed. The m38.5 protein encoded by murine CMV (MCMV) has been identified as Bax-specific inhibitor of apoptosis. Recently, m41.1, a protein product encoded by the m41 open reading frame (ORF) of MCMV, has been shown to inhibit Bak activity in vitro. Here we show that m41.1 is critical for optimal MCMV replication in vivo. Growth of a m41.1 mutant was attenuated in multiple organs, a defect that was not apparent in Bak−/− mice. Thus, m41.1 promotes MCMV replication by inhibiting Bak-dependent apoptosis during in vivo infection. The results show that Bax and Bak mediate non-redundant functions during MCMV infection and that the virus produces distinct inhibitors for each protein to counter the activity of these proteins. PMID:23468630

  13. Expression levels of the BAK1 and BCL2 genes highlight the role of apoptosis in age-related hearing impairment

    PubMed Central

    Falah, Masoumeh; Najafi, Mohammad; Houshmand, Massoud; Farhadi, Mohammad

    2016-01-01

    Age-related hearing impairment (ARHI) is a progressive and a common sensory disorder in the elderly and will become an increasingly important clinical problem given the growing elderly population. Apoptosis of cochlear cells is an important factor in animal models of ARHI. As these cells cannot regenerate, their loss leads to irreversible hearing impairment. Identification of molecular mechanisms can facilitate disease prevention and effective treatment. In this study, we compared the expression of the genes BAK1 and BCL2 as two arms of the intrinsic apoptosis pathway between patients with ARHI and healthy subjects. ARHI and healthy subjects were selected after an ear nose throat examination, otoscopic investigation, and pure tone audiometry. RNA was extracted from peripheral blood samples, and relative gene expression levels were measured using quantitative real-time polymerase chain reaction. BAK1 and the BAK1/BCL2 ratio were statistically significantly upregulated in the ARHI subjects. The BAK1/BCL2 ratio was positively correlated with the results of the audiometric tests. Our results indicate that BAK-mediated apoptosis may be a core mechanism in the progression of ARHI in humans, similar to finding in animal models. Moreover, the gene expression changes in peripheral blood samples could be used as a rapid and simple biomarker for early detection of ARHI. PMID:27555755

  14. Prometaphase arrest-dependent phosphorylation of Bcl-2 and Bim reduces the association of Bcl-2 with Bak or Bim, provoking Bak activation and mitochondrial apoptosis in nocodazole-treated Jurkat T cells.

    PubMed

    Han, Cho Rong; Jun, Do Youn; Lee, Ji Young; Kim, Young Ho

    2014-01-01

    Treatment of Jurkat T cells with the microtubule-depolymerizing agent nocodazole (NOC) caused prometaphase arrest and apoptosis. NOC-induced mitochondrial apoptotic events including Bak activation, Δψm loss, cytochrome c release, and caspase cascade activation were blocked by Bcl-2 overexpression. However, mitotic arrest, Cdc25C activation, upregulation of cyclin B1 levels, Cdk1 activation, Bcl-2 phosphorylation at Thr-56 and Ser-70, and Bim phosphorylation were retained. The treatment of Jurkat T cells concomitantly with NOC and the G1/S-blocking agent hydroxyurea resulted in G1/S arrest and complete abrogation of all apoptotic events. The association of Bcl-2 with Bim or Bak declined after the prometaphase arrest-dependent phosphorylation of Bcl-2 and Bim, whereas the association of Bcl-2 with Bax remained relatively constant. Although Bax was redistributed from the cytosol to the mitochondria, resulting in an increase in the mitochondrial level of Bax following NOC treatment, the subcellular localization of Bcl-2, Bim, Bak and apoptosis-inducing factor was confined to the mitochondrial fraction irrespective of NOC treatment. Experiments using selective caspase inhibitors showed that mitochondria-dependent activation of caspase-9 and -3 was crucial for NOC-induced apoptosis. NOC-induced phosphorylation of Bcl-2 and Bim, Δψm loss, and mitochondria-dependent apoptotic events were significantly suppressed by a Cdk1 inhibitor roscovitine, but not by the JNK inhibitor SP600125 or the p38 MAPK inhibitor SB203580. These results show that the prometaphase arrest-dependent phosphorylation of Bcl-2 and Bim, which was mediated by Cdk1, could reduce the association of Bcl-2 with Bak or Bim to allow Bak activation and mitochondrial apoptotic events in Jurkat T cells exposed to NOC.

  15. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells.

    PubMed

    Qin, Guiqi; Zhao, ChuBiao; Zhang, Lili; Liu, Hongyu; Quan, Yingyao; Chai, Liuying; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng

    2015-08-01

    This report is designed to dissect the detail molecular mechanism by which dihydroartemisinin (DHA), a derivative of artemisinin, induces apoptosis in human hepatocellular carcinoma (HCC) cells. DHA induced a loss of the mitochondrial transmemberane potential (ΔΨm), release of cytochrome c, activation of caspases, and externalization of phosphatidylserine indicative of apoptosis induction. Compared with the modest inhibitory effects of silencing Bax, silencing Bak largely prevented DHA-induced ΔΨm collapse and apoptosis though DHA induced a commensurable activation of Bax and Bak, demonstrating a key role of the Bak-mediated intrinsic apoptosis pathway. DHA did not induce Bid cleavage and translocation from cytoplasm to mitochondria and had little effects on the expressions of Puma and Noxa, but did increase Bim and Bak expressions and decrease Mcl-1 expression. Furthermore, the cytotoxicity of DHA was remarkably reduced by silencing Bim, and modestly but significantly reduced by silencing Puma or Noxa. Silencing Bim or Noxa preferentially reduced DHA-induced Bak activation, while silencing Puma preferentially reduced DHA-induced Bax activation, demonstrating that Bim and to a lesser extent Noxa act as upstream mediators to trigger the Bak-mediated intrinsic apoptosis pathway. In addition, silencing Mcl-1 enhanced DHA-induced Bak activation and apoptosis. Taken together, our data demonstrate a crucial role of Bim in preferentially regulating the Bak/Mcl-1 rheostat to mediate DHA-induced apoptosis in HCC cells.

  16. Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis.

    PubMed

    Westphal, D; Kluck, R M; Dewson, G

    2014-02-01

    The central role of the Bcl-2 family in regulating apoptotic cell death was first identified in the 1980s. Since then, significant in-roads have been made in identifying the multiple members of this family, characterizing their form and function and understanding how their interactions determine whether a cell lives or dies. In this review we focus on the recent progress made in characterizing the proapoptotic Bcl-2 family members, Bax and Bak. This progress has resolved longstanding controversies, but has also challenged established theories in the apoptosis field. We will discuss different models of how these two proteins become activated and different 'modes' by which they are inhibited by other Bcl-2 family members. We will also discuss novel conformation changes leading to Bak and Bax oligomerization and speculate how these oligomers might permeabilize the mitochondrial outer membrane.

  17. Bz-423 superoxide signals B cell apoptosis via Mcl-1, Bak, and Bax.

    PubMed

    Blatt, Neal B; Boitano, Anthony E; Lyssiotis, Costas A; Opipari, Anthony W; Glick, Gary D

    2009-10-15

    Bz-423 is a pro-apoptotic 1,4-benzodiazepine with therapeutic properties in murine models of lupus demonstrating selectivity for autoreactive lymphocytes. Bz-423 modulates the F(1)F(0)-ATPase, inducing the formation of superoxide within the mitochondrial respiratory chain, which then functions as a second messenger initiating apoptosis. In order to understand some of the features that contribute to the increased sensitivity of lymphocytes, we report the signaling pathway engaged by Bz-423 in a Burkitt lymphoma cell line (Ramos). Following the generation of superoxide, Bz-423-induced apoptosis requires the activation of Bax and Bak to induce mitochondrial outer membrane permeabilization and cytochrome c release. Knockdown of the BH3-only proteins Bad, Bim, Bik, and Puma inhibits Bz-423 apoptosis, suggesting that these proteins serve as upstream sensors of the oxidant stress induced by Bz-423. Treatment with Bz-423 results in superoxide-dependent Mcl-1 degradation, implicating this protein as the link between Bz-423-induced superoxide and Bax and Bak activation. In contrast to fibroblasts, B cell death induced by Bz-423 is independent of c-Jun N-terminal kinase. These results demonstrate that superoxide generated from the mitochondrial respiratory chain as a consequence of a respiratory transition can signal a specific apoptotic response that differs across cell types.

  18. Double knockout of Bax and Bak from kidney proximal tubules reduces unilateral urethral obstruction associated apoptosis and renal interstitial fibrosis

    PubMed Central

    Mei, Shuqin; Li, Lin; Wei, Qingqing; Hao, Jielu; Su, Yunchao; Mei, Changlin; Dong, Zheng

    2017-01-01

    Interstitial fibrosis, a common pathological feature of chronic kidney diseases, is often associated with apoptosis in renal tissues. To determine the associated apoptotic pathway and its role in renal interstitial fibrosis, we established a mouse model in which Bax and Bak, two critical genes in the intrinsic pathway of apoptosis, were deleted specifically from kidney proximal tubules and used this model to examine renal apoptosis and interstitial fibrosis following unilateral urethral obstruction (UUO). It was shown that double knockout of Bax and Bak from proximal tubules attenuated renal tubular cell apoptosis and suppressed renal interstitial fibrosis in UUO. The results indicate that the intrinsic pathway of apoptosis contributes significantly to the tubular apoptosis and renal interstitial fibrosis in kidney diseases. PMID:28317867

  19. Ethanolic extract of Tulipa edulis Bak induces apoptosis in SGC-7901 human gastric carcinoma cells via the mitochondrial signaling pathway.

    PubMed

    Lin, Ruhui; Li, Zuanfang; Lin, Jiumao; Ye, Jinxia; Cai, Qiaoyan; Chen, Lidian; Peng, Jun

    2015-10-01

    Tulipa edulis Bak (TEB) is an active ingredient in various traditional Chinese medicine compounds and is commonly used to treat swelling and redness, remove toxicity and eliminate stagnation, as well as to prevent and treat certain cancer types. However, the underlying molecular mechanism of the anticancer activity of TEB remains unclear. The aim of the current study was to investigate the effect and underlying mechanism of the ethanolic extract of TEB (EETEB) on SGC-7901 human gastric carcinoma cells. An MTT assay was performed to analyze cell viability. In addition, transmission electron microscopy, an Annexin V/fluorescein isothiocyanate assay, a JC-1 assay and laser scanning confocal microscopy with DAPI staining were used to determine the rate of apoptosis. Furthermore, reverse transcription-polymerase chain reaction and western blot analysis were used to detect the expression levels of the apoptosis gene and protein. EETEB was identified to inhibit the growth of SGC-7901 cells in a dose-dependent manner and induce changes in cell morphology. At the molecular level, EETEB induced SGC-7901 cell DNA fragmentation, loss of plasma membrane and asymmetrical collapse of the mitochondrial membrane potential, while it increased the expression of pro-apoptotic B-cell lymphoma-2 (Bcl-2)-associated X protein and reduced expression of anti-apoptotic Bcl-2. Thus, the results of the current study revealed that the application of EETEB may inhibit the growth of the SGC-7901 cells due to mitochondria-mediated apoptosis.

  20. Ethanolic extract of Tulipa edulis Bak induces apoptosis in SGC-7901 human gastric carcinoma cells via the mitochondrial signaling pathway

    PubMed Central

    LIN, RUHUI; LI, ZUANFANG; LIN, JIUMAO; YE, JINXIA; CAI, QIAOYAN; CHEN, LIDIAN; PENG, JUN

    2015-01-01

    Tulipa edulis Bak (TEB) is an active ingredient in various traditional Chinese medicine compounds and is commonly used to treat swelling and redness, remove toxicity and eliminate stagnation, as well as to prevent and treat certain cancer types. However, the underlying molecular mechanism of the anticancer activity of TEB remains unclear. The aim of the current study was to investigate the effect and underlying mechanism of the ethanolic extract of TEB (EETEB) on SGC-7901 human gastric carcinoma cells. An MTT assay was performed to analyze cell viability. In addition, transmission electron microscopy, an Annexin V/fluorescein isothiocyanate assay, a JC-1 assay and laser scanning confocal microscopy with DAPI staining were used to determine the rate of apoptosis. Furthermore, reverse transcription-polymerase chain reaction and western blot analysis were used to detect the expression levels of the apoptosis gene and protein. EETEB was identified to inhibit the growth of SGC-7901 cells in a dose-dependent manner and induce changes in cell morphology. At the molecular level, EETEB induced SGC-7901 cell DNA fragmentation, loss of plasma membrane and asymmetrical collapse of the mitochondrial membrane potential, while it increased the expression of pro-apoptotic B-cell lymphoma-2 (Bcl-2)-associated X protein and reduced expression of anti-apoptotic Bcl-2. Thus, the results of the current study revealed that the application of EETEB may inhibit the growth of the SGC-7901 cells due to mitochondria-mediated apoptosis. PMID:26622854

  1. Calpain, Atg5 and Bak play important roles in the crosstalk between apoptosis and autophagy induced by influx of extracellular calcium.

    PubMed

    Shi, Mei; Zhang, Tian; Sun, Lei; Luo, Yan; Liu, De-Hua; Xie, Shu-Tao; Song, Xiao-Yan; Wang, Guo-Fan; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2013-04-01

    Calcium (Ca(2+)) signals are involved in important checkpoints in cell death pathways and promote both apoptosis and autophagy. However, the relationship between autophagy and apoptosis in response to Ca(2+) level elevation is poorly understood. Here, we provided evidence that the influx of extracellular Ca(2+) triggered by Trichokonin VI (TK VI), an antimicrobial peptide, induced calpain-dependent apoptosis and autophagy in hepatocellular carcinoma (HCC) cells. Remarkably, TK VI preferentially induced apoptosis that was associated with calpain-mediated Bax and Atg5 cleavage, which resulted in the collapse of the mitochondrial membrane potential and cytochrome c release. Interestingly, truncated, but not full-length Atg5, associated with Bcl-xL and promoted the intrinsic pathway. Moreover, TK VI treatment induced reactive oxygen species (ROS) accumulation, an effect in which Bak might play a major role. This accumulation of ROS resulted in the subsequent disposal of damaged mitochondria within autophagosomes via Atg5-mediated and mitochondria-selective autophagy. Both the inhibition of calpain activity and Bax deficiency activated a switch that promoted an enhancement of autophagy. The inhibition of both apoptosis and autophagy significantly attenuated the TK VI cytotoxicity, indicating that the two processes had stimulatory effects during TK VI-meditated cell death. These results suggested that calpain, Bak and Atg5 were molecular links between autophagy and apoptosis and revealed novel aspects of the crosstalk between these two processes. The potential of TK VI is proposed as a promising anticancer agent for its well-characterized activity of Ca(2+) agonist and as a possible novel therapeutic strategy that acts on cancer cell mitochondria.

  2. Bz-423 superoxide signals apoptosis via selective activation of JNK, Bak, and Bax.

    PubMed

    Blatt, Neal B; Boitano, Anthony E; Lyssiotis, Costas A; Opipari, Anthony W; Glick, Gary D

    2008-11-01

    Bz-423 is a proapoptotic 1,4-benzodiazepine with potent therapeutic properties in murine models of lupus and psoriasis. Bz-423 modulates the F(1)F(0)-ATPase, inducing the formation of superoxide within the mitochondrial respiratory chain, which then functions as a second messenger initiating apoptosis. Herein, we report the signaling pathway activated by Bz-423 in mouse embryonic fibroblasts containing knockouts of key apoptotic proteins. Bz-423-induced superoxide activates cytosolic ASK1 and its release from thioredoxin. A mitogen-activated protein kinase cascade follows, leading to the specific phosphorylation of JNK. JNK signals activation of Bax and Bak which then induces mitochondrial outer membrane permeabilization to cause the release of cytochrome c and a commitment to apoptosis. The response of these cells to Bz-423 is critically dependent on both superoxide and JNK activation as antioxidants and the JNK inhibitor SP600125 prevents Bax translocation, cytochrome c release, and cell death. These results demonstrate that superoxide generated from the mitochondrial respiratory chain as a consequence of a respiratory transition can signal a sequential and specific apoptotic response. Collectively, these data suggest that the selectivity of Bz-423 observed in vivo results from cell-type specific differences in redox balance and signaling by ASK1 and Bcl-2 proteins.

  3. Metaxins 1 and 2, two proteins of the mitochondrial protein sorting and assembly machinery, are essential for Bak activation during TNF alpha triggered apoptosis.

    PubMed

    Cartron, Pierre-François; Petit, Elise; Bellot, Grégory; Oliver, Lisa; Vallette, François M

    2014-09-01

    The proteins Bax and Bak are central in the execution phase of apoptosis; however, little is known about the partners involved in the control of this complex process. Here, we show that mitochondrial Bak is incorporated into a VDAC2/Mtx1/Mtx2 multi-protein complex in both resting and dying cells. VDAC2 is a porin that has previously been described as a partner of Bak while Mtx1 and Mtx2 are two proteins of the mitochondrial sorting and assembly machinery (SAM) that have been implicated in TNF-induced apoptosis. We show that, after the induction of apoptosis, Bak switches from its association with Mtx2 and VDAC2 to interact with Mtx1.

  4. AICAR induces Bax/Bak-dependent apoptosis through upregulation of the BH3-only proteins Bim and Noxa in mouse embryonic fibroblasts.

    PubMed

    González-Gironès, Diana M; Moncunill-Massaguer, Cristina; Iglesias-Serret, Daniel; Cosialls, Ana M; Pérez-Perarnau, Alba; Palmeri, Claudia M; Rubio-Patiño, Camila; Villunger, Andreas; Pons, Gabriel; Gil, Joan

    2013-08-01

    5-Aminoimidazole-4-carboxamide (AICA) riboside (AICAR) is a nucleoside analogue that is phosphorylated to 5-amino-4-imidazolecarboxamide ribotide (ZMP), which acts as an AMP mimetic and activates AMP-activated protein kinase (AMPK). It has been recently described that AICAR triggers apoptosis in chronic lymphocytic leukemia (CLL) cells, and its mechanism of action is independent of AMPK as well as p53. AICAR-mediated upregulation of the BH3-only proteins BIM and NOXA correlates with apoptosis induction in CLL cells. Here we propose mouse embryonic fibroblasts (MEFs) as a useful model to analyze the mechanism of AICAR-induced apoptosis. ZMP formation was required for AICAR-induced apoptosis, though direct Ampk activation with A-769662 failed to induce apoptosis in MEFs. AICAR potently induced apoptosis in Ampkα1 (-/-) /α2 (-/-) MEFs, demonstrating an Ampk-independent mechanism of cell death activation. In addition, AICAR acts independently of p53, as MEFs lacking p53 also underwent apoptosis normally. Notably, MEFs lacking Bax and Bak were completely resistant to AICAR-induced apoptosis, confirming the involvement of the mitochondrial pathway in its mechanism of action. Apoptosis was preceded by ZMP-dependent but Ampk-independent modulation of the mRNA levels of different Bcl-2 family members, including Noxa, Bim and Bcl-2. Bim protein levels were accumulated upon AICAR treatment of MEFs, suggesting its role in the apoptotic process. Strikingly, MEFs lacking both Bim and Noxa displayed high resistance to AICAR. These findings support the notion that MEFs are a useful system to further dissect the mechanism of AICAR-induced apoptosis.

  5. Charge Profile Analysis Reveals That Activation of Pro-apoptotic Regulators Bax and Bak Relies on Charge Transfer Mediated Allosteric Regulation

    PubMed Central

    Ionescu, Crina-Maria; Svobodová Vařeková, Radka; Prehn, Jochen H. M.; Huber, Heinrich J.; Koča, Jaroslav

    2012-01-01

    The pro-apoptotic proteins Bax and Bak are essential for executing programmed cell death (apoptosis), yet the mechanism of their activation is not properly understood at the structural level. For the first time in cell death research, we calculated intra-protein charge transfer in order to study the structural alterations and their functional consequences during Bax activation. Using an electronegativity equalization model, we investigated the changes in the Bax charge profile upon activation by a functional peptide of its natural activator protein, Bim. We found that charge reorganizations upon activator binding mediate the exposure of the functional sites of Bax, rendering Bax active. The affinity of the Bax C-domain for its binding groove is decreased due to the Arg94-mediated abrogation of the Ser184-Asp98 interaction. We further identified a network of charge reorganizations that confirms previous speculations of allosteric sensing, whereby the activation information is conveyed from the activation site, through the hydrophobic core of Bax, to the well-distanced functional sites of Bax. The network was mediated by a hub of three residues on helix 5 of the hydrophobic core of Bax. Sequence and structural alignment revealed that this hub was conserved in the Bak amino acid sequence, and in the 3D structure of folded Bak. Our results suggest that allostery mediated by charge transfer is responsible for the activation of both Bax and Bak, and that this might be a prototypical mechanism for a fast activation of proteins during signal transduction. Our method can be applied to any protein or protein complex in order to map the progress of allosteric changes through the proteins' structure. PMID:22719244

  6. Rapamycin-enhanced mitomycin C-induced apoptotic death is mediated through the S6K1-Bad-Bak pathway in peritoneal carcinomatosis.

    PubMed

    Song, X; Dilly, A-K; Kim, S-Y; Choudry, H A; Lee, Y J

    2014-06-05

    Peritoneal carcinomatosis (PC) is the most common secondary cancerous disease, and more effective novel regimens are needed. In this study, we identified a novel combination treatment for PC, chemotherapeutic agent mitomycin C in combination with mTOR (mammalian target of rapamycin) inhibitor rapamycin. We observed that the combination of mitomycin C and rapamycin induced synergistic cytotoxicity and apoptosis, which was mediated through an increase in caspase activation. The combination of mitomycin C and rapamycin inactivated p70 S6 ribosomal kinase (S6K1) and dephosphorylated Bad, leading to dissociation of Bcl-xL from Bak, which resulted in Bak oligomerization, mitochondria dysfunction and cytochrome c release. PF-4708671, a S6K1-specific inhibitor, enhanced the combination treatment-induced apoptosis, whereas S6K1 E389 DeltaCT-HA (S6K1 active form) dramatically decreased the induction of apoptosis. In addition, the combination treatment significantly inhibited LS174T intraperitoneal tumor growth in vivo. This study provides a preclinical rationale for apoptosis induction linked with the mTOR pathway through a combination of chemotherapeutic agents and mTOR inhibitor, and will support this combinatorial strategy to PC patients.

  7. Rapamycin-enhanced mitomycin C-induced apoptotic death is mediated through the S6K1–Bad–Bak pathway in peritoneal carcinomatosis

    PubMed Central

    Song, X; Dilly, A-K; Kim, S-Y; Choudry, H A; Lee, Y J

    2014-01-01

    Peritoneal carcinomatosis (PC) is the most common secondary cancerous disease, and more effective novel regimens are needed. In this study, we identified a novel combination treatment for PC, chemotherapeutic agent mitomycin C in combination with mTOR (mammalian target of rapamycin) inhibitor rapamycin. We observed that the combination of mitomycin C and rapamycin induced synergistic cytotoxicity and apoptosis, which was mediated through an increase in caspase activation. The combination of mitomycin C and rapamycin inactivated p70 S6 ribosomal kinase (S6K1) and dephosphorylated Bad, leading to dissociation of Bcl-xL from Bak, which resulted in Bak oligomerization, mitochondria dysfunction and cytochrome c release. PF-4708671, a S6K1-specific inhibitor, enhanced the combination treatment-induced apoptosis, whereas S6K1 E389 DeltaCT-HA (S6K1 active form) dramatically decreased the induction of apoptosis. In addition, the combination treatment significantly inhibited LS174T intraperitoneal tumor growth in vivo. This study provides a preclinical rationale for apoptosis induction linked with the mTOR pathway through a combination of chemotherapeutic agents and mTOR inhibitor, and will support this combinatorial strategy to PC patients. PMID:24901052

  8. Knockdown of miR-221 promotes the cisplatin-inducing apoptosis by targeting the BIM-Bax/Bak axis in breast cancer.

    PubMed

    Ye, Zhiqiang; Hao, Rutian; Cai, Yefeng; Wang, Xiaobo; Huang, Guanli

    2016-04-01

    Accumulating evidence shows that microRNAs (miRNAs) have a critical role in the initiation and progression of types of human cancer, including breast cancer. Recent research indicated that miRNAs are also related with the chemotherapy on cancers. In this study, the expression of miR-221 in breast cancer (BC) patients' serum and cancer tissues was found to be significantly up-regulated. The results of in vitro MTT assay indicated that although the anti-miR-221 oligonucleotide alone did not influence the viability of BC cell lines markedly, it significantly promoted the cytotoxicity of cisplatin (DDP) to BC cells. Mechanistic studies demonstrated that the gene of BIM (Bcl-2 interacting mediator of cell death), a pro-apoptotic Bcl-2 family protein, was up-regulated by the knockdown of miR-221. We found that the synergetic effect of anti-miR-221 on increasing the sensitivity of MDA-MB-231 was BIM dependant. Furthermore, results of immunoprecipitation showed the up-regulated BIM directly combined with the Bax and Bak, leading to mitochondrial dysfunction. Our results suggest the anti-miR-221 could promote the cisplatin-inducing apoptosis by targeting the Bim-Bax/Bak axis in breast cancer.

  9. Alterations in the characteristic size distributions of subcellular scatterers at the onset of apoptosis: effect of Bcl-xL and Bax/Bak

    NASA Astrophysics Data System (ADS)

    Zheng, Jing-Yi; Boustany, Nada N.

    2010-07-01

    Optical scatter imaging is used to estimate organelle size distributions in immortalized baby mouse kidney cells treated with 0.4 μM staurosporine to induce apoptosis. The study comprises apoptosis competent iBMK cells (W2) expressing the proapoptotic proteins Bax/Bak, apoptosis resistant Bax/Bak null cells (D3), and W2 and D3 cells expressing yellow fluorescent protein (YFP) or YFP fused to the antiapoptotic protein Bcl-xL (YFP-Bcl-xL). YFP expression is diffuse within the transfected cells, while YFP-Bcl-xL is localized to the mitochondria. Our results show a significant increase in the mean subcellular particle size from approximately 1.1 to 1.4 μm in both Bax/Bak expressing and Bax/Bak null cells after 60 min of STS treatment compared to DMSO-treated control cells. This dynamic is blocked by overexpression of YFP-Bcl-xL in Bax/Bak expressing cells, but is less significantly inhibited by YFP-Bcl-xL in Bax/Bak null cells. Our data suggest that the increase in subcellular particle size at the onset of apoptosis is modulated by Bcl-xL in the presence of Bax/Bak, but it occurs upstream of the final commitment to programmed cell death. Mitochondrial localization of YFP-Bcl-xL and the finding that micron-sized particles give rise to the scattering signal further suggest that alterations in mitochondrial morphology may underlie the observed changes in light scattering.

  10. Bax/Bak-dependent, Drp1-independent Targeting of X-linked Inhibitor of Apoptosis Protein (XIAP) into Inner Mitochondrial Compartments Counteracts Smac/DIABLO-dependent Effector Caspase Activation.

    PubMed

    Hamacher-Brady, Anne; Brady, Nathan Ryan

    2015-09-04

    Efficient apoptosis requires Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), which releases death-promoting proteins cytochrome c and Smac to the cytosol, which activate apoptosis and inhibit X-linked inhibitor of apoptosis protein (XIAP) suppression of executioner caspases, respectively. We recently identified that in response to Bcl-2 homology domain 3 (BH3)-only proteins and mitochondrial depolarization, XIAP can permeabilize and enter mitochondria. Consequently, XIAP E3 ligase activity recruits endolysosomes into mitochondria, resulting in Smac degradation. Here, we explored mitochondrial XIAP action within the intrinsic apoptosis signaling pathway. Mechanistically, we demonstrate that mitochondrial XIAP entry requires Bax or Bak and is antagonized by pro-survival Bcl-2 proteins. Moreover, intramitochondrial Smac degradation by XIAP occurs independently of Drp1-regulated cytochrome c release. Importantly, mitochondrial XIAP actions are activated cell-intrinsically by typical apoptosis inducers TNF and staurosporine, and XIAP overexpression reduces the lag time between the administration of an apoptotic stimuli and the onset of mitochondrial permeabilization. To elucidate the role of mitochondrial XIAP action during apoptosis, we integrated our findings within a mathematical model of intrinsic apoptosis signaling. Simulations suggest that moderate increases of XIAP, combined with mitochondrial XIAP preconditioning, would reduce MOMP signaling. To test this scenario, we pre-activated XIAP at mitochondria via mitochondrial depolarization or by artificially targeting XIAP to the intermembrane space. Both approaches resulted in suppression of TNF-mediated caspase activation. Taken together, we propose that XIAP enters mitochondria through a novel mode of mitochondrial permeabilization and through Smac degradation can compete with canonical MOMP to act as an anti-apoptotic tuning mechanism, reducing the mitochondrial contribution to the

  11. The combination of thioxodihydroquinazolinones and platinum drugs reverses platinum resistance in tumor cells by inducing mitochondrial apoptosis independent of Bax and Bak

    PubMed Central

    Qian, Wei; Salamoun, Joseph; Wang, Jingnan; Roginskaya, Vera; Van Houten, Bennett; Wipf, Peter

    2015-01-01

    The effective management of tumors resistant to platinum drugs-based anticancer therapies is a critical challenge in current clinical practices. The proapoptotic Bcl-2 family proteins Bax and Bak are essential for cisplatin-induced apoptosis. Unfortunately, Bax and its related upstream endogenous apoptotic signaling pathways are often dysregulated in cancer cells. Strategies that are able to bypass Bax- and Bak-dependent apoptotic pathways will thus provide opportunities to overcome platinum drug resistance. We have identified the thioxodihydroquinazolinone mdivi-1 as a member of a novel class of small molecules that are able to induce Bax- and Bak-independent mitochondrial outer membrane permeabilization when combined with cisplatin, thereby efficiently triggering apoptosis in platinum resistant tumor cells. In the present structure activity relationship (SAR) study of a computationally selected library of mdivi-1 related small molecules, we established a pharmacophore model that can lead to the enhancement of platinum drug efficacy and Bax/Bak-independent mitochondrial apoptosis. Specifically, we found that a thiourea function is necessary but not sufficient for the synergism of this class of thioxodihydroquinazolinones with cisplatin. We were also able to identify more potent mdivi-1 analogs through this SAR study, which will guide future designs with the goal to develop novel combination regimens for the treatment of platinum and multidrug resistant tumors. PMID:25582599

  12. Cotton GhBAK1 Mediates Verticillium Wilt Resistance and Cell DeathF

    PubMed Central

    Gao, Xiquan; Li, Fangjun; Li, Maoying; Kianinejad, Ali S.; Dever, Jane K.; Wheeler, Terry A.; Li, Zhaohu; He, Ping; Shan, Libo

    2015-01-01

    Virus-induced gene silencing (VIGS) offers a powerful approach for functional analysis of individual genes by knocking down their expression. We have adopted this approach to dissect gene functions in cotton resistant to Verticillium wilt, one of the most devastating diseases worldwide. We showed here that highly efficient VIGS was obtained in a cotton breeding line (CA4002) with partial resistance to Verticillium wilt, and GhMKK2 and GhVe1 are required for its resistance to Verticillium wilt. Arabidopsis AtBAK1/SERK3, a central regulator in plant disease resistance, belongs to a subfamily of somatic embryogenesis receptor kinases (SERKs) with five members, AtSERK1 to AtSERK5. Two BAK1 orthologs and one SERK1 ortholog were identified in the cotton genome. Importantly, GhBAK1 is required for CA4002 resistance to Verticillium wilt. Surprisingly, silencing of GhBAK1 is sufficient to trigger cell death accompanied with production of reactive oxygen species in cotton. This result is distinct from Arabidopsis in which AtBAK1 and AtSERK4 play redundant functions in cell death control. Apparently, cotton has only evolved SERK1 and BAK1 whereas AtSERK4/5 are newly evolved genes in Arabidopsis. Our studies indicate the functional importance of BAK1 in Verticillium wilt resistance and suggest the dynamic evolution of SERK family members in different plant species. PMID:23675706

  13. Cotton GhBAK1 mediates Verticillium wilt resistance and cell death.

    PubMed

    Gao, Xiquan; Li, Fangjun; Li, Maoying; Kianinejad, Ali S; Dever, Jane K; Wheeler, Terry A; Li, Zhaohu; He, Ping; Shan, Libo

    2013-07-01

    Virus-induced gene silencing (VIGS) offers a powerful approach for functional analysis of individual genes by knocking down their expression. We have adopted this approach to dissect gene functions in cotton resistant to Verticillium wilt, one of the most devastating diseases worldwide. We showed here that highly efficient VIGS was obtained in a cotton breeding line (CA4002) with partial resistance to Verticillium wilt, and GhMKK2 and GhVe1 are required for its resistance to Verticillium wilt. Arabidopsis AtBAK1/SERK3, a central regulator in plant disease resistance, belongs to a subfamily of somatic embryogenesis receptor kinases (SERKs) with five members, AtSERK1 to AtSERK5. Two BAK1 orthologs and one SERK1 ortholog were identified in the cotton genome. Importantly, GhBAK1 is required for CA4002 resistance to Verticillium wilt. Surprisingly, silencing of GhBAK1 is sufficient to trigger cell death accompanied with production of reactive oxygen species in cotton. This result is distinct from Arabidopsis in which AtBAK1 and AtSERK4 play redundant functions in cell death control. Apparently, cotton has only evolved SERK1 and BAK1 whereas AtSERK4/5 are newly evolved genes in Arabidopsis. Our studies indicate the functional importance of BAK1 in Verticillium wilt resistance and suggest the dynamic evolution of SERK family members in different plant species.

  14. Targeted therapy of the XIAP/proteasome pathway overcomes TRAIL-resistance in carcinoma by switching apoptosis signaling to a Bax/Bak-independent 'type I' mode.

    PubMed

    Gillissen, B; Richter, A; Richter, A; Overkamp, T; Essmann, F; Hemmati, P G; Preissner, R; Belka, C; Daniel, P T

    2013-05-23

    TRAIL is a promising anticancer agent, capable of inducing apoptosis in a wide range of treatment-resistant tumor cells. In 'type II' cells, the death signal triggered by TRAIL requires amplification via the mitochondrial apoptosis pathway. Consequently, deregulation of the intrinsic apoptosis-signaling pathway, for example, by loss of Bax and Bak, confers TRAIL-resistance and limits its application. Here, we show that despite resistance of Bax/Bak double-deficient cells, TRAIL-treatment resulted in caspase-8 activation and complete processing of the caspase-3 proenzymes. However, active caspase-3 was degraded by the proteasome and not detectable unless the XIAP/proteasome pathway was inhibited. Direct or indirect inhibition of XIAP by RNAi, Mithramycin A or by the SMAC mimetic LBW-242 as well as inhibition of the proteasome by Bortezomib overcomes TRAIL-resistance of Bax/Bak double-deficient tumor cells. Moreover, activation and stabilization of caspase-3 becomes independent of mitochondrial death signaling, demonstrating that inhibition of the XIAP/proteasome pathway overcomes resistance by converting 'type II' to 'type I' cells. Our results further demonstrate that the E3 ubiquitin ligase XIAP is a gatekeeper critical for the 'type II' phenotype. Pharmacological manipulation of XIAP therefore is a promising strategy to sensitize cells for TRAIL and to overcome TRAIL-resistance in case of central defects in the intrinsic apoptosis-signaling pathway.

  15. Bak is a key molecule in apoptosis induced by methanol extracts of Codonopsis lanceolata and Tricholoma matsutake in HSC-2 human oral cancer cells

    PubMed Central

    SHIN, JI-AE; KIM, JUN SUNG; HONG, IN-SUN; CHO, SUNG-DAE

    2012-01-01

    Since the 5-year survival rate of oral cancer remains low, more effective and non-toxic therapeutic and preventive strategies are required. Certain natural products possess anti-cancer properties. The present study investigated the effects of the methanol extracts of Codonopsis lanceolata (MECI) and Tricholoma matsutake (METM) and identified the molecular target in HSC-2 human oral cancer cells. The results revealed that MECI and METM inhibited growth and induced apoptosis, as demonstrated by poly (ADP-ribose) polymerase (PARP) cleavage and nuclear condensation and fragmentation. The compounds also increased Bak protein expression, while Bax, Bcl-XL and Mcl-1 were not affected. The results of the present study show that MECI and METM induce apoptosis to inhibit tumor growth of HSC-2 cells by modulating the Bak protein and suggest that Codonopsis lanceolata and Tricholoma matsutake are potential anticancer drug candidates for oral cancer. PMID:23205139

  16. BH3-only protein BIM mediates heat shock-induced apoptosis.

    PubMed

    Mahajan, Indra M; Chen, Miao-Der; Muro, Israel; Robertson, John D; Wright, Casey W; Bratton, Shawn B

    2014-01-01

    Acute heat shock can induce apoptosis through a canonical pathway involving the upstream activation of caspase-2, followed by BID cleavage and stimulation of the intrinsic pathway. Herein, we report that the BH3-only protein BIM, rather than BID, is essential to heat shock-induced cell death. We observed that BIM-deficient cells were highly resistant to heat shock, exhibiting short and long-term survival equivalent to Bax(-/-)Bak(-/-) cells and better than either Bid(-/-) or dominant-negative caspase-9-expressing cells. Only Bim(-/-) and Bax(-/-)Bak(-/-) cells exhibited resistance to mitochondrial outer membrane permeabilization and loss of mitochondrial inner membrane potential. Moreover, while dimerized caspase-2 failed to induce apoptosis in Bid(-/-) cells, it readily did so in Bim(-/-) cells, implying that caspase-2 kills exclusively through BID, not BIM. Finally, BIM reportedly associates with MCL-1 following heat shock, and Mcl-1(-/-) cells were indeed sensitized to heat shock-induced apoptosis. However, pharmacological inhibition of BCL-2 and BCL-X(L) with ABT-737 also sensitized cells to heat shock, most likely through liberation of BIM. Thus, BIM mediates heat shock-induced apoptosis through a BAX/BAK-dependent pathway that is antagonized by antiapoptotic BCL-2 family members.

  17. Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK

    SciTech Connect

    Lee, H.-J.; Wang, C.-J.; Kuo, H.-C.; Chou, F.-P.; Jean, L.-F.; Tseng, T.-H. . E-mail: tht@csmu.edu.tw

    2005-03-01

    Since hepatocellular carcinoma remains a major challenging clinical problem in many parts of the world including Eastern Asia and Southern Africa, it is imperative to develop more effective chemopreventive and chemotherapy agents. Herein, we present an investigation regarding the anticancer potential of luteolin, a natural flavonoid, and the mechanism of its action in human hepatoma HepG2 cells. Using DNA fragmentation assay and nuclear staining assay, it showed that luteolin induced apoptosis of HepG2 cells. Luteolin induced the cytosolic release of cytochrome c and activated CPP32. We found that Bax and Bak translocated to mitochondria apparently, whereas Fas ligand (FasL) was unchanged after a treatment with luteolin for 3 h. In addition, it showed that c-Jun NH{sub 2}-terminal kinase (JNK) was activated after the treatment of luteolin for 3-12 h. Further investigation showed that a specific JNK inhibitor, SP600125, reduced the activation of CPP 32, the mitochondrial translocation of Bax, as well as the cytosolic release of cytochrome c that induced by luteolin. Finally, the apoptosis induced by luteolin was suppressed by a pretreatment with SP600125 via evaluating annexin V-FITC binding assay. These data suggest that luteolin induced apoptosis via mechanisms involving mitochondria translocation of Bax/Bak and activation of JNK.

  18. Downregulation of Mcl-1 potentiates HDACi-mediated apoptosis in leukemic cells.

    PubMed

    Inoue, S; Walewska, R; Dyer, M J S; Cohen, G M

    2008-04-01

    Mcl-1 is an antiapoptotic Bcl-2 family member, whose degradation is supposedly required for the induction of apoptosis. However, histone deacetylase inhibitors (HDACi) induce apoptosis primarily through the Bak/Mcl-1/Noxa and Bim pathways without decreasing Mcl-1. To investigate this discrepancy, we examined the role of Mcl-1 on HDACi-mediated apoptosis. Inhibition of either class I or class II HDAC by selective HDACi caused an upregulation of Mcl-1 mRNA and protein. Downregulation of Mcl-1 by three structurally unrelated cyclin-dependent kinase inhibitors potentiated HDACi-mediated apoptosis in primary chronic lymphocytic leukemic (CLL) cells and K562 cells. Sensitivity to HDACi-induced apoptosis was increased approximately 10-fold by the cyclin-dependent kinase inhibitors. Nanomolar concentrations of HDACi, approximately 300-fold lower than that required to induce apoptosis alone, sensitized cells to TRAIL, emphasizing that the mechanism(s) whereby HDACi induce apoptosis is clearly distinct from those by which they sensitize to TRAIL. Furthermore, knockdown of Mcl-1-potentiated HDACi-mediated apoptosis in K562 cells. Thus, HDACi-mediated Mcl-1 upregulation plays an important antiapoptotic regulatory role in limiting the efficacy of HDACi-induced apoptosis, which can be overcome by combination with an agent that downregulates Mcl-1. Thus, a clinical trial in some cancers is warranted using a combination of an HDACi with agents that downregulate Mcl-1.

  19. Fenugreek induced apoptosis in breast cancer MCF-7 cells mediated independently by fas receptor change.

    PubMed

    Alshatwi, Ali Abdullah; Shafi, Gowhar; Hasan, Tarique Noorul; Syed, Naveed Ahmed; Khoja, Kholoud Khalid

    2013-01-01

    Trigonella foenum in graecum (Fenugreek) is a traditional herbal plant used to treat disorders like diabetes, high cholesterol, wounds, inflammation, gastrointestinal ailments, and it is believed to have anti-tumor properties, although the mechanisms for the activity remain to be elucidated. In this study, we prepared a methanol extract from Fenugreek whole plants and investigated the mechanism involved in its growth-inhibitory effect on MCF- 7 human breast cancer cells. Apoptosis of MCF-7 cells was evidenced by investigating trypan blue exclusion, TUNEL and Caspase 3, 8, 9, p53, FADD, Bax and Bak by real-time PCR assays inducing activities, in the presence of FME at 65 μg/mL for 24 and 48 hours. FME induced apoptosis was mediated by the death receptor pathway as demonstrated by the increased level of Fas receptor expression after FME treatment. However, such change was found to be absent in Caspase 3, 8, 9, p53, FADD, Bax and Bak, which was confirmed by a time-dependent and dose-dependent manner. In summary, these data demonstrate that at least 90% of FME induced apoptosis in breast cell is mediated by Fas receptor-independently of either FADD, Caspase 8 or 3, as well as p53 interdependently.

  20. Cisplatin-induced apoptosis in non-small-cell lung cancer cells is dependent on Bax- and Bak-induction pathway and synergistically activated by BH3-mimetic ABT-263 in p53 wild-type and mutant cells.

    PubMed

    Matsumoto, Masaru; Nakajima, Wataru; Seike, Masahiro; Gemma, Akihiko; Tanaka, Nobuyuki

    2016-04-29

    Cisplatin is a highly effective anticancer drug for treatment of various tumors including non-small-cell lung cancer (NSCLC), and is especially useful in cases nonresponsive to molecular-targeted drugs. Accumulating evidence has shown that cisplatin activates the p53-dependent apoptotic pathway, but it also induces apoptosis in p53-mutated cancer cells. Here we demonstrated that DNA-damage inducible proapoptotic BH3 (Bcl-2 homology region 3)-only Bcl-2 family members, Noxa, Puma, Bim and Bid, are not involved in cisplatin-induced apoptosis in human NSCLC cell lines. In contrast, the expression of proapoptotic multidomain Bcl-2-family members, Bak and Bax, was induced by cisplatin in p53-dependent and -independent manners, respectively. Moreover, in wild-type p53-expressing cells, cisplatin mainly used the Bak-dependent apoptotic pathway, but this apoptotic pathway shifted to the Bax-dependent pathway by loss-of-function of p53. Furthermore, both Bak- and Bax-induced apoptosis was enhanced by the antiapoptotic Bcl-2 family member, Bcl-XL knockdown, but not by Mcl-1 knockdown. From this result, we tested the effect of ABT-263 (Navitoclax), the specific inhibitor of Bcl-2 and Bcl-XL, but not Mcl-1, and found that ABT-263 synergistically enhanced cisplatin-induced apoptosis in NSCLC cells in the presence or absence of p53. These results indicate a novel regulatory system in cisplatin-induced NSCLC cell apoptosis, and a candidate efficient combination chemotherapy method against lung cancers.

  1. Apoptosis in immune-mediated diseases

    PubMed Central

    Sankari, S. Leena; Babu, N. Aravindha; Rajesh, E.; Kasthuri, M.

    2015-01-01

    Apoptosis plays a significant role in both the physiological and pathological process. A dysfunctional apoptotic system can lead to either excessive removal or prolonged survival of cells. Therefore, dysregulation is involved in the pathogenesis of a variety of immunological diseases. The present review aims to provide an overview regarding role of apoptosis in immune-mediated disease. PMID:26015710

  2. Stimulatory heterotrimeric G protein augments gamma ray-induced apoptosis by up-regulation of Bak expression via CREB and AP-1 in H1299 human lung cancer cells.

    PubMed

    Choi, Yoon Jung; Kim, So Young; Oh, Jung Min; Juhnn, Yong Sung

    2009-08-31

    Stimulatory heterotrimeric GTP-binding proteins (Gs protein) stimulate cAMP generation in response to various signals, and modulate various cellular phenomena such as proliferation and apoptosis. This study aimed to investigate the effect of Gs proteins on gamma ray-induced apoptosis of lung cancer cells and its molecular mechanism, as an attempt to develop a new strategy to improve the therapeutic efficacy of gamma radiation. Expression of constitutively active mutant of the alpha subunit of Gs (GalphasQL) augmented gamma ray-induced apoptosis via mitochondrial dependent pathway when assessed by clonogenic assay, FACS analysis of PI stained cells, and western blot analysis of the cytoplasmic translocation of cytochrome C and the cleavage of caspase-3 and ploy(ADP-ribose) polymerase (PARP) in H1299 human lung cancer cells. GalphasQL up-regulated the Bak expression at the levels of protein and mRNA. Treatment with inhibitors of PKA (H89), SP600125 (JNK inhibitor), and a CRE-decoy blocked GalphasQL-stimulated Bak reporter luciferase activity. Expression of GalphasQL increased basal and gamma ray-induced luciferase activity of cAMP response element binding protein (CREB) and AP-1, and the binding of CREB and AP-1 to Bak promoter. Furthermore, prostaglandin E2, a Galphas activating signal, was found to augment gamma ray-induced apoptosis, which was abolished by treatment with a prostanoid receptor antagonist. These results indicate that Galphas augments gamma ray-induced apoptosis by up-regulation of Bak expression via CREB and AP-1 in H1299 lung cancer cells, suggesting that the efficacy of radiotherapy of lung cancer may be improved by modulating Gs signaling pathway.

  3. Semaphorins as mediators of neuronal apoptosis.

    PubMed

    Shirvan, A; Ziv, I; Fleminger, G; Shina, R; He, Z; Brudo, I; Melamed, E; Barzilai, A

    1999-09-01

    Shrinkage and collapse of the neuritic network are often observed during the process of neuronal apoptosis. However, the molecular and biochemical basis for the axonal damage associated with neuronal cell death is still unclear. We present evidence for the involvement of axon guidance molecules with repulsive cues in neuronal cell death. Using the differential display approach, an up-regulation of collapsin response mediator protein was detected in sympathetic neurons undergoing dopamine-induced apoptosis. A synchronized induction of mRNA of the secreted collapsin-1 and the intracellular collapsin response mediator protein that preceded commitment of neurons to apoptosis was detected. Antibodies directed against a conserved collapsin-derived peptide provided marked and prolonged protection of several neuronal cell types from dopamine-induced apoptosis. Moreover, neuronal apoptosis was inhibited by antibodies against neuropilin-1, a putative component of the semaphorin III/collapsin-1 receptor. Induction of neuronal apoptosis was also caused by exposure of neurons to semaphorin III-alkaline phosphatase secreted from 293EBNA cells. Anti-collapsin-1 antibodies were effective in blocking the semaphorin III-induced death process. We therefore suggest that, before their death, apoptosis-destined neurons may produce and secrete destructive axon guidance molecules that can affect their neighboring cells and thus transfer a "death signal" across specific and susceptible neuronal populations.

  4. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis

    PubMed Central

    Jinesh, GG; Molina, JR; Huang, L; Laing, NM; Mills, GB; Bar-Eli, M; Kamat, AM

    2016-01-01

    Apoptosis culminates in secondary necrosis due to lack of ATP. Cancer stem cells form spheres after apoptosis by evoking the blebbishield emergency program. Hence, determining how blebbishields avoid secondary necrosis is crucial. Here we demonstrate that N-Myc and VEGFR2 control transformation from blebbishields, during which oligomers of K-Ras, p27, BAD, Bax, and Bak boost glycolysis to avoid secondary necrosis. Non-apoptotic cancer cells also utilize oligomers to boost glycolysis, which differentiates the glycolytic function of oligomers from their apoptotic action. Smac mimetic in combination with TNF-α or TRAIL but not in combination with FasL abrogates transformation from blebbishields by inducing secondary necrosis. Thus blebbishield-mediated transformation is dependent on glycolysis, and Smac mimetics represent potential candidates to abrogate the blebbishield emergency program. PMID:27551498

  5. Apoptosis repressor with a CARD domain (ARC) restrains Bax-mediated pathogenesis in dystrophic skeletal muscle.

    PubMed

    Davis, Jennifer; Kwong, Jennifer Q; Kitsis, Richard N; Molkentin, Jeffery D

    2013-01-01

    Myofiber wasting in muscular dystrophy has largely been ascribed to necrotic cell death, despite reports identifying apoptotic markers in dystrophic muscle. Here we set out to identify the contribution of canonical apoptotic pathways to skeletal muscle degeneration in muscular dystrophy by genetically deleting a known inhibitor of apoptosis, apoptosis repressor with a card domain (Arc), in dystrophic mouse models. Nol3 (Arc protein) genetic deletion in the dystrophic Sgcd or Lama2 null backgrounds showed exacerbated skeletal muscle pathology with decreased muscle performance compared with single null dystrophic littermate controls. The enhanced severity of the dystrophic phenotype associated with Nol3 deletion was caspase independent but dependent on the mitochondria permeability transition pore (MPTP), as the inhibitor Debio-025 partially rescued skeletal muscle pathology in Nol3 (-/-) Sgcd (-/-) double targeted mice. Mechanistically, Nol3 (-/-) Sgcd (-/-) mice showed elevated total and mitochondrial Bax protein levels, as well as greater mitochondrial swelling, suggesting that Arc normally restrains the cell death effects of Bax in skeletal muscle. Indeed, knockdown of Arc in mouse embryonic fibroblasts caused an increased sensitivity to cell death that was fully blocked in Bax Bak1 (genes encoding Bax and Bak) double null fibroblasts. Thus Arc deficiency in dystrophic muscle exacerbates disease pathogenesis due to a Bax-mediated sensitization of mitochondria-dependent death mechanisms.

  6. In non-transformed cells Bak activates upon loss of anti-apoptotic Bcl-XL and Mcl-1 but in the absence of active BH3-only proteins

    PubMed Central

    Senft, D; Weber, A; Saathoff, F; Berking, C; Heppt, M V; Kammerbauer, C; Rothenfusser, S; Kellner, S; Kurgyis, Z; Besch, R; Häcker, G

    2015-01-01

    Mitochondrial apoptosis is controlled by proteins of the B-cell lymphoma 2 (Bcl-2) family. Pro-apoptotic members of this family, known as BH3-only proteins, initiate activation of the effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak), which is counteracted by anti-apoptotic family members. How the interactions of Bcl-2 proteins regulate cell death is still not entirely clear. Here, we show that in the absence of extrinsic apoptotic stimuli Bak activates without detectable contribution from BH3-only proteins, and cell survival depends on anti-apoptotic Bcl-2 molecules. All anti-apoptotic Bcl-2 proteins were targeted via RNA interference alone or in combinations of two in primary human fibroblasts. Simultaneous targeting of B-cell lymphoma-extra large and myeloid cell leukemia sequence 1 led to apoptosis in several cell types. Apoptosis depended on Bak whereas Bax was dispensable. Activator BH3-only proteins were not required for apoptosis induction as apoptosis was unaltered in the absence of all BH3-only proteins known to activate Bax or Bak directly, Bcl-2-interacting mediator of cell death, BH3-interacting domain death agonist and p53-upregulated modulator of apoptosis. These findings argue for auto-activation of Bak in the absence of anti-apoptotic Bcl-2 proteins and provide evidence of profound differences in the activation of Bax and Bak. PMID:26610208

  7. The X-ray Structure of a BAK Homodimer Reveals an Inhibitory Zinc Binding Site

    SciTech Connect

    Modoveanu,T.; Liu, Q.; Tocilj, A.; Watson, M.; Shore, G.; Gehring, K.

    2006-01-01

    BAK/BAX-mediated mitochondrial outer-membrane permeabilization (MOMP) drives cell death during development and tissue homeostasis from zebrafish to humans. In most cancers, this pathway is inhibited by BCL-2 family antiapoptotic members, which bind and block the action of proapoptotic BCL proteins. We report the 1.5 {angstrom} crystal structure of calpain-proteolysed BAK, cBAK, to reveal a zinc binding site that regulates its activity via homodimerization. cBAK contains an occluded BH3 peptide binding pocket that binds a BID BH3 peptide only weakly . Nonetheless, cBAK requires activation by truncated BID to induce cytochrome c release in mitochondria isolated from bak/bax double-knockout mouse embryonic fibroblasts. The BAK-mediated MOMP is inhibited by low micromolar zinc levels. This inhibition is alleviated by mutation of the zinc-coordination site in BAK. Our results link directly the antiapoptotic effects of zinc to BAK.

  8. Benzo[a]pyrene-7,8-diol-9,10-epoxide causes caspase-mediated apoptosis in H460 human lung cancer cell line.

    PubMed

    Xiao, Hui; Rawal, Malika; Hahm, Eun-Ryeong; Singh, Shivendra V

    2007-11-15

    We have shown previously that wild-type p53 renders H460 human lung cancer cells more sensitive to apoptosis induction by environmental carcinogen benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), but the mechanism of cell death is not fully understood. The present study provides insights into the mechanism by which BPDE causes apoptosis in H460 cells. Exposure of H460 cells to BPDE resulted in a concentration-dependent apoptotic cell death characterized by cleavage of poly(ADP-ribose)polymerase, DNA condensation, and apoptotic histone-associated DNA fragments released into the cytosol. The BPDE-mediated release of apoptotic histone-associated DNA fragments into the cytosol was also observed in a normal bronchial epithelial cell line BEAS-2B. The BPDE-induced apoptosis in H460 cells correlated with up-regulation of pro-apoptotic protein Bak, downregulation of anti-apoptotic Bcl-2 family members Bcl-2 and Bcl-xL, release of cytochrome c from mitochondria to the cytosol without a change in mitochondrial membrane potential or mitochondrial morphology (electron microscopy), and cleavage of caspase-8, -9, and -3. Ectopic expression of Bcl-2 failed to confer significant protection against BPDE-induced apoptosis in H460 cells. The SV40 immortalized mouse embryonic fibroblasts (MEFs) derived from Bak and Bax double knockout mice, but not Bid knockout mice, were significantly more resistant to BPDE-induced apoptosis compared with the MEFs derived from wild-type mice. The BPDE-induced apoptosis was partially but statistically significantly attenuated in the presence of specific inhibitors of caspase-9 (z-LEHDfmk) and caspase-8 (z-IETDfmk). In conclusion, the present study reveals that BPDE-induced apoptosis in H460 cells is associated with Bak induction and caspase activation but independent of Bcl-2.

  9. The BH3 α-Helical Mimic BH3-M6 Disrupts Bcl-XL, Bcl-2, and MCL-1 Protein-Protein Interactions with Bax, Bak, Bad, or Bim and Induces Apoptosis in a Bax- and Bim-dependent Manner*

    PubMed Central

    Kazi, Aslamuzzaman; Sun, Jiazhi; Doi, Kenichiro; Sung, Shen-Shu; Takahashi, Yoshinori; Yin, Hang; Rodriguez, Johanna M.; Becerril, Jorge; Berndt, Norbert; Hamilton, Andrew D.; Wang, Hong-Gang; Sebti, Saïd M.

    2011-01-01

    A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-XL, and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-XL and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-XL, Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-XL/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-XL, Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612. PMID:21148306

  10. Proapoptotic Activities of Protein Disulfide Isomerase (PDI) and PDIA3 Protein, a Role of the Bcl-2 Protein Bak*

    PubMed Central

    Zhao, Guoping; Lu, Huayi; Li, Chi

    2015-01-01

    Protein disulfide isomerase (PDI) family proteins are classified as enzymatic chaperones for reconstructing misfolded proteins. Previous studies have shown that several PDI members possess potential proapoptotic functions. However, the detailed molecular mechanisms of PDI-mediated apoptosis are not completely known. In this study, we investigated how two members of PDI family, PDI and PDIA3, modulate apoptotic signaling. Inhibiting PDI and PDIA3 activities pharmacologically alleviates apoptosis induced by various apoptotic stimuli. Although a decrease of PDIA3 expression alleviates apoptotic responses, overexpression of PDIA3 exacerbates apoptotic signaling. Importantly, Bak, but not Bax, is essential for PDIA3-induced proapoptotic signaling. Furthermore, both purified PDI and PDIA3 proteins induce Bak-dependent, but not Bax-dependent, mitochondrial outer membrane permeabilization in vitro, probably through triggering Bak oligomerization on mitochondria. Our results suggest that both of PDI and PDIA3 possess Bak-dependent proapoptotic function through inducing mitochondrial outer membrane permeabilization, which provides a new mechanism linking ER chaperone proteins and apoptotic signaling. PMID:25697356

  11. Heterodimerization of BAK and MCL-1 activated by detergent micelles.

    PubMed

    Liu, Qian; Gehring, Kalle

    2010-12-24

    BAK is a key protein mediating mitochondrial outer membrane permeabilization; however, its behavior in the membrane is poorly understood. Here, we characterize the conformational changes in BAK and MCL-1 using detergents to mimic the membrane environment and study their interaction by in vitro pulldown experiments, size exclusion chromatography, titration calorimetry, and NMR spectroscopy. The nonionic detergent IGEPAL has little impact on the structure of MCL-1 but induces a conformational change in BAK, whereby its BH3 region is able to engage the hydrophobic groove of MCL-1. Although the zwitterionic detergent CHAPS induces only minor conformational changes in both proteins, it is still able to initiate heterodimerization. The complex of MCL-1 and BAK can be disrupted by a BID-BH3 peptide, which acts through binding to MCL-1, but a mutant peptide, BAK-BH3-L78A, with low affinity for MCL-1 failed to dissociate the complex. The mutation L78A in BAK prevented binding to MCL-1, thus demonstrating the essential role of the BH3 region of BAK in its regulation by MCL-1. Our results validate the current models for the activation of BAK and highlight the potential value of small molecule inhibitors that target MCL-1 directly.

  12. Constitutive BAK activation as a determinant of drug sensitivity in malignant lymphohematopoietic cells

    PubMed Central

    Dai, Haiming; Ding, Husheng; Meng, X. Wei; Peterson, Kevin L.; Schneider, Paula A.; Karp, Judith E.; Kaufmann, Scott H.

    2015-01-01

    Mitochondrial outer membrane permeabilization (MOMP), a key step in the intrinsic apoptotic pathway, is incompletely understood. Current models emphasize the role of BH3-only BCL2 family members in BAX and BAK activation. Here we demonstrate concentration-dependent BAK autoactivation under cell-free conditions and provide evidence that this autoactivation plays a key role in regulating the intrinsic apoptotic pathway in intact cells. In particular, we show that up to 80% of BAK (but not BAX) in lymphohematopoietic cell lines is oligomerized and bound to anti-apoptotic BCL2 family members in the absence of exogenous death stimuli. The extent of this constitutive BAK oligomerization is diminished by BAK knockdown and unaffected by BIM or PUMA down-regulation. Further analysis indicates that sensitivity of cells to BH3 mimetics reflects the identity of the anti-apoptotic proteins to which BAK is constitutively bound, with extensive BCLXL•BAK complexes predicting navitoclax sensitivity, and extensive MCL1•BAK complexes predicting A1210477 sensitivity. Moreover, high BAK expression correlates with sensitivity of clinical acute myelogenous leukemia to chemotherapy, whereas low BAK levels correlate with resistance and relapse. Collectively, these results inform current understanding of MOMP and provide new insight into the ability of BH3 mimetics to induce apoptosis without directly activating BAX or BAK. PMID:26494789

  13. DPI induces mitochondrial superoxide-mediated apoptosis.

    PubMed

    Li, Nianyu; Ragheb, Kathy; Lawler, Gretchen; Sturgis, Jennie; Rajwa, Bartek; Melendez, J Andres; Robinson, J Paul

    2003-02-15

    The iodonium compounds diphenyleneiodonium (DPI) and diphenyliodonium (IDP) are well-known phagocyte NAD(P)H oxidase inhibitors. However, it has been shown that at high concentrations they can inhibit the mitochondrial respiratory chain as well. Since inhibition of the mitochondrial respiratory chain has been shown to induce superoxide production and apoptosis, we investigated the effect of iodonium compounds on mitochondria-derived superoxide and apoptosis. Mitochondrial superoxide production was measured on both cultured cells and isolated rat-heart submitochondrial particles. Mitochondria function was examined by monitoring mitochondrial membrane potential. Apoptotic pathways were studied by measuring cytochrome c release and caspase 3 activation. Apoptosis was characterized by detecting DNA fragmentation on agarose gel and measuring propidium iodide- (PI-) stained subdiploid cells using flow cytometry. Our results showed that DPI could induce mitochondrial superoxide production. The same concentration of DPI induced apoptosis by decreasing mitochondrial membrane potential and releasing cytochrome c. Addition of antioxidants or overexpression of MnSOD significantly reduced DPI-induced mitochondrial damage, cytochrome c release, caspase activation, and apoptosis. These observations suggest that DPI can induce apoptosis via induction of mitochondrial superoxide. DPI-induced mitochondrial superoxide production may prove to be a useful model to study the signaling pathways of mitochondrial superoxide.

  14. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis

    PubMed Central

    Ranjan, Alok; Srivastava, Sanjay K.

    2016-01-01

    Pancreatic tumors exhibit enhanced autophagy as compared to any other cancer, making it resistant to chemotherapy. We evaluated the effect of penfluridol against pancreatic cancer. Penfluridol treatment induced apoptosis and inhibited the growth of Panc-1, BxPC-3 and AsPC-1, pancreatic cancer cells with IC50 ranging between 6–7 μM after 24 h of treatment. Significant autophagy was induced by penfluridol treatment in pancreatic cancer cells. Punctate LC3B and autophagosomes staining confirmed autophagy. Inhibiting autophagy by chloroquine, bafilomycin, 3-methyladenine or LC3BsiRNA, significantly blocked penfluridol-induced apoptosis, suggesting that autophagy lead to apoptosis in our model. Penfluridol treatment suppressed the growth of BxPC-3 tumor xenografts by 48% as compared to 17% when treated in combination with chloroquine. Similarly, penfluridol suppressed the growth of AsPC-1 tumors by 40% versus 16% when given in combination with chloroquine. TUNEL staining and caspase-3 cleavage revealed less apoptosis in the tumors from mice treated with penfluridol and chloroquine as compared to penfluridol alone. Penfluridol treatment also suppressed the growth of orthotopically implanted Panc-1 tumors by 80% by inducing autophagy-mediated apoptosis in the tumors. These studies established that penfluridol inhibits pancreatic tumor growth by autophagy-mediated apoptosis. Since penfluridol is already in clinic, positive findings from our study will accelerate its clinical development. PMID:27189859

  15. Functional divergence of BAK1 genes from Brassica rapa in regulating plant architecture.

    PubMed

    Zhang, S; Li, C; Li, Q; Wang, Q N; Huang, S H; Zhang, Y F; Wang, X F

    2015-11-19

    BAK1 is a co-receptor of BRI1 in early signaling pathways mediated by brassinosteroids (BRs) and is thought to play a major role in plant growth and development. As the role of BAK1 has not yet been fully elucidated then further research is required to explore its potential for use in genetic modification to improve crops. In this study, three BAK1 genes from the amphidiploid species Brassica rapa were isolated and their kinase functions were predicted following DNA sequence analysis. A bioinformatic analysis revealed that two genes, BrBAK1-1 and BrBAK1-8, shared a conserved kinase domain and 5 tandem leucine-rich repeats (LRRs) that are characteristic of a BAK1 receptor for BR perception, whereas the third gene, BrBAK1-3, was deficient for a signal peptide, but had 4 leucine zippers and 3 leucine-rich repeats (LRRs) in an extracellular domain. All three BrBAK1 kinases localized on the cellular membrane. Ectopic expression of each BrBAK1 gene in BR-insensitive (bri1-5 mutant) Arabidopsis plants indicated that BrBAK1-1 and BrBAK1-8 were functional homologues of AtBAK1 based on the rescue of growth in the bri1-5 mutant. Overexpression of BrBAK1-3 caused a severe dwarf phenotype resembling the phenotype of null BRI1 alleles. The results here suggest there are significant differences among the three BrBAK1 kinases for their effects on plant architecture. This conclusion has important implications for genetic modification of B. rapa.

  16. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis.

    PubMed

    Nie, C; Luo, Y; Zhao, X; Luo, N; Tong, A; Liu, X; Yuan, Z; Wang, C; Wei, Y

    2014-10-30

    The protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) is one of the most potent and frequently used proapoptotic stimuli. The BH3-only molecule of Bcl-2 family proteins has been reported to contribute to UCN-01-induced apoptosis. Here we have found that UCN-01 triggers Puma-induced mitochondrial apoptosis pathway. Our data confirmed that Akt-FoxO3a pathway mediated Puma activation. Importantly, we elucidate the detailed mechanisms of Puma-induced apoptosis. Our data have also demonstrated that caspase-9 is a decisive molecule of Puma induction after UCN-01 treatment. Caspase-9 mediates apoptosis through two kinds of feedback loops. On the one hand, caspase-9 enhances Puma activation by cleaving Bcl-2 and Bcl-xL independent of caspase-3. On the other hand, caspase-9 directly activated caspase-3 in the presence of caspase-3. Caspase-3 could cleave XIAP in an another positive feedback loop to further sensitize cancer cells to UCN-01-induced apoptosis. Therefore, caspase-9 mediates Puma activation to determine the threshold for overcoming chemoresistance in cancer cells.

  17. A Bak-dependent mitochondrial amplification step contributes to Smac mimetic/glucocorticoid-induced necroptosis.

    PubMed

    Rohde, Katharina; Kleinesudeik, Lara; Roesler, Stefanie; Löwe, Oliver; Heidler, Juliana; Schröder, Katrin; Wittig, Ilka; Dröse, Stefan; Fulda, Simone

    2017-01-01

    Necroptosis is a form of programmed cell death that critically depends on RIP3 and MLKL. However, the contribution of mitochondria to necroptosis is still poorly understood. In the present study, we discovered that mitochondrial perturbations play a critical role in Smac mimetic/Dexamethasone (Dexa)-induced necroptosis independently of death receptor ligands. We demonstrate that the Smac mimetic BV6 and Dexa cooperate to trigger necroptotic cell death in acute lymphoblastic leukemia (ALL) cells that are deficient in caspase activation due to absent caspase-8 expression or pharmacological inhibition by the caspase inhibitor zVAD.fmk, since genetic silencing or pharmacological inhibition of RIP3 or MLKL significantly rescue BV6/Dexa-induced necroptosis. In addition, RIP3 or MLKL knockout mouse embryonic fibroblasts (MEFs) are protected from BV6/Dexa/zVAD.fmk-induced cell death. In contrast, antagonistic antibodies against the death receptor ligands TNFα, TRAIL or CD95 ligand fail to rescue BV6/Dexa-triggered cell death. Kinetic studies revealed that prior to cell death BV6/Dexa treatment causes hyperpolarization of the mitochondrial membrane potential (MMP) followed by loss of MMP, reactive oxygen species (ROS) production, Bak activation and disruption of mitochondrial respiration. Importantly, knockdown of Bak significantly reduces BV6/Dexa-induced loss of MMP and delays cell death, but not ROS production, whereas ROS scavengers attenuate Bak activation, indicating that ROS production occurs upstream of BV6/Dexa-mediated Bak activation. Consistently, BV6/Dexa treatment causes oxidative thiol modifications of Bak protein. Intriguingly, knockdown or knockout of RIP3 or MLKL protect ALL cells or MEFs from BV6/Dexa-induced ROS production, Bak activation, drop of MMP and disruption of mitochondrial respiration, demonstrating that these mitochondrial events depend on RIP3 and MLKL. Thus, mitochondria might serve as an amplification step in BV6/Dexa-induced necroptosis

  18. Caspase-mediated cleavage of Beclin1 inhibits autophagy and promotes apoptosis induced by S1 in human ovarian cancer SKOV3 cells.

    PubMed

    Li, Xiaoning; Su, Jing; Xia, Meihui; Li, Hongyan; Xu, Ye; Ma, Chunhui; Ma, Liwei; Kang, Jingsong; Yu, Huimei; Zhang, Zhichao; Sun, Liankun

    2016-02-01

    S1, a novel BH3 mimetic, can induce apoptosis dependent on Bax/Bak through inhibition of Bcl-2 in various tumors. S1 also induces autophagy through interrupting the interaction of Bcl-2 and Beclin1. Our results showed that S1 induces apoptosis in human ovarian cancer SKOV3 cells in a time- and dose-dependent manner. Autophagy precedes apoptosis, in SKOV3 cells treated with S1 (6 μmol/L), autophagy reached the maximum peak at 12 h after treatment and decreased to 24 h. In SKOV3 cells treated with different concentrations of S1 for 24 h, the highest level of autophagy was observed with 5 μmol/L and decreased to 10 μmol/L. Autophagy inhibitors 3-MA and CQ enhanced apoptosis induced by S1 in SKOV3 cells. However, overactivation of caspases in apoptosis induced by S1 may inhibit the autophagy-inducing function of Beclin1. Because the pan-caspase inhibitor Z-VAD recovered the autophagy-inducing function of Beclin1 through reduction of activated caspase-mediated cleavage of Beclin1. Furthermore, the Beclin1 cleavage products could further increase apoptosis induced by S1 in SKOV3 cells. This indicates that apoptosis induced by high doses and long exposure of S1 causes the overactivation of caspases and subsequent cleavage of Beclin1, and inhibits the protection of autophagy. Moreover, the cleaved product of Beclin1 further promotes apoptosis induced by S1 in SKOV3 cells. Our results suggest this may be a molecular mechanism for enhancing the sensitivity of cancer cells to apoptosis induced by small molecular compound targeting Bcl-2.

  19. Artemisinin induces A549 cell apoptosis dominantly via a reactive oxygen species-mediated amplification activation loop among caspase-9, -8 and -3.

    PubMed

    Gao, Weijie; Xiao, Fenglian; Wang, Xiaoping; Chen, Tongsheng

    2013-10-01

    This report is designed to explore the roles of caspase-8, -9 and -3 in artemisinin (ARTE)-induced apoptosis in non-small cell lung cancer cells (A549 cells). ARTE induced reactive oxygen species (ROS)-mediated apoptosis in dose- and time-dependent fashion. Although ARTE treatment did not induce Bid cleavage and significant loss of mitochondrial membrane potential, it induced release of Smac and AIF but not cytochrome c from mitochondria, and silencing of Bak but not Bax significantly prevented ARTE-induced cytotoxicity. Moreover, ARTE treatment induced ROS-dependent activation of caspase-9, -8 and -3. Of the utmost importance, silencing or inhibiting any one of caspase-8, -9 and -3 almost completely prevented ARTE-induced activation of all the three caspases and remarkably abrogated the cytotoxicity of ARTE, suggesting that ARTE triggered an amplification activation loop among caspase-9, -8 and -3. Collectively, our data demonstrate that ARTE induces a ROS-mediated amplification activation loop among caspase-9, -8 and -3 to dominantly mediate the apoptosis of A549 cells.

  20. Mechanisms of strain-mediated mesenchymal stem cell apoptosis.

    PubMed

    Kearney, E M; Prendergast, P J; Campbell, V A

    2008-12-01

    Mechanical conditioning of mesenchymal stem cells (MSCs) has been adopted widely as a biophysical signal to aid tissue engineering applications. The replication of in vivo mechanical signaling has been used in in vitro environments to regulate cell differentiation, and extracellular matrix synthesis, so that both the chemical and mechanical properties of the tissue-engineered construct are compatible with the implant site. While research in these areas contributes to tissue engineering, the effects of mechanical strain on MSC apoptosis remain poorly defined. To evaluate the effects of uniaxial cyclic tensile strain on MSC apoptosis and to investigate mechanotransduction associated with strain-mediated cell death, MSCs seeded on a 2D silicone membrane were stimulated by a range of strain magnitudes for 3 days. Mechanotransduction was investigated using the stretch-activated cation channel blocker gadolinium chloride, the L-type voltage-activated calcium channel blocker nicardipine, the c-jun NH(2)-terminal kinase (JNK) blocker D-JNK inhibitor 1, and the calpain inhibitor MDL 28170. Apoptosis was assessed through DNA fragmentation using the terminal deoxynucleotidyl transferase mediated-UTP-end nick labeling method. Results demonstrated that tensile strains of 7.5% or greater induce apoptosis in MSCs. L-type voltage-activated calcium channels coupled mechanical stress to activation of calpain and JNK, which lead to apoptosis through DNA fragmentation. The definition of the in vitro boundary conditions for tensile strain and MSCs along with a proposed mechanism for apoptosis induced by mechanical events positively contributes to the development of MSC biology, bioreactor design for tissue engineering, and development of computational methods for mechanobiology.

  1. Betulin induces reactive oxygen species-dependent apoptosis in human gastric cancer SGC7901 cells.

    PubMed

    Li, Yang; Liu, Xiaokang; Jiang, Dan; Lin, Yingjia; Wang, Yushi; Li, Qing; Liu, Linlin; Jin, Ying-Hua

    2016-09-01

    Betulin, an abundant natural compound, significantly inhibited the cell viability of advanced human gastric cancer SGC7901 cells. Mechanism study demonstrated that betulin induced apoptosis through mitochondrial Bax and Bak accumulation-mediated intrinsic apoptosis pathway. Downregulation of the anti-apoptosis proteins Bcl-2 and XIAP was involved during betulin-induced cell apoptosis. Reactive oxygen species (ROS) was generated in cells after betulin treatment in a time- and dose-dependent manner. Addition of antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated betulin-induced ROS generation as well as Bcl-2 and XIAP downregulation. The mitochondrial accumulation of Bax and Bak, as well as caspase activity, was also remarkably inhibited by NAC treatment, indicating that ROS are important signaling intermediates that lead to betulin-induced apoptosis by modulating multiple apoptosis-regulating proteins in SGC7901 cells.

  2. Evaluation of the BH3-only protein Puma as a direct Bak activator.

    PubMed

    Dai, Haiming; Pang, Yuan-Ping; Ramirez-Alvarado, Marina; Kaufmann, Scott H

    2014-01-03

    Interactions among Bcl-2 family proteins play critical roles in cellular life and death decisions. Previous studies have established the BH3-only proteins Bim, tBid, and Noxa as "direct activators" that are able to directly initiate the oligomerization and activation of Bak and/or Bax. Earlier studies of Puma have yielded equivocal results, with some concluding that it also acts as a direct activator and other studies suggesting that it acts solely as a sensitizer BH3-only protein. In the present study we examined the interaction of Puma BH3 domain or full-length protein with Bak by surface plasmon resonance, assessed Bak oligomerization status by cross-linking followed by immunoblotting, evaluated the ability of the Puma BH3 domain to induce Bak-mediated permeabilization of liposomes and mitochondria, and determined the effect of wild type and mutant Puma on cell viability in a variety of cellular contexts. Results of this analysis demonstrate high affinity (KD = 26 ± 5 nM) binding of the Puma BH3 domain to purified Bak ex vivo, leading to Bak homo-oligomerization and membrane permeabilization. Mutations in Puma that inhibit (L141E/M144E/L148E) or enhance (M144I/A145G) Puma BH3 binding to Bak also produce corresponding alterations in Bak oligomerization, Bak-mediated membrane permeabilization and, in a cellular context, Bak-mediated killing. Collectively, these results provide strong evidence that Puma, like Bim, Noxa, and tBid, is able to act as a direct Bak activator.

  3. Loss of Bak enhances lymphocytosis but does not ameliorate thrombocytopaenia in BCL-2 transgenic mice.

    PubMed

    Vandenberg, C J; Josefsson, E C; Campbell, K J; James, C; Lawlor, K E; Kile, B T; Cory, S

    2014-05-01

    Bax and Bak are critical effectors of apoptosis. Although both are widely expressed and usually functionally redundant, recent studies suggest that Bak has particular importance in certain cell types. Genetic and biochemical studies indicate that Bak activation is prevented primarily by Mcl-1 and Bcl-xL, whereas Bax is held in check by all pro-survival Bcl-2 homologues, including Bcl-2 itself. In this study, we have investigated whether loss of Bak or elevated Mcl-1 modulates haemopoietic abnormalities provoked by overexpression of Bcl-2. The Mcl-1 transgene had little impact, probably because the expression level was insufficient to effectively reduce Bak activation. However, loss of Bak enhanced lymphocytosis in vavP-BCL-2 transgenic mice and increased resistance of their thymocytes to some cytotoxic agents, implying that Bak-specific signals can be triggered in certain lymphoid populations. Nevertheless, lack of Bak had no significant impact on thymic abnormalities in vavP-BCL-2tg mice, which kinetic analysis suggested was due to accumulation of self-reactive thymocytes that resist deletion. Intriguingly, although Bak(-/-) mice have elevated platelet counts, Bak(-/-)vavP-BCL-2 mice, like vavP-BCL-2 littermates, were thrombocytopaenic. To clarify why, the vavP-BCL-2 platelet phenotype was scrutinised more closely. Platelet life span was found to be elevated in vavP-BCL-2 mice, which should have provoked thrombocytosis, as in Bak(-/-) mice. Analysis of bone marrow chimaeric mice suggested the low platelet phenotype was due principally to extrinsic factors. Following splenectomy, blood platelets remained lower in vavP-BCL-2 than wild-type mice. However, in Rag1(-/-) BCL-2tg mice, platelet levels were normal, implying that elevated lymphocytes are primarily responsible for BCL-2tg-induced thrombocytopaenia.

  4. Parthenolide suppresses pancreatic cell growth by autophagy-mediated apoptosis

    PubMed Central

    Liu, Weifeng; Wang, Xinshuai; Sun, Junjun; Yang, Yanhui; Li, Wensheng; Song, Junxin

    2017-01-01

    Pancreatic cancer is an aggressive malignancy and is unresponsive to conventional chemotherapies. Parthenolide, a sesquiterpene lactone isolated from feverfew, has exhibited potent anticancer effects against various cancers. The purpose of this report was to investigate the effect and underlying mechanism of parthenolide in human pancreatic cancer Panc-1 and BxPC3 cells. The results demonstrated that parthenolide suppressed the growth and induced apoptosis of Panc-1 and BxPC3 pancreatic cancer cells with the half maximal inhibitory concentration (IC50) ranging between 7 and 9 μM after 24 h of treatment. Significant autophagy was induced by parthenolide treatment in pancreatic cancer cells. Parthenolide treatment concentration-dependently increased the percentage of autophagic cells and significantly increased the expression levels of p62/SQSTM1, Beclin 1, and LC3II in Panc-1 cells. Punctate LC3II staining confirmed autophagy. Furthermore, inhibiting autophagy by chloroquine, 3-methyladenine, or LC3II siRNA significantly blocked parthenolide-induced apoptosis, suggesting that parthenolide induced apoptosis through autophagy in this study. In conclusion, these studies established that parthenolide inhibits pancreatic cell growth by autophagy-mediated apoptosis. Data of the present study suggest that parthenolide can serve as a potential chemotherapeutic agent for pancreatic cancer. PMID:28176967

  5. Ursolic acid mediates photosensitization by initiating mitochondrial-dependent apoptosis

    NASA Astrophysics Data System (ADS)

    Lee, Yuan-Hao; Wang, Exing; Kumar, Neeru; Glickman, Randolph D.

    2013-02-01

    The signaling pathways PI3K/Akt and MAPK play key roles in transcription, translation and carcinogenesis, and may be activated by light exposure. These pathways may be modulated or inhibited by naturally-occurring compounds, such as the triterpenoid, ursolic acid (UA). Previously, the transcription factors p53 and NF-kB, which transactivate mitochondrial apoptosis-related genes, were shown to be differentially modulated by UA. Our current work indicates that UA causes these effects via the mTOR and insulin-mediated pathways. UA-modulated apoptosis, following exposure to UV radiation, is observed to correspond to differential levels of oxidative stress in retinal pigment epithelial (RPE) and skin melanoma (SM) cells. Flow cytometry analysis, DHE (dihydroethidium) staining and membrane permeability assay showed that UA pretreatment potentiated cell cycle arrest and radiation-induced apoptosis selectively on SM cells while DNA photo-oxidative damage (i.e. strand breakage) was reduced, presumably by some antioxidant activity of UA in RPE cells. The UA-mediated NF-κB activation in SM cells was reduced by rapamycin pretreatment, which indicates that these agents exert inter-antagonistic effects in the PI3K/Akt/mTOR pathway. In contrast, the antagonistic effect of UA on the PI3K/Akt pathway was reversed by insulin leading to greater NF-κB and p53 activation in RPE cells. MitoTracker, a mitochondrial functional assay, indicated that mitochondria in RPE cells experienced reduced oxidative stress while those in SM cells exhibited increased oxidative stress upon UA pretreatment. When rapamycin administration was followed by UA, mitochondrial oxidative stress was increased in RPE cells but decreased in SM cells. These results indicate that UA modulates p53 and NF-κB, initiating a mitogenic response to radiation that triggers mitochondria-dependent apoptosis.

  6. Polymeric mechanical amplifiers of immune cytokine-mediated apoptosis

    NASA Astrophysics Data System (ADS)

    Mitchell, Michael J.; Webster, Jamie; Chung, Amanda; Guimarães, Pedro P. G.; Khan, Omar F.; Langer, Robert

    2017-03-01

    Physical forces affect tumour growth, progression and metastasis. Here, we develop polymeric mechanical amplifiers that exploit in vitro and in vivo physical forces to increase immune cytokine-mediated tumour cell apoptosis. Mechanical amplifiers, consisting of biodegradable polymeric particles tethered to the tumour cell surface via polyethylene glycol linkers, increase the apoptotic effect of an immune cytokine on tumour cells under fluid shear exposure by as much as 50% compared with treatment under static conditions. We show that targeted polymeric particles delivered to tumour cells in vivo amplify the apoptotic effect of a subsequent treatment of immune cytokine, reduce circulating tumour cells in blood and overall tumour cell burden by over 90% and reduce solid tumour growth in combination with the antioxidant resveratrol. The work introduces a potentially new application for a broad range of micro- and nanoparticles to maximize receptor-mediated signalling and function in the presence of physical forces.

  7. Polymeric mechanical amplifiers of immune cytokine-mediated apoptosis

    PubMed Central

    Mitchell, Michael J.; Webster, Jamie; Chung, Amanda; Guimarães, Pedro P. G.; Khan, Omar F.; Langer, Robert

    2017-01-01

    Physical forces affect tumour growth, progression and metastasis. Here, we develop polymeric mechanical amplifiers that exploit in vitro and in vivo physical forces to increase immune cytokine-mediated tumour cell apoptosis. Mechanical amplifiers, consisting of biodegradable polymeric particles tethered to the tumour cell surface via polyethylene glycol linkers, increase the apoptotic effect of an immune cytokine on tumour cells under fluid shear exposure by as much as 50% compared with treatment under static conditions. We show that targeted polymeric particles delivered to tumour cells in vivo amplify the apoptotic effect of a subsequent treatment of immune cytokine, reduce circulating tumour cells in blood and overall tumour cell burden by over 90% and reduce solid tumour growth in combination with the antioxidant resveratrol. The work introduces a potentially new application for a broad range of micro- and nanoparticles to maximize receptor-mediated signalling and function in the presence of physical forces. PMID:28317839

  8. DHA-mediated enhancement of TRAIL-induced apoptosis in colon cancer cells is associated with engagement of mitochondria and specific alterations in sphingolipid metabolism.

    PubMed

    Skender, Belma; Hofmanová, Jiřina; Slavík, Josef; Jelínková, Iva; Machala, Miroslav; Moyer, Mary Pat; Kozubík, Alois; Hyršlová Vaculová, Alena

    2014-09-01

    Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid present in fish oil, may exert cytotoxic and/or cytostatic effects on colon cancer cells when applied individually or in combination with some anticancer drugs. Here we demonstrate a selective ability of subtoxic doses of DHA to enhance antiproliferative and apoptotic effects of clinically useful cytokine TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in cancer but not normal human colon cells. DHA-mediated stimulation of TRAIL-induced apoptosis was associated with extensive engagement of mitochondrial pathway (Bax/Bak activation, drop of mitochondrial membrane potential, cytochrome c release), activation of endoplasmic reticulum stress response (CHOP upregulation, changes in PERK level), decrease of cellular inhibitor of apoptosis protein (XIAP, cIAP1) levels and significant changes in sphingolipid metabolism (intracellular levels of ceramides, hexosyl ceramides, sphingomyelines, sphingosines; HPLC/MS/MS). Interestingly, we found significant differences in representation of various classes of ceramides (especially C16:0, C24:1) between the cancer and normal colon cells treated with DHA and TRAIL, and suggested their potential role in the regulation of the cell response to the drug combination. These study outcomes highlight the potential of DHA for a new combination therapy with TRAIL for selective elimination of colon cancer cells via simultaneous targeting of multiple steps in apoptotic pathways.

  9. Identification of an activation site in Bak and mitochondrial Bax triggered by antibodies

    PubMed Central

    Iyer, Sweta; Anwari, Khatira; Alsop, Amber E.; Yuen, Wai Shan; Huang, David C. S.; Carroll, John; Smith, Nicholas A.; Smith, Brian J.; Dewson, Grant; Kluck, Ruth M.

    2016-01-01

    During apoptosis, Bak and Bax are activated by BH3-only proteins binding to the α2–α5 hydrophobic groove; Bax is also activated via a rear pocket. Here we report that antibodies can directly activate Bak and mitochondrial Bax by binding to the α1–α2 loop. A monoclonal antibody (clone 7D10) binds close to α1 in non-activated Bak to induce conformational change, oligomerization, and cytochrome c release. Anti-FLAG antibodies also activate Bak containing a FLAG epitope close to α1. An antibody (clone 3C10) to the Bax α1–α2 loop activates mitochondrial Bax, but blocks translocation of cytosolic Bax. Tethers within Bak show that 7D10 binding directly extricates α1; a structural model of the 7D10 Fab bound to Bak reveals the formation of a cavity under α1. Our identification of the α1–α2 loop as an activation site in Bak paves the way to develop intrabodies or small molecules that directly and selectively regulate these proteins. PMID:27217060

  10. Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore

    PubMed Central

    Mandal, Tirtha; Shin, Seungjin; Aluvila, Sreevidya; Chen, Hui-Chen; Grieve, Carter; Choe, Jun-Yong; Cheng, Emily H.; Hustedt, Eric J.; Oh, Kyoung Joon

    2016-01-01

    In mitochondrial apoptosis, Bak is activated by death signals to form pores of unknown structure on the mitochondrial outer membrane via homooligomerization. Cytochrome c and other apoptotic factors are released from the intermembrane space through these pores, initiating downstream apoptosis events. Using chemical crosslinking and double electron electron resonance (DEER)-derived distance measurements between specific structural elements in Bak, here we clarify how the Bak pore is assembled. We propose that previously described BH3-in-groove homodimers (BGH) are juxtaposed via the ‘α3/α5’ interface, in which the C-termini of helices α3 and α5 are in close proximity between two neighboring Bak homodimers. This interface is observed concomitantly with the well-known ‘α6:α6’ interface. We also mapped the contacts between Bak homodimers and the lipid bilayer based on EPR spectroscopy topology studies. Our results suggest a model for the lipidic Bak pore, whereby the mitochondrial targeting C-terminal helix does not change topology to accommodate the lining of the pore lumen by BGH. PMID:27488021

  11. Overexpression of BAK1 causes salicylic acid accumulation and deregulation of cell death control genes.

    PubMed

    Kim, Sun Young; Shang, Yun; Joo, Se-Hwan; Kim, Seong-Ki; Nam, Kyoung Hee

    2017-03-18

    Since the BRI1-Associated Receptor Kinase 1 (BAK1) was firstly identified as a co-receptor of BRI1 that mediates brassinosteroids (BR) signaling, the functional roles of BAK1, as a versatile co-receptor for various ligand-binding leucine-rich repeat (LRR)-containing receptor-like kinase (RLKs), are being extended to involvement with plant immunity, cell death, stomatal development and ABA signaling in plants. During more than a decade of research on the BAK1, it has been known that transgenic Arabidopsis plants overexpressing BAK1 tagged with various reporters do not fully represent its natural functions. Therefore, in this study, we characterized the transgenic plants in which native BAK1 is overexpressed driven by its own promoter. We found that those transgenic plants were more sensitive to BR signaling but showed reduced growth patterns accompanied with spontaneous cell death features that are different from those seen in BR-related mutants. We demonstrated that more salicylic acid (SA) and hydrogen peroxide were accumulated and that expressions of the genes that are known to regulate cell death, such as BONs, BIRs, and SOBIR, were increased in the BAK1-overexpressing transgenic plants. These results suggest that pleiotropic phenotypic alterations shown in the BAK1- overexpressing transgenic plants result from the constitutive activation of SA-mediated defense responses.

  12. miR-326 targets antiapoptotic Bcl-xL and mediates apoptosis in human platelets.

    PubMed

    Yu, Shifang; Huang, Huicong; Deng, Gang; Xie, Zuoting; Ye, Yincai; Guo, Ruide; Cai, Xuejiao; Hong, Junying; Qian, Dingliang; Zhou, Xiangjing; Tao, Zhihua; Chen, Bile; Li, Qiang

    2015-01-01

    Platelets play crucial roles in hemostasis, thrombosis, wound healing, inflammation, angiogenesis, and tumor metastases. Because they are anucleated blood cells, platelets lack nuclear DNA, but they do contain mitochondrial DNA, which plays a key role in regulating apoptosis. Recent evidence has suggested that miRNAs are also involved in regulating gene expression and apoptosis in platelets. Our previous study showed that the expression of miR-326 increased visibly when apheresis platelets were stored in vitro. The antiapoptotic Bcl-2 family regulator Bcl-xL has been identified as a putative target of miR-326. In the present study, dual reporter luciferase assays were used to characterize the function of miR-326 in the regulation of the apoptosis of platelet cells. These assays demonstrated that miR-326 bound to the 3'-translated region of Bcl-xL. To directly assess the functional effects of miR-326 expression, levels of Bcl-xL and the apoptotic status of stored apheresis platelets were measured after transfection of miR-326 mimic or inhibitor. Results indicated that miR-326 inhibited Bcl-xL expression and induced apoptosis in stored platelets. Additionally, miR-326 inhibited Bcl-2 protein expression and enhanced Bak expression, possibly through an indirect mechanism, though there was no effect on the expression of Bax. The effect of miR-326 appeared to be limited to apoptosis, with no significant effect on platelet activation. These results provide new insight into the molecular mechanisms affecting differential platelet gene regulation, which may increase understanding of the role of platelet apoptosis in multiple diseases.

  13. PUMA mediates ER stress-induced apoptosis in portal hypertensive gastropathy.

    PubMed

    Tan, S; Wei, X; Song, M; Tao, J; Yang, Y; Khatoon, S; Liu, H; Jiang, J; Wu, B

    2014-03-13

    Mucosal apoptosis has been demonstrated to be an essential pathological feature in portal hypertensive gastropathy (PHG). p53-upregulated modulator of apoptosis (PUMA) was identified as a BH3-only Bcl-2 family protein that has an essential role in apoptosis induced by a variety of stimuli, including endoplasmic reticulum (ER) stress. However, whether PUMA is involved in mucosal apoptosis in PHG remains unclear, and whether PUMA induces PHG by mediating ER stress remains unknown. The aim of the study is to investigate whether PUMA is involved in PHG by mediating ER stress apoptotic signaling. To identify whether PUMA is involved in PHG by mediating ER stress, gastric mucosal injury and apoptosis were studied in both PHG patients and PHG animal models using PUMA knockout (PUMA-KO) and PUMA wild-type (PUMA-WT) mice. The induction of PUMA expression and ER stress signaling were investigated, and the mechanisms of PUMA-mediated apoptosis were analyzed. GES-1 and SGC7901 cell lines were used to further identify whether PUMA-mediated apoptosis was induced by ER stress in vitro. Epithelial apoptosis and PUMA were markedly induced in the gastric mucosa of PHG patients and mouse PHG models. ER stress had a potent role in the induction of PUMA and apoptosis in PHG models, and the apoptosis was obviously attenuated in PUMA-KO mice. Although the targeted deletion of PUMA did not affect ER stress, mitochondrial apoptotic signaling was downregulated in mice. Meanwhile, PUMA knockdown significantly ameliorated ER stress-induced mitochondria-dependent apoptosis in vitro. These results indicate that PUMA mediates ER stress-induced mucosal epithelial apoptosis through the mitochondrial apoptotic pathway in PHG, and that PUMA is a potentially therapeutic target for PHG.

  14. Loss of Bak enhances lymphocytosis but does not ameliorate thrombocytopaenia in BCL-2 transgenic mice

    PubMed Central

    Vandenberg, C J; Josefsson, E C; Campbell, K J; James, C; Lawlor, K E; Kile, B T; Cory, S

    2014-01-01

    Bax and Bak are critical effectors of apoptosis. Although both are widely expressed and usually functionally redundant, recent studies suggest that Bak has particular importance in certain cell types. Genetic and biochemical studies indicate that Bak activation is prevented primarily by Mcl-1 and Bcl-xL, whereas Bax is held in check by all pro-survival Bcl-2 homologues, including Bcl-2 itself. In this study, we have investigated whether loss of Bak or elevated Mcl-1 modulates haemopoietic abnormalities provoked by overexpression of Bcl-2. The Mcl-1 transgene had little impact, probably because the expression level was insufficient to effectively reduce Bak activation. However, loss of Bak enhanced lymphocytosis in vavP-BCL-2 transgenic mice and increased resistance of their thymocytes to some cytotoxic agents, implying that Bak-specific signals can be triggered in certain lymphoid populations. Nevertheless, lack of Bak had no significant impact on thymic abnormalities in vavP-BCL-2tg mice, which kinetic analysis suggested was due to accumulation of self-reactive thymocytes that resist deletion. Intriguingly, although Bak−/− mice have elevated platelet counts, Bak−/−vavP-BCL-2 mice, like vavP-BCL-2 littermates, were thrombocytopaenic. To clarify why, the vavP-BCL-2 platelet phenotype was scrutinised more closely. Platelet life span was found to be elevated in vavP-BCL-2 mice, which should have provoked thrombocytosis, as in Bak−/− mice. Analysis of bone marrow chimaeric mice suggested the low platelet phenotype was due principally to extrinsic factors. Following splenectomy, blood platelets remained lower in vavP-BCL-2 than wild-type mice. However, in Rag1−/− BCL-2tg mice, platelet levels were normal, implying that elevated lymphocytes are primarily responsible for BCL-2tg-induced thrombocytopaenia. PMID:24464220

  15. NF-κB p65 recruited SHP regulates PDCD5-mediated apoptosis in cancer cells.

    PubMed

    Murshed, Farhan; Farhana, Lulu; Dawson, Marcia I; Fontana, Joseph A

    2014-03-01

    Transcription factor NF-κB promotes cell proliferation in response to cell injury. Increasing evidence, however, suggests that NF-κB can also play an apoptotic role depending on the stimulus and cell type. We have previously demonstrated that novel retinoid 4-[3-Cl-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC)-mediated apoptosis in breast carcinoma cells requires activation of canonical and non-canonical NF-κB pathways. The mechanism NF-κB uses to induce apoptosis remains largely unknown. NF-κB subunit p65 (RelA) was identified as one potent transcriptional activator in 3-Cl-AHPC-mediated apoptosis in cells. Here we used ChIP-on-chip to identify NF-κB p65 genes activated in 3-Cl-AHPC mediated apoptosis. This paper focuses on one hit: pro-apoptotic protein programmed cell death 5 (PDCD5). 3-Cl-AHPC mediated apoptosis in MDA-MB-468 had three related effects on PDCD5: NF-κB p65 binding to the PDCD5 gene, enhanced PDCD5 promoter activity, and increased PDCD5 protein expression. Furthermore, 3-Cl-AHPC increased orphan nuclear receptor small heterodimer partner (SHP) mRNA expression, increased SHP protein bound to NF-κB p65, and found the SHP/NF-κB p65 complex attached to the PDCD5 gene. PDCD5 triggered apoptosis through increased Bax protein and release of cytochrome C from mitochondria to cytosol. Lastly, knockdown of PDCD5 protein expression blocked 3-Cl-AHPC mediated apoptosis, while over-expression of PDCD5 enhanced apoptosis, suggesting PDCD5 is necessary and sufficient for NF-κB p65 mediated apoptosis. Our results demonstrate a novel pathway for NF-κB p65 in regulating apoptosis through SHP and PDCD5.

  16. The Makes Caterpillars Floppy (MCF)-Like Domain of Vibrio vulnificus Induces Mitochondrion-Mediated Apoptosis

    PubMed Central

    Agarwal, Shivangi; Zhu, Yeuming; Gius, David R.

    2015-01-01

    The multifunctional-autoprocessing repeats-in-toxin (MARTXVv) toxin of Vibrio vulnificus plays a significant role in the pathogenesis of this bacterium through delivery of up to five effector domains to the host cells. Previous studies have established that the MARTXVv toxin is linked to V. vulnificus dependent induction of apoptosis, but the region of the large multifunction protein essential for this activity was not previously identified. Recently, we showed that the Makes Caterpillar Floppy-like MARTX effector domain (MCFVv) is an autoproteolytic cysteine protease that induces rounding of various cell types. In this study, we demonstrate that cell rounding induced by MCFVv is coupled to reduced metabolic rate and inhibition of cellular proliferation. Moreover, delivery of MCFVv into host cells either as a fusion to the N-terminal fragment of anthrax toxin lethal factor or when naturally delivered as a V. vulnificus MARTX toxin led to loss of mitochondrial membrane potential, release of cytochrome c, activation of Bax and Bak, and processing of caspases and poly-(ADP-ribose) polymerase (PARP-γ). These studies specifically link the MCFVv effector domain to induction of the intrinsic apoptosis pathway by V. vulnificus. PMID:26351282

  17. The Makes Caterpillars Floppy (MCF)-Like Domain of Vibrio vulnificus Induces Mitochondrion-Mediated Apoptosis.

    PubMed

    Agarwal, Shivangi; Zhu, Yeuming; Gius, David R; Satchell, Karla J F

    2015-11-01

    The multifunctional-autoprocessing repeats-in-toxin (MARTXVv) toxin of Vibrio vulnificus plays a significant role in the pathogenesis of this bacterium through delivery of up to five effector domains to the host cells. Previous studies have established that the MARTXVv toxin is linked to V. vulnificus dependent induction of apoptosis, but the region of the large multifunction protein essential for this activity was not previously identified. Recently, we showed that the Makes Caterpillar Floppy-like MARTX effector domain (MCFVv) is an autoproteolytic cysteine protease that induces rounding of various cell types. In this study, we demonstrate that cell rounding induced by MCFVv is coupled to reduced metabolic rate and inhibition of cellular proliferation. Moreover, delivery of MCFVv into host cells either as a fusion to the N-terminal fragment of anthrax toxin lethal factor or when naturally delivered as a V. vulnificus MARTX toxin led to loss of mitochondrial membrane potential, release of cytochrome c, activation of Bax and Bak, and processing of caspases and poly-(ADP-ribose) polymerase (PARP-γ). These studies specifically link the MCFVv effector domain to induction of the intrinsic apoptosis pathway by V. vulnificus.

  18. Perfluorooctanesulfonate Mediates Renal Tubular Cell Apoptosis through PPARgamma Inactivation

    PubMed Central

    Chou, Hsiu-Chu; Chang, Chih-Cheng; Lo, Hau-Yin; Juan, Shu-Hui

    2016-01-01

    Perfluorinated chemicals (PFCs) are ubiquitously distributed in the environments including stainless pan-coating, raincoat, fire extinguisher, and semiconductor products. The PPAR family has been shown to contribute to the toxic effects of PFCs in thymus, immune and excretory systems. Herein, we demonstrated that perfluorooctanesulfonate (PFOS) caused cell apoptosis through increasing ratio of Bcl-xS/xL, cytosolic cytochrome C, and caspase 3 activation in renal tubular cells (RTCs). In addition, PFOS increased transcription of inflammatory cytokines (i.e., TNFα, ICAM1, and MCP1) by NFκB activation. Conversely, PFOS reduced the mRNA levels of antioxidative enzymes, such as glutathione peroxidase, catalase, and superoxide dismutase, as a result of reduced PPARγ transactivational activity by using reporter and chromatin immuoprecipitation (ChIP) assays. PFOS reduced the protein interaction between PPARγ and PPARγ coactivator-1 alpha (PGC1α) by PPARγ deacetylation through Sirt1 upregulation, of which the binding of PPARγ and PGC1α to a peroxisome proliferator response element (PPRE) in the promoter regions of these antioxidative enzymes was alleviated in the ChIP assay. Furthermore, Sirt1 also deacetylated p53 and then increased the binding of p53 to Bax, resulting in increased cytosolic cytochrome C. The effect of PPARγ inactivation by PFOS was validated using the PPARγ antagonist GW9662, whereas the adverse effects of PFOS were prevented by PPARγ overexpression and activators, rosiglitozone and L-carnitine, in RTCs. The in vitro finding of protective effect of L-carnitine was substantiated in vivo using Balb/c mice model subjected to PFOS challenge. Altogether, we provide in vivo and in vitro evidence for the protective mechanism of L-carnitine in eliminating PFOS-mediated renal injury, at least partially, through PPARγ activation. PMID:27171144

  19. Modulating TRAIL-Mediated Apoptosis in Prostate Cancer Using Synthetic Triterpenoids

    DTIC Science & Technology

    2005-01-01

    AD Award Number: W81XWH-04-1-0052 TITLE: Modulating TRAIL-Mediated Apoptosis in Prostate Cancer Using Synthetic Triterpenoids PRINCIPAL INVESTIGATOR...Modulating TRAIL-Mediated Apoptosis in Prostate Cancer W81XWH-04-1-0052 Using Synthetic Triterpenoids 6. AUTHOR(S) Marc L. Hyer, Ph.D. 7. PERFORMING...dien-28-oic acid (CDDO) and its derivative 1-(2-cyano-3,12-dioxooleana-1,9-dien-28-oyl) imidazole (CDDO-Im), which induce apoptosis in breast and

  20. PERK-mediated Autophagy in Osteosarcoma Cells Resists ER Stress-induced Cell Apoptosis

    PubMed Central

    Ji, Guang-rong; Yu, Nai-chun; Xue, Xiang; Li, Zong-guang

    2015-01-01

    Osteosarcoma is a bone cancer that develops commonly in children and adolescents. However, osteosarcoma treatments often fail by the development of chemoresistance to apoptosis, and the molecular mechanisms remain unclear. In this study, we propose that autophagy is responsible for osteosarcomatous resistance to apoptosis. We implicate PERK-mediated autophagy as a significant contributor to apoptosis resistance due to ER stress in osteosarcoma cells. By immunostainings and western blots, we identified that PERK activated osteosarcomatous autophagy via inhibiting mTORC1 pathway, thereby preventing cell apoptosis. While using RNAi, we knocked down PERK and found that autophagy was suppressed, result in osteosarcomatous apoptosis. Our results identify a novel role of PERK-mediated autophagy as a significant mechanism for osteosarcoma cell survival. These results will help to understand the mechanism of chemoresistance in osteosarcoma cells, and indicate a novel target for improving osteosarcoma therapy. PMID:26078722

  1. PERK-mediated Autophagy in Osteosarcoma Cells Resists ER Stress-induced Cell Apoptosis.

    PubMed

    Ji, Guang-rong; Yu, Nai-chun; Xue, Xiang; Li, Zong-guang

    2015-01-01

    Osteosarcoma is a bone cancer that develops commonly in children and adolescents. However, osteosarcoma treatments often fail by the development of chemoresistance to apoptosis, and the molecular mechanisms remain unclear. In this study, we propose that autophagy is responsible for osteosarcomatous resistance to apoptosis. We implicate PERK-mediated autophagy as a significant contributor to apoptosis resistance due to ER stress in osteosarcoma cells. By immunostainings and western blots, we identified that PERK activated osteosarcomatous autophagy via inhibiting mTORC1 pathway, thereby preventing cell apoptosis. While using RNAi, we knocked down PERK and found that autophagy was suppressed, result in osteosarcomatous apoptosis. Our results identify a novel role of PERK-mediated autophagy as a significant mechanism for osteosarcoma cell survival. These results will help to understand the mechanism of chemoresistance in osteosarcoma cells, and indicate a novel target for improving osteosarcoma therapy.

  2. Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis.

    PubMed

    Imre, Gergely; Heering, Jan; Takeda, Armelle-Natsuo; Husmann, Matthias; Thiede, Bernd; zu Heringdorf, Dagmar Meyer; Green, Douglas R; van der Goot, F Gisou; Sinha, Bhanu; Dötsch, Volker; Rajalingam, Krishnaraj

    2012-05-30

    Bacterial pathogens modulate host cell apoptosis to establish a successful infection. Pore-forming toxins (PFTs) secreted by pathogenic bacteria are major virulence factors and have been shown to induce various forms of cell death in infected cells. Here we demonstrate that the highly conserved caspase-2 is required for PFT-mediated apoptosis. Despite being the second mammalian caspase to be identified, the role of caspase-2 during apoptosis remains enigmatic. We show that caspase-2 functions as an initiator caspase during Staphylococcus aureus α-toxin- and Aeromonas aerolysin-mediated apoptosis in epithelial cells. Downregulation of caspase-2 leads to a strong inhibition of PFT-mediated apoptosis. Activation of caspase-2 is PIDDosome-independent, and endogenous caspase-2 is recruited to a high-molecular-weight complex in α-toxin-treated cells. Interestingly, prevention of PFT-induced potassium efflux inhibits the formation of caspase-2 complex, leading to its inactivation, thus resisting apoptosis. These results revealed a thus far unknown, obligatory role for caspase-2 as an initiator caspase during PFT-mediated apoptosis.

  3. How do viruses control mitochondria-mediated apoptosis?

    PubMed

    Neumann, Simon; El Maadidi, Souhayla; Faletti, Laura; Haun, Florian; Labib, Shirin; Schejtman, Andrea; Maurer, Ulrich; Borner, Christoph

    2015-11-02

    There is no doubt that viruses require cells to successfully reproduce and effectively infect the next host. The question is what is the fate of the infected cells? All eukaryotic cells can "sense" viral infections and exhibit defence strategies to oppose viral replication and spread. This often leads to the elimination of the infected cells by programmed cell death or apoptosis. This "sacrifice" of infected cells represents the most primordial response of multicellular organisms to viruses. Subverting host cell apoptosis, at least for some time, is therefore a crucial strategy of viruses to ensure their replication, the production of essential viral proteins, virus assembly and the spreading to new hosts. For that reason many viruses harbor apoptosis inhibitory genes, which once inside infected cells are expressed to circumvent apoptosis induction during the virus reproduction phase. On the other hand, viruses can take advantage of stimulating apoptosis to (i) facilitate shedding and hence dissemination, (ii) to prevent infected cells from presenting viral antigens to the immune system or (iii) to kill non-infected bystander and immune cells which would limit viral propagation. Hence the decision whether an infected host cell undergoes apoptosis or not depends on virus type and pathogenicity, its capacity to oppose antiviral responses of the infected cells and/or to evade any attack from immune cells. Viral genomes have therefore been adapted throughout evolution to satisfy the need of a particular virus to induce or inhibit apoptosis during its life cycle. Here we review the different strategies used by viruses to interfere with the two major apoptosis as well as with the innate immune signaling pathways in mammalian cells. We will focus on the intrinsic mitochondrial pathway and discuss new ideas about how particular viruses could activately engage mitochondria to induce apoptosis of their host.

  4. Altered mitochondrial morphology and defective protein import reveal novel roles for Bax and/or Bak in skeletal muscle.

    PubMed

    Zhang, Yuan; Iqbal, Sobia; O'Leary, Michael F N; Menzies, Keir J; Saleem, Ayesha; Ding, Shuzhe; Hood, David A

    2013-09-01

    The function Bax and/or Bak in constituting a gateway for mitochondrial apoptosis in response to apoptotic stimuli has been unequivocally demonstrated. However, recent work has suggested that Bax/Bak may have unrecognized nonapoptotic functions related to mitochondrial function in nonstressful environments. Wild-type (WT) and Bax/Bak double knockout (DKO) mice were used to determine alternative roles for Bax and Bak in mitochondrial morphology and protein import in skeletal muscle. The absence of Bax and/or Bak altered mitochondrial dynamics by regulating protein components of the organelle fission and fusion machinery. Moreover, DKO mice exhibited defective mitochondrial protein import, both into the matrix and outer membrane compartments, which was consistent with our observations of impaired membrane potential and attenuated expression of protein import machinery (PIM) components in intermyofibrillar mitochondria. Furthermore, the cytosolic chaperones heat-shock protein 90 (Hsp90) and binding immunoglobulin protein (BiP) were markedly increased with the deletion of Bax/Bak, indicating that the cytosolic environment related to protein folding may be changed in DKO mice. Interestingly, endurance training fully restored the deficiency of protein import in DKO mice, likely via the upregulation of PIM components and through improved cytosolic chaperone protein expression. Thus our results emphasize novel roles for Bax and/or Bak in mitochondrial function and provide evidence, for the first time, of a curative function of exercise training in ameliorating a condition of defective mitochondrial protein import.

  5. Caffeic acid phenethyl ester induces mitochondria-mediated apoptosis in human myeloid leukemia U937 cells.

    PubMed

    Jin, Un-Ho; Song, Kwon-Ho; Motomura, Muneo; Suzuki, Ikukatsu; Gu, Yeun-Hwa; Kang, Yun-Jeong; Moon, Tae-Chul; Kim, Cheorl-Ho

    2008-03-01

    Caffeic acid phenyl ester (CAPE), a biologically active ingredient of propolis, has several interesting biological properties including antioxidant, anti-inflammatory, antiviral, immunostimulatory, anti-angiogenic, anti-invasive, anti-metastatic and carcinostatic activities. Recently, several groups have reported that CAPE is cytotoxic to tumor cells but not to normal cells. In this study, we investigated the mechanism of CAPE-induced apoptosis in human myeloid leukemia U937 cells. Treatment of U937 cells with CAPE decreased cell viability in a dose-dependent and time-dependent manner. DNA fragmentation assay revealed the typical ladder profile of oligonucleosomal fragments in CAPE-treated U937 cells. In addition, as evidenced by the nuclear DAPI staining experiment, we observed that the nuclear condensation, a typical phenotype of apoptosis, was found in U937 cells treated with 5 microg/ml of CAPE. Therefore, it was suggested that CAPE is a potent agent inducing apoptosis in U937 cells. Apoptotic action of the CAPE was accompanied by release of cytochrome C, reduction of Bcl-2 expression, increase of Bax expression, activation/cleavage of caspase-3 and activation/cleavage of PARP in U937 cells, but not by Fas protein, an initial mediator in the death signaling, or by phospho-eIF2 alpha and CHOP, crucial mediators in ER-mediated apoptosis. From the results, it was concluded that CAPE induces the mitochondria-mediated apoptosis but not death receptors- or ER-mediated apoptosis in U937 cells.

  6. Prenatal exposure to PFOS caused mitochondia-mediated apoptosis in heart of weaned rat.

    PubMed

    Zeng, Huai-Cai; He, Qing-Zhi; Li, Yuan-Yuan; Wu, Cheng-Qiu; Wu, Yi-Mou; Xu, Shun-Qing

    2015-09-01

    Perfluorooctanyl sulfonate (PFOS), a cardiac toxicity compound, has been widely detected in the environment and in organisms. However, the toxic mechanism is not clear. Our previous study indicated that prenatal PFOS exposure led to swollen mitochondrial with vacuolar structure and loss of cristae in offsping's heart. The purpose of this study was to investigate the effect of PFOS on the apoptosis in developing heart and mitochondria-mediated apoptosis pathway. Pregnant Sprague-Dawley (SD) rats were exposed to PFOS at doses of 0.1, 0.6, and 2.0 mg/kg-d and 0.05% Tween 80 as control by gavage from gestation day 2 (GD 2) to GD 21. Apoptosis, as well as expression of apoptosis related genes associated with mitochondrial-mediated apoptosis pathway, including p53, bcl-2, bax, cytochrome c, caspase-9, and caspase-3 were analyzed in heart tissues from weaned (postnatal day 21, PND 21) offspring. The results showed that prenatal PFOS exposure resulted in apoptosis in the offspring's heart. The mRNA and protein expression levels of p53, bax, cytochrome c, caspase-9, and caspase-3 in the offspring's heart were enhanced in various PFOS-treated groups, meanwhile, the bcl-2 expression levels were decreased. Our results indicated that prenatal PFOS exposure induced the apoptosis of weaned offspring rat heart tissue via mitochondria-mediated apoptotic pathway.

  7. Aβ induces PUMA activation: a new mechanism for Aβ-mediated neuronal apoptosis.

    PubMed

    Feng, Jie; Meng, Chengbo; Xing, Da

    2015-02-01

    p53 upregulated modulator of apoptosis (PUMA) is a promising tumor therapy target because it elicits apoptosis and profound sensitivity to radiation and chemotherapy. However, inhibition of PUMA may be beneficial for curbing excessive apoptosis associated with neurodegenerative disorders. Alzheimer's disease (AD) is a representative neurodegenerative disease in which amyloid-β (Aβ) deposition causes neurotoxicity. The regulation of PUMA during Aβ-induced neuronal apoptosis remains poorly understood. Here, we reported that PUMA expression was significantly increased in the hippocampus of transgenic mice models of AD and hippocampal neurons in response to Aβ. PUMA knockdown protected the neurons against Aβ-induced apoptosis. Furthermore, besides p53, PUMA transactivation was also regulated by forkhead box O3a through p53-independent manner following Aβ treatment. Notably, PUMA contributed to neuronal apoptosis through competitive binding of apoptosis repressor with caspase recruitment domain to activate caspase-8 that cleaved Bid into tBid to accelerate Bax mitochondrial translocation, revealing a novel pathway of Bax activation by PUMA to mediate Aβ-induced neuronal apoptosis. Together, we demonstrated that PUMA activation involved in Aβ-induced apoptosis, representing a drug target to antagonize AD progression.

  8. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    PubMed

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  9. Nicotine induces Nme2-mediated apoptosis in mouse testes.

    PubMed

    Gu, Yunqi; Xu, Wangjie; Nie, Dongsheng; Zhang, Dong; Dai, Jingbo; Zhao, Xianglong; Zhang, Meixing; Wang, Zhaoxia; Chen, Zhong; Qiao, Zhongdong

    2016-04-15

    In mouse testes, germ cell apoptosis can be caused by cigarette smoke and lead to declining quality of semen, but the exact molecular mechanisms remain unclear. To evaluate the effects of nicotine exposure on apoptosis during spermatogenesis, we first constructed a nicotine-treated mouse model and detected germ cell apoptosis activity in the testes using the TUNEL method. Then we analyzed the variation of telomere length and telomerase activity by real-time PCR and TRAP-real-time PCR, respectively. Further, we investigated a highly expressed gene, Nme2, in mouse testes after nicotine treatment from our previous results, which has close correlation with the apoptosis activity predicted by bioinformatics. We performed NME2 overexpression in Hela cells to confirm whether telomere length and telomerase activity were regulated by the Nme2 gene. Finally, we examined methylation of CpG islands in the Nme2 promoter with the Bisulfite Sequencing (BSP) method. The results showed that apoptosis had increased significantly, and then telomerase activity became weak. Further, telomere length was shortened in the germ cells among the nicotine-treated group. In Hela cells, both overexpression of the Nme2 gene and nicotine exposure can suppress the activity of telomerase activity and shorten telomere length. BSP results revealed that the Nme2 promoter appeared with low methylation in mouse testes after nicotine treatment. We assume that nicotine-induced apoptosis may be caused by telomerase activity decline, which is inhibited by the up expression of Nme2 because of its hypomethylation in mouse germ cells.

  10. The Effect of Selenium on the Cd-Induced Apoptosis via NO-Mediated Mitochondrial Apoptosis Pathway in Chicken Liver.

    PubMed

    Zhang, Runxiang; Yi, Ran; Bi, Yanju; Xing, Lu; Bao, Jun; Li, Jianhong

    2017-01-06

    Cd-induced apoptosis and the protective effects of Se against Cd-induced injury have been reported in previous studies. However, little is known regarding the effects of Cd-induced apoptosis in hepatic cells and the antagonistic effects of Se on Cd in poultry. In the present study, 128 healthy 31-week-old laying hens were randomly divided into four groups, which were fed basic diets, with the addition of Se (Na2SeO3, 2 mg/kg), Cd (CdCl2, 150 mg/kg), or Se + Cd (150 mg/kg of CdCl2 and 2 mg/kg of Na2SeO3) for 90 days. Ultrastructural changes, nitric oxide (NO) concentrations, inducible nitric oxide synthase (iNOS) activities, results of the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay of apoptosis, and the expression of iNOS and apoptosis-related genes in livers were determined. It was observed that Cd treatment significantly increased the concentrations of NO and iNOS activity in chicken livers. The production of excessive NO initiated the mitochondrial apoptotic pathway. Exposure to Cd increased the mRNA and the protein expression levels of iNOS, caspase-3, Bax, p53, and Cyt-c. Furthermore, the ratio of Bax/Bcl-2 increased, while the expression of Bcl-2 decreased. Treatment with Se significantly alleviated Cd-induced apoptosis in chicken livers, as evidenced by a reduction in the production of NO, iNOS activity, the number of apoptotic cells, and mRNA and protein expression levels of iNOS, caspase-3, Bax, and Cyt-c. It indicated that Cd induced NO-mediated apoptosis through the mitochondrial apoptotic pathway and Se exerted antagonizing effects. The present study provides new insights as to how Se affects Cd-induced toxicity in the chicken liver.

  11. Infection-induced bystander-apoptosis of monocytes is TNF-alpha-mediated.

    PubMed

    Dreschers, Stephan; Gille, Christian; Haas, Martin; Grosse-Ophoff, Julia; Schneider, Marion; Leiber, Anja; Bühring, Hans-Jörg; Orlikowsky, Thorsten W

    2013-01-01

    Phagocytosis induced cell death (PICD) is crucial for controlling phagocyte effector cells, such as monocytes, at sites of infection, and essentially contributes to termination of inflammation. Here we tested the hypothesis, that during PICD bystander apoptosis of non-phagocyting monocytes occurs, that apoptosis induction is mediated via tumor necrosis factor-alpha (TNF-α and that TNF-α secretion and -signalling is causal. Monocytes were infected with Escherichia coli (E. coli), expressing green fluorescent protein (GFP), or a pH-sensitive Eos-fluorescent protein (EOS-FP). Monocyte phenotype, phagocytic activity, apoptosis, TNF-receptor (TNFR)-1, -2-expression and TNF-α production were analyzed. Apoptosis occured in phagocyting and non-phagocyting, bystander monocytes. Bacterial transport to the phagolysosome was no prerequisite for apoptosis induction, and desensitized monocytes from PICD, as confirmed by EOS-FP expressing E. coli. Co-cultivation with non-infected carboxyfluorescein-succinimidyl-ester- (CFSE-) labelled monocytes resulted in significant apoptotic cell death of non-infected bystander monocytes. This process required protein de-novo synthesis and still occurred in a diminished way in the absence of cell-cell contact. E. coli induced a robust TNF-α production, leading to TNF-mediated apoptosis in monocytes. Neutralization with an anti-TNF-α antibody reduced monocyte bystander apoptosis significantly. In contrast to TNFR2, the pro-apoptotic TNFR1 was down-regulated on the monocyte surface, internalized 30 min. p.i. and led to apoptosis predominantly in monocytes without phagocyting bacteria by themselves. Our results suggest, that apoptosis of bystander monocytes occurs after infection with E. coli via internalization of TNFR1, and indicate a relevant role for TNF-α. Modifying monocyte apoptosis in sepsis may be a future therapeutic option.

  12. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    PubMed

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  13. Oxidative Stress Mediates Radiation Lung Injury by Inducing Apoptosis

    SciTech Connect

    Zhang Yu; Zhang Xiuwu; Rabbani, Zahid N.; Jackson, Isabel L.; Vujaskovic, Zeljko

    2012-06-01

    Purpose: Apoptosis in irradiated normal lung tissue has been observed several weeks after radiation. However, the signaling pathway propagating cell death after radiation remains unknown. Methods and Materials: C57BL/6J mice were irradiated with 15 Gy to the whole thorax. Pro-apoptotic signaling was evaluated 6 weeks after radiation with or without administration of AEOL10150, a potent catalytic scavenger of reactive oxygen and nitrogen species. Results: Apoptosis was observed primarily in type I and type II pneumocytes and endothelium. Apoptosis correlated with increased PTEN expression, inhibition of downstream PI3K/AKT signaling, and increased p53 and Bax protein levels. Transforming growth factor-{beta}1, Nox4, and oxidative stress were also increased 6 weeks after radiation. Therapeutic administration of AEOL10150 suppressed pro-apoptotic signaling and dramatically reduced the number of apoptotic cells. Conclusion: Increased PTEN signaling after radiation results in apoptosis of lung parenchymal cells. We hypothesize that upregulation of PTEN is influenced by Nox4-derived oxidative stress. To our knowledge, this is the first study to highlight the role of PTEN in radiation-induced pulmonary toxicity.

  14. P53-Mediated Rapid Induction of Apoptosis Conveys Resistance to Viral Infection in Drosophila melanogaster

    PubMed Central

    Liu, Bo; Behura, Susanta K.; Clem, Rollie J.; Schneemann, Anette; Becnel, James; Severson, David W.; Zhou, Lei

    2013-01-01

    Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling vector susceptibility to pathogens has profound implications for developing novel strategies for controlling insect-transmitted infectious diseases. The fact that many viruses carry genes that have anti-apoptotic activity has long led to the hypothesis that induction of apoptosis could be a fundamental innate immune response. However, the cellular mechanisms mediating the induction of apoptosis following viral infection remained enigmatic, which has prevented experimental verification of the functional significance of apoptosis in limiting viral infection in insects. In addition, studies with cultured insect cells have shown that there is sometimes a lack of apoptosis, or the pro-apoptotic response happens relatively late, thus casting doubt on the functional significance of apoptosis as an innate immunity. Using in vivo mosquito models and the native route of infection, we found that there is a rapid induction of reaper-like pro-apoptotic genes within a few hours following exposure to DNA or RNA viruses. Recapitulating a similar response in Drosophila, we found that this rapid induction of apoptosis requires the function of P53 and is mediated by a stress–responsive regulatory region upstream of reaper. More importantly, we showed that the rapid induction of apoptosis is responsible for preventing the expression of viral genes and blocking the infection. Genetic changes influencing this rapid induction of reaper-like pro-apoptotic genes led to significant differences in susceptibility to viral infection. PMID:23408884

  15. Myonuclear apoptosis in dystrophic mdx muscle occurs by perforin-mediated cytotoxicity.

    PubMed Central

    Spencer, M J; Walsh, C M; Dorshkind, K A; Rodriguez, E M; Tidball, J G

    1997-01-01

    Myonuclear apoptosis is an early event in the pathology of dystrophin-deficient muscular dystrophy in the mdx mouse. However, events that initiate apoptosis in muscular dystrophy are unknown, and whether elimination of apoptosis can ameliorate subsequent muscle wasting remains a major question. We have tested the hypothesis that cytotoxic T-lymphocytes initiate myonuclear apoptosis in dystrophic muscle, and examined whether perforin-mediated cytotoxicity plays a role in the pathophysiology of muscular dystrophy. Mdx mice showed muscle invasion by cytotoxic T cells and helper T cells at the onset of histologically detectable muscle fiber pathology. At this time, perforin-expressing cells were also present at elevated concentration. Mdx mice depleted of CD8(+) cells showed a significant reduction of apoptotic myonuclei concentration and a reduction in necrosis, judged by macrophage invasion of muscle fibers. Double-mutant mice, deficient in dystrophin and perforin, showed nearly complete absence of myonuclear apoptosis, and a significant reduction in the concentration of macrophages in the connective tissue surrounding muscle fibers. However, muscle fiber invasion by macrophages was not reduced significantly in double mutant mice. Thus, cytotoxic T-lymphocytes contribute significantly to apoptosis and necrosis in mdx dystrophy, and perforin-mediated killing is primarily responsible for myonuclear apoptosis. PMID:9169505

  16. Alginate Oligosaccharide Prevents Acute Doxorubicin Cardiotoxicity by Suppressing Oxidative Stress and Endoplasmic Reticulum-Mediated Apoptosis

    PubMed Central

    Guo, Jun-Jie; Ma, Lei-Lei; Shi, Hong-Tao; Zhu, Jian-Bing; Wu, Jian; Ding, Zhi-Wen; An, Yi; Zou, Yun-Zeng; Ge, Jun-Bo

    2016-01-01

    Doxorubicin (DOX) is a highly potent chemotherapeutic agent, but its usage is limited by dose-dependent cardiotoxicity. DOX-induced cardiotoxicity involves increased oxidative stress and activated endoplasmic reticulum-mediated apoptosis. Alginate oligosaccharide (AOS) is a non-immunogenic, non-toxic and biodegradable polymer, with anti-oxidative, anti-inflammatory and anti-endoplasmic reticulum stress properties. The present study examined whether AOS pretreatment could protect against acute DOX cardiotoxicity, and the underlying mechanisms focused on oxidative stress and endoplasmic reticulum-mediated apoptosis. We found that AOS pretreatment markedly increased the survival rate of mice insulted with DOX, improved DOX-induced cardiac dysfunction and attenuated DOX-induced myocardial apoptosis. AOS pretreatment mitigated DOX-induced cardiac oxidative stress, as shown by the decreased expressions of gp91 (phox) and 4-hydroxynonenal (4-HNE). Moreover, AOS pretreatment significantly decreased the expression of Caspase-12, C/EBP homologous protein (CHOP) (markers for endoplasmic reticulum-mediated apoptosis) and Bax (a downstream molecule of CHOP), while up-regulating the expression of anti-apoptotic protein Bcl-2. Taken together, these findings identify AOS as a potent compound that prevents acute DOX cardiotoxicity, at least in part, by suppression of oxidative stress and endoplasmic reticulum-mediated apoptosis. PMID:27999379

  17. Thiourea compound AW00178 sensitizes human H1299 lung carcinoma cells to TRAIL-mediated apoptosis.

    PubMed

    Ryu, Byung Jun; Hwang, Mi-Kyung; Park, Mikyung; Lee, Kyunghee; Kim, Seong Hwan

    2012-06-15

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in a wide variety of cancer cells. Recently, cancer cell resistance to TRAIL-mediated apoptosis has become a challenging issue in the development of TRAIL-based anti-cancer therapies. In this study, we found that 1-(5-chloro-2-methyl-phenyl)-3-[4-(5-trifluoromethyl-pyrazol-1-yl)-phenyl]-thiourea (AW00178) was able to sensitize TRAIL-resistant human lung cancer H1299 cells to TRAIL-mediated apoptosis. Treatment with AW00178, either alone or in combination with TRAIL, induced the expression of CHOP, a protein related to TRAIL sensitivity, and reduced the expression of survivin, an anti-apoptotic protein involved in TRAIL resistance. Additionally, AW00178, alone or in combination with TRAIL, induced the activation of c-Jun and inactivation of Akt. A pharmacologic inhibition study revealed that c-Jun activation and Akt inactivation were strongly related to CHOP induction and survivin down-regulation, respectively. In summary, these results suggested that AW00178 mediated sensitization to TRAIL-mediated apoptosis in H1299 cells by increasing sensitivity and decreasing resistance to TRAIL via the induction of c-Jun-dependent CHOP expression and the reduction of Akt-dependent survivin expression, respectively.

  18. Cerulenin-mediated apoptosis is involved in adenine metabolic pathway

    SciTech Connect

    Chung, Kyung-Sook; Sun, Nam-Kyu; Lee, Seung-Hee; Lee, Hyun-Jee; Choi, Shin-Jung; Kim, Sun-Kyung; Song, Ju-Hyun; Jang, Young-Joo; Song, Kyung-Bin; Yoo, Hyang-Sook; Simon, Julian . E-mail: jsimon@fhcrc.org; Won, Misun . E-mail: misun@kribb.re.kr

    2006-10-27

    Cerulenin, a fatty acid synthase (FAS) inhibitor, induces apoptosis of variety of tumor cells. To elucidate mode of action by cerulenin, we employed the proteomics approach using Schizosaccharomyces pombe. The differential protein expression profile of S. pombe revealed that cerulenin modulated the expressions of proteins involved in stresses and metabolism, including both ade10 and adk1 proteins. The nutrient supplementation assay demonstrated that cerulenin affected enzymatic steps transferring a phosphoribosyl group. This result suggests that cerulenin accumulates AMP and p-ribosyl-s-amino-imidazole carboxamide (AICAR) and reduces other necessary nucleotides, which induces feedback inhibition of enzymes and the transcriptional regulation of related genes in de novo and salvage adenine metabolic pathway. Furthermore, the deregulation of adenine nucleotide synthesis may interfere ribonucleotide reductase and cause defects in cell cycle progression and chromosome segregation. In conclusion, cerulenin induces apoptosis through deregulation of adenine nucleotide biosynthesis resulting in nuclear division defects in S. pombe.

  19. Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism

    PubMed Central

    Dubey, Megha; Nagarkoti, Sheela; Awasthi, Deepika; Singh, Abhishek K; Chandra, Tulika; Kumaravelu, J; Barthwal, Manoj K; Dikshit, Madhu

    2016-01-01

    Neutrophils play an indispensable role in killing of invading pathogens by enhancing reactive oxygen species (ROS) and NO generation, and subsequently undergoing apoptosis. Unlike ROS/NOX2, role of NO/NOS still remains undefined in the apoptosis of neutrophils (PMNs) and the present study attempts to decipher the importance of NO/NOS in the neutrophil apoptosis. Prolonged treatment of human PMNs or mice bone marrow derived neutrophils (BMDN) with NO led to enhanced ROS generation, caspase-8/caspase-3 cleavage, reduced mitochondrial membrane potential and finally cellular apoptosis. NO-induced ROS generation led to caspase-8 deglutathionylation and activation, which subsequently activated mitochondrial death pathway via BID (Bcl-2 family protein) cleavage. NO-mediated augmentation of caspase-8 and BID cleavage was significantly prevented in BMDN from neutrophil cytosolic factor-1 (NCF-1) knockout (KO) mice, implying the involvement of NOX2 in NO-induced apoptosis of PMNs. Furthermore, ROS, NO generation and inducible nitric oxide synthase (iNOS) expression were enhanced in a time-dependent manner in human PMNs and mice BMDN undergoing spontaneous apoptosis. Pharmacological and genetic ablation of iNOS in human PMNs and mice BMDN significantly reduced the levels of apoptosis. Impaired apoptosis of BMDN from iNOS KO mice was due to reduced caspase-8 activity which subsequently prevented caspase-3 and -9 activation. Altogether, our results suggest a crucial role of NO/iNOS in neutrophil apoptosis via enhanced ROS generation and caspase-8 mediated activation of mitochondrial death pathway. PMID:27584786

  20. Role of CD137 signaling in dengue virus-mediated apoptosis

    SciTech Connect

    Nagila, Amar; Netsawang, Janjuree; Srisawat, Chatchawan; Noisakran, Sansanee; Morchang, Atthapan; Yasamut, Umpa; Puttikhunt, Chunya; Kasinrerk, Watchara; and others

    2011-07-08

    Highlights: {yields} For the first time the role of CD137 in dengue virus (DENV) infection. {yields} Induction of DENV-mediated apoptosis by CD137 signaling. {yields} Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). {yields} Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  1. Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets

    PubMed Central

    Josefsson, Emma C.; James, Chloé; Henley, Katya J.; Debrincat, Marlyse A.; Rogers, Kelly L.; Dowling, Mark R.; White, Michael J.; Kruse, Elizabeth A.; Lane, Rachael M.; Ellis, Sarah; Nurden, Paquita; Mason, Kylie D.; O’Reilly, Lorraine A.; Roberts, Andrew W.; Metcalf, Donald; Huang, David C.S.

    2011-01-01

    It is believed that megakaryocytes undergo a specialized form of apoptosis to shed platelets. Conversely, a range of pathophysiological insults, including chemotherapy, are thought to cause thrombocytopenia by inducing the apoptotic death of megakaryocytes and their progenitors. To resolve this paradox, we generated mice with hematopoietic- or megakaryocyte-specific deletions of the essential mediators of apoptosis, Bak and Bax. We found that platelet production was unperturbed. In stark contrast, deletion of the prosurvival protein Bcl-xL resulted in megakaryocyte apoptosis and a failure of platelet shedding. This could be rescued by deletion of Bak and Bax. We examined the effect on megakaryocytes of three agents that activate the intrinsic apoptosis pathway in other cell types: etoposide, staurosporine, and the BH3 mimetic ABT-737. All three triggered mitochondrial damage, caspase activation, and cell death. Deletion of Bak and Bax rendered megakaryocytes resistant to etoposide and ABT-737. In vivo, mice with a Bak−/− Bax−/− hematopoietic system were protected against thrombocytopenia induced by the chemotherapeutic agent carboplatin. Thus, megakaryocytes do not activate the intrinsic pathway to generate platelets; rather, the opposite is true: they must restrain it to survive and progress safely through proplatelet formation and platelet shedding. PMID:21911424

  2. Prevention of Trauma and Hemorrhagic Shock-Mediated Liver Apoptosis by Activation of Stat3α

    PubMed Central

    Moran, Ana; Akcan Arikan, Ayse; Mastrangelo, Mary-Ann A.; Wu, Yong; Yu, Bi; Poli, Valeria; Tweardy, David J.

    2008-01-01

    Trauma is a major cause of mortality in the United States. Death among those surviving the initial insult is caused by multiple organ failure (MOF) with the liver among the organs most frequently affected. We previously demonstrated in rodents that trauma complicated by hemorrhagic shock (trauma/HS) results in liver injury that can be prevented by IL-6 administration at the start of resuscitation; however, the contribution of the severity of HS to the extent of liver injury, whether or not resuscitation is required and the mechanism for the IL-6 protective effect have not been reported. In the experiments reported here, we demonstrated that the extent of liver apoptosis induced by trauma/HS depends on the duration of hypotension and requires resuscitation. We established that IL-6 administration at the start of resuscitation is capable of completely reversing liver apoptosis and is associated with increased Stat3 activation. Microarray analysis of the livers showed that the main effect of IL-6 was to normalize the trauma/HS-induced apoptosis transcriptome. Pharmacological inhibition of Stat3 activity within the liver blocked the ability of IL-6 to prevent liver apoptosis and to normalize the trauma/HS- induced liver apoptosis transcriptome. Genetic deletion of a Stat3β, a naturally occurring, dominant-negative isoform of the Stat3, attenuated trauma/HS-induced liver apoptosis, confirming a role for Stat3, especially Stat3α, in preventing trauma/HS-mediated liver apoptosis. Thus, trauma/HS-induced liver apoptosis depends on the duration of hypotension and requires resuscitation. IL-6 administration at the start of resuscitation reverses HS-induced liver apoptosis, through activation of Stat3α, which normalizes the trauma/HS-induced liver apoptosis transcriptome. PMID:18997875

  3. Mitochondria-independent induction of Fas-mediated apoptosis by MSSP.

    PubMed

    Nomura, Jun; Matsumoto, Ken-Ichi; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2005-11-01

    Fas-mediated apoptosis has been proposed to play an important role in homeostasis. Fas triggers apoptosis after stimulation by its ligand FasL or the Fas ligand agonist anti-Fas antibody through a mitochondria-dependent or -independent pathway, and MSSP has been identified as a transcription factor that regulates the c-myc gene and was later found to positively or negatively regulate a variety of genes, including alpha-smooth actin, MHC class I, MHC class 2 and the thyrotropin receptor. We further found that expression of the Fas gene was repressed, resulting in abrogation of the Fas-mediated induction of apoptosis both in Mssp-knockout mice and primary thymocytes. MSSP was then found to stimulate promoter activity of the Fas gene by binding to a specific region. In this study, to identify the MSSP-dependent Fas-induced apoptosis pathway, primary fibroblasts from MSSP (+/+) and MSSP (-/-) cells were treated with the combination of interleukin 1-beta and interferon-gamma and expression of the Fas gene was examined. The results showed that the Fas gene was expressed at the same levels in the two cell types. Furthermore, when these cells were treated with the anti-Fas antibody, it was found that cytochrome C was not released in the cytosol and that activations of caspase 8 and caspase 3 occurred in primary fibroblasts from MSSP (+/+) cells but not from MSSP (-/-) cells. These results indicate that Fas-mediated apoptosis induced by MSSP occurs independently of mitochondria.

  4. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    SciTech Connect

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  5. Involvement of Bcl-2 and Bax in photodynamic therapy-mediated apoptosis. Antisense Bcl-2 oligonucleotide sensitizes RIF 1 cells to photodynamic therapy apoptosis.

    PubMed

    Srivastava, M; Ahmad, N; Gupta, S; Mukhtar, H

    2001-05-04

    Photodynamic therapy (PDT), a promising treatment modality, is an oxidative stress that induces apoptosis in many cancer cells in vitro and tumors in vivo. Understanding the mechanism(s) involved in PDT-mediated apoptosis may improve its therapeutic efficacy. Although studies suggest the involvement of multiple pathways, the triggering event(s) responsible for PDT-mediated apoptotic response is(are) not clear. To investigate the role of Bcl-2 in PDT-mediated apoptosis, we employed Bcl-2-antisense and -overexpression approaches in two cell types differing in their responses toward PDT apoptosis. In the first approach, we treated radiation-induced fibrosarcoma (RIF 1) cells, which are resistant to silicon phthalocyanine (Pc 4)-PDT apoptosis, with Bcl-2-antisense oligonucleotide. This treatment resulted in sensitization of RIF 1 cells to PDT-mediated apoptosis as demonstrated by i) cleavage of poly(ADP-ribose) polymerase, ii) DNA ladder formation, iii) terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells, and iv) DEVDase activity. This treatment also resulted in oligonucleotide concentration-dependent decrease in cell viability and down-regulation of Bcl-2 protein with a concomitant increase in apoptosis. However, the level of Bax, a pro-apoptotic member of Bcl-2 family, remained unaltered. In the second approach, an overexpression of Bcl-2 in PDT apoptosis-sensitive human epidermoid carcinoma (A431) cells resulted in enhanced apoptosis and up-regulation of Bax following PDT. In both the approaches, the increased Bax/Bcl-2 ratio was associated with an increased apoptotic response of PDT. Our data also demonstrated that PDT results in modulation of other Bcl-2 family members in a way that the overall ratio of pro-apoptotic and anti-apoptotic member proteins favors apoptosis.

  6. Bid chimeras indicate that most BH3-only proteins can directly activate Bak and Bax, and show no preference for Bak versus Bax

    PubMed Central

    Hockings, C; Anwari, K; Ninnis, R L; Brouwer, J; O'Hely, M; Evangelista, M; Hinds, M G; Czabotar, P E; Lee, E F; Fairlie, W D; Dewson, G; Kluck, R M

    2015-01-01

    The mitochondrial pathway of apoptosis is initiated by Bcl-2 homology region 3 (BH3)-only members of the Bcl-2 protein family. On upregulation or activation, certain BH3-only proteins can directly bind and activate Bak and Bax to induce conformation change, oligomerization and pore formation in mitochondria. BH3-only proteins, with the exception of Bid, are intrinsically disordered and therefore, functional studies often utilize peptides based on just their BH3 domains. However, these reagents do not possess the hydrophobic membrane targeting domains found on the native BH3-only molecule. To generate each BH3-only protein as a recombinant protein that could efficiently target mitochondria, we developed recombinant Bid chimeras in which the BH3 domain was replaced with that of other BH3-only proteins (Bim, Puma, Noxa, Bad, Bmf, Bik and Hrk). The chimeras were stable following purification, and each immunoprecipitated with full-length Bcl-xL according to the specificity reported for the related BH3 peptide. When tested for activation of Bak and Bax in mitochondrial permeabilization assays, Bid chimeras were ~1000-fold more effective than the related BH3 peptides. BH3 sequences from Bid and Bim were the strongest activators, followed by Puma, Hrk, Bmf and Bik, while Bad and Noxa were not activators. Notably, chimeras and peptides showed no apparent preference for activating Bak or Bax. In addition, within the BH3 domain, the h0 position recently found to be important for Bax activation, was important also for Bak activation. Together, our data with full-length proteins indicate that most BH3-only proteins can directly activate both Bak and Bax. PMID:25906158

  7. Overcoming Resistance of Prostate Cancer to TRAIL - Mediated Apoptosis

    DTIC Science & Technology

    2005-12-01

    DR5 receptor in prostate cancer cell lines. We used histidine-tagged TRAIL prepared in E . coli added to lysed cells at 1 ug/ml for 20 min on ice...normal ones. However, we found that in normal human prostate epithelial cells (PrEC) TRAIL is capable of inducing apoptosis as e �ciently as in some tumor...measured by tetrazolium conversion but had little or no e �ect on other TRAIL-induced apoptotic responses. Although cycloheximide did not further accelerate

  8. Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors

    NASA Astrophysics Data System (ADS)

    Mitchell, Michael J.; King, Michael R.

    2013-01-01

    Cancer metastasis, the process of cancer cell migration from a primary to distal location, typically leads to a poor patient prognosis. Hematogenous metastasis is initiated by intravasation of circulating tumor cells (CTCs) into the bloodstream, which are then believed to adhere to the luminal surface of the endothelium and extravasate into distal locations. Apoptotic agents such as tumor necrosis factor apoptosis-inducing ligand (TRAIL), whether in soluble ligand form or expressed on the surface of natural killer cells, have shown promise in treating CTCs to reduce the probability of metastasis. The role of hemodynamic shear forces in altering the cancer cell response to apoptotic agents has not been previously investigated. Here, we report that human colon cancer COLO 205 and prostate cancer PC-3 cells exposed to a uniform fluid shear stress in a cone-and-plate viscometer become sensitized to TRAIL-induced apoptosis. Shear-induced sensitization directly correlates with the application of fluid shear stress, and TRAIL-induced apoptosis increases in a fluid shear stress force- and time-dependent manner. In contrast, TRAIL-induced necrosis is not affected by the application fluid shear stress. Interestingly, fluid shear stress does not sensitize cancer cells to apoptosis when treated with doxorubicin, which also induces apoptosis in cancer cells. Caspase inhibition experiments reveal that shear stress-induced sensitization to TRAIL occurs via caspase-dependent apoptosis. These results suggest that physiological fluid shear forces can modulate receptor-mediated apoptosis of cancer cells in the presence of apoptotic agents.

  9. Mitochondrion-mediated apoptosis is involved in reproductive damage caused by BPA in male rats.

    PubMed

    Wang, Peng; Luo, Chunhua; Li, Qianyuan; Chen, Sai; Hu, Yong

    2014-11-01

    Bisphenol A (BPA) is a widely used environmental endocrine disruptor. Many studies have reported that BPA exposure shows reproductive toxicity and causes apoptosis in spermatogenic cells. However, few studies have investigated the relationship between the mitochondrial pathway and BPA-induced apoptosis. This study investigated the role of the mitochondrial pathway in apoptosis induced by BPA, which resulted in compromised male rat spermatogenesis and reproductive damage. Rats were exposed to various BPA concentrations (0, 50, 100, or 200mg of BPA/kg body weight per day), and factors in the mitochondrial signal transduction pathway and the apoptosis indices of spermatogenic cells were measured and sperm characteristics were analyzed. Our data revealed that BPA exposure increased the protein and mRNA levels of cytochrome C, apoptosis-inducing factor, caspase-3/9, and Bax; caspase-3 and caspase-9 activities; and the apoptosis indices of spermatogenic cells. In addition, abnormal structure of mitochondria and decreased protein and gene levels of Bcl-2 were observed following BPA exposure. These results suggest that apoptosis in the mitochondrial pathway mediates compromised reproductive system function caused by BPA exposure.

  10. Iris movement mediates vascular apoptosis during rat pupillary membrane regression.

    PubMed

    Morizane, Yuki; Mohri, Satoshi; Kosaka, Jun; Toné, Shigenobu; Kiyooka, Takahiko; Miyasaka, Takehiro; Shimizu, Juichiro; Ogasawara, Yasuo; Shiraga, Fumio; Minatogawa, Yohsuke; Sasaki, Junzo; Ohtsuki, Hiroshi; Kajiya, Fumihiko

    2006-03-01

    In the course of mammalian lens development, a transient capillary meshwork known as the pupillary membrane (PM) forms, which is located at the pupil area; the PM nourishes the anterior surface of the lens and then regresses to make the optical path clear. Although the involvement of apoptotic process has been reported in the PM regression, the initiating factor remains unknown. We initially found that regression of the PM coincided with the development of iris motility, and iris movement caused cessation and resumption of blood flow within the PM. Therefore, we investigated whether the development of the iris's ability to constrict and dilate functions as an essential signal that induces apoptosis in the PM. Continuous inhibition of iris movement with mydriatic agents from postnatal day 7 to day 12 suppressed apoptosis of the PM and migration of macrophage toward the PM, and resulted in the persistence of PM in rats. The distribution of apoptotic cells in the regressing PM was diffuse and showed no apparent localization. These results indicated that iris movement induced regression of the PM by changing the blood flow within it. This study suggests the importance of the physiological interactions between tissues-in this case, the iris and the PM-as a signal to advance vascular regression during organ development, and defines a novel function of the iris during ocular development in addition to the well-known function, that is, optimization of light transmission into the eye.

  11. Bcl-xL is overexpressed in hormone-resistant prostate cancer and promotes survival of LNCaP cells via interaction with proapoptotic Bak.

    PubMed

    Castilla, Carolina; Congregado, Belén; Chinchón, David; Torrubia, Francisco J; Japón, Miguel A; Sáez, Carmen

    2006-10-01

    Androgen-sensitive prostate cancer cells turn androgen resistant through complex mechanisms that involve dysregulation of apoptosis. We investigated the role of antiapoptotic Bcl-xL in the progression of prostate cancer as well as the interactions of Bcl-xL with proapoptotic Bax and Bak in androgen-dependent and -independent prostate cancer cells. Immunohistochemical analysis was used to study the expression of Bcl-xL in a series of 139 prostate carcinomas and its association with Gleason grade and time to hormone resistance. Expression of Bcl-xL was more abundant in prostate carcinomas of higher Gleason grades and significantly associated with the onset of hormone-refractory disease. In vivo interactions of Bcl-xL with Bax or Bak in untreated and camptothecin-treated LNCaP and PC3 cells were investigated by means of coimmunoprecipitation. In the absence of any stimuli, Bcl-xL interacts with Bax and Bak in androgen-independent PC3 cells but only with Bak in androgen-dependent LNCaP cells. Interactions of Bcl-xL with Bax and Bak were also evidenced in lysates from high-grade prostate cancer tissues. In LNCaP cells treated with camptothecin, an inhibitor of topoisomerase I, the interaction between Bcl-xL and Bak was absent after 36 h, Bcl-xL decreased gradually and Bak increased coincidentally with the progress of apoptosis. These results support a model in which Bcl-xL would exert an inhibitory effect over Bak via heterodimerization. We propose that these interactions may provide mechanisms for suppressing the activity of proapoptotic Bax and Bak in prostate cancer cells and that Bcl-xL expression contributes to androgen resistance and progression of prostate cancer.

  12. Isoalantolactone Induces Reactive Oxygen Species Mediated Apoptosis in Pancreatic Carcinoma PANC-1 Cells

    PubMed Central

    Khan, Muhammad; Ding, Chuan; Rasul, Azhar; Yi, Fei; Li, Ting; Gao, Hongwen; Gao, Rong; Zhong, Lili; Zhang, Kun; Fang, Xuedong; Ma, Tonghui

    2012-01-01

    Isoalantolactone, a sesquiterpene lactone compound possesses antifungal, antibacteria, antihelminthic and antiproliferative activities. In the present study, we found that isoalantolactone inhibits growth and induces apoptosis in pancreatic cancer cells. Further mechanistic studies revealed that induction of apoptosis is associated with increased generation of reactive oxygen species, cardiolipin oxidation, reduced mitochondrial membrane potential, release of cytochrome c and cell cycle arrest at S phase. N-Acetyl Cysteine (NAC), a specific ROS inhibitor restored cell viability and completely blocked isoalantolactone-mediated apoptosis in PANC-1 cells indicating that ROS are involved in isoalantolactone-mediated apoptosis. Western blot study showed that isoalantolactone increased the expression of phosphorylated p38 MAPK, Bax, and cleaved caspase-3 and decreased the expression of Bcl-2 in a dose-dependent manner. No change in expression of phosphorylated p38 MAPK and Bax was found when cells were treated with isoalantolactone in the presence of NAC, indicating that activation of these proteins is directly dependent on ROS generation. The present study provides evidence for the first time that isoalantolactone induces ROS-dependent apoptosis through intrinsic pathway. Furthermore, our in vivo toxicity study demonstrated that isoalantolactone did not induce any acute or chronic toxicity in liver and kidneys of CD1 mice at dose of 100 mg/kg body weight. Therefore, isoalantolactone may be a safe chemotherapeutic candidate for the treatment of human pancreatic carcinoma. PMID:22532787

  13. Mechanism of colon cancer cell apoptosis mediated by pyropheophorbide-a methylester photosensitization.

    PubMed

    Matroule, J Y; Carthy, C M; Granville, D J; Jolois, O; Hunt, D W; Piette, J

    2001-07-05

    Pyropheophorbide-a methylester (PPME) is a second generation of photosensitizers used in photodynamic therapy (PDT). We demonstrated that PPME photosensitization triggered apoptosis of colon cancer cells as measured by using several classical parameters such as DNA laddering, PARP cleavage, caspase activation and mitochondrial release of cytochrome c. Preincubation of cells with N-acetyl cysteine (NAC) or pyrolidine dithiocarbamate (PDTC) protected against apoptosis mediated by PPME photosensitization showing that reactive oxygen species (ROS) are involved as second messengers. On the other hand, photosensitization carried out in the presence of deuterium oxide (D2O) which enhances singlet oxygen (1O2) lifetime only increases necrosis without affecting apoptosis. Since PPME was localized in the endoplasmic reticulum (ER)/Golgi system and lysosomes, other messengers than ROS were tested such as calcium, Bid, Bap31, phosphorylated Bcl-2 and caspase-12 but none was clearly identified as being involved in triggering cytochrome c release from mitochondria. On the other hand, we demonstrated that the transduction pathways leading to NF-kappaB activation and apoptosis were clearly independent although NF-kappaB was shown to counteract apoptosis mediated by PPME photosensitization.

  14. The c-Jun N-terminal kinase signaling pathway mediates chrysotile asbestos-induced alveolar epithelial cell apoptosis

    PubMed Central

    LI, PENG; LIU, TIE; KAMP, DAVID W.; LIN, ZIYING; WANG, YAHONG; LI, DONGHONG; YANG, LAWEI; HE, HUIJUAN; LIU, GANG

    2015-01-01

    Exposure to chrysotile asbestos exposure is associated with an increased risk of mortality in combination with pulmonary diseases including lung cancer, mesothelioma and asbestosis. Multiple mechanisms by which chrysotile asbestos fibers induce pulmonary disease have been identified, however the role of apoptosis in human lung alveolar epithelial cells (AEC) has not yet been fully explored. Accumulating evidence implicates AEC apoptosis as a crucial event in the development of both idiopathic pulmonary fibrosis and asbestosis. The aim of the present study was to determine whether chrysotile asbestos induces mitochondria-regulated (intrinsic) AEC apoptosis and, if so, whether this induction occurs via the activation of mitogen-activated protein kinases (MAPK). Human A549 bronchoalveolar carcinoma-derived cells with alveolar epithelial type II-like features were used. The present study showed that chrysotile asbestos induced a dose- and time-dependent decrease in A549 cell viability, which was accompanied by the activation of the MAPK c-Jun N-terminal kinases (JNK), but not the MAPKs extracellular signal-regulated kinase 1/2 and p38. Chrysotile asbestos was also shown to induce intrinsic AEC apoptosis, as evidenced by the upregulation of the pro-apoptotic genes Bax and Bak, alongside the activation of caspase-9, poly (ADP-ribose) polymerase (PARP), and the release of cytochrome c. Furthermore, the specific JNK inhibitor SP600125 blocked chrysotile asbestos-induced JNK activation and subsequent apoptosis, as assessed by both caspase-9 cleavage and PARP activation. The results of the present study demonstrated that chrysotile asbestos induces intrinsic AEC apoptosis by a JNK-dependent mechanism, and suggests a potential novel target for the modulation of chrysotile asbestos-associated lung diseases. PMID:25530474

  15. The c-Jun N-terminal kinase signaling pathway mediates chrysotile asbestos-induced alveolar epithelial cell apoptosis.

    PubMed

    Li, Peng; Liu, Tie; Kamp, David W; Lin, Ziying; Wang, Yahong; Li, Donghong; Yang, Lawei; He, Huijuan; Liu, Gang

    2015-05-01

    Exposure to chrysotile asbestos exposure is associated with an increased risk of mortality in combination with pulmonary diseases including lung cancer, mesothelioma and asbestosis. Multiple mechanisms by which chrysotile asbestos fibers induce pulmonary disease have been identified, however the role of apoptosis in human lung alveolar epithelial cells (AEC) has not yet been fully explored. Accumulating evidence implicates AEC apoptosis as a crucial event in the development of both idiopathic pulmonary fibrosis and asbestosis. The aim of the present study was to determine whether chrysotile asbestos induces mitochondria‑regulated (intrinsic) AEC apoptosis and, if so, whether this induction occurs via the activation of mitogen‑activated protein kinases (MAPK). Human A549 bronchoalveolar carcinoma‑derived cells with alveolar epithelial type II‑like features were used. The present study showed that chrysotile asbestos induced a dose‑ and time‑dependent decrease in A549 cell viability, which was accompanied by the activation of the MAPK c‑Jun N‑terminal kinases (JNK), but not the MAPKs extracellular signal‑regulated kinase 1/2 and p38. Chrysotile asbestos was also shown to induce intrinsic AEC apoptosis, as evidenced by the upregulation of the pro‑apoptotic genes Bax and Bak, alongside the activation of caspase‑9, poly (ADP‑ribose) polymerase (PARP), and the release of cytochrome c. Furthermore, the specific JNK inhibitor SP600125 blocked chrysotile asbestos‑induced JNK activation and subsequent apoptosis, as assessed by both caspase‑9 cleavage and PARP activation. The results of the present study demonstrated that chrysotile asbestos induces intrinsic AEC apoptosis by a JNK‑dependent mechanism, and suggests a potential novel target for the modulation of chrysotile asbestos‑associated lung diseases.

  16. Evasion of TNF-α-mediated apoptosis by hepatitis C virus.

    PubMed

    Kim, Hangeun; Ray, Ranjit

    2014-01-01

    Hepatitis C virus (HCV) often causes chronic infection in humans, although the mechanisms for viral chronicity are not clearly understood. Tumor necrosis factor-α (TNF-α)-mediated apoptosis is a key element in a host organism's defense inhibiting viral spread and persistence. HCV has evolved mechanisms that antagonize host cell death signals so that virus propagation can continue unabated in infected cells. HCV core protein blocks TNF-α-mediated apoptosis signaling and inhibits caspase-8 activation by sustaining the expression of cellular FADD-like interleukin-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP). HCV core protein also blocks TNF-induced proteolytic cleavage of the death substrate poly (SDP-ribose) polymerase from its native 116-kDa protein to the characteristic 85-kDa polypeptide. A decrease in endogenous c-FLIP by specific small-interfering RNA induces TNF-α-mediated apoptotic cell death and caspase-8 activation. However, HCV core neither affects the association between TNF receptor 1 (TNFR1) and TNFR1-associated death domain protein (TRADD) nor TRADD-Fas-associated death domain protein (FADD) and procaspase-8. Thus, HCV core protein appears to play a role in the inhibition of TNF-α-mediated cell death. This chapter describes methods to identify inhibitory mechanism of HCV for TNF-α-mediated apoptosis.

  17. Kupffer cells of cirrhotic rat livers sensitize colon cancer cells to Fas-mediated apoptosis.

    PubMed

    Song, E; Chen, J; Ouyang, N; Wang, M; Exton, M S; Heemann, U

    2001-05-04

    Metastasis of colorectal carcinomas rarely occurs in cirrhotic livers. Our study investigated the influence of activated Kupffer cells from cirrhotic rat livers on hepatic colonization and FasR-mediated apoptosis of colon cancer cells. A rat colon cancer cell line, RCN-9, was used to inoculate rat livers. Treatment with conditioned media of Kupffer cells isolated from CCl(4)-induced cirrhotic rat livers (cirrhotic KCM) significantly reduced the incidence of hepatic colonization of RCN-9 cells. In vitro cytotoxicity of Kupffer cells and tumour infiltrating lymphocytes (TILs) on RCN-9 cells was evaluated using [(3)H]-release assay. RCN-9 cells were resistant to cytotoxicity mediated by cirrhotic Kupffer cells, but were sensitized to TIL-mediated killing after treatment with cirrhotic KCM. The specific killing induced by TILs was FasR-mediated, as it was inhibited by ZB4, an antagonistic anti-FasR antibody. In agreement, cirrhotic KCM increased recombinant Fas ligand-induced apoptosis of RCN-9 cells, and up-regulated FasR expression on RCN-9 cells as evaluated by RT-PCR and flow cytometry. These findings suggest that Kupffer cells in cirrhotic livers sensitize metastatic colon cancer cells to FasR-mediated apoptosis by up-regulating the receptors, which thus prepare them to be eliminated by infiltrating lymphocytes.

  18. Low dose gamma irradiation enhances defined signaling components of intercellular reactive oxygen-mediated apoptosis induction

    NASA Astrophysics Data System (ADS)

    Bauer, G.

    2011-01-01

    Transformed cells are selectively removed by intercellular ROS-mediated induction of apoptosis. Signaling is based on the HOCl and the NO/peroxynitrite pathway (major pathways) and the nitryl chloride and the metal-catalyzed Haber-Weiss pathway (minor pathways). During tumor progression, resistance against intercellular induction of apoptosis is acquired through expression of membrane-associated catalase. Low dose radiation of nontransformed cells has been shown to enhance intercellular induction of apoptosis. The present study was performed to define the signaling components which are modulated by low dose gamma irradiation. Low dose radiation induced the release of peroxidase from nontransformed, transformed and tumor cells. Extracellular superoxide anion generation was strongly enhanced in the case of transformed cells and tumor cells, but not in nontransformed cells. Enhancement of peroxidase release and superoxide anion generation either increased intercellular induction of apoptosis of transformed cells, or caused a partial protection under specific signaling conditions. In tumor cells, low dose radiation enhanced the production of major signaling components, but this had no effect on apoptosis induction, due to the strong resistance mechanism of tumor cells. Our data specify the nature of low dose radiation-induced effects on specific signaling components of intercellular induction of apoptosis at defined stages of multistep carcinogenesis.

  19. INOSITOL HEXAKISPHOSPHATE MEDIATES APOPTOSIS IN HUMAN BREAST ADENOCARCINOMA MCF-7 CELL LINE VIA INTRINSIC PATHWAY

    SciTech Connect

    Agarwal, Rakhee; Ali, Nawab

    2010-04-12

    Inositol polyphosphates (InsP{sub s}) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP{sub 6}) is the most abundant among all InsP{sub s} and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsP{sub s} also regulate cellular signaling mechanisms. InsP{sub s} have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP{sub 6} dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsP{sub s} tested (InsP{sub 3}, InsP{sub 4}, InsP{sub 5}, and InsP{sub 6}), InsP{sub 6} was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP{sub 6} were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP{sub 6} induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  20. Inositol Hexakisphosphate Mediates Apoptosis in Human Breast Adenocarcinoma MCF-7 Cell Line via Intrinsic Pathway

    NASA Astrophysics Data System (ADS)

    Agarwal, Rakhee; Ali, Nawab

    2010-04-01

    Inositol polyphosphates (InsPs) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP6) is the most abundant among all InsPs and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsPs also regulate cellular signaling mechanisms. InsPs have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP6 dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsPs tested (InsP3, InsP4, InsP5, and InsP6), InsP6 was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP6 were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP6 induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  1. Notch protection against apoptosis in T-ALL cells mediated by GIMAP5.

    PubMed

    Chadwick, Nicholas; Zeef, Leo; Portillo, Virginia; Boros, Joanna; Hoyle, Sarah; van Doesburg, Jaap C L; Buckle, Anne-Marie

    2010-10-15

    Recent studies have highlighted the role of Notch signalling in the development of T cell acute lymphoblasic leukaemia (T-ALL). Over-expression of Notch3 and gain of function mutations in the Notch1 gene have been reported. The aims of this study were to determine the effect of Notch signalling on apoptosis in human T-ALL cell lines and to identify targets of Notch signalling that may mediate this effect. Functional studies showed that inhibition of Notch signalling using gamma secretase inhibitors promoted glucocorticoid-induced apoptosis in cells carrying gain of function mutations in Notch1. Moreover, ectopic expression of constitutively activated Notch provided protection against glucocorticoid-induced apoptosis, indicating that signalling via Notch may also contribute to the development of T-ALL by conferring resistance to apoptosis. Microarray analysis revealed that GIMAP5, a gene coding for an anti-apoptotic intracellular protein, is upregulated by Notch in T-ALL cell lines. Knockdown of GIMAP5 expression using siRNA promoted glucocorticoid-induced apoptosis in T-ALL cells carrying gain of function mutations in Notch1 and in T-ALL cells engineered to express ectopic constitutively activated Notch indicating that Notch signalling protects T-ALL cells from apoptosis by upregulating the expression of GIMAP5.

  2. BRCA1 regulates PIG3-mediated apoptosis in a p53-dependent manner.

    PubMed

    Zhang, Wenwen; Luo, Jiayan; Chen, Fengxia; Yang, Fang; Song, Wei; Zhu, Aiyu; Guan, Xiaoxiang

    2015-04-10

    BRCA1 plays a key role in the regulation of p53-dependent target gene transcription activation. Meanwhile, the p53 inducible gene 3 (PIG3) is a downstream target of p53 and is involved in p53-initiated apoptosis. However, little is known about whether BRCA1 can regulate PIG3-mediated apoptosis. Using a tissue microarray containing 149 breast cancer patient samples, we found that BRCA1 and PIG3 expression status were significantly positively correlated (r = 0.678, P < 0.001) and identified a significant positive correlation between high expression of BRCA1 and/or PIG3 and overall survival (OS). Moreover, we reveal that overexpression of BRCA1 significantly increased expression of PIG3 in cells with intact p53, whereas no increase in PIG3 was observed in p53-null MDA-MB-157 cells and p53-depleted HCT116p53-/- cells. Meanwhile, ectopic expression of BRCA1 could not lead to an increase expression level of prohibitin (PHB), which we have previously identified to induce PIG3-mediated apoptosis. Finally, ChIP analysis revealed that PHB can bind to the PIG3 promoter and activate PIG3 transcription independent of p53, although p53 presence did enhance this process. Taken together, our findings suggest that BRCA1 regulates PIG3-mediated apoptosis in a p53-dependent manner, and that PIG3 expression is associated with a better OS in breast cancer patients.

  3. Silver Nanoparticles Induce HePG-2 Cells Apoptosis Through ROS-Mediated Signaling Pathways

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Li, Yinghua; Lin, Zhengfang; Zhao, Mingqi; Xu, Tiantian; Wang, Changbing; Deng, Ning

    2016-04-01

    Recently, silver nanoparticles (AgNPs) have been shown to provide a novel approach to overcome tumors, especially those of hepatocarcinoma. However, the anticancer mechanism of silver nanoparticles is unclear. Thus, the purpose of this study was to estimate the effect of AgNPs on proliferation and activation of ROS-mediated signaling pathway on human hepatocellular carcinoma HePG-2 cells. A simple chemical method for preparing AgNPs with superior anticancer activity has been showed in this study. AgNPs were detected by transmission electronic microscopy (TEM) and energy dispersive X-ray (EDX). The size distribution and zeta potential of silver nanoparticles were detected by Zetasizer Nano. The average size of AgNPs (2 nm) observably increased the cellular uptake by endocytosis. AgNPs markedly inhibited the proliferation of HePG-2 cells through induction of apoptosis with caspase-3 activation and PARP cleavage. AgNPs with dose-dependent manner significantly increased the apoptotic cell population (sub-G1). Furthermore, AgNP-induced apoptosis was found dependent on the overproduction of reactive oxygen species (ROS) and affecting of MAPKs and AKT signaling and DNA damage-mediated p53 phosphorylation to advance HePG-2 cells apoptosis. Therefore, our results show that the mechanism of ROS-mediated signaling pathways may provide useful information in AgNP-induced HePG-2 cell apoptosis.

  4. Mouse mammary tumor virus suppresses apoptosis of mammary epithelial cells through ITAM-mediated signaling.

    PubMed

    Kim, Hyoung H; Grande, Shannon M; Monroe, John G; Ross, Susan R

    2012-12-01

    Many receptors in hematopoietic cells use a common signaling pathway that relies on a highly conserved immunoreceptor tyrosine-based activation motif (ITAM), which signals through Src family tyrosine kinases. ITAM-bearing proteins are also found in many oncogenic viruses, including the mouse mammary tumor virus (MMTV) envelope (Env). We previously showed that MMTV Env expression transformed normal mammary epithelial cells and that Src kinases were important mediators in this transformation. To study how ITAM signaling affects mammary cell transformation, we utilized mammary cell lines expressing two different ITAM-containing proteins, one encoding a MMTV provirus and the other a B cell receptor fusion protein. ITAM-expressing cells were resistant to both serum starvation- and chemotherapeutic drug-induced apoptosis, whereas cells transduced with these molecules bearing ITAM mutations were indistinguishable from untransduced cells in their sensitivity to these treatments. We also found that Src kinase was activated in the MMTV-expressing cells and that MMTV-induced apoptosis resistance was completely restored by the Src inhibitor PP2. In vivo, MMTV infection delayed involution-induced apoptosis in the mouse mammary gland. Our results show that MMTV suppresses apoptosis through ITAM-mediated Src tyrosine kinase signaling. These studies could lead to the development of effective treatment of nonhematopoietic cell cancers in which ITAM-mediated signaling plays a role.

  5. P53 mediates amosite asbestos-induced alveolar epithelial cell mitochondria-regulated apoptosis.

    PubMed

    Panduri, Vijayalakshmi; Surapureddi, Sailesh; Soberanes, Saul; Weitzman, Sigmund A; Chandel, Navdeep; Kamp, David W

    2006-04-01

    Asbestos causes pulmonary toxicity in part by generating reactive oxygen species that cause DNA damage. We previously showed that the mitochondria-regulated (intrinsic) death pathway mediates alveolar epithelial cell (AEC) DNA damage and apoptosis. Because p53 regulates the DNA damage response in part by inducing intrinsic cell death, we determined whether p53-dependent transcriptional activity mediates asbestos-induced AEC mitochondrial dysfunction and apoptosis. We show that inhibitors of p53-dependent transcriptional activation (pifithrin and type 16-E6 protein) block asbestos-induced AEC mitochondrial membrane potential change (DeltaPsim), caspase 9 activation, and apoptosis. We demonstrate that asbestos activates p53 promoter activity, mRNA levels, protein expression, and Bax and p53 mitochondrial translocation. Further, pifithrin, E6, phytic acid, or rho(0)-A549 cells (cells incapable of mitochondrial reactive oxygen species production) block asbestos-induced p53 activation. Finally, we show that asbestos augments p53 expression in cells at the bronchoalveolar duct junctions of rat lungs and that phytic acid prevents this. These data suggest that p53-dependent transcription pathways mediate asbestos-induced AEC mitochondria-regulated apoptosis. This suggests an important interactive effect between p53 and the mitochondria in the pathogenesis of asbestos-induced pulmonary toxicity that may have broader implications for our understanding of pulmonary fibrosis and lung cancer.

  6. Intracellular mechanisms mediating tocotrienol-induced apoptosis in neoplastic mammary epithelial cells.

    PubMed

    Sylvester, Paul W; Shah, Sumit

    2005-01-01

    Tocotrienols and tocopherols represent the two subgroups that make up the vitamin E family of compounds. However, tocotrienols display significantly more potent apoptotic activity in neoplastic mammary epithelial cells than tocopherols. Studies were conducted to determine the intracellular mechanism(s) mediating tocotrienol-induced apoptosis in neoplastic +SA mouse mammary epithelial cells in vitro. An initial step in apoptosis is the activation of 'initiator' caspases (caspase-8 or -9) that subsequently activate 'effector' caspases (caspase-3, -6 and -7) and induce apoptosis. Treatment with cytotoxic doses of alpha-tocotrienol (20 microM) resulted in a time-dependent increase in caspase-8 and caspase-3 activity. Combined treatment with specific caspase-8 or caspase-3 inhibitors completely blocked alpha-tocotrienol-induced apoptosis and caspase-8 or caspase-3 activity, respectively. In contrast, alpha-tocotrienol treatment had no effect on caspase-9 activation, and combined treatment with a specific caspase-9 inhibitor did not block alpha-tocotrienol-induced apoptosis in (+)SA cells. Since caspase-8 activation is associated with the activation of death receptors, such as Fas, tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL) receptors, studies were conducted to determine the exact death receptor(s) and ligand(s) involved in mediating tocotrienol-induced caspase-8 activation and apoptosis. Treatment with Fas-ligand (FasL), Fas-activating antibody, or TRAIL failed to induce cell death in (+)SA neoplastic mammary epithelial cells, suggesting that these cells are resistant to death receptor-induced apoptosis. Moreover, treatment with cytotoxic doses of alpha-tocotrienol did not alter the intracellular levels of Fas, FasL, or Fas-associated death domain (FADD) in these cells. Western blot analysis also showed that alpha-tocotrienol did not induce FasL or FADD translocation from the cytosolic to membrane fraction in these cells. Finally

  7. Effects of Fluoride on DNA Damage and Caspase-Mediated Apoptosis in the Liver of Rats.

    PubMed

    Song, Guo Hua; Huang, Fu Bing; Gao, Ji Ping; Liu, Mao Lin; Pang, Wen Biao; Li, Wei bin; Yan, Xiao Yan; Huo, Mei Jun; Yang, Xia

    2015-08-01

    Fluoride compounds are abundant and widely distributed in the environment at a variety of concentrations. Further, fluoride induces toxic effects in target organs such as the liver. In this study, we investigated liver histopathology, DNA damage, apoptosis, and the mRNA and protein expressions of caspase-3 and -9 in the rat livers by administering varying concentrations of fluoride (0, 50, 100, 200 mg/L ) for 120 days. The results showed fluoride-induced morphological changes and significantly increased apoptosis and DNA damage in rats exposed to fluoride, especially in response to higher doses. The immunohistochemical and qRT-PCR results indicated that caspase-3, caspase-9 protein positive expression and mRNA relative expression enhanced with increasing NaF concentration. In summary, our findings suggest that chronic exposure to fluoride causes damages to liver histopathology and leads to liver apoptosis through caspase-mediated pathways.

  8. Decreased linear ubiquitination of NEMO and FADD on apoptosis with caspase-mediated cleavage of HOIP.

    PubMed

    Goto, Eiji; Tokunaga, Fuminori

    2017-02-09

    NF-κB is crucial to regulate immune and inflammatory responses and cell survival. LUBAC generates a linear ubiquitin chain and activates NF-κB through ubiquitin ligase (E3) activity in the HOIP subunit. Here, we show that HOIP is predominantly cleaved by caspase at Asp390 upon apoptosis, and that is subjected to proteasomal degradation. We identified that FADD, as well as NEMO, is a substrate for LUBAC. Although the C-terminal fragment of HOIP retains NF-κB activity, linear ubiquitination of NEMO and FADD decreases upon apoptosis. Moreover, the N-terminal fragment of HOIP binds with deubiquitinases, such as OTULIN and CYLD-SPATA2. These results indicate that caspase-mediated cleavage of HOIP divides critical functional regions of HOIP, and that this regulates linear (de)ubiquitination of substrates upon apoptosis.

  9. Bushen Zhuangjin decoction inhibits TM-induced chondrocyte apoptosis mediated by endoplasmic reticulum stress

    PubMed Central

    LIN, PINGDONG; WENG, XIAPING; LIU, FAYUAN; MA, YUHUAN; CHEN, HOUHUANG; SHAO, XIANG; ZHENG, WENWEI; LIU, XIANXIANG; YE, HONGZHI; LI, XIHAI

    2015-01-01

    Chondrocyte apoptosis triggered by endoplasmic reticulum (ER) stress plays a vital role in the pathogenesis of osteoarthritis (OA). Bushen Zhuangjin decoction (BZD) has been widely used in the treatment of OA. However, the cellular and molecular mechanisms responsible for the inhibitory effects of BZD on chondrocyte apoptosis remain to be elucidated. In the present study, we investigated the effects of BZD on ER stress-induced chondrocyte apoptosis using a chondrocyte in vitro model of OA. Chondrocytes obtained from the articular cartilage of the knee joints of Sprague Dawley (SD) rats were detected by immunohistochemical staining for type II collagen. The ER stress-mediated apoptosis of tunicamycin (TM)-stimulated chondrocytes was detected using 4-phenylbutyric acid (4-PBA). We found that 4-PBA inhibited TM-induced chondrocyte apoptosis, which confirmed the successful induction of chondrocyte apoptosis. BZD enhanced the viability of the TM-stimulated chondrocytes in a dose- and time-dependent manner, as shown by MTT assay. The apoptotic rate and the loss of mitochondrial membrane potential (ΔΨm) of the TM-stimulated chondrocytes treated with BZD was markedly decreased compared with those of chondrocytes not treated with BZD, as shown by 4′,6-diamidino-2-phenylindole (DAPI) staining, Annexin V-FITC binding assay and JC-1 assay. To further elucidate the mechanisms responsible for the inhibitory effects of BZD on TM-induced chondrocyte apoptosis mediated by ER stress, the mRNA and protein expression levels of binding immunoglobulin protein (Bip), X-box binding protein 1 (Xbp1), activating transcription factor 4 (Atf4), C/EBP-homologous protein (Chop), caspase-9, caspase-3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were measured by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. In the TM-stimulated chondrocytes treated with BZD, the mRNA and protein expression levels of Bip, Atf4, Chop, caspase-9, caspase-3

  10. Bushen Zhuangjin decoction inhibits TM-induced chondrocyte apoptosis mediated by endoplasmic reticulum stress.

    PubMed

    Lin, Pingdong; Weng, Xiaping; Liu, Fayuan; Ma, Yuhuan; Chen, Houhuang; Shao, Xiang; Zheng, Wenwei; Liu, Xianxiang; Ye, Hongzhi; Li, Xihai

    2015-12-01

    Chondrocyte apoptosis triggered by endoplasmic reticulum (ER) stress plays a vital role in the pathogenesis of osteoarthritis (OA). Bushen Zhuangjin decoction (BZD) has been widely used in the treatment of OA. However, the cellular and molecular mechanisms responsible for the inhibitory effects of BZD on chondrocyte apoptosis remain to be elucidated. In the present study, we investigated the effects of BZD on ER stress-induced chondrocyte apoptosis using a chondrocyte in vitro model of OA. Chondrocytes obtained from the articular cartilage of the knee joints of Sprague Dawley (SD) rats were detected by immunohistochemical staining for type Ⅱ collagen. The ER stress-mediated apoptosis of tunicamycin (TM)‑stimulated chondrocytes was detected using 4-phenylbutyric acid (4‑PBA). We found that 4‑PBA inhibited TM-induced chondrocyte apoptosis, which confirmed the successful induction of chondrocyte apoptosis. BZD enhanced the viability of the TM-stimulated chondrocytes in a dose- and time-dependent manner, as shown by MTT assay. The apoptotic rate and the loss of mitochondrial membrane potential (ΔΨm) of the TM-stimulated chondrocytes treated with BZD was markedly decreased compared with those of chondrocytes not treated with BZD, as shown by 4',6-diamidino-2-phenylindole (DAPI) staining, Annexin V-FITC binding assay and JC-1 assay. To further elucidate the mechanisms responsible for the inhibitory effects of BZD on TM‑induced chondrocyte apoptosis mediated by ER stress, the mRNA and protein expression levels of binding immunoglobulin protein (Bip), X‑box binding protein 1 (Xbp1), activating transcription factor 4 (Atf4), C/EBP‑homologous protein (Chop), caspase‑9, caspase-3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were measured by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. In the TM-stimulated chondrocytes treated with BZD, the mRNA and protein expression levels of Bip, Atf4, Chop, caspase

  11. Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells

    PubMed Central

    Hossain, Md. Zakir; Kleve, Maurice G

    2011-01-01

    Background The ability to evade apoptosis is one of the key properties of cancer. The apoptogenic effect of nickel nanowires (Ni NWs) on cancer cell lines has never been adequately addressed. Due to the unique physicochemical characteristics of Ni NWs, we envision the development of a novel anticancer therapeutics specifically for pancreatic cancer. Thus, we investigated whether Ni NWs induce ROS-mediated apoptosis in human pancreatic adenocarcinoma (Panc-1) cells. Methods In this study Ni NWs were fabricated using the electrodeposition method. Synthesized Ni NWs were physically characterized by energy dispersive X-ray analysis, UV-Vis spectroscopy of NanoDrop 2000 (UV-Vis), magnetization study, scanning electron microscopy, and transmission electron microscopy. Assessment of morphological apoptotic characteristics by phase contrast microscopy (PCM), Ni-NWs-induced apoptosis staining with ethidium bromide (EB) and acridine orange (AO) followed by fluorescence microscopy (FM) was performed. For molecular biological and biochemical characterization, Panc-1 cell culture and cytotoxic effect of Ni NWs were determined by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Quantitative apoptosis was analyzed by flow cytometry staining with propidium iodide through cell cycle arrest and generation of ROS using 2′, 7′-dichlorofluorescein diacetate fluorescence intensity. In all experiments, Panc-1 cancer cells without any treatment were used as the negative controls. Results The intracellular uptake of Ni NWs through endocytosis by Panc-1 cells was observed by PCM. EB and AO staining of FM and MTT assay qualitatively and quantitatively confirmed the extent of apoptosis. Flow cytometric cell cycle arrest and ROS generation indicated Ni NWs as inducers of apoptotic cell death. Conclusion We investigated the role of Ni NWs as inducers of ROS-mediated apoptosis in Panc-1 cells. These results suggested that Ni NWs could be an effective

  12. Mitochondrial-derived free radicals mediate asbestos-induced alveolar epithelial cell apoptosis.

    PubMed

    Panduri, Vijayalakshmi; Weitzman, Sigmund A; Chandel, Navdeep S; Kamp, David W

    2004-06-01

    Asbestos causes pulmonary toxicity by mechanisms that in part involve reactive oxygen species (ROS). However, the precise source of ROS is unclear. We showed that asbestos induces alveolar epithelial cell (AEC) apoptosis by a mitochondrial-regulated death pathway. To determine whether mitochondrial-derived ROS are necessary for causing asbestos-induced AEC apoptosis, we utilized A549-rho(omicron) cells that lack mitochondrial DNA and a functional electron transport. As expected, antimycin, which induces an oxidative stress by blocking mitochondrial electron transport at complex III, increased dichlorofluoroscein (DCF) fluorescence in A549 cells but not in A549-rho(omicron) cells. Compared with A549 cells, rho(omicron) cells have less asbestos-induced ROS production, as assessed by DCF fluorescence, and reductions in total glutathione levels as well as less caspase-9 activation and apoptosis, as assessed by TdT-mediated dUTP nick end labeling staining and DNA fragmentation. A mitochondrial anion channel inhibitor that prevents ROS release from the mitochondria to the cytoplasm also blocked asbestos-induced A549 cell caspase-9 activation and apoptosis. Finally, a role for nonmitochondrial-derived ROS with exposure to high levels of asbestos (50 microg/cm(2)) was suggested by our findings that an iron chelator (phytic acid or deferoxamine) or a free radical scavenger (sodium benzoate) provided additional protection against asbestos-induced caspase-9 activation and DNA fragmentation in rho(omicron) cells. We conclude that asbestos fibers affect mitochondrial DNA and functional electron transport, resulting in mitochondrial-derived ROS production that in turn mediates AEC apoptosis. Nonmitochondrial-associated ROS may also contribute to AEC apoptosis, particularly with high levels of asbestos exposure.

  13. Glutamine deprivation sensitizes human breast cancer MDA-MB-231 cells to TRIAL-mediated apoptosis.

    PubMed

    Dilshara, Matharage Gayani; Jeong, Jin-Woo; Prasad Tharanga Jayasooriya, Rajapaksha Gedara; Neelaka Molagoda, Ilandarage Menu; Lee, Seungheon; Park, Sang Rul; Choi, Yung Hyun; Kim, Gi-Young

    2017-04-01

    Tumor cell metabolism is a promising target for various cancer treatments. Apart from aerobic glycolysis, cancer cell growth is dependent on glutamine (Gln) supply, leading to their survival and differentiation. Therefore, we examined whether treatment with TNF-related apoptosis-inducing ligand (TRAIL) sensitizes MDA-MB-231 cells to apoptosis under Gln deprivation condition (TRAIL/Gln deprivation). Gln deprivation decreased cell proliferation as expected, but did not induce remarkable cell death. TRAIL/Gln deprivation, however, significantly increased growth inhibition and morphological shrinkage of MDA-MB-231 cells compared to those induced by treatment with either Gln deprivation or TRAIL alone. Moreover, TRAIL/Gln deprivation upregulated the apoptotic sub-G1 phase accompanied with a remarkable decrease of pro-caspase-3, pro-caspase-9, and anti-apoptotic xIAP, and Bcl-2. Increased cleavage of PARP and pro-apoptotic Bid protein expression suggests that TRAIL/Gln deprivation triggers mitochondrion-mediated apoptosis in MDA-MB-231 cells. Additionally, TRAIL/Gln deprivation upregulated the expression of endoplasmic reticulum (ER) stress markers such as ATF4 and phosphorylated eIF2α, thereby enhancing the C/EBP homologous protein (CHOP) protein level. Transient knockdown of CHOP partically reversed TRAIL/Gln deprivation-mediated apoptosis. Accordingly, TRAIL/Gln deprivation enhanced the expression of death receptor 5 (DR5) and transient knockdown of DR5 completely restored TRAIL/Gln deprivation-mediated apoptosis. Taken together, our results suggest that Gln deprivation conditions can be used for the development of new therapies for TRAIL-resistant cancers.

  14. Growth Hormone Mediates Its Protective Effect in Hepatic Apoptosis through Hnf6

    PubMed Central

    Wang, Kewei; Wang, Minhua; Gannon, Maureen

    2016-01-01

    Background and Aims Growth hormone (GH) not only supports hepatic metabolism but also protects against hepatocyte cell death. Hnf6 (or Oc1) belonging to the Onecut family of hepatocyte transcription factors known to regulate differentiated hepatic function, is a GH-responsive gene. We evaluate if GH mediates Hnf6 activity to attenuate hepatic apoptotic injury. Methods We used an animal model of hepatic apoptosis by bile duct ligation (BDL) with Hnf6 -/- (KO) mice in which hepatic Hnf6 was conditionally inactivated. GH was administered to adult wild type WT and KO mice for the 7 days of BDL to enhance Hnf6 expression. In vitro, primary hepatocytes derived from KO and WT liver were treated with LPS and hepatocyte apoptosis was assessed with and without GH treatment. Results In WT mice, GH treatment enhanced Hnf6 expression during BDL, inhibited Caspase -3, -8 and -9 responses and diminished hepatic apoptotic and fibrotic injury. GH-mediated upregulation of Hnf6 expression and parallel suppression of apoptosis and fibrosis in WT BDL liver were abrogated in KO mice. LPS activated apoptosis and suppressed Hnf6 expression in primary hepatocytes. GH/LPS co-treatment enhanced Hnf6 expression with corresponding attenuation of apoptosis in WT-derived hepatocytes, but not in KO hepatocytes. ChiP-on-ChiP and electromobility shift assays of KO and WT liver nuclear extracts identified Ciap1 (or Birc2) as an Hnf6-bound target gene. Ciap1 expression patterns closely follow Hnf6 expression in the liver and in hepatocytes. Conclusion GH broad protective actions on hepatocytes during liver injury are effected through Hnf6, with Hnf6 transcriptional activation of Ciap1 as an underlying molecular mediator. PMID:27936029

  15. Involvement of apoptosis in mediating mitomycin C-induced teratogenesis in vitro.

    PubMed

    Singh, Gyanendra; Sinha, Neeraj

    2010-05-01

    Mitomycin C (MMC) is among the most commonly used drugs worldwide and is known to cause congenital malformations and fetal death in animals. In this study, the effect of MMC on major organogenesis period and the role of apoptosis in mediating congenital malformations have been carried out. In the present study, post-implantation rat embryos of day 11 were cultured for 24 h with various concentrations of MMC, i.e. 1, 10, and 100 microg/ml cultures. The growth and developmental of each embryo was evaluated and compared with control ones for the presence of any malformations. The MMC decreased all growth and developmental parameters in a concentration-dependent manner, when compared with control. However, exposure to MMC at 1 microg/ml culture did not show any significant effect on embryonic growth and development. Parallel to this, flow cytometric analysis (cell cycle and annexin V binding) and DNA fragmentation assay were carried out followed by quantitation by 3'-OH labeling of cultured rat embryos to evaluate the role of apoptosis in bringing about MMC-induced teratogenesis. All results were found to be dose-dependent and an increase in apoptosis in embryonic tissues may be related to the increased risk of congenital malformations. The data suggested that apoptosis might be involved in mediating teratogenesis of MMC in vitro.

  16. Role of apoptosis in mediating salicylic acid-induced teratogenesis in vitro.

    PubMed

    Singh, Gyanendra; Sinha, Neeraj; Mahipag G, S N R

    2009-02-01

    Salicylic acid (SAL) is among the most commonly used drugs worldwide and is known to cause congenital malformations and fetal death in animals. In this study, the effect of SAL on major organogenesis period and the role of apoptosis in mediating congenital malformations have been carried out. In the present study, post-implantation rat embryos of day 11 were cultured for 24 h with various concentrations of SAL, i.e. 10, 100, and 1000 microg/ml cultures, respectively. The growth and developmental of each embryo was evaluated and compared with control ones for the presence of any malformations. The SAL decreased all growth and developmental parameters in a concentration-dependent manner, when compared with control. However, exposure to SAL at 10 microg/ml culture did not show any significant effect on embryonic growth and development. Parallel to this, flow cytometric analysis (cell cycle and annexin V binding) and DNA fragmentation assay were carried out followed by quantitation by 3'-OH labeling of cultured rat embryos to evaluate the role of apoptosis in bringing about SAL-induced teratogenesis. All results were found to be dose-dependent and an increase in apoptosis in embryonic tissues may be related to the increased risk of congenital malformations. The data suggested that apoptosis might be involved in mediating teratogenesis of SAL in vitro.

  17. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  18. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2010-10-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  19. Immunohistochemical detection of extrinsic and intrinsic mediators of apoptosis in porcine paraffin-embedded tissues.

    PubMed

    Barranco, Inmaculada; Gómez-Laguna, Jaime; Rodríguez-Gómez, Irene M; Salguero, Francisco J; Pallarés, Francisco J; Bernabé, Antonio; Carrasco, Librado

    2011-02-15

    Apoptosis is a strictly regulated mechanism of cell death that involves a complex network of biochemical pathways. Whether a cell undergoes apoptosis or not depends on a delicate balance of anti- and pro-apoptotic stimuli. This phenomenon can be induced by two different pathways: intrinsic and extrinsic pathways. The main aim of this study was to determine the ideal fixative and antigen retrieval method in porcine paraffin embedded tissues for the immunohistochemical detection of apoptosis mediators, from both extrinsic and intrinsic pathways. Tonsil, retropharyngeal lymph node and lung tissue samples were fixed in 10% neutral buffered formalin, Bouin solution and zinc salts fixative (ZSF) and different unmasking methods were carried out. Both 10% neutral buffered formalin and ZSF resulted as the fixatives of election to study apoptosis phenomena. Tween 20 (0.01% in PBS), citrate buffer (microwave, pH 6.0) and/or protease type XIV were the antigen retrieval methods which displayed better labelling. Our results allow to deep in the knowledge of apoptosis and its role in the pathogenesis of porcine diseases.

  20. Chk2 regulates transcription-independent p53-mediated apoptosis in response to DNA damage

    SciTech Connect

    Chen Chen; Shimizu, Shigeomi; Tsujimoto, Yoshihide; Motoyama, Noboru . E-mail: motoyama@nils.go.jp

    2005-07-29

    The tumor suppressor protein p53 plays a central role in the induction of apoptosis in response to genotoxic stress. The protein kinase Chk2 is an important regulator of p53 function in mammalian cells exposed to ionizing radiation (IR). Cells derived from Chk2-deficient mice are resistant to the induction of apoptosis by IR, and this resistance has been thought to be a result of the defective transcriptional activation of p53 target genes. It was recently shown, however, that p53 itself and histone H1.2 translocate to mitochondria and thereby induces apoptosis in a transcription-independent manner in response to IR. We have now examined whether Chk2 also regulates the transcription-independent induction of apoptosis by p53 and histone H1.2. The reduced ability of IR to induce p53 stabilization in Chk2-deficient thymocytes was associated with a marked impairment of p53 and histone H1 translocation to mitochondria. These results suggest that Chk2 regulates the transcription-independent mechanism of p53-mediated apoptosis by inducing stabilization of p53 in response to IR.

  1. PTEN Reduced UVB-Mediated Apoptosis in Retinal Pigment Epithelium Cells

    PubMed Central

    He, Jia; Long, Chongde; Huang, Zixin; Zhou, Xin; Kuang, Xielan; Liu, Lanying; Liu, Huijun; Tang, Yan; Fan, Yuting; Ning, Jie; Ma, Xinqi; Zhang, Qingjiong

    2017-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness and progressive loss of central vision in the elderly population. The important factor of AMD pathogenesis is the degeneration of retinal pigment epithelial (RPE) cells by oxidative stress. Inactivation of PTEN can disrupt intercellular adhesion in the RPE cells, but the mechanism of oxidative stress is less known. Here we presented evidence that UVB-mediated oxidative stress induced apoptosis in ARPE-19 cells. Downregulation of the expression of PTEN in UVB-irradiative RPE cells triggered DNA damage and increased the level of UVB-induced apoptosis by activating p53-dependent pathway. However, overexpression of PTEN increased cell survival by suppressing p-H2A in response to DNA damage and apoptosis. When using Pifithrin-α (one of p53 inhibitors), the level of p53-dependent apoptosis was significantly lower than untreated, which suggested that p53 was possibly involved in PTEN-dependent apoptosis. Thus, it elucidated the molecular mechanisms of UVB-induced damage in RPE cells and may offer an alternative therapeutic target in dry AMD. PMID:28321407

  2. The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans.

    PubMed

    Yee, Callista; Yang, Wen; Hekimi, Siegfried

    2014-05-08

    The increased longevity of the C. elegans electron transport chain mutants isp-1 and nuo-6 is mediated by mitochondrial ROS (mtROS) signaling. Here we show that the mtROS signal is relayed by the conserved, mitochondria-associated, intrinsic apoptosis signaling pathway (CED-9/Bcl2, CED-4/Apaf1, and CED-3/Casp9) triggered by CED-13, an alternative BH3-only protein. Activation of the pathway by an elevation of mtROS does not affect apoptosis but protects from the consequences of mitochondrial dysfunction by triggering a unique pattern of gene expression that modulates stress sensitivity and promotes survival. In vertebrates, mtROS induce apoptosis through the intrinsic pathway to protect from severely damaged cells. Our observations in nematodes demonstrate that sensing of mtROS by the apoptotic pathway can, independently of apoptosis, elicit protective mechanisms that keep the organism alive under stressful conditions. This results in extended longevity when mtROS generation is inappropriately elevated. These findings clarify the relationships between mitochondria, ROS, apoptosis, and aging.

  3. CTLA4 mediates antigen-specific apoptosis of human T cells.

    PubMed Central

    Gribben, J G; Freeman, G J; Boussiotis, V A; Rennert, P; Jellis, C L; Greenfield, E; Barber, M; Restivo, V A; Ke, X; Gray, G S

    1995-01-01

    The regulation of T cell-mediated immune responses requires a balance between amplification and generation of effector function and subsequent selective termination by clonal deletion. Although apoptosis of previously activated T cells can be induced by signaling of the tumor necrosis factor receptor family, these molecules do not appear to regulate T-cell clonal deletion in an antigen-specific fashion. We demonstrate that cross-linking of the inducible T-cell surface molecule CTLA4 can mediate apoptosis of previously activated human T lymphocytes. This function appears to be antigen-restricted, since a concomitant signal T-cell receptor signal is required. Regulation of this pathway may provide a novel therapeutic strategy to delete antigen-specific activated T cells. Images Fig. 3 PMID:7846057

  4. Cell cycle specificity of Fas-mediated apoptosis in WIL-2 cells.

    PubMed

    Beletskaya, I V; Nikonova, L V; Beletsky, I P

    1997-07-21

    Antibodies to Fas/APO1 receptor induce effective apoptosis in WIL-2 cells of the human B-lymphoid line. Quantitative assessment of the extent of the death in cells synchronized by thymidine block revealed a significant increase in their sensitivity to the cytocidal effect mediated by Fas/APO1 during the G1 phase of the cell cycle. Western analysis of the content of the p53 antigen in the cytoplasm and nuclei of the cells showed that the Fas/APO1-induced death is accompanied by massive translocation of the p53 from the cytoplasm to the nucleus. These findings suggest that cell vulnerability to the Fas/APO1-mediated apoptosis is subjected to regulation by cell cycle-dependent mechanisms, one of which is probably the function of the p53 antigen.

  5. The Mitochondrial Fission Protein hFis1 Requires the Endoplasmic Reticulum Gateway to Induce Apoptosis

    PubMed Central

    Alirol, Emilie; James, Dominic; Huber, Denise; Marchetto, Andrea; Vergani, Lodovica

    2006-01-01

    Mitochondrial fission ensures organelle inheritance during cell division and participates in apoptosis. The fission protein hFis1 triggers caspase-dependent cell death, by causing the release of cytochrome c from mitochondria. Here we show that mitochondrial fission induced by hFis1 is genetically distinct from apoptosis. In cells lacking the multidomain proapoptotic Bcl-2 family members Bax and Bak (DKO), hFis1 caused mitochondrial fragmentation but not organelle dysfunction and apoptosis. Similarly, a mutant in the intermembrane region of hFis1-induced fission but not cell death, further dissociating mitochondrial fragmentation from apoptosis induction. Selective correction of the endoplasmic reticulum (ER) defect of DKO cells restored killing by hFis1, indicating that death by hFis1 relies on the ER gateway of apoptosis. Consistently, hFis1 did not directly activate BAX and BAK, but induced Ca2+-dependent mitochondrial dysfunction. Thus, hFis1 is a bifunctional protein that independently regulates mitochondrial fragmentation and ER-mediated apoptosis. PMID:16914522

  6. Dexamethasone-induced apoptosis of osteocytic and osteoblastic cells is mediated by TAK1 activation.

    PubMed

    Ding, Heyuan; Wang, Tao; Xu, Dongli; Cha, Bingbing; Liu, Jun; Li, Yiming

    2015-05-01

    Increased apoptosis of osteoblasts and osteocytes is the main mechanism of glucocorticoid (GC)-induced osteonecrosis. In the current study, we investigated whether dexamethasone (Dex)-induced osteoblastic and osteocytic cell apoptosis is mediated through activation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), and whether TAK1 inhibition could promote survival opposing the deleterious effects of Dex. We found that TAK1 was activated by Dex in both osteocytic MLO-Y4 and osteoblastic OB-6 cells, which was prevented by two known anti-oxidants N-acetylcysteine (NAC) and ebselen. TAK1 inhibitors, including LYTAK1 and 5Z-7-oxozeaenol (57-OZ), inhibited Dex-induced apoptosis of MLO-Y4 and OB-6 cells. Meanwhile shRNA-mediated knockdown of TAK1 also suppressed Dex-induced damages to MLO-Y4 and OB-6 cells. On the other hand, exogenously over-expressing TAK1 enhanced Dex-induced MLO-Y4 and OB-6 cell apoptosis. At the molecular level, we found that TAK1 mediated Dex-induced pro-apoptotic Pyk2-JNK activation. Inhibition or silencing of TAK1 almost abolished Pyk2-JNK phosphorylations by Dex in MLO-Y4 and OB-6 cells. TAK1 over-expression, on the other hand, increased Dex's activity on Pyk2-JNK phosphorylations in above cells. We conclude that part of the pro-apoptotic actions of Dex on osteoblastic and osteocytic cells are mediated through TAK1 activation, and that inhibition of TAK1 might protect from GC-induced damages to osteoblasts and osteocytes.

  7. Role of the Chemokine MCP-1 in Sensitization of PKC-Mediated Apoptosis in Prostate Cancer Cells

    DTIC Science & Technology

    2010-02-01

    expression of PKCs by Western blot. We have observed maxi - mum depletion at 48 h, lasting up to 96 h in some cases. Phorbol Ester–Induced Apoptosis...apoptosis mediated by 12-0-tetradeca- noylphorbol-13-acetate (TPA). Br J Cancer 2004;90: 2017 – 2024. 17. Aggarwal BB. Signalling pathways of the TNF

  8. Wip1 inhibitor GSK2830371 inhibits neuroblastoma growth by inducing Chk2/p53-mediated apoptosis

    PubMed Central

    Chen, Zhenghu; Wang, Long; Yao, Dayong; Yang, Tianshu; Cao, Wen-Ming; Dou, Jun; Pang, Jonathan C.; Guan, Shan; Zhang, Huiyuan; Yu, Yang; Zhao, Yanling; Wang, Yongfeng; Xu, Xin; Shi, Yan; Patel, Roma; Zhang, Hong; Vasudevan, Sanjeev A.; Liu, Shangfeng; Yang, Jianhua; Nuchtern, Jed G.

    2016-01-01

    Neuroblastoma (NB) is the most common extracranial tumor in children. Unlike in most adult tumors, tumor suppressor protein 53 (p53) mutations occur with a relatively low frequency in NB and the downstream function of p53 is intact in NB cell lines. Wip1 is a negative regulator of p53 and hindrance of Wip1 activity by novel inhibitor GSK2830371 is a potential strategy to activate p53’s tumor suppressing function in NB. Yet, the in vivo efficacy and the possible mechanisms of GSK2830371 in NB have not yet been elucidated. Here we report that novel Wip1 inhibitor GSK2830371 induced Chk2/p53-mediated apoptosis in NB cells in a p53-dependent manner. In addition, GSK2830371 suppressed the colony-formation potential of p53 wild-type NB cell lines. Furthermore, GSK2830371 enhanced doxorubicin- (Dox) and etoposide- (VP-16) induced cytotoxicity in a subset of NB cell lines, including the chemoresistant LA-N-6 cell line. More importantly, GSK2830371 significantly inhibited tumor growth in an orthotopic xenograft NB mouse model by inducing Chk2/p53-mediated apoptosis in vivo. Taken together, this study suggests that GSK2830371 induces Chk2/p53-mediated apoptosis both in vitro and in vivo in a p53 dependent manner. PMID:27991505

  9. Tnfaip8 is an essential gene for the regulation of glucocorticoid-mediated apoptosis of thymocytes.

    PubMed

    Woodward, M J; de Boer, J; Heidorn, S; Hubank, M; Kioussis, D; Williams, O; Brady, H J M

    2010-02-01

    Glucocorticoids have significant immunoregulatory actions on thymocytes and T cells and act by binding and activating cytosolic glucocorticoid receptors, which translocate to the nucleus and control gene expression through binding to specific response elements in target genes. Glucocorticoids promote cell death by activating an apoptotic program that requires transcriptional regulation. We set out to identify genes that are crucial to the process of glucocorticoid-mediated thymocyte apoptosis. Freshly isolated murine primary thymocytes were treated with dexamethasone, mRNA isolated and used to screen DNA microarrays. A set of candidate genes with upregulated expression was identified and selected members assayed in reconstituted fetal thymic organ culture (FTOC). Fetal liver-derived hematopoietic progenitor cells (HPCs) were infected with retroviruses expressing individual genes then used to repopulate depleted fetal thymic lobes. Reconstituted FTOCs expressing the gene Tnfaip8 were treated with dexamethasone and shown to be greatly sensitized to dexamethasone. Retrovirus-mediated RNA interference was applied to knock down Tnfaip8 expression in HPCs and these were used to reconstitute FTOCs. We observed that downregulating the expression of Tnfaip8 alone was sufficient to effectively protect thymocytes against glucocorticoid-induced apoptosis. We propose that Tnfaip8 is crucial in regulating glucocorticoid-mediated apoptosis of thymocytes.

  10. Mitochondria-cytochrome C-caspase-9 cascade mediates isorhamnetin-induced apoptosis.

    PubMed

    Lee, Hyo-Jung; Lee, Hyo-Jeong; Lee, Eun-Ok; Ko, Seong-Gyu; Bae, Hyun-Soo; Kim, Cheol-Ho; Ahn, Kyoo-Seok; Lu, Junxuan; Kim, Sung-Hoon

    2008-11-08

    Isorhamnetin is a flavanoid present in plants of the Polygonaceae family and is also an immediate metabolite of quercetin in mammals. Since the plasma level of isorhamnetin is maintained longer than quercetin, isorhamnetin may be a key metabolite to mediate the anti-tumor effect of quercetin. In the present study, we investigated the apoptotic mechanism of isorhamnetin in Lewis lung cancer (LLC) cells in vitro and established its in vivo anti-cancer efficacy. In cell culture, isorhamnetin significantly increased DNA fragmentation, and TUNEL positive apoptotic bodies and sub-G(1) apoptotic population in time- and dose-dependent manners. Western blot analyses revealed increased cleavage of caspase-3, and caspase-9 and PARP and increased cytosolic cytochrome C in isorhamnetin-treated cells. These events were accompanied by a reduced mitochondrial potential. Apoptosis was blocked by a general caspase inhibitor or the specific inhibitor of caspase-3 or -9. These in vitro results support mitochondria-dependent caspase activation to mediate isorhamnetin-induced apoptosis. Furthermore, an animal study revealed for the first time that isorhamnetin given by i.p. injection at a dose that is at least one order of magnitude lower than quercetin significantly suppressed the weights of tumors excised from LLC bearing mice. The in vivo anti-tumor efficacy was accompanied by increased TUNEL-positive and cleaved-caspase-3-positive tumor cells. Our data therefore support isorhamnetin as an active anti-cancer metabolite of quercetin in part through caspase-mediated apoptosis.

  11. ASC Induces Apoptosis via Activation of Caspase-9 by Enhancing Gap Junction-Mediated Intercellular Communication.

    PubMed

    Kitazawa, Masato; Hida, Shigeaki; Fujii, Chifumi; Taniguchi, Shun'ichiro; Ito, Kensuke; Matsumura, Tomio; Okada, Nagisa; Sakaizawa, Takashi; Kobayashi, Akira; Takeoka, Michiko; Miyagawa, Shin-Ichi

    2017-01-01

    ASC (apoptosis-associated speck-like protein containing a CARD) is a key adaptor molecule of inflammasomes that mediates inflammatory and apoptotic signals. Aberrant methylation-induced silencing of ASC has been observed in a variety of cancer cells, thus implicating ASC in tumor suppression, although this role remains incompletely defined especially in the context of closely neighboring cell proliferation. As ASC has been confirmed to be silenced by abnormal methylation in HT1080 fibrosarcoma cells as well, this cell line was investigated to characterize the precise role and mechanism of ASC in tumor progression. The effects of ASC were examined using in vitro cell cultures based on comparisons between low and high cell density conditions as well as in a xenograft murine model. ASC overexpression was established by insertion of the ASC gene into pcDNA3 and pMX-IRES-GFP vectors, the latter being packed into a retrovirus and subjected to reproducible competitive assays using parental cells as an internal control, for evaluation of cell viability. p21 and p53 were silenced using shRNA. Cell viability was suppressed in ASC-expressing transfectants as compared with control cells at high cell density conditions in in vitro culture and colony formation assays and in in vivo ectopic tumor formation trials. This suppression was not detected in low cell density conditions. Furthermore, remarkable progression of apoptosis was observed in ASC-introduced cells at a high cell density, but not at a low one. ASC-dependent apoptosis was mediated not by p21, p53, or caspase-1, but rather by cleavage of caspase-9 as well as by suppression of the NF-κB-related X-linked inhibitor-of-apoptosis protein. Caspase-9 cleavage was observed to be dependent on gap junction formation. The remarkable effect of ASC on the induction of apoptosis through caspase-9 and gap junctions revealed in this study may lead to promising new approaches in anticancer therapy.

  12. Proteasome Dysfunction Mediates High Glucose-Induced Apoptosis in Rodent Beta Cells and Human Islets

    PubMed Central

    Broca, Christophe; Varin, Elodie; Armanet, Mathieu; Tourrel-Cuzin, Cécile; Bosco, Domenico; Dalle, Stéphane; Wojtusciszyn, Anne

    2014-01-01

    The ubiquitin/proteasome system (UPS), a major cellular protein degradation machinery, plays key roles in the regulation of many cell functions. Glucotoxicity mediated by chronic hyperglycaemia is detrimental to the function and survival of pancreatic beta cells. The aim of our study was to determine whether proteasome dysfunction could be involved in beta cell apoptosis in glucotoxic conditions, and to evaluate whether such a dysfunction might be pharmacologically corrected. Therefore, UPS activity was measured in GK rats islets, INS-1E beta cells or human islets after high glucose and/or UPS inhibitor exposure. Immunoblotting was used to quantify polyubiquitinated proteins, endoplasmic reticulum (ER) stress through CHOP expression, and apoptosis through the cleavage of PARP and caspase-3, whereas total cell death was detected through histone-associated DNA fragments measurement. In vitro, we found that chronic exposure of INS-1E cells to high glucose concentrations significantly decreases the three proteasome activities by 20% and leads to caspase-3-dependent apoptosis. We showed that pharmacological blockade of UPS activity by 20% leads to apoptosis in a same way. Indeed, ER stress was involved in both conditions. These results were confirmed in human islets, and proteasome activities were also decreased in hyperglycemic GK rats islets. Moreover, we observed that a high glucose treatment hypersensitized beta cells to the apoptotic effect of proteasome inhibitors. Noteworthily, the decreased proteasome activity can be corrected with Exendin-4, which also protected against glucotoxicity-induced apoptosis. Taken together, our findings reveal an important role of proteasome activity in high glucose-induced beta cell apoptosis, potentially linking ER stress and glucotoxicity. These proteasome dysfunctions can be reversed by a GLP-1 analog. Thus, UPS may be a potent target to treat deleterious metabolic conditions leading to type 2 diabetes. PMID:24642635

  13. Inhibition of autophagy increased AGE/ROS-mediated apoptosis in mesangial cells

    PubMed Central

    Xu, Li; Fan, Qiuling; Wang, Xu; Zhao, Xue; Wang, Lining

    2016-01-01

    The aim of our study was to investigate the role of autophagy, a homeostatic process involved in the lysosomal degradation of damaged cell organelles and proteins, in regulating the survival of mesangial cells treated with advanced glycation end products (AGEs). In the present study, AGEs induced mitochondrial depolarization and led to mitochondrial-dependent apoptosis in mesangial cells, as shown by the loss of the mitochondrial membrane potential; increased Bax processing; increased Caspase-9, Caspase-3 and PARP cleavage; and decreased Bcl-2 expression. Meanwhile, AGEs also triggered autophagy flux in mesangial cells, as confirmed by the presence of autophagic vesicles, the conversion of LC3II/LC3I and the increase/decrease in Beclin-1/p62 expression. Interestingly, this study reported apparent apoptosis and autophagy that were dependent on reactive oxygen species (ROS) production. Scavenging ROS with N-acetyl-l-cysteine could prevent the appearance of the autophagic features and reverse AGE-induced apoptosis. Moreover, AGE-triggered mitophagy, which was confirmed by the colocalization of autophagosomes and mitochondria and Parkin translocation to mitochondria, played a potential role in reducing ROS production in mesangial cells. Additionally, inhibition of autophagy significantly enhanced AGE-induced cell apoptosis. Taken together, our data suggest that ROS were the mediators of AGE-induced mesangial cell apoptosis and that autophagy was likely to be the mechanism that was triggered to repair the ROS-induced damage in the AGE-treated cells and thereby promote cell survival. This study provides new insights into the molecular mechanism of autophagy involved in AGE-induced apoptosis in mesangial cells. PMID:27809300

  14. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    SciTech Connect

    Lee, Jeong Eun; Park, Jae Hyeon; Shin, In Chul; Koh, Hyun Chul

    2012-09-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  15. HAX1 deletion impairs BCR internalization and leads to delayed BCR-mediated apoptosis

    PubMed Central

    Wolkerstorfer, Susanne; Schwaiger, Elisabeth; Rinnerthaler, Mark; Karina Gratz, Iris; Zoegg, Thomas; Brandstetter, Hans; Achatz-Straussberger, Gertrude

    2016-01-01

    Deletion of HAX1 in mice causes a severe reduction in the numbers of lymphocytes in the bone marrow and in the spleen. Additionally, B220+ B progenitor cells in the bone marrow are reduced, suggesting an important function of HAX1 in B cell development. HAX1 is thought to play a protective role in apoptotic processes; therefore, we investigated the role of HAX1 in bone marrow B progenitor cells and splenic B cells. We did not observe an effect on the survival of Hax1−/− bone marrow cells but detected enhanced survival of splenic Hax1−/− B cells upon in vitro starvation/growth-factor withdrawal. To explain this apparent inconsistency with previous reports of HAX1 function, we also studied the B cell receptor (BCR)-induced apoptosis of IgM-stimulated splenic naïve B cells and found that apoptosis decreased in these cells. We further found impaired internalization of the BCR from Hax1−/− splenic B cells after IgM crosslinking; this impaired internalization may result in decreased BCR signaling and, consequently, decreased BCR-mediated apoptosis. We measured HAX1 binding to the cytoplasmic domains of different Ig subtypes and identified KVKWI(V)F as the putative binding motif for HAX1 within the cytoplasmic domains. Because this motif can be found in almost all Ig subtypes, it is likely that HAX1 plays a general role in BCR-mediated internalization events and BCR-mediated apoptosis. PMID:25864916

  16. Autophagy and apoptosis: where do they meet?

    PubMed

    Mukhopadhyay, Subhadip; Panda, Prashanta Kumar; Sinha, Niharika; Das, Durgesh Nandini; Bhutia, Sujit Kumar

    2014-04-01

    Autophagy and apoptosis are two important cellular processes with complex and intersecting protein networks; as such, they have been the subjects of intense investigation. Recent advances have elucidated the key players and their molecular circuitry. For instance, the discovery of Beclin-1's interacting partners has resulted in the identification of Bcl-2 as a central regulator of autophagy and apoptosis, which functions by interacting with both Beclin-1 and Bax/Bak respectively. When localized to the endoplasmic reticulum and mitochondria, Bcl-2 inhibits autophagy. Cellular stress causes the displacement of Bcl-2 from Beclin-1 and Bax, thereby triggering autophagy and apoptosis, respectively. The induction of autophagy or apoptosis results in disruption of complexes by BH3-only proteins and through post-translational modification. The mechanisms linking autophagy and apoptosis are not fully defined; however, recent discoveries have revealed that several apoptotic proteins (e.g., PUMA, Noxa, Nix, Bax, XIAP, and Bim) modulate autophagy. Moreover, autophagic proteins that control nucleation and elongation regulate intrinsic apoptosis through calpain- and caspase-mediated cleavage of autophagy-related proteins, which switches the cellular program from autophagy to apoptosis. Similarly, several autophagic proteins are implicated in extrinsic apoptosis. This highlights a dual cellular role for autophagy. On one hand, autophagy degrades damaged mitochondria and caspases, and on the other hand, it provides a membrane-based intracellular platform for caspase processing in the regulation of apoptosis. In this review, we highlight the crucial factors governing the crosstalk between autophagy and apoptosis and describe the mechanisms controlling cell survival and cell death.

  17. Stearoyl-CoA desaturase-1 mediated cell apoptosis in colorectal cancer by promoting ceramide synthesis

    PubMed Central

    Chen, Ling; Ren, Jie; Yang, Longhe; Li, Yanting; Fu, Jin; Li, Yuhang; Tian, Yifeng; Qiu, Funan; Liu, Zuguo; Qiu, Yan

    2016-01-01

    Inhibition of stearoyl-CoA desaturase 1 (SCD1) has been found to effectively suppress tumor cell proliferation and induce apoptosis in numerous neoplastic lesions. However, mechanism underlying SCD1-mediated anti-tumor effect has maintained unclear. Herein, we reported endo-lipid messenger ceramides played a critical role in tumor fate modulated by SCD1 inhibition. In vitro study in colorectal cancer cells demonstrated inhibition of SCD1 activity promoted apoptosis attributed to mitochondria dysfunctions, upregulation of reaction oxygen species (ROS), alteration of mitochondrial transmembrane potential and translocation of mitochondrial protein cytochrome C. While these effects were mediated by intracellular ceramide signals through induction of ceramide biosynthesis, rather than exclusive SFA accumulation. In vivo study in xenograft colorectal cancer mice showed pharmacologic administration of SCD1 inhibitor A939 significantly delayed tumor growth, which was reversed by L-cycloserine, an inhibitor of ceramide biosynthesis. These results depicted the cross-talk of SCD1-mediated lipid pathway and endo-ceramide biosynthesis pathway, indicating roles of ceramide signals in SCD1-mediated anti-tumor property. PMID:26813308

  18. Antigen receptor-induced B lymphocyte apoptosis mediated via a protease of the caspase family.

    PubMed

    Andjelic, S; Liou, H C

    1998-02-01

    An extensive body of data, in a variety of systems, denoted the caspase family of proteases as a key player in the execution of programmed cell death. This family consists of cysteine proteases that cleave after asparagine-containing motifs. It is well established that the caspases are essential for the apoptosis mediated by Fas (CD95) and TNF receptor p55, molecules that contain the "death domain" in the cytoplasmic tail. However, little is known about the mechanisms underlying the antigen receptor-mediated cell death in B lymphocytes, a process instrumental in negative selection of potentially autoreactive B cells. Here, we investigated the involvement of caspases in cell death triggered via the antigen receptor in B lymphocytes (BCR) by using specific inhibitors. Initially, we used a well-established cell line, CH31, which is a model of B cell tolerance, to demonstrate that these proteases indeed participate in the BCR-induced apoptotic pathway. Next, we confirmed the physiological relevance of the caspase-mediated cell death pathway in splenic B cell populations isolated ex vivo that were induced to undergo apoptosis by extensive cross-linking of their BCR. Most interestingly, our data demonstrated that caspases regulate not only the nuclear DNA fragmentation, but also the surface membrane phosphatidylserine translocation as well as the degradation of a specific nuclear substrate. Taken together, this report supports the hypothesis that regulation of the caspase family is crucial in controlling the life/death decision in B lymphocytes mediated by the antigen receptor signal transduction.

  19. The role of DNA damage and repair in decitabine-mediated apoptosis in multiple myeloma

    PubMed Central

    Maes, Ken; Smedt, Eva De; Lemaire, Miguel; Raeve, Hendrik De; Menu, Eline; Van Valckenborgh, Els; McClue, Steve

    2014-01-01

    DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) are under investigation for the treatment of cancer, including the plasma cell malignancy multiple myeloma (MM). Evidence exists that DNA damage and repair contribute to the cytotoxicity mediated by the DNMTi decitabine. Here, we investigated the DNA damage response (DDR) induced by decitabine in MM using 4 human MM cell lines and the murine 5T33MM model. In addition, we explored how the HDACi JNJ-26481585 affects this DDR. Decitabine induced DNA damage (gamma-H2AX foci formation), followed by a G0/G1- or G2/M-phase arrest and caspase-mediated apoptosis. JNJ-26481585 enhanced the anti-MM effect of decitabine both in vitro and in vivo. As JNJ-26481585 did not enhance decitabine-mediated gamma-H2AX foci formation, we investigated the DNA repair response towards decitabine and/or JNJ-26481585. Decitabine augmented RAD51 foci formation (marker for homologous recombination (HR)) and/or 53BP1 foci formation (marker for non-homologous end joining (NHEJ)). Interestingly, JNJ-26481585 negatively affected basal or decitabine-induced RAD51 foci formation. Finally, B02 (RAD51 inhibitor) enhanced decitabine-mediated apoptosis. Together, we report that decitabine-induced DNA damage stimulates HR and/or NHEJ. JNJ-26481585 negatively affects RAD51 foci formation, thereby providing an additional explanation for the combinatory effect between decitabine and JNJ-26481585. PMID:24833108

  20. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    PubMed

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  1. HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase.

    PubMed

    Sendoel, Ataman; Kohler, Ines; Fellmann, Christof; Lowe, Scott W; Hengartner, Michael O

    2010-06-03

    Hypoxia-inducible factor (HIF) is a transcription factor that regulates fundamental cellular processes in response to changes in oxygen concentration. HIFalpha protein levels are increased in most solid tumours and correlate with patient prognosis. The link between HIF and apoptosis, a major determinant of cancer progression and treatment outcome, is poorly understood. Here we show that Caenorhabditis elegans HIF-1 protects against DNA-damage-induced germ cell apoptosis by antagonizing the function of CEP-1, the homologue of the tumour suppressor p53. The antiapoptotic property of HIF-1 is mediated by means of transcriptional upregulation of the tyrosinase family member TYR-2 in the ASJ sensory neurons. TYR-2 is secreted by ASJ sensory neurons to antagonize CEP-1-dependent germline apoptosis. Knock down of the TYR-2 homologue TRP2 (also called DCT) in human melanoma cells similarly increases apoptosis, indicating an evolutionarily conserved function. Our findings identify a novel link between hypoxia and programmed cell death, and provide a paradigm for HIF-1 dictating apoptotic cell fate at a distance.

  2. HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase

    PubMed Central

    Sendoel, Ataman; Kohler, Ines; Fellmann, Christof; Lowe, Scott W.; Hengartner, Michael O.

    2012-01-01

    Hypoxia-inducible factor (HIF) is a transcription factor that regulates fundamental cellular processes in response to changes in oxygen concentration. HIFα protein levels are increased in most solid tumours and correlate with patient prognosis. The link between HIF and apoptosis, a major determinant of cancer progression and treatment outcome, is poorly understood. Here we show that Caenorhabditis elegans HIF-1 protects against DNA-damage-induced germ cell apoptosis by antagonizing the function of CEP-1, the homologue of the tumour suppressor p53. The antiapoptotic property of HIF-1 is mediated by means of transcriptional upregulation of the tyrosinase family member TYR-2 in the ASJ sensory neurons. TYR-2 is secreted by ASJ sensory neurons to antagonize CEP-1-dependent germline apoptosis. Knock down of the TYR-2 homologue TRP2 (also called DCT) in human melanoma cells similarly increases apoptosis, indicating an evolutionarily conserved function. Our findings identify a novel link between hypoxia and programmed cell death, and provide a paradigm for HIF-1 dictating apoptotic cell fate at a distance. PMID:20520707

  3. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL.

    PubMed Central

    Walczak, H; Degli-Esposti, M A; Johnson, R S; Smolak, P J; Waugh, J Y; Boiani, N; Timour, M S; Gerhart, M J; Schooley, K A; Smith, C A; Goodwin, R G; Rauch, C T

    1997-01-01

    TRAIL is a member of the tumor necrosis factor (TNF) family of cytokines and induces apoptosis in a wide variety of cells. Based on homology searching of a private database, a receptor for TRAIL (DR4 or TRAIL-R1) was recently identified. Here we report the identification of a distinct receptor for TRAIL, TRAIL-R2, by ligand-based affinity purification and subsequent molecular cloning. TRAIL-R2 was purified independently as the only receptor for TRAIL detectable on the surface of two different human cell lines that undergo apoptosis upon stimulation with TRAIL. TRAIL-R2 contains two extracellular cysteine-rich repeats, typical for TNF receptor (TNFR) family members, and a cytoplasmic death domain. TRAIL binds to recombinant cell-surface-expressed TRAIL-R2, and TRAIL-induced apoptosis is inhibited by a TRAIL-R2-Fc fusion protein. TRAIL-R2 mRNA is widely expressed and the gene encoding TRAIL-R2 is located on human chromosome 8p22-21. Like TRAIL-R1, TRAIL-R2 engages a caspase-dependent apoptotic pathway but, in contrast to TRAIL-R1, TRAIL-R2 mediates apoptosis via the intracellular adaptor molecule FADD/MORT1. The existence of two distinct receptors for the same ligand suggests an unexpected complexity to TRAIL biology, reminiscent of dual receptors for TNF, the canonical member of this family. PMID:9311998

  4. Caspase-2 resides in the mitochondria and mediates apoptosis directly from the mitochondrial compartment.

    PubMed

    Lopez-Cruzan, M; Sharma, R; Tiwari, M; Karbach, S; Holstein, D; Martin, C R; Lechleiter, J D; Herman, B

    2016-02-15

    Caspase-2 plays an important role in apoptosis induced by several stimuli, including oxidative stress. However, the subcellular localization of caspase-2, particularly its presence in the mitochondria, is unclear. It is also not known if cytosolic caspase-2 translocates to the mitochondria to trigger the intrinsic pathway of apoptosis or if caspase-2 is constitutively present in the mitochondria that then selectively mediates this apoptotic effect. Here, we demonstrate the presence of caspase-2 in purified mitochondrial fractions from in vitro-cultured cells and in liver hepatocytes using immunoblots and confocal microscopy. We show that mitochondrial caspase-2 is functionally active by performing fluorescence resonance energy transfer analyses using a mitochondrially targeted substrate flanked by donor and acceptor fluorophores. Cell-free apoptotic assays involving recombination of nuclear, cytosolic and mitochondrial fractions from the livers of wild type and Casp2(-/-) mice clearly point to a direct functional role for mitochondrial caspase-2 in apoptosis. Furthermore, cytochrome c release from Casp2(-/-) cells is decreased as compared with controls upon treatment with agents inducing mitochondrial dysfunction. Finally, we show that Casp2(-/-) primary skin fibroblasts are protected from oxidants that target the mitochondrial electron transport chain. Taken together, our results demonstrate that caspase-2 exists in the mitochondria and that it is essential for mitochondrial oxidative stress-induced apoptosis.

  5. NLRP3 inflammasome mediates contrast media-induced acute kidney injury by regulating cell apoptosis

    PubMed Central

    Shen, Jianxiao; Wang, Ling; Jiang, Na; Mou, Shan; Zhang, Minfang; Gu, Leyi; Shao, Xinghua; Wang, Qin; Qi, Chaojun; Li, Shu; Wang, Wanpeng; Che, Xiajing; Ni, Zhaohui

    2016-01-01

    Iodinated contrast media serves as a direct causative factor of acute kidney injury (AKI) and is involved in the progression of cellular dysfunction and apoptosis. Emerging evidence indicates that NLRP3 inflammasome triggers inflammation, apoptosis and tissue injury during AKI. Nevertheless, the underlying renoprotection mechanism of NLRP3 inflammasome against contrast-induced AKI (CI-AKI) was still uncertain. This study investigated the role of NLRP3 inflammasome in CI-AKI both in vitro and in vivo. In HK-2 cells and unilateral nephrectomy model, NLRP3 and NLRP3 inflammasome member ASC were significantly augmented with the treatment of contrast media. Moreover, genetic disruption of NLRP3 notably reversed contrast-induced expression of apoptosis related proteins and secretion of proinflammatory factors, similarly to the effects of ASC deletion. Consistent with above results, absence of NLRP3 in mice undergoing unilateral nephrectomy also protected against contrast media-induced renal cells phenotypic alteration and cell apoptosis via modulating expression level of apoptotic proteins. Collectively, we demonstrated that NLRP3 inflammasome mediated CI-AKI through modulating the apoptotic pathway, which provided a potential therapeutic target for the treatment of contrast media induced acute kidney injury. PMID:27721494

  6. USP8 suppresses death receptor-mediated apoptosis by enhancing FLIPL stability.

    PubMed

    Jeong, M; Lee, E-W; Seong, D; Seo, J; Kim, J-H; Grootjans, S; Kim, S-Y; Vandenabeele, P; Song, J

    2017-01-26

    FLICE-like inhibitory protein (FLIP) is a critical regulator of death receptor-mediated apoptosis. Here, we found ubiquitin-specific peptidase 8 (USP8) to be a novel deubiquitylase of the long isoform of FLIP (FLIPL). USP8 directly deubiquitylates and stabilizes FLIPL, but not the short isoform. USP8 depletion induces FLIPL destabilization, promoting anti-Fas-, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)- and tumor necrosis factor alpha-induced extrinsic apoptosis by facilitating death-inducing signaling complex or TNFR1 complex II formation, which results in the activation of caspase-8 and caspase-3. USP8 mRNA levels are elevated in melanoma and cervical cancers, and the protein levels of USP8 and FLIPL are positively correlated in these cancer cell lines. Xenograft analyses using ME-180 cervical cancer cells showed that USP8 depletion attenuated tumor growth upon TRAIL injection. Taken together, our data indicate that USP8 functions as a novel deubiquitylase of FLIPL and inhibits extrinsic apoptosis by stabilizing FLIPL.

  7. Induction of mitochondrial-mediated apoptosis by Morinda citrifolia (Noni) in human cervical cancer cells.

    PubMed

    Gupta, Rakesh Kumar; Banerjee, Ayan; Pathak, Suajta; Sharma, Chandresh; Singh, Neeta

    2013-01-01

    Cervical cancer is the second most common cause of cancer in women and has a high mortality rate. Cisplatin, an antitumor agent, is generally used for its treatment. However, the administration of cisplatin is associated with side effects and intrinsic resistance. Morinda citrifolia (Noni), a natural plant product, has been shown to have anti-cancer properties. In this study, we used Noni, cisplatin, and the two in combination to study their cytotoxic and apoptosis-inducing effects in cervical cancer HeLa and SiHa cell lines. We demonstrate here, that Noni/Cisplatin by themselves and their combination were able to induce apoptosis in both these cell lines. Cisplatin showed slightly higher cell killing as compared to Noni and their combination showed additive effects. The observed apoptosis appeared to be mediated particularly through the up-regulation of p53 and pro-apoptotic Bax proteins, as well as down- regulation of the anti-apoptotic Bcl-2, Bcl-XL proteins and survivin. Augmentation in the activity of caspase-9 and -3 was also observed, suggesting the involvement of the intrinsic mitochondrial pathway of apoptosis for both Noni and Cisplatin in HeLa and SiHa cell lines.

  8. Caspase-2 resides in the mitochondria and mediates apoptosis directly from the mitochondrial compartment

    PubMed Central

    Lopez-Cruzan, M; Sharma, R; Tiwari, M; Karbach, S; Holstein, D; Martin, C R; Lechleiter, J D; Herman, B

    2016-01-01

    Caspase-2 plays an important role in apoptosis induced by several stimuli, including oxidative stress. However, the subcellular localization of caspase-2, particularly its presence in the mitochondria, is unclear. It is also not known if cytosolic caspase-2 translocates to the mitochondria to trigger the intrinsic pathway of apoptosis or if caspase-2 is constitutively present in the mitochondria that then selectively mediates this apoptotic effect. Here, we demonstrate the presence of caspase-2 in purified mitochondrial fractions from in vitro-cultured cells and in liver hepatocytes using immunoblots and confocal microscopy. We show that mitochondrial caspase-2 is functionally active by performing fluorescence resonance energy transfer analyses using a mitochondrially targeted substrate flanked by donor and acceptor fluorophores. Cell-free apoptotic assays involving recombination of nuclear, cytosolic and mitochondrial fractions from the livers of wild type and Casp2−/− mice clearly point to a direct functional role for mitochondrial caspase-2 in apoptosis. Furthermore, cytochrome c release from Casp2−/− cells is decreased as compared with controls upon treatment with agents inducing mitochondrial dysfunction. Finally, we show that Casp2−/− primary skin fibroblasts are protected from oxidants that target the mitochondrial electron transport chain. Taken together, our results demonstrate that caspase-2 exists in the mitochondria and that it is essential for mitochondrial oxidative stress-induced apoptosis. PMID:27019748

  9. Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy

    NASA Astrophysics Data System (ADS)

    Pattani, Varun P.; Shah, Jay; Atalis, Alexandra; Sharma, Anirudh; Tunnell, James W.

    2015-01-01

    Current cancer therapies can cause significant collateral damage due to a lack of specificity and sensitivity. Therefore, we explored the cell death pathway response to gold nanorod (GNR)-mediated photothermal therapy as a highly specific cancer therapeutic to understand the role of apoptosis and necrosis during intense localized heating. By developing this, we can optimize photothermal therapy to induce a maximum of `clean' cell death pathways, namely apoptosis, thereby reducing external damage. GNRs were targeted to several subcellular localizations within colorectal tumor cells in vitro, and the cell death pathways were quantitatively analyzed after photothermal therapy using flow cytometry. In this study, we found that the cell death response to photothermal therapy was dependent on the GNR localization. Furthermore, we demonstrated that nanorods targeted to the perinuclear region irradiated at 37.5 W/cm2 laser fluence rate led to maximum cell destruction with the `cleaner' method of apoptosis, at similar percentages as other anti-cancer targeted therapies. We believe that this indicates the therapeutic potential for GNR-mediated photothermal therapy to treat cancer effectively without causing damage to surrounding tissue.

  10. p53 causes butein-mediated apoptosis of chronic myeloid leukemia cells

    PubMed Central

    WOO, SANG-MI; CHOI, YOUN KYNUG; KIM, AH JEONG; CHO, SUNG-GOOK; KO, SEONG-GYU

    2016-01-01

    Progression of chronic myeloid leukemia, marked by the oncogenic Bcr-Abl mutation, is tightly associated with an alteration of the p53 pathway. It is known that butein extracted from various plants represses cancer growth. Although the anticancer effects of butein are widely accepted, the mechanisms by which butein induces apoptosis of chronic myeloid leukemia cells remains to be elucidated. The present study demonstrated that butein-induced apoptosis was mediated by p53. KBM5 chronic myeloid leukemia (CML) cells expressing wild-type p53 were more sensitive to butein compared with p53-null K562 CML cells in terms of apoptotic cell death. In addition, butein arrested KBM5 cells at S-phase and altered the expression levels of certain cyclins and the p53-downstream targets, MDM2 and p21. In addition, while butein reduced the protein expression of MDM2 in the KBM5 and K562 cells, it resulted in proteasome-independent MDM2 degradation in p53-expressing KBM5 cells, however, not in p53-null K562 cells. Therefore, the present study suggested that p53 causes the butein-mediated apoptosis of leukemic cells. PMID:26676515

  11. Hypoxia-mediated autophagic flux inhibits silver nanoparticle-triggered apoptosis in human lung cancer cells

    PubMed Central

    Jeong, Jae-Kyo; Gurunathan, Sangiliyandi; Kang, Min-Hee; Han, Jae Woong; Das, Joydeep; Choi, Yun-Jung; Kwon, Deug-Nam; Cho, Ssang-Goo; Park, Chankyu; Seo, Han Geuk; Song, Hyuk; Kim, Jin-Hoi

    2016-01-01

    Solid tumors are frequently associated with resistance to chemotherapy because the fraction of hypoxic tumor cells is substantial. To understand the underlying mechanism of hypoxia on silver nanoparticle (AgNPs)-induced apoptosis, the expression of hypoxia-inducible factor (HIF)-1α, a hallmark of hypoxia, was measured in the presence and absence of AgNPs. The results showed that HIF-1α expression was upregulated after AgNPs treatment under both hypoxic and normoxic conditions. Cell viability assays showed that AgNPs promoted cell death in cancer cells but not in non-cancer cells, as cancer cells are slightly more acidic than normal cells. However, reactive oxygen species generation induced by AgNPs in lung cancer cells caused high susceptibility to oxidative stress, whereas pre-exposure to hypoxia blocked AgNPs-induced oxidative stress. Notably, HIF-1α inhibited AgNPs-induced mitochondria-mediated apoptosis by regulating autophagic flux through the regulation of ATG5, LC3-II, and p62. Further, cell viability after treatment of cancer cells with AgNPs under hypoxic conditions was lower in HIF-1α siRNA-transfected cells than in control siRNA-transfected cells, indicating that HIF-1α knockdown enhances hypoxia induced decrease in cell viability. Our results suggest that hypoxia-mediated autophagy may be a mechanism for the resistance of AgNPs-induced apoptosis and that strategies targeting HIF-1α may be used for cancer therapy. PMID:26867977

  12. PAR-1 mediated apoptosis of breast cancer cells by V. cholerae hemagglutinin protease.

    PubMed

    Ray, Tanusree; Pal, Amit

    2016-05-01

    Bacterial toxins have emerged as promising agents in cancer treatment strategy. Hemagglutinin (HAP) protease secreted by Vibrio cholerae induced apoptosis in breast cancer cells and regresses tumor growth in mice model. The success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity for normal tissues. Increased expression of Protease Activated Receptor-1 (PAR-1) has been reported in different malignant cells. In this study we report that HAP induced activation and over expression of PAR-1 in breast cancer cells (EAC). Immunoprecipitation studies have shown that HAP specifically binds with PAR-1. HAP mediated activation of PAR-1 caused nuclear translocation of p50-p65 and the phosphorylation of p38 which triggered the activation of NFκB and MAP kinase signaling pathways. These signaling pathways enhanced the cellular ROS level in malignant cells that induced the intrinsic pathway of cell apoptosis. PAR-1 mediated apoptosis by HAP of malignant breast cells without effecting normal healthy cells in the same environment makes it a good therapeutic agent for treatment of cancer.

  13. HCV upregulates Bim through the ROS/JNK signalling pathway, leading to Bax-mediated apoptosis.

    PubMed

    Deng, Lin; Chen, Ming; Tanaka, Motofumi; Ku, Yonson; Itoh, Tomoo; Shoji, Ikuo; Hotta, Hak

    2015-09-01

    We previously reported that hepatitis C virus (HCV) infection induces Bax-triggered, mitochondrion-mediated apoptosis by using the HCV J6/JFH1 strain and Huh-7.5 cells. However, it was still unclear how HCV-induced Bax activation. In this study, we showed that the HCV-induced activation and mitochondrial accumulation of Bax were significantly attenuated by treatment with a general antioxidant, N-acetyl cysteine (NAC), or a specific c-Jun N-terminal kinase (JNK) inhibitor, SP600125, with the result suggesting that the reactive oxygen species (ROS)/JNK signalling pathway is upstream of Bax activation in HCV-induced apoptosis. We also demonstrated that HCV infection transcriptionally activated the gene for the pro-apoptotic protein Bim and the protein expression of three major splice variants of Bim (BimEL, BimL and BimS). The HCV-induced increase in the Bim mRNA and protein levels was significantly counteracted by treatment with NAC or SP600125, suggesting that the ROS/JNK signalling pathway is involved in Bim upregulation. Moreover, HCV infection led to a marked accumulation of Bim on the mitochondria to facilitate its interaction with Bax. On the other hand, downregulation of Bim by siRNA (small interfering RNA) significantly prevented HCV-mediated activation of Bax and caspase 3. Taken together, these observations suggest that HCV-induced ROS/JNK signalling transcriptionally activates Bim expression, which leads to Bax activation and apoptosis induction.

  14. TRESK contributes to pain threshold changes by mediating apoptosis via MAPK pathway in the spinal cord.

    PubMed

    Zhou, Jun; Lin, Wenjing; Chen, Hongtao; Fan, Youling; Yang, Chengxiang

    2016-12-17

    The mechanism underlying neuropathic pain (NP) is complex and has not been fully elucidated. The TWIK-related spinal cord K(+) (TRESK) is the major background potassium current in dorsal root ganglia (DRG), we found that mitogen-activated protein kinase (MAPK) signal pathway were activated in spinal cord accompanied by TRESK down regulation in response to NP. Therefore, we investigated whether TRESK mediates inflammation and apoptosis by MAPK pathway in the spinal cord of NP rats. SNI rats exhibited reduced TRESK expression in DRG and spinal cord and higher sensitivity to mechanical stimuli but no effect on thermal stimuli. Intrathecal injections of TRESK overexpressing adenovirus alleviated mechanical allodynia, inhibited phosphorylation of extracellular signal-regulated kinase (ERK) and p38, and decreased inflammatory reactions and apoptosis in the spinal cords of SNI rats. Down regulation of TRESK in DRG and spinal cord was detected in normal rats after intrathecal TRESK shRNA lentivirus injection, which induced mechanical allodynia but had no effect on pain thresholds for heat stimulation. Phosphorylated ERK and p38 were increased in the spinal cord. Intrathecal injection of an ERK antagonist (PD98059) and p38 antagonist (SB203580) prevented ERK and p38 activation in the spinal cord and mechanical allodynia induced by TRESK shRNA lentivirus. In conclusion, our study clearly demonstrated an important role for TRESK in NP and that TRESK regulation contributes to pain sensitivity mediates inflammation and apoptosis by ERK and p38 MAPK signaling in the spinal cord.

  15. FLIP switches Fas-mediated glucose signaling in human pancreatic cells from apoptosis to cell replication

    NASA Astrophysics Data System (ADS)

    Maedler, Kathrin; Fontana, Adriano; Ris, Frédéric; Sergeev, Pavel; Toso, Christian; Oberholzer, José; Lehmann, Roger; Bachmann, Felix; Tasinato, Andrea; Spinas, Giatgen A.; Halban, Philippe A.; Donath, Marc Y.

    2002-06-01

    Type 2 diabetes mellitus results from an inadequate adaptation of the functional pancreatic cell mass in the face of insulin resistance. Changes in the concentration of glucose play an essential role in the regulation of cell turnover. In human islets, elevated glucose concentrations impair cell proliferation and induce cell apoptosis via up-regulation of the Fas receptor. Recently, it has been shown that the caspase-8 inhibitor FLIP may divert Fas-mediated death signals into those for cell proliferation in lymphatic cells. We observed expression of FLIP in human pancreatic cells of nondiabetic individuals, which was decreased in tissue sections of type 2 diabetic patients. In vitro exposure of islets from nondiabetic organ donors to high glucose levels decreased FLIP expression and increased the percentage of apoptotic terminal deoxynucleotidyltransferase-mediated UTP end labeling (TUNEL)-positive cells; FLIP was no longer detectable in such TUNEL-positive cells. Up-regulation of FLIP, by incubation with transforming growth factor or by transfection with an expression vector coding for FLIP, protected cells from glucose-induced apoptosis, restored cell proliferation, and improved cell function. The beneficial effects of FLIP overexpression were blocked by an antagonistic anti-Fas antibody, indicating their dependence on Fas receptor activation. The present data provide evidence for expression of FLIP in the human cell and suggest a novel approach to prevent and treat diabetes by switching Fas signaling from apoptosis to proliferation.

  16. c-Abl mediates angiotensin II-induced apoptosis in podocytes

    PubMed Central

    Chen, Xinghua; Ren, Zhilong; Liang, Wei; Zha, Dongqing; Liu, Yipeng; Chen, Cheng; Singhal, Pravin C.; Ding, Guohua

    2013-01-01

    findings indicate that c-Abl may mediates Ang II-induced podocyte apoptosis, and inhibition of c-Abl expression can protect podocytes from Ang II-induced injury. PMID:23515840

  17. Modulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis by Helicobacter pylori in immune pathogenesis of gastric mucosal damage.

    PubMed

    Tsai, Hwei-Fang; Hsu, Ping-Ning

    2017-02-01

    Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer, gastric carcinoma, and gastric mucosa-associated lymphoid tissue lymphomas. Apoptosis induced by microbial infections is implicated in the pathogenesis of H. pylori infection. Enhanced gastric epithelial cell apoptosis during H. pylori infection was suggested to play an important role in the pathogenesis of chronic gastritis and gastric pathology. In addition to directly triggering apoptosis, H. pylori induces sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in gastric epithelial cells. Human gastric epithelial cells sensitized to H. pylori confer susceptibility to TRAIL-mediated apoptosis via modulation of death-receptor signaling. The induction of TRAIL sensitivity by H. pylori is dependent upon the activation of caspase-8 and its downstream pathway. H. pylori induces caspase-8 activation via enhanced assembly of the TRAIL death-inducing signaling complex through downregulation of cellular FLICE-inhibitory protein. Moreover, H. pylori infection induces infiltration of T lymphocytes and triggers inflammation to augment apoptosis. In H. pylori infection, significant increases in CCR6(+) CD3(+) T cell infiltration in the gastric mucosa was observed, and the CCR6 ligand, CCL20 chemokine, was selectively expressed in inflamed gastric tissues. These mechanisms initiate chemokine-mediated T lymphocyte trafficking into inflamed epithelium and induce mucosal injury during Helicobacter infection. This article will review recent findings on the interactions of H. pylori with host-epithelial signaling pathways and events involved in the initiation of gastric pathology, including gastric inflammation and mucosal damage.

  18. Novel X-linked inhibitor of apoptosis inhibiting compound as sensitizer for TRAIL-mediated apoptosis in chronic lymphocytic leukaemia with poor prognosis.

    PubMed

    Frenzel, Lukas P; Patz, Michaela; Pallasch, Christian P; Brinker, Reinhild; Claasen, Julia; Schulz, Alexandra; Hallek, Michael; Kashkar, Hamid; Wendtner, Clemens-Martin

    2011-01-01

    Given that aggressive DNA damaging chemotherapy shows suboptimal efficacy in chronic lymphocytic leukaemia (CLL), alternative therapeutic approaches are needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is able to induce tumour-specific apoptosis. However, apoptosis might be inhibited by elevated levels of X-linked inhibitor of apoptosis (XIAP). Use of XIAP-inhibiting compounds might sensitize primary CLL cells towards TRAIL-mediated apoptosis. A novel small molecule, compound A (CA), an inhibitor of XIAP, was used in combination with TRAIL to induce apoptosis in primary CLL cells (n = 48). XIAP was significantly more highly expressed in primary CLL cells (n = 28) compared to healthy B cells (n = 16) (P = 0·02). Our data obtained by specific knock-down of XIAP by siRNA identified XIAP as the key factor conferring resistance to TRAIL in CLL. Combined treatment with CA/TRAIL significantly increased apoptosis compared to untreated (P = 8·5 × 10⁻¹⁰), solely CA (P = 4·1 × 10⁻¹²) or TRAIL treated (P = 4·8 × 10⁻¹⁰) CLL cells. CA rendered 40 of 48 (83·3%) primary CLL samples susceptible to TRAIL-mediated apoptosis. In particular, cells derived from patients with poor prognosis CLL (ZAP-70(+) , IGHV unmutated, 17p-) were highly responsive to this drug combination. Our highly-effective XIAP inhibitor CA, in concert with TRAIL, shows potential for the treatment of CLL cases with poor prognosis and therefore warrants further clinical investigation.

  19. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis

    PubMed Central

    Konishi, Hiroaki; Fujiya, Mikihiro; Tanaka, Hiroki; Ueno, Nobuhiro; Moriichi, Kentaro; Sasajima, Junpei; Ikuta, Katsuya; Akutsu, Hiroaki; Tanabe, Hiroki; Kohgo, Yutaka

    2016-01-01

    Previous reports have suggested that some probiotics inhibit tumorigenesis and cancer progression. However, the molecules involved have not yet been identified. Here, we show that the culture supernatant of Lactobacillus casei ATCC334 has a strong tumour-suppressive effect on colon cancer cells. Using mass spectrometry, we identify ferrichrome as a tumour-suppressive molecule produced by L. casei ATCC334. The tumour-suppressive effect of ferrichrome is greater than that of cisplatin and 5-fluorouracil, and ferrichrome has less of an effect on non-cancerous intestinal cells than either of those agents. A transcriptome analysis reveals that ferrichrome treatment induces apoptosis, which is mediated by the activation of c-jun N-terminal kinase (JNK). Western blotting indicates that the induction of apoptosis by ferrichrome is reduced by the inhibition of the JNK signalling pathway. This we demonstrate that probiotic-derived ferrichrome exerts a tumour-suppressive effect via the JNK signalling pathway. PMID:27507542

  20. CSB ablation induced apoptosis is mediated by increased endoplasmic reticulum stress response

    PubMed Central

    Caputo, Manuela; Balzerano, Alessio; Arisi, Ivan; D’Onofrio, Mara; Brandi, Rossella; Bongiorni, Silvia; Brancorsini, Stefano; Frontini, Mattia; Proietti-De-Santis, Luca

    2017-01-01

    The DNA repair protein Cockayne syndrome group B (CSB) has been recently identified as a promising anticancer target. Suppression, by antisense technology, of this protein causes devastating effects on tumor cells viability, through a massive induction of apoptosis, while being non-toxic to non-transformed cells. To gain insights into the mechanisms underlying the pro-apoptotic effects observed after CSB ablation, global gene expression patterns were determined, to identify genes that were significantly differentially regulated as a function of CSB expression. Our findings revealed that response to endoplasmic reticulum stress and response to unfolded proteins were ranked top amongst the cellular processes affected by CSB suppression. The major components of the endoplasmic reticulum stress-mediated apoptosis pathway, including pro-apoptotic factors downstream of the ATF3-CHOP cascade, were dramatically up-regulated. Altogether our findings add new pieces to the understanding of CSB mechanisms of action and to the molecular basis of CS syndrome. PMID:28253359

  1. Platelet production proceeds independently of the intrinsic and extrinsic apoptosis pathways.

    PubMed

    Josefsson, Emma C; Burnett, Deborah L; Lebois, Marion; Debrincat, Marlyse A; White, Michael J; Henley, Katya J; Lane, Rachael M; Moujalled, Diane; Preston, Simon P; O'Reilly, Lorraine A; Pellegrini, Marc; Metcalf, Donald; Strasser, Andreas; Kile, Benjamin T

    2014-03-17

    BH3 mimetic drugs that target BCL-2 family pro-survival proteins to induce tumour cell apoptosis represent a new era in cancer therapy. Clinical trials of navitoclax (ABT-263, which targets BCL-2, BCL-XL and BCL-W) have shown great promise, but encountered dose-limiting thrombocytopenia. Recent work has demonstrated that this is due to the inhibition of BCL-XL, which is essential for platelet survival. These findings raise new questions about the established model of platelet shedding by megakaryocytes, which is thought to be an apoptotic process. Here we generate mice with megakaryocyte-specific deletions of the essential mediators of extrinsic (Caspase-8) and intrinsic (BAK/BAX) apoptosis. We show that megakaryocytes possess a Fas ligand-inducible extrinsic apoptosis pathway. However, Fas activation does not stimulate platelet production, rather, it triggers Caspase-8-mediated killing. Combined loss of Caspase-8/BAK/BAX does not impair thrombopoiesis, but can protect megakaryocytes from death in mice infected with lymphocytic choriomeningitis virus. Thus, apoptosis is dispensable for platelet biogenesis.

  2. Studying significance of apoptosis in mediating tolbutamide-induced teratogenesis in vitro.

    PubMed

    Singh, Gyanendra; Kumar, Akhilesh; Sinha, Neeraj

    2012-08-01

    The incidence of type 2 diabetes mellitus (non-insulin-dependent diabetes mellitus) is growing worldwide and poses a serious public health problem in a current paradigm of changing life style and food habits. Tolbutamide (sulfonylurea) is among the commonly used anti-diabetic drugs worldwide for treating type 2 diabetes and is known to cause congenital malformations in animals. In this study, the effect of tolbutamide on major organogenesis period and the possible involvement of apoptosis in mediating congenital malformations have been carried out. In the present study design, post-implantation rat embryos of day 11 were cultured for 24 h with various concentrations of tolbutamide, i.e., 10, 100, and 1000 μg/mL cultures, respectively. The growth and developmental of each embryo was evaluated and compared with control ones for the presence of any malformations. The tolbutamide decreased all growth and developmental parameters in a concentration-dependent manner, when compared with control. However, exposure to tolbutamide at 10 μg/mL culture did not show any significant effect on embryonic growth and development in vitro. In parallel to this, flow cytometric analysis (cell cycle and annexin V binding) and DNA fragmentation assay were carried out followed by quantitation by 3'-OH labeling of cultured rat embryos to examine the role of apoptosis in bringing about tolbutamide-induced teratogenesis. All results were found to be dose dependent and an increase in apoptosis in embryonic tissues may be related to the increased risk of congenital malformations. The outcome of the research suggested that apoptosis might be involved in mediating teratogenesis of tolbutamide in vitro. Further research is warranted to fully understand this mechanism.

  3. Autophagy as a Survival Mechanism for Squamous Cell Carcinoma Cells in Endonuclease G-Mediated Apoptosis

    PubMed Central

    Masui, Atsushi; Hamada, Masakazu; Kameyama, Hiroyasu; Wakabayashi, Ken; Takasu, Ayako; Imai, Tomoaki; Iwai, Soichi; Yura, Yoshiaki

    2016-01-01

    Safingol, L- threo-dihydrosphingosine, induces cell death in human oral squamous cell carcinoma (SCC) cells through an endonuclease G (endoG) -mediated pathway. We herein determined whether safingol induced apoptosis and autophagy in oral SCC cells. Safingol induced apoptotic cell death in oral SCC cells in a dose-dependent manner. In safingol-treated cells, microtubule-associated protein 1 light chain 3 (LC3)-I was changed to LC3-II and the cytoplasmic expression of LC3, amount of acidic vesicular organelles (AVOs) stained by acridine orange and autophagic vacuoles were increased, indicating the occurrence of autophagy. An inhibitor of autophagy, 3-methyladenine (3-MA), enhanced the suppressive effects of safingol on cell viability, and this was accompanied by an increase in the number of apoptotic cells and extent of nuclear fragmentation. The nuclear translocation of endoG was minimal at a low concentration of safingol, but markedly increased when combined with 3-MA. The suppressive effects of safingol and 3-MA on cell viability were reduced in endoG siRNA- transfected cells. The scavenging of reactive oxygen species (ROS) prevented cell death induced by the combinational treatment, whereas a pretreatment with a pan-caspase inhibitor z-VAD-fmk did not. These results indicated that safingol induced apoptosis and autophagy in SCC cells and that the suppression of autophagy by 3-MA enhanced apoptosis. Autophagy supports cell survival, but not cell death in the SCC cell system in which apoptosis occurs in an endoG-mediated manner. PMID:27658240

  4. Sevoflurane induces endoplasmic reticulum stress mediated apoptosis in hippocampal neurons of aging rats.

    PubMed

    Chen, Gang; Gong, Ming; Yan, Min; Zhang, Xiaoming

    2013-01-01

    Elderly patients are more likely to suffer from postoperative memory impairment for volatile anesthetics could induce aging neurons degeneration and apoptosis while the mechanism was still elusive. Therefore we hypothesized that ER stress mediated hippocampal neurons apoptosis might play an important role in the mechanism of sevoflurane-induced cognitive impairment in aged rats. Thirty 18-month-old male Sprague-Dawley rats were divided into two groups: the sham anesthesia group (exposure to simply humidified 30-50% O2 balanced by N2 in an acrylic anesthetizing chamber for 5 hours) and the sevoflurane anesthesia group (received 2% sevoflurane in the same humidified mixed air in an identical chamber for the same time). Spatial memory of rats was assayed by the Morris water maze test. The ultrastructure of the hippocampus was observed by transmission electron microscopy (TEM). The expressions of C/EBP homologous protein (CHOP) and caspase-12 in the hippocampus were observed by immunohistochemistry and real-time PCR analysis. The apoptosis neurons were also assessed by TUNEL assay. The Morris water maze test showed that sevoflurane anesthesia induced spatial memory impairment in aging rats (P<0.05). The apoptotic neurons were condensed and had clumped chromatin with fragmentation of the nuclear membrane, verifying apoptotic degeneration in the sevoflurane group rats by TEM observation. The expressions of CHOP and caspase-12 increased, and the number of TUNEL positive cells of the hippocampus also increased in the sevoflurane group rats (P<0.05). The present results suggested that the long time exposure of sevoflurane could induce neuronal degeneration and cognitive impairment in aging rats. The ER stress mediated neurons apoptosis may play a role in the sevoflurane-induced memory impairment in aging rats.

  5. Bacopa monnieri-Induced Protective Autophagy Inhibits Benzo[a]pyrene-Mediated Apoptosis.

    PubMed

    Das, Durgesh Nandini; Naik, Prajna Paramita; Nayak, Aditi; Panda, Prashanta Kumar; Mukhopadhyay, Subhadip; Sinha, Niharika; Bhutia, Sujit K

    2016-11-01

    Benzo[a]pyrene (B[a]P) is capable of inducing oxidative stress and cellular injuries leading to cell death and associates with a significant risk of cancer development. Prevention of B[a]P-induced cellular toxicity with herbal compound through regulation of mitochondrial oxidative stress might protect cell death and have therapeutic benefit to human health. In this study, we demonstrated the cytoprotective role of Bacopa monnieri (BM) against B[a]P-induced apoptosis through autophagy induction. Pretreatment with BM rescued the reduction in cell viability in B[a]P-treated human keratinocytes (HaCaT) cells indicating the cytoprotective potential of BM against B[a]P. Moreover, BM was found to inhibit B[a]P-mediated reactive oxygen species (ROS)-induced apoptosis activation in HaCaT cells. Furthermore, BM was found to preserve mitochondrial membrane potential and inhibited release of cytochrome c in B[a]P-treated HaCaT cells. Bacopa monnieri induced protective autophagy; we knocked down Beclin-1, and data showed that BM was unable to protect from B[a]P-induced mitochondrial ROS-mediated apoptosis in Beclin-1-deficient HaCaT cells. Moreover, we established that B[a]P-induced damaged mitochondria were found to colocalize and degraded within autolysosomes in order to protect HaCaT cells from mitochondrial injury. In conclusion, B[a]P-induced apoptosis was rescued by BM treatment and provided cytoprotection through Beclin-1-dependent autophagy activation. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Inhibition of histone deacetylases by chlamydocin induces apoptosis and proteasome-mediated degradation of survivin.

    PubMed

    De Schepper, Stefanie; Bruwiere, Hélène; Verhulst, Tinne; Steller, Ulf; Andries, Luc; Wouters, Walter; Janicot, Michel; Arts, Janine; Van Heusden, Jim

    2003-02-01

    The naturally occurring cyclic tetrapeptide chlamydocin is a very potent inhibitor of cell proliferation. Here we show that chlamydocin is a highly potent histone deacetylase (HDAC) inhibitor, inhibiting HDAC activity in vitro with an IC(50) of 1.3 nM. Like other HDAC inhibitors, chlamydocin induces the accumulation of hyperacetylated histones H3 and H4 in A2780 ovarian cancer cells, increases the expression of p21(cip1/waf1), and causes an accumulation of cells in G(2)/M phase of the cell cycle. In addition, chlamydocin induces apoptosis by activating caspase-3, which in turn leads to the cleavage of p21(cip1/waf1) into a 15-kDa breakdown product and drives cells from growth arrest into apoptosis. Concomitant with the activation of caspase-3 and cleavage of p21(cip1/waf1), chlamydocin decreases the protein level of survivin, a member of the inhibitor of apoptosis protein family that is selectively expressed in tumors. Although our data indicate a potential link between degradation of survivin and activation of the apoptotic pathway induced by HDAC inhibitors, stable overexpression of survivin does not suppress the activation of caspase-3 or cleavage of p21(cip1/waf1) induced by chlamydocin treatment. The decrease of survivin protein level is mediated by degradation via proteasomes since it can be inhibited by specific proteasome inhibitors. Taken together, our results show that induction of apoptosis by chlamydocin involves caspase-dependent cleavage of p21(cip1/waf1), which is strikingly associated with proteasome-mediated degradation of survivin.

  7. Hepatoprotective properties of sesamin against CCl4 induced oxidative stress-mediated apoptosis in mice via JNK pathway.

    PubMed

    Ma, Jie-Qiong; Ding, Jie; Zhang, Li; Liu, Chan-Min

    2014-02-01

    Sesamin (Ses), one of the major lignan derived from sesame seeds, has been reported to have many benefits and medicinal properties. However, its protective effects against carbon tetrachloride (CCl4) induced injury in liver have not been clarified. The aim of the present study was to investigate the hepatoprotective effects of sesamin on oxidative stress and apoptosis in mice exposed to CCl4. Our data showed that sesamin significantly prevented CCl4-induced hepatotoxicity in a dose-dependent manner, indicated by both diagnostic indicators of liver damage (serum aminotransferase activities) and histopathological analysis. Moreover, CCl4-induced profound elevation of reactive oxygen species (ROS) production and oxidative stress, as evidenced by increasing of lipid peroxidation level and depleting of the total antioxidant capacity (TAC) in liver, were suppressed by treatment with sesamin. Furthermore, TUNEL assay showed that CCl4-induced apoptosis in mouse liver was significantly inhibited by sesamin. In exploring the underlying mechanisms of sesamin action, we found that activities of caspase-3 were markedly inhibited by the treatment of sesamin in the liver of CCl4 treated mice. Sesamin increased expression levels of phosphorylated Jun N-terminal kinases (JNK) in liver, which in turn inactivated pro-apoptotic signaling events restoring the balance between mitochondrial pro- and anti-apoptotic Bcl-2 proteins and decreasing the release of mitochondrial cytochrome c in liver of CCl4 treated mice. JNK was also involved in the mitochondrial extrinsic apoptotic pathways of sesamin effects against CCl4 induced liver injury by regulating the expression levels of phosphorylated c-Jun proteins, necrosis factor-alpha (TNF-α) and Bak. In conclusion, these results suggested that the inhibition of CCl4-induced apoptosis by sesamin is due at least in part to its anti-oxidant activity and its ability to modulate the JNK signaling pathway.

  8. p53 Mediates Colistin-Induced Autophagy and Apoptosis in PC-12 Cells

    PubMed Central

    Zhang, Ling; Xie, Daoyuan; Chen, Xueping; Hughes, Maria L. R.; Jiang, Guozheng; Lu, Ziyin; Xia, Chunli; Li, Li; Wang, Jinli; Xu, Wei; Sun, Yuan; Li, Rui; Wang, Rui; Qian, Feng

    2016-01-01

    -induced autophagy and apoptosis are associated with the p53-mediated pathway. PMID:27324771

  9. Activating transcription factor 4 is involved in endoplasmic reticulum stress-mediated apoptosis contributing to vascular calcification.

    PubMed

    Duan, Xiao-Hui; Chang, Jin-Rui; Zhang, Jing; Zhang, Bao-Hong; Li, Yu-Lin; Teng, Xu; Zhu, Yi; Du, Jie; Tang, Chao-Shu; Qi, Yong-Fen

    2013-09-01

    Our previous work reported that endoplasmic reticulum stress (ERS)-mediated apoptosis was activated during vascular calcification (VC). Activating transcription factor 4 (ATF4) is a critical transcription factor in osteoblastogenesis and ERS-induced apoptosis. However, whether ATF4 is involved in ERS-mediated apoptosis contributing to VC remains unclear. In the present study, in vivo VC was induced in rats by administering vitamin D3 plus nicotine. Vascular smooth muscle cell (VSMC) calcification in vitro was induced by incubation in calcifying media containing β-glycerophosphate and CaCl2. ERS inhibitors taurine or 4-phenylbutyric acid attenuated ERS and VSMC apoptosis in calcified rat arteries, reduced calcification and retarded the VSMC contractile phenotype transforming into an osteoblast-like phenotype in vivo. Inhibition of ERS retarded the VSMC phenotypic transition into an osteoblast-like cell phenotype and reduced VSMC calcification and apoptosis in vitro. Interestingly, ATF4 was activated in calcified aortas and calcified VSMCs in vitro. ATF4 knockdown attenuated ERS-induced apoptosis in calcified VSMCs. ATF4 deficiency blocked VSMC calcification and negatively regulated the osteoblast phenotypic transition of VSMCs in vitro. Our results demonstrate that ATF4 was involved at least in part in the process of ERS-mediated apoptosis contributing to VC.

  10. In vitro effects of Panax ginseng in aristolochic acid-mediated renal tubulotoxicity: apoptosis versus regeneration.

    PubMed

    Bunel, Valérian; Antoine, Marie-Hélène; Nortier, Joëlle; Duez, Pierre; Stévigny, Caroline

    2015-03-01

    This in vitro study aimed to determine the effects of a Panax ginseng extract on aristolochic acid-mediated toxicity in HK-2 cells. A methanolic extract of ginseng (50 µg/mL) was able to reduce cell survival after treatment with 50 µM aristolochic acid for 24, 48, and 72 h, as evidenced by a resazurin reduction assay. This result was confirmed by a flow cytometric evaluation of apoptosis using annexin V-PI staining, and indicated higher apoptosis rates in cells treated with aristolochic acid and P. ginseng extract compared with aristolochic acid alone. However, P. ginseng extract by itself (5 and 50 µg/mL) increased the Ki-67 index, indicating an enhancement in cellular proliferation. Cell cycle analysis excluded a P. ginseng extract-mediated induction of G2/M cell cycle arrest such as the one typically observed with aristolochic acid. Finally, β-catenin acquisition was found to be accelerated when cells were treated with both doses of ginseng, suggesting that the epithelial phenotype of renal proximal tubular epithelial cells was maintained. Also, ginseng treatment (5 and 50 µg/mL) reduced the oxidative stress activity induced by aristolochic acid after 24 and 48 h. These results indicate that the ginseng extract has a protective activity towards the generation of cytotoxic reactive oxygen species induced by aristolochic acid. However, the ginseng-mediated alleviation of oxidative stress did not correlate with a decrease but rather with an increase in aristolochic acid-induced apoptosis and death. This deleterious herb-herb interaction could worsen aristolochic acid tubulotoxicity and reinforce the severity and duration of the injury. Nevertheless, increased cellular proliferation and migration, along with the improvement in the epithelial phenotype maintenance, indicate that ginseng could be useful for improving tubular regeneration and the recovery following drug-induced kidney injury. Such dual activities of ginseng certainly warrant further in vivo

  11. Caspase-mediated apoptosis in neuronal excitotoxicity triggered by nitric oxide.

    PubMed Central

    Leist, M.; Volbracht, C.; Kühnle, S.; Fava, E.; Ferrando-May, E.; Nicotera, P.

    1997-01-01

    BACKGROUND: Excitotoxicity and excess generation of nitric oxide (NO) are believed to be fundamental mechanisms in many acute and chronic neurodegenerative disorders. Disturbance of Ca2+ homeostasis and protein nitration/nitrosylation are key features in such conditions. Recently, a family of proteases collectively known as caspases has been implicated as common executor of a variety of death signals. In addition, overactivation of poly-(ADP-ribose) polymerase (PARP) has been observed in neuronal excitotoxicity. We therefore designed this study to investigate whether triggering of caspase activity and/or activation of PARP played a role in cerebellar granule cell (CGC) apoptosis elicited by peroxynitrite (ONOO-) or NO donors. MATERIALS AND METHODS: CGC from wild-type or PARP -/- mice were exposed to various nitric oxide donors. Caspase activation and its implications for membrane alterations, Ca2+ homeostasis, intracellular proteolysis, chromatin degradation, and cell death were investigated. RESULTS: CGC exposed to NO donors undergo apoptosis, which is mediated by excess synaptic release of excitotoxic mediators. This excitotoxic mechanism differs from direct NO toxicity in some other neuronal populations and does not involve PARP activation. Inhibition of caspases with different peptide substrates prevented cell death and the related features, including intracellular proteolysis, chromatin breakdown, and translocation of phosphatidylserine to the outer surface of the cell membrane. Increased Ca2+ influx following N-methyl-D-aspartate (NMDA) receptor (NMDA-R) activation was not inhibited by caspase inhibitors. CONCLUSIONS: In CGC, NO donors elicit apoptosis by a mechanism involving excitotoxic mediators, Ca2+ overload, and subsequent activation of caspases. Images Fig. 4 FIG. 5 FIG. 6 FIG. 7 PMID:9407551

  12. Feline immunodeficiency virus envelope glycoprotein mediates apoptosis in activated PBMC by a mechanism dependent on gp41 function

    SciTech Connect

    Garg, Himanshu; Joshi, Anjali; Tompkins, Wayne A. . E-mail: Wayne_Tompkins@ncsu.edu

    2004-12-20

    Feline Immunodeficiency Virus (FIV) is a lentivirus that causes immunodeficiency in cats, which parallels HIV-1-induced immunodeficiency in humans. It has been established that HIV envelope (Env) glycoprotein mediates T cell loss via a mechanism that requires CXCR4 binding. The Env glycoprotein of FIV, similar to HIV, requires CXCR4 binding for viral entry, as well as inducing membrane fusion leading to syncytia formation. However, the role of FIV Env in T cell loss and the molecular mechanisms governing this process have not been elucidated. We studied the role of Env glycoprotein in FIV-mediated T cell apoptosis in an in vitro model. Our studies demonstrate that membrane-expressed FIV Env induces apoptosis in activated feline peripheral blood mononuclear cells (PBMC) by a mechanism that requires CXCR4 binding, as the process was inhibited by CXCR4 antagonist AMD3100 in a dose-dependent manner. Interestingly, studies regarding the role of CD134, the recently identified primary receptor of FIV, suggest that binding to CD134 may not be important for induction of apoptosis in PBMC. However, inhibiting Env-mediated fusion post CXCR4 binding by FIV gp41-specific fusion inhibitor also inhibited apoptosis. Under similar conditions, a fusion-defective gp41 mutant was unable to induce apoptosis in activated PBMC. Our findings are the first report suggesting the potential of FIV Env to mediate apoptosis in bystander cells by a process that is dependent on gp41 function.

  13. Evodiamine Induces Apoptosis and Enhances TRAIL-Induced Apoptosis in Human Bladder Cancer Cells through mTOR/S6K1-Mediated Downregulation of Mcl-1

    PubMed Central

    Zhang, Tao; Qu, Shanna; Shi, Qi; He, Dalin; Jin, Xunbo

    2014-01-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), either alone or in combination with other anti-cancer agents, has been considered as a new strategy for anti-cancer therapy. In this study, we demonstrated that evodiamine, a quinolone alkaloid isolated from the fruit of Evodia fructus, induced apoptosis and enhanced TRAIL-induced apoptosis in human bladder cancer cells. To elucidate the underlying mechanism, we found that evodiamine significantly reduced the protein levels of Mcl-1 in 253J and T24 bladder cancer cells, and overexpression of this molecule attenuated the apoptosis induced by evodiamine alone, or in combination with TRAIL. Further experiments revealed that evodiamine did not affect the mRNA level, proteasomal degradation and protein stability of Mcl-1. On the other hand, evodiamine inhibited the mTOR/S6K1 pathway, which usually regulates protein translation; moreover, knockdown of S6K1 with small interfering RNA (siRNA) effectively reduced Mcl-1 levels, indicating evodiamine downregulates c-FLIP through inhibition of mTOR/S6K1 pathway. Taken together, our results indicate that evodiamine induces apoptosis and enhances TRAIL-induced apoptosis possibly through mTOR/S6K1-mediated downregulation of Mcl-1; furthermore, these findings provide a rationale for the combined application of evodiamine with TRAIL in the treatment of bladder cancer. PMID:24566141

  14. IRF-1 transcriptionally upregulates PUMA, which mediates the mitochondrial apoptotic pathway in IRF-1-induced apoptosis in cancer cells.

    PubMed

    Gao, J; Senthil, M; Ren, B; Yan, J; Xing, Q; Yu, J; Zhang, L; Yim, J H

    2010-04-01

    Interferon regulatory factor-1 (IRF-1) is a transcription factor that acts as a tumor suppressor and causes apoptosis in cancer cells. We evaluated IRF-1-induced apoptosis in gastric cancer cell lines. We established stable clones in AGS cells that have a tetracycline-inducible IRF-1 expression system. We used these clones and recombinant adenovirus expressing IRF-1 to explore the mechanism of IRF-1-induced apoptosis in gastric cancer. Expression of IRF-1 causes apoptosis in gastric cancer cell lines as shown by phosphatidylserine exposure and cleavage of caspase-8, caspase-3, and Bid with the mitochondrial release of cytochrome c. However, inhibition of caspase-8 and Bid did not inhibit apoptosis and did not decrease cleaved caspase-9 or mitochondrial release of cytochrome c. We then show that IRF-1 upregulates PUMA (p53 upregulated modulator of apoptosis), which is known to activate apoptosis by the intrinsic pathway; this can be p53-independent. IRF-1 binds to distinct sites in the promoter of PUMA and activates PUMA transcription. Moreover, molecular markers of mitochondrial apoptosis are eliminated in PUMA knockout and knockdown cells and phosphatidylserine exposure is decreased dramatically. Finally, we show that IFN-gamma induces IRF-1-mediated upregulation of PUMA in cancer cells. We conclude that IRF-1 can induce apoptosis by the intrinsic pathway independent of the extrinsic pathway by upregulation of PUMA.

  15. HCV-Mediated Apoptosis of Hepatocytes in Culture and Viral Pathogenesis

    PubMed Central

    Silberstein, Erica; Ulitzky, Laura; Lima, Livia Alves; Cehan, Nicoleta; Teixeira-Carvalho, Andréa; Roingeard, Philippe; Taylor, Deborah R.

    2016-01-01

    Chronic Hepatitis C Virus (HCV) infection is associated with progressive liver injury and subsequent development of fibrosis and cirrhosis. The death of hepatocytes results in the release of cytokines that induce inflammatory and fibrotic responses. The mechanism of liver damage is still under investigation but both apoptosis and immune-mediated processes may play roles. By observing the changes in gene expression patterns in HCV-infected cells, both markers and the causes of HCV-associated liver injury may be elucidated. HCV genotype 1b virus from persistently infected VeroE6 cells induced a strong cytopathic effect when used to infect Huh7.5 hepatoma cells. To determine if this cytopathic effect was a result of apoptosis, ultrastructural changes were observed by electron microscopy and markers of programmed cell death were surveyed. Screening of a human PCR array demonstrated a gene expression profile that contained upregulated markers of apoptosis, including tumor necrosis factor, caspases and caspase activators, Fas, Bcl2-interacting killer (BIK) and tumor suppressor protein, p53, as a result of HCV genotype 1b infection. The genes identified in this study should provide new insights into understanding viral pathogenesis in liver cells and may possibly help to identify novel antiviral and antifibrotic targets. PMID:27280444

  16. Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis.

    PubMed

    Mulik, Rohit S; Mönkkönen, Jukka; Juvonen, Risto O; Mahadik, Kakasaheb R; Paradkar, Anant R

    2010-10-15

    Photodegradation and low bioavailability are major hurdles for the therapeutic use of curcumin. Aim of the present study was to formulate transferrin-mediated solid lipid nanoparticles (Tf-C-SLN) to increase photostability, and enhance its anticancer activity against MCF-7 breast cancer cells. Tf-C-SLN were prepared by homogenization method and characterized by size, zeta potential, entrapment efficiency and stability, transmission electron microscopy (TEM), X-ray diffraction (XRD) and in vitro release study. Microplate analysis and flow cytometry techniques were used for cytotoxicity and apoptosis study. The physical characterization showed the suitability of method of preparation. TEM and XRD study revealed the spherical nature and entrapment of curcumin in amorphous form, respectively. The cytotoxicity, ROS and cell uptake was found to be increased considerably with Tf-C-SLN compared to curcumin solubilized surfactant solution (CSSS) and curcumin-loaded SLN (C-SLN) suggesting the targeting effect. AnnexinV-FITC/PI double staining, DNA analysis and reduced mitochondrial potential confirmed the apoptosis. The flow cytometric studies revealed that the anticancer activity of curcumin is enhanced with Tf-C-SLN compared to CSSS and C-SLN, and apoptosis is the mechanism underlying the cytotoxicity. The present study indicated the potential of Tf-C-SLN in enhancing the anticancer effect of curcumin in breast cancer cells in vitro.

  17. The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons.

    PubMed

    Ahmadi, Ferogh A; Linseman, Daniel A; Grammatopoulos, Tom N; Jones, Susan M; Bouchard, Ron J; Freed, Curt R; Heidenreich, Kim A; Zawada, W Michael

    2003-11-01

    In vivo, the pesticide rotenone induces degeneration of dopamine neurons and parkinsonian-like pathology in adult rats. In the current study, we utilized primary ventral mesencephalic (VM) cultures from E15 rats as an in vitro model to examine the mechanism underlying rotenone-induced death of dopamine neurons. After 11 h of exposure to 30 nm rotenone, the number of dopamine neurons identified by tyrosine hydroxylase (TH) immunostaining declined rapidly with only 23% of the neurons surviving. By contrast, 73% of total cells survived rotenone treatment, indicating that TH+ neurons are more sensitive to rotenone. Examination of the role of apoptosis in TH+ neuron death, revealed that 10 and 30 nm rotenone significantly increased the number of apoptotic TH+ neurons from 7% under control conditions to 38 and 55%, respectively. The increase in apoptotic TH+ neurons correlated with an increase in immunoreactivity for active caspase-3 in TH+ neurons. The caspase-3 inhibitor, DEVD, rescued a significant number of TH+ neurons from rotenone-induced death. Furthermore, this protective effect lasted for at least 32 h post-rotenone and DEVD exposure, indicating lasting neuroprotection achieved with an intervention prior to the death commitment point. Our results show for the first time in primary dopamine neurons that, at low nanomolar concentrations, rotenone induces caspase-3-mediated apoptosis. Understanding the mechanism of rotenone-induced apoptosis in dopamine neurons may contribute to the development of new neuroprotective strategies against Parkinson's disease.

  18. Calcium and oxidative stress mediate perillaldehyde-induced apoptosis in Candida albicans.

    PubMed

    Tian, Hui; Qu, Su; Wang, Yanzhen; Lu, Zhaoqun; Zhang, Man; Gan, Yeyun; Zhang, Peng; Tian, Jun

    2017-02-21

    New anti-Candida albicans drugs are needed due to the emergence of resistant cases in recent years. Perillaldehyde (PAE) is a natural monoterpenoid compound derived from Perilla frutescens. The minimum inhibitory concentration of PAE against C. albicans was 0.4 μL/mL. We aimed to elucidate the antifungal mode of action of PAE against C. albicans. The antifungal activity of PAE against C. albicans was found to correlate with an elevation in intracellular Ca(2+) and accumulation of ROS. Several downstream apoptosis events such as the disruption of mitochondrial membrane potential, phosphatidylserine externalization, cytochrome c release, and metacaspase activation were observed in PAE-treated cells. DNA damage and nuclear fragmentation assays also revealed apoptosis of C. albicans cells. In summary, by means of fluorescent microscopy, flow cytometer analysis, and Western blot, our data uncovered that PAE exerts its antifungal activity through Ca(2+) and oxidative stress-mediated apoptosis mechanisms. This study deciphered the mode of action of PAE, which will be useful in the design of improved antifungal therapies.

  19. Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis.

    PubMed

    Malik, Salma; Suchal, Kapil; Gamad, Nanda; Dinda, Amit Kumar; Arya, Dharamvir Singh; Bhatia, Jagriti

    2015-02-05

    Nephrotoxicity is a major adverse effect of the widely used anticancer drug cisplatin. Oxidative stress, inflammation and apoptosis are implicated in the pathophysiology of cisplatin-induced acute renal injury. Moreover, cisplatin activates many signal transduction pathways involved in cell injury and death, particularly mitogen activated protein kinase (MAPK) pathway. With this background, we aimed to investigate the protective effect of telmisartan, a widely used antihypertensive drug, in cisplatin-induced nephrotoxicity model in rats. To accomplish this, male albino wistar rats (150-200 g) were divided into 6 groups: Normal, cisplatin-control, telmisartan (2.5, 5 and 10 mg/kg) and telmisartan per se treatment groups. Normal saline or telmisartan was administered orally to rats for 10 days and cisplatin was given on 7th day (8 mg/kg; i.p.) to induce nephrotoxicity. On 10th day, rats were killed and both the kidneys were harvested for biochemical, histopathological and molecular studies. Cisplatin injected rats showed depressed renal function, altered proxidant-antioxidant balance and acute tubular necrosis which was significantly normalized by telmisartan co-treatment. Furthermore, cisplatin administration activated MAPK pathway that caused tubular inflammation and apoptosis in rats. Telmisartan treatment significantly prevented MAPK mediated inflammation and apoptosis. Among the three doses studied telmisartan at 10 mg/kg dose showed maximum nephroprotective effect which could be due to maintenance of cellular redox status and inhibition of MAPK activation.

  20. A mitochondria-dependent pathway mediates the apoptosis of GSE-induced yeast.

    PubMed

    Cao, Sishuo; Xu, Wentao; Zhang, Nan; Wang, Yan; Luo, YunBo; He, Xiaoyun; Huang, Kunlun

    2012-01-01

    Grapefruit seed extract (GSE), which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling (TUNEL) and 4,6'-diaminidino-2-phenylindole (DAPI) staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential) and ROS (reactive oxygen species) indicated that the mitochondria took part in the apoptotic process. Changes in this process detected by metabonomics and proteomics revealed that the yeast cells tenaciously resisted adversity. Proteins related to redox, cellular structure, membrane, energy and DNA repair were significantly increased. In this study, the relative changes in the levels of proteins and metabolites showed the tenacious resistance of yeast cells. However, GSE induced apoptosis in the yeast cells by destruction of the mitochondrial 60 S ribosomal protein, L14-A, and prevented the conversion of pantothenic acid to coenzyme A (CoA). The relationship between the proteins and metabolites was analyzed by orthogonal projections to latent structures (OPLS). We found that the changes of the metabolites and the protein changes had relevant consistency.

  1. FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis.

    PubMed

    Wang, Jiao; Liu, Shu; Yin, Yancun; Li, Mingjin; Wang, Bo; Yang, Li; Jiang, Yangfu

    2015-03-01

    The anthraquinone compound rhein is a natural agent in the traditional Chinese medicine rhubarb. Preclinical studies demonstrate that rhein has anticancer activity. Treatment of a variety of cancer cells with rhein may induce apoptosis. Here, we report that rhein induces atypical unfolded protein response in breast cancer MCF-7 cells and hepatoma HepG2 cells. Rhein induces CHOP expression, eIF2α phosphorylation and caspase cleavage, while it does not induce glucose-regulated protein 78 (GRP78) expression in both MCF-7 and HepG2 cells. Meanwhile, rhein inhibits thapsigargin-induced GRP78 expression and X box-binding protein 1 splicing. In addition, rhein inhibits Akt phosphorylation and stimulates FOXO transactivation activity. Rhein induces Bim expression in MCF-7 and HepG2 cells, which can be abrogated by FOXO3a knockdown. Knockdown of FOXO3a or Bim abrogates rhein-induced caspase cleavage and apoptosis. The chemical chaperone 4-phenylbutyrate acid antagonizes the induction of FOXO activation, Bim expression and caspase cleavage by rhein, indicating that protein misfolding may be involved in triggering these deleterious effects. We conclude that FOXO3a-mediated up-regulation of Bim is a key mechanism underlying rhein-induced cancer cells apoptosis.

  2. A Mitochondria-Dependent Pathway Mediates the Apoptosis of GSE-Induced Yeast

    PubMed Central

    Cao, Sishuo; Xu, Wentao; Zhang, Nan; Wang, Yan; Luo, YunBo; He, Xiaoyun; Huang, Kunlun

    2012-01-01

    Grapefruit seed extract (GSE), which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase–mediated dUTP Nick End Labeling (TUNEL) and 4,6′-diaminidino-2-phenylindole (DAPI) staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential) and ROS (reactive oxygen species) indicated that the mitochondria took part in the apoptotic process. Changes in this process detected by metabonomics and proteomics revealed that the yeast cells tenaciously resisted adversity. Proteins related to redox, cellular structure, membrane, energy and DNA repair were significantly increased. In this study, the relative changes in the levels of proteins and metabolites showed the tenacious resistance of yeast cells. However, GSE induced apoptosis in the yeast cells by destruction of the mitochondrial 60 S ribosomal protein, L14-A, and prevented the conversion of pantothenic acid to coenzyme A (CoA). The relationship between the proteins and metabolites was analyzed by orthogonal projections to latent structures (OPLS). We found that the changes of the metabolites and the protein changes had relevant consistency. PMID:22403727

  3. Apoptosis-mediated inhibition of human breast cancer cell proliferation by lemon citrus extract.

    PubMed

    Alshatwi, Ali A; Shafi, Gowhar; Hasan, Tarique N; Al-Hazzani, Amal A; Alsaif, Mohammed A; Alfawaz, Mohammed A; Lei, K Y; Munshi, Anjana

    2011-01-01

    Dietary phytochemicals have a variety of antitumor properties. In the present study, the antitumor activity of methanolic extract of lemon fruit (lemon extract; LE) (LE) on the MCF-7 breast cancer cell line was investigated in vitro. Apoptotic cell death was analyzed using the TUNEL assay. In addition, the apoptosis mediated by LE extract in the MCF-7 cells was associated with the increased expression of the tumor suppressor p53 and caspase-3. Additionally, the expression of a pro-apoptotic gene, bax, was increased, and the expression of an anti-apoptotic gene, bcl-2, was decreased by LE extract treatment, resulting in a shift in the Bax:Bcl-2 ratio to one that favored apoptosis. The expression of a major apoptotic gene, caspase-3, was increased by LE extract treatment. In light of the above results, we concluded that LE extract can induce the apoptosis of MCF-7 breast cancer cells via Bax-related caspase-3 activation. This study provides experimental data that are relevant to the possible future clinical use of LE to treat breast cancer.

  4. ASC Induces Apoptosis via Activation of Caspase-9 by Enhancing Gap Junction-Mediated Intercellular Communication

    PubMed Central

    Hida, Shigeaki; Fujii, Chifumi; Taniguchi, Shun’ichiro; Ito, Kensuke; Matsumura, Tomio; Okada, Nagisa; Sakaizawa, Takashi; Kobayashi, Akira; Takeoka, Michiko; Miyagawa, Shin-ichi

    2017-01-01

    ASC (apoptosis-associated speck-like protein containing a CARD) is a key adaptor molecule of inflammasomes that mediates inflammatory and apoptotic signals. Aberrant methylation-induced silencing of ASC has been observed in a variety of cancer cells, thus implicating ASC in tumor suppression, although this role remains incompletely defined especially in the context of closely neighboring cell proliferation. As ASC has been confirmed to be silenced by abnormal methylation in HT1080 fibrosarcoma cells as well, this cell line was investigated to characterize the precise role and mechanism of ASC in tumor progression. The effects of ASC were examined using in vitro cell cultures based on comparisons between low and high cell density conditions as well as in a xenograft murine model. ASC overexpression was established by insertion of the ASC gene into pcDNA3 and pMX-IRES-GFP vectors, the latter being packed into a retrovirus and subjected to reproducible competitive assays using parental cells as an internal control, for evaluation of cell viability. p21 and p53 were silenced using shRNA. Cell viability was suppressed in ASC-expressing transfectants as compared with control cells at high cell density conditions in in vitro culture and colony formation assays and in in vivo ectopic tumor formation trials. This suppression was not detected in low cell density conditions. Furthermore, remarkable progression of apoptosis was observed in ASC-introduced cells at a high cell density, but not at a low one. ASC-dependent apoptosis was mediated not by p21, p53, or caspase-1, but rather by cleavage of caspase-9 as well as by suppression of the NF-κB-related X-linked inhibitor-of-apoptosis protein. Caspase-9 cleavage was observed to be dependent on gap junction formation. The remarkable effect of ASC on the induction of apoptosis through caspase-9 and gap junctions revealed in this study may lead to promising new approaches in anticancer therapy. PMID:28056049

  5. Involvement of nitric oxide during phthalocyanine (Pc4) photodynamic therapy-mediated apoptosis.

    PubMed

    Gupta, S; Ahmad, N; Mukhtar, H

    1998-05-01

    Photodynamic therapy (PDT), a new treatment modality, uses a combination of photosensitizing agent and visible light for the therapy of many solid malignancies. The hallmark of PDT is intracellular oxidative stress mediated by reactive oxygen species, which, through a cascade of events, results in a cell kill that induces apoptosis in some cells. To better understand the mechanism of apoptosis, we hypothesized the role of nitric oxide (NO), which is considered to be involved in a variety of physiological and pathological processes, during PDT. The model photosensitizer we have been working with is a silicon-phthalocyanine compound termed Pc4. Here, we investigated the involvement of NO during Pc4 PDT in PDT of apoptosis-resistant radiation-induced fibrosarcoma (RIF-1) cells and in PDT of apoptosis-sensitive human epidermoid carcinoma (A431) cells. Pc4 PDT resulted in a rapid increase in nitrite production in A431 cells, starting as early as 15 s post-PDT, and showed a progressive increase up to 15 min post-PDT. This increase in nitrite production was observed in cell lysates as well as in the cell culture medium. RIF-1 cells did not show an increase in nitrite production in either the cell lysates or the culture medium. At this time, a majority of the cells were viable. The Western blot analysis also showed a rapid increase in the expression of the constitutive form of NO synthase as early as 15 s post-PDT when compared to that of the controls. This response showed a dose dependency up to 5 min after Pc4 PDT. This observation was confirmed by a [3H]L-citrulline assay, which also showed a similar pattern for constitutive NO-synthase activity. RIF-1 cells did not show any change in protein expression or enzyme activity after the same treatment. These data, for the first time, demonstrate the generation of NO during PDT and suggest that it may be involved in PDT-mediated apoptosis. This may have relevance in improving the therapeutic efficacy of PDT using

  6. Aeromonas hydrophila induced head kidney macrophage apoptosis in Clarias batrachus involves the activation of calpain and is caspase-3 mediated.

    PubMed

    Banerjee, Chaitali; Goswami, Ramansu; Verma, Gaurav; Datta, Malabika; Mazumder, Shibnath

    2012-07-01

    The mechanism of macrophage cytotoxicity induced by Aeromonas hydrophila is yet unresolved. We observed A. hydrophila induces Head Kidney Macrophage (HKM) apoptosis in Clarias batrachus, as evident from Hoechst 33342 and AnnexinV-Propidium Iodide staining and presence of oligonucleosomal DNA ladder. Initiation of apoptosis required the bacteria to be alive, be actively phagocytosed into HKM and was dependent on host proteins. Elevated cytosolic calcium and consequent calpain activity that declined following pre-incubation with EGTA, verapamil and nifedipine implicates the role of calcium influx through voltage gated calcium channels and calpain in A. hydrophila-induced HKM apoptosis. Though, calpain-1 and -2 were involved, calpain-2 appeared to be more important in the process. EGTA, verapamil, nifedipine and calpain-2 inhibitor reduced caspase-3 activity and apoptosis. We conclude that A. hydrophila alters cytosolic calcium homeostasis initiating the activation of calpains, more specifically calpain-2, which leads to caspase-3 mediated HKM apoptosis in C. batrachus.

  7. Role of apoptosis in mediating diclofenac-induced teratogenesis: An in vitro approach.

    PubMed

    Singh, Gyanendra; Maurya, Ranjeeta; Kumar, Akhilesh; Sinha, Neeraj

    2015-07-01

    Diclofenac (DCF) is among the most commonly used nonsteroidal anti-inflammatory drugs worldwide for the treatment of various conditions in postpubertal women. However, very limited information is available regarding its safety during pregnancy and teratogenecity. The present study was designed to elucidate the effects of DCF on the developing rat embryos during the major organogenesis period and investigate the critical role of apoptosis in bringing about these congenital anomalies. Embryos were exposed in vitro to various concentrations of DCF, that is, 0, 3.75, 7.5 and 15 µg/ml for 24 h, respectively, and examined for the growth and differentiation at the end of the culture period for the presence of any specific malformations. Growth and developmental parameters such as weight of embryos, crown-rump length and number of somites were found to be lower in the embryos exposed to high concentrations of DCF (7.5 and 15.0 μg/ml) when compared with the untreated control. However, no significant difference in growth parameters was found between embryos exposed to 3.75 µg/ml and the control group. In parallel to this, flow cytometric analysis and DNA quantitation of cultured rat embryos were performed to verify the involvement of apoptosis in mediating DCF-induced teratogenesis. A concentration-dependent increase in apoptosis in embryos suggests a possible engagement of apoptosis in the role of DCF as a teratogenic agent. A detailed analysis of the actual effect of DCF on cellular apoptotic machinery necessitates further evaluation.

  8. IRF8 Regulates Acid Ceramidase Expression to Mediate Apoptosis and Suppresses Myelogeneous Leukemia

    PubMed Central

    Hu, Xiaolin; Yang, Dafeng; Zimmerman, Mary; Liu, Feiyan; Yang, Jine; Kannan, Swati; Burchert, Andreas; Szulc, Zdzislaw; Bielawska, Alicja; Ozato, Keiko; Bhalla, Kapil; Liu, Kebin

    2011-01-01

    IFN regulatory factor 8 (IRF8) is a key transcription factor for myeloid cell differentiation and its expression is frequently lost in hematopoietic cells of human myeloid leukemia patients. IRF8-deficient mice exhibit uncontrolled clonal expansion of undifferentiated myeloid cells that can progress to a fatal blast crisis, thereby resembling human chronic myelogeneous leukemia (CML). Therefore, IRF8 is a myeloid leukemia suppressor. While the understanding of IRF8 function in CML has recently improved, the molecular mechanisms underlying IRF8 function in CML is still largely unknown. In this study, we identified acid ceramidase (A-CDase) as a general transcription target of IRF8. We demonstrated that IRF8 expression is regulated by IRF8 promoter DNA methylation in myeloid leukemia cells. Restoration of IRF8 expression repressed A-CDase expression, resulting in C16 ceramide accumulation and increased sensitivity of CML cells to FasL-induced apoptosis. In myeloid cells derived from IRF8-deficient mice, A-CDase protein level was dramatically increased. Furthermore, we demonstrated that IRF8 directly bind to the A-CDase promoter. At the functional level, inhibition of A-CDase activity, silencing A-CDase expression or application of exogenous C16 ceramide sensitized CML cells to FasL-induced apoptosis, whereas, overexpression of A-CDase decreased CML cells sensitivity to FasL-induced apoptosis. Consequently, restoration of IRF8 expression suppressed CML development in vivo at least partially through a Fas-dependent mechanism. In summary, our findings determine the mechanism of IRF8 downregulation in CML cells and they determine a primary pathway of resistance to Fas-mediated apoptosis and disease progression. PMID:21487040

  9. Differential Expression of Bcl-2 Family Proteins Determines the Sensitivity of Human Follicular Lymphoma Cells to Dexamethasone-mediated and Anti-BCR-mediated Apoptosis.

    PubMed

    Adem, Jemal; Ropponen, Antti; Eeva, Jonna; Eray, Mine; Nuutinen, Ulla; Pelkonen, Jukka

    2016-01-01

    Bcl-2 family comprises proapoptotic and antiapoptotic proteins. The balance between these proteins is critical for the survival of the cells. Overexpression of the antiapoptotic protein, Bcl-2, is the hallmark of follicular lymphoma (FL). High expression of Bcl-2 provides survival advantage and may facilitate chemotherapeutic resistance in FL. In the present study, we examined expression profile of Bcl-2 family proteins such as Bcl-2, Bcl-xL, and Bim in human FL cell lines, HF1A3 and HF28. We assessed the correlation between the expression levels of these proteins and cells' sensitivity to dexamethasone (Dex)-mediated and B-cell receptor (BCR)-mediated apoptosis. Here, we show that Dex and anti-BCR-induced synergistic apoptosis which correlated with significant downregulation of Bcl-xL, inhibition of ERK1/2 phosphorylation and accumulation of nonphosphorylated Bim. However, HF28 cells were less sensitive than HF1A3 cells to Dex-induced and anti-BCR-induced apoptosis due to high Bcl-2 protein level. It is interesting to note that, a Bcl-2-specific inhibitor, ABT-199, sensitized HF28 cells to Dex-induced or anti-BCR-induced apoptosis. In addition, overexpression of Bcl-xL prevented Dex-mediated, anti-BCR-mediated, and ABT-199-mediated apoptosis, indicating that mitochondria were involved. In conclusion, these data show that the expression levels of Bcl-2 family proteins may serve to predict tumor response to BH3 mimetics and the sensitivity of FL cells to Dex-induced and anti-BCR-induced apoptosis. Moreover, our results show that BCR-targeted apoptosis might have therapeutic benefit against FL and B-cell lymphomas.

  10. Protein kinase C-δ isoform mediates lysosome labilization in DNA damage-induced apoptosis

    PubMed Central

    PARENT, NICOLAS; SCHERER, MAX; LIEBISCH, GERHARD; SCHMITZ, GERD; BERTRAND, RICHARD

    2013-01-01

    A lysosomal pathway, characterized by the partial rupture or labilization of lysosomal membranes (LLM) and cathepsin release into the cytosol, is evoked during the early events of 20-S-camptothecin lactone (CPT)-induced apoptosis in human cancer cells, including human histiocytic lymphoma U-937 cells. These lysosomal events begin rapidly and simultaneously with mitochondrial permeabilization and caspase activation within 3 h after drug treatment. Recently, in a comparative proteomics analysis performed on highly-enriched lysosomal extracts, we identified proteins whose translocation to lysosomes correlated with LLM induction after CPT treatment, including protein kinase C-δ (PKC-δ). In this study, we show that the PKC-δ translocation to lysosomes is required for LLM, as silencing its expression with RNA interference or suppressing its activity with the inhibitor, rottlerin, prevents CPT-induced LLM. PKC-δ translocation to lysosomes is associated with lysosomal acidic sphingomyelinase (ASM) phosphorylation and activation, which in turn leads to an increase in ceramide (CER) content in lysosomes. The accumulation of endogenous CER in lysosomes is a critical event for CPT-induced LLM as suppressing PKC-δ or ASM activity reduces both the CPT-mediated CER generation in lysosomes and CPT-induced LLM. These findings reveal a novel mechanism by which PKC-δ mediates ASM phosphorylation/activation and CER accumulation in lysosomes in CPT-induced LLM, rapidly activating the lysosomal pathway of apoptosis after CPT treatment. PMID:21174057

  11. Endoplasmic reticulum stress-mediated hippocampal neuron apoptosis involved in diabetic cognitive impairment.

    PubMed

    Zhang, Xiaoming; Xu, Linhao; He, Daqiang; Ling, Shucai

    2013-01-01

    Poor management of DM causes cognitive impairment while the mechanism is still unconfirmed. The aim of the present study was to investigate the activation of C/EBP Homology Protein (CHOP), the prominent mediator of the endoplasmic reticulum (ER) stress-induced apoptosis under hyperglycemia. We employed streptozotocin- (STZ-) induced diabetic rats to explore the ability of learning and memory by the Morris water maze test. The ultrastructure of hippocampus in diabetic rats and cultured neurons in high glucose medium were observed by transmission electron microscopy and scanning electron microscopy. TUNEL staining was also performed to assess apoptotic cells while the expression of CHOP was assayed by immunohistochemistry and Western blot assay in these hippocampal neurons. Six weeks after diabetes induction, the escape latency increased and the average frequency in finding the platform decreased in diabetic rats (P < 0.05). The morphology of neuron and synaptic structure was impaired; the number of TUNEL-positive cells and the expression of CHOP in hippocampus of diabetic rats and high glucose medium cultured neurons were markedly altered (P < 0.05). The present results suggested that the CHOP-dependent endoplasmic reticulum (ER) stress-mediated apoptosis may be involved in hyperglycemia-induced hippocampal synapses and neurons impairment and promote the diabetic cognitive impairment.

  12. G Protein Inactivator RGS6 Mediates Myocardial Cell Apoptosis and Cardiomyopathy Caused by Doxorubicin

    PubMed Central

    Yang, Jianqi; Maity, Biswanath; Huang, Jie; Gao, Zhan; Stewart, Adele; Weiss, Robert M.; Anderson, Mark E.; Fisher, Rory A.

    2013-01-01

    Clinical use of the widely used chemotherapeutic agent doxorubicin is limited by life-threatening cardiotoxicity. The mechanisms underlying Dox-induced cardiomyopathy and heart failure remain unclear, but are thought to involve p53-mediated myocardial cell apoptosis. The tripartite G protein inactivating protein RGS6 has been implicated in reactive oxygen species (ROS) generation, ATM/p53 activation and apoptosis in Dox-treated cells. Thus, we hypothesized that RGS6, the expression of which is enriched in cardiac tissue, might also be responsible for the pathological effects of Dox treatment in heart. In this study, we show that RGS6 expression is induced strongly by Dox in the ventricles of mice and isolated ventricular myocytes (VCM) via a post-transcriptional mechanism. While Dox-treated wild type (WT) mice manifested severe left ventricular dysfunction, loss of heart and body mass, along with decreased survival five days after Dox administration, mice lacking RGS6 were completely protected against these pathogenic responses. Activation of ATM/p53-apoptosis signaling by Dox in ventricles of WT mice was also absent in their RGS6−/− counterparts. Dox-induced ROS generation was dramatically impaired in both the ventricles and VCM isolated from RGS6−/− mice, and the apoptotic response to Dox in VCM required RGS6-dependent ROS production. These results identify RGS6 as an essential mediator of the pathogenic responses to Dox in heart, and they argue that RGS6 inhibition offers a rational means to circumvent Dox cardiotoxicity in human cancer patients. PMID:23338613

  13. Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis.

    PubMed

    Chang, Yun-Ching; Huang, Kai-Xun; Huang, An-Chung; Ho, Yung-Chyuan; Wang, Chau-Jong

    2006-07-01

    The oxidative modification of low-density lipoprotein (LDL) plays a key role in the pathogenesis of atherosclerosis. Anti-oxidative reagents, which can effectively inhibit LDL oxidation, may prevent atherosclerosis via reducing early atherogenesis, and slowing down the progression to advance stages. As shown in previous studies Hibiscus sabdariffa L. is a natural plant containing a lot of pigments that was found to possess anti-oxidative of activity. Therefore, in this study, we evaluated the anti-oxidative activity of Hibiscus anthocyanins (HAs) by measuring their effects on LDL oxidation (in cell-free system) and anti-apoptotic abilities (in RAW264.7 cells). HAs have been tested in vitro examining their relative electrophoretic mobility (REM), Apo B fragmentation, thiobarbituric acid relative substances (TBARS) and radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay. The anti-oxidative activity of HAs was defined by relative electrophoretic mobility of oxLDL (decrease of 50% at 2 mg/ml), fragmentation of Apo B (inhibition of 61% at 1mg/ml), and TBARS assay (IC(50): 0.46 mg/ml) in the Cu(2+)-mediated oxidize LDL. Furthermore, the addition of >0.1 mg/ml of HAs could scavenge over 95% of free DPPH radicals, HAs showed strong potential in inhibiting LDL oxidation induced by copper. In addition, to determine whether oxLDL-induced apoptosis in macrophages is inhibited by HAs, we studied the viability, morphology and caspase-3 expression of RAW 264.7 cells. MTT assay, Leukostate staining analysis and Western blotting reveals that HAs could inhibit oxLDL-induced apoptosis. According to these findings, we suggest that HAs may be used to inhibit LDL oxidation and oxLDL-mediated macrophage apoptosis, serving as a chemopreventive agent. However, further investigations into the specificity and mechanism(s) of HAs are needed.

  14. Oncogenic mutations in intestinal adenomas regulate Bim-mediated apoptosis induced by TGF-β

    PubMed Central

    Wiener, Zoltán; Band, Arja M.; Kallio, Pauliina; Högström, Jenny; Hyvönen, Ville; Kaijalainen, Seppo; Ritvos, Olli; Haglund, Caj; Kruuna, Olli; Robine, Sylvie; Louvard, Daniel; Ben-Neriah, Yinon; Alitalo, Kari

    2014-01-01

    In the majority of microsatellite-stable colorectal cancers (CRCs), an initiating mutation occurs in the adenomatous polyposis coli (APC) or β-catenin gene, activating the β-catenin/TCF pathway. The progression of resulting adenomas is associated with oncogenic activation of KRas and inactivation of the p53 and TGF-β/Smad functions. Most established CRC cell lines contain mutations in the TGF-β/Smad pathway, but little is known about the function of TGF-β in the early phases of intestinal tumorigenesis. We used mouse and human ex vivo 3D intestinal organoid cultures and in vivo mouse models to study the effect of TGF-β on the Lgr5+ intestinal stem cells and their progeny in intestinal adenomas. We found that the TGF-β–induced apoptosis in Apc-mutant organoids, including the Lgr5+ stem cells, was mediated by up-regulation of the BH3-only proapoptotic protein Bcl-2–like protein 11 (Bim). BH3-mimetic compounds recapitulated the effect of Bim not only in the adenomas but also in human CRC organoids that had lost responsiveness to TGF-β–induced apoptosis. However, wild-type intestinal crypts were markedly less sensitive to TGF-β than Apc-mutant adenomas, whereas the KRas oncogene increased resistance to TGF-β via the activation of the Erk1/2 kinase pathway, leading to Bim down-regulation. Our studies identify Bim as a critical mediator of TGF-β–induced apoptosis in intestinal adenomas and show that the common progression mutations modify Bim levels and sensitivity to TGF-β during intestinal adenoma development. PMID:24825889

  15. Eosinophil resistance to glucocorticoid-induced apoptosis is mediated by the transcription factor NFIL3.

    PubMed

    Pazdrak, Konrad; Moon, Young; Straub, Christof; Stafford, Susan; Kurosky, Alexander

    2016-04-01

    The mainstay of asthma therapy, glucocorticoids (GCs) exert their therapeutic effects through the inhibition of inflammatory signaling and induction of eosinophil apoptosis. However, laboratory and clinical observations of GC-resistant asthma suggest that GCs' effects on eosinophil viability may depend on the state of eosinophil activation. In the present study we demonstrate that eosinophils stimulated with IL-5 show impaired pro-apoptotic response to GCs. We sought to determine the contribution of GC-mediated transactivating (TA) and transrepressing (TR) pathways in modulation of activated eosinophils' response to GC by comparing their response to the selective GC receptor (GR) agonist Compound A (CpdA) devoid of TA activity to that upon treatment with Dexamethasone (Dex). IL-5-activated eosinophils showed contrasting responses to CpdA and Dex, as IL-5-treated eosinophils showed no increase in apoptosis compared to cells treated with Dex alone, while CpdA elicited an apoptotic response regardless of IL-5 stimulation. Proteomic analysis revealed that both Nuclear Factor IL-3 (NFIL3) and Map Kinase Phosphatase 1 (MKP1) were inducible by IL-5 and enhanced by Dex; however, CpdA had no effect on NFIL3 and MKP1 expression. We found that inhibiting NFIL3 with specific siRNA or by blocking the IL-5-inducible Pim-1 kinase abrogated the protective effect of IL-5 on Dex-induced apoptosis, indicating crosstalk between IL-5 anti-apoptotic pathways and GR-mediated TA signaling occurring via the NFIL3 molecule. Collectively, these results indicate that (1) GCs' TA pathway may support eosinophil viability in IL-5-stimulated cells through synergistic upregulation of NFIL3; and (2) functional inhibition of IL-5 signaling (anti-Pim1) or the use of selective GR agonists that don't upregulate NFIL3 may be effective strategies for the restoring pro-apoptotic effect of GCs on IL-5-activated eosinophils.

  16. Anticancer activity of sesquiterpenoids extracted from Solanum lyratum via the induction of mitochondria-mediated apoptosis

    PubMed Central

    Chen, Min; Wu, Jian; Zhang, Xing-Xing; Wang, Qiong; Yan, Shi-Hai; Wang, Hai-Dan; Liu, Sheng-Lin; Zou, Xi

    2017-01-01

    Sesquiterpenoids are a major type of compound found in Solanum lyratum (S. lyratum). The present study aimed to investigate whether sesquiterpenoids from S. lyratum demonstrated cytotoxicity against the MCF-7, HCT-8, A-549, SGC-7901 and BEL-7402 cell lines, and the mechanism of solajiangxin H and lyratol D, which exhibited high cytotoxicity against SGC-7901 cells (half maximal inhibitory concentration, IC50=4.8 and 5.9 µg/ml), was associated with mitochondria-mediated apoptosis. The results of the Cell Counting Kit-8 assay indicated that 15 sesquiterpenoids had cytotoxicity against the aforementioned cultured cells. The results of DAPI staining and western blot analysis, used to study the anticancer mechanisms of solajiangxin H and lyratol D in SGC-7901 cells, suggested that solajiangxin H and lyratol D induced the apoptosis of SGC-7901 cells significantly (P<0.01), downregulated the expression of the antiapoptotic proteins B-cell lymphoma (Bcl)-2 and survivin, and upregulated the expression of the proapoptotic proteins Bcl-2-like protein 4, second mitochondria-derived activator of caspase, cleaved (c)-caspase-3 and c-caspase-9. The present study therefore demonstrated that 15 sesquiterpenoids from S. lyratum exhibited anticancer activity in MCF-7, HCT-8, A-549, SGC-7901 and BEL-7402 cells, and that the anticancer mechanisms of solajiangxin H and lyratol D may be associated with mitochondria-mediated apoptosis. Additionally, the present study provides evidence in support of the hypothesis that S. lyratum may be a promising candidate for the development of novel cancer therapies. PMID:28123569

  17. MTOR inhibition attenuates DNA damage and apoptosis through autophagy-mediated suppression of CREB1.

    PubMed

    Wang, Ying; Hu, Zhongdong; Liu, Zhibo; Chen, Rongrong; Peng, Haiyong; Guo, Jing; Chen, Xinxin; Zhang, Hongbing

    2013-12-01

    Hyperactivation of mechanistic target of rapamycin (MTOR) is a common feature of human cancers, and MTOR inhibitors, such as rapamycin, are thus becoming therapeutics in targeting certain cancers. However, rapamycin has also been found to compromise the efficacy of chemotherapeutics to cells with hyperactive MTOR. Here, we show that loss of TSC2 or PTEN enhanced etoposide-induced DNA damage and apoptosis, which was blunted by suppression of MTOR with either rapamycin or RNA interference. cAMP response element-binding protein 1 (CREB1), a nuclear transcription factor that regulates genes involved in survival and death, was positively regulated by MTOR in mouse embryonic fibroblasts (MEFs) and cancer cell lines. Silencing Creb1 expression with siRNA protected MTOR-hyperactive cells from DNA damage-induced apoptosis. Furthermore, loss of TSC2 or PTEN impaired either etoposide or nutrient starvation-induced autophagy, which in turn, leads to CREB1 hyperactivation. We further elucidated an inverse correlation between autophagy activity and CREB1 activity in the kidney tumor tissue obtained from a TSC patient and the mouse livers with hepatocyte-specific knockout of PTEN. CREB1 induced DNA damage and subsequent apoptosis in response to etoposide in autophagy-defective cells. Reactivation of CREB1 or inhibition of autophagy not only improved the efficacy of rapamycin but also alleviated MTOR inhibition-mediated chemoresistance. Therefore, autophagy suppression of CREB1 may underlie the MTOR inhibition-mediated chemoresistance. We suggest that inhibition of MTOR in combination with CREB1 activation may be used in the treatment of cancer caused by an abnormal PI3K-PTEN-AKT-TSC1/2-MTOR signaling pathway. CREB1 activators should potentiate the efficacy of chemotherapeutics in treatment of these cancers.

  18. SGLT-1-mediated glucose uptake protects human intestinal epithelial cells against Giardia duodenalis-induced apoptosis.

    PubMed

    Yu, Linda C H; Huang, Ching-Ying; Kuo, Wei-Ting; Sayer, Heather; Turner, Jerrold R; Buret, Andre G

    2008-07-01

    Infection with Giardia duodenalis is one of the most common causes of waterborne diarrheal disease worldwide. Mechanisms of pathogenesis and host response in giardiasis remain incompletely understood. Previous studies have shown that exposure to G. duodenalis products induce apoptosis in enterocytes. We recently discovered that sodium-dependent glucose cotransporter (SGLT)-1-mediated glucose uptake modulates enterocytic cell death induced by bacterial lipopolysaccharide. The aim of this study was to examine whether enhanced epithelial SGLT-1 activity may constitute a novel mechanism of host defense against G. duodenalis-induced apoptosis. SGLT-1-transfected Caco-2 cells were exposed to G. duodenalis products in low (5mM) or high (25mM) glucose media. In low glucose environments, G. duodenalis-induced caspase-3 activation and DNA fragmentation in these cells. These apoptotic phenomena were abolished in the presence of high glucose. A soluble proteolytic fraction of G. duodenalis was found to upregulate SGLT-1-mediated glucose uptake in a dose- and time-dependent manner, in association with increased apical SGLT-1 expression on epithelial cells. Kinetic analysis showed that this phenomenon resulted from an increase in the maximal rate of sugar transport (V(max)) by SGLT-1, with no change in the affinity constant (K(m)). The addition of phloridzin (a competitive inhibitor for glucose binding to SGLT-1) abolished the anti-apoptotic effects exerted by high glucose. Together, the findings indicate that SGLT-1-dependent glucose uptake may represent a novel epithelial cell rescue mechanism against G. duodenalis-induced apoptosis.

  19. RIPK1 promotes death receptor-independent caspase-8-mediated apoptosis under unresolved ER stress conditions

    PubMed Central

    Estornes, Y; Aguileta, M A; Dubuisson, C; De Keyser, J; Goossens, V; Kersse, K; Samali, A; Vandenabeele, P; Bertrand, M J M

    2014-01-01

    Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER stress and results in the activation of the unfolded protein response (UPR), which aims at restoring ER homeostasis. However, when the stress is too severe the UPR switches from being a pro-survival response to a pro-death one, and the molecular mechanisms underlying ER stress-mediated death have remained incompletely understood. In this study, we identified receptor interacting protein kinase 1 (RIPK1)—a kinase at the crossroad between life and death downstream of various receptors—as a new regulator of ER stress-induced death. We found that Ripk1-deficient MEFs are protected from apoptosis induced by ER stressors, which is reflected by reduced caspase activation and PARP processing. Interestingly, the pro-apoptotic role of Ripk1 is independent of its kinase activity, is not regulated by its cIAP1/2-mediated ubiquitylation, and does not rely on the direct regulation of JNK or CHOP, two reportedly main players in ER stress-induced death. Instead, we found that ER stress-induced apoptosis in these cells relies on death receptor-independent activation of caspase-8, and identified Ripk1 upstream of caspase-8. However, in contrast to RIPK1-dependent apoptosis downstream of TNFR1, we did not find Ripk1 associated with caspase-8 in a death-inducing complex upon unresolved ER stress. Our data rather suggest that RIPK1 indirectly regulates caspase-8 activation, in part via interaction with the ER stress sensor inositol-requiring protein 1 (IRE1). PMID:25476903

  20. Induction of Mitochondria Mediated Apoptosis in Human Breast Cancer Cells (T-47D) by Annona reticulata L. Leaves Methanolic Extracts.

    PubMed

    Roham, Pratiksha H; Kharat, Kiran R; Mungde, Priyanka; Jadhav, Mahadev A; Makhija, Surinder J

    2016-01-01

    Annona reticulata Linn. (Common name: Bullock's-heart) (Annonaceae family) is a semi-evergreen and small deciduous tree. The extracts of various parts of Annona reticulata L. have been reported as cytotoxic to many cancer cells. Annona reticulata L. leaves' methanolic extract (ARME) was prepared and used against the breast cancer cells. The breast cancer cells (T-47D) viability and IC50 were evaluated by Vybrant® MTT Cell Proliferation Assay Kit. Detection of phosphatidylserine on membranes of apoptotic cells was done by Attune flow cytometer. RNA transcripts were quantified in ARME treated and untreated cells. Finally, the Vybrant® FAM Poly Caspases assay kit was used for analysis of polycaspases activity in T-47D cells. The IC50 (5 ± 0.5 µg/mL) of the ARME was found against breast cancer cells (T-47D). The Paclitaxel was used as a control standard drug for the study. The downregulation of Bcl-2 and upregulation of Bax and Bak, and caspases activation suggested induction of apoptosis in T-47D cells by ARME through mitochondrial pathway. The cell cycle halted at G2/M phase in the ARME treated cells. The ARME was found to be effective against Breast cancer cells (T-47D).

  1. Dihydroartemisinin and its derivative induce apoptosis in acute myeloid leukemia through Noxa-mediated pathway requiring iron and endoperoxide moiety

    PubMed Central

    Zhao, Xuan; Zhong, Hang; Wang, Rui; Liu, Dan; Waxman, Samuel; Zhao, Linxiang; Jing, Yongkui

    2015-01-01

    Anti-apoptotic protein Mcl-1 plays an important role in protecting cell from death in acute myeloid leukemia (AML). The apoptosis blocking activity of Mcl-1 is inhibited by BH3-only protein Noxa. We found that dihydroartemisinin (DHA) and its derivative X-11 are potent apoptosis inducers in AML cells and act through a Noxa-mediate pathway; X-11 is four-fold more active than DHA. DHA and X-11-induced apoptosis is associated with induction of Noxa; apoptosis is blocked by silencing Noxa. DHA and X-11 induce Noxa expression by upregulating the transcription factor FOXO3a in a reactive oxygen species-mediated pathway. Interfering with the integrity of the endoperoxide moiety of DHA and X-11, as well as chelating intracellular iron with deferoxamine, diminish apoptosis and Noxa induction. AML cells expressing Bcl-xL, or with overexpression of Bcl-2, have decreased sensitivity to DHA and X-11-induced apoptosis which could be overcome by addition of Bcl-2/Bcl-xL inhibitor ABT-737. DHA and X-11 represent a new group of AML cells-apoptosis inducing compounds which work through Noxa up-regulation utilizing the specific endoperoxide moiety and intracellular iron. PMID:25714024

  2. 2,4-dichlorophenol induces ER stress-mediated apoptosis via eIF2α dephosphorylation in vitro.

    PubMed

    Zhang, Xiaoning; Zhang, Xiaona; Qi, Yongmei; Huang, Dejun; Zhang, Yingmei

    2016-02-01

    2,4-Dichlorophenol (2,4-DCP) has been widely used to produce herbicides and pharmaceutical intermediates, which exhibits various toxic effects including apoptosis. However, the mechanisms underlying 2,4-DCP-induced apoptosis, especially mediated by endoplasmic reticulum (ER) stress, are still unknown. In the present study, the mouse embryonic fibroblasts (MEFs) were used as an in vitro model system to figure out whether 2,4-DCP could induce ER stress, and further to elucidate the role of ER stress in 2,4-DCP-induced apoptosis. The results showed that 2,4-DCP dramatically caused the decrease of cell viability, the increase of apoptotic cells, the collapse of mitochondrial membrane potential (MMP) and the activation of caspase-3, suggesting that 2,4-DCP did induce apoptosis. Meanwhile, 2,4-DCP acted similarly as ER stress agonist tunicamycin (Tu) to activate all three branches (IRE1α, ATF6 and eIF2α) of ER stress. Furthermore, repression of ER stress or inhibition of eIF2α dephosphorylation significantly alleviated 2,4-DCP-induced apoptosis. Taking these results together, the present study firstly showed that 2,4-DCP induced ER stress-mediated apoptosis via eIF2α dephosphorylation in mammalian cells. These findings will provide new insights into the mechanisms underlying apoptosis after chlorophenols exposure.

  3. Heat stress induces apoptosis through transcription-independent p53-mediated mitochondrial pathways in human umbilical vein endothelial cell.

    PubMed

    Gu, Z T; Wang, H; Li, L; Liu, Y S; Deng, X B; Huo, S F; Yuan, F F; Liu, Z F; Tong, H S; Su, L

    2014-03-26

    Cells apoptosis induced by intense heat stress is the prominent feature of heat-related illness. However, little is known about the biological effects of heat stress on cells apoptosis. Herein, we presented evidence that intense heat stress could induce early apoptosis of HUVEC cells through activating mitochondrial pathway with changes in mitochondrial membrane potential(ΔΨm), release of cytochrome c, and activation of caspase-9 and -3. We further revealed that p53 played a crucial role in heat stress-induced early apoptosis, with p53 protein rapidly translocated into mitochondria. Using pifithrin-α(PFT), a p53's mitochondrial translocation inhibitor, we found that pretreated with PFT, heat stress induced mitochondrial p53 translocation was significantly suppressed, accompanied by a significant alleviation in the loss of ΔΨm, cytochrome c release and caspase-9 activation. Furthermore, we also found that generation of reactive oxygen species (ROS) was a critical mediator in heat stress-induced apoptosis. In addition, the antioxidant MnTMPyP significantly decreased the heat stress-induced p53's mitochondrial translocation, followed by the loss of ΔΨm, cytochrome c release, caspase-9 activation and heat stress-mediated apoptosis. Conclusively, these findings indicate the contribution of the transcription-independent mitochondrial p53 pathway to early apoptosis in HUVEC cells induced by oxidative stress in response to intense heat stress.

  4. Activation of PI3K/Akt pathway limits JNK-mediated apoptosis during EV71 infection.

    PubMed

    Zhang, Hua; Li, Fengqi; Pan, Ziye; Wu, Zhijun; Wang, Yanhong; Cui, Yudong

    2014-11-04

    Apoptosis is frequently induced to inhibit virus replication during infection of Enterovirus 71 (EV71). On the contrary, anti-apoptotic pathway, such as PI3K/Akt pathway, is simultaneously exploited by EV71 to accomplish the viral life cycle. The relationship by which EV71-induced apoptosis and PI3K/Akt signaling pathway remains to be elucidated. In this study, we demonstrated that EV71 infection altered Bax conformation and triggered its redistribution from the cytosol to mitochondria in RD cells. Subsequently, cytochrome c was released from mitochondria to cytosol. We also found that c-Jun NH2-terminal kinase (JNK) was activated during EV71 infection. The JNK specific inhibitor significantly inhibited Bax activation and cytochrome c release, suggesting that EV71-induced apoptosis was involved into a JNK-dependent manner. Meanwhile, EV71-induced Akt phosphorylation involved a PI3K-dependent mechanism. Inhibition of the PI3K/Akt pathway enhanced JNK phosphorylation and the JNK-mediated apoptosis upon EV71 infection. Moreover, PI3K/Akt pathway phosphorylated apoptosis signal-regulating kinase 1 (ASK1) and negatively regulated the ASK1 activity. Knockdown of ASK1 significantly decreased JNK phosphorylation, which implied that ASK1 phosphorylation by Akt inhibited ASK1-mediated JNK activation. Collectively, these data reveal that activation of the PI3K/Akt pathway limits JNK-mediated apoptosis by phosphorylating and inactivating ASK1 during EV71 infection.

  5. Mast cell chymase induces smooth muscle cell apoptosis by disrupting NF-{kappa}B-mediated survival signaling

    SciTech Connect

    Leskinen, Markus J.; Heikkilae, Hanna M.; Speer, Mei Y.; Hakala, Jukka K.; Laine, Mika; Kovanen, Petri T.; Lindstedt, Ken A. . E-mail: ken.lindstedt@wri.fi

    2006-05-01

    Chymase released from activated mast cells induces apoptosis of vascular smooth muscle cells (SMCs) in vitro by degrading the pericellular matrix component fibronectin, so causing disruption of focal adhesion complexes and Akt dephosphorylation, which are necessary for cell adhesion and survival. However, the molecular mechanisms of chymase-mediated apoptosis downstream of Akt have remained elusive. Here, we show by means of RT-PCR, Western blotting, EMSA, immunocytochemistry and confocal microscopy, that chymase induces SMC apoptosis by disrupting NF-{kappa}B-mediated survival signaling. Following chymase treatment, the translocation of active NF-{kappa}B/p65 to the nucleus was partly abolished and the amount of nuclear p65 was reduced. Pretreatment of SMCs with chymase also inhibited LPS- and IL-1{beta}-induced nuclear translocation of p65. The chymase-induced degradation of p65 was mediated by active caspases. Loss of NF-{kappa}B-mediated transactivation resulted in downregulation of bcl-2 mRNA and protein expression, leading to mitochondrial swelling and release of cytochrome c. The apoptotic process involved activation of both caspase 9 and caspase 8. The results reveal that, by disrupting the NF-{kappa}B-mediated survival-signaling pathway, activated chymase-secreting mast cells can mediate apoptosis of cultured arterial SMCs. Since activated mast cells colocalize with apoptotic SMCs in vulnerable areas of human atherosclerotic plaques, they may participate in the weakening and rupture of atherosclerotic plaques.

  6. Cx43 Mediates Resistance against MPP+-Induced Apoptosis in SH-SY5Y Neuroblastoma Cells via Modulating the Mitochondrial Apoptosis Pathway

    PubMed Central

    Kim, In-Su; Ganesan, Palanivel; Choi, Dong-Kug

    2016-01-01

    Neuronal apoptosis in the substantia nigra par compacta (SNpc) appears to play an essential role in the pathogenesis of Parkinson’s disease. However, the mechanisms responsible for the death of dopaminergic neurons are not fully understood yet. To explore the apoptotic mechanisms, we used a well-known parkinsonian toxin, 1-methyl-4-phenylpyridine (MPP+), to induce neuronal apoptosis in the human dopaminergic SH-SY5Y cell line. The most common method of interaction between cells is gap junctional intercellular communication (GJIC) mediated by gap junctions (GJs) formed by transmembrane proteins called connexins (Cx). Modulation of GJIC affects cell viability or growth, implying that GJIC may have an important role in maintaining homeostasis in various organs. Here, we hypothesized that increasing the level of the gap junction protein Cx43 in SH-SY5Y neuroblastoma cells could provide neuroprotection. First, our experiments demonstrated that knocking down Cx43 protein by using Cx43-specific shRNA in SH-SY5Y neuroblastoma cells potentiated MPP+-induced neuronal apoptosis evident from decreased cell viability. In another experiment, we demonstrated that over-expression of Cx43 in the SH-SY5Y cell system decreased MPP+-induced apoptosis based on the MTT assay and reduced the Bax/Bcl-2 ratio and the release of cytochrome C based on Western blot analysis. Taken together, our results suggest that Cx43 could mediate resistance against MPP+-induced apoptosis in SH-SY5Y neuroblastoma cells via modulating the mitochondrial apoptosis pathway. PMID:27809287

  7. ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis.

    PubMed

    Jordá, Lucía; Sopeña-Torres, Sara; Escudero, Viviana; Nuñez-Corcuera, Beatriz; Delgado-Cerezo, Magdalena; Torii, Keiko U; Molina, Antonio

    2016-01-01

    ERECTA (ER) receptor-like kinase (RLK) regulates Arabidopsis thaliana organ growth, and inflorescence and stomatal development by interacting with the ERECTA-family genes (ERf) paralogs, ER-like 1 (ERL1) and ERL2, and the receptor-like protein (RLP) TOO MANY MOUTHS (TMM). ER also controls immune responses and resistance to pathogens such as the bacterium Pseudomonas syringae pv. tomato DC3000 (Pto) and the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM). We found that er null-mutant plants overexpressing an ER dominant-negative version lacking the cytoplasmic kinase domain (ERΔK) showed an enhanced susceptibility to PcBMM, suggesting that ERΔK associates and forms inactive complexes with additional RLKs/RLPs required for PcBMM resistance. Genetic analyses demonstrated that ER acts in a combinatorial specific manner with ERL1, ERL2, and TMM to control PcBMM resistance. Moreover, BAK1 (BRASSINOSTEROID INSENSITIVE 1-associated kinase 1) RLK, which together with ERf/TMM regulates stomatal patterning and resistance to Pto, was also found to have an unequal contribution with ER in regulating immune responses and resistance to PcBMM. Co-immunoprecipitation experiments in Nicotiana benthamiana further demonstrated BAK1-ER protein interaction. The secreted epidermal pattern factor peptides (EPF1 and EPF2), which are perceived by ERf members to specify stomatal patterning, do not seem to regulate ER-mediated immunity to PcBMM, since their inducible overexpression in A. thaliana did not impact on PcBMM resistance. Our results indicate that the multiproteic receptorsome formed by ERf, TMM and BAK1 modulates A. thaliana resistance to PcBMM, and suggest that the cues underlying ERf/TMM/BAK1-mediated immune responses are distinct from those regulating stomatal pattering.

  8. ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis

    PubMed Central

    Jordá, Lucía; Sopeña-Torres, Sara; Escudero, Viviana; Nuñez-Corcuera, Beatriz; Delgado-Cerezo, Magdalena; Torii, Keiko U.; Molina, Antonio

    2016-01-01

    ERECTA (ER) receptor-like kinase (RLK) regulates Arabidopsis thaliana organ growth, and inflorescence and stomatal development by interacting with the ERECTA-family genes (ERf) paralogs, ER-like 1 (ERL1) and ERL2, and the receptor-like protein (RLP) TOO MANY MOUTHS (TMM). ER also controls immune responses and resistance to pathogens such as the bacterium Pseudomonas syringae pv. tomato DC3000 (Pto) and the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM). We found that er null-mutant plants overexpressing an ER dominant-negative version lacking the cytoplasmic kinase domain (ERΔK) showed an enhanced susceptibility to PcBMM, suggesting that ERΔK associates and forms inactive complexes with additional RLKs/RLPs required for PcBMM resistance. Genetic analyses demonstrated that ER acts in a combinatorial specific manner with ERL1, ERL2, and TMM to control PcBMM resistance. Moreover, BAK1 (BRASSINOSTEROID INSENSITIVE 1-associated kinase 1) RLK, which together with ERf/TMM regulates stomatal patterning and resistance to Pto, was also found to have an unequal contribution with ER in regulating immune responses and resistance to PcBMM. Co-immunoprecipitation experiments in Nicotiana benthamiana further demonstrated BAK1-ER protein interaction. The secreted epidermal pattern factor peptides (EPF1 and EPF2), which are perceived by ERf members to specify stomatal patterning, do not seem to regulate ER-mediated immunity to PcBMM, since their inducible overexpression in A. thaliana did not impact on PcBMM resistance. Our results indicate that the multiproteic receptorsome formed by ERf, TMM and BAK1 modulates A. thaliana resistance to PcBMM, and suggest that the cues underlying ERf/TMM/BAK1-mediated immune responses are distinct from those regulating stomatal pattering. PMID:27446127

  9. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    SciTech Connect

    Yu, Teng; Ji, Jiang; Guo, Yong-li

    2013-11-08

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.

  10. Lifeguard Inhibits Fas Ligand-mediated Endoplasmic Reticulum-Calcium Release Mandatory for Apoptosis in Type II Apoptotic Cells.

    PubMed

    Urresti, Jorge; Ruiz-Meana, Marisol; Coccia, Elena; Arévalo, Juan Carlos; Castellano, José; Fernández-Sanz, Celia; Galenkamp, Koen M O; Planells-Ferrer, Laura; Moubarak, Rana S; Llecha-Cano, Núria; Reix, Stéphanie; García-Dorado, David; Barneda-Zahonero, Bruna; Comella, Joan X

    2016-01-15

    Death receptors are members of the tumor necrosis factor receptor superfamily involved in the extrinsic apoptotic pathway. Lifeguard (LFG) is a death receptor antagonist mainly expressed in the nervous system that specifically blocks Fas ligand (FasL)-induced apoptosis. To investigate its mechanism of action, we studied its subcellular localization and its interaction with members of the Bcl-2 family proteins. We performed an analysis of LFG subcellular localization in murine cortical neurons and found that LFG localizes mainly to the ER and Golgi. We confirmed these results with subcellular fractionation experiments. Moreover, we show by co-immunoprecipitation experiments that LFG interacts with Bcl-XL and Bcl-2, but not with Bax or Bak, and this interaction likely occurs in the endoplasmic reticulum. We further investigated the relationship between LFG and Bcl-XL in the inhibition of apoptosis and found that LFG protects only type II apoptotic cells from FasL-induced death in a Bcl-XL dependent manner. The observation that LFG itself is not located in mitochondria raises the question as to whether LFG in the ER participates in FasL-induced death. Indeed, we investigated the degree of calcium mobilization after FasL stimulation and found that LFG inhibits calcium release from the ER, a process that correlates with LFG blockage of cytochrome c release to the cytosol and caspase activation. On the basis of our observations, we propose that there is a required step in the induction of type II apoptotic cell death that involves calcium mobilization from the ER and that this step is modulated by LFG.

  11. Lifeguard Inhibits Fas Ligand-mediated Endoplasmic Reticulum-Calcium Release Mandatory for Apoptosis in Type II Apoptotic Cells*

    PubMed Central

    Urresti, Jorge; Ruiz-Meana, Marisol; Coccia, Elena; Arévalo, Juan Carlos; Castellano, José; Fernández-Sanz, Celia; Galenkamp, Koen M. O.; Planells-Ferrer, Laura; Moubarak, Rana S.; Llecha-Cano, Núria; Reix, Stéphanie; García-Dorado, David; Barneda-Zahonero, Bruna; Comella, Joan X.

    2016-01-01

    Death receptors are members of the tumor necrosis factor receptor superfamily involved in the extrinsic apoptotic pathway. Lifeguard (LFG) is a death receptor antagonist mainly expressed in the nervous system that specifically blocks Fas ligand (FasL)-induced apoptosis. To investigate its mechanism of action, we studied its subcellular localization and its interaction with members of the Bcl-2 family proteins. We performed an analysis of LFG subcellular localization in murine cortical neurons and found that LFG localizes mainly to the ER and Golgi. We confirmed these results with subcellular fractionation experiments. Moreover, we show by co-immunoprecipitation experiments that LFG interacts with Bcl-XL and Bcl-2, but not with Bax or Bak, and this interaction likely occurs in the endoplasmic reticulum. We further investigated the relationship between LFG and Bcl-XL in the inhibition of apoptosis and found that LFG protects only type II apoptotic cells from FasL-induced death in a Bcl-XL dependent manner. The observation that LFG itself is not located in mitochondria raises the question as to whether LFG in the ER participates in FasL-induced death. Indeed, we investigated the degree of calcium mobilization after FasL stimulation and found that LFG inhibits calcium release from the ER, a process that correlates with LFG blockage of cytochrome c release to the cytosol and caspase activation. On the basis of our observations, we propose that there is a required step in the induction of type II apoptotic cell death that involves calcium mobilization from the ER and that this step is modulated by LFG. PMID:26582200

  12. BmATG5 and BmATG6 mediate apoptosis following autophagy induced by 20-hydroxyecdysone or starvation.

    PubMed

    Xie, Kun; Tian, Ling; Guo, Xinyu; Li, Kang; Li, Jianping; Deng, Xiaojuan; Li, Qingrong; Xia, Qingyou; Zhong, Yangjin; Huang, Zhijun; Liu, Jiping; Li, Sheng; Yang, Wanying; Cao, Yang

    2016-01-01

    Autophagy and apoptosis, which could be induced by common stimuli, play crucial roles in development and disease. The functional relationship between autophagy and apoptosis is complex, due to the dual effects of autophagy. In the Bombyx Bm-12 cells, 20-hydroxyecdysone (20E) treatment or starvation-induced cell death, with autophagy preceding apoptosis. In response to 20E or starvation, BmATG8 was rapidly cleaved and conjugated with PE to form BmATG8-PE; subsequently, BmATG5 and BmATG6 were cleaved into BmATG5-tN and BmATG6-C, respectively. Reduction of expression of BmAtg5 or BmAtg6 by RNAi decreased the proportion of cells undergoing both autophagy and apoptosis after 20E treatment or starvation. Overexpression of BmAtg5 or BmAtg6 induced autophagy but not apoptosis in the absence of the stimuli, but promoted both autophagy and apoptosis induced by 20E or starvation. Notably, overexpression of cleavage site-deleted BmAtg5 or BmAtg6 increased autophagy but not apoptosis induced by 20E or starvation, whereas overexpression of BmAtg5-tN and BmAtg6-C was able to directly trigger apoptosis or promote the induced apoptosis. In conclusion, being cleaved into BmATG5-tN and BmATG6-C, BmATG5 and BmATG6 mediate apoptosis following autophagy induced by 20E or starvation in Bombyx Bm-12 cells, reflecting that autophagy precedes apoptosis in the midgut during Bombyx metamorphosis.

  13. BmATG5 and BmATG6 mediate apoptosis following autophagy induced by 20-hydroxyecdysone or starvation

    PubMed Central

    Xie, Kun; Tian, Ling; Guo, Xinyu; Li, Kang; Li, Jianping; Deng, Xiaojuan; Li, Qingrong; Xia, Qingyou; Zhong, Yangjin; Huang, Zhijun; Liu, Jiping; Li, Sheng; Yang, Wanying; Cao, Yang

    2016-01-01

    ABSTRACT Autophagy and apoptosis, which could be induced by common stimuli, play crucial roles in development and disease. The functional relationship between autophagy and apoptosis is complex, due to the dual effects of autophagy. In the Bombyx Bm-12 cells, 20-hydroxyecdysone (20E) treatment or starvation-induced cell death, with autophagy preceding apoptosis. In response to 20E or starvation, BmATG8 was rapidly cleaved and conjugated with PE to form BmATG8–PE; subsequently, BmATG5 and BmATG6 were cleaved into BmATG5-tN and BmATG6-C, respectively. Reduction of expression of BmAtg5 or BmAtg6 by RNAi decreased the proportion of cells undergoing both autophagy and apoptosis after 20E treatment or starvation. Overexpression of BmAtg5 or BmAtg6 induced autophagy but not apoptosis in the absence of the stimuli, but promoted both autophagy and apoptosis induced by 20E or starvation. Notably, overexpression of cleavage site-deleted BmAtg5 or BmAtg6 increased autophagy but not apoptosis induced by 20E or starvation, whereas overexpression of BmAtg5-tN and BmAtg6-C was able to directly trigger apoptosis or promote the induced apoptosis. In conclusion, being cleaved into BmATG5-tN and BmATG6-C, BmATG5 and BmATG6 mediate apoptosis following autophagy induced by 20E or starvation in Bombyx Bm-12 cells, reflecting that autophagy precedes apoptosis in the midgut during Bombyx metamorphosis. PMID:26727186

  14. Interdependence of Bad and Puma during ionizing-radiation-induced apoptosis.

    PubMed

    Toruno, Cristhian; Carbonneau, Seth; Stewart, Rodney A; Jette, Cicely

    2014-01-01

    Ionizing radiation (IR)-induced DNA double-strand breaks trigger an extensive cellular signaling response that involves the coordination of hundreds of proteins to regulate DNA repair, cell cycle arrest and apoptotic pathways. The cellular outcome often depends on the level of DNA damage as well as the particular cell type. Proliferating zebrafish embryonic neurons are highly sensitive to IR-induced apoptosis, and both p53 and its transcriptional target puma are essential mediators of the response. The BH3-only protein Puma has previously been reported to activate mitochondrial apoptosis through direct interaction with the pro-apoptotic Bcl-2 family proteins Bax and Bak, thus constituting the role of an "activator" BH3-only protein. This distinguishes it from BH3-only proteins like Bad that are thought to indirectly promote apoptosis through binding to anti-apoptotic Bcl-2 family members, thereby preventing the sequestration of activator BH3-only proteins and allowing them to directly interact with and activate Bax and Bak. We have shown previously that overexpression of the BH3-only protein Bad in zebrafish embryos supports normal embryonic development but greatly sensitizes developing neurons to IR-induced apoptosis. While Bad has previously been shown to play only a minor role in promoting IR-induced apoptosis of T cells in mice, we demonstrate that Bad is essential for robust IR-induced apoptosis in zebrafish embryonic neural tissue. Moreover, we found that both p53 and Puma are required for Bad-mediated radiosensitization in vivo. Our findings show the existence of a hierarchical interdependence between Bad and Puma whereby Bad functions as an essential sensitizer and Puma as an essential activator of IR-induced mitochondrial apoptosis specifically in embryonic neural tissue.

  15. Paclitaxel sensitivity of breast cancer cells requires efficient mitotic arrest and disruption of Bcl-xL/Bak interaction.

    PubMed

    Flores, M Luz; Castilla, Carolina; Ávila, Rainiero; Ruiz-Borrego, Manuel; Sáez, Carmen; Japón, Miguel A

    2012-06-01

    Taxanes are being used for the treatment of breast cancer. However, cancer cells frequently develop resistance to these drugs with the subsequent recurrence of the tumor. MDA-MB-231 and T-47D breast cancer cell lines were used to assess the effect of paclitaxel treatment on apoptosis and cell cycle, the possible mechanisms of paclitaxel resistance as well as the enhancement of paclitaxel-induced apoptosis based on its combination with phenylethyl isothiocyanate (PEITC). T-47D cells undergo apoptosis in response to paclitaxel treatment. The induction of apoptosis was associated with a robust mitotic arrest and the disruption of Bcl-xL/Bak interaction. By contrary, MDA-MB-231 cells were insensitive to paclitaxel-induced apoptosis and this was associated with a high percentage of cells that slip out of paclitaxel-imposed mitotic arrest and also with the maintenance of Bcl-xL/Bak interaction. The sequential treatment of MDA-MB-231 cells with PEITC followed by paclitaxel inhibited the slippage induced by paclitaxel and increased the apoptosis induction achieved with any of the drugs alone. In breast cancer tissues, high Bcl-xL expression was correlated with a shorter time of disease-free survival in patients treated with a chemotherapeutic regimen that contains paclitaxel, in a statistically significant way. Thus, resistance to paclitaxel in MDA-MB-231 cells is related to the inability to disrupt the Bcl-xL/Bak interaction and increased slippage. In this context, the combination of a drug that induces a strong mitotic arrest, such as paclitaxel, with another that inhibits slippage, such as PEITC, translates into increased apoptotic induction.

  16. Piroxicam and C-phycocyanin mediated apoptosis in 1,2-dimethylhydrazine dihydrochloride induced colon carcinogenesis: exploring the mitochondrial pathway.

    PubMed

    Saini, Manpreet Kaur; Sanyal, Sankar Nath; Vaiphei, Kim

    2012-04-01

    Apoptosis is a synchronized procedure of cell death that is regulated by caspases and proapoptotic proteins. During apoptosis, translocation of cytochrome c, an electron carrier, from mitochondria into the cytosol is regulated by Bcl-2 family members. Cytochrome c in association with an apoptotic protease activating factor (Apaf), a proapoptotic protein essential for cell differentiation and procaspase-9 form the apoptosome complex, which consecutively activates effector caspase, caspase-3, and coordinate the implementation of apoptosis. In the current study, an attempt has been made to gain insight into piroxicam, a traditional nonsteroidal antiinflammatory drug and c-phycocyanin, a biliprotein from Spirulina platensis (cyanobacterium) mediated apoptosis in DMH-induced colon cancer. Male Sprague-Dawley rats were segregated into 5 groups: control, DMH, DMH + piroxicam, DMH + c-phycocyanin, and DMH + piroxicam + c-phycocyanin. Results illustrated that piroxicam and c-phycocyanin treatments stimulate cytochrome c release by downregulating the Bcl-2 (an antiapoptotic protein) expression significantly, while promoting the level of Bax (a proapoptotic protein), thereby activating caspases (caspases-9 and -3) and Apaf-1. The outcomes of the present study clearly signify that piroxicam and c-phycocyanin may mediate mitochondrial-dependent apoptosis in DMH-induced colon cancer. Moreover, apoptosis induction was more apparent in the combination regimen of piroxicam and c-phycocyanin than the individual drugs alone.

  17. Neem (Azadirachta indica L.) leaf extract deteriorates oocyte quality by inducing ROS-mediated apoptosis in mammals.

    PubMed

    Chaube, Shail K; Shrivastav, Tulsidas G; Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ajai K

    2014-01-01

    Neem (Azadirachta indica L.) leaf has been widely used in ayurvedic system of medicine for fertility regulation for a long time. The molecular mechanism by which neem leaf regulates female fertility remains poorly understood. Animal studies suggest that aqueous neem leaf extract (NLE) induces reactive oxygen species (ROS) - mediated granulosa cell apoptosis. Granulosa cell apoptosis deprives oocytes from nutrients, survival factors and cell cycle proteins required for the achievement of meiotic competency of follicular oocytes prior to ovulation. Under this situation, follicular oocyte becomes more susceptible towards apoptosis after ovulation. The increased level of hydrogen peroxide (H2O2) inside the follicular fluid results in the transfer of H2O2 from follicular fluid to the oocyte. The increased level of H2O2 induces p53 activation and over expression of Bax protein that modulates mitochondrial membrane potential and trigger cytochrome c release. The increased cytosolic cytochrome c level induces caspase-9 and caspase-3 activities that trigger destruction of structural and specific proteins leading to DNA fragmentation and thereby oocyte apoptosis. Based on these animal studies, we propose that NLE induces generation of ROS and mitochondria-mediated apoptosis both in granulosa cells as well as in follicular oocyte. The induction of apoptosis deteriorates oocyte quality and thereby limits reproductive outcome in mammals.

  18. An ethanolic extract of leaves of Piper betle (Paan) Linn mediates its antileishmanial activity via apoptosis.

    PubMed

    Sarkar, Avijit; Sen, Rupashree; Saha, Piu; Ganguly, Sudipto; Mandal, Goutam; Chatterjee, Mitali

    2008-05-01

    An unprecedented increase in the incidence of unresponsiveness to antimonial compounds has highlighted the urgent need to develop new antileishmanial agents. The leaves of Piper betle (locally known as Paan) have long been in use in the Indian indigenous system of medicine for its antimicrobial properties but its antileishmanial potential has not been studied. Accordingly, an ethanolic extract of leaves of Piper betle (PB) was tested for its antileishmanial activity that was evidenced in both promastigotes and amastigotes, with IC50 values of 9.8 and 5.45 microg/ml, respectively; importantly, it was accompanied by a safety index of >12-fold. This leishmanicidal activity of PB was mediated via apoptosis as evidenced by morphological changes, loss of mitochondrial membrane potential, in situ labeling of DNA fragments by terminal deoxyribonucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling, and cell-cycle arrest at the sub-G0/G1 phase. Taken together, the data indicate that PB has promising antileishmanial activity that is mediated via programmed cell death and, accordingly, merits consideration and further investigation as a therapeutic option for the treatment of leishmaniasis.

  19. Photolon™ --photosensitization induces apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes.

    PubMed

    Ali-Seyed, Mohamed; Bhuvaneswari, Ramaswamy; Soo, Khee Chee; Olivo, Malini

    2011-10-01

    The localization of photosensitizers in the subcellular compartments during photodynamic therapy (PDT) plays a major role in the cell destruction; therefore, the aim of this study was to investigate the intracellular localization of Chlorin e6-PVP (Photolon™) in malignant and normal cells. Our study involves the characterization of the structural determinants of subcellular localization of Photolon, and how subcellular localization affects the selective toxicity of Photolon towards tumor cells. Using confocal laser scanning microscopy (CLSM) and fluorescent organelle probes; we examined the subcellular localization of Photolon™ in the murine colon carcinoma CT-26 and normal fibroblast (NHLC) cells. Our results demonstrated that after 30 min of incubation, the distribution of Photolon was localized mainly in the cytoplasmic organelles including the mitochondria, lysosomes, Golgi apparatus, around the nuclear envelope and also in the nucleus but not in the endo-plasmic reticulum whereas in NHLC cells, Photolon was found to be localized minimally only in the nucleus not in other organelles studied. The relationship between subcellular localization of Photolon and PDT-induced apoptosis was investigated. Apoptotic cell death was judged by the formation of known apoptotic hallmarks including, the phosphatidylserine externalization (PS), PARP cleavage, a substrate for caspase-3 and the formation of apoptotic nuclei. At the irradiation dose of 1 J/cm2, the percentage of apoptotic cells was 80%, respectively. This study provided substantial evidence that Photolon preferentially localized in the subcellular organelles in the following order: nucleus, mitochondria, lysosomes and the Golgi apparatus and subsequent photodamage of the mitochondria and lyso-somes played an important role in PDT-mediated apoptosis CT-26 cells. Our results based on the cytoplasmic organelles and the intranuclear localization extensively enhance the efficacy of PDT with appropriate

  20. Histones-mediated lymphocyte apoptosis during sepsis is dependent on p38 phosphorylation and mitochondrial permeability transition.

    PubMed

    Liu, Zhan-Guo; Ni, Shu-Yuan; Chen, Gui-Ming; Cai, Jing; Guo, Zhen-Hui; Chang, Ping; Li, Yu-Sheng

    2013-01-01

    Lymphocyte apoptosis is one reason for immunoparalysis seen in sepsis, although the triggers are unknown. We hypothesized that molecules in plasma, which are up-regulated during sepsis, may be responsible for this. In this study, peripheral lymphocyte apoptosis caused by extracellular histones was confirmed both in mouse and human primary lymphocytes, in which histones induced lymphocyte apoptosis dose-dependently and time-dependently. To identify which intracellular signal pathways were activated, phosphorylation of various mitogen-activated protein kinases (MAPKs) were evaluated during this process, and p38 inhibitor (SB203580) was used to confirm the role of p38 in lymphocyte apoptosis induced by histones. To investigate the mitochondrial injury during these processes, we analyzed Bcl2 degradation and Rhodamine 123 to assess mitochondrial-membrane stability, via cyclosporin A as an inhibitor for mitochondrial permeability transition (MPT). Then, caspase 3 activation was also checked by western-blotting. We found that p38 phosphorylation, mitochondrial injury and caspase 3 activation occurred dose-dependently in histones-mediated lymphocyte apoptosis. We also observed that p38 inhibitor SB203580 decreased lymphocyte apoptotic ratio by 49% (P<0.05), and inhibition of MPT protected lymphocytes from apoptosis. Furthermore, to investigate whether histones are responsible for lymphocyte apoptosis, various concentrations of histone H4 neutralization antibodies were co-cultured with human primary lymphocytes and plasma from cecal ligation and puncture (CLP) mice or sham mice. The results showed that H4 neutralization antibody dose-dependently blocked lymphocyte apoptosis caused by septic plasma in vitro. These data demonstrate for the first time that extracellular histones, especially H4, play a vital role in lymphocyte apoptosis during sepsis which is dependent on p38 phosphorylation and mitochondrial permeability transition. Neutralizing H4 can inhibit lymphocyte

  1. Apoptotic Caspases Suppress mtDNA-Induced STING-Mediated Type I IFN Production

    PubMed Central

    McArthur, Kate; Metcalf, Donald; Lane, Rachael M.; Cambier, John C.; Herold, Marco J.; van Delft, Mark F.; Bedoui, Sammy; Lessene, Guillaume; Ritchie, Matthew E.; Huang, David C.S.

    2015-01-01

    SUMMARY Activated caspases are a hallmark of apoptosis induced by the intrinsic pathway, but they are dispensable for cell death and the apoptotic clearance of cells in vivo. This has led to the suggestion that caspases are activated not just to kill but to prevent dying cells from triggering a host immune response. Here, we show that the caspase cascade suppresses type I interferon (IFN) production by cells undergoing Bak/Bax-mediated apoptosis. Bak and Bax trigger the release of mitochondrial DNA. This is recognized by the cGAS/STING-dependent DNA sensing pathway, which initiates IFN production. Activated caspases attenuate this response. Pharmacological caspase inhibition or genetic deletion of caspase-9, Apaf-1, or caspase-3/7 causes dying cells to secrete IFN-β. In vivo, this precipitates an elevation in IFN-β levels and consequent hematopoietic stem cell dysfunction, which is corrected by loss of Bak and Bax. Thus, the apoptotic caspase cascade functions to render mitochondrial apoptosis immunologically silent. PMID:25525874

  2. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production.

    PubMed

    White, Michael J; McArthur, Kate; Metcalf, Donald; Lane, Rachael M; Cambier, John C; Herold, Marco J; van Delft, Mark F; Bedoui, Sammy; Lessene, Guillaume; Ritchie, Matthew E; Huang, David C S; Kile, Benjamin T

    2014-12-18

    Activated caspases are a hallmark of apoptosis induced by the intrinsic pathway, but they are dispensable for cell death and the apoptotic clearance of cells in vivo. This has led to the suggestion that caspases are activated not just to kill but to prevent dying cells from triggering a host immune response. Here, we show that the caspase cascade suppresses type I interferon (IFN) production by cells undergoing Bak/Bax-mediated apoptosis. Bak and Bax trigger the release of mitochondrial DNA. This is recognized by the cGAS/STING-dependent DNA sensing pathway, which initiates IFN production. Activated caspases attenuate this response. Pharmacological caspase inhibition or genetic deletion of caspase-9, Apaf-1, or caspase-3/7 causes dying cells to secrete IFN-β. In vivo, this precipitates an elevation in IFN-β levels and consequent hematopoietic stem cell dysfunction, which is corrected by loss of Bak and Bax. Thus, the apoptotic caspase cascade functions to render mitochondrial apoptosis immunologically silent.

  3. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells.

    PubMed

    Pant, Kishor; Yadav, Ajay K; Gupta, Parul; Islam, Rakibul; Saraya, Anoop; Venugopal, Senthil K

    2017-03-07

    Butyrate is one of the short chain fatty acids, produced by the gut microbiota during anaerobic fermentation of dietary fibres. It has been shown that it can inhibit tumor progression via suppressing histone deacetylase and can induce apoptosis in cancer cells. However, the comprehensive pathway by which butyrate mediates apoptosis and growth arrest in cancer cells still remains unclear. In this study, the role of miR-22 in butyrate-mediated ROS release and induction of apoptosis was determined in hepatic cells. Intracellular expression of miR-22 was increased when the Huh 7 cells were incubated with sodium butyrate. Over-expression of miR-22 or addition of sodium butyrate inhibited SIRT-1 expression and enhanced the ROS production. Incubation of cells with anti-miR-22 reversed the effects of butyrate. Butyrate induced apoptosis via ROS production, cytochrome c release and activation of caspase-3, whereas addition of N-acetyl cysteine or anti-miR-22 reversed these butyrate-induced effects. Furthermore, sodium butyrate inhibited cell growth and proliferation, whereas anti-miR-22 inhibited these butyrate-mediated changes. The expression of PTEN and gsk-3 was found to be increased while p-akt and β-catenin expression was decreased significantly by butyrate. These data showed that butyrate modulated both apoptosis and proliferation via miR-22 expression in hepatic cells.

  4. p38 MAP kinase mediates nitric oxide-induced apoptosis of neural progenitor cells.

    PubMed

    Cheng, A; Chan, S L; Milhavet, O; Wang, S; Mattson, M P

    2001-11-16

    Neural progenitor cells (NPC) can proliferate, differentiate into neurons or glial cells, or undergo a form of programmed cell death called apoptosis. Although death of NPC occurs during development of the nervous system and in the adult, the underlying mechanisms are unknown. Here we show that nitric oxide (NO) can induce death of C17.2 NPC by a mechanism requiring activation of p38 MAP kinase, poly(ADP-ribose) polymerase, and caspase-3. Nitric oxide causes release of cytochrome c from mitochondria, and Bcl-2 protects the neural progenitor cells against nitric oxide-induced death, consistent with a pivotal role for mitochondrial changes in controlling the cell death process. Inhibition of p38 MAP kinase by SB203580 abolished NO-induced cell death, cytochrome c release, and activation of caspase-3, indicating that p38 activation serves as an upstream mediator in the cell death process. The anti-apoptotic protein Bcl-2 protected NPC against nitric oxide-induced apoptosis and suppressed activation of p38 MAP kinase. The ability of nitric oxide to trigger death of NPC by a mechanism involving p38 MAP kinase suggests that this diffusible gas may regulate NPC fate in physiological and pathological settings in which NO is produced.

  5. The transcription factor FBI-1 inhibits SAM68-mediated BCL-X alternative splicing and apoptosis.

    PubMed

    Bielli, Pamela; Busà, Roberta; Di Stasi, Savino M; Munoz, Manuel J; Botti, Flavia; Kornblihtt, Alberto R; Sette, Claudio

    2014-04-01

    Alternative splicing (AS) is tightly coupled to transcription for the majority of human genes. However, how these two processes are linked is not well understood. Here, we unveil a direct role for the transcription factor FBI-1 in the regulation of AS. FBI-1 interacts with the splicing factor SAM68 and reduces its binding to BCL-X mRNA. This, in turn, results in the selection of the proximal 5' splice site in BCL-X exon 2, thereby favoring the anti-apoptotic BCL-XL variant and counteracting SAM68-mediated apoptosis. Conversely, depletion of FBI-1, or expression of a SAM68 mutant lacking the FBI-1 binding region, restores the ability of SAM68 to induce BCL-XS splicing and apoptosis. FBI-1's role in splicing requires the activity of histone deacetylases, whose pharmacological inhibition recapitulates the effects of FBI-1 knockdown. Our study reveals an unexpected function for FBI-1 in splicing modulation with a direct impact on cell survival.

  6. Novel MDM2 inhibitor SAR405838 (MI-773) induces p53-mediated apoptosis in neuroblastoma

    PubMed Central

    Lu, Jiaxiong; Guan, Shan; Zhao, Yanling; Yu, Yang; Wang, Yongfeng; Shi, Yonghua; Mao, Xinfang; Yang, Kristine L.; Sun, Wenjing; Xu, Xin; Yi, Joanna S.; Yang, Tianshu; Yang, Jianhua; Nuchtern, Jed G.

    2016-01-01

    Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common childhood extracranial malignant tumor. In NB, somatic mutations of the tumor suppressor, p53, are exceedingly rare. Unlike in adult tumors, the majority of p53 downstream functions are still intact in NB cells with wild-type p53. Thus, restoring p53 function by blocking its interaction with p53 suppressors such as MDM2 is a viable therapeutic strategy for NB treatment. Herein, we show that MDM2 inhibitor SAR405838 is a potent therapeutic drug for NB. SAR405838 caused significantly decreased cell viability of p53 wild-type NB cells and induced p53-mediated apoptosis, as well as augmenting the cytotoxic effects of doxorubicin (Dox). In an in vivo orthotopic NB mouse model, SAR405838 induced apoptosis in NB tumor cells. In summary, our data strongly suggest that MDM2-specific inhibitors like SAR405838 may serve not only as a stand-alone therapy, but also as an effective adjunct to current chemotherapeutic regimens for treating NB with an intact MDM2-p53 axis. PMID:27764791

  7. Carvacrol induces mitochondria-mediated apoptosis in HL-60 promyelocytic and Jurkat T lymphoma cells.

    PubMed

    Bhakkiyalakshmi, Elango; Suganya, Natarajan; Sireesh, Dornadula; Krishnamurthi, Kannan; Saravana Devi, Sivanesan; Rajaguru, Palanisamy; Ramkumar, Kunka Mohanram

    2016-02-05

    The aim of the present study was to investigate the effect of carvacrol, a phenolic monoterpenoid on the induction of apoptosis in HL-60 (Human acute promyelocytic leukemia cells) and Jurkat (human T lymphocyte cells) cells. Carvacrol showed a potent cytotoxic effect on both cells with dose-dependent increase in the level of free radical formation as measured by an oxidation sensitive fluorescent dye, 2,7-dichlorodihydrofluorescein diacetate (H2DCFDA) levels. The reduction in the level of antioxidants such as catalase (CAT) and superoxide dismutase (SOD) (P<0.05) was observed in carvacrol-treated cells. The major cytotoxic effect appears to be intervened by the induction of apoptotic cell death as assessed by annexin-V labeling assay using flow cytometry. Western blot analysis showed that Bax expression was increased, whereas Bcl-2 expression was significantly decreased in carvacrol exposed HL-60 cells and Jurkat cells. Further studies revealed that the dissipation of mitochondrial membrane potential of intact cells was accompanied by the activation of caspase-3. Our results found that the potential mechanism of cellular apoptosis induced by carvacrol is mediated by caspase-3 and is associated with the collapse of mitochondrial membrane potential, generation of free radicals, and depletion of the intracellular antioxidant pool.

  8. Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia

    PubMed Central

    Gutierrez, Alejandro; Pan, Li; Groen, Richard W.J.; Baleydier, Frederic; Kentsis, Alex; Marineau, Jason; Grebliunaite, Ruta; Kozakewich, Elena; Reed, Casie; Pflumio, Francoise; Poglio, Sandrine; Uzan, Benjamin; Clemons, Paul; VerPlank, Lynn; An, Frank; Burbank, Jason; Norton, Stephanie; Tolliday, Nicola; Steen, Hanno; Weng, Andrew P.; Yuan, Huipin; Bradner, James E.; Mitsiades, Constantine; Look, A. Thomas; Aster, Jon C.

    2014-01-01

    T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer that is frequently associated with activating mutations in NOTCH1 and dysregulation of MYC. Here, we performed 2 complementary screens to identify FDA-approved drugs and drug-like small molecules with activity against T-ALL. We developed a zebrafish system to screen small molecules for toxic activity toward MYC-overexpressing thymocytes and used a human T-ALL cell line to screen for small molecules that synergize with Notch inhibitors. We identified the antipsychotic drug perphenazine in both screens due to its ability to induce apoptosis in fish, mouse, and human T-ALL cells. Using ligand-affinity chromatography coupled with mass spectrometry, we identified protein phosphatase 2A (PP2A) as a perphenazine target. T-ALL cell lines treated with perphenazine exhibited rapid dephosphorylation of multiple PP2A substrates and subsequent apoptosis. Moreover, shRNA knockdown of specific PP2A subunits attenuated perphenazine activity, indicating that PP2A mediates the drug’s antileukemic activity. Finally, human T-ALLs treated with perphenazine exhibited suppressed cell growth and dephosphorylation of PP2A targets in vitro and in vivo. Our findings provide a mechanistic explanation for the recurring identification of phenothiazines as a class of drugs with anticancer effects. Furthermore, these data suggest that pharmacologic PP2A activation in T-ALL and other cancers driven by hyperphosphorylated PP2A substrates has therapeutic potential. PMID:24401270

  9. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis.

    PubMed

    Condamine, Thomas; Kumar, Vinit; Ramachandran, Indu R; Youn, Je-In; Celis, Esteban; Finnberg, Niklas; El-Deiry, Wafik S; Winograd, Rafael; Vonderheide, Robert H; English, Nickolas R; Knight, Stella C; Yagita, Hideo; McCaffrey, Judith C; Antonia, Scott; Hockstein, Neil; Witt, Robert; Masters, Gregory; Bauer, Thomas; Gabrilovich, Dmitry I

    2014-06-01

    Myeloid-derived suppressor cells (MDSCs) dampen the immune response thorough inhibition of T cell activation and proliferation and often are expanded in pathological conditions. Here, we studied the fate of MDSCs in cancer. Unexpectedly, MDSCs had lower viability and a shorter half-life in tumor-bearing mice compared with neutrophils and monocytes. The reduction of MDSC viability was due to increased apoptosis, which was mediated by increased expression of TNF-related apoptosis-induced ligand receptors (TRAIL-Rs) in these cells. Targeting TRAIL-Rs in naive mice did not affect myeloid cell populations, but it dramatically reduced the presence of MDSCs and improved immune responses in tumor-bearing mice. Treatment of myeloid cells with proinflammatory cytokines did not affect TRAIL-R expression; however, induction of ER stress in myeloid cells recapitulated changes in TRAIL-R expression observed in tumor-bearing hosts. The ER stress response was detected in MDSCs isolated from cancer patients and tumor-bearing mice, but not in control neutrophils or monocytes, and blockade of ER stress abrogated tumor-associated changes in TRAIL-Rs. Together, these data indicate that MDSC pathophysiology is linked to ER stress, which shortens the lifespan of these cells in the periphery and promotes expansion in BM. Furthermore, TRAIL-Rs can be considered as potential targets for selectively inhibiting MDSCs.

  10. Natural pyrethrins induces apoptosis in human hepatocyte cells via Bax- and Bcl-2-mediated mitochondrial pathway.

    PubMed

    Yang, Yun; Zong, Mimi; Xu, Wenping; Zhang, Yang; Wang, Bo; Yang, Mingjun; Tao, Liming

    2017-01-25

    Natural pyrethrins have been widely used for pest control in organic farming and for residential indoor pest managements. Although the specific mechanisms underlying their activity are incompletely understood, natural pesticides are considered the safest based on their target specificity and rapid degradation in the environment. Here, we used in vitro bioassays to characterize the cytotoxic effects of natural pyrethrins and attempted to delineate the cellular and molecular mechanisms of their cytotoxicity against human hepatocytes. The results demonstrate that natural pyrethrins reduce cell viability and enhance apoptosis in HepG2 cells. In addition, the current data indicate that natural pyrethrins cause a reduction in the mitochondrial membrane potential (Δψm), increase reactive oxygen species production, and up-regulate the Bax/Bcl-2 expression, leading to the release of cytochrome-c into the cytosol, activation of caspase-9 and caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP). Taken together, the results indicate that natural pyrethrins has potentially exert adverse effects on human health by inducing caspase-dependent apoptosis in hepatocytes through Bax- and Bcl-2-mediated mitochondrial pathway.

  11. The anthracenedione compound bostrycin induces mitochondria-mediated apoptosis in the yeast Saccharomyces cerevisiae.

    PubMed

    Xu, Chunling; Wang, Jiafeng; Gao, Ye; Lin, Huangyu; Du, Lin; Yang, Shanshan; Long, Simei; She, Zhigang; Cai, Xiaoling; Zhou, Shining; Lu, Yongjun

    2010-05-01

    Bostrycin is an anthracenedione with phytotoxic and antibacterial activity that belongs to the large family of quinones. We have isolated bostrycin from the secondary metabolites of a mangrove endophytic fungus, no. 1403, collected from the South China Sea. Using the yeast Saccharomyces cerevisiae as a model, we show that bostrycin inhibits cell proliferation by blocking the cell cycle at G1 phase and ultimately leads to cell death in a time- and dose-dependent manner. Bostrycin-induced lethal cytotoxicity is accompanied with increased levels of intracellular reactive oxygen species and hallmarks of apoptosis such as chromatin condensation, DNA fragmentation and externalization of phosphatidylserine. We further show that bostrycin decreases mitochondrial membrane electric potential and causes mitochondrial destruction during the progression of cell death. Bostrycin-induced cell death was promoted in YCA1 null yeast strain but was partially rescued in AIF1 null mutant both in fermentative and respiratory media, strongly indicating that bostrycin induces apoptosis in yeast cells through a mitochondria-mediated but caspase-independent pathway.

  12. Bre1p-mediated histone H2B ubiquitylation regulates apoptosis in Saccharomyces cerevisiae.

    PubMed

    Walter, David; Matter, Anja; Fahrenkrog, Birthe

    2010-06-01

    BRE1 encodes an E3 ubiquitin protein ligase that is required for the ubiquitylation of histone H2B at lysine 123 (K123). Ubiquitylation of this histone residue is involved in a variety of cellular processes including gene activation and gene silencing. Abolishing histone H2B ubiquitylation also confers X-ray sensitivity and abrogates checkpoint activation after DNA damage. Here we show that Saccharomyces cerevisiae Bre1p exhibits anti-apoptotic activity in yeast and that this is linked to histone H2B ubiquitylation. We found that enhanced levels of Bre1p protect from hydrogen-peroxide-induced cell death, whereas deletion of BRE1 enhances cell death. Moreover, cells lacking Bre1p show reduced lifespan during chronological ageing, a physiological apoptotic condition in yeast. Importantly, the resistance against apoptosis is conferred by histone H2B ubiquitylation mediated by the E3 ligase activity of Bre1p. Furthermore, we found that the death of Deltabre1 cells depends on the yeast caspase Yca1p, because Deltabre1 cells exhibit increased caspase activity when compared with wild-type cells, and deletion of YCA1 leads to reduced apoptosis sensitivity of cells lacking Bre1p.

  13. EF24 induces ROS-mediated apoptosis via targeting thioredoxin reductase 1 in gastric cancer cells

    PubMed Central

    Chen, Weiqian; Chen, Xi; Ying, Shilong; Feng, Zhiguo; Chen, Tongke; Ye, Qingqing; Wang, Zhe; Qiu, Chenyu; Yang, Shulin; Liang, Guang

    2016-01-01

    Gastric cancer (GC) is one of the leading causes of cancer mortality in the world, and finding novel agents for the treatment of advanced gastric cancer is of urgent need. Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, exhibits potent anti-tumor activities by arresting cell cycle and inducing apoptosis. Although EF24 demonstrates potent anticancer efficacy in numerous types of human cancer cells, the cellular targets of EF24 have not been fully defined. We report here that EF24 may interact with the thioredoxin reductase 1 (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme, to induce reactive oxygen species (ROS)-mediated apoptosis in human gastric cancer cells. By inhibiting TrxR1 activity and increasing intracellular ROS levels, EF24 induces a lethal endoplasmic reticulum stress in human gastric cancer cells. Importantly, knockdown of TrxR1 sensitizes cells to EF24 treatment. In vivo, EF24 treatment markedly reduces the TrxR1 activity and tumor cell burden, and displays synergistic lethality with 5-FU against gastric cancer cells. Targeting TrxR1 with EF24 thus discloses a previously unrecognized mechanism underlying the biological activity of EF24, and reveals that TrxR1 is a good target for gastric cancer therapy. PMID:26919110

  14. Role for Caspase-Mediated Cleavage of Rad51 in Induction of Apoptosis by DNA Damage

    PubMed Central

    Huang, YinYin; Nakada, Shuji; Ishiko, Takatoshi; Utsugisawa, Taiju; Datta, Rakesh; Kharbanda, Surender; Yoshida, Kiyotsugu; Talanian, Robert V.; Weichselbaum, Ralph; Kufe, Donald; Yuan, Zhi-Min

    1999-01-01

    We report here that the Rad51 recombinase is cleaved in mammalian cells during the induction of apoptosis by ionizing radiation (IR) exposure. The results demonstrate that IR induces Rad51 cleavage by a caspase-dependent mechanism. Further support for involvement of caspases is provided by the finding that IR-induced proteolysis of Rad51 is inhibited by Ac-DEVD-CHO. In vitro studies show that Rad51 is cleaved by caspase 3 at a DVLD/N site. Stable expression of a Rad51 mutant in which the aspartic acid residues were mutated to alanines (AVLA/N) confirmed that the DVLD/N site is responsible for the cleavage of Rad51 in IR-induced apoptosis. The functional significance of Rad51 proteolysis is supported by the finding that, unlike intact Rad51, the N- and C-terminal cleavage products fail to exhibit recombinase activity. In cells, overexpression of the Rad51(D-A) mutant had no effect on activation of caspase 3 but did abrogate in part the apoptotic response to IR exposure. We conclude that proteolytic inactivation of Rad51 by a caspase-mediated mechanism contributes to the cell death response induced by DNA damage. PMID:10082566

  15. Non-viable Borrelia burgdorferi induce inflammatory mediators and apoptosis in human oligodendrocytes.

    PubMed

    Parthasarathy, Geetha; Fevrier, Helene B; Philipp, Mario T

    2013-11-27

    In previous studies, exposure to live Borrelia burgdorferi was shown to induce inflammation and apoptosis of human oligodendrocytes. In this study we assessed the ability of non-viable bacteria (heat killed or sonicated) to induce inflammatory mediators and cell death. Both heat-killed and sonicated bacteria induced release of CCL2, IL-6, and CXCL8 from oligodendrocytes in a dose dependent manner. In addition, non-viable B. burgdorferi also induced cell death as evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and another cell viability assay. These results suggest that spirochetal residues left after bacterial demise, due to treatment or otherwise, may continue to be pathogenic to the central nervous system.

  16. Singly protonated dehydronorcantharidin silver coordination polymer induces apoptosis of lung cancer cells via reactive oxygen species-mediated mitochondrial pathway.

    PubMed

    Li, Senpeng; Zhang, Shuo; Jin, Xing; Tan, Xuejie; Lou, Jianfang; Zhang, Xiumei; Zhao, Yunxue

    2014-10-30

    Silver complexes have been shown to possess antimicrobial and anticancer properties. Ag-SP-DNC, a novel silver and singly protonated dehydronorcantharidin complex, was synthesized in our previous study. In this study, we offer evidence that Ag-SP-DNC elicits a reactive oxygen species (ROS)-mediated mitochondrial apoptosis in lung cancer cells. Ag-SP-DNC inhibited the growth of A549 cells by inducing G2/M phase cell cycle arrest and apoptosis. Ag-SP-DNC induced apoptosis was associated with the levels of intracellular ROS. The further study revealed that Ag-SP-DNC disrupted the mitochondrial membrane potential, induced the caspase-3 activation and led to the translocation of apoptosis inducing factor and endonucleaseG to the nucleus. These findings have important implications for the development of silver complexes for anticancer applications.

  17. RIP1 is required for IAP inhibitor-mediated sensitization of childhood acute leukemia cells to chemotherapy-induced apoptosis.

    PubMed

    Löder, S; Fakler, M; Schoeneberger, H; Cristofanon, S; Leibacher, J; Vanlangenakker, N; Bertrand, M J M; Vandenabeele, P; Jeremias, I; Debatin, K-M; Fulda, S

    2012-05-01

    Evasion of apoptosis may contribute to poor treatment response in pediatric acute lymphoblastic leukemia (ALL), calling for novel treatment strategies. Here, we report that inhibitors of apoptosis (IAPs) at subtoxic concentrations cooperate with various anticancer drugs (that is, AraC, Gemcitabine, Cyclophosphamide, Doxorubicin, Etoposide, Vincristine and Taxol) to induce apoptosis in ALL cells in a synergistic manner as calculated by combination index and to reduce long-term clonogenic survival. Importantly, we identify RIP1 as a critical regulator of this synergism of IAP inhibitors and AraC that mediates the formation of a RIP1/FADD/caspase-8 complex via an autocrine/paracrine loop of tumor necrosis factor-α (TNFα). Knockdown of RIP1 abolishes formation of this complex and subsequent activation of caspase-8 and -3, mitochondrial perturbations and apoptosis. Similarly, inhibition of RIP1 kinase activity by Necrostatin-1 or blockage of TNFα by Enbrel inhibits IAP inhibitor- and AraC-triggered interaction of RIP1, FADD and caspase-8 and apoptosis. In contrast to malignant cells, IAP inhibitors and AraC at equimolar concentrations are non-toxic to normal peripheral blood lymphocytes or mesenchymal stromal cells. Thus, our findings provide first evidence that IAP inhibitors present a promising strategy to prime childhood ALL cells for chemotherapy-induced apoptosis in a RIP1-dependent manner. These data have important implications for developing apoptosis-targeted therapies in childhood leukemia.

  18. A whole-genome RNAi screen identifies an 8q22 gene cluster that inhibits death receptor-mediated apoptosis.

    PubMed

    Dompe, Nicholas; Rivers, Celina Sanchez; Li, Li; Cordes, Shaun; Schwickart, Martin; Punnoose, Elizabeth A; Amler, Lukas; Seshagiri, Somasekar; Tang, Jerry; Modrusan, Zora; Davis, David P

    2011-10-25

    Deregulation of apoptosis is a common occurrence in cancer, for which emerging oncology therapeutic agents designed to engage this pathway are undergoing clinical trials. With the aim of uncovering strategies to activate apoptosis in cancer cells, we used a pooled shRNA screen to interrogate death receptor signaling. This screening approach identified 16 genes that modulate the sensitivity to ligand induced apoptosis, with several genes exhibiting frequent overexpression and/or copy number gain in cancer. Interestingly, two of the top hits, EDD1 and GRHL2, are found 50 kb apart on chromosome 8q22, a region that is frequently amplified in many cancers. By using a series of silencing and overexpression studies, we show that EDD1 and GRHL2 suppress death-receptor expression, and that EDD1 expression is elevated in breast, pancreas, and lung cancer cell lines resistant to death receptor-mediated apoptosis. Supporting the relevance of EDD1 and GRHL2 as therapeutic candidates to engage apoptosis in cancer cells, silencing the expression of either gene sensitizes 8q22-amplified breast cancer cell lines to death receptor induced apoptosis. Our findings highlight a mechanism by which cancer cells may evade apoptosis, and therefore provide insight in the search for new targets and functional biomarkers for this pathway.

  19. Apoptosis triggered by pyropheophorbide-α methyl ester-mediated photodynamic therapy in a giant cell tumor in bone

    NASA Astrophysics Data System (ADS)

    Li, K.-T.; Zhang, J.; Duan, Q.-Q.; Bi, Y.; Bai, D.-Q.; Ou, Y.-S.

    2014-06-01

    A giant cell tumor in bone is the common primary bone tumor with aggressive features, occurring mainly in young adults. Photodynamic therapy is a new therapeutic technique for tumors. In this study, we investigated the effects of Pyropheophorbide-α methyl ester (MPPa)-mediated photodynamic therapy on the proliferation of giant cell tumor cells and its mechanism of action. Cell proliferation was evaluated using an MTT assay. Cellular apoptosis was detected by Hoechst nuclear staining, and flow cytometric assay. Mitochondrial membrane potential changes and cytochrome c, caspase-9, caspase-3, and Bcl-2 expression was assessed. Finally, we found that MPPa-mediated photodynamic therapy could effectively suppress the proliferation of human giant cell tumor cells and induce apoptosis. The mitochondrial pathway was involved in the MPPa-photodynamic therapy-induced apoptosis.

  20. The dilution of benzalkonium chloride (BAK) in the tear film.

    PubMed

    Friedlaender, Mitchell H; Breshears, Daphne; Amoozgar, Bahram; Sheardown, Heather; Senchyna, Michelle

    2006-01-01

    The claim that benzalkonium chloride (BAK) synergistically enhances the antibiotic efficacy of gatifloxacin ophthalmic solution 0.3% (preserved with 0.005% BAK [50 microg/mL), Zymar; Allergan Inc., Irvine, Calif, USA) has been the subject of several studies. The purpose of this prospective clinical study was to test the hypothesis that BAK would be significantly diluted shortly after topical ocular administration and would thereafter have little or no effect on the enhancement of the antibiotic efficacy of commercial gatifloxacin on the ocular surface. This hypothesis was tested by investigators who measured the concentration of tear film BAK at successive time points after topical administration of commercial gatifloxacin. After subjects (N=10) received 5 separate instillations of a single 35-microL drop of gatifloxacin 0.3% ophthalmic solution in each eye, tear samples were collected at 30 sec, 1 min, 3 min, 5 min, and 20 min, with the use of graduated 5-microL glass microcapillaries. A validated high-performance liquid chromatography method was used to measure the concentration of BAK in each tear sample. The results showed rapid BAK dilution to 6.4 microg/mL, 3.2 microg/mL, 1.4 microg/mL, below the detection limit, and below the detection limit at 30 sec, 1 min, 3 min, 5 min, and 20 min after instillation of a single 35-microL drop of gatifloxacin. Because such rapid dilution reduces the concentration of BAK to near zero in minutes and does not allow the time (1 h) required for effective bacterial kill power, BAK is not expected to have a clinically significant effect on enhancement of the antimicrobial efficacy of gatifloxacin on the human ocular surface.

  1. Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis

    PubMed Central

    Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J

    2014-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866

  2. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway

    SciTech Connect

    Li, Fengbo; Sun, Xiaolei; Ma, Jianxiong; Ma, Xinlong; Zhao, Bin; Zhang, Yang; Tian, Peng; Li, Yanjun; Han, Zhe

    2014-09-26

    Highlights: • Naringin possesses many pharmacological activities, promotes the proliferation of osteoblast. • Undecalcified histological obtain dynamic parameters of callus formation and remodeling. • Naringin regulate osteoclast apoptosis by mitochondrial pathway. - Abstract: Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats.

  3. Sophoridinol derivative 05D induces tumor cells apoptosis by topoisomerase1-mediated DNA breakage

    PubMed Central

    Zhao, Wuli; Zhang, Caixia; Bi, Chongwen; Ye, Cheng; Song, Danqing; Liu, Xiujun; Shao, Rongguang

    2016-01-01

    Sophoridine is a quinolizidine natural product of Sophora alopecuroides and has been applied for treatment of malignant trophoblastic tumors. Although characterized by low toxicity, the limited-spectrum antitumor activity hinders its further applications. 05D, a derivative of sophoridine, exhibits a better anticancer activity on diverse cancer cells, including solid tumors, and hematologic malignancy. It could inhibit topoisomerase 1 (top1) activity by stabilizing DNA–top1 complex and induce mitochondria-mediated apoptosis by promoting DNA single- and double-strand breakage mediated by top1. Also, 05D induced HCT116 cells arrest at G1 phase by inactivating CDK2/CDK4–Rb–E2F and cyclinD1–CDK4–p21 checkpoint signal pathways. 05D suppressed the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) activation and decreased 53BP level, which contributed to DNA damage repair, suggesting that the novel compound 05D might be helpful to improve the antitumor activity of DNA damaging agent by repressing ATM and ATR activation and 53BP level. In addition, the priorities in molecular traits and druggability, such as a simple structure and formulation for oral administration, further prove 05D to be a promising targeting topoisomerase agent. PMID:27274276

  4. Intracellular Ca2+ elevation and cyclosporin A synergistically induce TGF-beta 1-mediated apoptosis in lymphocytes.

    PubMed

    Andjelíc, S; Khanna, A; Suthanthiran, M; Nikolić-Zugić, J

    1997-03-15

    Apoptosis plays an essential role in the development and homeostasis of the immune system. During lymphocyte development, potentially autoreactive cells are eliminated via the activation of a tightly regulated cell death program(s). Similar processes operate in mature lymphocytes, to control the magnitude of the normal immune response by eliminating activated lymphocytes. However, differences in susceptibility to signal-induced apoptosis between immature and mature lymphocytes are numerous. One well-characterized example occurs in response to Ca2+ elevation: peripheral T lymphocytes are resistant, while immature thymocytes are highly susceptible, to Ca2+-mediated cell death (CMCD). In this study, we show that the immunosuppressant cyclosporin A (CsA) primes splenic lymphocytes to undergo CMCD upon ionomycin stimulation. This CsA-induced CMCD affected both T and B lymphocytes. CsA-plug Ca2+-mediated apoptosis was dissected into a two-step process: first, CsA and Ca2+ synergized to induce TGF-beta 1 secretion by B cells; and then TGF-beta 1 and Ca2+ synergistically triggered T and B lymphocyte apoptosis. Together, our results suggest that lymphocyte apoptosis may play a role in CsA-induced immunosuppression via a TGF-beta-dependent mechanism.

  5. Preventive effects of imperatorin on perfluorohexanesulfonate-induced neuronal apoptosis via inhibition of intracellular calcium-mediated ERK pathway

    PubMed Central

    Lee, Eunkyung; Choi, So-Young; Yang, Jae-Ho

    2016-01-01

    Early life neuronal exposure to environmental toxicants has been suggested to be an important etiology of neurodegenerative disease development. Perfluorohexanesulfonate (PFHxS), one of the major perfluoroalkyl compounds, is widely distributed environmental contaminants. We have reported that PFHxS induces neuronal apoptosis via ERK-mediated pathway. Imperatorin is a furanocoumarin found in various edible plants and has a wide range of pharmacological effects including neuroprotection. In this study, the effects of imperatorin on PFHxS-induced neuronal apoptosis and the underlying mechanisms are examined using cerebellar granule cells (CGC). CGC were isolated from seven-day old rats and were grown in culture for seven days. Caspase-3 activity and TUNEL staining were used to determine neuronal apoptosis. PFHxS-induced apoptosis of CGC was significantly reduced by imperatorin and PD98059, an ERK pathway inhibitor. PFHxS induced a persistent increase in intracellular calcium, which was significantly blocked by imperatorin, NMDA receptor antagonist, MK801 and the L-type voltage-dependent calcium channel blockers, diltiazem and nifedipine. The activation of caspase-3 by PFHxS was also inhibited by MK801, diltiazem and nifedipine. PFHxS-increased ERK activation was inhibited by imperatorin, MK801, diltiazem and nifedipine. Taken together, imperatorin protects CGC against PFHxS-induced apoptosis via inhibition of NMDA receptor/intracellular calcium-mediated ERK pathway. PMID:27382356

  6. Protective Role of Morin, a Flavonoid, against High Glucose Induced Oxidative Stress Mediated Apoptosis in Primary Rat Hepatocytes

    PubMed Central

    Kapoor, Radhika; Kakkar, Poonam

    2012-01-01

    Apoptosis is an early event of liver damage in diabetes and oxidative stress has been linked to accelerate the apoptosis in hepatocytes. Therefore, the compounds that can scavenge ROS may confer regulatory effects on high-glucose induced apoptosis. In the present study, primary rat hepatocytes were exposed to high concentration (40 mM) of glucose. At this concentration decreased cell viability and enhanced ROS generation was observed. Depleted antioxidant status of hepatocytes under high glucose stress was also observed as evident from transcriptional level and activities of antioxidant enzymes. Further, mitochondrial depolarisation was accompanied by the loss of mitochondrial integrity and altered expression of Bax and Bcl-2. Increased translocation of apoptotic proteins like AIF (Apoptosis inducing factor) & Endo-G (endonuclease-G) from its resident place mitochondria to nucleus was also observed. Cyt-c residing in the inter-membrane space of mitochondria also translocated to cytoplasm. These apoptotic proteins initiated caspase activation, DNA fragmentation, chromatin condensation, increased apoptotic DNA content in glucose treated hepatocytes, suggesting mitochondria mediated apoptotic mode of cell death. Morin, a dietary flavonoid from Psidium guajava was effective in increasing the cell viability and decreasing the ROS level. It maintained mitochondrial integrity, inhibited release of apoptotic proteins from mitochondria, prevented DNA fragmentation, chromatin condensation and hypodiploid DNA upon exposure to high glucose. This study confirms the capacity of dietary flavonoid Morin in regulating apoptosis induced by high glucose via mitochondrial mediated pathway through intervention of oxidative stress. PMID:22899998

  7. Mechanisms of a novel anticancer therapeutic strategy involving atmospheric pressure plasma-mediated apoptosis and DNA strand break formation.

    PubMed

    Chung, Woo-Hyun

    2016-01-01

    Atmospheric pressure plasma has been developed for a variety of biomedical applications due to its chemically reactive components. Recently, the plasma has emerged as a promising novel cancer therapy based on its ability to selectively ablate cancer cells while leaving normal cells essentially unaffected. The therapeutic effect of plasma is attributed to intracellular generation of reactive oxygen/nitrogen species (ROS/RNS) leading to mitochondria-mediated apoptosis and to activation of the DNA damage checkpoint signaling pathway via severe DNA strand break formation. However, the biochemical mechanisms responsible for appropriate activation of these physiological events and which pathway is more crucial for plasma-mediated cytotoxicity have not been clarified. Understanding the molecular link between ROS/RNS-mediated apoptosis and DNA damage-involved chromosome instability is critical for the development of more efficacious therapeutic strategies for selective killing of diverse cancer cells.

  8. Mouse Lung Fibroblast Resistance to Fas-Mediated Apoptosis Is Dependent on the Baculoviral Inhibitor of Apoptosis Protein 4 and the Cellular FLICE-Inhibitory Protein

    PubMed Central

    Predescu, Sanda A.; Zhang, Jian; Bardita, Cristina; Patel, Monal; Godbole, Varun; Predescu, Dan N.

    2017-01-01

    A characteristic feature of idiopathic pulmonary fibrosis (IPF) is accumulation of apoptotic resistant fibroblasts/myofibroblasts in the fibroblastic foci. As caveolin (Cav)-null mice develop pulmonary fibrosis (PF), we hypothesized that the participating fibroblasts display an apoptosis-resistant phenotype. To test this hypothesis and identify the molecular mechanisms involved we isolated lung fibroblasts from Cav-null mice and examined the expression of several inhibitors of apoptosis (IAPs), of c-FLIP, of Bcl-2 proteins and of the death receptor CD95/Fas. We found significant increase in XIAP and c-FLIP constitutive protein expression with no alteration of Bcl-2 and lower levels of CD95/Fas. The isolated fibroblasts were then treated with the CD95/Fas ligand (FasL) to induce apoptosis. While the morphological and biochemical alterations induced by FasL were similar in wild-type (wt) and Cav-null mouse lung fibroblasts, the time course and the extent of the alterations were greater in the Cav-null fibroblasts. Several salient features of Cav-null fibroblasts response such as loss of membrane potential, fragmentation of the mitochondrial continuum concurrent with caspase-8 activation, and subsequent Bid cleavage, prior to caspase-3 activation were detected. Furthermore, M30 antigen formation, phosphatidylserine expression and DNA fragmentation were caspase-3 dependent. SiRNA-mediated silencing of XIAP and c-FLIP, individually or combined, enhanced the sensitivity of lung fibroblasts to FasL-induced apoptosis. Pharmacological inhibition of Bcl-2 had no effect. Together our findings support a mechanism in which CD95/Fas engagement activates caspase-8, inducing mitochondrial apoptosis through Bid cleavage. XIAP and c-FLIP fine tune this process in a cell-type specific manner. PMID:28352235

  9. Insulin-like growth factor binding protein 5 (IGFBP5) mediates methamphetamine-induced dopaminergic neuron apoptosis.

    PubMed

    Qiao, Dongfang; Xu, Jingtao; Le, Cuiyun; Huang, Enping; Liu, Chao; Qiu, Pingming; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2014-11-04

    Overexposure to methamphetamine (METH), a psychoactive drug, induces a variety of adverse effects to the nervous system, including apoptosis of dopaminergic neurons. Insulin-like growth factor binding protein 5 (IGFBP5), a member of insulin-like growth factor (IGF) system, is a pro-apoptotic factor that plays important roles in neuronal apoptosis. To test the hypothesis that IGFBP5 can mediate METH-induced neuronal apoptosis, we examined IGFBP5 mRNA and protein expression changes in PC12 cells exposed to METH (3.0mM) for 24h and in the striatum of rats following 15 mg/kg × 8 intraperitoneal injections of METH at 12h interval. We also checked the effect on neuronal apoptosis after silencing IGFBP5 expression with TUNEL staining and flow cytometry; Western blot was used for detecting the expression of apoptotic markers active-caspase3 and PARP. To elucidate the mechanisms underlying IGFBP5-mediated neuronal apoptosis, we determined the release of cytochrome c (cyto c), an apoptogenic factor, from the mitochondria after METH treatment with or without IGFBP5 knockdown. Our results showed that IGFBP5 expression was increased significantly after METH exposure in PC12 cells and in the METH-treated rats' striatum. Further, METH-exposed PC12 cells exhibited higher apoptosis-positive cell number and activity of caspase3 and PARP compared with control cells, while these changes can be blocked by silencing IGFBP5 expression. In addition, a significant increase of cyto c release from mitochondria after METH exposure was observed and it was inhibited after silencing IGFBP5 expression in PC12 cells. These results indicate that IGFBP5 plays key roles in METH-induced neuronal apoptosis and may be a potential gene target for therapeutics in METH-caused neurotoxicity.

  10. Epidermal growth factor prevents thallium(I)- and thallium(III)-mediated rat pheochromocytoma (PC12) cell apoptosis.

    PubMed

    Pino, María Teresa Luján; Marotte, Clarisa; Verstraeten, Sandra Viviana

    2017-03-01

    We have reported recently that the proliferation of PC12 cells exposed to micromolar concentrations of Tl(I) or Tl(III) has different outcomes, depending on the absence (EGF(-) cells) or the presence (EGF(+) cells) of epidermal growth factor (EGF) added to the media. In the current work, we investigated whether EGF supplementation could also modulate the extent of Tl(I)- or Tl(III)-induced cell apoptosis. Tl(I) and Tl(III) (25-100 μM) decreased cell viability in EGF(-) but not in EGF(+) cells. In EGF(-) cells, Tl(I) decreased mitochondrial potential, enhanced H2O2 generation, and activated mitochondrial-dependent apoptosis. In addition, Tl(III) increased nitric oxide production and caused a misbalance between the anti- and pro-apoptotic members of Bcl-2 family. Tl(I) increased ERK1/2, JNK, p38, and p53 phosphorylation in EGF(-) cells. In these cells, Tl(III) did not affect ERK1/2 and JNK phosphorylation but increased p53 phosphorylation that was related to the promotion of cell senescence. In addition, this cation significantly activated p38 in both EGF(-) and EGF(+) cells. The specific inhibition of ERK1/2, JNK, p38, or p53 abolished Tl(I)-mediated EGF(-) cell apoptosis. Only when p38 activity was inhibited, Tl(III)-mediated apoptosis was prevented in EGF(-) and EGF(+) cells. Together, current results indicate that EGF partially prevents the noxious effects of Tl by preventing the sustained activation of MAPKs signaling cascade that lead cells to apoptosis and point to p38 as a key mediator of Tl(III)-induced PC12 cell apoptosis.

  11. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis.

    PubMed

    Chang, David W; Xing, Zheng; Pan, Yi; Algeciras-Schimnich, Alicia; Barnhart, Bryan C; Yaish-Ohad, Shoshanit; Peter, Marcus E; Yang, Xiaolu

    2002-07-15

    Activation of the caspase cascade is a pivotal step in apoptosis and can occur via death adaptor-mediated homo-oligomerization of initiator procaspases. Here we show that c-FLIP(L), a protease-deficient caspase homolog widely regarded as an apoptosis inhibitor, is enriched in the CD95 death-inducing signaling complex (DISC) and potently promotes procaspase-8 activation through hetero-dimerization. c-FLIP(L) exerts its effect through its protease-like domain, which associates efficiently with the procaspase-8 protease domain and induces the enzymatic activity of the zymogen. Ectopic expression of c-FLIP(L) at physiologically relevant levels enhances procaspase-8 processing in the CD95 DISC and promotes apoptosis, while a decrease of c-FLIP(L) expression results in inhibition of apoptosis. c-FLIP(L) acts as an apoptosis inhibitor only at high ectopic expression levels. Thus, c-FLIP(L) defines a novel type of caspase regulator, distinct from the death adaptors, that can either promote or inhibit apoptosis.

  12. Hydrogen peroxide-induced apoptosis of HL-60 human leukemia cells is mediated by the oxidants hypochlorous acid and chloramines.

    PubMed

    Wagner, Brett A; Britigan, Bradley E; Reszka, Krzysztof J; McCormick, Michael L; Burns, C Patrick

    2002-05-15

    We set out to identify whether HOCl, which is generated from H(2)O(2) /MPO/Cl(-), is a proximal mediator of H(2)O(2) programmed cell death in the HL-60 human leukemia cell. We found that authentic HOCl induces apoptosis in the HL-60 cell. Both the addition of methionine, an HOCl scavenger, and the removal of Cl(-) from the medium to prevent the formation of HOCl inhibited H(2)O(2)-induced apoptosis. HL-60 cells underwent apoptosis when exposed to HOCl in full medium, which gives rise to chloramines by the reaction of HOCl with amine groups, but not by HOCl in the amine-free HBSS, in which HOCl but not chloramines can be detected. Authentic chloramines induced apoptosis in this cell line in a concentration-dependent manner and at concentrations lower than HOCl. Full medium exposed to HOCl for 24 h would support methionine noninhibitable apoptosis, but did not react with 2-nitro-5-thiobenzoic acid (TNB), raising the possibility that the final inducer is a nonoxidant formed from HOCl and chloramines. We conclude that the signal for apoptosis induced by H(2)O(2) in the MPO-containing HL-60 cell involves the reaction of the diffusible oxidant HOCl with amines producing chloramines and a subsequent non-TNB-reactive product.

  13. SARM1, not MyD88, mediates TLR7/TLR9-induced apoptosis in neurons1

    PubMed Central

    Mukherjee, Piyali; Winkler, Clayton W.; Taylor, Katherine G.; Woods, Tyson A.; Nair, Vinod; Khan, Burhan A.; Peterson, Karin E.

    2015-01-01

    Neuronal apoptosis is a key aspect of many different neurological diseases, but the mechanisms remain unresolved. Recent studies have suggested a mechanism of innate immune-induced neuronal apoptosis that may act through the stimulation of toll-like receptors (TLR) in neurons. TLRs are stimulated both by pathogen associated molecular patterns (PAMPs) as well as by damage-associated molecular patterns (DAMPs), including micro-RNAs released by damaged neurons. In the current study, we identified the mechanism responsible for TLR7/TLR9-mediated neuronal apoptosis. TLR-induced apoptosis required endosomal localization of TLRs but was independent of MyD88 signaling. Instead, apoptosis required the TLR adaptor molecule, sterile alpha armadillo motif (SARM1), which localized to the mitochondria following TLR activation and was associated with mitochondrial accumulation in neurites. Deficiency in SARM1 inhibited both mitochondrial accumulation in neurites and TLR-induced apoptosis. These studies identify a non-MyD88 pathway of TLR7/TLR9 signaling in neurons and provide a mechanism for how innate immune responses in the CNS directly induce neuronal damage. PMID:26423149

  14. The DNA methyltransferase inhibitor zebularine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo

    SciTech Connect

    Tan, Wei; Zhou, Wei; Yu, Hong-gang; Luo, He-Sheng; Shen, Lei

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Zebularine inhibited cell growth of gastric cancer in a time- and dose-dependent manner. Black-Right-Pointing-Pointer Chromatin condensation and nuclear fragmentation were induced. Black-Right-Pointing-Pointer Zebularine promoted apoptosis via mitochondrial pathways. Black-Right-Pointing-Pointer Tumorigenicity was inhibited by zebularine. -- Abstract: DNA methyltransferase (DNMT) inhibitor zebularine has been reported to potentiate the anti-tumor effect by reactivating the expression of tumor suppressor genes and apoptosis-related genes in various malignant cells. However, the apoptotic signaling pathway in gastric cancer cells induced by zebularine is not well understood. In the study, the effects of zebularine on the growth and apoptosis of gastric cancer cells were investigated by MTT assay, Hoechst assay, Western blot analysis, flow cytometric analysis of annexin V-FITC/PI staining, and TUNEL assay. Zebularine was an effective inhibitor of human gastric cancer cells proliferation in vitro and in vivo. The effects were dose dependent. A zebularine concentration of 50 {mu}M accounted for the inhibition of cell proliferation of 67% at 48 h. The treatment with zebularine upregulated Bax, and decreased Bcl-2 protein. Caspase-3 was activated, suggesting that the apoptosis is mediated by mitochondrial pathways. Moreover, zebularine injection successfully inhibited the tumor growth via apoptosis induction which was demonstrated by TUNEL assay in xenograft tumor mouse model. These results demonstrated that zebularine induced apoptosis in gastric cancer cells via mitochondrial pathways, and zebularine might become a therapeutic approach for the treatment of gastric cancer.

  15. ROCK1/p53/NOXA signaling mediates cardiomyocyte apoptosis in response to high glucose in vitro and vivo.

    PubMed

    Su, Dongmei; Guan, Lina; Gao, Qianqian; Li, Qian; Shi, Cuige; Liu, Yi; Sun, Lei; Lu, Cailing; Ma, Xu; Zhao, Jing

    2017-04-01

    Gestational diabetes mellitus is a risk factor for congenital heart defects; however, the molecular basis of the congenital heart anomalies remains obscure. Previous reports showed a positive correlation between abnormal cardiomyocyte apoptosis and ventricular wall thinness, one type of congenital heart anomaly. This work explored the expression pattern and molecular mechanism of the Rho-associated coiled-coil containing protein kinase 1 (ROCK1) gene in cardiomyocyte apoptosis and genesis of ventricular wall thinness. In this report, we found a marked increase in the number of apoptotic cardiomyocytes in response to high glucose (HG) treatment. Moreover, up-regulation of ROCK1 expression observed in diabetic offspring compared with controls was potentially associated with cardiomyocyte apoptosis and the ventricular wall thinness. Further investigation showed that p53 and NOXA protein levels increased during ROCK1-meidated apoptosis in response to HG. In response to HG, whereby ROCK1 phosphorylated p53 at Ser15 to up-regulate its protein level. Furthermore, we found that p53 mediated the expression of NOXA during HG-induced apoptosis, and histone acetyltransferase p300 participated in this process. These findings reveal a novel regulatory mechanism of ROCK1/p53/NOXA signaling in modulating cardiomyocyte apoptosis in vitro and maternal diabetes-induced congenital heart defects in vivo.

  16. p38 MAPK mediates renal tubular cell TNF-alpha production and TNF-alpha-dependent apoptosis during simulated ischemia.

    PubMed

    Meldrum, K K; Meldrum, D R; Hile, K L; Yerkes, E B; Ayala, A; Cain, M P; Rink, R C; Casale, A J; Kaefer, M A

    2001-08-01

    Ischemia causes renal tubular cell loss through apoptosis; however, the mechanisms of this process remain unclear. Using the renal tubular epithelial cell line LLC-PK(1), we developed a model of simulated ischemia (SI) to investigate the role of p38 MAPK (mitogen-activated protein kinase) in renal cell tumor necrosis factor-alpha (TNF-alpha) mRNA production, protein bioactivity, and apoptosis. Results demonstrate that 60 min of SI induced maximal TNF-alpha mRNA production and bioactivity. Furthermore, 60 min of ischemia induced renal tubular cell apoptosis at all substrate replacement time points examined, with peak apoptotic cell death occurring after either 24 or 48 h. p38 MAPK inhibition abolished TNF-alpha mRNA production and TNF-alpha bioactivity, and both p38 MAPK inhibition and TNF-alpha neutralization (anti-porcine TNF-alpha antibody) prevented apoptosis after 60 min of SI. These results constitute the initial demonstration that 1) renal tubular cells produce TNF-alpha mRNA and biologically active TNF-alpha and undergo apoptosis in response to SI, and 2) p38 MAPK mediates renal tubular cell TNF-alpha production and TNF-alpha-dependent apoptosis after SI.

  17. Induction of apoptosis in cancer cells through N-acetyl-l-leucine-modified polyethylenimine-mediated p53 gene delivery.

    PubMed

    Li, Zhiyuan; Zhang, Liu; Li, Quanshun

    2015-11-01

    Herein, N-acetyl-L-leucine-modified polyethylenimine was successfully constructed through the EDC/NHS-mediated coupling reaction and employed as vectors to accomplish p53 gene delivery using HeLa (p53wt) and PC-3 cells (p53null) as models. Compared with PEI25K, the derivatives exhibited lower cytotoxicity, protein adsorption and hemolytic activity, together with satisfactory pDNA condensation capability and gene transfection efficiency. After p53 transfection, MTT analysis confirmed that the cell proliferation was inhibited. Flow cytometric analysis showed that the derivative-mediated p53 delivery could induce stronger early apoptosis than PEI25K and Lipofectamine(2000). Further, PC-3 cells showed higher sensitivity to the exogenous p53 transfection than HeLa cells. The mechanism for inducing apoptosis was determined to be up-regulation of p53 expression at both mRNA and protein levels using RT-PCR and western blotting analysis. Expression level and activity analysis of caspase-3, -8 and -9, and mitochondrial membrane potential measurement revealed that p53 transfection mediated by these derivatives facilitated early apoptosis of tumor cells via a mitochondria-dependent apoptosis pathway. Thus, the derivatives showed potential as biocompatible carriers for realizing effective tumor gene therapy.

  18. Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis.

    PubMed

    Hua, Guoqiang; Zhang, Qixiang; Fan, Zusen

    2007-07-13

    Natural killer (NK) cells play an important role in innate immunity against virally infected or transformed cells as the first defense line. Granzyme M (GzmM) is an orphan granzyme that is constitutively highly expressed in NK cells and is consistent with NK cell-mediated cytolysis. We recently demonstrated that GzmM induces caspase-dependent apoptosis with DNA fragmentation through direct cleavage of inhibitor of caspase-activated DNase (ICAD). However, the molecular mechanisms for GzmM-induced apoptosis are unclear. We found GzmM causes mitochondrial swelling and loss of mitochondrial transmembrane potential. Moreover, GzmM initiates reactive oxygen species (ROS) generation and cytochrome c release. Heat shock protein 75 (HSP75, also known as TRAP1) acts as an antagonist of ROS and protects cells from GzmM-mediated apoptosis. GzmM cleaves TRAP1 and abolishes its antagonistic function to ROS, resulting in ROS accumulation. Silencing TRAP1 through RNA interference increases ROS accumulation, whereas TRAP1 overexpression attenuates ROS production. ROS accumulation is in accordance with the release of cytochrome c from mitochondria and enhances GzmM-mediated apoptosis.

  19. RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis.

    PubMed

    Winter, Peter S; Sarosiek, Kristopher A; Lin, Kevin H; Meggendorfer, Manja; Schnittger, Susanne; Letai, Anthony; Wood, Kris C

    2014-12-23

    Myeloproliferative neoplasms (MPNs) frequently have an activating mutation in the gene encoding Janus kinase 2 (JAK2). Thus, targeting the pathway mediated by JAK and its downstream substrate, signal transducer and activator of transcription (STAT), may yield clinical benefit for patients with MPNs containing the JAK2(V617F) mutation. Although JAK inhibitor therapy reduces splenomegaly and improves systemic symptoms in patients, this treatment does not appreciably reduce the number of neoplastic cells. To identify potential mechanisms underlying this inherent resistance phenomenon, we performed pathway-centric, gain-of-function screens in JAK2(V617F) hematopoietic cells and found that the activation of the guanosine triphosphatase (GTPase) RAS or its effector pathways [mediated by the kinases AKT and ERK (extracellular signal-regulated kinase)] renders cells insensitive to JAK inhibition. Resistant MPN cells became sensitized to JAK inhibitors when also exposed to inhibitors of the AKT or ERK pathways. Mechanistically, in JAK2(V617F) cells, a JAK2-mediated inactivating phosphorylation of the proapoptotic protein BAD [B cell lymphoma 2 (BCL-2)-associated death promoter] promoted cell survival. In sensitive cells, exposure to a JAK inhibitor resulted in dephosphorylation of BAD, enabling BAD to bind and sequester the prosurvival protein BCL-XL (BCL-2-like 1), thereby triggering apoptosis. In resistant cells, RAS effector pathways maintained BAD phosphorylation in the presence of JAK inhibitors, yielding a specific dependence on BCL-XL for survival. In patients with MPNs, activating mutations in RAS co-occur with the JAK2(V617F) mutation in the malignant cells, suggesting that RAS effector pathways likely play an important role in clinically observed resistance.

  20. Glycyrrhizic acid attenuates CCl4-induced hepatocyte apoptosis in rats via a p53-mediated pathway

    PubMed Central

    Guo, Xiao-Ling; Liang, Bo; Wang, Xue-Wei; Fan, Fu-Gang; Jin, Jing; Lan, Rui; Yang, Jing-Hui; Wang, Xiao-Chun; Jin, Lei; Cao, Qin

    2013-01-01

    AIM: To investigate the effect of glycyrrhizic acid (GA) on carbon tetrachloride (CCl4)-induced hepatocyte apoptosis in rats via a p53-dependent mitochondrial pathway. METHODS: Forty-five male Sprague-Dawley rats were randomly and equally divided into three groups, the control group, the CCl4 group, and the GA treatment group. To induce liver fibrosis in this model, rats were given a subcutaneous injection of a 40% solution of CCl4 in olive oil at a dose of 0.3 mL/100 g body weight biweekly for 8 wk, while controls received the same isovolumetric dose of olive oil by hypodermic injection, with an initial double-dose injection. In the GA group, rats were also treated with a 40% solution of CCl4 plus 0.2% GA solution in double distilled water by the intraperitoneal injection of 3 mL per rat three times a week from the first week following previously published methods, with modifications. Controls were given the same isovolumetric dose of double distilled water. Liver function parameters, such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined. Pathologic changes in the liver were detected by hematoxylin and eosin staining. Collagen fibers were evaluated by Sirius red staining. Hepatocyte apoptosis was investigated using the terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick end labeling (TUNEL) assay and the cleaved caspase-3 immunohistochemistry assay. The expression levels of p53 and apoptosis-related proteins were evaluated by immunohistochemistry or Western blotting analysis. RESULTS: After 8 wk of treatment, GA significantly reduced serum activity of ALT (from 526.7 ± 57.2 to 342 ± 44.8, P < 0.05) and AST (from 640 ± 33.7 to 462.8 ± 30.6, P < 0.05), attenuated the changes in liver histopathology and reduced the staging score (from 3.53 ± 0.74 to 3.00 ± 0.76, P < 0.05) in CCl4-treated rats. GA markedly reduced the positive area of Sirius red and the ratio of the hepatic fibrotic region (from 7

  1. Mitochondrial permeabilization without caspase activation mediates the increase of basal apoptosis in cells lacking Nrf2.

    PubMed

    Ariza, Julia; González-Reyes, José A; Jódar, Laura; Díaz-Ruiz, Alberto; de Cabo, Rafael; Villalba, José Manuel

    2016-06-01

    Nuclear factor E2-related factor-2 (Nrf2) is a cap'n'collar/basic leucine zipper (b-ZIP) transcription factor which acts as sensor of oxidative and electrophilic stress. Low levels of Nrf2 predispose cells to chemical carcinogenesis but a dark side of Nrf2 function also exists because its unrestrained activation may allow the survival of potentially dangerous damaged cells. Since Nrf2 inhibition may be of therapeutic interest in cancer, and a decrease of Nrf2 activity may be related with degenerative changes associated with aging, it is important to investigate how the lack of Nrf2 function activates molecular mechanisms mediating cell death. Murine Embryonic Fibroblasts (MEFs) bearing a Nrf2 deletion (Nrf2KO) displayed diminished cellular growth rate and shortened lifespan compared with wild-type MEFs. Basal rates of DNA fragmentation and histone H2A.X phosphorylation were higher in Nrf2KO MEFs, although steady-state levels of reactive oxygen species were not significantly increased. Enhanced rates of apoptotic DNA fragmentation were confirmed in liver and lung tissues from Nrf2KO mice. Apoptosis in Nrf2KO MEFs was associated with a decrease of Bcl-2 but not Bax levels, and with the release of the mitochondrial pro-apoptotic factors cytochrome c and AIF. Procaspase-9 and Apaf-1 were also increased in Nrf2KO MEFs but caspase-3 was not activated. Inhibition of XIAP increased death in Nrf2KO but not in wild-type MEFs. Mitochondrial ultrastructure was also altered in Nrf2KO MEFs. Our results support that Nrf2 deletion produces mitochondrial dysfunction associated with mitochondrial permeabilization, increasing basal apoptosis through a caspase-independent and AIF-dependent pathway.

  2. Calcineurin-mediated Bad translocation regulates cyanide-induced neuronal apoptosis.

    PubMed Central

    Shou, Yan; Li, Li; Prabhakaran, Krishnan; Borowitz, Joseph L; Isom, Gary E

    2004-01-01

    In cyanide-induced apoptosis, an increase in cytosolic free Ca2+ and generation of reactive oxygen species are initiation stimuli for apoptotic cell death. Previous studies have shown that cyanide-stimulated translocation of Bax (Bcl-associated X protein) to mitochondria is linked with release of cytochrome c and subsequent activation of a caspase cascade [Shou, Li, Prabhakaran, Borowitz and Isom (2003) Toxicol. Sci. 75, 99-107]. In the present study, the relationship of the cyanide-induced increase in cytosolic free Ca2+ to activation of Bad ( Bcl-2/Bcl-X(L)- antagonist, causing cell death) was determined in cortical cells. Bad is a Ca2+-sensitive pro-apoptotic Bcl-2 protein, which on activation translocates from cytosol to mitochondria to initiate cytochrome c release. In cultured primary cortical cells, cyanide produced a concentration- and time-dependent translocation of Bad from cytosol to mitochondria. Translocation occurred early in the apoptotic response, since mitochondrial Bad was detected within 1 h of cyanide treatment. Mitochondrial levels of the protein continued to increase up to 12 h post-cyanide exposure. Concurrent with Bad translocation, a Ca2+-sensitive increase in cellular calcineurin activity was observed. Increased cytosolic Ca2+ and calcineurin activation stimulated Bad translocation since BAPTA [bis-(o-aminophenoxy)ethane-N, N, N', N'-tetra-acetic acid], an intracellular Ca2+ chelator, and cyclosporin A, a calcineurin inhibitor, significantly reduced translocation. BAPTA also blocked release of cytochrome c from mitochondria as well as apoptosis. Furthermore, treatment of cells with the calcineurin inhibitors cyclosporin A or FK506 blocked the apoptotic response, linking calcineurin activation and the subsequent translocation of Bad to cell death. These observations show that by inducing a rapid increase in cytosolic free Ca2+, cyanide can partially initiate the apoptotic cascade through a calcineurin-mediated translocation of Bad to

  3. Effect of a bispidinone analog on mitochondria‑mediated apoptosis in HeLa cells.

    PubMed

    Yi, Myeongjin; Parthiban, Paramasivam; Hwang, Jiyoung; Zhang, Xin; Jeong, Hyunjin; Park, Dong Ho; Kim, Dong-Kyoo

    2014-01-01

    The present study was carried out to investigate the effect of 2,4,6,8-tetraaryl-3,7-diazabicyclo[3.3.1]nonan-9-one (bispidinone) analogs on the in vitro growth of human cervical carcinoma (HeLa) cells. A series of 11 bispidinone analogs was synthesized with substituents, e.g., fluoro/methyl/ethyl/isopropyl/thiomethyl/methoxy groups, at various positions. These compounds were synthesized to identify which substituent and position induced the strongest cytotoxic effect in cancer cells. Among these synthetics, analog 9, which contains methoxy groups, had the most significant cytotoxic effect on HeLa cells, and its IC50 value was less than 13 µM. A WST-8 assay also showed that analog 9 inhibited the proliferation of HeLa cells. By using DNA content analysis, we found that analog 9 induced sub-G1 and G1 phase arrest in a time-dependent manner. A [3H]-thymidine incorporation assay suggested that analog 9 inhibited DNA replication in HeLa cells. On performing light microscopy, morphological changes such as cellular shrinkage and disruption, which are apoptotic features, were observed in HeLa cells. Annexin V/propidium iodide double staining and rhodamine-123 staining showed that analog 9 induced apoptosis and disrupted the intracellular mitochondrial membrane potential in HeLa cells. The western blot analysis results suggested that analog 9 induced mitochondria-mediated apoptosis. In addition, we have shown that analog 9 may play a role in the Fas signaling apoptotic pathway.

  4. Bcl2 at the endoplasmic reticulum protects against a Bax/Bak-independent paraptosis-like cell death pathway initiated via p20Bap31.

    PubMed

    Heath-Engel, Hannah M; Wang, Bing; Shore, Gordon C

    2012-02-01

    Bap31 is an integral ER membrane protein which functions as an escort factor in the sorting of newly synthesized membrane proteins within the endoplasmic reticulum (ER). During apoptosis signaling, Bap31 is subject to early cleavage by initiator caspase-8. The resulting p20Bap31 (p20) fragment has been shown to initiate proapoptotic ER-mitochondria Ca2+ transmission, and to exert dominant negative (DN) effects on ER protein trafficking. We now report that ectopic expression of p20 in E1A/DNp53-transformed baby mouse kidney epithelial cells initiates a non-apoptotic form of cell death with paraptosis-like morphology. This pathway was characterized by an early rise in ER Ca2+ stores and massive dilation of the ER/nuclear envelope, dependent on intact ER Ca2+ stores. Ablation of the Bax/Bak genes had no effect on these ER/nuclear envelope transformations, and delayed but did not prevent cell death. ER-restricted expression of Bcl2 in the absence of Bax/Bak, however, delayed both ER/nuclear envelope dilation and cell death. This prosurvival role of Bcl2 at the ER thus extended beyond inhibition of Bax/Bak, and correlated with its ability to lower ER Ca2+ stores. Furthermore, these results indicate that ER restricted Bcl2 is capable of antagonizing not only apoptosis, but also a non-apoptotic, Bax/Bak independent, paraptosis-like form of cell death.

  5. Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics☆

    PubMed Central

    Bonavida, Benjamin; Garban, Hermes

    2015-01-01

    The generation of NO by the various NO synthases in normal and malignant tissues is manifested by various biological effects that are involved in the regulation of cell survival, differentiation and cell death. The role of NO in the cytotoxic immune response was first revealed by demonstrating the induction of iNOS in target cells by immune cytokines (e.g. IFN-γ, IL-1, TNF-α, etc.) and resulting in the sensitization of resistant tumor cells to death ligands-induced apoptosis. Endogenous/exogenous NO mediated its immune sensitizing effect by inhibiting NF-κΒ activity and downstream, inactivating the repressor transcription factor YY1, which inhibited both Fas and DR5 expressions. In addition, NO-mediated inhibition of NF-κΒ activity and inhibition downstream of its anti-apoptotic gene targets sensitized the tumor cells to apoptosis by chemotherapeutic drugs. We have identified in tumor cells a dysregulated pro-survival/anti-apoptotic loop consisting of NF-κB/Snail/YY1/RKIP/PTEN and its modification by NO was responsible, in large, for the reversal of chemo and immune resistance and sensitization to apoptotic mechanisms by cytotoxic agents. Moreover, tumor cells treated with exogenous NO donors resulted in the inhibition of NF-κΒ activity via S-nitrosylation of p50 and p65, inhibition of Snail (NF-κΒ target gene), inhibition of transcription repression by S-nitrosylation of YY1 and subsequent inhibition of epithelial–mesenchymal transition (EMT), induction of RKIP (inhibition of the transcription repressor Snail), and induction of PTEN (inhibition of the repressors Snail and YY1). Further, each gene product modified by NO in the loop was involved in chemo-immunosensitization. These above findings demonstrated that NO donors interference in the regulatory circuitry result in chemo-immunosensitization and inhibition of EMT. Overall, these observations suggest the potential anti-tumor therapeutic effect of NO donors in combination with subtoxic chemo

  6. Nicotine exposure induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment.

    PubMed

    Bodas, Manish; Van Westphal, Colin; Carpenter-Thompson, Rhett; K Mohanty, Dillip; Vij, Neeraj

    2016-08-01

    Waterpipe smoking and e-cigarette vaping, the non-combustible sources of inhaled nicotine exposure are increasingly becoming popular and marketed as safer alternative to cigarette smoking. Hence, this study was designed to investigate the impact of inhaled nicotine exposure on disease causing COPD-emphysema mechanisms. For in vitro studies, human bronchial epithelial cells (Beas2b) were treated with waterpipe smoke extract (WPSE, 5%), nicotine (5mM), and/or cysteamine (250μM, an autophagy inducer and anti-oxidant drug), for 6hrs. We observed significantly (p<0.05) increased ubiquitinated protein-accumulation in the insoluble protein fractions of Beas2b cells treated with WPSE or nicotine that could be rescued by cysteamine treatment, suggesting aggresome-formation and autophagy-impairment. Moreover, our data also demonstrate that both WPSE and nicotine exposure significantly (p<0.05) elevates Ub-LC3β co-localization to aggresome-bodies while inducing Ub-p62 co-expression/accumulation, verifying autophagy-impairment. We also found that WPSE and nicotine exposure impacts Beas2b cell viability by significantly (p<0.05) inducing cellular apoptosis/senescence via ROS-activation, as it could be controlled by cysteamine, which is known to have an anti-oxidant property. For murine studies, C57BL/6 mice were administered with inhaled nicotine (intranasal, 500μg/mouse/day for 5 days), as an experimental model of non-combustible nicotine exposure. The inhaled nicotine exposure mediated oxidative-stress induces autophagy-impairment in the murine lungs as seen by significant (p<0.05, n=4) increase in the expression levels of nitrotyrosine protein-adduct (oxidative-stress marker, soluble-fraction) and Ub/p62/VCP (impaired-autophagy marker, insoluble-fraction). Overall, our data shows that nicotine, a common component of WPS, e-cigarette vapor and cigarette smoke, induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment as a potential

  7. Loss of p53-mediated cell-cycle arrest, senescence and apoptosis promotes genomic instability and premature aging.

    PubMed

    Li, Tongyuan; Liu, Xiangyu; Jiang, Le; Manfredi, James; Zha, Shan; Gu, Wei

    2016-03-15

    Although p53-mediated cell cycle arrest, senescence and apoptosis are well accepted as major tumor suppression mechanisms, the loss of these functions does not directly lead to tumorigenesis, suggesting that the precise roles of these canonical activities of p53 need to be redefined. Here, we report that the cells derived from the mutant mice expressing p533KR, an acetylation-defective mutant that fails to induce cell-cycle arrest, senescence and apoptosis, exhibit high levels of aneuploidy upon DNA damage. Moreover, the embryonic lethality caused by the deficiency of XRCC4, a key DNA double strand break repair factor, can be fully rescued in the p533KR/3KR background. Notably, despite high levels of genomic instability, p533KR/3KRXRCC4-/- mice, unlike p53-/- XRCC4-/- mice, are not succumbed to pro-B-cell lymphomas. Nevertheless, p533KR/3KR XRCC4-/- mice display aging-like phenotypes including testicular atrophy, kyphosis, and premature death. Further analyses demonstrate that SLC7A11 is downregulated and that p53-mediated ferroptosis is significantly induced in spleens and testis of p533KR/3KRXRCC4-/- mice. These results demonstrate that the direct role of p53-mediated cell cycle arrest, senescence and apoptosis is to control genomic stability in vivo. Our study not only validates the importance of ferroptosis in p53-mediated tumor suppression in vivo but also reveals that the combination of genomic instability and activation of ferroptosis may promote aging-associated phenotypes.

  8. Sodium fluoride induces apoptosis in cultured splenic lymphocytes from mice

    PubMed Central

    Cui, Hengmin; Chen, Lian; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Zhao, Ling

    2016-01-01

    Though fluorine has been shown to induce apoptosis in immune organs in vivo, there has no report on fluoride-induced apoptosis in the cultured lymphocytes. Therefore, this study was conducted with objective of investigating apoptosis induced by sodium fluoride (NaF) and the mechanism behind that in the cultured splenic lymphocytes by flow cytometry, western blot and Hoechst 33258 staining. The splenic lymphocytes were isolated from 3 weeks old male ICR mice and exposed to NaF (0, 100, 200, and 400 μmol/L) in vitro for 24 and 48 h. When compared to control group, flow cytometry assay and Hoechst 33258 staining showed that NaF induced lymphocytes apoptosis, which was promoted by decrease of mitochondria transmembrane potential, up-regulation of Bax, Bak, Fas, FasL, caspase 9, caspase 8, caspase 7, caspase 6 and caspase 3 protein expression (P < 0.05 or P <0.01), and down-regulation of Bcl-2 and Bcl-xL protein expression (P <0.05 or P <0.01). The above-mentioned data suggested that NaF-induced apoptosis in splenic lymphocytes could be mediated by mitochondrial and death receptor pathways. PMID:27655720

  9. Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells.

    PubMed

    Ka, Hyeon; Park, Hee-Juhn; Jung, Hyun-Ju; Choi, Jong-Won; Cho, Kyu-Seok; Ha, Joohun; Lee, Kyung-Tae

    2003-07-10

    Cinnamaldehyde is an active compound isolated from the stem bark of Cinnamomum cassia, a traditional oriental medicinal herb, which has been shown to inhibit tumor cell proliferation. In this study, we investigated the effects of cinnamaldehyde on the cytotoxicity, induction of apoptosis and the putative pathways of its actions in human promyelocytic leukemia cells. Using apoptosis analysis, measurement of reactive oxygen species (ROS), and assessment of mitochondrial membrane potentials (DeltaPsim), we show that cinnamaldehyde is a potent inducer of apoptosis and that it transduces the apoptotic signal via ROS generation, thereby inducing mitochondrial permeability transition (MPT) and cytochrome c release to the cytosol. ROS production, mitochondrial alteration, and subsequent apoptotic cell death in cinnamaldehyde-treated cells were blocked by the antioxidant N-acetylcystein. Taken together, our data indicate that cinnamaldehyde induces the ROS-mediated mitochondrial permeability transition and resultant cytochrome c release. This is the first report on the mechanism of the anticancer effect of cinnamaldehyde.

  10. Bozepinib, a novel small antitumor agent, induces PKR-mediated apoptosis and synergizes with IFNα triggering apoptosis, autophagy and senescence.

    PubMed

    Marchal, Juan Antonio; Carrasco, Esther; Ramirez, Alberto; Jiménez, Gema; Olmedo, Carmen; Peran, Macarena; Agil, Ahmad; Conejo-García, Ana; Cruz-López, Olga; Campos, Joaquin María; García, María Ángel

    2013-01-01

    Bozepinib [(RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]-9H-purine] is a potent antitumor compound that is able to induce apoptosis in breast cancer cells. In the present study, we show that bozepinib also has antitumor activity in colon cancer cells, showing 50% inhibitory concentration (IC50) values lower than those described for breast cancer cells and suggesting great potential of this synthetic drug in the treatment of cancer. We identified that the double-stranded RNA-dependent protein kinase (PKR) is a target of bozepinib, being upregulated and activated by the drug. However, p53 was not affected by bozepinib, and was not necessary for induction of apoptosis in either breast or colon cancer cells. In addition, the efficacy of bozepinib was improved when combined with the interferon-alpha (IFNα) cytokine, which enhanced bozepinib-induced apoptosis with involvement of protein kinase PKR. Moreover, we report here, for the first time, that in combined therapy, IFNα induces a clear process of autophagosome formation, and prior treatment with chloroquine, an autophagy inhibitor, is able to significantly reduce IFNα/bozepinib-induced cell death. Finally, we observed that a minor population of caspase 3-deficient MCF-7 cells persisted during long-term treatment with lower doses of bozepinib and the bozepinib/IFNα combination. Curiously, this population showed β-galactosidase activity and a percentage of cells arrested in S phase, that was more evident in cells treated with the bozepinib/IFNα combination than in cells treated with bozepinib or IFNα alone. Considering the resistance of some cancer cells to conventional chemotherapy, combinations enhancing the diversity of the cell death outcome might succeed in delivering more effective and less toxic chemotherapy.

  11. Aloe-emodin induces apoptosis of human nasopharyngeal carcinoma cells via caspase-8-mediated activation of the mitochondrial death pathway.

    PubMed

    Lin, Meng-Liang; Lu, Yao-Cheng; Chung, Jing-Gung; Li, Yi-Chen; Wang, Shyang-Guang; N G, Sue-Hwee; Wu, Chia-Yin; Su, Hong-Lin; Chen, Shih-Shun

    2010-05-01

    Aloe-emodin (AE), a natural, biologically active compound from the rhizome of Rheum palmatum, has been shown to induce apoptosis in several cancer cell lines in vitro. However, its molecular mechanism of action in the apoptosis induction of human nasopharyngeal carcinoma (NPC) cells has not been explored. This study shows that AE induced G(2)/M phase arrest by increasing levels of cyclin B1 bound to Cdc2, and also caused an increase in apoptosis of NPC cells, which was characterized by morphological changes, nuclear condensation, DNA fragmentation, caspase-3 activation, cleavage of poly (ADP-ribose) polymerase (PARP) and increased sub-G(1) population. Treatment of NPC cells with AE also resulted in a decrease in Bcl-X(L) and an increase in Bax expression. Ectopic expression of Bcl-X(L) but not Bcl-2 or small interfering RNA (siRNA)-mediated attenuation of Bax suppressed AE-induced apoptotic cell death. AE-induced loss of mitochondrial membrane potential (MMP) and increase in cellular Ca(++) content, reactive oxygen species (ROS) and apoptotic cell death were suppressed by the treatment of cyclosporin A (CsA) or caspase-8 inhibitor Z-IETD-FMK. Co-treatment with caspase-9 inhibitor Z-LEHD-FMK could inhibit AE-induced cell death and the activation of caspase-3 and -9. In addition, suppression of caspase-8 with the specific inhibitor Z-IETD-FMK inhibited AE-induced the activation of Bax, the cleavage of Bid, the translocation of tBid to the mitochondria and the release of cytochrome c, apoptosis-inducing factor (AIF) and Endo G from the mitochondria and subsequent apoptosis. Taken together, these results indicate that the caspase-8-mediated activation of the mitochondrial death pathway plays a critical role in AE-induced apoptosis of NPC cells.

  12. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming

    PubMed Central

    Allam, Ramanjaneyulu; Lawlor, Kate E; Yu, Eric Chi-Wang; Mildenhall, Alison L; Moujalled, Donia M; Lewis, Rowena S; Ke, Francine; Mason, Kylie D; White, Michael J; Stacey, Katryn J; Strasser, Andreas; O’Reilly, Lorraine A; Alexander, Warren; Kile, Benjamin T; Vaux, David L; Vince, James E

    2014-01-01

    A current paradigm proposes that mitochondrial damage is a critical determinant of NLRP3 inflammasome activation. Here, we genetically assess whether mitochondrial signalling represents a unified mechanism to explain how NLRP3 is activated by divergent stimuli. Neither co-deletion of the essential executioners of mitochondrial apoptosis BAK and BAX, nor removal of the mitochondrial permeability transition pore component cyclophilin D, nor loss of the mitophagy regulator Parkin, nor deficiency in MAVS affects NLRP3 inflammasome function. In contrast, caspase-8, a caspase essential for death-receptor-mediated apoptosis, is required for efficient Toll-like-receptor-induced inflammasome priming and cytokine production. Collectively, these results demonstrate that mitochondrial apoptosis is not required for NLRP3 activation, and highlight an important non-apoptotic role for caspase-8 in regulating inflammasome activation and pro-inflammatory cytokine levels. PMID:24990442

  13. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming.

    PubMed

    Allam, Ramanjaneyulu; Lawlor, Kate E; Yu, Eric Chi-Wang; Mildenhall, Alison L; Moujalled, Donia M; Lewis, Rowena S; Ke, Francine; Mason, Kylie D; White, Michael J; Stacey, Katryn J; Strasser, Andreas; O'Reilly, Lorraine A; Alexander, Warren; Kile, Benjamin T; Vaux, David L; Vince, James E

    2014-09-01

    A current paradigm proposes that mitochondrial damage is a critical determinant of NLRP3 inflammasome activation. Here, we genetically assess whether mitochondrial signalling represents a unified mechanism to explain how NLRP3 is activated by divergent stimuli. Neither co-deletion of the essential executioners of mitochondrial apoptosis BAK and BAX, nor removal of the mitochondrial permeability transition pore component cyclophilin D, nor loss of the mitophagy regulator Parkin, nor deficiency in MAVS affects NLRP3 inflammasome function. In contrast, caspase-8, a caspase essential for death-receptor-mediated apoptosis, is required for efficient Toll-like-receptor-induced inflammasome priming and cytokine production. Collectively, these results demonstrate that mitochondrial apoptosis is not required for NLRP3 activation, and highlight an important non-apoptotic role for caspase-8 in regulating inflammasome activation and pro-inflammatory cytokine levels.

  14. Induction of apoptosis in ovarian carcinoma cells by AHPN/CD437 is mediated by retinoic acid receptors.

    PubMed

    Holmes, W F; Dawson, M I; Soprano, R D; Soprano, K J

    2000-10-01

    Retinoids have great promise in the area of cancer therapy and chemoprevention. These natural and synthetic derivatives of vitamin A have been shown to play an important role in regulating cell differentiation and proliferation. While all-trans-retinoic acid (ATRA) has been demonstrated to inhibit the growth of several ovarian tumor cell lines, other ovarian carcinoma cell lines have been found to be resistant to retinoid dependent growth suppression. Interestingly, a novel synthetic retinoid, CD437 or AHPN, has been demonstrated to inhibit the growth of both ATRA-sensitive (CA-OV3) and ATRA-resistant (SK-OV3) ovarian tumor cell lines as well as to induce apoptosis. The overall goal of this research was to understand the mechanism by which AHPN/CD437 induces apoptosis in ovarian tumor cell lines. Since a number of studies have demonstrated the importance of nuclear receptors (RARs and RXRs) in mediating cellular responses to retinoids, we wished to determine the role of RARs in mediating the AHPN/CD437 response. We modulated RAR level and function by overexpressing either wild type RAR-gamma or a pan dominant negative mutant of all RAR subtypes called RAR-beta (R269Q), or through the use of an RAR-gamma antagonist, MM11253. We found that inhibition of RAR function reduced but did not eliminate induction of apoptosis in both CA-OV3 and SK-OV3 cells by AHPN/CD437. Likewise, overexpression of wild type RAR-gamma was found to increase apoptosis after treatment with AHPN/CD437. Our results suggest that in ovarian carcinomas, AHPN/CD437 induced apoptosis is mediated at least in part via an RAR pathway.

  15. Balance between short and long isoforms of cFLIP regulates Fas-mediated apoptosis in vivo

    PubMed Central

    Ram, Daniel R.; Ilyukha, Vladimir; Volkova, Tatyana; Buzdin, Anton; Tai, Albert; Smirnova, Irina; Poltorak, Alexander

    2016-01-01

    cFLIP, an inhibitor of apoptosis, is a crucial regulator of cellular death by apoptosis and necroptosis; its importance in development is exemplified by the embryonic lethality in cFLIP–deficient animals. A homolog of caspase 8 (CASP8), cFLIP exists in two main isoforms: cFLIPL (long) and cFLIPR (short). Although both splice variants regulate death receptor (DR)-induced apoptosis by CASP8, the specific role of each isoform is poorly understood. Here, we report a previously unidentified model of resistance to Fas receptor-mediated liver failure in the wild-derived MSM strain, compared with susceptibility in C57BL/6 (B6) mice. Linkage analysis in F2 intercross (B6 x MSM) progeny identified several MSM loci controlling resistance to Fas-mediated death, including the caspase 8- and FADD-like apoptosis regulator (Cflar) locus encoding cFLIP. Furthermore, we identified a 21-bp insertion in the 3′ UTR of the fifth exon of Cflar in MSM that influences differential splicing of cFLIP mRNA. Intriguingly, we observed that MSM liver cells predominantly express the FLIPL variant, in contrast to B6 liver cells, which have higher levels of cFLIPR. In keeping with this finding, genome-wide RNA sequencing revealed a relative abundance of FLIPL transcripts in MSM hepatocytes whereas B6 liver cells had significantly more FLIPR mRNA. Importantly, we show that, in the MSM liver, CASP8 is present exclusively as its cleaved p43 product, bound to cFLIPL. Because of partial enzymatic activity of the heterodimer, it might prevent necroptosis. On the other hand, it prevents cleavage of CASP8 to p10/20 necessary for cleavage of caspase 3 and, thus, apoptosis induction. Therefore, MSM hepatocytes are predisposed for protection from DR-mediated cell death. PMID:26798068

  16. Microdamage induced by in vivo Reference Point Indentation in mice is repaired by osteocyte-apoptosis mediated remodeling.

    PubMed

    Kennedy, Oran D; Lendhey, Matin; Mauer, Peter; Philip, Anaya; Basta-Pljakic, Jelena; Schaffler, Mitchell B

    2017-02-01

    Reference Point Indentation (RPI) is a technology that is designed to measure mechanical properties that relate to bone toughness, or its ability to resist crack growth, in vivo. Independent of the mechanical parameters generated by RPI, its ability to initiate and propagate microcracks in bone is itself an interesting issue. Microcracks have a crucial biological relevance in bone, are central to its ability to maintain homeostasis. In healthy tissues, a process of targeted remodeling routinely repairs microcracks in a process mediated by osteocyte apoptosis. However, in diseases such as osteoporosis this process becomes deficient and microcracks can accumulate. Small animal models such are crucial for the study of such diseases, but it is technically challenging to create microcracks in these animals without causing outright failure. Therefore we sought to use RPI as a focal microdamage placement tool, to introduce microcracks to mouse long bones and investigate whether the same pathway mediates their repair as that described in other microdamage systems. We first used SEM to confirm that microdamage is formed RPI in mouse bone. Then, since RPI is carried out transdermally, we sought to confirm that no periosteal response occurred at the indented region. We then used a pan-caspase inhibitor (QVD) to determine whether osteocyte apoptosis plays the same pivotal role in microdamage repair in this model, as has been demonstrated in others. In conclusion, we validated that the microdamage-apoptosis-remodeling pathway is maintained with this method of microdamage induction in mice. We show that RPI can be used as a reliable and reproducible microdamage placement tool in living mouse long bones without inducing a periosteal response. We also used a caspase inhibitor, to block osteocyte apoptosis and thus abrogate the remodeling response to microdamage. This demonstrates that the well described microdamage repair system, involving targeted remodeling mediated by osteocyte

  17. Oxidative DNA Damage Mediated by Intranuclear MMP Activity Is Associated with Neuronal Apoptosis in Ischemic Stroke.

    PubMed

    Kimura-Ohba, Shihoko; Yang, Yi

    2016-01-01

    Evidence of the pathological roles of matrix metalloproteinases (MMPs) in various neurological disorders has made them attractive therapeutic targets. MMPs disrupt the blood-brain barrier and cause neuronal death and neuroinflammation in acute cerebral ischemia and are critical for angiogenesis during recovery. However, some challenges have to be overcome before MMPs can be further validated as drug targets in stroke injury. Identifying in vivo substrates of MMPs should greatly improve our understanding of the mechanisms of ischemic injury and is critical for providing more precise drug targets. Recent works have uncovered nontraditional roles for MMPs in the cytosol and nucleus. These have shed light on intracellular targets and biological actions of MMPs, adding additional layers of complexity for therapeutic MMP inhibition. In this review, we discussed the recent advances made in understanding nuclear location of MMPs, their regulation of intranuclear sorting, and their intranuclear proteolytic activity and substrates. In particular, we highlighted the roles of intranuclear MMPs in oxidative DNA damage, neuronal apoptosis, and neuroinflammation at an early stage of stroke insult. These novel data point to new putative MMP-mediated intranuclear actions in stroke-induced pathological processes and may lead to novel approaches to treatment of stroke and other neurological diseases.

  18. Aptamer-mediated blockade of IL4Rα triggers apoptosis of MDSCs and limits tumor progression.

    PubMed

    Roth, Felix; De La Fuente, Adriana C; Vella, Jennifer L; Zoso, Alessia; Inverardi, Luca; Serafini, Paolo

    2012-03-15

    In addition to promoting tumor progression and metastasis by enhancing angiogenesis and invasion, myeloid-derived suppressor cells (MDSC) and tumor-associated macrophage (TAM) also inhibit antitumor T-cell functions and limit the efficacy of immunotherapeutic interventions. Despite the importance of these leukocyte populations, a simple method for their specific depletion has not been developed. In this study, we generated an RNA aptamer that blocks the murine or human IL-4 receptor-α (IL4Rα or CD124) that is critical for MDSC suppression function. In tumor-bearing mice, this anti-IL4Rα aptamer preferentially targeted MDSCs and TAM and unexpectedly promoted their elimination, an effect that was associated with an increased number of tumor-infiltrating T cells and a reduction in tumor growth. Mechanistic investigations of aptamer-triggered apoptosis in MDSCs confirmed the importance of IL4Ra-STAT6 pathway activation in MDSC survival. Our findings define a straightforward strategy to deplete MDSCs and TAMs in vivo, and they strengthen the concept that IL4Rα signaling is pivotal for MDSC survival. More broadly, these findings suggest therapeutic strategies based on IL4Rα signaling blockades to arrest an important cellular mechanism of tumoral immune escape mediated by MDSCs and TAM in cancer.

  19. Bovine lactoferricin P13 triggers ROS-mediated caspase-dependent apoptosis in SMMC7721 cells

    PubMed Central

    Meng, Lixiang; Xu, Geliang; Li, Jiansheng; Liu, Wenbin; Jia, Weidong; Ma, Jinliang; Wei, Decheng

    2017-01-01

    Bovine lactoferricin P13 (LfcinB-P13) is a peptide derived from LfcinB. In the present study, the effect of LfcinB-P13 on the human liver cancer cell line SMMC7721 was investigated in vitro and in vivo. The results of the present study indicate that LfcinB-P13 significantly decreased SMMC7721 cell viability in vitro (P=0.032 vs. untreated cells), while exhibiting low cytotoxicity in the wild-type liver cell line L02. In addition, the rate of apoptosis in SMMC7721 cells was significantly increased following treatment with 40 and 60 µg/ml LfcinB-P13 (P=0.0053 vs. the control group), which was associated with an increase in the level of reactive oxygen species (ROS) and the activation of caspase-3 and −9. Furthermore, ROS chelation led to the suppression of LfcinB-P13-mediated caspase-3 and −9 activation in SMMC7721 cells. LfcinB-P13 was demonstrated to markedly inhibit tumor growth in an SMMC7721-xenograft nude mouse model. The results of the present study indicate that LfcinB-P13 is a novel candidate therapeutic agent for the treatment of liver cancer. PMID:28123590

  20. Variola virus F1L is a Bcl-2-like protein that unlike its vaccinia virus counterpart inhibits apoptosis independent of Bim.

    PubMed

    Marshall, B; Puthalakath, H; Caria, S; Chugh, S; Doerflinger, M; Colman, P M; Kvansakul, M

    2015-03-12

    Subversion of host cell apoptosis is an important survival strategy for viruses to ensure their own proliferation and survival. Certain viruses express proteins homologous in sequence, structure and function to mammalian pro-survival B-cell lymphoma 2 (Bcl-2) proteins, which prevent rapid clearance of infected host cells. In vaccinia virus (VV), the virulence factor F1L was shown to be a potent inhibitor of apoptosis that functions primarily be engaging pro-apoptotic Bim. Variola virus (VAR), the causative agent of smallpox, harbors a homolog of F1L of unknown function. We show that VAR F1L is a potent inhibitor of apoptosis, and unlike all other characterized anti-apoptotic Bcl-2 family members lacks affinity for the Bim Bcl-2 homology 3 (BH3) domain. Instead, VAR F1L engages Bid BH3 as well as Bak and Bax BH3 domains. Unlike its VV homolog, variola F1L only protects against Bax-mediated apoptosis in cellular assays. Crystal structures of variola F1L bound to Bid and Bak BH3 domains reveal that variola F1L forms a domain-swapped Bcl-2 fold, which accommodates Bid and Bak BH3 in the canonical Bcl-2-binding groove, in a manner similar to VV F1L. Despite the observed conservation of structure and sequence, variola F1L inhibits apoptosis using a startlingly different mechanism compared with its VV counterpart. Our results suggest that unlike during VV infection, Bim neutralization may not be required during VAR infection. As molecular determinants for the human-specific tropism of VAR remain essentially unknown, identification of a different mechanism of action and utilization of host factors used by a VAR virulence factor compared with its VV homolog suggest that studying VAR directly may be essential to understand its unique tropism.

  1. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    SciTech Connect

    Nguyen Ngoc, Tam Dan; Son, Young-Ok; Lim, Shin-Saeng; Shi, Xianglin; Kim, Jong-Ghee; Heo, Jung Sun; Choe, Youngji; Jeon, Young-Mi; Lee, Jeong-Chae

    2012-03-15

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G{sub 2}/M phase. The addition of NaF induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ► The mode of NaF-induced cell death and the mechanisms involved were examined. ► NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ► NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ► JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ► ROS are the up-stream effector in NaF-mediated activation of JNK and p53 in mESCs.

  2. ECRG4 is a negative regulator of caspase-8-mediated apoptosis in human T-leukemia cells.

    PubMed

    Matsuzaki, Junichi; Torigoe, Toshihiko; Hirohashi, Yoshihiko; Kamiguchi, Kenjiro; Tamura, Yasuaki; Tsukahara, Tomohide; Kubo, Terufumi; Takahashi, Akari; Nakazawa, Emiri; Saka, Eri; Yasuda, Kazuyo; Takahashi, Shuji; Sato, Noriyuki

    2012-05-01

    We previously established Fas-resistant variant clones from the human T-cell leukemia lines Jurkat and SUP-T13. Comparative gene expression analysis of the Fas-resistant and Fas-sensitive clones revealed several genes that were aberrantly expressed in the Fas-resistant clones. One of the genes, esophageal cancer-related gene 4 (ECRG4), contained a VDAC2-like domain that might be associated with apoptotic signals. In the present study, we examined the subcellular localization and function of ECRG4 in Fas-mediated apoptosis. By confocal fluorescence microscopy, ECRG4-EGFP fusion protein was detected in mitochondria, endoplasmic reticulum and the Golgi apparatus in gene-transfected HeLa cells. Overexpression of ECRG4 in Fas-sensitive Jurkat cells inhibited mitochondrial membrane permeability transition, leading to resistance against Fas-induced apoptosis. Tumor necrosis factor-alpha-induced apoptosis was also suppressed in ECRG4-overexpressing Jurkat cells. Immunoprecipitation assay demonstrated that ECRG4 is associated with procaspase-8. The inhibitory mechanism included the inhibition of caspase-8 activity and Bid cleavage. Since ECRG4 expression is downregulated in activated T cells, our results suggest that ECRG4 is a novel antiapoptotic gene which is involved in the negative regulation of caspase-8-mediated apoptosis in T cells.

  3. Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    PubMed

    Daigneault, Marc; De Silva, Thushan I; Bewley, Martin A; Preston, Julie A; Marriott, Helen M; Mitchell, Andrea M; Mitchell, Timothy J; Read, Robert C; Whyte, Moira K B; Dockrell, David H

    2012-01-01

    Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease.

  4. Protein Kinase C-{delta} mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    SciTech Connect

    Gao, Feng-Hou; Wu, Ying-Li; Zhao, Meng; Chen, Guo-Qiang

    2009-11-15

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta ({Delta}PKC-{delta}). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the {Delta}PKC-{delta}, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that {Delta}PKC-{delta} mediated the down-regulation of hnRNP K protein during apoptosis: PKC-{delta} inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-{delta}-deficient apoptotic KG1a cells; conditional induction of {Delta}PKC-{delta} in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of {Delta}PKC-{delta}. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-{delta} down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  5. Mitogen-activated protein kinase pathway mediates DBP-maf-induced apoptosis in RAW 264.7 macrophages.

    PubMed

    Gumireddy, Kiranmai; Reddy, C Damodar; Swamy, Narasimha

    2003-09-01

    Vitamin D-binding protein-macrophage-activating factor (DBP-maf) is derived from serum vitamin D binding protein (DBP) by selective deglycosylation during inflammation. In the present study, we investigated the effect of DBP-maf on RAW 264.7 macrophages and the underlying intracellular signal transduction pathways. DBP-maf increased proapoptotic caspase-3, -8, and -9 activities and induced apoptosis in RAW 264.7 cells. However, DBP, the precursor to DBP-maf did not induce apoptosis in these cells. Cell cycle analysis of DBP-maf-treated RAW 264.7 cells revealed growth arrest with accumulation of cells in sub-G(0)/G(1) phase. We also investigated the role of mitogen-activated protein kinase (MAPK) pathways in the DBP-maf-induced apoptosis of RAW264.7 cells. DBP-maf increased the phosphorylation of p38 and JNK1/2, while it decreased the ERK1/2 phosphorylation. Treatment with the p38 MAPK inhibitor, SB202190, attenuated DBP-maf-induced apoptosis. PD98059, a MEK specific inhibitor, did not show a significant inhibition of apoptosis induced by DBP-maf. Taken together, these results suggest that the p38 MAPK pathway plays a crucial role in DBP-maf-mediated apoptosis of macrophages. Our studies indicate that, during inflammation DBP-maf may function positively by causing death of the macrophages when activated macrophages are no longer needed at the site of inflammation. In summary, we report for the first time that DBP-maf induces apoptosis in macrophages via p38 and JNK1/2 pathway.

  6. 7-O-Geranylquercetin induces apoptosis in gastric cancer cells via ROS-MAPK mediated mitochondrial signaling pathway activation.

    PubMed

    Zhu, Yanyan; Jiang, Yameng; Shi, Lei; Du, Linying; Xu, Xiaodong; Wang, Enxia; Sun, Yong; Guo, Xin; Zou, Boyang; Wang, Huaxin; Wang, Changyuan; Sun, Lidan; Zhen, Yuhong

    2017-03-01

    7-O-Geranylquercetin (GQ) is a novel O-alkylated derivate of quercetin. In this study, we evaluated its apoptosis induction effects in human gastric cancer cell lines SGC-7901 and MGC-803 and explored the potential molecular mechanisms. The results demonstrated that GQ lowered viability of SGC-7901 and MGC-803 cells in a dose- and time-dependent manner without apparent cytotoxicity to human gastric epithelial cell line GES-1. GQ could induce apoptosis in SGC-7901 and MGC-803cells, and arrest the gastric cancer cells at G2/M phase. Mechanism study showed that GQ triggered generation of reactive oxygen species (ROS), then activated p38 and JNK signaling pathways, subsequently led to mitochondrial impairment by regulating the expression of Bcl-2, Bcl-xl and Bax, and finally promoted the release of cytochrome c and the activation of caspases to induce apoptosis. In addition, Z-VAD-FMK (caspase inhibitor) could reverse GQ-induced apoptosis. SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor) could rescue GQ-induced cell death and attenuate mitochondrial signal pathway activation. Furthermore, NAC (ROS inhibitor) could rescue GQ-induced cell death, reduce ROS generation, decrease the phosphorylation of p38 and JNK, and then attenuate the activation of mitochondrial signal pathway. Taken together, GQ induces caspase-dependent apoptosis in gastric cancer cells through activating ROS-MAPK mediated mitochondrial signal pathway. This study highlights the potential use of GQ as a gastric cancer therapeutic agent.

  7. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    SciTech Connect

    Wang, Yi-Fen; Shyu, Huey-Wen; Chang, Yi-Chuang; Tseng, Wei-Chang; Huang, Yeou-Lih; Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling; Chen, Chang-Yu

    2012-03-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  8. The DNA methyltransferase inhibitor zebularine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo.

    PubMed

    Tan, Wei; Zhou, Wei; Yu, Hong-gang; Luo, He-Sheng; Shen, Lei

    2013-01-04

    DNA methyltransferase (DNMT) inhibitor zebularine has been reported to potentiate the anti-tumor effect by reactivating the expression of tumor suppressor genes and apoptosis-related genes in various malignant cells. However, the apoptotic signaling pathway in gastric cancer cells induced by zebularine is not well understood. In the study, the effects of zebularine on the growth and apoptosis of gastric cancer cells were investigated by MTT assay, Hoechst assay, Western blot analysis, flow cytometric analysis of annexin V-FITC/PI staining, and TUNEL assay. Zebularine was an effective inhibitor of human gastric cancer cells proliferation in vitro and in vivo. The effects were dose dependent. A zebularine concentration of 50 μM accounted for the inhibition of cell proliferation of 67% at 48 h. The treatment with zebularine upregulated Bax, and decreased Bcl-2 protein. Caspase-3 was activated, suggesting that the apoptosis is mediated by mitochondrial pathways. Moreover, zebularine injection successfully inhibited the tumor growth via apoptosis induction which was demonstrated by TUNEL assay in xenograft tumor mouse model. These results demonstrated that zebularine induced apoptosis in gastric cancer cells via mitochondrial pathways, and zebularine might become a therapeutic approach for the treatment of gastric cancer.

  9. Modulation of apoptosis during HTLV-1-mediated immortalization process in vitro.

    PubMed

    Matteucci, Claudia; Balestrieri, Emanuela; Macchi, Beatrice; Mastino, Antonio

    2004-11-01

    Suppression of apoptosis has been proposed as a mechanism involved in the transforming action of human T-cell leukemia/lymphotropic virus type-1 (HTLV-1). However, there is evidence that HTLV-1 and its protein Tax also induce apoptosis. To resolve this apparent paradox, apoptosis was monitored in primary cultures of peripheral blood lymphocytes (PBLs) from healthy donors, following HTLV-1 infection in vitro. High levels of apoptosis in HTLV-1 infected cultures during the first weeks after infection were detected. Apoptosis was not related to the presence of uninfected cells, as revealed by a fluorescence in situ hybridization assay. Successively, a progressive decrease in apoptosis in infected cultures going towards immortalization, was observed. When IL-2 in the medium was replaced by IL-4, allowing the cells to be efficiently infected by HTLV-1 but not immortalized, apoptosis levels tended to increase, instead of decreasing, with the ongoing time. The caspase cascade was remarkably activated in PBLs recently infected in vitro by HTLV-1, but apoptosis was only partly reduced by caspase inhibitors. Even if spontaneous apoptosis was relatively low in long-term cultures of PBLs immortalized by HTLV-1 in vitro, Fas death-receptor expression and function were well conserved. These observations provide a new rationale for explaining the dual effect of HTLV-1 in controlling apoptosis.

  10. Programmed Death Ligand 1 (PD-L1)-targeted TRAIL combines PD-L1-mediated checkpoint inhibition with TRAIL-mediated apoptosis induction

    PubMed Central

    Hendriks, Djoke; He, Yuan; Koopmans, Iris; Wiersma, Valerie R.; van Ginkel, Robert J.; Samplonius, Douwe F.; Helfrich, Wijnand; Bremer, Edwin

    2016-01-01

    ABSTRACT Antibodies that block PD-L1/PD-1 immune checkpoints restore the activity of functionally-impaired antitumor T cells. These antibodies show unprecedented clinical benefit in various advanced cancers, particularly in melanoma. However, only a subset of cancer patients responds to current PD-L1/PD-1-blocking strategies, highlighting the need for further advancements in PD-L1/PD-1-based immunotherapy. Here, we report on a novel approach designed to combine PD-L1 checkpoint inhibition with the tumor-selective induction of apoptosis by TNF-related Apoptosis Inducing Ligand (TRAIL). In brief, a new bi-functional fusion protein, designated anti-PD-L1:TRAIL, was constructed comprising a PD-L1-blocking antibody fragment genetically fused to the extracellular domain of the pro-apoptotic tumoricidal protein TRAIL. Treatment of PD-L1-expressing cancer cells with anti-PD-L1:TRAIL induced PD-L1-directed TRAIL-mediated cancer cell death. Treatment of T cells with anti-PD-L1:TRAIL augmented T cell activation, as evidenced by increased proliferation, secretion of IFNγ and enhanced killing of cancer cell lines and primary patient-derived cancer cells in mixed T cell/cancer cell culture experiments. Of note, elevated levels of IFNγ further upregulated PD-L1 on cancer cells and simultaneously sensitized cancer cells to TRAIL-mediated apoptosis by anti-PD-L1:TRAIL. Additionally, anti-PD-L1:TRAIL converted immunosuppressive PD-L1-expressing myeloid cells into pro-apoptotic effector cells that triggered TRAIL-mediated cancer cell death. In conclusion, combining PD-L1 checkpoint inhibition with TRAIL-mediated induction of apoptosis using anti-PD-L1:TRAIL yields promising multi-fold and mutually reinforcing anticancer activity that may be exploited to enhance the efficacy of therapeutic PD-L1/PD-1 checkpoint inhibition. PMID:27622071

  11. Qualitative and Quantitative Analysis of ROS-Mediated Oridonin-Induced Oesophageal Cancer KYSE-150 Cell Apoptosis by Atomic Force Microscopy

    PubMed Central

    Jin, Hua; Yang, Fen; Jiang, Jinhuan; Wu, Anguo; Zhu, Haiyan; Liu, Jianxin; Su, Xiaohui; Yang, Peihui; Cai, Jiye

    2015-01-01

    High levels of intracellular reactive oxygen species (ROS) in cells is recognized as one of the major causes of cancer cell apoptosis and has been developed into a promising therapeutic strategy for cancer therapy. However, whether apoptosis associated biophysical properties of cancer cells are related to intracellular ROS functions is still unclear. Here, for the first time, we determined the changes of biophysical properties associated with the ROS-mediated oesophageal cancer KYSE-150 cell apoptosis using high resolution atomic force microscopy (AFM). Oridonin was proved to induce ROS-mediated KYSE-150 cell apoptosis in a dose dependent manner, which could be reversed by N-acetylcysteine (NAC) pretreatment. Based on AFM imaging, the morphological damage and ultrastructural changes of KYSE-150 cells were found to be closely associated with ROS-mediated oridonin-induced KYSE-150 cell apoptosis. The changes of cell stiffness determined by AFM force measurement also demonstrated ROS-dependent changes in oridonin induced KYSE-150 cell apoptosis. Our findings not only provided new insights into the anticancer effects of oridonin, but also highlighted the use of AFM as a qualitative and quantitative nanotool to detect ROS-mediated cancer cell apoptosis based on cell biophysical properties, providing novel information of the roles of ROS in cancer cell apoptosis at nanoscale. PMID:26496199

  12. Qualitative and Quantitative Analysis of ROS-Mediated Oridonin-Induced Oesophageal Cancer KYSE-150 Cell Apoptosis by Atomic Force Microscopy.

    PubMed

    Pi, Jiang; Cai, Huaihong; Jin, Hua; Yang, Fen; Jiang, Jinhuan; Wu, Anguo; Zhu, Haiyan; Liu, Jianxin; Su, Xiaohui; Yang, Peihui; Cai, Jiye

    2015-01-01

    High levels of intracellular reactive oxygen species (ROS) in cells is recognized as one of the major causes of cancer cell apoptosis and has been developed into a promising therapeutic strategy for cancer therapy. However, whether apoptosis associated biophysical properties of cancer cells are related to intracellular ROS functions is still unclear. Here, for the first time, we determined the changes of biophysical properties associated with the ROS-mediated oesophageal cancer KYSE-150 cell apoptosis using high resolution atomic force microscopy (AFM). Oridonin was proved to induce ROS-mediated KYSE-150 cell apoptosis in a dose dependent manner, which could be reversed by N-acetylcysteine (NAC) pretreatment. Based on AFM imaging, the morphological damage and ultrastructural changes of KYSE-150 cells were found to be closely associated with ROS-mediated oridonin-induced KYSE-150 cell apoptosis. The changes of cell stiffness determined by AFM force measurement also demonstrated ROS-dependent changes in oridonin induced KYSE-150 cell apoptosis. Our findings not only provided new insights into the anticancer effects of oridonin, but also highlighted the use of AFM as a qualitative and quantitative nanotool to detect ROS-mediated cancer cell apoptosis based on cell biophysical properties, providing novel information of the roles of ROS in cancer cell apoptosis at nanoscale.

  13. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation

    PubMed Central

    Villar, Victor H.; Nguyen, Tra Ly; Delcroix, Vanessa; Terés, Silvia; Bouchecareilh, Marion; Salin, Bénédicte; Bodineau, Clément; Vacher, Pierre; Priault, Muriel; Soubeyran, Pierre; Durán, Raúl V.

    2017-01-01

    A master coordinator of cell growth, mTORC1 is activated by different metabolic inputs, particularly the metabolism of glutamine (glutaminolysis), to control a vast range of cellular processes, including autophagy. As a well-recognized tumour promoter, inhibitors of mTORC1 such as rapamycin have been approved as anti-cancer agents, but their overall outcome in patients is rather poor. Here we show that mTORC1 also presents tumour suppressor features in conditions of nutrient restrictions. Thus, the activation of mTORC1 by glutaminolysis during nutritional imbalance inhibits autophagy and induces apoptosis in cancer cells. Importantly, rapamycin treatment reactivates autophagy and prevents the mTORC1-mediated apoptosis. We also observe that the ability of mTORC1 to activate apoptosis is mediated by the adaptor protein p62. Thus, the mTORC1-mediated upregulation of p62 during nutrient imbalance induces the binding of p62 to caspase 8 and the subsequent activation of the caspase pathway. Our data highlight the role of autophagy as a survival mechanism upon rapamycin treatment. PMID:28112156

  14. Nickel chloride-induced apoptosis via mitochondria- and Fas-mediated caspase-dependent pathways in broiler chickens

    PubMed Central

    Guo, Hongrui; Cui, Hengmin; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Zhao, Ling; Wu, Bangyuan; Chen, Kejie; Deng, Jie

    2016-01-01

    Ni, a metal with industrial and commercial uses, poses a serious hazard to human and animal health. In the present study, we used flow cytometry, immunohistochemistry and qRT-PCR to investigate the mechanisms of NiCl2-induced apoptosis in kidney cells. After treating 280 broiler chickens with 0, 300, 600 or 900 mg/kg NiCl2 for 42 days, we found that two caspase-dependent pathways were involved in the induced renal tubular cell apoptosis. In the mitochondria-mediated caspase-dependent apoptotic pathway, cyt-c, HtrA2/Omi, Smac/Diablo, apaf-1, PARP, and caspase-9, 3, 6 and 7 were all increased, while. XIAP transcription was decreased. Concurrently, in the Fas-mediated caspase-dependent apoptotic pathway, Fas, FasL, caspase-8, caspase-10 and Bid levels were all increased. These results indicate that dietary NiCl2 at 300+ mg/kg induces renal tubular cell apoptosis in broiler chickens, involving both mitochondrial and Fas-mediated caspase-dependent apoptotic pathways. Our results provide novel insight into Ni and Ni-compound toxicology evaluated in vitro and in vivo. PMID:27806327

  15. Noninvasive Imaging of Natural Killer Cell-Mediated Apoptosis in a Mouse Tumor Model.

    PubMed

    Singh, Thoudam Debraj; Lee, Jaetae; Jeon, Yong Hyun

    2016-01-01

    Natural killer (NK) cells are cytotoxic lymphocytes that induce apoptosis in cancer cells infected with viruses and bacteria through a caspase-3-dependent pathway. Effective NK cell-based immunotherapy requires highly sensitive imaging tools for in vivo monitoring of the dynamic events involved in apoptosis. Here, we describe a noninvasive bioluminescence imaging approach to determine the antitumor effects of NK cell-based therapy by serial imaging of caspase-3-dependent apoptosis in a mouse model of human glioma.

  16. The Mitochondria-Mediate Apoptosis of Lepidopteran Cells Induced by Azadirachtin

    PubMed Central

    Huang, Jingfei; Lv, Chaojun; Hu, Meiying; Zhong, Guohua

    2013-01-01

    Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue) was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS) generation, activation of mitochondrial permeability transition pores (MPTPs) and loss of mitochondrial membrane potential (MMP) were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP) inhibitor cyclosporin A (CsA), which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis. PMID:23516491

  17. α 1-antitrypsin enhances insulin secretion and prevents cytokine-mediated apoptosis in pancreatic β-cells.

    PubMed

    Kalis, Martins; Kumar, Rajesh; Janciauskiene, Sabina; Salehi, Albert; Cilio, Corrado M

    2010-01-01

    α1-antitrypsin (AAT) is a serine protease inhibitor, which recently has been shown to prevent type 1 diabetes (T1D) development, to prolong islet allograft survival and to inhibit β-cell apoptosis in vivo. It has also been reported that T1D patients have significantly lower plasma concentrations of AAT suggesting the potential role of AAT in the pathogenesis of T1D. We have investigated whether plasma-purified AAT can affect β-cell function in vitro. INS-1E cells or primary rat pancreatic islets were used to study the effect of AAT on insulin secretion after glucose, glucagon-like peptide-1 (GLP-1) and forskolin stimulation and on cytokine-mediated apoptosis. The secreted insulin and total cyclic AMP (cAMP) were determined using radioimmunoassay and apoptosis was evaluated by propidium iodide staining followed by FACS analysis. We found that AAT increases insulin secretion in a glucose-dependent manner, potentiates the effect of GLP-1 and forskolin and neutralizes the inhibitory effect of clonidine on insulin secretion. The effect of AAT on insulin secretion was accompanied by an increase in cAMP levels. In addition, AAT protected INS-1E cells from cytokine-induced apoptosis. Our findings show that AAT stimulates insulin secretion and protects β-cells against cytokine-induced apoptosis, and these effects of AAT seem to be mediated through the cAMP pathway. In view of these novel findings we suggest that AAT may represent a novel anti-inflammatory compound to protect β-cells under the immunological attack in T1D but also therapeutic strategy to potentiate insulin secretion in type 2 diabetes (T2D).

  18. Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway

    SciTech Connect

    Zhang, Hongling; Huang, Yong; Du, Qian; Luo, Xiaomao; Zhang, Liang; Zhao, Xiaomin; Tong, Dewen

    2015-01-09

    Highlights: • PPV reduces PK-15 cells viability by inducing apoptosis. • PPV infection induces apoptosis through mitochondria-mediated pathway. • PPV infection activates p53 to regulate the mitochondria apoptotic signaling. - Abstract: Porcine parvovirus (PPV) infection has been reported to induce the cytopathic effects (CPE) in some special host cells and contribute the occurrence of porcine parvovirus disease, but the molecular mechanisms underlying PPV-induced CPE are not clear. In this study, we investigated the morphological and molecular changes of porcine kidney cell line (PK-15 cells) infected with PPV. The results showed that PPV infection inhibited the viability of PK-15 cells in a time and concentration dependent manner. PPV infection induced typical apoptotic features including chromatin condensation, apoptotic body formation, nuclear fragmentation, and Annexin V-binding activity. Further studies showed that Bax was increased and translocated to mitochondria, whereas Bcl-2 was decreased in PPV-infected cells, which caused mitochondrial outer-membrane permeabilization, resulting in the release of mitochondrial cytochrome c, followed by caspase-9 and caspase-3 activation. However, the expression of Fas and Fas ligand (FasL) did not appear significant changes in the process of PPV-induced apoptosis. Moreover, PPV infection activated p53 signaling, which was involved in the activation of apoptotic signaling induced by PPV infection via regulation of Bax and Bcl-2. Taken together, our results demonstrated that PPV infection induced apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated apoptosis pathway. This study may contribute to shed light on the molecular pathogenesis of PPV infection.

  19. Mycobacterium bovis Induces Endoplasmic Reticulum Stress Mediated-Apoptosis by Activating IRF3 in a Murine Macrophage Cell Line

    PubMed Central

    Cui, Yongyong; Zhao, Deming; Sreevatsan, Srinand; Liu, Chunfa; Yang, Wei; Song, Zhiqi; Yang, Lifeng; Barrow, Paul; Zhou, Xiangmei

    2016-01-01

    Mycobacterium bovis (M. bovis) is highly adapted to macrophages and has developed multiple mechanisms to resist intracellular assaults. However, the host cells in turn deploy a multipronged defense mechanism to control bacterial infection. Endoplasmic reticulum (ER) stress-mediated apoptosis is one such primary defense mechanism. However, the role of interferon regulatory factor 3 (IRF3) between ER stress and apoptosis during M. bovis infection is unknown. Here, we demonstrate that M. bovis effectively induced apoptosis in murine macrophages. Caspase-12, caspase-9, and caspase-3 were activated over a 48 h infection period. The splicing of XBP-1 mRNA and the level of phosphorylation of eIF2α, indicators of ER stress, significantly increased at early time points after M. bovis infection. The expansion of the ER compartment, a morphological hallmark of ER stress, was observed at 6 h. Pre-treatment of Raw 264.7 cells with 4-PBA (an ER stress-inhibitor) reduced the activation of the ER stress indicators, caspase activation and its downstream poly (ADP-ribose) polymerase (PARP) cleavage, phosphorylation of TBK1 and IRF3 and cytoplasmic co-localization of STING and TBK1. M. bovis infection led to the interaction of activated IRF3 and cytoplasmic Bax leading to mitochondrial damage. Role of IRF3 in apoptosis was further confirmed by blocking this molecule with BX-795 that showed significant reduction expression of caspase-8 and caspase-3. Intracellular survival of M. bovis increased in response to 4-PBA and BX-795. These findings indicate that STING-TBK1-IRF3 pathway mediates a crosstalk between ER stress and apoptosis during M. bovis infection, which can effectively control intracellular bacteria. PMID:28018864

  20. Clematichinenoside (AR) Attenuates Hypoxia/Reoxygenation-Induced H9c2 Cardiomyocyte Apoptosis via a Mitochondria-Mediated Signaling Pathway.

    PubMed

    Ding, Haiyan; Han, Rong; Chen, Xueshan; Fang, Weirong; Liu, Meng; Wang, Xuemei; Wei, Qin; Kodithuwakku, Nandani Darshika; Li, Yunman

    2016-05-30

    Mitochondria-mediated cardiomyocyte apoptosis is involved in myocardial ischemia/reperfusion (MI/R) injury. Clematichinenoside (AR) is a triterpenoid saponin isolated from the roots of Clematis chinensis with antioxidant and anti-inflammatory cardioprotection effects against MI/R injury, yet the anti-apoptotic effect and underlying mechanisms of AR in MI/R injury remain unclear. We hypothesize that AR may improve mitochondrial function to inhibit MI/R-induced cardiomyocyte apoptosis. In this study, we replicated an in vitro H9c2 cardiomyocyte MI/R model by hypoxia/reoxygenation (H/R) treatment. The viability of H9c2 cardiomyocytes was determined by MTT assay; apoptosis was evaluated by flow cytometry and TUNEL experiments; mitochondrial permeability transition pore (mPTP) opening was analyzed by a calcein-cobalt quenching method; and mitochondrial membrane potential (ΔΨm) was detected by JC-1. Moreover, we used western blots to determine the mitochondrial cytochrome c translocation to cytosolic and the expression of caspase-3, Bcl-2, and Bax proteins. These results showed that the application of AR decreased the ratio of apoptosis and the extent of mPTP opening, but increased ΔΨm. AR also inhibited H/R-induced release of mitochondrial cytochrome c and decreased the expression of the caspase-3, Bax proteins. Conversely, it remarkably increased the expression of Bcl-2 protein. Taken together, these results revealed that AR protects H9c2 cardiomyocytes against H/R-induced apoptosis through mitochondrial-mediated apoptotic signaling pathway.

  1. RIPK3-Mediated Necroptosis and Apoptosis Contributes to Renal Tubular Cell Progressive Loss and Chronic Kidney Disease Progression in Rats

    PubMed Central

    Zhu, Yongjun; Cui, Hongwang; Xia, Yunfeng; Gan, Hua

    2016-01-01

    Tubulointerstitial fibrosis (TIF) is caused by the progressive loss of renal tubular cells and the consequent replacement of the extracellular matrix. The progressive depletion of renal tubular cells results from apoptosis and necroptosis; however, the relative significance of each of these cell death mechanisms at different stages during the progression of chronic kidney disease (CKD) remains unclear. We sought to explore the mechanisms of renal tubular cell death during the early and intermediate stages of chronic renal damage of subtotal nephrectomied (SNx) rats. The results of tissue histological assays indicated that the numbers of necrotic dying cells and apoptotic cells were significantly higher in kidney tissues derived from a rat model of CKD. In addition, there was a significant increase in necroptosis observed by transmission electron microscopy (TEM) and an increase in the proportion of TUNEL-positive cells in kidney tissues from SNx rats compared with control rats, and necrostatin-1 (Nec-1) could inhibit necroptosis and reduce the proportion of TUNEL-positive cells. More importantly, we observed a significant increase in the incidence of necroptosis compared with apoptosis by TEM in vivo and in vitro and a significant increase in the proportion of TUNEL-positive tubular epithelial cells that did not express caspase-3 compared with those expressing cleaved caspase-3 in vitro. Furthermore, treatment with Nec-1 and zVAD strongly reduced necroptosis- and apoptosis-mediated renal tubular cell death and decreased the levels of blood urea nitrogen and serum creatinine and tubular damage scores of SNx rats. These results suggest that necroptotic cell death plays a more significant role than apoptosis in mediating the loss of renal tubular cells in SNx rats and that effectively blocking both necroptosis and apoptosis improves renal function and tubular damage at early and intermediate stages of CKD. PMID:27281190

  2. Inhibition of Drp1 protects against senecionine-induced mitochondria-mediated apoptosis in primary hepatocytes and in mice.

    PubMed

    Yang, Xiao; Wang, Hua; Ni, Hong-Min; Xiong, Aizhen; Wang, Zhengtao; Sesaki, Hiromi; Ding, Wen-Xing; Yang, Li

    2017-03-02

    Pyrrolizidine alkaloids (PAs) are a group of compounds found in various plants and some of them are widely consumed in the world as herbal medicines and food supplements. PAs are potent hepatotoxins that cause irreversible liver injury in animals and humans. However, the mechanisms by which PAs induce liver injury are not clear. In the present study, we determined the hepatotoxicity and molecular mechanisms of senecionine, one of the most common toxic PAs, in primary cultured mouse and human hepatocytes as well as in mice. We found that senecionine administration increased serum alanine aminotransferase levels in mice. H&E and TUNEL staining of liver tissues revealed increased hemorrhage and hepatocyte apoptosis in liver zone 2 areas. Mechanistically, senecionine induced loss of mitochondrial membrane potential, release of mitochondrial cytochrome c as well as mitochondrial JNK translocation and activation prior to the increased DNA fragmentation and caspase-3 activation in primary cultured mouse and human hepatocytes. SP600125, a specific JNK inhibitor, and ZVAD-fmk, a general caspase inhibitor, alleviated senecionine-induced apoptosis in primary hepatocytes. Interestingly, senecionine also caused marked mitochondria fragmentation in hepatocytes. Pharmacological inhibition of dynamin-related protein1 (Drp1), a protein that is critical to regulate mitochondrial fission, blocked senecionine-induced mitochondrial fragmentation and mitochondrial release of cytochrome c and apoptosis. More importantly, hepatocyte-specific Drp1 knockout mice were resistant to senecionine-induced liver injury due to decreased mitochondrial damage and apoptosis. In conclusion, our results uncovered a novel mechanism of Drp1-mediated mitochondrial fragmentation in senecionine-induced liver injury. Targeting Drp1-mediated mitochondrial fragmentation and apoptosis may be a potential avenue to prevent and treat hepatotoxicity induced by PAs.

  3. Oncogenic K-Ras and Basic Fibroblast Growth Factor Prevent FAS-Mediated Apoptosis in Fibroblasts through Activation of Mitogen-Activated Protein Kinase

    PubMed Central

    Kazama, Hirotaka; Yonehara, Shin

    2000-01-01

    By an expression cloning method using Fas-transgenic Balb3T3 cells, we tried to obtain inhibitory genes against Fas-mediated apoptosis and identified proto-oncogene c-K-ras. Transient expression of K-Ras mutants revealed that oncogenic mutant K-Ras (RasV12) strongly inhibited, whereas dominant-inhibitory mutant K-Ras (RasN17) enhanced, Fas-mediated apoptosis by inhibiting Fas-triggered activation of caspases without affecting an expression level of Fas. Among the target molecules of Ras, including Raf (mitogen-activated protein kinase kinase kinase [MAPKKK]), phosphatidylinositol 3 (PI-3) kinase, and Ral guanine nucleotide exchange factor (RalGDS), only the constitutively active form of Raf (Raf-CAAX) could inhibit Fas-mediated apoptosis. In addition, the constitutively active form of MAPKK (SDSE-MAPKK) suppressed Fas-mediated apoptosis, and MKP-1, a phosphatase specific for classical MAPK, canceled the protective activity of oncogenic K-Ras (K-RasV12), Raf-CAAX, and SDSE-MAPKK. Furthermore, physiological activation of Ras by basic fibroblast growth factor (bFGF) protected Fas-transgenic Balb3T3 cells from Fas-mediated apoptosis. bFGF protection was also dependent on the activation of the MAPK pathway through Ras. All the results indicate that the activation of MAPK through Ras inhibits Fas-mediated apoptosis in Balb3T3 cells, which may play a role in oncogenesis. PMID:10662780

  4. Elucidation of molecular events mediating induction of apoptosis by synthetic retinoids using a CD437-resistant ovarian carcinoma cell line.

    PubMed

    Holmes, William F; Soprano, Dianne Robert; Soprano, Kenneth J

    2002-11-22

    Retinoids have great promise in the area of cancer therapy and chemoprevention. Although some tumor cells are sensitive to the growth inhibitory effect of all-trans-retinoic acid (ATRA), many ovarian tumor cells are not. 6-((1-Admantyl)-4-hydroxyphenyl)-2-naphthalenecarboxylic acid (CD437) is a conformationally restricted synthetic retinoid that induces growth arrest and apoptosis in both ATRA-sensitive and ATRA-resistant ovarian tumor cell lines. To better understand the mechanism by which CD437 induces apoptosis in ovarian tumor cell lines, we prepared a cell line, CA-CD437R, from the ATRA-sensitive ovarian cell line, CA-OV-3, which was resistant to CD437. We found that the CD437-resistant cell line was also resistant to the induction of apoptosis by tumor necrosis factor-alpha but not resistant to the induction of apoptosis by another synthetic retinoid, fenretinide N-(4-hydroxyphenyl)retinamide. We also show that this cell line remains ATRA-sensitive and exhibits no deficiencies in RAR function. Analysis of this CD437-resistant cell line suggests that the pathway for induction of apoptosis by CD437 is similar to the pathway utilized by tumor necrosis factor-alpha and different from the pathway induced by the synthetic retinoid, fenretinide N-(4-hydroxyphenyl)retinamide. The CA-CD437R cell line is a valuable tool, permitting us to further elucidate the molecular events that mediate apoptosis induced by CD437 and other synthetic retinoids. Results of experiments utilizing this cell line suggest that the alteration responsible for resistance of CA-CD437R cells to CD437 induced event maps after the activation of p38 and TR3 expression, prior to mitochondrial depolarization, subsequent release of cytochrome c and activation of caspase-9 and caspase-3.

  5. Inhibition of Plasmodium falciparum Field Isolates-Mediated Endothelial Cell Apoptosis by Fasudil: Therapeutic Implications for Severe Malaria

    PubMed Central

    Zang-Edou, Estelle S.; Bisvigou, Ulrick; Taoufiq, Zacharie; Lékoulou, Faustin; Lékana-Douki, Jean Bernard; Traoré, Yves; Mazier, Dominique; Touré-Ndouo, Fousseyni S.

    2010-01-01

    Plasmodium falciparum infection can abruptly progress to severe malaria, a life-threatening complication resulting from sequestration of parasitized red blood cells (PRBC) in the microvasculature of various organs such as the brain and lungs. PRBC adhesion can induce endothelial cell (EC) activation and apoptosis, thereby disrupting the blood-brain barrier. Moreover, hemozoin, the malarial pigment, induces the erythroid precursor apoptosis. Despite the current efficiency of antimalarial drugs in killing parasites, severe malaria still causes up to one million deaths every year. A new strategy targeting both parasite elimination and EC protection is urgently needed in the field. Recently, a rho-kinase inhibitior Fasudil, a drug already in clinical use in humans for cardio- and neuro-vascular diseases, was successfully tested on laboratory strains of P. falciparum to protect and to reverse damages of the endothelium. We therefore assessed herein whether Fasudil would have a similar efficiency on P. falciparum taken directly from malaria patients using contact and non-contact experiments. Seven (23.3%) of 30 PRBC preparations from different patients were apoptogenic, four (13.3%) acting by cytoadherence and three (10%) via soluble factors. None of the apoptogenic PRBC preparations used both mechanisms indicating a possible mutual exclusion of signal transduction ligand. Three PRBC preparations (42.9%) induced EC apoptosis by cytoadherence after 4 h of coculture (“rapid transducers”), and four (57.1%) after a minimum of 24 h (“slow transducers”). The intensity of apoptosis increased with time. Interestingly, Fasudil inhibited EC apoptosis mediated both by cell-cell contact and by soluble factors but did not affect PRBC cytoadherence. Fasudil was found to be able to prevent endothelium apoptosis from all the P. falciparum isolates tested. Our data provide evidence of the strong anti-apoptogenic effect of Fasudil and show that endothelial cell-P. falciparum

  6. HMGB1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK/Ets-1 signalling pathway.

    PubMed

    Wang, Wen-Ke; Lu, Qing-Hua; Zhang, Jia-Ning; Wang, Ben; Liu, Xiang-Juan; An, Feng-Shuang; Qin, Wei-Dong; Chen, Xue-Ying; Dong, Wen-Qian; Zhang, Cheng; Zhang, Yun; Zhang, Ming-Xiang

    2014-11-01

    Apoptosis is a key event involved in diabetic cardiomyopathy. The expression of high mobility group box 1 protein (HMGB1) is up-regulated in diabetic mice. However, the molecular mechanism of high glucose (HG)-induced cardiomyocyte apoptosis remains obscure. We aimed to determine the role of HMGB1 in HG-induced apoptosis of cardiomyocytes. Treating neonatal primary cardiomyocytes with HG increased cell apoptosis, which was accompanied by elevated levels of HMGB1. Inhibition of HMGB1 by short-hairpin RNA significantly decreased HG-induced cell apoptosis by reducing caspase-3 activation and ratio of Bcl2-associated X protein to B-cell lymphoma/leukemia-2 (bax/bcl-2). Furthermore, HG activated E26 transformation-specific sequence-1 (Ets-1), and HMGB1 inhibition attenuated HG-induced activation of Ets-1 via extracellular signal-regulated kinase 1/2 (ERK1/2) signalling. In addition, inhibition of Ets-1 significantly decreased HG-induced cardiomyocyte apoptosis. Similar results were observed in streptozotocin-treated diabetic mice. Inhibition of HMGB1 by short-hairpin RNA markedly decreased myocardial cell apoptosis and activation of ERK and Ets-1 in diabetic mice. In conclusion, inhibition of HMGB1 may protect against hyperglycaemia-induced cardiomyocyte apoptosis by down-regulating ERK-dependent activation of Ets-1.

  7. Par-4/NF-κB Mediates the Apoptosis of Islet β Cells Induced by Glucolipotoxicity

    PubMed Central

    QiNan, Wu; XiaGuang, Gan; XiaoTian, Lei; WuQuan, Deng; Ling, Zhang; Bing, Chen

    2016-01-01

    Apoptosis of islet β cells is a primary pathogenic feature of type 2 diabetes, and ER stress and mitochondrial dysfunction play important roles in this process. Previous research has shown that prostate apoptosis response-4 (Par-4)/NF-κB induces cancer cell apoptosis through endoplasmic reticulum (ER) stress and mitochondrial dysfunction. However, the mechanism by which Par-4/NF-κB induces islet β cell apoptosis remains unknown. We used a high glucose/palmitate intervention to mimic type 2 diabetes in vitro. We demonstrated that the high glucose/palmitate intervention induced the expression and secretion of Par-4. It also causes increased expression and activation of NF-κB, which induced NIT-1 cell apoptosis and dysfunction. Overexpression of Par-4 potentiates these effects, whereas downregulation of Par-4 attenuates them. Inhibition of NF-κB inhibited the Par-4-induced apoptosis. Furthermore, these effects occurred through the ER stress cell membrane and mitochondrial pathway of apoptosis. Our findings reveal a novel role for Par-4/NF-κB in islet β cell apoptosis and type 2 diabetes. PMID:27340675

  8. Ouabain-induced perturbations in intracellular ionic homeostasis regulate death receptor-mediated apoptosis.

    PubMed

    Panayiotidis, Mihalis I; Franco, Rodrigo; Bortner, Carl D; Cidlowski, John A

    2010-07-01

    Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na(+)-K(+)-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na(+)-K(+)-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H(2)O(2), thapsigargin or UV-C implicating a role for the Na(+)-K(+)-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca(2+) homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca(2+) levels in response to H(2)O(2), thapsigargin or UV-C. FasL-induced alterations in Ca(2+) were not abolished in Ca(2+)-free medium but incubation of cells with BAPTA-AM inhibited both Ca(2+) perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na(+)-K(+)-ATPase activity during apoptosis is linked to perturbations in cell Ca(2+) homeostasis that modulate apoptosis induced by the activation of Fas by FasL.

  9. Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis.

    PubMed Central

    Herr, I; Wilhelm, D; Böhler, T; Angel, P; Debatin, K M

    1997-01-01

    We report here that anticancer drugs such as doxorubicin lead to induction of the CD95 (APO-1/Fas) system of apoptosis and the cellular stress pathway which includes JNK/SAPKs. Ceramide, which accumulates in response to different types of cellular stress such as chemo- and radiotherapy, strongly induced expression of CD95-L, cleavage of caspases and apoptosis. Antisense CD95-L as well as dominant-negative FADD inhibited ceramide- and cellular stress-induced apoptosis. Fibroblasts from type A Niemann-Pick patients (NPA), genetically deficient in ceramide synthesis, failed to up-regulate CD95-L expression and to undergo apoptosis after gamma-irradiation or doxorubicin treatment. In contrast, JNK/SAPK activity was still inducible by doxorubicin in the NPA cells, suggesting that activation of JNK/SAPKs alone is not sufficient for induction of the CD95 system and apoptosis. CD95-L expression and apoptosis in NPA fibroblasts were restorable by exogenously added ceramide. In addition, NPA fibroblasts undergo apoptosis after triggering of CD95 with an agonistic antibody. These data demonstrate that ceramide links cellular stress responses induced by gamma-irradiation or anticancer drugs to the CD95 pathway of apoptosis. PMID:9321399

  10. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2

    SciTech Connect

    Ahmad, Javed; Ahamed, Maqusood; Akhtar, Mohd Javed; Alrokayan, Salman A.; Siddiqui, Maqsood A.; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2012-03-01

    Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion of glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ► We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ► Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ► Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ► Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ► ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.

  11. miR-21-mediated decreased neutrophil apoptosis is a determinant of impaired coronary collateral growth in metabolic syndrome.

    PubMed

    Hutcheson, Rebecca; Terry, Russell; Hutcheson, Brenda; Jadhav, Rashmi; Chaplin, Jennifer; Smith, Erika; Barrington, Robert; Proctor, Spencer D; Rocic, Petra

    2015-06-01

    Coronary collateral growth (CCG) is impaired in metabolic syndrome. microRNA-21 (miR-21) is a proproliferative and antiapoptotic miR, which we showed to be elevated in metabolic syndrome. Here we investigate whether impaired CCG in metabolic syndrome involved miR-21-mediated aberrant apoptosis. Normal Sprague-Dawley (SD) and metabolic syndrome [J. C. Russel (JCR)] rats underwent transient, repetitive coronary artery occlusion [repetitive ischemia (RI)]. Antiapoptotic Bcl-2, phospho-Bad, and Bcl-2/Bax dimers were increased on days 6 and 9 RI, and proapoptotic Bax and Bax/Bax dimers and cytochrome-c release concurrently decreased in JCR versus SD rats. Active caspases were decreased in JCR versus SD rats (~50%). Neutrophils increased transiently on day 3 RI in the collateral-dependent zone of SD rats but remained elevated in JCR rats, paralleling miR-21 expression. miR-21 downregulation by anti-miR-21 induced neutrophil apoptosis and decreased Bcl-2 and Bcl-2/Bax dimers (~75%) while increasing Bax/Bax dimers, cytochrome-c release, and caspase activation (~70, 400, and 400%). Anti-miR-21 also improved CCG in JCR rats (~60%). Preventing neutrophil infiltration with blocking antibodies resulted in equivalent CCG recovery, confirming a major role for deregulated neutrophil apoptosis in CCG impairment. Neutrophil and miR-21-dependent CCG inhibition was in significant part mediated by increased oxidative stress. We conclude that neutrophil apoptosis is integral to normal CCG and that inappropriate prolonged miR-21-mediated survival of neutrophils plays a major role in impaired CCG, in part via oxidative stress generation.

  12. Neuroprotection of donepezil against morphine-induced apoptosis is mediated through Toll-like receptors.

    PubMed

    Shafie, Alireza; Moradi, Farshid; Izadpanah, Esmael; Mokarizadeh, Aram; Moloudi, Mohammad Raman; Nikzaban, Mehrnoush; Hassanzadeh, Kambiz

    2015-10-05

    Previously, we had shown that donepezil provides anti-apoptotic effects associated with the prevention of morphine tolerance to the analgesic effect. In this regard, the present study aimed to evaluate the molecular mechanisms involved in this effect considering the possible role of Toll-like receptor (TLR) 2,4, and the balance between pre-apoptotic and anti-apoptotic Bcl family proteins. To this end, male Wistar rats received daily morphine in combination with either normal saline or donepezil (0.5, 1, or 1.5 mg/kg, ip). The analgesic effect was assessed by the plantar test apparatus. The latency was recorded when the animal responded to the light stimulus. On the 15th day, when no significant difference was observed between morphine and saline groups in terms of analgesia, the frontal cortex and lumbar spinal cord of the animals were dissected. Then, TLR2 and 4, Bcl2, and Bax mRNA fold changes were calculated using Real-time PCR method. The results indicated no significant analgesic effect in the morphine group compared with the saline treated animals after 15 days of injection, while daily co-administration of donepezil with morphine preserved significant analgesia. Moreover, Quantitative PCR showed that morphine significantly increased TLRs and Bax gene expressions and decreased the anti-apoptotic Bcl2. In contrast, donepezil prevented these morphine induced changes in the mentioned gene expressions. Taken together, the results suggest that the neuroprotective effects of donepezil in attenuating morphine-induced tolerance and apoptosis are mediated by preventing morphine-induced changes in TLR2 and 4 gene expressions.

  13. STAT6 mediates apoptosis of human coronary arterial endothelial cells by interleukin-13.

    PubMed

    Nishimura, Yuki; Nitto, Takeaki; Inoue, Teruo; Node, Koichi

    2008-03-01

    Interleukin (IL)-13 is a cytokine produced by type 2 helper T cells that has pathophysiological roles in allergic inflammation and fibrosis formation. IL-13 shares many functional properties with IL-4, which promotes apoptosis of endothelial cells (ECs). We here investigated the effects of IL-13 on apoptosis using human coronary artery endothelial cells (HCAECs). Assessment by WST-1 assay demonstrated that IL-13 as well as IL-4 significantly inhibited cell growth. IL-13 significantly attenuated the cell viability and induced apoptosis of HCAECs as well. Expression of mRNA for vascular endothelial cell growth factor, which maintains survival of ECs, was significantly diminished by IL-13. The effects of IL-13 and IL-4 were abolished by depletion of STAT6 using RNA interference. These results suggest that IL-13 attenuates EC viability by inducing apoptosis, and that STAT6 plays pivotal roles on IL-13- and IL-4-induced apoptosis in ECs.

  14. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress

    SciTech Connect

    Pauklin, Siim . E-mail: spauklin@ut.ee; Kristjuhan, Arnold; Maimets, Toivo; Jaks, Viljar

    2005-08-26

    Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, {beta}-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53.

  15. Maritoclax and dinaciclib inhibit MCL-1 activity and induce apoptosis in both a MCL-1-dependent and -independent manner

    PubMed Central

    Varadarajan, Shankar; Poornima, Paramasivan; Milani, Mateus; Gowda, Krishne; Amin, Shantu; Wang, Hong-Gang; Cohen, Gerald M.

    2015-01-01

    The anti-apoptotic BCL-2 family proteins are important targets for cancer chemotherapy. Specific and potent inhibitors of the BCL-2 family, such as ABT-263 (navitoclax) and ABT-199, are only effective against some members of the BCL-2 family but do not target MCL-1, which is commonly amplified in tumors and associated with chemoresistance. In this report, the selectivity and potency of two putative MCL-1 inhibitors, dinaciclib and maritoclax, were assessed. Although both compounds induced Bax/Bak- and caspase-9-dependent apoptosis, dinaciclib was more potent than maritoclax in downregulating MCL-1 and also in inducing apoptosis. However, the compounds induced apoptosis, even in cells lacking MCL-1, suggesting multiple mechanisms of cell death. Furthermore, maritoclax induced extensive mitochondrial fragmentation, and a Bax/Bak- but MCL-1-independent accumulation of mitochondrial reactive oxygen species (ROS), with an accompanying loss of complexes I and III of the electron transport chain. ROS scavengers, such as MitoQ, could not salvage maritoclax-mediated effects on mitochondrial structure and function. Taken together, our data demonstrate that neither dinaciclib nor maritoclax exclusively target MCL-1. Although dinaciclib is clearly not a specific MCL-1 inhibitor, its ability to rapidly downregulate MCL-1 may be beneficial in many clinical settings, where it may reverse chemoresistance or sensitize to other chemotherapeutic agents. PMID:26059440

  16. Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells.

    PubMed

    Lewinska, Anna; Adamczyk-Grochala, Jagoda; Kwasniewicz, Ewa; Deregowska, Anna; Wnuk, Maciej

    2017-02-17

    Plant-derived pentacyclic triterpenotids with multiple biological activities are considered as promising candidates for cancer therapy and prevention. However, their mechanisms of action are not fully understood. In the present study, we have analyzed the effects of low dose treatment (5-20 µM) of ursolic acid (UA) and betulinic acid (BA) on breast cancer cells of different receptor status, namely MCF-7 (ER(+), PR(+/-), HER2(-)), MDA-MB-231 (ER(-), PR(-), HER2(-)) and SK-BR-3 (ER(-), PR(-), HER2(+)). UA-mediated response was more potent than BA-mediated response. Triterpenotids (5-10 µM) caused G0/G1 cell cycle arrest, an increase in p21 levels and SA-beta-galactosidase staining that was accompanied by oxidative stress and DNA damage. UA (20 µM) also diminished AKT signaling that affected glycolysis as judged by decreased levels of HK2, PKM2, ATP and lactate. UA-induced energy stress activated AMPK that resulted in cytotoxic autophagy and apoptosis. UA-mediated elevation in nitric oxide levels and ATM activation may also account for AMPK activation-mediated cytotoxic response. Moreover, UA-promoted apoptosis was associated with decreased pERK1/2 signals and the depolarization of mitochondrial membrane potential. Taken together, we have shown for the first time that UA at low micromolar range may promote its anticancer action by targeting glycolysis in phenotypically distinct breast cancer cells.

  17. Inhibition of apoptosis during 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated tumour promotion in rat liver.

    PubMed

    Stinchcombe, S; Buchmann, A; Bock, K W; Schwarz, M

    1995-06-01

    The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on cell division and cell death (apoptosis) in glutathione S-transferase (GST-P)-positive liver foci were analyzed in diethylnitrosamine-initiated female Wistar rats that were treated with TCDD, either acutely for 3 days or chronically for 115 days. Apoptotic bodies were quantitated in liver sections simultaneously stained for GST-P expression and H&E using a novel fluorescence microscopic detection method which greatly facilitates recognition of apoptotic bodies due to their high level of eosin fluorescence. While TCDD treatment only marginally affected cell division in GST-P-positive liver foci, as estimated by 5-bromo-2'-deoxyuridine-labelling, apoptotic indices were decreased to approximately 60% and approximately 10% of control values after acute and chronic TCDD treatment, respectively. In normal liver tissue, apoptotic indices were only slightly reduced by TCDD treatment, suggesting selective inhibition of apoptosis in the enzyme-altered cell population by the dioxin. Since inhibition of apoptosis in GST-P-positive liver foci was by far more pronounced than changes in cell division, our data suggest that the promoting activity of TCDD is preferentially mediated by a decrease of apoptosis in enzyme-altered liver foci.

  18. [Effect of overexpression of CAV1 mediated by lentivirus on proliferation and apoptosis of HL-60 cells].

    PubMed

    Ma, Wei; Wang, Di-Di; Wang, Zhao; Zhu, Gui-Ming; Zhang, Peng-Xia

    2013-08-01

    This study was purposed to explore the effect of lentivirus-mediated CAV1 overexpression on proliferation and apoptosis in HL-60 cells. Recombinant lentiviral expression vector pcDNA-EF1-CAV1 was constructed, and cotransfected the 293TN cells with a mixture of pPACK packaging plasmids. Then collecting virus suspension infects the HL-60 cells, which make CAV1 gene stable transfection and high expression in the cells. The CAV1 protein expression status in HL-60 cells transfected was evaluated through Western blot method. Proliferative activity and apoptosis of HL-60 cells before and after transfection were detected by CCK-8 method and flow cytometry, respectively. The results showed that the PCR-positive clone screening and results of nucleotide sequencing confirmed that the CAV1 gene inserted into the expression vector pcDNA-EF1-GFP correctly, recombinant lentiviral particles Lv-CAV1 transfected HL-60 cells successfully and with transfection rate up to 90%. The result of Western blot showed that CAV1 protein expression in HL-60 cells significantly increased at 48 hours after transfection. CCK-8 result indicated that cell proliferation activity increased at 48 h after transfection (P < 0.05), flow cytometry testing results displayed that apoptosis rate of HL-60 cells obviously decreased after transfection (P < 0.01). It is concluded that the overexpression of CAV1 in HL-60 cells can inhibit cell proliferation activity and promote cell apoptosis.

  19. Sodium fluoride induces apoptosis in the kidney of rats through caspase-mediated pathways and DNA damage.

    PubMed

    Song, Guo Hua; Gao, Ji Ping; Wang, Chun Fang; Chen, Chao Yang; Yan, Xiao Yan; Guo, Min; Wang, Yu; Huang, Fu Bing

    2014-09-01

    Long-term excessive sodium fluoride (NaF) intake can cause many bone diseases and nonskeletal fluorosis. The kidneys are the primary organs involved in the excretion and retention of NaF. The objective of the present study was to determine the effects of NaF treatment on renal cell apoptosis, DNA damage, and the protein expression levels of cytosolic cytochrome C (Cyt C) and cleaved caspases 9, 8, and 3 in vivo. Male Sprague-Dawley rats were divided randomly into four groups (control, low fluoride, medium fluoride, and high fluoride) and administered 0, 50, 100, and 200 mg/L of NaF, respectively, via drinking water for 120 days. Histopathological changes in the kidneys were visualized using hematoxylin and eosin staining. Renal cell apoptosis was examined using flow cytometry, and renal cell DNA damage was detected using the comet assay. Cytosolic Cyt C and cleaved caspases 9, 8, and 3 protein expression levels were visualized using immunohistochemistry and Western blotting. The results showed that NaF treatment increased apoptosis and DNA damage. In addition, NaF treatment increased the protein expression levels of cytosolic Cyt C and cleaved caspases 9, 8, and 3. These results indicated that NaF induces apoptosis in the kidney of rats through caspase-mediated pathway, and DNA damage may be involved in this process.

  20. Caffeine-induced nuclear translocation of FoxO1 triggers Bim-mediated apoptosis in human glioblastoma cells.

    PubMed

    Sun, Fei; Han, Dong-Feng; Cao, Bo-Qiang; Wang, Bo; Dong, Nan; Jiang, De-Hua

    2016-03-01

    Caffeine is one of the most commonly ingested neuroactive compounds and exhibits anticancer effects through induction of apoptosis and suppression of cell proliferation. However, the mechanisms underlying these effects are currently unknown. In this study, we investigated the mechanisms of caffeine-induced apoptosis in U251 cells (human glioma cell line). We analyzed the inhibitory effects of caffeine on cell proliferation by performing WST-8 and colony formation assays; in addition, cell survival was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and flow cytometric analysis. Western blotting was used to investigate the role played by FoxO1 in the proapoptotic effects of caffeine on glioma cells. Results showed that caffeine inhibited proliferation and survival of human glioma cells, induced apoptosis, and increased the expression of FoxO1 and its proapoptotic target Bim. In addition, we found that FoxO1 enhanced the transcription of its proapoptotic target Bim. In summary, our data indicates that FoxO1-Bim mediates caffeine-induced regression of glioma growth by activating cell apoptosis, thereby providing new mechanistic insight into the possible use of caffeine in treating human cancer.

  1. TRPC1/TRPC3 channels mediate lysophosphatidylcholine-induced apoptosis in cultured human coronary artery smooth muscles cells

    PubMed Central

    Wang, Yuan; Wang, Yan; Li, Gui-Rong

    2016-01-01

    The earlier study showed that lysophosphatidylcholine (lysoPC) induced apoptosis in human coronary artery smooth muscle cells (SMCs); however, the related molecular mechanisms are not fully understood. The present study investigated how lysoPC induces apoptosis in cultured human coronary artery SMCs using cell viability assay, flow cytometry, confocal microscopy, and molecular biological approaches. We found that lysoPC reduced cell viability in human coronary artery SMCs by eliciting a remarkable Ca2+ influx. The effect was antagonized by La3+, SKF-96365, or Pyr3 as well as by silencing TRPC1 or TRPC3. Co-immunoprecipitation revealed that TRPC1 and TRPC3 had protein-protein interaction. Silencing TRPC1 or TRPC3 countered the lysoPC-induced increase of Ca2+ influx and apoptosis, and the pro-apoptotic proteins Bax and cleaved caspase-3 and decrease of the anti-apoptotic protein Bcl-2 and the survival kinase pAkt. These results demonstrate the novel information that TRPC1/TRPC3 channels mediate lysoPC-induced Ca2+ influx and apoptosis via activating the pro-apoptotic proteins Bax and cleaved caspase-3 and inhibiting the anti-apoptotic protein Bcl-2 and the survival kinase pAkt in human coronary artery SMCs, which implies that TRPC1/TRC3 channels may be the therapeutic target of lysoPC-induced disorders such as atherosclerosis. PMID:27472391

  2. Avian reovirus S1133-induced apoptosis is associated with Bip/GRP79-mediated Bim translocation to the endoplasmic reticulum.

    PubMed

    Lin, Ping-Yuan; Liu, Hung-Jen; Chang, Ching-Dong; Chen, Yo-Chia; Chang, Chi-I; Shih, Wen-Ling

    2015-04-01

    In this study the mechanism of avian reovirus (ARV) S1133-induced pathogenesis was investigated, with a focus on the contribution of ER stress to apoptosis. Our results showed that upregulation of the ER stress response protein, as well as caspase-3 activation, occurred in ARV S1133-infected cultured cells and in SPF White Leghorn chicks organs. Upon infection, Bim was translocated specifically to the ER, but not mitochondria, in the middle to late infectious stages. In addition, ARV S1133 induced JNK phosphorylation and promoted JNK-Bim complex formation, which correlated with the Bim translocation and apoptosis induction that was observed at the same time point. Knockdown of BiP/GRP78 by siRNA and inhibition of BiP/GRP78 using EGCG both abolished the formation of the JNK-Bim complex, caspase-3 activation, and subsequent apoptosis induction by ARV S1133 efficiently. These results suggest that BiP/GRP78 played critical roles and works upstream of JNK-Bim in response to the ARV S1133-mediated apoptosis process.

  3. Variability of yellow tulp (Moraea pallida Bak.) toxicity.

    PubMed

    Snyman, L D; Schultz, R A; van den Berg, H

    2011-06-01

    Yellow tulp (Moraea pallida Bak.), collected predominantly during the flowering stage from a number of sites in South Africa, showed large variation in digoxin equivalent values, indicating variability in yellow tulp toxicity. Very low values were recorded for tulp collected from certain sites in the Northern Cape.

  4. Overexpression of human kynurenine-3-monooxygenase protects against 3-hydroxykynurenine-mediated apoptosis through bidirectional nonlinear feedback

    PubMed Central

    Wilson, K; Auer, M; Binnie, M; Zheng, X; Pham, N T; Iredale, J P; Webster, S P; Mole, D J

    2016-01-01

    Kynurenine 3-monooxygenase (KMO) is a critical regulator of inflammation. The preferred KMO substrate, kynurenine, is converted to 3-hydroxykynurenine (3HK), and this product exhibits cytotoxicity through mechanisms that culminate in apoptosis. Here, we report that overexpression of human KMO with orthotopic localisation to mitochondria creates a metabolic environment during which the cell exhibits increased tolerance for exogenous 3HK-mediated cellular injury. Using the selective KMO inhibitor Ro61-8048, we show that KMO enzyme function is essential for cellular protection. Pan-caspase inhibition with Z-VAD-FMK confirmed apoptosis as the mode of cell death. By defining expression of pathway components upstream and downstream of KMO, we observed alterations in other key kynurenine pathway components, particularly tryptophan-2,3-dioxygenase upregulation, through bidirectional nonlinear feedback. KMO overexpression also increased expression of inducible nitric oxide synthase (iNOS). These changes in gene expression are functionally relevant, because siRNA knockdown of the pathway components kynureninase and quinolinate phosphoribosyl transferase caused cells to revert to a state of susceptibility to 3HK-mediated apoptosis. In summary, KMO overexpression, and importantly KMO activity, have metabolic repercussions that fundamentally affect resistance to cell stress. PMID:27077813

  5. Stearoyl-CoA Desaturase-1 Protects Cells against Lipotoxicity-Mediated Apoptosis in Proximal Tubular Cells

    PubMed Central

    Iwai, Tamaki; Kume, Shinji; Chin-Kanasaki, Masami; Kuwagata, Shogo; Araki, Hisazumi; Takeda, Naoko; Sugaya, Takeshi; Uzu, Takashi; Maegawa, Hiroshi; Araki, Shin-ichi

    2016-01-01

    Saturated fatty acid (SFA)-related lipotoxicity is a pathogenesis of diabetes-related renal proximal tubular epithelial cell (PTEC) damage, closely associated with a progressive decline in renal function. This study was designed to identify a free fatty acid (FFA) metabolism-related enzyme that can protect PTECs from SFA-related lipotoxicity. Among several enzymes involved in FFA metabolism, we identified stearoyl-CoA desaturase-1 (SCD1), whose expression level significantly decreased in the kidneys of high-fat diet (HFD)-induced diabetic mice, compared with non-diabetic mice. SCD1 is an enzyme that desaturates SFAs, converting them to monounsaturated fatty acids (MUFAs), leading to the formation of neutral lipid droplets. In culture, retrovirus-mediated overexpression of SCD1 or MUFA treatment significantly ameliorated SFA-induced apoptosis in PTECs by enhancing intracellular lipid droplet formation. In contrast, siRNA against SCD1 exacerbated the apoptosis. Both overexpression of SCD1 and MUFA treatment reduced SFA-induced apoptosis via reducing endoplasmic reticulum stress in cultured PTECs. Thus, HFD-induced decrease in renal SCD1 expression may play a pathogenic role in lipotoxicity-induced renal injury, and enhancing SCD1-mediated desaturation of SFA and subsequent formation of neutral lipid droplets may become a promising therapeutic target to reduce SFA-induced lipotoxicity. The present study provides a novel insight into lipotoxicity in the pathogenesis of diabetic nephropathy. PMID:27834856

  6. Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species

    PubMed Central

    Liang, Wenquan; Cai, Aizhen; Chen, Guozhu; Xi, Hongqing; Wu, Xiaosong; Cui, Jianxin; Zhang, Kecheng; Zhao, Xudong; Yu, Jiyun; Wei, Bo; Chen, Lin

    2016-01-01

    The prognosis of gastric cancer remains poor due to clinical drug resistance. Novel drugs are urgently needed. Shikonin (SHK), a natural naphthoquinone, has been reported to trigger cell death and overcome drug resistance in anti-tumour therapy. In this study, we investigated the effectiveness and molecular mechanisms of SHK in treatment with gastric cancer. In vitro, SHK suppresses proliferation and triggers cell death of gastric cancer cells but leads minor damage to gastric epithelial cells. SHK induces the generation of intracellular reactive oxygen species (ROS), depolarizes the mitochondrial membrane potential (MMP) and ultimately triggers mitochondria-mediated apoptosis. We confirmed that SHK induces apoptosis of gastric cancer cells not only in a caspase-dependent manner which releases Cytochrome C and triggers the caspase cascade, but also in a caspase-independent manner which mediates the nuclear translocation of apoptosis-inducing factor and Endonuclease G. Furthermore, we demonstrated that SHK enhanced the chemotherapeutic sensitivity of 5-fluorouracil and oxaliplatin in vitro and in vivo. Taken together, our data show that SHK may be a novel therapeutic agent in the clinical treatment of gastric cancer. PMID:27905569

  7. A novel cisplatin mediated apoptosis pathway is associated with acid sphingomyelinase and FAS proapoptotic protein activation in ovarian cancer.

    PubMed

    Maurmann, L; Belkacemi, L; Adams, N R; Majmudar, P M; Moghaddas, S; Bose, R N

    2015-07-01

    Platinum-based anticancer drugs, including cisplatin and carboplatin, have been cornerstones in the treatment of solid tumors. We report here that these DNA-damaging agents, particularly cisplatin, induce apoptosis through plasma membrane disruption, triggering FAS death receptor via mitochondrial (intrinsic) pathways. Our objectives were to: quantify the composition of membrane metabolites; and determine the potential involvement of acid sphingomyelinase (ASMase) in the FAS-mediated apoptosis in ovarian cancer after cisplatin treatment. The resulting analysis revealed enhanced apoptosis as measured by: increased phosphocholine, and glycerophosphocholine; elevated cellular energetics; and phosphocreatine and nucleoside triphosphate concentrations. The plasma membrane alterations were accompanied by increased ASMase activity, leading to the upregulation of FAS, FASL and related pro-apoptotic BAX and PUMA genes. Moreover FAS, FASL, BAX, PUMA, CASPASE-3 and -9 proteins were upregulated. Our findings implicate ASMase activity and the intrinsic pathways in cisplatin-mediated membrane demise, and contribute to our understanding of the mechanisms by which ovarian tumors may become resistant to cisplatin.

  8. FLIP switches Fas-mediated glucose signaling in human pancreatic β cells from apoptosis to cell replication

    PubMed Central

    Maedler, Kathrin; Fontana, Adriano; Ris, Frédéric; Sergeev, Pavel; Toso, Christian; Oberholzer, José; Lehmann, Roger; Bachmann, Felix; Tasinato, Andrea; Spinas, Giatgen A.; Halban, Philippe A.; Donath, Marc Y.

    2002-01-01

    Type 2 diabetes mellitus results from an inadequate adaptation of the functional pancreatic β cell mass in the face of insulin resistance. Changes in the concentration of glucose play an essential role in the regulation of β cell turnover. In human islets, elevated glucose concentrations impair β cell proliferation and induce β cell apoptosis via up-regulation of the Fas receptor. Recently, it has been shown that the caspase-8 inhibitor FLIP may divert Fas-mediated death signals into those for cell proliferation in lymphatic cells. We observed expression of FLIP in human pancreatic β cells of nondiabetic individuals, which was decreased in tissue sections of type 2 diabetic patients. In vitro exposure of islets from nondiabetic organ donors to high glucose levels decreased FLIP expression and increased the percentage of apoptotic terminal deoxynucleotidyltransferase-mediated UTP end labeling (TUNEL)-positive β cells; FLIP was no longer detectable in such TUNEL-positive β cells. Up-regulation of FLIP, by incubation with transforming growth factor β or by transfection with an expression vector coding for FLIP, protected β cells from glucose-induced apoptosis, restored β cell proliferation, and improved β cell function. The beneficial effects of FLIP overexpression were blocked by an antagonistic anti-Fas antibody, indicating their dependence on Fas receptor activation. The present data provide evidence for expression of FLIP in the human β cell and suggest a novel approach to prevent and treat diabetes by switching Fas signaling from apoptosis to proliferation. PMID:12060768

  9. Acid Sphingomyelinase Mediates Oxidized-LDL Induced Apoptosis in Macrophage via Endoplasmic Reticulum Stress

    PubMed Central

    Zhao, Min; Pan, Wei; Shi, Rui-zheng; Bai, Yong-ping; You, Bo-yang; Zhang, Kai; Fu, Qiong-mei; Schuchman, Edward H.

    2016-01-01

    Aim: Macrophage apoptosis is a vital event in advanced atherosclerosis, and oxidized low-density lipoprotein (ox-LDL) is a major contributor to this process. Acid sphingomyelinase (ASM) and ceramide are also involved in the induction of apoptosis, particularly in macrophages. Our current study focuses on ASM and investigates its role in ox-LDL-induced macrophage apoptosis. Methods: Human THP-1 and mouse peritoneal macrophages were cultured in vitro and treated with ox-LDL. ASM activity and ceramide levels were quantified using ultra performance liquid chromatography. Protein and mRNA levels were analyzed using Western blot analysis and quantitative realtime PCR, respectively. Cell apoptosis was determined using Hoechst staining and flow cytometry. Results: Ox-LDL-induced macrophage apoptosis was triggered by profound endoplasmic reticulum (ER) stress, leading to an upregulation of ASM activity and ceramide levels at an early stage. ASM was inhibited by siRNA or desipramine (DES), and/or ceramide was degraded by recombinant acid ceramidase (AC). These events attenuated the effect of ox-LDL on ER stress. In contrast, recombinant ASM upregulated ceramide and ER stress. ASM siRNA, DES, recombinant AC, and ER stress inhibitor 4-phenylbutyric acid were blocked by elevated levels of C/EBP homologous protein (CHOP); ox-LDL induced elevated levels of CHOP. These events attenuated macrophage apoptosis. Conclusion: These results indicate that ASM/ceramide signaling pathway is involved in ox-LDL-induced macrophage apoptosis via ER stress pathway. PMID:26923251

  10. The role of perforin-mediated cell apoptosis in murine models of infusion-induced bone marrow failure

    PubMed Central

    Sarcon, Annahita K.; Desierto, Marie J.; Zhou, Wenjun; Visconte, Valeria; Gibellini, Federica; Chen, Jichun; Young, Neal S.

    2009-01-01

    Objective To investigate the role of perforin-mediated cell apoptosis in murine models of immune-mediated bone marrow (BM) failure. Methods We compared C57BL/6J (B6) mice carrying a perforin gene deletion (Prf−/−) with wild type (WT) controls for cellular composition in lymphohematopoietic tissues. Lymph node (LN) cells from Prf−/− mice were co-incubated with BM cells from B10-H2b/LilMcdJ (C.B10) mice in an apoptosis assay in vitro. We then infused Prf−/− and WT B6 LN cells into sublethally-irradiated C.B10 and CByB6F1 recipients with mismatches at the minor- and major-histocompatibility loci, respectively, in order to induce BM failure. Cellular composition was analyzed by flow cytometry. Results Prf−/− mice showed normal lymphoid cell composition but Prf−/− LN cells had reduced ability to induce C.B10 BM cell apoptosis in vitro. Infusion of 5–10 × 106 Prf−/− LN cells produced obvious BM failure in C.B10 and CByB6F1 recipients; pancytopenia and BM hypocellularity were only slightly less severe than those caused by infusion of 5 × 106 WT B6 LN cells. Infused Prf−/− LN cells showed less T cell expansion, normal T cell activation, and higher proportions of T cells expressing gamma-interferon, tissue necrosis factor alpha and Fas ligand CD178, in comparison to infused WT B6 LN cells. Fas expression was equally high in residual BM cells in recipient of both Prf−/− and B6 LN cells. Conclusion Perforin deficiency alters T cell expansion but up-regulates T cell Fas ligand expression. Perforin-mediated cell death appears to play a minor role in mouse models of immune-mediated BM failure. PMID:19216020

  11. Apoptotic pore formation is associated with in-plane insertion of Bak or Bax central helices into the mitochondrial outer membrane

    PubMed Central

    Westphal, Dana; Dewson, Grant; Menard, Marie; Frederick, Paul; Iyer, Sweta; Bartolo, Ray; Gibson, Leonie; Czabotar, Peter E.; Smith, Brian J.; Adams, Jerry M.; Kluck, Ruth M.

    2014-01-01

    The pivotal step on the mitochondrial pathway to apoptosis is permeabilization of the mitochondrial outer membrane (MOM) by oligomers of the B-cell lymphoma-2 (Bcl-2) family members Bak or Bax. However, how they disrupt MOM integrity is unknown. A longstanding model is that activated Bak and Bax insert two α-helices, α5 and α6, as a hairpin across the MOM, but recent insights on the oligomer structures question this model. We have clarified how these helices contribute to MOM perforation by determining that, in the oligomers, Bak α5 (like Bax α5) remains part of the protein core and that a membrane-impermeable cysteine reagent can label cysteines placed at many positions in α5 and α6 of both Bak and Bax. The results are inconsistent with the hairpin insertion model but support an in-plane model in which α5 and α6 collapse onto the membrane and insert shallowly to drive formation of proteolipidic pores. PMID:25228770

  12. Differential regulation of cyclooxygenase-2 expression by phytosphingosine derivatives, NAPS and TAPS, and its role in the NAPS or TAPS-mediated apoptosis.

    PubMed

    Kim, Hye Jung; Shin, Weonhye; Park, Chang Seo; Kim, Hyung-Ok; Kim, Tae-Yoon

    2003-11-01

    We investigated the effect of novel phytosphingosine derivatives, N-acetyl phytosphingosine (NAPS) and tetra-acetyl phytosphingosine (TAPS), on induction of apoptosis in HaCaT cells in comparison with C2-ceramide. NAPS/TAPS effectively decreased cell viability in a dose dependent manner mainly due to apoptosis. An apoptosis expression array analysis showed that in the TAPS treated cells 13 genes including COX-2 encoding cyclooxygenase-2, the most induced by TAPS, were up-regulated while 23 others down-regulated. Therefore, we examined the mechanism underlying the altered expression of COX-2. Assays with inhibitors and antibodies against proteins involved in signal transduction demonstrated that NAPS and TAPS elevated COX-2 expression via tyrosine kinase, src, PI-3 kinase and PKC, followed by ERK activation. However, P38 was not involved in the NAPS-mediated COX-2 expression but in the TAPS-mediated. We further demonstrated by FACS analyses that NAPS- or TAPS-mediated apoptosis was greatly increased in cells treated with celecoxib, a selective COX-2 inhibitor. Inhibition of the ERK pathway apparently involved in the NAPS/TAPS-mediated COX-2 expression enhanced the NAPS/TAPS-mediated apoptosis, whereas inhibition of the P38 pathway did not. These results suggest that expression of COX-2 in the TAPS- or NAPS-treated cells may be increased to counteract the effect of those compounds on apoptosis.

  13. A novel function of peroxiredoxin 1 (Prx-1) in apoptosis signal-regulating kinase 1 (ASK1)-mediated signaling pathway.

    PubMed

    Kim, So Yong; Kim, Tae Jin; Lee, Ki-Young

    2008-06-11

    We report a novel function of peroxiredoxin-1 (Prx-1) in the ASK1-mediated signaling pathway. Prx-1 interacts with ASK1 via the thioredoxin-binding domain of ASK1 and this interaction is highly inducible by H2O2. However, catalytic mutants of Prx1, C52A, C173A, and C52A/C173A, could not undergo H2O2 inducible interactions, indicating that the redox-sensitive catalytic activity of Prx-1 is required for the interaction with ASK1. Prx-1 overexpression inhibited the activation of ASK1, and resulted in the inhibition of downstream signaling cascades such as the MKK3/6 and p38 pathway. In Prx-1 knockdown cells, ASK1, p38, and JNK were quickly activated, leading to apoptosis in response to H2O2. These findings suggest a negative role of Prx-1 in ASK1-induced apoptosis.

  14. Promyelocytic leukemia protein enhances apoptosis of gastric cancer cells through Yes-associated protein.

    PubMed

    Xu, Zhipeng; Chen, Jiamin; Shao, Liming; Ma, Wangqian; Xu, Dingting

    2015-09-01

    It has been shown that Yes-associated protein (YAP) acts as a transcriptional co-activator to regulate p73-dependent apoptosis in response to DNA damage in some cell types, and promyelocytic leukemia (PML) protein is involved in the regulation loop through stabilization of YAP through sumoylation. Although YAP has been shown to be significantly upregulated in gastric cancer, whether the YAP/PML/p73 regulation loop also functions in gastric cancer is unknown. Here, we show significantly higher levels of YAP and significantly lower levels of PML in the gastric cancer specimen. Overexpression of YAP in gastric cancer cells significantly increased cell growth, but did not affect apoptosis. However, overexpression of PML in gastric cancer cells significantly increased cell apoptosis, resulting in decreases in cell growth, which seemed to require the presence of YAP. The effect of PML on apoptosis appeared to be conducted through p73-mediated modulation of apoptosis-associated genes, Bcl-2, Bak, and caspase9. Thus, our study suggests the presence of a YAP/PML/p73 regulatory loop in gastric cancer, and highlights PML as a promising tumor suppressor in gastric cancer through YAP-coordinated cancer cell apoptosis.

  15. Mst1 is an interacting protein that mediates PHLPPs' induced apoptosis.

    PubMed

    Qiao, Meng; Wang, Yaqi; Xu, Xiaoen; Lu, Jing; Dong, Yongli; Tao, Wufan; Stein, Janet; Stein, Gary S; Iglehart, James D; Shi, Qian; Pardee, Arthur B

    2010-05-28

    PHLPP1 and PHLPP2 phosphatases exert their tumor-suppressing functions by dephosphorylation and inactivation of Akt in several breast cancer and glioblastoma cells. However, Akt, or other known targets of PHLPPs that include PKC and ERK, may not fully elucidate the physiological role of the multifunctional phosphatases, especially their powerful apoptosis induction function. Here, we show that PHLPPs induce apoptosis in cancer cells independent of the known targets of PHLPPs. We identified Mst1 as a binding partner that interacts with PHLPPs both in vivo and in vitro. PHLPPs dephosphorylate Mst1 on the T387 inhibitory site, which activate Mst1 and its downstream effectors p38 and JNK to induce apoptosis. The same T387 site can be phosphorylated by Akt. Thus, PHLPP, Akt, and Mst1 constitute an autoinhibitory triangle that controls the fine balance of apoptosis and proliferation that is cell type and context dependent.

  16. Lymphotropic Virions Affect Chemokine Receptor-Mediated Neural Signaling and Apoptosis: Implications for Human Immunodeficiency Virus Type 1-Associated Dementia

    PubMed Central

    Zheng, Jialin; Ghorpade, Anuja; Niemann, Douglas; Cotter, Robin L.; Thylin, Michael R.; Epstein, Leon; Swartz, Jennifer M.; Shepard, Robin B.; Liu, Xiaojuan; Nukuna, Adeline; Gendelman, Howard E.

    1999-01-01

    Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neurons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD) without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages. Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai) produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glycoprotein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic) strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by 12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play an important role in HAD neuropathogenesis. PMID:10482576

  17. Emodin induces human T cell apoptosis in vitro by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction

    PubMed Central

    Qu, Kai; Shen, Nai-ying; Xu, Xin-sen; Su, Hai-bo; Wei, Ji-chao; Tai, Ming-hui; Meng, Fan-di; Zhou, Lei; Zhang, Yue-lang; Liu, Chang

    2013-01-01

    Aim: To elucidate the molecular mechanisms underlying the immunosuppressive effects of emodin isolated from Rheum palmatum L. Methods: Human T cells were isolated from the peripheral venous blood of 10 healthy adult donors. Cell viability was analyzed with MTT assay. AO/EB and Annexin V/PI staining and DNA damage assay were used to detect cell apoptosis. Fluorescence staining was used to detect the levels of ROS, the mitochondrial membrane potential and intracellular Ca2+. Colorimetry was used to detect the levels of MDA and total SOD and GSH/GSSG ratio. The expression and activity of caspase-3, -4, and -9 were detected with Western blotting and a fluorometric assay. Western blotting was also used to detect the expression of Bcl-2, Bax, cytochrome C, and endoplasmic reticulum (ER) markers. Results: Emodin (1, 10, and 100 μmol/L) inhibited the growth of human T cells and induced apoptosis in dose- and time dependent manners. Emodin triggered ER stress and significantly elevated intracellular free Ca2+ in human T cells. It also disrupted mitochondrial membrane potential, and increased cytosolic level of cytochrome C, and the levels of activated cleavage fragments of caspase-3, -4, and -9 in human T cells. Furthermore, emodin significantly increased the levels of ROS and MDA, inhibited both SOD level and GSH/GSSG ratio in human T cells, whereas co-incubation with the ROS scavenger N-acetylcysteine (NAC, 20 μmol/L) almost completely blocked emodin-induced ER stress and mitochondrial dysfunction in human T cells, and decreased the caspase cascade-mediated apoptosis. Conclusion: Emodin exerts immunosuppressive actions at least partly by inducing apoptosis of human T cells, which is triggered by ROS-mediated ER stress and mitochondrial dysfunction. PMID:23811723

  18. Beclin-1-mediated autophagy protects spinal cord neurons against mechanical injury-induced apoptosis.

    PubMed

    Wang, Zhen-Yu; Lin, Jian-Hua; Muharram, Akram; Liu, Wen-Ge

    2014-06-01

    Apoptosis has been widely reported to be involved in the pathogenesis associated with spinal cord injury (SCI). Recently, autophagy has also been implicated in various neuronal damage models. However, the role of autophagy in SCI is still controversial and its interrelationship with apoptosis remains unclear. Here, we used an in vitro SCI model to observe a time-dependent induction of autophagy and apoptosis. Mechanical injury induced autophagy markers such as LC3 lipidation, LC3II/LC3I conversion, and Beclin-1 expression. Injured neurons showed decreased cell viability and increased apoptosis. To elucidate the effect of autophagy on apoptosis, the mechanically-injured neurons were treated with the mTOR inhibitor rapamycin and 3-methyl adenine (3-MA), which are known to regulate autophagy positively and negatively, respectively. Rapamycin-treated neurons showed the highest level of cell viability and lowest level of apoptosis among the injured neurons and those treated with 3-MA showed the reciprocal effect. Notably, rapamycin-treated neurons exhibited slightly reduced Bax expression and significantly increased Bcl-2 expression. Furthermore, by plasmid transfection, we showed that Beclin-1-overexpressing neuronal cells responded to mechanical injury with greater LC3II/LC3I conversion and cell viability, lower levels of apoptosis, higher Bcl-2 expression, and unaltered Bax expression as compared to vector control cells. Beclin-1-knockdown neurons showed almost the opposite effects. Taken together, our results suggest that autophagy may serve as a protection against apoptosis in mechanically-injured spinal cord neurons. Targeting mTOR and/or enhancing Beclin-1 expression might be alternative therapeutic strategies for SCI.

  19. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro

    PubMed Central

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    2016-01-01

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis. PMID:27689798

  20. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro.

    PubMed

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis.

  1. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    PubMed Central

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  2. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro.

    PubMed

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan; Lei, Xiao-Fei; Zhang, Ji-Xiang; Dong, Wei-Guo

    2012-05-11

    Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC(50)=75 μM). This cytotoxicity was reflected by cell cycle arrest at G(2)/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.

  3. Bicalutamide-induced hypoxia potentiates RUNX2-mediated Bcl-2 expression resulting in apoptosis resistance

    PubMed Central

    Browne, G; Nesbitt, H; Ming, L; Stein, G S; Lian, J B; McKeown, S R; Worthington, J

    2012-01-01

    Background: We have previously shown that hypoxia selects for more invasive, apoptosis-resistant LNCaP prostate cancer cells, with upregulation of the osteogenic transcription factor RUNX2 and the anti-apoptotic factor Bcl-2 detected in the hypoxia-selected cells. Following this observation, we questioned through what biological mechanism this occurs. Methods: We examined the effect of hypoxia on RUNX2 expression and the role of RUNX2 in the regulation of Bcl-2 and apoptosis resistance in prostate cancer. Results: Hypoxia increased RUNX2 expression in vitro, and bicalutamide-treated LNCaP tumours in mice (previously shown to have increased tumour hypoxia) exhibited increased RUNX2 expression. In addition, RUNX2-overexpressing LNCaP cells showed increased cell viability, following bicalutamide and docetaxel treatment, which was inhibited by RUNX2 siRNA; a range of assays demonstrated that this was due to resistance to apoptosis. RUNX2 expression was associated with increased Bcl-2 levels, and regulation of Bcl-2 by RUNX2 was confirmed through chromatin immunoprecipitation (ChIP) binding and reporter assays. Moreover, a Q-PCR array identified other apoptosis-associated genes upregulated in the RUNX2-overexpressing LNCaP cells. Conclusion: This study establishes a contributing mechanism for progression of prostate cancer cells to a more apoptosis-resistant and thus malignant phenotype, whereby increased expression of RUNX2 modulates the expression of apoptosis-associated factors, specifically Bcl-2. PMID:23073173

  4. RhoA and p38 MAPK mediate apoptosis induced by cellular cholesterol depletion.

    PubMed

    Calleros, Laura; Lasa, Marina; Rodríguez-Alvarez, Francisco J; Toro, María J; Chiloeches, Antonio

    2006-07-01

    Cholesterol is essential for cell viability, and homeostasis of cellular cholesterol is crucial to various cell functions. Here we examined the effect of cholesterol depletion on apoptosis and the mechanisms underlying this effect in NIH3T3 cells. We show that chronic cholesterol depletion achieved with lipoprotein-deficient serum (LPDS) and 25-hydroxycholesterol (25-HC) treatment resulted in a significant increase in cellular apoptosis and caspase-3 activation. This effect is not due to a deficiency of nonsterol isoprenoids, intermediate metabolites of the cholesterol biosynthetic pathway, but rather to low cholesterol levels, since addition of cholesterol together with LPDS and 25-HC nearly abolished apoptosis, whereas addition of farnesyl pyrophosphate or geranylgeranyl-pyrophosphate did not reverse the cell viability loss induced by LPDS plus 25-HC treatment. These effects were accompanied by an increase in ERK, JNK and p38 MAPK activity. However, only the inhibition of p38 MAPK with the specific inhibitor SB203580 or the overexpression of a kinase defective MKK6 resulted in a significant decrease in apoptosis and caspase-3 cleavage induced by cholesterol depletion. Furthermore, LPDS plus 25-HC increased RhoA activity, and this effect was reversed by addition of exogenous cholesterol. Finally, overexpression of the dominant negative N19RhoA inhibited p38 MAPK phosphorylation and apoptosis induced by low cholesterol levels. Together, our results demonstrate that cholesterol depletion induces apoptosis through a RhoA- and p38 MAPK-dependent mechanism.

  5. Methyl antcinate A from Antrodia camphorata induces apoptosis in human liver cancer cells through oxidant-mediated cofilin- and Bax-triggered mitochondrial pathway.

    PubMed

    Hsieh, Yun-Chih; Rao, Yerra Koteswara; Wu, Chun-Chi; Huang, Chi-Ying F; Geethangili, Madamanchi; Hsu, Shih-Lan; Tzeng, Yew-Min

    2010-07-19

    We investigated the effects of antcin A, antcin C, and methyl antcinate A (MAA) isolated from Antrodia camphorata on the proliferation of human liver cancer cell lines Huh7, HepG2, and Hep3B and the normal cell rat hepatocytes. The three compounds selectively inhibit the proliferation of tumor cells rather than normal cells, with IC(50) values ranging from 30.2 to 286.4 microM. The compound MAA was a more potent cytotoxic agent than antcins A and C with IC(50) values of 52.2, 78.0, and 30.2 microM against HepG2, Hep3B, and Huh7 cells, respectively. To elucidate the molecular mechanism, treatment of Huh7 cells with 100 microM MAA induced an apoptotic cell death, which was characterized by the appearance of sub-G1 population, DNA fragmentation, TUNEL positive cells, and caspase activation. MAA triggered the mitochondrial apoptotic pathway, as indicated by an increase in the protein expression of Bax, Bak, and PUMA, as well as a decrease in Bcl-(XL) and Bcl-2 and disruption of mitochondrial membrane potential and promotion of mitochondrial cytochrome c release, as well as activation of caspases-2, -3, and -9. We also found that pretreatment with inhibitors of caspases-2, -3, and -9 noticeably blocked MAA-triggered apoptosis. Furthermore, intracellular reactive oxygen species (ROS) generation and NADPH oxidase activation were observed in MAA-stimulated Huh7 cells. Mechanistic studies showed that MAA induces mitochondrial translocation of cofilin. When Huh7 cells were treated with cyclosporine A and bongkrekic acid, an inhibitor of the mitochondria permeability transition pore, the levels of cell death induced by MAA were significantly attenuated. Additionally, pretreatment of Huh7 cells with antioxidants ascorbic acid and N-acetyl cysteine markedly attenuated the MAA-induced apoptosis by upregulation of Bax, Bak, and PUMA, mitochondrial translocation of cofilin, activation of caspase-3, and cell death. Taken together, our results provide the first evidence of the

  6. Maintenance of the relative proportion of oligodendrocytes to axons even in the absence of BAX and BAK

    PubMed Central

    Kawai, Kumi; Itoh, Takayuki; Itoh, Aki; Horiuchi, Makoto; Wakayama, Kouji; Bannerman, Peter; Garbern, James Y.; Pleasure, David; Lindsten, Tullia

    2009-01-01

    Highly purified oligodendroglial lineage cells from mice lacking functional bax and bak genes were resistant to apoptosis after in vitro differentiation, indicating an essential role of the intrinsic apoptotic pathway in apoptosis of oligodendrocytes in the absence of neurons (axons) and other glial cells. These mice therefore provide a valuable tool with which to evaluate the significance of the intrinsic apoptotic pathway in regulating the population sizes of oligodendrocytes and oligodendroglial progenitor cells. Quantitative analysis of the optic nerves and the dorsal columns of the spinal cord revealed that the absolute numbers of mature oligodendrocytes immunolabeled for aspartoacylase, and adult glial progenitor cells expressing NG2 chondroitin sulfate proteoglycan, were increased in both white matter tracts of adult bax/bak-deficient mice, and, to a lesser extent, bax-deficient mice, except for no increase in NG2-positive progenitor cells in the dorsal columns of these strains of mutant mice. These increases in mature oligodendrocytes and progenitor cells in bax/bak-deficient mice were unexpectedly proportional to increases in numbers of axons in these white matter tracts, thus retaining the oligodendroglial lineage to axon ratios at most 1.3-fold of the physiological numbers. This contrasts to the prominent expansion in numbers of neural precursor cells in the subventricular zones of these adult mutant mice. Our study indicates that quantitative homeostatic control of the oligodendroglial lineage is distinct from that of neural precursor cells, and that other regulatory mechanism(s), in addition to apoptotic elimination through the intrinsic pathway, prevent the overproduction of highly mitotic oligodendroglial progenitor cells. PMID:20128842

  7. Delphinidin induces apoptosis via cleaved HDAC3-mediated p53 acetylation and oligomerization in prostate cancer cells

    PubMed Central

    Jeon, Hyelin; Sung, Gi-Jun; Park, Soo-Yeon; Jun, Woo Jin; Lee, Yoo-Hyun; Lee, Jeongmin; Lee, Sang-wook; Yoon, Ho-Geun; Choi, Kyung-Chul

    2016-01-01

    Delphinidin is a major anthocyanidin compound found in various fruits. It has anti-inflammatory, anti-oxidant, and various other biological activities. In this study, we identified the epigenetic modulators that mediate the apoptotic effect of delphinidin in human prostate cancer cells. We found that treatment of LNCaP cells (a p53 wild-type, human prostate cancer cell line) with delphinidin increased caspase-3, −7, and −8 activity, whereas it decreased histone deacetylase activity. Among class I HDACs, the activity of HDAC3 was specifically inhibited by delphinidin. Moreover, the induction of apoptosis by delphinidin was dependent on caspase-mediated cleavage of HDAC3, which results in the acetylation and stabilization of p53. We also observed that delphinidin potently upregulated pro-apoptotic genes that are positively regulated by p53, and downregulated various anti-apoptotic genes. Taken together, these results show that delphinidin induces p53-mediated apoptosis by suppressing HDAC activity and activating p53 acetylation in human prostate cancer LNCaP cells. Therefore, delphinidin may be useful in the prevention of prostate cancer. PMID:27462923

  8. Involvement of hydrogen peroxide in safingol-induced endonuclease G-mediated apoptosis of squamous cell carcinoma cells.

    PubMed

    Hamada, Masakazu; Wakabayashi, Ken; Masui, Atsushi; Iwai, Soichi; Imai, Tomoaki; Yura, Yoshiaki

    2014-02-17

    Safingol, a L-threo-dihydrosphingosine, induced the nuclear translocation of a mitochondrial apoptogenic mediator--endonuclease G (endo G)--and apoptosis of human oral squamous cell carcinoma (SCC) cells. Upstream mediators remain largely unknown. The levels of hydrogen peroxide (H2O2) in cultured oral SCC cells were measured. Treatment with safingol increased intracellular H2O2 levels but not extracellular H2O2 levels, indicating the production of H2O2. The cell killing effect of safingol and H2O2 was diminished in the presence of reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC). Dual staining of cells with annexin V and propidium iodide (PI) revealed that apoptotic cell death occurred by treatment with H2O2 and safingol. The number of apoptotic cells was reduced in the presence of NAC. In untreated cells, endo G distributed in the cytoplasm and an association of endo G with mitochondria was observed. After treatment with H2O2 and safingol, endo G was distributed to the nucleus and cytoplasm, indicating the nuclear translocation of the mitochondrial factor. NAC prevented the increase of apoptotic cells and the translocation of endo G. Knock down of endo G diminished the cell killing effect of H2O2 and safingol. These results suggest that H2O2 is involved in the endo G-mediated apoptosis of oral SCC cells by safingol.

  9. Cr(VI) induces mitochondrial-mediated and caspase-dependent apoptosis through reactive oxygen species-mediated p53 activation in JB6 Cl41 cells

    SciTech Connect

    Son, Young-Ok; Hitron, J. Andrew; Wang Xin; Chang Qingshan; Pan Jingju; Zhang Zhuo; Liu Jiankang; Wang Shuxia; Lee, Jeong-Chae; Shi Xianglin

    2010-06-01

    Cr(VI) compounds are known to cause serious toxic and carcinogenic effects. Cr(VI) exposure can lead to a severe damage to the skin, but the mechanisms involved in the Cr(VI)-mediated toxicity in the skin are unclear. The present study examined whether Cr(VI) induces cell death by apoptosis or necrosis using mouse skin epidermal cell line, JB6 Cl41 cells. We also investigated the cellular mechanisms of Cr(VI)-induced cell death. This study showed that Cr(VI) induced apoptotic cell death in a dose-dependent manner, as demonstrated by the appearance of cell shrinkage, the migration of cells into the sub-G1 phase, the increase of Annexin V positively stained cells, and the formation of nuclear DNA ladders. Cr(VI) treatment resulted in the increases of mitochondrial membrane depolarization and caspases activation. Electron spin resonance (ESR) and fluorescence analysis revealed that Cr(VI) increased intracellular levels of reactive oxygen species (ROS) such as hydrogen peroxide and superoxide anion radical in dose-dependent manner. Blockage of p53 by si-RNA transfection suppressed mitochondrial changes of Bcl-2 family composition, mitochondrial membrane depolarization, caspase activation and PARP cleavage, leading to the inhibition of Cr(VI)-induced apoptosis. Further, catalase treatment prevented p53 phosphorylation stimulated by Cr(VI) with the concomitant inhibition of caspase activation. These results suggest that Cr(VI) induced a mitochondrial-mediated and caspase-dependent apoptosis in skin epidermal cells through activation of p53, which are mainly mediated by reactive oxidants generated by the chemical.

  10. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells.

    PubMed

    Kim, Boyun; Kim, Hee Seung; Jung, Eun-Ji; Lee, Jung Yun; K Tsang, Benjamin; Lim, Jeong Mook; Song, Yong Sang

    2016-05-01

    Prolonged accumulation of misfolded or unfolded proteins caused by cellular stress, including oxidative stress, induces endoplasmic reticulum stress, which then activates an unfolded protein response (UPR). ER stress is usually maintained at higher levels in cancer cells as compared to normal cells due to altered metabolism in cancer. Here, we investigated whether curcumin is ER stress-mediated apoptosis in cervical cancer cells, and ROS increased by curcumin are involved in the process as an upstream contributor. Curcumin inhibited proliferation of cervical cancer cells (C33A, CaSki, HeLa, and ME180) and induced apoptotic cell death. Curcumin activated ER-resident UPR sensors, such as PERK, IRE-1α, and ATF6, and their downstream-signaling proteins in cervical cancer cells, but not in normal epithelial cells and peripheral blood mononuclear cells (PBMCs). CHOP, a key factor involved in ER stress-mediated apoptosis, was also activated by curcumin. CHOP decreased the ratio of anti-apoptotic protein Bcl-2 to pro-apoptotic protein Bax expression, and subsequently increased the apoptotic population of cervical cancer cells. Furthermore, curcumin elevated levels of intracellular reactive oxygen species (ROS) in cervical cancer cells, but not in normal epithelial cells. Scavenging ROS resulted in inhibition of ER stress and partially restored cell viability in curcumin-treated cancer cells. Collectively, these observations show that curcumin promotes ER stress-mediated apoptosis in cervical cancer cells through increase of cell type-specific ROS generation. Therefore, modulation of these differential responses to curcumin between normal and cervical cancer cells could be an effective therapeutic strategy without adverse effects on normal cells.

  11. Role of heme oxygenase 1 in TNF/TNF receptor-mediated apoptosis after hepatic ischemia/reperfusion in rats.

    PubMed

    Kim, Seok-Joo; Eum, Hyun-Ae; Billiar, Timothy R; Lee, Sun-Mee

    2013-04-01

    Hepatocellular apoptosis commonly occurs in ischemia/reperfusion (I/R) injury. The binding of tumor necrosis factor (TNF) to TNF receptor 1 (TNFR1) leads to the formation of a death-inducing signaling complex (DISC), which subsequently initiates a caspase cascade resulting in apoptosis. Heme oxygenase 1 (HO-1) confers cytoprotection against cell death in I/R injury and inhibits stress-induced apoptotic pathways in vitro. This study investigated the role of HO-1 in modulating TNF/TNFR1-mediated cell death pathways in hepatic I/R injury. Rats were pretreated with hemin, an HO-1 inducer, and zinc protoporphyrin (ZnPP), an HO-1 inhibitor, before undergoing hepatic I/R. Heme oxygenase 1 activity increased after reperfusion. Ischemia/reperfusion-induced hepatocellular apoptosis was attenuated by hemin, as determined by the caspase-3 and -8 activity assays and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling). Zinc protoporphyrin eliminated the cytoprotective effect of hemin. Hepatic TNFR1 protein expression was unchanged among the experimental groups, whereas mitochondrial TNFR1 protein increased after I/R. Ischemia/reperfusion increased the quantity of DISC components, including TRADD (TNFR1-associated death domain), FADD (Fas-associated death domain), and caspase-8, as well as the assembly of DISCs within the liver. In the mitochondrial fraction, TNFR1-associated caspase-8 was increased after I/R. These increases were attenuated by hemin; zinc protoporphyrin eliminated this effect. Our findings suggest that the cytoprotective effects of HO-1 are mediated by suppression of TNF/TNFR1-mediated apoptotic signaling, specifically by modulating apoptotic DISC formation and mitochondrial TNFR1 translocation during hepatic I/R.

  12. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro

    SciTech Connect

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan; Lei, Xiao-Fei; Zhang, Ji-Xiang; Dong, Wei-Guo

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Noscapine inhibited cell viability of colon cancer in a time- and dose- dependent manner. Black-Right-Pointing-Pointer G{sub 2}/M phase arrest and chromatin condensation and nuclear fragmentation were induced. Black-Right-Pointing-Pointer Noscapine promoted apoptosis via mitochondrial pathways. Black-Right-Pointing-Pointer Tumorigenicity was inhibited by noscapine. -- Abstract: Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colon cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC{sub 50} = 75 {mu}M). This cytotoxicity was reflected by cell cycle arrest at G{sub 2}/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.

  13. Myosin IIA-related Actomyosin Contractility Mediates Oxidative Stress-induced Neuronal Apoptosis

    PubMed Central

    Wang, Yan; Xu, Yingqiong; Liu, Qian; Zhang, Yuanyuan; Gao, Zhen; Yin, Mingzhu; Jiang, Nan; Cao, Guosheng; Yu, Boyang; Cao, Zhengyu; Kou, Junping

    2017-01-01

    Oxidative stress-induced neuronal apoptosis plays an important role in the progression of central nervous system (CNS) diseases. In our study, when neuronal cells were exposed to hydrogen peroxide (H2O2), an exogenous oxidant, cell apoptosis was observed with typical morphological changes including membrane blebbing, neurite retraction and cell contraction. The actomyosin system is considered to be responsible for the morphological changes, but how exactly it regulates oxidative stress-induced neuronal apoptosis and the distinctive functions of different myosin II isoforms remain unclear. We demonstrate that myosin IIA was required for neuronal contraction, while myosin IIB was required for neuronal outgrowth in normal conditions. During H2O2-induced neuronal apoptosis, myosin IIA, rather than IIB, interacted with actin filaments to generate contractile forces that lead to morphological changes. Moreover, myosin IIA knockout using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) reduced H2O2-induced neuronal apoptosis and the associated morphological changes. We further demonstrate that caspase-3/Rho-associated kinase 1 (ROCK1) dependent phosphorylation of myosin light chain (MLC) was required for the formation of the myosin IIA-actin complex. Meanwhile, either inhibition of myosin II ATPase with blebbistatin or knockdown of myosin IIA with siRNA reversely attenuated caspase-3 activation, suggesting a positive feedback loop during oxidative stress-induced apoptosis. Based on our observation, myosin IIA-actin complex contributes to actomyosin contractility and is associated with the positive feedback loop of caspase-3/ROCK1/MLC pathway. This study unravels the biochemical and mechanistic mechanisms during oxidative stress-induced neuronal apoptosis and may be applicable for the development of therapies for CNS diseases. PMID:28352215

  14. Artesunate acts as fuel to fire in sensitizing HepG2 cells towards TRAIL mediated apoptosis via STAT3 inhibition and DR4 augmentation.

    PubMed

    Ilamathi, M; Sivaramakrishnan, V

    2017-04-01

    In the present study, we investigated in vitro, the role of artesunate (ATS) with comparable potency to oxaliplatin (OXP) in sensitizing tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) resistant HepG2 cells towards apoptosis. ATS in consistency with OXP was found to reverse TRAIL resistant HepG2 cells towards TRAIL mediated apoptosis by enhancing caspase-3 and cleavage of PARP. Additionally, ATS also suppressed the nuclear translocation of activated signal transducers and activators of transcription 3 (STAT3) thereby sensitizing the HepG2 cells towards only death receptor 4 (DR4) mediated apoptosis. Furthermore, ATS exposure in TRAIL resistant cells resulted in significant increase of both DR4/DR5 expression and STAT3 inhibition thereby arbitrating TRAIL mediated apoptosis in HepG2 cells. The increase in expression was comparable to that of STAT3 silenced cells. From all the above observations, we conclude that ATS up-regulated DR4 expression by targeting STAT3, which in turn sensitized HepG2 cells to TRAIL mediated apoptosis.

  15. VDAC regulates AAC-mediated apoptosis and cytochrome c release in yeast

    PubMed Central

    Trindade, Dário; Pereira, Clara; Chaves, Susana R.; Manon, Stéphen; Côrte-Real, Manuela; Sousa, Maria J.

    2016-01-01

    Mitochondrial outer membrane permeabilization is a key event in apoptosis processes leading to the release of lethal factors. We have previously shown that absence of the ADP/ATP carrier (AAC) proteins (yeast orthologues of mammalian ANT proteins) increased the resistance of yeast cells to acetic acid, preventing MOMP and the release of cytochrome c from mitochondria during acetic acid - induced apoptosis. On the other hand, deletion of POR1 (yeast voltage-dependent anion channel - VDAC) increased the sensitivity of yeast cells to acetic acid. In the present work, we aimed to further characterize the role of yeast VDAC in acetic acid - induced apoptosis and assess if it functionally interacts with AAC proteins. We found that the sensitivity to acetic acid resulting from POR1 deletion is completely abrogated by the absence of AAC proteins, and propose that Por1p acts as a negative regulator of acetic acid - induced cell death by a mechanism dependent of AAC proteins, by acting on AAC - dependent cytochrome c release. Moreover, we show that Por1p has a role in mitochondrial fusion that, contrary to its role in apoptosis, is not affected by the absence of AAC, and demonstrate that mitochondrial network fragmentation is not sufficient to induce release of cytochrome c or sensitivity to acetic acid - induced apoptosis. This work enhances our understanding on cytochrome c release during cell death, which may be relevant in pathological scenarios where MOMP is compromised. PMID:28357318

  16. Nrdp1-mediated degradation of the gigantic IAP, BRUCE, is a novel pathway for triggering apoptosis.

    PubMed

    Qiu, Xiao-Bo; Markant, Shirley L; Yuan, Junying; Goldberg, Alfred L

    2004-02-25

    Degradation of certain inhibitor of apoptosis proteins (IAPs) appears to be critical in the initiation of apoptosis, but the factors that regulate their degradation in mammalian cells are unknown. Nrdp1/FLRF is a RING finger-containing ubiquitin ligase that catalyzes degradation of the EGF receptor family member, ErbB3. We show here that Nrdp1 associates with BRUCE/apollon, a 530 kDa membrane-associated IAP, which contains a ubiquitin-carrier protein (E2) domain. In the presence of an exogenous E2, UbcH5c, purified Nrdp1 catalyzes BRUCE ubiquitination. In vivo, overexpression of Nrdp1 promotes ubiquitination and proteasomal degradation of BRUCE. In many cell types, apoptotic stimuli induce proteasomal degradation of BRUCE (but not of XIAP or c-IAP1), and decreasing Nrdp1 levels by RNA interference reduces this loss of BRUCE. Furthermore, decreasing BRUCE content by RNA interference or overexpression of Nrdp1 promotes apoptosis. Thus, BRUCE normally inhibits apoptosis, and Nrdp1 can be important in the initiation of apoptosis by catalyzing ubiquitination and degradation of BRUCE.

  17. Nrdp1-mediated degradation of the gigantic IAP, BRUCE, is a novel pathway for triggering apoptosis

    PubMed Central

    Qiu, Xiao-Bo; Markant, Shirley L; Yuan, Junying; Goldberg, Alfred L

    2004-01-01

    Degradation of certain inhibitor of apoptosis proteins (IAPs) appears to be critical in the initiation of apoptosis, but the factors that regulate their degradation in mammalian cells are unknown. Nrdp1/FLRF is a RING finger-containing ubiquitin ligase that catalyzes degradation of the EGF receptor family member, ErbB3. We show here that Nrdp1 associates with BRUCE/apollon, a 530 kDa membrane-associated IAP, which contains a ubiquitin-carrier protein (E2) domain. In the presence of an exogenous E2, UbcH5c, purified Nrdp1 catalyzes BRUCE ubiquitination. In vivo, overexpression of Nrdp1 promotes ubiquitination and proteasomal degradation of BRUCE. In many cell types, apoptotic stimuli induce proteasomal degradation of BRUCE (but not of XIAP or c-IAP1), and decreasing Nrdp1 levels by RNA interference reduces this loss of BRUCE. Furthermore, decreasing BRUCE content by RNA interference or overexpression of Nrdp1 promotes apoptosis. Thus, BRUCE normally inhibits apoptosis, and Nrdp1 can be important in the initiation of apoptosis by catalyzing ubiquitination and degradation of BRUCE. PMID:14765125

  18. Betulinic Acid Induces Apoptosis in Differentiated PC12 Cells Via ROS-Mediated Mitochondrial Pathway.

    PubMed

    Wang, Xi; Lu, Xiaocheng; Zhu, Ronglan; Zhang, Kaixin; Li, Shuai; Chen, Zhongjun; Li, Lixin

    2017-01-25

    Betulinic acid (BA), a pentacyclic triterpene of natural origin, has been demonstrated to have varied biologic activities including anti-viral, anti-inflammatory, and anti-malarial effects; it has also been found to induce apoptosis in many types of cancer. However, little is known about the effect of BA on normal cells. In this study, the effects of BA on normal neuronal cell apoptosis and the mechanisms involved were studied using differentiated PC12 cells as a model. Treatment with 50 μM BA for 24 h apparently induced PC12 cell apoptosis. In the early stage of apoptosis, the level of intracellular reactive oxygen species (ROS) increased. Afterwards, the loss of the mitochondrial membrane potential, the release of cytochrome c and the activation of caspase-3 occurred. Treatment with antioxidants could significantly reduce BA-induced PC12 cell apoptosis. In conclusion, we report for the first time that BA induced the mitochondrial apoptotic pathway in differentiated PC12 cells through ROS.

  19. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma.

    PubMed

    Guo, Weiwei; Yan, Lichong; Yang, Ling; Liu, Xiaoyu; E, Qiukai; Gao, Peiye; Ye, Xiaofei; Liu, Wen; Zuo, Ji

    2014-01-01

    Heat shock protein 90 (HSP90) inhibitors are potential drugs for cancer therapy. The inhibition of HSP90 on cancer cell growth largely through degrading client proteins, like Akt and p53, therefore, triggering cancer cell apoptosis. Here, we show that the HSP90 inhibitor 17-AAG can induce the expression of GRP75, a member of heat shock protein 70 (HSP70) family, which, in turn, attenuates the anti-growth effect of HSP90 inhibition on cancer cells. Additionally, 17-AAG enhanced binding of GRP75 and p53, resulting in the retention of p53 in the cytoplasm. Blocking GRP75 with its inhibitor MKT-077 potentiated the anti-tumor effects of 17-AAG by disrupting the formation of GRP75-p53 complexes, thereby facilitating translocation of p53 into the nuclei and leading to the induction of apoptosis-related genes. Finally, dual inhibition of HSP90 and GRP75 was found to significantly inhibit tumor growth in a liver cancer xenograft model. In conclusion, the GRP75 inhibitor MKT-077 enhances 17-AAG-induced apoptosis in HCCs and increases p53-mediated inhibition of tumor growth in vivo. Dual targeting of GRP75 and HSP90 may be a useful strategy for the treatment of HCCs.

  20. CTGF enhances resistance to 5-FU-mediating cell apoptosis through FAK/MEK/ERK signal pathway in colorectal cancer

    PubMed Central

    Yang, Kai; Gao, Kai; Hu, Gui; Wen, Yanguang; Lin, Changwei; Li, Xiaorong

    2016-01-01

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers among both males and females; the chemotherapy drug 5-fluorouracil (5-FU) is one of a doctors’ first lines of defense against CRC. However, therapeutic failures are common because of the emergence of drug resistance. Connective tissue growth factor (CTGF) is a secreted protein that binds to integrins, and regulates the invasiveness and metastasis of certain carcinoma cells. Here, we found that CTGF was upregulated in drug-resistant phenotype of human CRC cells. Overexpression of CTGF enhanced the resistance to 5-FU-induced cell apoptosis. Moreover, downregulating the expression of CTGF promoted the curative effect of chemotherapy and blocked the cell cycle in the G1 phase. We also found that CTGF facilitated resistance to 5-FU-induced apoptosis by increasing the expression of B-cell lymphoma-extra large (Bcl-xL) and survivin. Then we pharmacologically blocked MEK/ERK signal pathway and assessed 5-FU response by MTT assays. Our current results indicate that the expression of phosphorylated forms of MEK/ERK increased in high CTGF expression cells and MEK inhibited increases in 5-FU-mediated apoptosis of resistant CRC cells. Therefore, our data suggest that MEK/ERK signaling contributes to 5-FU resistance through upstream of CTGF, and supports CRC cell growth. Comprehending the molecular mechanism underlying 5-FU resistance may ultimately aid the fight against CRC. PMID:27942222

  1. Cypermethrin Induces Macrophages Death through Cell Cycle Arrest and Oxidative Stress-Mediated JNK/ERK Signaling Regulated Apoptosis

    PubMed Central

    Huang, Fang; Liu, Qiaoyun; Xie, Shujun; Xu, Jian; Huang, Bo; Wu, Yihua; Xia, Dajing

    2016-01-01

    Cypermethrin is one of the most highly effective synthetic pyrethroid insecticides. The toxicity of cypermethrin to the reproductive and nervous systems has been well studied. However, little is known about the toxic effect of cypermethrin on immune cells such as macrophages. Here, we investigated the cytotoxicity of cypermethrin on macrophages and the underlying molecular mechanisms. We found that cypermethrin reduced cell viability and induced apoptosis in RAW 264.7 cells. Cypermethrin also increased reactive oxygen species (ROS) production and DNA damage in a dose-dependent manner. Moreover, cypermethrin-induced G1 cell cycle arrest was associated with an enhanced expression of p21, wild-type p53, and down-regulation of cyclin D1, cyclin E and CDK4. In addition, cypermethrin treatment activated MAPK signal pathways by inducing c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 ERK1/2 phosphorylation, and increased the cleaved poly ADP-ribose polymerase (PARP). Further, pretreatment with antioxidant N-acetylcysteine (NAC) effectively abrogated cypermethrin-induced cell cytotoxicity, G1 cell cycle arrest, DNA damage, PARP activity, and JNK and ERK1/2 activation. The specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) effectively reversed the phosphorylation level of JNK and ERK1/2, and attenuated the apoptosis. Taken together, these data suggested that cypermethrin caused immune cell death via inducing cell cycle arrest and apoptosis regulated by ROS-mediated JNK/ERK pathway. PMID:27322250

  2. Regulation of apoptosis by resveratrol through JAK/STAT and mitochondria mediated pathway in human epidermoid carcinoma A431 cells

    SciTech Connect

    Madan, Esha; Prasad, Sahdeo; Roy, Preeti; George, Jasmine; Shukla, Yogeshwer

    2008-12-26

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin present mainly in grapes, red wine and berries, is known to possess strong chemopreventive and anticancer properties. Here, we demonstrated the anti-proliferative and apoptosis-inducing activities of resveratrol in human epidermoid carcinoma A431 cells. Resveratrol has cytotoxic effects through inhibiting cellular proliferation of A431 cells, which leads to the induction of apoptosis, as evident by an increase in the fraction of cells in the sub-G{sub 1} phase of the cell cycle and Annexin-V binding of externalized phosphatidylserine. Results revealed that inhibition of proliferation is associated with regulation of the JAK/STAT pathway, where resveratrol prevents phosphorylation of JAK, thereby inhibiting STAT1 phosphorylation. Furthermore, resveratrol treatment actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. Consequently, an imbalance in the Bax/Bcl-2 ratio triggered the caspase cascade and subsequent cleavage of PARP, thereby shifting the balance in favor of apoptosis. These observations indicate that resveratrol treatment inhibits JAK/STAT-mediated gene transcription and induce the mitochondrial cell death pathway.

  3. Reduction of AUF1-mediated follistatin mRNA decay during glucose starvation protects cells from apoptosis.

    PubMed

    Gao, Xiangwei; Dong, Haojie; Lin, Chen; Sheng, Jinghao; Zhang, Fan; Su, Jinfeng; Xu, Zhengping

    2014-01-01

    Follistatin (FST) performs several vital functions in the cells, including protection from apoptosis during stress. The expression of FST is up-regulated in response to glucose deprivation by an unknown mechanism. We herein showed that the induction of FST by glucose deprivation was due to an increase in the half-life of its mRNA. We further identified an AU-rich element (ARE) in the 3'UTR of FST mRNA that mediated its decay. The expression of FST was elevated after knocking down AUF1 and reduced when AUF1 was further expressed. In vitro binding assays and RNA pull-down assays revealed that AUF1 interacted with FST mRNA directly via its ARE. During glucose deprivation, a majority of AUF1 shuttled from cytoplasm to nucleus, resulting in dissociation of AUF1 from FST mRNA and thus stabilization of FST mRNA. Finally, knockdown of AUF1 decreased whereas overexpression of AUF1 increased glucose deprivation-induced apoptosis. The apoptosis promoting effect of AUF1 was eliminated in FST expressing cells. Collectively, this study provided evidence that AUF1 is a negative regulator of FST expression and participates in the regulation of cell survival under glucose deprivation.

  4. 3,3'-OH curcumin causes apoptosis in HepG2 cells through ROS-mediated pathway.

    PubMed

    Liu, Guo-Yun; Sun, Yong-Zheng; Zhou, Na; Du, Xiu-Mei; Yang, Jie; Guo, Shang-Jing

    2016-04-13

    In this paper, we synthesized a series of curcumin analogs and evaluated their cytotoxicity against HepG2 cells. The results exhibited that the hydroxyl group at 3,3'-position play an essential role in enhancing their anti-proliferation activity. More importantly, 3,3'-hydroxy curcumin (1b) caused apoptosis in HepG2 cells with the ROS generation, which may be mainly composed of hydroxyl radicals (HO) and H2O2. The more cytotoxic activity and ROS-generating ability of 1b may be due to the more stable in (RPMI)-1640 medium and more massive uptake than curcumin. Then the generation of ROS can disrupt the intracellular redox balance, induce lipid peroxidation, cause the collapse of the mitochondrial membrane potential and ultimately lead to apoptosis. The results not only suggest that 3,3'-hydroxy curcumin (1b) may cause HepG2 cells apoptosis through ROS-mediated pathway, but also offer an important information for design of curcumin analog.

  5. Pheophorbide a-mediated photodynamic therapy induces autophagy and apoptosis via the activation of MAPKs in human skin cancer cells.

    PubMed

    Yoon, Hyo-Eun; Oh, Seone-Hee; Kim, Soo-A; Yoon, Jung-Hoon; Ahn, Sang-Gun

    2014-01-01

    Pheophorbide a (Pa), a chlorophyll derivative, is a photosensitizer that can induce significant antitumor effects in several types of tumor cells. The present study investigated the mechanism of Pa-mediated photodynamic therapy (Pa-PDT) in the human skin cancer cell lines A431 and G361. PDT significantly inhibited the cell growth in a Pa-concentration-dependent manner. We observed increased expression of Beclin-1, LC3B and ATG5, which are markers of autophagy, after PDT treatment in A431 cells but not in G361 cells. In G361 cells, Pa-PDT strongly induced PARP cleavage and subsequent apoptosis, which was confirmed using Annexin V/Propidium iodide double staining. Pa-PDT predominantly exhibited its antitumor effects via activation of ERK1/2 and p38 in A431 and G361 cells, respectively. An in vivo study using the CAM xenograft model demonstrated that Pa-PDT strongly induced autophagy and apoptosis in A431-transplanted tumors and/or apoptosis in G361-transplanted tumors. These results may provide a basis for understanding the underlying mechanisms of Pa-PDT and for developing Pa-PDT as a therapy for skin cancer.

  6. Initiation of Apoptosis by Granzyme B Requires Direct Cleavage of Bid, but Not Direct Granzyme B–Mediated Caspase Activation

    PubMed Central

    Sutton, Vivien R.; Davis, Joanne E.; Cancilla, Michael; Johnstone, Ricky W.; Ruefli, Astrid A.; Sedelies, Karin; Browne, Kylie A.; Trapani, Joseph A.

    2000-01-01

    The essential upstream steps in granzyme B–mediated apoptosis remain undefined. Herein, we show that granzyme B triggers the mitochondrial apoptotic pathway through direct cleavage of Bid; however, cleavage of procaspases was stalled when mitochondrial disruption was blocked by Bcl-2. The sensitivity of granzyme B–resistant Bcl-2–overexpressing FDC-P1 cells was restored by coexpression of wild-type Bid, or Bid with a mutation of its caspase-8 cleavage site, and both types of Bid were cleaved. However, Bid with a mutated granzyme B cleavage site remained intact and did not restore apoptosis. Bid with a mutation preventing its interaction with Bcl-2 was cleaved but also failed to restore apoptosis. Rapid Bid cleavage by granzyme B (<2 min) was not delayed by Bcl-2 overexpression. These results clearly placed Bid cleavage upstream of mitochondrial Bcl-2. In granzyme B–treated Jurkat cells, endogenous Bid cleavage and loss of mitochondrial membrane depolarization occurred despite caspase inactivation with z-Val-Ala-Asp-fluoromethylketone or Asp-Glu-Val-Asp-fluoromethylketone. Initial partial processing of procaspase-3 and -8 was observed irrespective of Bcl-2 overexpression; however, later processing was completely abolished by Bcl-2. Overall, our results indicate that mitochondrial perturbation by Bid is necessary to achieve a lethal threshold of caspase activity and cell death due to granzyme B. PMID:11085743

  7. Microcystin-LR induces mitochondria-mediated apoptosis in human bronchial epithelial cells

    PubMed Central

    Li, Yang; Li, Jinhui; Huang, Hui; Yang, Mingfeng; Zhuang, Donggang; Cheng, Xuemin; Zhang, Huizhen; Fu, Xiaoli

    2016-01-01

    The present study aimed to investigate the toxicity of microcystin-LR (MC-LR) and to explore the mechanism of MC-LR-induced apoptosis in human bronchial epithelial (HBE) cells. HBE cells were treated with MC-LR (1, 10, 20, 30 and 40 µg/ml) alone or with MC-LR (0, 2.5, 5 and 10 µg/ml) and Z-VAD-FMK (0, 10, 20, 40, 60, 80, 100, 120 and 140 µM), which is a caspase inhibitor, for 24 and 48 h. Cell viability was assessed via an MTT assay and the half maximal effective concentration of MC-LR was determined. The optimal concentration of Z-VAD-FMK was established as 50 µm, which was then used in the subsequent experiments. MC-LR significantly inhibited cell viability and induced apoptosis of HBE cells in a dose-dependent manner, as detected by an Annexin V/propidium iodide assay. MC-LR induced cell apoptosis, excess reactive oxygen species production and mitochondrial membrane potential collapse, upregulated Bax expression and downregulated B-cell lymphoma-2 expression in HBE cells. Moreover, western blot analysis demonstrated that MC-LR increased the activity levels of caspase-3 and caspase-9 and induced cytochrome c release into the cytoplasm, suggesting that MC-LR-induced apoptosis is associated with the mitochondrial pathway. Furthermore, pretreatment with Z-VAD-FMK reduced MC-LR-induced apoptosis by blocking caspase activation in HBE cells. Therefore, the results of the present study suggested that MC-LR is capable of significantly inhibiting the viability of HBE cells by inducing apoptosis in a mitochondria-dependent manner. The present study provides a foundation for further understanding the mechanism underlying the toxicity of MC-LR in the respiratory system. PMID:27446254

  8. ARL6IP1 mediates cisplatin-induced apoptosis in CaSki cervical cancer cells.

    PubMed

    Guo, Fengjie; Li, Yalin; Liu, Yan; Wang, Jiajia; Li, Guancheng

    2010-05-01

    Cisplatin has been shown to induce apoptosis in various types of cancer cells. Despite the great efficacy at treating certain kinds of cancers, cisplatin introduced into clinical use shows side effects and the acquisition or presence of resistance to the drug. Thus, it is important that we further understand the anti-cancer mechanism of cisplatin with the goal of enhancing its efficacy. ADP-ribosylation factor-like 6 interacting protein 1 (ARL6IP1) is an apoptotic regulator. We studied cisplatin-induced apoptosis with suppression of ARL6IP1 expression in CaSki cervical cancer cells. Exogenous expression of ARL6IP1 suppressed cisplatin-induced apoptosis in CaSki cells, and siRNA-induced silencing of ARL6IP1 triggered apoptosis in CaSki cells even in the absence of other apoptotic stimuli. Cisplatin treatment induced caspase-3, -9, p53, Bax, NF-kappaB and MAPK expression, and suppressed Bcl-2 and Bcl-xl expression, whereas cells transfected with pcDNA3.1-ARL6IP1 showed lower levels of cisplatin-induced caspase-3, -9, p53, Bax, NF-kappaB and MAPK up-regulation and higher levels of cisplatin-suppressed Bcl-2 and Bcl-xl down-regulation. These novel findings collectively suggest that ARL6IP1 may play a key role in cisplatin-induced apoptosis in CaSki cervical cancer cells by regulating the expression of apoptosis-associated proteins such as caspase-3, -9, p53, NF-kappaB, MAPK, Bcl-2, Bcl-xl, and Bax.

  9. BDNF-mediates Down-regulation of MicroRNA-195 Inhibits Ischemic Cardiac Apoptosis in Rats

    PubMed Central

    Hang, Pengzhou; Sun, Chuan; Guo, Jing; Zhao, Jing; Du, Zhimin

    2016-01-01

    Background: Our previous studies suggested that brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) axis inhibited cardiomyocyte apoptosis in myocardial infarction (MI). However, the relationship between BDNF and microRNA (miRNA) in cardiomyocytes are unclear. The present study was performed to investigate the role of miR-195 and the interplay between BDNF and miR-195 in ischemic cardiomyocyte apoptosis. Methods: Male Wistar rats were subjected to coronary artery ligation, and primary neonatal rat ventricular myocytes were treated with hypoxia or hydrogen peroxide (H2O2). BDNF level in rat ventricles was measured by enzyme linked immunosorbent assay (ELISA). miR-195 mimic, inhibitor or negative control was transfected into the cardiomyocytes. Cell viability and apoptosis were detected by MTT assay and TdT-mediated dUTP nick end labeling (TUNEL) staining, respectively. Cardiac function and apoptosis were detected in MI rats intravenously injected with antagomiR-195. Luciferase assay, Western blot and Real-time RT-PCR were employed to clarify the interplay between miR-195 and BDNF. Results: miR-195 level was dynamically regulated in response to MI and significantly increased in ischemic regions 24 h post-MI as well as in hypoxic or H2O2-treated cardiomyocytes. Meanwhile, BDNF protein level was rapidly increased in MI rats and H2O2-treated cardiomyocytes. Apoptosis in both hypoxic and H2O2-treated cardiomyocytes were markedly reduced and cell viability was increased by miR-195 inhibitor. Moreover, inhibition of miR-195 significantly improved cardiac function of MI rats. Bcl-2 but not BDNF was validated as the direct target of miR-195. Furthermore, BDNF abolished the pro-apoptotic role of miR-195, which was reversed by its scavenger TrkB-Fc. Conclusion: Up-regulation of miR-195 in ischemic cardiomyocytes promotes ischemic apoptosis by targeting Bcl-2. BDNF mitigated the pro-apoptotic effect of miR-195 in rat cardiomyocytes. These findings may

  10. Cadmium-Induced Apoptosis in Primary Rat Cerebral Cortical Neurons Culture Is Mediated by a Calcium Signaling Pathway

    PubMed Central

    Xu, Hui; Sun, Ya; Hu, Fei-fei; Bian, Jian-chun; Liu, Xue-zhong; Gu, Jian-hong; Liu, Zong-ping

    2013-01-01

    Cadmium (Cd) is an extremely toxic metal, capable of severely damaging several organs, including the brain. Studies have shown that Cd disrupts intracellular free calcium ([Ca2+]i) homeostasis, leading to apoptosis in a variety of cells including primary murine neurons. Calcium is a ubiquitous intracellular ion which acts as a signaling mediator in numerous cellular processes including cell proliferation, differentiation, and survival/death. However, little is known about the role of calcium signaling in Cd-induced apoptosis in neuronal cells. Thus we investigated the role of calcium signaling in Cd-induced apoptosis in primary rat cerebral cortical neurons. Consistent with known toxic properties of Cd, exposure of cerebral cortical neurons to Cd caused morphological changes indicative of apoptosis and cell death. It also induced elevation of [Ca2+]i and inhibition of Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities. This Cd-induced elevation of [Ca2+]i was suppressed by an IP3R inhibitor, 2-APB, suggesting that ER-regulated Ca2+ is involved. In addition, we observed elevation of reactive oxygen species (ROS) levels, dysfunction of cytochrome oxidase subunits (COX-I/II/III), depletion of mitochondrial membrane potential (ΔΨm), and cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase (PARP) during Cd exposure. Z-VAD-fmk, a pan caspase inhibitor, partially prevented Cd-induced apoptosis and cell death. Interestingly, apoptosis, cell death and these cellular events induced by Cd were blocked by BAPTA-AM, a specific intracellular Ca2+ chelator. Furthermore, western blot analysis revealed an up-regulated expression of Bcl-2 and down-regulated expression of Bax. However, these were not blocked by BAPTA-AM. Thus Cd toxicity is in part due to its disruption of intracellular Ca2+ homeostasis, by compromising ATPases activities and ER-regulated Ca2+, and this elevation in Ca2+ triggers the activation of the Ca2+-mitochondria apoptotic signaling pathway. This

  11. Black Currant (Ribes nigrum L.) Extract Induces Apoptosis of MKN-45 and TE-1 Cells Through MAPK- and PI3K/Akt-Mediated Mitochondrial Pathways.

    PubMed

    Liu, Bingshuo; Li, Zhiwei

    2016-04-01

    Black currant extract (BCE) is rich in polyphenols and can induce apoptosis in various cancer cells, but the molecular mechanism by which BCE induces cancer cell apoptosis has not been reported. The aim of this work was to elucidate the antitumor effect of BCE and the signal transduction pathways involved. MTT test results revealed that the viability of MKN-45 and TE-1 cells treated with BCE gradually decreased in a concentration-dependent manner, with significant effects achieved after 12 h of treatment. MKN-45 and TE-1 cells clearly showed characteristics of apoptosis: shrinkage, cytoplasmic condensation, and formation of cytoplasmic filaments, even partial detachment. In addition, these results showed MKN-45 cells showed a higher level of apoptosis than TE-1 cells when treated with BCE. Western blot assays showed that the Bcl-2/Bax ratio decreased in both MKN-45 and TE-1 cells, indicating that BCE induced apoptosis through the mitochondrial pathway. In addition, BCE-induced apoptosis was mediated by mitochondrial dysfunction involving the PI3K/Akt pathway in both MKN-45 and TE-1 cells. However, BCE-induced cell apoptosis was mediated by the Fas receptor pathway in MKN-45 cells but not in TE-1 cells. BCE-induced apoptosis in MKN-45 cells was associated with the MAP-kinase signaling pathway through the activation of p38 and JNK and the inactivation of Erk1/2. However, it was associated with the MAP-kinase signaling pathway only by means of activation of p38 and JNK in TE-1 cells. These results showed that BCE induces apoptosis of MKN-45 and TE-1 cells through MAPK- and PI3K/Akt-mediated mitochondrial pathways. Thus, BCE may be a promising anticancer candidate.

  12. 1-benzyl-2-phenylbenzimidazole (BPB), a benzimidazole derivative, induces cell apoptosis in human chondrosarcoma through intrinsic and extrinsic pathways.

    PubMed

    Liu, Ju-Fang; Huang, Yuan-Li; Yang, Wei-Hung; Chang, Chih-Shiang; Tang, Chih-Hsin

    2012-12-04

    In this study, we investigated the anticancer effects of a new benzimidazole derivative, 1-benzyl-2-phenyl -benzimidazole (BPB), in human chondrosarcoma cells. BPB-mediated apoptosis was assessed by the MTT assay and flow cytometry analysis. The in vivo efficacy was examined in a JJ012 xenograft model. Here we found that BPB induced apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353) but not in primary chondrocytes. BPB induced upregulation of Bax, Bad and Bak, downregulation of Bcl-2, Bid and Bcl-XL and dysfunction of mitochondria in chondrosarcoma. In addition, BPB also promoted cytosolic releases AIF and Endo G. Furthermore, it triggered extrinsic death receptor-dependent pathway, which was characterized by activating Fas, FADD and caspase-8. Most importantly, animal studies revealed a dramatic 40% reduction in tumor volume after 21 days of treatment. Thus, BPB may be a novel anticancer agent for the treatment of chondrosarcoma.

  13. 1-Benzyl-2-Phenylbenzimidazole (BPB), a Benzimidazole Derivative, Induces Cell Apoptosis in Human Chondrosarcoma through Intrinsic and Extrinsic Pathways

    PubMed Central

    Liu, Ju-Fang; Huang, Yuan-Li; Yang, Wei-Hung; Chang, Chih-Shiang; Tang, Chih-Hsin

    2012-01-01

    In this study, we investigated the anticancer effects of a new benzimidazole derivative, 1-benzyl-2-phenyl -benzimidazole (BPB), in human chondrosarcoma cells. BPB-mediated apoptosis was assessed by the MTT assay and flow cytometry analysis. The in vivo efficacy was examined in a JJ012 xenograft model. Here we found that BPB induced apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353) but not in primary chondrocytes. BPB induced upregulation of Bax, Bad and Bak, downregulation of Bcl-2, Bid and Bcl-XL and dysfunction of mitochondria in chondrosarcoma. In addition, BPB also promoted cytosolic releases AIF and Endo G. Furthermore, it triggered extrinsic death receptor-dependent pathway, which was characterized by activating Fas, FADD and caspase-8. Most importantly, animal studies revealed a dramatic 40% reduction in tumor volume after 21 days of treatment. Thus, BPB may be a novel anticancer agent for the treatment of chondrosarcoma. PMID:23211670

  14. Cissus quadrangularis Linn. Stem Ethanolic Extract Liberates Reactive Oxygen Species and Induces Mitochondria Mediated Apoptosis in KB Cells

    PubMed Central

    Sheikh, Saba; Siddiqui, Sahabjada; Dhasmana, Anupam; Safia; Haque, Ejazul; Kamil, Mohammed; Lohani, Mohtashim; Arshad, Mohammad; Mir, Snober Shabnam

    2015-01-01

    Background: Cissus quadrangularis Linn. (CQ) commonly known as Hadjod (Family: Vitaceae) is usually distributed in India and Sri Lanka and contains several bioactive compounds responsible for various metabolic and physiologic effects. Objective: In this study, the biological effects of CQ ethanolic extract were evaluated by in vitro and supported by in silico analysis on KB oral epidermoid cancer cell line. Materials and Methods: Anti-cancer potential of ethanolic extract of CQ stem against KB oral epidermoid cancer cells was evaluated in terms of morphological analysis, nuclei staining, liberation of reactive oxygen species (ROS), cell cycle arrest, mitochondrial membrane potential (MMP) and p53 and Bcl-2 protein expression which reveal the induction of apoptosis along with supporting in silico analysis. Results: Ethanolic extract of CQ stem contains various bioactive compounds responsible for cancer cell morphological alterations, liberation of ROS, G1 phase cell cycle arrest and decreased MMP along with up-regulation of p53 and down-regulation of Bcl-2. By employing in silico approach, we have also postulated that the CQ extract active constituents sequester Bcl-2 with higher affinity as compared to p53, which may be the reason for induction of growth arrest and apoptosis in KB cells. Conclusion: Our data indicate that the CQ extract has a remarkable apoptotic effect that suggests that it could be a viable treatment option for specific types of cancers. SUMMARY Cissus quadrangularis stem ethanolic extract induces apoptosis and cell cycle arrest at G1 phaseIt liberates (ROS) and mitochondria mediated apoptosisIt upregulates p53 and down-regulates Bcl-2 protein expressionIn silico studies indicates that the active constituents of CQ binds Bcl-2 with higher affinity as compared to p53. PMID:26929569

  15. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis

    SciTech Connect

    Tsujita, Maristela; Batista, Wagner L.; Ogata, Fernando T.; Monteiro, Hugo P. Arai, Roberto J.

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras{sup C118S}) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.

  16. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis.

    PubMed

    Tsujita, Maristela; Batista, Wagner L; Ogata, Fernando T; Stern, Arnold; Monteiro, Hugo P; Arai, Roberto J

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.

  17. Inositol-requiring enzyme 1-mediated endoplasmic reticulum stress triggers apoptosis and fibrosis formation in liver cirrhosis rat models.

    PubMed

    Jiang, Tianpeng; Wang, Lizhou; Li, Xing; Song, Jie; Wu, Xiaoping; Zhou, Shi

    2015-04-01

    Long‑term and advanced cirrhosis is usually irreversible and often coincides with variceal hemorrhage or development of hepatocellular carcinoma; therefore, liver cirrhosis is a major cause of morbidity and mortality globally. The aim of the present study was to investigate the specific mechanism behind the formation of fibrosis or cirrhosis using rat models of hepatic fibrosis. The cirrhosis model was established by intraperitoneally administering dimethylnitrosamine to the rats. Hematoxylin and eosin staining was performed on the hepatic tissues of the rats to observe the fibrosis or cirrhosis, and western blot analysis was employed to detect α‑smooth muscle actin and desmin protein expression. Flow cytometric analysis was used to examine early and late apoptosis, and the protein and mRNA expression of endoplasmic reticulum (ER) stress-associated unfolded protein response (UPR) pathway proteins and apoptotic proteins [C/EBP homologous protein (CHOP) and caspase‑12] was detected by western blotting and the reverse-transcription polymerase chain reaction, respectively. The results indicated that the cirrhosis model was established successfully and that fibrosis was significantly increased in the cirrhosis model group compared with that in the normal control group. Flow cytometric analysis showed that early and late apoptosis in the cirrhosis model was significantly higher compared with that in the control group. The expression of the UPR pathway protein inositol-requiring enzyme (IRE) 1, as well as the expression of CHOP, was increased significantly in the cirrhotic rat tissues compared with that in the control group tissues (P<0.05). In conclusion, apoptosis was clearly observed in the hepatic tissue of cirrhotic rats, and the apoptosis was caused by activation of the ER stress-mediated IRE1 and CHOP.

  18. Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis.

    PubMed

    Große, Lena; Wurm, Christian A; Brüser, Christian; Neumann, Daniel; Jans, Daniel C; Jakobs, Stefan

    2016-02-15

    The Bcl-2 family proteins Bax and Bak are essential for the execution of many apoptotic programs. During apoptosis, Bax translocates to the mitochondria and mediates the permeabilization of the outer membrane, thereby facilitating the release of pro-apoptotic proteins. Yet the mechanistic details of the Bax-induced membrane permeabilization have so far remained elusive. Here, we demonstrate that activated Bax molecules, besides forming large and compact clusters, also assemble, potentially with other proteins including Bak, into ring-like structures in the mitochondrial outer membrane. STED nanoscopy indicates that the area enclosed by a Bax ring is devoid of mitochondrial outer membrane proteins such as Tom20, Tom22, and Sam50. This strongly supports the view that the Bax rings surround an opening required for mitochondrial outer membrane permeabilization (MOMP). Even though these Bax assemblies may be necessary for MOMP, we demonstrate that at least in Drp1 knockdown cells, these assemblies are not sufficient for full cytochrome c release. Together, our super-resolution data provide direct evidence in support of large Bax-delineated pores in the mitochondrial outer membrane as being crucial for Bax-mediated MOMP in cells.

  19. Cytosolic H2O2 mediates hypertrophy, apoptosis, and decreased SERCA activity in mice with chronic hemodynamic overload

    PubMed Central

    Qin, Fuzhong; Siwik, Deborah A.; Pimentel, David R.; Morgan, Robert J.; Biolo, Andreia; Tu, Vivian H.; Kang, Y. James; Cohen, Richard A.

    2014-01-01

    Oxidative stress in the myocardium plays an important role in the pathophysiology of hemodynamic overload. The mechanism by which reactive oxygen species (ROS) in the cardiac myocyte mediate myocardial failure in hemodynamic overload is not known. Accordingly, our goals were to test whether myocyte-specific overexpression of peroxisomal catalase (pCAT) that localizes in the sarcoplasm protects mice from hemodynamic overload-induced failure and prevents oxidation and inhibition of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), an important sarcoplasmic protein. Chronic hemodynamic overload was caused by ascending aortic constriction (AAC) for 12 wk in mice with myocyte-specific transgenic expression of pCAT. AAC caused left ventricular hypertrophy and failure associated with a generalized increase in myocardial oxidative stress and specific oxidative modifications of SERCA at cysteine 674 and tyrosine 294/5. pCAT overexpression ameliorated myocardial hypertrophy and apoptosis, decreased pathological remodeling, and prevented the progression to heart failure. Likewise, pCAT prevented oxidative modifications of SERCA and increased SERCA activity without changing SERCA expression. Thus cardiac myocyte-restricted expression of pCAT effectively ameliorated the structural and functional consequences of chronic hemodynamic overload and increased SERCA activity via a post-translational mechanism, most likely by decreasing inhibitory oxidative modifications. In pressure overload-induced heart failure cardiac myocyte cytosolic ROS play a pivotal role in mediating key pathophysiologic events including hypertrophy, apoptosis, and decreased SERCA activity. PMID:24633550

  20. Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells.

    PubMed

    Gwak, HyeRan; Kim, Soochi; Dhanasekaran, Danny N; Song, Yong Sang

    2016-02-28

    Malignant tumors have a high glucose demand and alter cellular metabolism to survive. Herein, focusing on the utility of glucose metabolism as a therapeutic target, we found that resveratrol induced endoplasmic reticulum (ER) stress-mediated apoptosis by interrupting protein glycosylation in a cancer-specific manner. Our results indicated that resveratrol suppressed the hexosamine biosynthetic pathway and interrupted protein glycosylation through GSK3β activation. Application of either biochemical intermediates of the hexosamine pathway or small molecular inhibitors of GSK3β reversed the effects of resveratrol on the disruption of protein glycosylation. Additionally, an ER UDPase, ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5), modulated protein glycosylation by Akt attenuation in response to resveratrol. By inhibition or overexpression of Akt functions, we confirmed that the glycosylation activities were dependent on ENTPD5 expression and regulated by the action of Akt in ovarian cancer cells. Resveratrol-mediated disruption of protein glycosylation induced cellular apoptosis as indicated by the up-regulation of GADD153, followed by the activation of ER-stress sensors (PERK and ATF6α). Thus, our results provide novel insight into cancer cell metabolism and protein glycosylation as a therapeutic target for cancers.

  1. Double stranded-RNA-mediated activation of P21 gene induced apoptosis and cell cycle arrest in renal cell carcinoma

    PubMed Central

    Whitson, Jared M; Noonan, Emily J; Pookot, Deepa; Place, Robert F; Dahiya, Rajvir

    2014-01-01

    Small double stranded RNAs (dsRNA) are a new class of molecules which regulate gene expression. Accumulating data suggest that some dsRNA can function as tumor suppressors. Here we report further evidence on the potential of dsRNA mediated p21 induction. Using the human renal cell carcinoma cell line A498, we found that dsRNA targeting the p21 promoter significantly induced the expression of p21 mRNA and protein levels. As a result, dsP21 transfected cells had a significant decrease in cell viability with a concomitant G1 arrest. We also observed a significant increase in apoptosis. These findings were associated with a significant decrease in survivin mRNA and protein levels. This is the first report that demonstrates dsRNA mediated gene activation in renal cell carcinoma and suggests that forced over-expression of p21 may lead to an increase in apoptosis through a survivin dependent mechanism. PMID:19384944

  2. Double stranded-RNA-mediated activation of P21 gene induced apoptosis and cell cycle arrest in renal cell carcinoma.

    PubMed

    Whitson, Jared M; Noonan, Emily J; Pookot, Deepa; Place, Robert F; Dahiya, Rajvir

    2009-07-15

    Small double stranded RNAs (dsRNA) are a new class of molecules which regulate gene expression. Accumulating data suggest that some dsRNA can function as tumor suppressors. Here, we report further evidence on the potential of dsRNA mediated p21 induction. Using the human renal cell carcinoma cell line A498, we found that dsRNA targeting the p21 promoter significantly induced the expression of p21 mRNA and protein levels. As a result, dsP21 transfected cells had a significant decrease in cell viability with a concomitant G1 arrest. We also observed a significant increase in apoptosis. These findings were associated with a significant decrease in survivin mRNA and protein levels. This is the first report that demonstrates dsRNA mediated gene activation in renal cell carcinoma and suggests that forced over-expression of p21 may lead to an increase in apoptosis through a survivin dependent mechanism.

  3. Pazopanib, a novel multi-kinase inhibitor, shows potent antitumor activity in colon cancer through PUMA-mediated apoptosis.

    PubMed

    Zhang, Lingling; Wang, Huanan; Li, Wei; Zhong, Juchang; Yu, Rongcheng; Huang, Xinfeng; Wang, Honghui; Tan, Zhikai; Wang, Jiangang; Zhang, Yingjie

    2017-01-10

    Colon cancer is still the third most common cancer which has a high mortality but low five-year survival rate. Novel tyrosine kinase inhibitors (TKI) such as pazopanib become effective antineoplastic agents that show promising clinical activity in a variety of carcinoma, including colon cancer. However, the precise underlying mechanism against tumor is unclear. Here, we demonstrated that pazopanib promoted colon cancer cell apoptosis through inducing PUMA expression. Pazopanib induced p53-independent PUMA activation by inhibiting PI3K/Akt signaling pathway, thereby activating Foxo3a, which subsequently bound to the promoter of PUMA to activate its transcription. After induction, PUMA activated Bax and triggered the intrinsic mitochondrial apoptosis pathway. Furthermore, administration of pazopanib highly suppressed tumor growth in a xenograft model. PUMA deletion in cells and tumors led to resistance of pazopanib, indicating PUMA-mediated pro-apoptotic and anti-tumor effects in vitro and in vivo. Combing pazopanib with some conventional or novel drugs, produced heightened and synergistic antitumor effects that were associated with potentiated PUMA induction via different pathways. Taken together, these results establish a critical role of PUMA in mediating the anticancer effects of pazopanib in colon cancer cells and provide the rationale for clinical evaluation.

  4. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin.

    PubMed

    Li, Yanyan; Chen, Man; Xu, Yanyan; Yu, Xiao; Xiong, Ting; Du, Min; Sun, Jian; Liu, Liegang; Tang, Yuhan; Yao, Ping

    2016-01-01

    Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD). As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories) were cotreated by quercetin or deferoxamine (DFO) for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP) and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD.

  5. Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition

    PubMed Central

    Subramani, Ramadevi; Gonzalez, Elizabeth; Arumugam, Arunkumar; Nandy, Sushmita; Gonzalez, Viviana; Medel, Joshua; Camacho, Fernando; Ortega, Andrew; Bonkoungou, Sandrine; Narayan, Mahesh; Dwivedi, Alok kumar; Lakshmanaswamy, Rajkumar

    2016-01-01

    The mortality and morbidity rates of pancreatic cancer are high because of its extremely invasive and metastatic nature. Its lack of symptoms, late diagnosis and chemo–resistance and the ineffective treatment modalities warrant the development of new chemo–therapeutic agents for pancreatic cancer. Agents from medicinal plants have demonstrated therapeutic benefits in various human cancers. Nimbolide, an active molecule isolated from Azadirachta indica, has been reported to exhibit several medicinal properties. This study assessed the anticancer properties of nimbolide against pancreatic cancer. Our data reveal that nimbolide induces excessive generation of reactive oxygen species (ROS), thereby regulating both apoptosis and autophagy in pancreatic cancer cells. Experiments with the autophagy inhibitors 3-methyladenine and chloroquine diphosphate salt and the apoptosis inhibitor z-VAD-fmk demonstrated that nimbolide-mediated ROS generation inhibited proliferation (through reduced PI3K/AKT/mTOR and ERK signaling) and metastasis (through decreased EMT, invasion, migration and colony forming abilities) via mitochondrial-mediated apoptotic cell death but not via autophagy. In vivo experiments also demonstrated that nimbolide was effective in inhibiting pancreatic cancer growth and metastasis. Overall, our data suggest that nimbolide can serve as a potential chemo–therapeutic agent for pancreatic cancer. PMID:26804739

  6. Increased pancreatic beta-cell apoptosis following fetal and neonatal exposure to nicotine is mediated via the mitochondria.

    PubMed

    Bruin, Jennifer E; Gerstein, Hertzel C; Morrison, Katherine M; Holloway, Alison C

    2008-06-01

    In Canada, nicotine replacement therapy is recommended as a safe smoking cessation aid for pregnant women. However, we have shown in an animal model that fetal and neonatal nicotine exposure causes increased beta-cell apoptosis and loss of beta-cell mass, which leads to the development of postnatal dysglycemia and obesity. The goal of this study was to determine whether the observed beta-cell apoptosis is mediated via the mitochondrial and/or death receptor pathway. Female Wistar rats were given saline (control) or nicotine bitartrate (1 mg/kg/day) via sc injection for 2 weeks prior to mating until weaning (postnatal day 21). At weaning, pancreas tissue was collected for Western blotting, electron microscopy (EM), and immunohistochemistry. Key markers of each apoptotic pathway were examined in whole pancreas homogenates and mitochondrial/cytosolic pancreas fractions. In the death receptor pathway, Fas and soluble Fas ligand (FasL) protein were significantly increased in the nicotine-exposed offspring compared to control animals; there was no difference in the ratio of inactive/active caspase-8 or membrane-bound FasL expression. In the mitochondrial pathway, there was a significant increase in the ratio of Bcl2/Bax, Bax translocation to the mitochondria, cytochrome c release to the cytosol, and the ratio of active/inactive caspase-3 in nicotine-exposed offspring relative to control animals. Furthermore, increased mitochondrial swelling was observed by EM in the pancreatic beta cells of nicotine-exposed offspring. Taken together, these data suggest that beta-cell apoptosis following developmental nicotine exposure is mediated via the mitochondria.

  7. Cordycepin induces human lung cancer cell apoptosis by inhibiting nitric oxide mediated ERK/Slug signaling pathway

    PubMed Central

    Hwang, Jung Hoo; Park, Soo Jung; Ko, Won Gyu; Kang, Seong-Mun; Lee, Da Bin; Bang, Junho; Park, Byung-Joo; Wee, Chung-Beum; Kim, Dae Joon; Jang, Ik-Soon; Ko, Jae-Hong

    2017-01-01

    Nitric oxide (NO) is an important signaling molecule and a component of the inflammatory cascade. Besides, it is also involved in tumorigenesis. Aberrant upregulation and activation of the ERK cascade by NO often leads to tumor cell development. However, the role of ERK inactivation induced by the negative regulation of NO during apoptosis is not completely understood. In this study, treatment of A549 and PC9 human lung adenocarcinoma cell lines with cordycepin led to a reduction in their viability. Analysis of the effect of cordycepin treatment on ERK/Slug signaling activity in the A549 cell line revealed that LPS-induced inflammatory microenvironments could stimulate the expression of TNF-α, CCL5, IL-1β, IL-6, IL-8 and upregulate NO, phospho-ERK (p-ERK), and Slug expression. In addition, constitutive expression of NO was observed. Cordycepin inhibited LPS-induced stimulation of iNOS, NO, p-ERK, and Slug expression. L-NAME, an inhibitor of NOS, inhibited p-ERK and Slug expression. It was also found that cordycepin-mediated inhibition of ERK downregulated Slug, whereas overexpression of ERK led to an upregulation of Slug levels in the cordycepin-treated A549 cells. Inhibition of Slug by siRNA induced Bax and caspase-3, leading to cordycepin-induced apoptosis. Cordycepin-mediated inhibition of ERK led to a reduction in phospho-GSK3β (p-GSK3β) and Slug levels, whereas LiCl, an inhibitor of GSK3β, upregulated p-GSK3β and Slug. Overall, the results obtained indicate that cordycepin inhibits the ERK/Slug signaling pathway through the activation of GSK3β which, in turn, upregulates Bax, leading to apoptosis of the lung cancer cells.

  8. ROS-mediated Activation of AKT Induces Apoptosis Via pVHL in Prostate Cancer Cells

    PubMed Central

    Chetram, Mahandranauth A.; Bethea, Danaya A.; Jones, Kia J.; Don-Salu-Hewage, Ayesha S.; Odero-Marah, Valerie A.; Hinton, Cimona V.

    2013-01-01

    Reactive oxygen species (ROS) play a central role in oxidative stress, which leads to the onset of diseases, such as cancer. Furthermore, ROS contributes to the delicate balance between tumor cell survival and death. However, the mechanisms by which tumor cells decide to elicit survival or death signals during oxidative stress are not completely understood. We have previously reported that ROS enhanced tumorigenic functions in prostate cancer cells, such as transendothelial migration and invasion, which depended on CXCR4 and AKT signaling. Here, we report a novel mechanism by which ROS facilitated cell death through activation of AKT. We initially observed that ROS increased expression of phosphorylated AKT (p-AKT) in 22Rv1 human prostate cancer cells. The tumor suppressor PTEN, a negative regulator of AKT signaling, was rendered catalytically inactive through oxidation by ROS, although the expression levels remained consistent. Despite these events, cells still underwent apoptosis. Further investigation into apoptosis revealed that expression of the tumor suppressor pVHL increased, and contains a target site for p-AKT phosphorylation. pVHL and p-AKT associated in vitro, and knockdown of pVHL rescued HIF1α expression and the cells from apoptosis. Collectively, our study suggests that in the context of oxidative stress, p-AKT facilitated apoptosis by inducing pVHL function. PMID:23315288

  9. ROCK inhibitor reduces Myc-induced apoptosis and mediates immortalization of human keratinocytes

    PubMed Central

    Dakic, Aleksandra; DiVito, Kyle; Fang, Shuang; Suprynowicz, Frank; Gaur, Anirudh; Li, Xin; Palechor-Ceron, Nancy; Simic, Vera; Choudhury, Sujata; Yu, Songtao; Simbulan-Rosenthal, Cynthia M.; Rosenthal, Dean; Schlegel, Richard; Liu, Xuefeng

    2016-01-01

    The Myc/Max/Mad network plays a critical role in cell proliferation, differentiation and apoptosis and c-Myc is overexpressed in many cancers, including HPV-positive cervical cancer cell lines. Despite the tolerance of cervical cancer keratinocytes to high Myc expression, we found that the solitary transduction of the Myc gene into primary cervical and foreskin keratinocytes induced rapid cell death. These findings suggested that the anti-apoptotic activity of E7 in cervical cancer cells might be responsible for negating the apoptotic activity of over-expressed Myc. Indeed, our earlier in vitro studies demonstrated that Myc and E7 synergize in the immortalization of keratinocytes. Since we previously postulated that E7 and the ROCK inhibitor, Y-27632, were members of the same functional pathway in cell immortalization, we tested whether Y-27632 would inhibit apoptosis induced by the over-expression of Myc. Our findings indicate that Y-27632 rapidly inhibited Myc-induced membrane blebbing and cellular apoptosis and, more generally, functioned as an inhibitor of extrinsic and intrinsic pathways of cell death. Most important, Y-27632 cooperated with Myc to immortalize keratinocytes efficiently, indicating that apoptosis is a major barrier to Myc-induced immortalization of keratinocytes. The anti-apoptotic activity of Y-27632 correlated with a reduction in p53 serine 15 phosphorylation and the consequent reduction in the expression of downstream target genes p21 and DAPK1, two genes involved in the induction of cell death. PMID:27556514

  10. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction

    PubMed Central

    Sun, Lingmei; Liao, Kai; Hang, Chengcheng; Wang, Dayong

    2017-01-01

    Objective To investigate the effects of honokiol on induction of reactive oxygen species (ROS), antioxidant defense systems, mitochondrial dysfunction, and apoptosis in Candida albicans. Methods To measure ROS accumulation, 2′,7′-dichlorofluorescein diacetate fluorescence was used. Lipid peroxidation was assessed using both fluorescence staining and a thiobarbituric acid reactive substances (TBARS) assay. Protein oxidation was determined using dinitrophenylhydrazine derivatization. Antioxidant enzymatic activities were measured using commercially available detection kits. Superoxide dismutase (SOD) genes expression was measured using real time RT-PCR. To assess its antifungal abilities and effectiveness on ROS accumulation, honokiol and the SOD inhibitor N,N′-diethyldithiocarbamate (DDC) were used simultaneously. Mitochondrial dysfunction was assessed by measuring the mitochondrial membrane potential (mtΔψ). Honokiol-induced apoptosis was assessed using an Annexin V-FITC apoptosis detection kit. Results ROS, lipid peroxidation, and protein oxidation occurred in a dose-dependent manner in C. albicans after honokiol treatment. Honokiol caused an increase in antioxidant enzymatic activity. In addition, honokiol treatment induced SOD genes expression in C. albicans cells. Moreover, addition of DDC resulted in increased endogenous ROS levels and potentiated the antifungal activity of honokiol. Mitochondrial dysfunction was confirmed by measured changes to mtΔψ. The level of apoptosis increased in a dose-dependent manner after honokiol treatment. Conclusions Collectively, these results indicate that honokiol acts as a pro-oxidant in C. albicans. Furthermore, the SOD inhibitor DDC can be used to potentiate the activity of honokiol against C. albicans. PMID:28192489

  11. Carnosol Induces ROS-Mediated Beclin1-Independent Autophagy and Apoptosis in Triple Negative Breast Cancer

    PubMed Central

    Al Dhaheri, Yusra; Attoub, Samir; Ramadan, Gaber; Arafat, Kholoud; Bajbouj, Khuloud; Karuvantevida, Noushad; AbuQamar, Synan; Eid, Ali; Iratni, Rabah

    2014-01-01

    Background In this study we investigated the in vitro and in vivo anticancer effect of carnosol, a naturally occurring polyphenol, in triple negative breast cancer. Results We found that carnosol significantly inhibited the viability and colony growth induced G2 arrest in the triple negative MDA-MB-231. Blockade of the cell cycle was associated with increased p21/WAF1 expression and downregulation of p27. Interestingly, carnosol was found to induce beclin1-independent autophagy and apoptosis in MDA-MB-231 cells. The coexistence of both events, autophagy and apoptosis, was confirmed by electron micrography. Induction of autophagy was found to be an early event, detected within 3 h post-treatment, which subsequently led to apoptosis. Carnosol treatment also caused a dose-dependent increase in the levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (pERK1/2). Moreover, we show that carnosol induced DNA damage, reduced the mitochondrial potential and triggered the activation of the intrinsic and extrinsic apoptotic pathway. Furthermore, we found that carnosol induced a dose-dependent generation of reactive oxygen species (ROS) and inhibition of ROS by tiron, a ROS scavenger, blocked the induction of autophagy and apoptosis and attenuated DNA damage. To our knowledge, this is the first report to identify the induction of autophagy by carnosol. Conclusion In conclusion our findings provide strong evidence that carnosol may be an alternative therapeutic candidate against the aggressive form of breast cancer and hence deserves more exploration. PMID:25299698

  12. Induction of Fas Mediated Caspase-8 Independent Apoptosis in Immune Cells by Armigeres subalbatus Saliva

    PubMed Central

    Liu, Shanshan; Kelvin, David J.; Leon, Alberto J.; Jin, Liqun; Farooqui, Amber

    2012-01-01

    Background It is widely recognized that the introduction of saliva of bloodsucking arthropods at the site of pathogen transmission might play a central role in vector-borne infections. However, how the interaction between salivary components and the host immune system takes place and which physiological processes this leads to has yet to be investigated. Armigeres subalbatus is one of the prominent types of mosquitoes involved in the transmission of parasitic and viral diseases in humans and animals. Methodology/Principal Findings Using murine peritoneal macrophages and lymphocytes, and human peripheral mononuclear cells (PBMCs), this study shows that saliva of the female Ar. subalbatus induces apoptosis via interaction with the Fas receptor within a few hours but without activating caspase-8. The process further activates downstream p38 MAPK signaling, a cascade that leads to the induction of apoptosis in capase-3 dependent manner. We further illustrate that Ar. subalbatus saliva suppresses proinflammatory cytokines without changing IL-10 levels, which might happen as a result of apoptosis. Conclusions Our study shows for the first time that saliva-induced apoptosis is the leading phenomenon exerted by Ar. subalbatus that impede immune cells leading to the suppression of their effecter mechanism. PMID:22815944

  13. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    PubMed Central

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P.; Williams, David B.; Kamp, David W.

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer. PMID:26370974

  14. Rspo2 suppresses CD36-mediated apoptosis in oxidized low density lipoprotein-induced macrophages

    PubMed Central

    Yan, Hui; Wang, Shuai; Li, Zhenwei; Sun, Zewei; Zan, Jie; Zhao, Wenting; Pan, Yanyun; Wang, Zhen; Wu, Mingjie; Zhu, Jianhua

    2016-01-01

    Oxidized low density lipoprotein (oxLDL)-induced apoptosis of macrophages contributes to the formation of atherosclerotic plaques. R-spondin 2 (Rspo2), a member of the cysteine-rich secreted proteins, has been shown to be involved in the oncogenesis of several types of cancer. It has also been found to be abundantly expressed among the four R-spondin members in macrophages. The present study was performed to determine whether Rspo2 is involved in the ox-LDL-induced apoptosis of macrophages. It was identified that Rspo2 inhibited oxLDL-induced apoptosis in the presence of endoplasmic reticulum (ER) stress activator using flow cytometry. In addition, Rspo2 was observed to suppress oxLDL-induced ER stress and reactive oxygen species production as demonstrated by western blotting. Furthermore, analysis of the role of Rspo2 in macrophage lipid uptake identified that Rspo2 negatively regulated the Dil-oxLDL uptake by inhibiting the expression of cluster of differentiation (CD)36, through the transcription factor, peroxisome proliferator-activated receptor (PPAR)-γ. The manipulation of Rspo2 had a direct effect on PPAR-γ nuclear translocation. In addition, chromatin immunoprecipitation analysis revealed that Rspo2 manipulation led to regulation of the direct binding between PPAR-γ and CD36. In conclusion, Rspo2 was found to have a negative regulatory effect during oxLDL-induced macrophage apoptosis by regulating lipid uptake. PMID:27571704

  15. Aldose reductase induced by hyperosmotic stress mediates cardiomyocyte apoptosis: differential effects of sorbitol and mannitol.

    PubMed

    Galvez, Anita S; Ulloa, Juan Alberto; Chiong, Mario; Criollo, Alfredo; Eisner, Verónica; Barros, Luis Felipe; Lavandero, Sergio

    2003-10-03

    Cells adapt to hyperosmotic conditions by several mechanisms, including accumulation of sorbitol via induction of the polyol pathway. Failure to adapt to osmotic stress can result in apoptotic cell death. In the present study, we assessed the role of aldose reductase, the key enzyme of the polyol pathway, in cardiac myocyte apoptosis. Hyperosmotic stress, elicited by exposure of cultured rat cardiac myocytes to the nonpermeant solutes sorbitol and mannitol, caused identical cell shrinkage and adaptive hexose uptake stimulation. In contrast, only sorbitol induced the polyol pathway and triggered stress pathways as well as apoptosis-related signaling events. Sorbitol resulted in activation of the extracellular signal-regulated kinase (ERK), p54 c-Jun N-terminal kinase (JNK), and protein kinase B. Furthermore, sorbitol treatment resulting in induction and activation of aldose reductase, decreased expression of the antiapoptotic protein Bcl-xL, increased DNA fragmentation, and glutathione depletion. Apoptosis was attenuated by aldose reductase inhibition with zopolrestat and also by glutathione replenishment with N-acetylcysteine. In conclusion, our data show that hypertonic shrinkage of cardiac myocytes alone is not sufficient to induce cardiac myocyte apoptosis. Hyperosmolarity-induced cell death is sensitive to the nature of the osmolyte and requires induction of aldose reductase as well as a decrease in intracellular glutathione levels.

  16. MITOCHONDRIAL OXIDANT PRODUCTION BY POLLUTANT DUST AND NO-MEDIATED APOPTOSIS IN HUMAN ALVEOLAR MACHROPHAGE

    EPA Science Inventory

    Residual oil fly ash (ROFA) is a pollutant dust that stimulates production of reactive oxygen species (ROS) from mitochondria and apoptosis in alveolar macrophages (AM), but the relationship between these two processes is unclear. In this study, human AM were incubated with RO...

  17. Reduced expression of PNUTS leads to activation of Rb-phosphatase and caspase-mediated apoptosis.

    PubMed

    De Leon, Gabriel; Sherry, Tara C; Krucher, Nancy A

    2008-06-01

    There is abundant evidence that Retinoblastoma (Rb) activity is important in the control of cell proliferation and apoptosis. Reversible phosphorylation of the Rb protein that is carried out by cyclin dependent kinases and Protein phosphatase 1 (PP1) regulates its functions. A PP1 interacting protein, PNUTS (Phosphatase Nuclear Targeting Subunit) is proposed to be a regulator of Rb phosphorylation. In this study, PNUTS knockdown in MCF7, SKA and HCT116 cancer cells causes a reduction in viability due to increased apoptosis. However, normal cells (MCF10A breast and CCD-18Co colon) do not exhibit reduced viability when PNUTS expression is diminished. PNUTS knockdown has no effect in Rb-null Saos-2 cells. However, when Rb is stably expressed in Saos-2 cells, PNUTS knockdown reduces cell number. Knockdown of PNUTS in p53-/- HCT116 cells indicates that p53 is dispensable for the induction of apoptosis. Loss of PNUTS expression results in increased Rb-phosphatase activity and Rb dephosphorylation. E2F1 dissociates from Rb in cells depleted of PNUTS and the resulting apoptosis is dependent on caspase-8. These results indicate that Rb phosphorylation state can be manipulated by targeting Rb phosphatase activity and suggest that PNUTS may be a potential target for therapeutic pro-apoptotic strategies.

  18. Molecular mechanism underlying differential apoptosis between human melanoma cell lines UACC903 and UACC903(+6) revealed by mitochondria-focused cDNA microarrays.

    PubMed

    Zhang, Qiuyang; Wu, Jun; Nguyen, Anhthu; Wang, Bi-Dar; He, Ping; Laurent, Georges St; Rennert, Owen M; Su, Yan A

    2008-08-01

    Human malignant melanoma cell line UACC903 is resistant to apoptosis while chromosome 6-mediated suppressed cell line UACC903(+6) is sensitive. Here, we describe identification of differential molecular pathways underlying this difference. Using our recently developed mitochondria-focused cDNA microarrays, we identified 154 differentially expressed genes including proapoptotic (BAK1 [6p21.3], BCAP31, BNIP1, CASP3, CASP6, FAS, FDX1, FDXR, TNFSF10 and VDAC1) and antiapoptotic (BCL2L1, CLN3 and MCL1) genes. Expression of these pro- and anti-apoptotic genes was higher in UACC903(+6) than in UACC903 before UV treatment and was altered after UV treatment. qRT-PCR and Western blots validated microarray results. Our bioinformatic analysis mapped these genes to differential molecular pathways that predict resistance and sensitivity of UACC903 and UACC903(+6) to apoptosis respectively. The pathways were functionally confirmed by the FAS ligand-induced cell death and by siRNA knockdown of BAK1 protein. These results demonstrated the differential molecular pathways underlying survival and apoptosis of UACC903 and UACC903(+6) cell lines.

  19. Discovery of a small-molecule pBcl-2 inhibitor that overcomes pBcl-2-mediated resistance to apoptosis.

    PubMed

    Song, Ting; Yu, Xiaoyan; Liu, Yubo; Li, Xiangqian; Chai, Gaobo; Zhang, Zhichao

    2015-03-23

    Although the role of Bcl-2 phosphorylation is still under debate, it has been identified in a resistance mechanism to BH3 mimetics, for example ABT-737 and S1. We identified an S1 analogue, S1-16, as a small-molecule inhibitor of pBcl-2. S1-16 efficiently kills EEE-Bcl-2 (a T69E, S70E, and S87E mutant mimicking phosphorylation)-expressing HL-60 cells and high endogenously expressing pBcl-2 cells, by disrupting EEE-Bcl-2 or native pBcl-2 interactions with Bax and Bak, followed by apoptosis. In vitro binding assays showed that S1-16 binds to the BH3 binding groove of EEE-Bcl-2 (Kd =0.38 μM by ITC; IC50 =0.16 μM by ELISA), as well as nonphosphorylated Bcl-2 (npBcl-2; Kd =0.38 μM; IC50 =0.12 μM). However, ABT-737 and S1 had much weaker affinities to EEE-Bcl-2 (IC50 =1.43 and >10 μM, respectively), compared with npBcl-2 (IC50 =0.011 and 0.74 μM, respectively). The allosteric effect on BH3 binding groove by Bcl-2 phosphorylation in the loop region was illustrated for the first time.

  20. Targeting hyaluronic acid production for the treatment of leukemia: treatment with 4-methylumbelliferone leads to induction of MAPK-mediated apoptosis in K562 leukemia.

    PubMed

    Uchakina, Olga N; Ban, Hao; McKallip, Robert J

    2013-10-01

    The current study examined the effect of modulation of hyaluronic acid (HA) synthesis on leukemia cell survival using the hyaluronic acid synthesis inhibitor 4-methylumbelliferone (4-MU). Treatment of CML cells with 4-MU led to caspase-dependent apoptosis characterized by decreased HA production, PARP cleavage, and increased phosphorylation of p38. Addition of exogenous HA, the pan caspase inhibitor Z-VAD-FMK or the p38 inhibitor SB203580 to 4-MU treated cells was able to protect cells from apoptosis. Treatment of tumor-bearing mice with 4-MU led to a significant reduction in tumor load which was mediated through the induction of apoptosis.

  1. Dopamine-Induced Apoptosis of Lactotropes Is Mediated by the Short Isoform of D2 Receptor

    PubMed Central

    Radl, Daniela Betiana; Ferraris, Jimena; Boti, Valeria; Seilicovich, Adriana; Sarkar, Dipak Kumar; Pisera, Daniel

    2011-01-01

    Dopamine, through D2 receptor (D2R), is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L) and short (D2S), are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850). SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process. PMID:21464994

  2. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    SciTech Connect

    Fuchs, Dominik; Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard; Naujokat, Cord

    2010-04-16

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.

  3. Protection of hydroquinone-induced apoptosis by downregulation of Fau is mediated by NQO1.

    PubMed

    Siew, E L; Chan, K M; Williams, G T; Ross, D; Inayat-Hussain, S H

    2012-10-15

    The Fau gene (Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV)-associated ubiquitously expressed gene) was identified as a potential tu