Konak, H E; Kibar, S; Ergin, E S
2016-11-01
Osteoporosis is a serious disease characterized by muscle weakness in the lower extremities, shortened length of trunk, and increased dorsal kyphosis leading to poor balance performance. Although balance impairment increases in adults with osteoporosis, falls and fall-related injuries have been shown to occur mainly during the dual-task performance. Several studies have shown that dual-task performance was improved with specific repetitive dual-task exercises. The aims of this study were to compare the effect of single- and dual-task balance exercise programs on static balance, dynamic balance, and activity-specific balance confidence in adults with osteoporosis and to assess the effectiveness of dual-task balance training on gait speed under dual-task conditions. Older adults (N = 42) (age range, 45-88 years) with osteoporosis were randomly assigned into two groups. Single-task balance training group was given single-task balance exercises for 4 weeks, whereas dual-task balance training group received dual-task balance exercises. Participants received 45-min individualized training session, three times a week. Static balance was evaluated by one-leg stance (OLS) and a kinesthetic ability trainer (KAT) device. Dynamic balance was measured by the Berg Balance Scale (BBS), Time Up and Go (TUG) test, and gait speed. Self-confidence was assessed with the Activities-specific Balance Confidence (ABC-6) scale. Assessments were performed at baseline and after the 4-week program. At the end of the treatment periods, KAT score, BBS score, time in OLS and TUG, gait speeds under single- and dual-task conditions, and ABC-6 scale scores improved significantly in all patients (p < 0.05). However, BBS and gait speeds under single- and dual-task conditions showed significantly greater improvement in the dual-task balance training group than in the single-task balance training group (p < 0.05). ABC-6 scale scores improved more in the single-task balance training group than in the dual-task balance training group (p < 0.05). A 4-week single- and dual-task balance exercise programs are effective in improving static balance, dynamic balance, and balance confidence during daily activities in older adults with osteoporosis. However, single- and dual-task gait speeds showed greater improvement following the application of a specific type of dual-task exercise programs. 24102014-2.
Towards Better Computational Models of the Balance Scale Task: A Reply to Shultz and Takane
ERIC Educational Resources Information Center
van der Maas, Han L. J.; Quinlan, Philip T.; Jansen, Brenda R. J.
2007-01-01
In contrast to Shultz and Takane [Shultz, T.R., & Takane, Y. (2007). Rule following and rule use in the balance-scale task. "Cognition", in press, doi:10.1016/j.cognition.2006.12.004.] we do not accept that the traditional Rule Assessment Method (RAM) of scoring responses on the balance scale task has advantages over latent class analysis (LCA):…
Monjezi, Saeideh; Negahban, Hossein; Tajali, Shirin; Yadollahpour, Nava; Majdinasab, Nastaran
2017-02-01
To investigate the effects of dual-task balance training on postural performance in patients with multiple sclerosis as compared with single-task balance training. Double-blind, pretest-posttest, randomized controlled pilot trial. Local Multiple Sclerosis Society. A total of 47 patients were randomly assigned to two equal groups labeled as single-task training and dual-task training groups. All patients received supervised balance training sessions, 3 times per week for 4 weeks. The patients in the single-task group performed balance activities, alone. However, patients in dual-task group practiced balance activities while simultaneously performing cognitive tasks. The 10-Meter Walk Test and Timed Up-and-Go under single-task and dual-task conditions, in addition to Activities-specific Balance Confidence, Berg Balance Scale, and Functional Gait Assessment were assessed pre-, and post intervention and also 6-weeks after the end of intervention. Only 38 patients completed the treatment plan. There was no difference in the amount of improvement seen between the two study groups. In both groups there was a significant effect of time for dual-10 Meter Walk Test (F 1, 36 =11.33, p=0.002) and dual-Timed Up-and-Go (F 1, 36 =14.27, p=0.001) but not for their single-tasks. Moreover, there was a significant effect of time for Activities-specific Balance Confidence, Berg Balance Scale, and Functional Gait Assessment ( P<0.01). This pilot study did not show more benefits from undertaking dual-task training than single-task training. A power analysis showed 71 patients per group would be needed to determine whether there was a clinically relevant difference for dual-task gait speed between the groups.
Butchard-MacDonald, Emma; Paul, Lorna; Evans, Jonathan J
2018-03-01
People with relapsing remitting multiple sclerosis (PwRRMS) suffer disproportionate decrements in gait under dual-task conditions, when walking and a cognitive task are combined. There has been much less investigation of the impact of cognitive demands on balance. This study investigated whether: (1) PwRRMS show disproportionate decrements in postural stability under dual-task conditions compared to healthy controls, and (2) dual-task decrements are associated with everyday dual-tasking difficulties. The impact of mood, fatigue, and disease severity on dual-tasking was also examined. A total of 34 PwRRMS and 34 matched controls completed cognitive (digit span) and balance (movement of center of pressure on Biosway on stable and unstable surfaces) tasks under single- and dual-task conditions. Everyday dual-tasking was measured using the Dual-Tasking Questionnaire. Mood was measured by the Hospital Anxiety & Depression Scale. Fatigue was measured via the Modified Fatigue Index Scale. No differences in age, gender, years of education, estimated pre-morbid IQ, or baseline digit span between groups. Compared with controls, PwRRMS showed significantly greater decrement in postural stability under dual-task conditions on an unstable surface (p=.007), but not a stable surface (p=.679). Balance decrement scores were not correlated with everyday dual-tasking difficulties or fatigue. Stable surface balance decrement scores were significantly associated with levels of anxiety (rho=0.527; p=.001) and depression (rho=0.451; p=.007). RRMS causes dual-tasking difficulties, impacting balance under challenging conditions, which may contribute to increased risk of gait difficulties and falls. The relationship between anxiety/depression and dual-task decrement suggests that emotional factors may be contributing to dual-task difficulties. (JINS, 2018, 24, 247-258).
Rule Following and Rule Use in the Balance-Scale Task
ERIC Educational Resources Information Center
Shultz, Thomas R.; Takane, Yoshio
2007-01-01
Quinlan et al. [Quinlan, p., van der Mass, H., Jansen, B., Booij, O., & Rendell, M. (this issue). Re-thinking stages of cognitive development: An appraisal of connectionist models of the balance scale task. "Cognition", doi:10.1016/j.cognition.2006.02.004] use Latent Class Analysis (LCA) to criticize a connectionist model of development on the…
A Connectionist Model of a Continuous Developmental Transition in the Balance Scale Task
ERIC Educational Resources Information Center
Schapiro, Anna C.; McClelland, James L.
2009-01-01
A connectionist model of the balance scale task is presented which exhibits developmental transitions between "Rule I" and "Rule II" behavior [Siegler, R. S. (1976). Three aspects of cognitive development. "Cognitive Psychology," 8, 481-520.] as well as the "catastrophe flags" seen in data from Jansen and van der Maas [Jansen, B. R. J., & van der…
ERIC Educational Resources Information Center
Quinlan, Philip T.; van der Maas, Han L. J.; Jansen, Brenda R. J.; Booij, Olaf; Rendell, Mark
2007-01-01
The present paper re-appraises connectionist attempts to explain how human cognitive development appears to progress through a series of sequential stages. Models of performance on the Piagetian balance scale task are the focus of attention. Limitations of these models are discussed and replications and extensions to the work are provided via the…
Classes in the Balance: Latent Class Analysis and the Balance Scale Task
ERIC Educational Resources Information Center
Boom, Jan; ter Laak, Jan
2007-01-01
Latent class analysis (LCA) has been successfully applied to tasks measuring higher cognitive functioning, suggesting the existence of distinct strategies used in such tasks. With LCA it became possible to classify post hoc. This important step forward in modeling and analyzing cognitive strategies is relevant to the overlapping waves model for…
Peirone, Eliana; Goria, Paolo Filiberto; Anselmino, Arianna
2014-04-01
To evaluate the safety, feasibility and effectiveness of a dual-task home-based rehabilitation programme on balance impairments among adult patients with acquired brain injury. Single-blind, randomized controlled pilot study. Single rehabilitation centre. Sixteen participants between 12 and 18 months post-acquired brain injury with balance impairments and a score <10 seconds on the One-Leg Stance Test (eyes open). All participants received 50-minutes individualised traditional physiotherapy sessions three times a week for seven weeks. In addition, the intervention group (N = 8) performed an individualised dual-task home-based programme six days a week for seven weeks. The primary outcome measure was the Balance Evaluation System Test; secondary measures were the Activities-specific Balance Confidence Scale and Goal Attainment Scaling. At the end of the pilot study, the intervention group showed significantly greater improvement in Balance Evaluation System Test scores (17.87, SD 6.05) vs. the control group (5.5, SD 3.53; P = 0.008, r = 0.63). There was no significant difference in improvement in Activities-specific Balance Confidence Scale scores between the intervention group (25.25, SD 25.51) and the control group (7.00, SD 14.73; P = 0.11, r = 0.63). There was no significant improvement in Goal Attainment Scaling scores in the intervention (19.37, SD 9.03) vs. the control group (16.28, SD 6.58; P = 0.093, r = 0.63). This pilot study shows the safety, feasibility and short-term benefit of a dual-task home-based rehabilitation programme to improve balance control in patients with acquired brain injury. A sample size of 26 participants is required for a definitive study.
Task oriented training improves the balance outcome & reducing fall risk in diabetic population.
Ghazal, Javeria; Malik, Arshad Nawaz; Amjad, Imran
2016-01-01
The objective was to determine the balance impairments and to compare task oriented versus traditional balance training in fall reduction among diabetic patients. The randomized control trial with descriptive survey and 196 diabetic patients were recruited to assess balance impairments through purposive sampling technique. Eighteen patients were randomly allocated into two groups; task oriented balance training group TOB (n=8) and traditional balance training group TBT (n=10). The inclusion criteria were 30-50 years age bracket and diagnosed cases of Diabetes Mellitus with neuropathy. The demographics were taken through standardized & valid assessment tools include Berg Balance Scale and Functional Reach Test. The measurements were obtained at baseline, after 04 and 08 weeks of training. The mean age of the participants was 49 ±6.79. The result shows that 165(84%) were at moderate risk of fall and 31(15%) were at mild risk of fall among total 196 diabetic patients. There was significant improvement (p <0.05) in task oriented balance training group for dynamic balance, anticipatory balance and reactive balance after 8 weeks of training as compare to traditional balance training. Task oriented balance training is effective in improving the dynamic, anticipator and reactive balance. The task oriented training reduces the risk of falling through enhancing balance outcome.
Task oriented training improves the balance outcome & reducing fall risk in diabetic population
Ghazal, Javeria; Malik, Arshad Nawaz; Amjad, Imran
2016-01-01
Objectives: The objective was to determine the balance impairments and to compare task oriented versus traditional balance training in fall reduction among diabetic patients. Methods: The randomized control trial with descriptive survey and 196 diabetic patients were recruited to assess balance impairments through purposive sampling technique. Eighteen patients were randomly allocated into two groups; task oriented balance training group TOB (n=8) and traditional balance training group TBT (n=10). The inclusion criteria were 30-50 years age bracket and diagnosed cases of Diabetes Mellitus with neuropathy. The demographics were taken through standardized & valid assessment tools include Berg Balance Scale and Functional Reach Test. The measurements were obtained at baseline, after 04 and 08 weeks of training. Results: The mean age of the participants was 49 ±6.79. The result shows that 165(84%) were at moderate risk of fall and 31(15%) were at mild risk of fall among total 196 diabetic patients. There was significant improvement (p <0.05) in task oriented balance training group for dynamic balance, anticipatory balance and reactive balance after 8 weeks of training as compare to traditional balance training. Conclusion: Task oriented balance training is effective in improving the dynamic, anticipator and reactive balance. The task oriented training reduces the risk of falling through enhancing balance outcome. PMID:27648053
Muir-Hunter, Susan W; Clark, Jennifer; McLean, Stephanie; Pedlow, Sam; Van Hemmen, Alysia; Montero Odasso, Manuel; Overend, Tom
2014-01-01
The mechanisms linking cognition, balance function, and fall risk among older adults are not fully understood. An evaluation of the effect of cognition on balance tests commonly used in clinical practice to assess community-dwelling older adults could enhance the identification of at-risk individuals. The study aimed to determine (1) the association between cognition and clinical tests of balance and (2) the relationship between executive function (EF) and balance under single- and dual-task testing. Participants (24 women, mean age of 76.18 [SD 16.45] years) completed six clinical balance tests, four cognitive tests, and two measures of physical function. Poor balance function was associated with poor performance on cognitive testing of EF. In addition, the association with EF was strongest under the dual-task timed up-and-go (TUG) test and the Fullerton Advanced Balance Scale. Measures of global cognition were associated only with the dual-task performance of the TUG. Postural sway measured with the Standing Balance Test, under single- or dual-task test conditions, was not associated with cognition. Decreased EF was associated with worse performance on functional measures of balance. The relationship between EF and balance was more pronounced with dual-task testing using a complex cognitive task combined with the TUG.
Examination of the perceived agility and balance during a reactive agility task.
Stirling, Leia; Eke, Chika; Cain, Stephen M
2018-01-01
In vehicle dynamics, it is commonly understood that there is an inverse relationship between stability and maneuverability. However, animal studies have found that stability and maneuverability can coincide. In this study, we examine humans running a reactive agility obstacle and consider the relationship between observational perceived agility and balance, as well as the relationship between quantified surrogates of agility and balance. Recreational athletes (n = 18) completed the agility task while wearing inertial measurement units (IMUs) on their body. The task was also video-recorded. An observational study was completed by a separate group of adults (n = 33) that were asked to view the videos and score each athlete on a Likert scale for balance and for agility. The data from the body-worn IMUs were used to estimate quantified surrogate measures for agility and balance, and to assess if the relationship between the quantified agility and balance was in the same direction as the perceived relationship from the Likert scale responses. Results indicate that athletes that were given a higher Likert agility score were also given a higher balance score (rs = 0.75,p < 0.001). Quantitative surrogates of agility and balance also showed this same relationship. Additional insights on technique for this reactive agility task were informed by the quantitative surrogates. We observed the importance of stepping technique in achieving the faster completion times. The fast performing athletes spent a greater proportion of the task in double support and lower overall time in single support indicating increased periods of static stability. The fast performing athletes did not have a higher body speed, but performed the task with a more efficient technique, using foot placement to enable heading changes, and thus may have had a more efficient path. Similar to animal studies, people use technique to enable agile strategies while also enabling increased balance across the task.
Effect of aquatic dual-task training on balance and gait in stroke patients
Kim, Kyoung; Lee, Dong-Kyu; Kim, Eun-Kyung
2016-01-01
[Purpose] The purpose of this study was to determine the effect of aquatic dual-task training on balance and gait in stroke patients. [Subjects and Methods] Twenty stroke patients were divided into the experimental (n=10) and control (n=10) groups. Both groups underwent neurodevelopmental treatment. The experimental group additionally underwent aquatic dual-task training for 30 minutes a day, 5 days a week, for 6 weeks. Balance was measured using the Berg balance scale, Five Times Sit-to Stand Test, and Functional Reach Test. Gait was measured using the 10-Meter Walk Test, Timed Up and Go Test, and Functional Gait Assessment. [Results] For intragroup comparison, the experimental group showed a significant change after the experiment in all balance and gait assessment tests. For intergroup comparison, the experimental group showed relatively more significant change after the experiment in all balance and gait assessment tests. [Conclusion] Our results showed that aquatic dual-task training has a positive effect on balance and gait in stroke patients. PMID:27512261
Effect of aquatic dual-task training on balance and gait in stroke patients.
Kim, Kyoung; Lee, Dong-Kyu; Kim, Eun-Kyung
2016-07-01
[Purpose] The purpose of this study was to determine the effect of aquatic dual-task training on balance and gait in stroke patients. [Subjects and Methods] Twenty stroke patients were divided into the experimental (n=10) and control (n=10) groups. Both groups underwent neurodevelopmental treatment. The experimental group additionally underwent aquatic dual-task training for 30 minutes a day, 5 days a week, for 6 weeks. Balance was measured using the Berg balance scale, Five Times Sit-to Stand Test, and Functional Reach Test. Gait was measured using the 10-Meter Walk Test, Timed Up and Go Test, and Functional Gait Assessment. [Results] For intragroup comparison, the experimental group showed a significant change after the experiment in all balance and gait assessment tests. For intergroup comparison, the experimental group showed relatively more significant change after the experiment in all balance and gait assessment tests. [Conclusion] Our results showed that aquatic dual-task training has a positive effect on balance and gait in stroke patients.
Comprehensive, blinded assessment of balance in orthostatic tremor.
Bhatti, Danish; Thompson, Rebecca; Xia, Yiwen; Hellman, Amy; Schmaderer, Lorene; Suing, Katie; McKune, Jennifer; Penke, Cynthia; Iske, Regan; Roeder, Bobbi Jo; Siu, Ka-Chun; Bertoni, John M; Torres-Russotto, Diego
2018-02-01
Orthostatic Tremor (OT) is a movement disorder characterized by a sensation of unsteadiness and tremors in the 13-18 Hz range present upon standing. The pathophysiology of OT is not well understood but there is a relationship between the sensation of instability and leg tremors. Despite the sensation of unsteadiness, OT patients do not fall often and balance in OT has not been formally assessed. We present a prospective blinded study comparing balance assessment in patients with OT versus healthy controls. We prospectively enrolled 34 surface Electromyography (EMG)-confirmed primary OT subjects and 21 healthy controls. Participants underwent evaluations of balance by blinded physical therapists (PT) with standardized, validated, commonly used balance scales and tasks. OT subjects were mostly female (30/34, 88%) and controls were majority males (13/20, 65%). The average age of OT subjects was 68.5 years (range 54-87) and for controls was 69.4 (range 32-86). The average duration of OT symptoms was 18 years. OT subjects did significantly worse on all the balance scales and on most balance tasks including Berg Balance Scale, Functional Gait Assessment, Dynamic Gait Index, Unipedal Stance Test, Functional Reach Test and pull test. Gait speed and five times sit to stand were normal in OT. Common validated balance scales are significantly abnormal in primary OT. Despite the objective finding of impaired balance, OT patients do not commonly have falls. The reported sensation of unsteadiness in this patient population seems to be out of proportion to the number of actual falls. Further studies are needed to determine which components of commonly used balance scales are affected by a sensation of unsteadiness and fear of falling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Specificity of Balance Training in Healthy Individuals: A Systematic Review and Meta-Analysis.
Kümmel, Jakob; Kramer, Andreas; Giboin, Louis-Solal; Gruber, Markus
2016-09-01
It has become common practice to incorporate balance tasks into the training program for athletes who want to improve performance and prevent injuries, in rehabilitation programs, and in fall prevention programs for the elderly. However, it is still unclear whether incorporating balance tasks into a training program increases performance only in these specific tasks or if it affects balance in a more general way. The objective of this systematic literature review and meta-analysis was to determine to what extent the training of balance tasks can improve performance in non-trained balance tasks. A systematic literature search was performed in the online databases EMBASE, PubMed, SPORTDiscus and Web of Science. Articles related to balance training and testing in healthy populations published between January 1985 and March 2015 were considered. A total of 3093 articles were systematically evaluated. Randomized controlled trials were included that (i) used only balance tasks during the training, (ii) used at least two balance tests before and after training, and (iii) tested performance in the trained balance tasks and at least one non-trained balance task. Six studies with a total of 102 subjects met these criteria and were included into the meta-analysis. The quality of the studies was evaluated by means of the Physiotherapy Evidence Database (PEDro) scale. A random effect model was used to calculate the between-subject standardized mean differences (SMDbs) in order to quantify the effect of balance training on various kinds of balance measures relative to controls. The tested balance tasks in each study were classified into tasks that had been trained and tasks that had not been trained. For further analyses, the non-trained balance tasks were subdivided into tasks with similar or non-similar body position and similar or non-similar balance perturbation direction compared to the trained task. The effect of balance training on the performance of the trained balance tasks reached an SMDbs of 0.79 [95 % confidence interval (CI) 0.48-1.10], indicating a high effect in favor for the trained task, with no notable heterogeneity (I (2) = 0 %). The SMDbs in non-trained categories reached values between -0.07 (95 % CI -0.53 to 0.38) and 0.18 (95 % CI -0.27 to 0.64), with non-notable to moderate heterogeneity (I (2) = 0-32 %), indicating no effect of the balance training on the respective non-trained balance tasks. With six studies, the number of studies included in this meta-analysis is rather low. It remains unclear how the limited number of studies with considerable methodological diversity affects the outcome of the SMD calculations and thus the general outcome of the meta-analysis. In healthy populations, balance training can improve the performance in trained tasks, but may have only minor or no effects on non-trained tasks. Consequently, therapists and coaches should identify exactly those tasks that need improvement, and use these tasks in the training program and as a part of the test battery that evaluates the efficacy of the training program. Generic balance tasks-such as one-leg stance-may have little value as overall balance measures or when assessing the efficacy of specific training interventions.
Pedroso, Renata Valle; Coelho, Flávia Gomes de Melo; Santos-Galduróz, Ruth Ferreira; Costa, José Luiz Riani; Gobbi, Sebastião; Stella, Florindo
2012-01-01
Elderly individuals with AD are more susceptible to falls, which might be associated with decrements in their executive functions and balance, among other things. We aimed to analyze the effects of a program of dual task physical activity on falls, executive functions and balance of elderly individuals with AD. We studied 21 elderly with probable AD, allocated to two groups: the training group (TG), with 10 elderly who participated in a program of dual task physical activity; and the control group (CG), with 11 elderly who were not engaged in regular practice of physical activity. The Clock Drawing Test (CDT) and the Frontal Assessment Battery (FAB) were used in the assessment of the executive functions, while the Berg Balance Scale (BBS) and the Timed Up-and-Go (TUG)-test evaluated balance. The number of falls was obtained by means of a questionnaire. We observed a better performance of the TG as regards balance and executive functions. Moreover, the lower the number of steps in the TUG scale, the higher the scores in the CDT, and in the FAB. The practice of regular physical activity with dual task seems to have contributed to the maintenance and improvement of the motor and cognitive functions of the elderly with AD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Cha, Hyun-Gyu; Oh, Duck-Won
2016-03-01
This study aimed to explore the effects of mirror therapy integrated with task-oriented exercise on balance function in poststroke hemiparesis. Twenty patients with poststroke hemiparesis were assigned randomly to an experimental group (EG) and a control group (CG), with 10 individuals each. Participants of the EG and CG received a task-oriented exercise program with a focus on the strengthening of the lower limb and the practice of balance-related functional tasks. An additional option for the EG was front and side wall mirrors to provide visual feedback for their own movements while performing the exercise. The program was performed for 30 min, twice a day, five times per week for 4 weeks. Outcome measures included the Berg balance scale, the timed up-and-go test, and quantitative data (balance index and dynamic limits of stability). In the EG and CG, all variables showed significant differences between pretest and post-test (P<0.05), and post-test values of all variables appeared to be significantly different between two groups (P<0.05). Furthermore, in the EG, the change values between pretest and post-test values of Berg balance scale (13.00±3.20 vs. 6.60±4.55 scores), and timed up-and-go test (6.45±3.00 vs. 3.61±1.84 s), balance index (2.29±0.51 vs. 0.96±0.65 scores), dynamic limits of stability (7.70±3.83 vs. 3.70±4.60 scores) were significantly higher than those of the CG (P<0.05). The findings suggest that a mirror therapy may be used as a beneficial therapeutic option to facilitate the effects of a task-oriented exercise on balance function of patients with poststroke hemiparesis.
Hawkes, Teresa D; Siu, Ka-Chun; Silsupadol, Patima; Woollacott, Marjorie H.
2011-01-01
Previous research using dual-task paradigms indicates balance-impaired older adults (BIOA) are less able to flexibly shift attentional focus between a cognitive and motor task than healthy older adults (HOA). Shifting attention is a component of executive function. Task switch tests assess executive attention function. This multivariate study asked if BIOAs demonstrate greater task switching deficits than HOAs. A group of 39 HOA (65–80 yrs) and BIOA (65–87 yrs) subjects performed a visuo-spatial task switch. A sub-group of subjects performed a dual-task obstacle avoidance paradigm. All participants completed the Berg Balance Scale (BBS) and Timed Up and Go (TUG). We assessed differences by group for: 1) visuo-spatial task switch reaction times (switch/no-switch), and performance on the BBS and TUG. Our balance groups differed significantly on BBS score (p < .001) and switch reaction time (p = .032), but not the TUG. This confirmed our hypothesis that neuromuscular and executive attention function differs between these two groups. For our BIOA sub-group, gait velocity correlated negatively with performance on the switch condition (p=.036). This suggests that BIOA efficiency of attentional allocation in dual task settings should be further explored. PMID:21964051
Donath, Lars; Faude, Oliver; Bridenbaugh, Stephanie A; Roth, Ralf; Soltermann, Martin; Kressig, Reto W; Zahner, Lukas
2014-07-01
This study examined transfer effects of fall training on fear of falling (Falls Efficacy Scale-International [FES-I]), balance performance, and spatiotemporal gait characteristics in older adults. Eighteen community-dwelling older adults (ages 65-85) were randomly assigned to an intervention or control group. The intervention group completed 12 training sessions (60 min, 6 weeks). During pre- and posttesting, we measured FES-I, balance performance (double limb, closed eyes; single limb, open eyes; double limb, open eyes with motor-interfered task), and gait parameters (e.g., velocity; cadence; stride time, stride width, and stride length; variability of stride time and stride length) under single- and motor-interfered tasks. Dual tasks were applied to appraise improvements of cognitive processing during balance and gait. FES-I (p = .33) and postural sway did not significantly change (0.36 < p < .79). Trends toward significant interaction effects were found for step width during normal walking and stride length variability during the motor dual task (p = .05, ηp 2 = .22). Fall training did not sufficiently improve fear of falling, balance, or gait performance under single- or dual-task conditions in healthy older adults.
Factor Analysis of the Community Balance and Mobility Scale in Individuals with Knee Osteoarthritis.
Takacs, Judit; Krowchuk, Natasha M; Goldsmith, Charles H; Hunt, Michael A
2017-10-01
The clinical assessment of balance is an important first step in characterizing the risk of falls. The Community Balance and Mobility Scale (CB&M) is a test of balance and mobility that was designed to assess performance on advanced tasks necessary for independence in the community. However, other factors that can affect balancing ability may also be present during performance of the real-world tasks on the CB&M. It is important for clinicians to understand fully what other modifiable factors the CB&M may encompass. The purpose of this study was to evaluate the underlying constructs in the CB&M in individuals with knee osteoarthritis (OA). This was an observational study, with a single testing session. Participants with knee OA aged 50 years and older completed the CB&M, a clinical test of balance and mobility. Confirmatory factor analysis was then used to examine whether the tasks on the CB&M measure distinct factors. Three a priori theory-driven models with three (strength, balance, mobility), four (range of motion added) and six (pain and fear added) constructs were evaluated using multiple fit indices. A total of 131 participants (mean [SD] age 66.3 [8.5] years, BMI 27.3 [5.2] kg m -2 ) participated. A three-factor model in which all tasks loaded on these three factors explained 65% of the variance and yielded the most optimal model, as determined using scree plots, chi-squared values and explained variance. The first factor accounted for 49% of the variance and was interpreted as lower limb muscle strength. The second and third factors were interpreted as mobility and balance, respectively. The CB&M demonstrated the measurement of three distinct factors, interpreted as lower limb strength, balance and mobility, supporting the use of the CB&M with people with knee OA for evaluation of these important factors in falls risk and functional mobility. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Halvarsson, Alexandra; Franzén, Erika; Ståhle, Agneta
2015-04-01
To evaluate the effects of a balance training program including dual- and multi-task exercises on fall-related self-efficacy, fear of falling, gait and balance performance, and physical function in older adults with osteoporosis with an increased risk of falling and to evaluate whether additional physical activity would further improve the effects. Randomized controlled trial, including three groups: two intervention groups (Training, or Training+Physical activity) and one Control group, with a 12-week follow-up. Stockholm County, Sweden. Ninety-six older adults, aged 66-87, with verified osteoporosis. A specific and progressive balance training program including dual- and multi-task three times/week for 12 weeks, and physical activity for 30 minutes, three times/week. Fall-related self-efficacy (Falls Efficacy Scale-International), fear of falling (single-item question - 'In general, are you afraid of falling?'), gait speed with and without a cognitive dual-task at preferred pace and fast walking (GAITRite®), balance performance tests (one-leg stance, and modified figure of eight), and physical function (Late-Life Function and Disability Instrument). Both intervention groups significantly improved their fall-related self-efficacy as compared to the controls (p ≤ 0.034, 4 points) and improved their balance performance. Significant differences over time and between groups in favour of the intervention groups were found for walking speed with a dual-task (p=0.003), at fast walking speed (p=0.008), and for advanced lower extremity physical function (p=0.034). This balance training program, including dual- and multi-task, improves fall-related self-efficacy, gait speed, balance performance, and physical function in older adults with osteoporosis. © The Author(s) 2014.
Monticone, Marco; Ambrosini, Emilia; Brunati, Roberto; Capone, Antonio; Pagliari, Giulia; Secci, Claudio; Zatti, Giovanni; Ferrante, Simona
2018-03-01
To evaluate the efficacy of a rehabilitation programme including balance task-specific training in improving physical function, pain, activities of daily living (ADL), balance and quality of life in subjects after a hip fracture. Randomized controlled trial. A total of 52 older subjects selected for internal fixation due to extra-capsular hip fracture were randomized to be included in an experimental ( n = 26) and control group ( n = 26). The experimental group underwent a rehabilitation programme based on balance task-specific training. The control group underwent general physiotherapy, including open kinetic chain exercises and walking training. Both groups individually followed programmes of 90-minute sessions five times/week for three weeks. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), a Pain Numerical Rating Scale, the Berg Balance Scale, the Functional Independence Measure and the 36-item Short-Form Health Survey. The participants were evaluated before and after training, and after 12 months. Significant effects of time, group and time × group were found for all outcome measures in favour of the experimental group. A clinically important between-group difference of 25 points was achieved after training and at follow-up in terms of the primary outcome (WOMAC function before treatment, after treatment and at follow-up was 84.8 (3.7), 39.8 (4.9) and 35.7 (6.2) for the experimental group and 80.9 (5.7), 65.2 (7.1) and 61.0 (11.1) for the control group). An inpatient rehabilitation programme based on balance task-specific training is useful in improving physical function, pain, ADL and quality of life in older patients after hip fracture.
Bloem, Bastiaan R; Marinus, Johan; Almeida, Quincy; Dibble, Lee; Nieuwboer, Alice; Post, Bart; Ruzicka, Evzen; Goetz, Christopher; Stebbins, Glenn; Martinez-Martin, Pablo; Schrag, Anette
2016-09-01
Disorders of posture, gait, and balance in Parkinson's disease (PD) are common and debilitating. This MDS-commissioned task force assessed clinimetric properties of existing rating scales, questionnaires, and timed tests that assess these features in PD. A literature review was conducted. Identified instruments were evaluated systematically and classified as "recommended," "suggested," or "listed." Inclusion of rating scales was restricted to those that could be used readily in clinical research and practice. One rating scale was classified as "recommended" (UPDRS-derived Postural Instability and Gait Difficulty score) and 2 as "suggested" (Tinetti Balance Scale, Rating Scale for Gait Evaluation). Three scales requiring equipment (Berg Balance Scale, Mini-BESTest, Dynamic Gait Index) also fulfilled criteria for "recommended" and 2 for "suggested" (FOG score, Gait and Balance Scale). Four questionnaires were "recommended" (Freezing of Gait Questionnaire, Activities-specific Balance Confidence Scale, Falls Efficacy Scale, Survey of Activities, and Fear of Falling in the Elderly-Modified). Four tests were classified as "recommended" (6-minute and 10-m walk tests, Timed Up-and-Go, Functional Reach). We identified several questionnaires that adequately assess freezing of gait and balance confidence in PD and a number of useful clinical tests. However, most clinical rating scales for gait, balance, and posture perform suboptimally or have been evaluated insufficiently. No instrument comprehensively and separately evaluates all relevant PD-specific gait characteristics with good clinimetric properties, and none provides separate balance and gait scores with adequate content validity for PD. We therefore recommend the development of such a PD-specific, easily administered, comprehensive gait and balance scale that separately assesses all relevant constructs. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Conradsson, David; Löfgren, Niklas; Nero, Håkan; Hagströmer, Maria; Ståhle, Agneta; Lökk, Johan; Franzén, Erika
2015-10-01
Highly challenging exercises have been suggested to induce neuroplasticity in individuals with Parkinson's disease (PD); however, its effect on clinical outcomes remains largely unknown. To evaluate the short-term effects of the HiBalance program, a highly challenging balance-training regimen that incorporates both dual-tasking and PD-specific balance components, compared with usual care in elderly with mild to moderate PD. Participants with PD (n = 100) were randomized, either to the 10-week HiBalance program (n = 51) or to the control group (n = 49). Participants were evaluated before and after the intervention. The main outcomes were balance performance (Mini-BESTest), gait velocity (during normal and dual-task gait), and concerns about falling (Falls Efficacy Scale-International). Performance of a cognitive task while walking, physical activity level (average steps per day), and activities of daily living were secondary outcomes. A total of 91 participants completed the study. After the intervention, the between group comparison showed significantly improved balance and gait performance in the training group. Moreover, although no significant between group difference was observed regarding gait performance during dual-tasking; the participants in the training group improved their performance of the cognitive task while walking, as compared with the control group. Regarding physical activity levels and activities of daily living, in comparison to the control group, favorable results were found for the training group. No group differences were found for concerns about falling. The HiBalance program significantly benefited balance and gait abilities when compared with usual care and showed promising transfer effects to everyday living. Long-term follow-up assessments will further explore these effects. © The Author(s) 2015.
Delbroek, Tom; Vermeylen, Wietse; Spildooren, Joke
2017-01-01
[Purpose] This study investigates whether cognition, balance and dual task performance in institutionalized older adults improves by a virtual reality dual task training. [Subjects and Methods] Randomized controlled trial; Twenty institutionalized older adults with mild cognitive impairment (13 female, 7 male; average age, 87.2 ± 5.96 years) were randomized to the intervention (i.e. Virtual reality dual-task training using the BioRescue) or control group (no additional training). The intervention group took part in a 6-week training program while the elderly in the control group maintained their daily activities. Balance was measured with the Instrumented Timed Up-and-Go Test with and without a cognitive task. The Observed Emotion Rating Scale and Intrinsic Motivation Inventory were administered to evaluate the emotions and motivation regarding the exergaming program. [Results] The intervention group improved significantly on the total Timed Up-and-Go duration and the turn-to-sit duration during single-task walking in comparison to the control group who received no additional training. Participants found the virtual reality dual task training pleasant and useful for their concentration, memory and balance. Pleasure and alertness were the two emotions which were mostly seen during the intervention. [Conclusion] The BioRescue is a pleasant and interesting treatment method, well suited for institutionalized older adults in need of lifelong physical therapy. PMID:28744033
The dual task-cost of standing balance affects quality of life in mildly disabled MS people.
Castelli, Letizia; De Luca, Francesca; Marchetti, Maria Rita; Sellitto, Giovanni; Fanelli, Fulvia; Prosperini, Luca
2016-05-01
The aim of this study was to explore the correlations between the dual-task cost (DTC) of standing balance and quality of life (QoL) in mildly disabled patients with multiple sclerosis (MS). In this cross-sectional study, patients affected by MS with an expanded disability status scale (EDSS) score of 3.0 or less and without an overt balance impairment were tested by means of static posturography under eyes-opened (single-task condition) and while performing the Stroop word-color test (dual-task condition), to estimate the DTC of standing balance. The self-reported 54-item MS quality of life questionnaire (MSQoL-54) was also administered to obtain a MS-specific assessment of health-related QoL. Among the 120 screened patients, 75 (53 women, 22 men) were tested. Although there was no impact of the DTC of standing balance on the physical and mental composite scores of MSQoL-54, patients who had a greater DTC of standing balance scored worse on role limitations due to physical problems (p = 0.007) and social function (p < 0.001), irrespective of demographic and other clinical characteristics including walking performance and cognitive status. However, the EDSS step and fatigue also contributed to reduced scores in these two QoL domains (p-values < 0.01). In conclusion, the phenomenon of cognitive-motor interference, investigated as DTC of standing balance, may affect specific QoL domains even in mildly disabled patients with MS and in the absence of an overt balance dysfunction.
Proffitt, Rachel; Lange, Belinda; Chen, Christina; Winstein, Carolee
2015-01-01
The purpose of this study was to explore the subjective experience of older adults interacting with both virtual and real environments. Thirty healthy older adults engaged with real and virtual tasks of similar motor demands: reaching to a target in standing and stepping stance. Immersive tendencies and absorption scales were administered before the session. Game engagement and experience questionnaires were completed after each task, followed by a semistructured interview at the end of the testing session. Data were analyzed respectively using paired t tests and grounded theory methodology. Participants preferred the virtual task over the real task. They also reported an increase in presence and absorption with the virtual task, describing an external focus of attention. Findings will be used to inform future development of appropriate game-based balance training applications that could be embedded in the home or community settings as part of evidence-based fall prevention programs.
Digital Posturography Games Correlate with Gross Motor Function in Children with Cerebral Palsy.
Bingham, Peter M; Calhoun, Barbara
2015-04-01
This pilot study aimed to assess whether performance on posturography games correlates with the Gross Motor Function Measure (GMFM) in children with cerebral palsy. Simple games using static posturography technology allowed subjects to control screen events via postural sway. Game performance was compared with GMFMs using correlation analysis in a convenience sample of nine girls and six boys with cerebral palsy. Likert scales were used to obtain subjective responses to the balance games. GMFM scores correlated with game performance, especially measures emphasizing rhythmic sway. Twelve of the 15 subjects enjoyed the game and asserted an interest in playing again. Digital posturography games engage children with cerebral palsy in balance tasks, provide visual feedback in a balance control task, and have the potential to increase autonomy in balance control training among pediatric patients with cerebral palsy. This approach can support the relationship between child and therapist. The potential for interactive posturography to complement the assessment and treatment of balance in cerebral palsy bears continuing study.
Smits-Engelsman, Bouwien C. M.; Jelsma, Lemke Dorothee; Ferguson, Gillian D.; Geuze, Reint H.
2015-01-01
Objective Although Developmental Coordination Disorder (DCD) is often characterized as a skill acquisition deficit disorder, few studies have addressed the process of motor learning. This study examined learning of a novel motor task; the Wii Fit ski slalom game. The main objectives were to determine: 1) whether learning occurs over 100 trial runs of the game, 2) if the learning curve is different between children with and without DCD, 3) if learning is different in an easier or harder version of the task, 4) if learning transfers to other balance tasks. Method 17 children with DCD (6–10 years) and a matched control group of 17 typically developing (TD) children engaged in 20 minutes of gaming, twice a week for five weeks. Each training session comprised of alternating trial runs, with five runs at an easy level and five runs at a difficult level. Wii scores, which combine speed and accuracy per run, were recorded. Standardized balance tasks were used to measure transfer. Results Significant differences in initial performance were found between groups on the Wii score and balance tasks. Both groups improved their Wii score over the five weeks. Improvement in the easy and in the hard task did not differ between groups. Retention in the time between training sessions was not different between TD and DCD groups either. The DCD group improved significantly on all balance tasks. Conclusions The findings in this study give a fairly coherent picture of the learning process over a medium time scale (5 weeks) in children novice to active computer games; they learn, retain and there is evidence of transfer to other balance tasks. The rate of motor learning is similar for those with and without DCD. Our results raise a number of questions about motor learning that need to be addressed in future research. PMID:26466324
Mental imagery. Effects on static balance and attentional demands of the elderly.
Hamel, M F; Lajoie, Yves
2005-06-01
Several studies have demonstrated the effectiveness of mental imagery in improving motor performance. However, no research has studied the effectiveness of such a technique on static balance in the elderly. This study evaluated the efficiency of a mental imagery technique, aimed at improving static balance by reducing postural oscillations and attentional demands in the elderly. Twenty subjects aged 65 to 90 years old, divided into two groups (8 in Control group and 12 in Experimental group) participated in the study. The experimental participants underwent daily mental imagery training for a period of six weeks. Antero-posterior and lateral oscillations, reaction times during the use of the double-task paradigm were measured, and the Berg Balance Scale, Activities-specific Balance Confidence Scale, and VMIQ questionnaire were answered during both pre-test and post-test. Attentional demands and postural oscillations (antero-posterior) decreased significantly in the group with mental imagery training compared with those of the Control group. Subjects in the mental imagery group became significantly better in their aptitudes to generate clear vivid mental images, as indicated by the VMIQ questionnaire, whereas no significant difference was observed for the Activities-specific Balance Confidence Scale or Berg Scale. The results support psychoneuromuscular and motor coding theories associated with mental imagery.
Krpič, Andrej; Savanović, Arso; Cikajlo, Imre
2013-06-01
Telerehabilitation can offer prolonged rehabilitation for patients with stroke after being discharged from the hospital, whilst remote diagnostics may reduce the frequency of the outpatient services required. Here, we compared a novel telerehabilitation system for virtual reality-supported balance training with balance training with only a standing frame and with conventional therapy in the hospital. The proposed low-cost experimental system for balance training enabling multiple home systems, real-time tracking of task's performance and different views of captured data with balance training, consists of a standing frame equipped with a tilt sensor, a low-cost computer, display, and internet connection. Goal-based tasks for balance training in the virtual environment proved motivating for the participating individuals. The physiotherapist, located in the remote healthcare center, could remotely adjust the level of complexity and difficulty or preview the outcomes and instructions with the application on the mobile smartphone. Patients using the virtual reality-supported balance training showed an improvement in the task performance time of 45% and number of collisions of 68%, showing significant improvements in the Berg Balance Scale, Timed 'Up and Go', and 10 m Walk Test. The clinical outcomes were not significantly different from balance training with only the standing frame or conventional therapy. The proposed telerehabilitation can facilitate the physiotherapists' work and thus enable rehabilitation to a larger number of patients after release from the hospital because it requires less time and infrequent presence of the clinical staff. However, a comprehensive clinical evaluation is required to confirm the applicability of the concept.
Proffitt, Rachel; Lange, Belinda; Chen, Christina; Winstein, Carolee
2014-01-01
The purpose of this study was to explore the subjective experience of older adults interacting with both virtual and real environments. Thirty healthy older adults engaged with real and virtual tasks of similar motor demands: reaching to a target in standing and stepping stance. Immersive tendencies and absorption scales were administered before the session. Game engagement and experience questionnaires were completed after each task, followed by a semi-structured interview at the end of the testing session. Data were analyzed respectively using paired t-tests and grounded theory methodology. Participants preferred the virtual task over the real task. They also reported an increase in presence and absorption with the virtual task, describing an external focus of attention. Findings will be used to inform future development of appropriate game-based balance training applications that could be embedded in the home or community settings as part of evidence-based fall prevention programs. PMID:24334299
Nilsagård, Ylva Elisabet; von Koch, Lena Kristina; Nilsson, Malin; Forsberg, Anette Susanne
2014-12-01
To evaluate the effects of a balance exercise program on falls in people with mild to moderate multiple sclerosis (MS). Multicenter, single-blinded, single-group, pretest-posttest trial. Seven rehabilitation units within 5 county councils. Community-dwelling adults with MS (N=32) able to walk 100m but unable to maintain 30-second tandem stance with arms alongside the body. Seven weeks of twice-weekly, physiotherapist-led 60-minute sessions of group-based balance exercise targeting core stability, dual tasking, and sensory strategies (CoDuSe). Primary outcomes: number of prospectively reported falls and proportion of participants classified as fallers during 7 preintervention weeks, intervention period, and 7 postintervention weeks. Secondary outcomes: balance performance on the Berg Balance Scale, Four Square Step Test, sit-to-stand test, timed Up and Go test (alone and with cognitive component), and Functional Gait Assessment Scale; perceived limitations in walking on the 12-item MS Walking Scale; and balance confidence on the Activities-specific Balance Confidence Scale rated 7 weeks before intervention, directly after intervention, and 7 weeks later. Number of falls (166 to 43; P≤.001) and proportion of fallers (17/32 to 10/32; P≤.039) decreased significantly between the preintervention and postintervention periods. Balance performance improved significantly. No significant differences were detected for perceived limitations in walking, balance confidence, the timed Up and Go test, or sit-to-stand test. The CoDuSe program reduced falls and proportion of fallers and improved balance performance in people with mild to moderate MS but did not significantly alter perceived limitations in walking and balance confidence. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Telerehabilitation using virtual reality task can improve balance in patients with stroke.
Cikajlo, Imre; Rudolf, Marko; Goljar, Nika; Burger, Helena; Matjačić, Zlatko
2012-01-01
The objective of the telerehabilitation is a continuation of the rehabilitation process on patients' home. The study also compares the balance training in clinical environment with the telerehabilitation approach when the physiotherapists and physicians can follow the progress remotely. In this paper, the preliminary study of the pilot project with virtual reality (VR)-based tasks for dynamic standing frame supported balance training is presented. Six patients with stroke participated in the study. The patients performed the balance training 3 weeks, 2 weeks in the clinical settings and 1 week in the home environment, five times a week, and each time for up to 20 minutes. Objective effectiveness was demonstrated by parameters as track time, number of collisions and the clinical instruments Berg Balance Scale (BBS), Timed Up & Go (TUG), 10-m walk test and standing on the unaffected and affected extremity. The outcomes were compared to the balance training group without VR and telerehabilitation support. A 2-way ANOVA was used to explore the differences between the both stroke groups. In patients who were subject to VR supported balance training, the BBS demonstrated improvement for 15%, the TUG for 29%, the 10-m walk for 26%, stance time on the affected and unaffected extremity for 200 and 67%, respectively. The follow-up demonstrated that the patients preserved the gained functional improvement. The VR task performance time and number of collisions decreased to 45 and 68%, respectively. Besides, no statistical differences were found between the telerehabilitation approach with VR supported balance training and conventional balance training in clinical settings either regarding the overall mean level or regarding the mean improvement. The telerehabilitation approach in VR supported balance training improved balance in stroke patients and had similar effect on patients' postural functional improvement as conventional balance training in clinical settings. However, when balance training is continued on patient's home instead of the hospital, it would eventually decrease the number of outpatients' visits, reduce related costs and enable treatment of larger number of patients.
Wii Fit balance board playing improves balance and gait in Parkinson disease.
Mhatre, Priya V; Vilares, Iris; Stibb, Stacy M; Albert, Mark V; Pickering, Laura; Marciniak, Christina M; Kording, Konrad; Toledo, Santiago
2013-09-01
To assess the effect of exercise training by using the Nintendo Wii Fit video game and balance board system on balance and gait in adults with Parkinson disease (PD). A prospective interventional cohort study. An outpatient group exercise class. Ten subjects with PD, Hoehn and Yahr stages 2.5 or 3, with a mean age of 67.1 years; 4 men, 6 women. The subjects participated in supervised group exercise sessions 3 times per week for 8 weeks by practicing 3 different Wii balance board games (marble tracking, skiing, and bubble rafting) adjusted for their individualized function level. The subjects trained for 10 minutes per game, a total of 30 minutes training per session. Pre-and postexercise training, a physical therapist evaluated subjects' function by using the Berg Balance Scale, Dynamic Gait Index, and Sharpened Romberg with eyes open and closed. Postural sway was assessed at rest and with tracking tasks by using the Wii balance board. The subjects rated their confidence in balance by using the Activities-specific Balance Confidence scale and depression on the Geriatric Depression Scale. Balance as measured by the Berg Balance Scale improved significantly, with an increase of 3.3 points (P = .016). The Dynamic Gait Index improved as well (mean increase, 2.8; P = .004), as did postural sway measured with the balance board (decreased variance in stance with eyes open by 31%; P = .049). Although the Sharpened Romberg with eyes closed increased by 6.85 points and with eyes opened by 3.3 points, improvements neared significance only for eyes closed (P = .07 versus P = .188). There were no significant changes on patient ratings for the Activities-specific Balance Confidence (mean decrease, -1%; P = .922) or the Geriatric Depression Scale (mean increase, 2.2; P = .188). An 8-week exercise training class by using the Wii Fit balance board improved selective measures of balance and gait in adults with PD. However, no significant changes were seen in mood or confidence regarding balance. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Wii Fit Balance Board Playing Improves Balance and Gait in Parkinson Disease
Mhatre, Priya V.; Vilares, Iris; Stibb, Stacy M.; Albert, Mark V.; Pickering, Laura; Marciniak, Christina M.; Kording, Konrad; Toledo, Santiago
2014-01-01
Objective To assess the effect of exercise training by using the Nintendo Wii Fit video game and balance board system on balance and gait in adults with Parkinson disease (PD). Design A prospective interventional cohort study. Setting An outpatient group exercise class. Participants Ten subjects with PD, Hoehn and Yahr stages 2.5 or 3, with a mean age of 67.1 years; 4 men, 6 women. Interventions The subjects participated in supervised group exercise sessions 3 times per week for 8 weeks by practicing 3 different Wii balance board games (marble tracking, skiing, and bubble rafting) adjusted for their individualized function level. The subjects trained for 10 minutes per game, a total of 30 minutes training per session. Main Outcome Measurements Pre-and postexercise training, a physical therapist evaluated subjects’ function by using the Berg Balance Scale, Dynamic Gait Index, and Sharpened Romberg with eyes open and closed. Postural sway was assessed at rest and with tracking tasks by using the Wii balance board. The subjects rated their confidence in balance by using the Activities-specific Balance Confidence scale and depression on the Geriatric Depression Scale. Results Balance as measured by the Berg Balance Scale improved significantly, with an increase of 3.3 points (P = .016). The Dynamic Gait Index improved as well (mean increase, 2.8; P = .004), as did postural sway measured with the balance board (decreased variance in stance with eyes open by 31%; P = .049). Although the Sharpened Romberg with eyes closed increased by 6.85 points and with eyes opened by 3.3 points, improvements neared significance only for eyes closed (P = .07 versus P = .188). There were no significant changes on patient ratings for the Activities-specific Balance Confidence (mean decrease, −1%; P = .922) or the Geriatric Depression Scale (mean increase, 2.2; P = .188). Conclusions An 8-week exercise training class by using the Wii Fit balance board improved selective measures of balance and gait in adults with PD. However, no significant changes were seen in mood or confidence regarding balance. PMID:23770422
Gandolfi, Marialuisa; Geroin, Christian; Picelli, Alessandro; Munari, Daniele; Waldner, Andreas; Tamburin, Stefano; Marchioretto, Fabio; Smania, Nicola
2014-01-01
Background: Extensive research on both healthy subjects and patients with central nervous damage has elucidated a crucial role of postural adjustment reactions and central sensory integration processes in generating and “shaping” locomotor function, respectively. Whether robotic-assisted gait devices might improve these functions in Multiple sclerosis (MS) patients is not fully investigated in literature. Purpose: The aim of this study was to compare the effectiveness of end-effector robot-assisted gait training (RAGT) and sensory integration balance training (SIBT) in improving walking and balance performance in patients with MS. Methods: Twenty-two patients with MS (EDSS: 1.5–6.5) were randomly assigned to two groups. The RAGT group (n = 12) underwent end-effector system training. The SIBT group (n = 10) underwent specific balance exercises. Each patient received twelve 50-min treatment sessions (2 days/week). A blinded rater evaluated patients before and after treatment as well as 1 month post treatment. Primary outcomes were walking speed and Berg Balance Scale. Secondary outcomes were the Activities-specific Balance Confidence Scale, Sensory Organization Balance Test, Stabilometric Assessment, Fatigue Severity Scale, cadence, step length, single and double support time, Multiple Sclerosis Quality of Life-54. Results: Between groups comparisons showed no significant differences on primary and secondary outcome measures over time. Within group comparisons showed significant improvements in both groups on the Berg Balance Scale (P = 0.001). Changes approaching significance were found on gait speed (P = 0.07) only in the RAGT group. Significant changes in balance task-related domains during standing and walking conditions were found in the SIBT group. Conclusion: Balance disorders in patients with MS may be ameliorated by RAGT and by SIBT. PMID:24904361
Straudi, Sofia; Severini, Giacomo; Sabbagh Charabati, Amira; Pavarelli, Claudia; Gamberini, Giulia; Scotti, Anna; Basaglia, Nino
2017-05-10
Patients with traumatic brain injury often have balance and attentive disorders. Video game therapy (VGT) has been proposed as a new intervention to improve mobility and attention through a reward-learning approach. In this pilot randomized, controlled trial, we tested the effects of VGT, compared with a balance platform therapy (BPT), on balance, mobility and selective attention in chronic traumatic brain injury patients. We enrolled chronic traumatic brain injury patients (n = 21) that randomly received VGT or BPT for 3 sessions per week for 6 weeks. The clinical outcome measures included: i) the Community Balance & Mobility Scale (CB&M); ii) the Unified Balance Scale (UBS); iii) the Timed Up and Go test (TUG); iv) static balance and v) selective visual attention evaluation (Go/Nogo task). Both groups improved in CB&M scores, but only the VGT group increased on the UBS and TUG with a between-group significance (p < 0.05). Selective attention improved significantly in the VGT group (p < 0.01). Video game therapy is an option for the management of chronic traumatic brain injury patients to ameliorate balance and attention deficits. NCT01883830 , April 5 2013.
Rossi-Izquierdo, Marcos; Ernst, Arne; Soto-Varela, Andrés; Santos-Pérez, Sofía; Faraldo-García, Ana; Sesar-Ignacio, Angel; Basta, Dietmar
2013-02-01
The aim of this study was to assess effectiveness of balance training with a vibrotactile neurofeedback system in improving overall stability in patients with Parkinson's disease (PD). Ten patients diagnosed with idiopathic PD were included. Individualization of the rehabilitation program started with a body sway analysis of stance and gait tasks (Standard Balance Deficit Test, SBDT) by using the diagnostic tool of the applied device (Vertiguard(®)-RT). Those tasks with the poorest outcome as related to age- and gender-related controls were included in the training program (not more than six tasks). Improvement of postural stability was assessed by performing SBDT, Sensory Organization Test (SOT) of Computerized Dynamic Posturography (CDP), Dizziness Handicap Inventory (DHI), activity-specific balance confidence scale and recording the number of falls over the past three months. Furthermore, scores of SOT and DHI of 10 PD patients previously trained in an earlier study (by using CDP) were compared with results of those in the present study. After neurofeedback training (NFT), there was a statistically significant improvement in body sway (calculated over all training tasks), number of falls, and scores of SOT, DHI and ABC. In comparison with CDP-training, a statistically significant higher increase of SOT score was observed for patients after NFT with the Vertiguard-RT device compared to CDP training. Our results showed that a free-field vibrotactile NFT with Vertiguard(®)-RT device can improve balance in PD patients in everyday life conditions very effectively, which might led in turn to a reduction of falls. Copyright © 2012 Elsevier B.V. All rights reserved.
Relational Knowledge in Higher Cognitive Processes.
ERIC Educational Resources Information Center
Halford, Graeme S.
Explicit representation of relations plays some role in virtually all higher cognitive processes, but relational knowledge has seldom been investigated systematically. This paper considers how relational knowledge is involved in some tasks that have been important to cognitive development, including transitivity, the balance scale, classification…
Scalable Performance Measurement and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamblin, Todd
2009-01-01
Concurrency levels in large-scale, distributed-memory supercomputers are rising exponentially. Modern machines may contain 100,000 or more microprocessor cores, and the largest of these, IBM's Blue Gene/L, contains over 200,000 cores. Future systems are expected to support millions of concurrent tasks. In this dissertation, we focus on efficient techniques for measuring and analyzing the performance of applications running on very large parallel machines. Tuning the performance of large-scale applications can be a subtle and time-consuming task because application developers must measure and interpret data from many independent processes. While the volume of the raw data scales linearly with the number ofmore » tasks in the running system, the number of tasks is growing exponentially, and data for even small systems quickly becomes unmanageable. Transporting performance data from so many processes over a network can perturb application performance and make measurements inaccurate, and storing such data would require a prohibitive amount of space. Moreover, even if it were stored, analyzing the data would be extremely time-consuming. In this dissertation, we present novel methods for reducing performance data volume. The first draws on multi-scale wavelet techniques from signal processing to compress systemwide, time-varying load-balance data. The second uses statistical sampling to select a small subset of running processes to generate low-volume traces. A third approach combines sampling and wavelet compression to stratify performance data adaptively at run-time and to reduce further the cost of sampled tracing. We have integrated these approaches into Libra, a toolset for scalable load-balance analysis. We present Libra and show how it can be used to analyze data from large scientific applications scalably.« less
Li, Lian-Hui; Mo, Rong
2015-01-01
The production task queue has a great significance for manufacturing resource allocation and scheduling decision. Man-made qualitative queue optimization method has a poor effect and makes the application difficult. A production task queue optimization method is proposed based on multi-attribute evaluation. According to the task attributes, the hierarchical multi-attribute model is established and the indicator quantization methods are given. To calculate the objective indicator weight, criteria importance through intercriteria correlation (CRITIC) is selected from three usual methods. To calculate the subjective indicator weight, BP neural network is used to determine the judge importance degree, and then the trapezoid fuzzy scale-rough AHP considering the judge importance degree is put forward. The balanced weight, which integrates the objective weight and the subjective weight, is calculated base on multi-weight contribution balance model. The technique for order preference by similarity to an ideal solution (TOPSIS) improved by replacing Euclidean distance with relative entropy distance is used to sequence the tasks and optimize the queue by the weighted indicator value. A case study is given to illustrate its correctness and feasibility.
Li, Lian-hui; Mo, Rong
2015-01-01
The production task queue has a great significance for manufacturing resource allocation and scheduling decision. Man-made qualitative queue optimization method has a poor effect and makes the application difficult. A production task queue optimization method is proposed based on multi-attribute evaluation. According to the task attributes, the hierarchical multi-attribute model is established and the indicator quantization methods are given. To calculate the objective indicator weight, criteria importance through intercriteria correlation (CRITIC) is selected from three usual methods. To calculate the subjective indicator weight, BP neural network is used to determine the judge importance degree, and then the trapezoid fuzzy scale-rough AHP considering the judge importance degree is put forward. The balanced weight, which integrates the objective weight and the subjective weight, is calculated base on multi-weight contribution balance model. The technique for order preference by similarity to an ideal solution (TOPSIS) improved by replacing Euclidean distance with relative entropy distance is used to sequence the tasks and optimize the queue by the weighted indicator value. A case study is given to illustrate its correctness and feasibility. PMID:26414758
Pollock, Courtney L; Boyd, Lara A; Hunt, Michael A; Garland, S Jayne
2014-04-01
Stepping reactions are important for walking balance and community-level mobility. Stepping reactions of people with stroke are characterized by slow reaction times, poor coordination of motor responses, and low amplitude of movements, which may contribute to their decreased ability to recover their balance when challenged. An important aspect of rehabilitation of mobility after stroke is optimizing the motor learning associated with retraining effective stepping reactions. The Challenge Point Framework (CPF) is a model that can be used to promote motor learning through manipulation of conditions of practice to modify task difficulty, that is, the interaction of the skill of the learner and the difficulty of the task to be learned. This case series illustrates how the retraining of multidirectional stepping reactions may be informed by the CPF to improve balance function in people with stroke. Four people (53-68 years of age) with chronic stroke (>1 year) and mild to moderate motor recovery received 4 weeks of multidirectional stepping reaction retraining. Important tenets of motor learning were optimized for each person during retraining in accordance with the CPF. Participants demonstrated improved community-level walking balance, as determined with the Community Balance and Mobility Scale. These improvements were evident 1 year later. Aspects of balance-related self-efficacy and movement kinematics also showed improvements during the course of the intervention. The application of CPF motor learning principles in the retraining of stepping reactions to improve community-level walking balance in people with chronic stroke appears to be promising. The CPF provides a plausible theoretical framework for the progression of functional task training in neurorehabilitation.
Stanley, Jennifer; Hollands, Mark
2014-07-01
The current study aimed to quantitatively assess differences in gaze behaviour between participants grouped on the basis of their age and measures of functional mobility during a virtual walking paradigm. The gaze behaviour of nine young adults, seven older adults with a relatively low risk of falling and seven older adults with a relatively higher risk of falling was measured while they watched five first-person perspective movies representing the viewpoint of a pedestrian walking through various environments. Participants also completed a number of cognitive tests: Stroop task, visual search, trail making task, Mini Mental Status Examination, and reaction time, visual tests (visual acuity and contrast sensitivity) and assessments of balance (Activities Balance Confidence Scale and Berg Balance Scale) to aid in the interpretation of differences in gaze behaviour. The high risk older adult group spent significantly more time fixating aspects of the travel path than the low risk and young adult groups. High risk older adults were also significantly slower in performing a number of the cognitive tasks than young adults. Correlations were conducted to compare the extent to which travel path fixation durations co-varied with scores on the tests of visual search, motor, and cognitive function. A positive significant correlation was found between the speed of response to the incongruent Stroop task and travel path fixation duration r21 = 0.44, p < 0.05. The results indicate that our movie-viewing paradigm can identify differences in gaze behaviour between participants grouped on the basis of their age and measures of functional mobility and that these differences are associated with cognitive decline. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
Quellmalz, Edys S; Pellegrino, James W
2009-01-02
Large-scale testing of educational outcomes benefits already from technological applications that address logistics such as development, administration, and scoring of tests, as well as reporting of results. Innovative applications of technology also provide rich, authentic tasks that challenge the sorts of integrated knowledge, critical thinking, and problem solving seldom well addressed in paper-based tests. Such tasks can be used on both large-scale and classroom-based assessments. Balanced assessment systems can be developed that integrate curriculum-embedded, benchmark, and summative assessments across classroom, district, state, national, and international levels. We discuss here the potential of technology to launch a new era of integrated, learning-centered assessment systems.
Deschamps, Kevin; Staes, Filip; Peerlinck, Kathelijne; Van Geet, Kristel; Hermans, Cedric; Lobet, Sebastien
2017-02-01
Literature is lacking information about postural control performance of typically developing children during a transition task from double-leg stance to single-leg stance. The purpose of the present study was therefore to evaluate the clinical feasibility of a transition task in typical developing age groups as well as to study the correlation between associated balance measures and age.Thirty-three typically developing boys aged 6-20 years performed a standard transition task from DLS to SLS with eyes open (EO) and eyes closed (EC). Balance features derived from the center of pressure displacement captured by a single force platform were correlated with age on the one hand and considered for differences in the perspective of limb dominance on the other hand.All TDB (typically developing boys) were able to perform the transition task with EO. With respect to EC condition, all TDB from the age group 6-7 years and the youngest of the age group 8-12 years (N = 4) were unable to perform the task. No significant differences were observed between the balance measures of the dominant and non-dominant limbs.With respect to EO condition, correlation analyses indicated that time to new stability point (TNSP) as well as the sway measure after this TNSP were correlated with age (p < 0.0001). For the EC condition, only the anthropometrically scaled sway measure was found to be correlated (p = 0.03). The results provide additional insight into balance development in childhood and may serve as a useful basis for assessing balance impairments in higher functioning children with musculoskeletal problems. What is Known: • Reference data regarding postural balance of typically developing children during walking, running, sit-to-stand, and bipodal and unipodal stance has been well documented in the literature. • These reference data provided not only insight into the maturation process of the postural control system, but also served in diagnosing and managing functional repercussions of neurological and orthopedic pathologies. What is New: • Objective data regarding postural balance of typical developing children during a transition task from double-leg stance to single-leg stance. • Insight into the role of maturation on the postural control system.
Brock, Kim; Haase, Gerlinde; Rothacher, Gerhard; Cotton, Susan
2011-10-01
To compare the short-term effects of two physiotherapy approaches for improving ability to walk in different environments following stroke: (i) interventions based on the Bobath concept, in conjunction with task practice, compared to (ii) structured task practice alone. Randomized controlled trial. Two rehabilitation centres Participants: Twenty-six participants between four and 20 weeks post-stroke, able to walk with supervision indoors. Both groups received six one-hour physiotherapy sessions over a two-week period. One group received physiotherapy based on the Bobath concept, including one hour of structured task practice. The other group received six hours of structured task practice. The primary outcome was an adapted six-minute walk test, incorporating a step, ramp and uneven surface. Secondary measures were gait velocity and the Berg Balance Scale. Measures were assessed before and after the intervention period. Following the intervention, there was no significant difference in improvement between the two groups for the adapted six-minute walk test (89.9 (standard deviation (SD) 73.1) m Bobath versus 41 (40.7) m task practice, P = 0.07). However, walking velocity showed significantly greater increases in the Bobath group (26.2 (SD 17.2) m/min versus 9.9 (SD = 12.9) m/min, P = 0.01). No significant differences between groups were recorded for the Berg Balance Scale (P = 0.2). This pilot study indicates short-term benefit for using interventions based on the Bobath concept for improving walking velocity in people with stroke. A sample size of 32 participants per group is required for a definitive study.
Cortical processes associated with continuous balance control as revealed by EEG spectral power.
Hülsdünker, T; Mierau, A; Neeb, C; Kleinöder, H; Strüder, H K
2015-04-10
Balance is a crucial component in numerous every day activities such as locomotion. Previous research has reported distinct changes in cortical theta activity during transient balance instability. However, there remains little understanding of the neural mechanisms underlying continuous balance control. This study aimed to investigate cortical theta activity during varying difficulties of continuous balance tasks, as well as examining the relationship between theta activity and balance performance. 37 subjects completed nine balance tasks with different levels of surface stability and base of support. Throughout the balancing task, electroencephalogram (EEG) was recorded from 32 scalp locations. ICA-based artifact rejection was applied and spectral power was analyzed in the theta frequency band. Theta power increased in the frontal, central, and parietal regions of the cortex when balance tasks became more challenging. In addition, fronto-central and centro-parietal theta power correlated with balance performance. This study demonstrates the involvement of the cerebral cortex in maintaining upright posture during continuous balance tasks. Specifically, the results emphasize the important role of frontal and parietal theta oscillations in balance control. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M.K.
1999-05-10
Using ORNL information on the characterization of the tank waste sludges, SRTC performed extensive bench-scale vitrification studies using simulants. Several glass systems were tested to ensure the optimum glass composition (based on the glass liquidus temperature, viscosity and durability) is determined. This optimum composition will balance waste loading, melt temperature, waste form performance and disposal requirements. By optimizing the glass composition, a cost savings can be realized during vitrification of the waste. The preferred glass formulation was selected from the bench-scale studies and recommended to ORNL for further testing with samples of actual OR waste tank sludges.
People with chronic low back pain have poorer balance than controls in challenging tasks.
da Silva, Rubens A; Vieira, Edgar R; Fernandes, Karen B P; Andraus, Rodrigo A; Oliveira, Marcio R; Sturion, Leandro A; Calderon, Mariane G
2018-06-01
To compare the balance of individuals with and without chronic low back pain during five tasks. The participants were 20 volunteers, 10 with and 10 without nonspecific chronic low back pain, mean age 34 years, 50% females. The participants completed the following balance tasks on a force platform in random order: (1) two-legged stance with eyes open, (2) two-legged stance with eyes closed, (3) semi-tandem with eyes open, (4) semi-tandem with eyes closed and (5) one-legged stance with eyes open. The participants completed three 60-s trials of tasks 1-4, and three 30-s trials of task 5 with 30-s rests between trials. The center of pressure area, velocity and frequency in the antero-posterior and medio-lateral directions were computed during each task, and compared between groups and tasks. Participants with chronic low back pain presented significantly larger center of pressure area and higher velocity than the healthy controls (p < 0.001). There were significant differences among tasks for all center of pressure variables (p < 0.001). Semi-tandem (tasks 3 and 4) and one-leg stance (task 5) were more sensitive to identify balance impairments in the chronic low back pain group than two-legged stance tasks 1 and 2 (effect size >1.37 vs. effect size <0.64). There were no significant interactions between groups and tasks. Individuals with chronic low back pain presented poorer postural control using center of pressure measurements than the healthy controls, mainly during more challenging balance tasks such as semi-tandem and one-legged stance conditions. Implications for Rehabilitation People with chronic low back had poorer balance than those without it. Balance tasks need to be sensitive to capture impairments. Balance assessments during semi-tandem and one-legged stance were the most sensitive tasks to determine postural control deficit in people with chronic low back. Balance assessment should be included during rehabilitation programs for individuals with chronic low back pain for better clinical decision making related to balance re-training as necessary.
Hofman, Abe D.; Visser, Ingmar; Jansen, Brenda R. J.; van der Maas, Han L. J.
2015-01-01
We propose and test three statistical models for the analysis of children’s responses to the balance scale task, a seminal task to study proportional reasoning. We use a latent class modelling approach to formulate a rule-based latent class model (RB LCM) following from a rule-based perspective on proportional reasoning and a new statistical model, the Weighted Sum Model, following from an information-integration approach. Moreover, a hybrid LCM using item covariates is proposed, combining aspects of both a rule-based and information-integration perspective. These models are applied to two different datasets, a standard paper-and-pencil test dataset (N = 779), and a dataset collected within an online learning environment that included direct feedback, time-pressure, and a reward system (N = 808). For the paper-and-pencil dataset the RB LCM resulted in the best fit, whereas for the online dataset the hybrid LCM provided the best fit. The standard paper-and-pencil dataset yielded more evidence for distinct solution rules than the online data set in which quantitative item characteristics are more prominent in determining responses. These results shed new light on the discussion on sequential rule-based and information-integration perspectives of cognitive development. PMID:26505905
What would you do? The effect of verbal persuasion on task choice.
Lamarche, Larkin; Gionfriddo, Alicia M; Cline, Lindsay E; Gammage, Kimberley L; Adkin, Allan L
2014-01-01
Verbal persuasion has been shown to influence psychological and behavioral outcomes. The present study had two objectives: (1) to examine the effect of verbal persuasion on task choice in a balance setting and (2) to evaluate the use of verbal persuasion as an approach to experimentally induce mismatches between perceived and actual balance. Healthy young adults (N=68) completed an 8-m tandem walk task without vision and then were randomly assigned to a feedback group (good, control, or poor), regardless of actual balance. Following the feedback, participants chose to perform the task in one of three conditions differing in level of challenge and also were required to perform the task under the same pre-feedback conditions. Balance efficacy and perceived stability were rated before and after each pre- and post-feedback task, respectively. Balance performance measures were also collected. Following the feedback, participants in the good group were more likely to choose the most challenging task while those in the poor group were more likely to choose the least challenging task. Following the feedback, all groups showed improved balance performance. However, balance efficacy and perceived stability increased for the good and control groups but balance efficacy decreased and perceived stability was unchanged for the poor group. Thus, these findings demonstrate that verbal persuasion can influence task choice and may be used as an approach to experimentally create mismatches between perceived and actual balance. Copyright © 2013 Elsevier B.V. All rights reserved.
Balasubramanian, Chitralakshmi K
2015-01-01
Currently used balance assessments show a ceiling effect and lack activities essential for community mobility in higher-functioning older adults. The aim of this study was to investigate the reliability and validity of the Community Balance and Mobility (CB&M) Scale in a high-functioning community-dwelling older adult population since the CB&M Scale includes assessment of several challenging tasks and may alleviate the ceiling effects observed in commonly used gait and balance assessments for this cohort. A convenience sample of 40 older adults (73.4 ± 6.9 years) participated in this cross-sectional study. Previously standardized balance and mobility assessments measuring similar constructs as the CB&M were used for validation. Outcomes included Timed Up and Go Test, Berg Balance Scale (BBS), Dynamic Gait Index (DGI), Functional Reach Test (FRT), Short Physical Performance Battery (SPPB), 6-Minute Walk Test (6MWT), Activities Specific Balance Confidence scale (ABC), gait speed, and intraindividual gait variability. A falls questionnaire documented the history of falls. Rater reliability (ICC > 0.95) and internal consistency (α= .97) of the CB&M scale were high. CB&M scores demonstrated strong correlations with DGI, BBS, SPPB, and 6MWT (ρ= 0.70-0.87; P < .01); moderate correlations with falls history, TUG, ABC, and gait speed (ρ= 0.44-0.65; P < .01); and low correlations with FRT, swing and stance time variability (ρ= 0.34-0.37; P < .05). Dynamic Gait Index, BBS, SPPB, and ABC assessments demonstrated ceiling effects (7.5%-32.5%), while no floor or ceiling effects were noted on the CB&M. Logistic regression model showed that the CB&M scores significantly predicted falls history (χ(2) = 6.66, odds ratio = 0.92; P < .01). Area under the curve for the CB&M scale was 0.80 (95% CI: 0.65-0.95). A score of CB&M ≤ 39 was the optimal trade-off between sensitivity and specificity (sensitivity = 79%, specificity = 76%) and a score of CB&M ≤ 45 maximized sensitivity (sensitivity = 93%, specificity = 60%) to discriminate persons with 2 or more falls from those with fewer than 2 falls in the past year. CB&M scale is reliable and valid to evaluate gait, balance, and mobility in community-dwelling older adults. Unlike some currently used balance and mobility assessments for the community-dwelling older adults, the CB&M scale did not show a ceiling in detection of balance and mobility deficits. In addition, cutoff scores have been proposed that might serve as criteria to discriminate older adults with balance and mobility deficits. The CB&M scale might enable assessment of balance and mobility limitations masked by other assessments and help design interventions to improve community mobility and sustain independence in the higher-functioning community-dwelling older adult.
Schaefer, Sabine; Krampe, Ralf Th; Lindenberger, Ulman; Baltes, Paul B
2008-05-01
Task prioritization can lead to trade-off patterns in dual-task situations. The authors compared dual-task performances in 9- and 11-year-old children and young adults performing a cognitive task and a motor task concurrently. The motor task required balancing on an ankle-disc board. Two cognitive tasks measured working memory and episodic memory at difficulty levels individually adjusted during the course of extensive training. Adults showed performance decrements in both task domains under dual-task conditions. In contrast, children showed decrements only in the cognitive tasks but actually swayed less under dual-task than under single-task conditions and continued to reduce their body sway even when instructed to focus on the cognitive task. The authors argue that children perform closer to their stability boundaries in the balance task and therefore prioritize protection of their balance under dual-task conditions. (PsycINFO Database Record (c) 2008 APA, all rights reserved).
Fritz, Nora E; Kegelmeyer, Deborah A; Kloos, Anne D; Linder, Shannon; Park, Ariane; Kataki, Maria; Adeli, Anahita; Agrawal, Punit; Scharre, Douglas W; Kostyk, Sandra K
2016-10-01
Differential diagnosis of dementia with Lewy bodies (DLB), Parkinson's disease with dementia (PDD), Parkinson's disease (PD) and Alzheimer's disease (AD) is challenging. Comparative motor profiles of these neurodegenerative disorders may aid in earlier diagnosis but have not been extensively studied. Groups were rigorously matched by age, education, and sex. DLB/PDD participants were matched by Mini-Mental State Examination Score to individuals with AD and by Unified Parkinson's Disease Rating Scale motor scores to individuals with PD. Gait, balance, dual task walking and hand dexterity measures were compared between a combined group (n=21) of individuals with Lewy body dementia (LBD) consisting of those with DLB (n=11) and PDD (n=10) to individuals with PD (n=21) or AD (n=21). Individuals at the same disease stage with LBD walked significantly slower with shorter stride lengths (p<0.05), demonstrated poorer balance on both the Tinetti and Berg Balance Scale, and poorer performance on dual-task and figure-of-eight walking compared to PD and AD (p<0.05 for all) groups. Upper extremity coordination on the 9-hole peg test differentiated LBD from both PD and AD and was the only motor test in which individuals with AD performed worse than those with PD. Tinetti balance subscores were significantly lower in PDD compared to DLB participants (10.4±2.3 versus 12.8±2.3; p=0.027). Motor features distinguish individuals with LBD from those with AD and PD. Measures of gait, balance and finger dexterity provide an additional means of differentiating individuals with LBD from those with AD and PD. Copyright © 2016 Elsevier B.V. All rights reserved.
The effects of golf training in patients with stroke: a pilot study.
Schachten, Tobias; Jansen, Petra
2015-05-01
Stroke is the most common neurological disease and the primary cause of lifelong disability in industrialized countries. Because of this it is important to investigate any kind of successful therapy. From the 24 recruited stroke patients who were between 23 and 72 years old, 14 patients were separated either in a golf training group (EG), or a social communication meeting (CG). Both groups met for one hour sessions, twice a week, for ten weeks. All participants completed assessment tests before and after the experimental period: cognitive tests measuring attention (Go/No-Go task), visual-spatial memory (Block-Tapping test) and mental rotation performance (MRT); a balance test (Berg Balance Scale), and an emotional well-being test (CES-D-Scale). The results show that both groups improved in the CES Scale, the block-tapping test and the balance test. In addition, stroke patients who received a golf training showed a significant improvement in the MRT comparing to the control group (CG). It is indicated that golf training can improve visual imagery ability in stroke patients, even late after stroke.
Petró, Bálint; Papachatzopoulou, Alexandra; Kiss, Rita M
2017-01-01
Static balancing assessment is often complemented with dynamic balancing tasks. Numerous dynamic balancing assessment methods have been developed in recent decades with their corresponding balancing devices and tasks. The aim of this systematic literature review is to identify and categorize existing objective methods of standing dynamic balancing ability assessment with an emphasis on the balancing devices and tasks being used. Three major scientific literature databases (Science Direct, Web of Science, PLoS ONE) and additional sources were used. Studies had to use a dynamic balancing device and a task described in detail. Evaluation had to be based on objectively measureable parameters. Functional tests without instrumentation evaluated exclusively by a clinician were excluded. A total of 63 articles were included. The data extracted during full-text assessment were: author and date; the balancing device with the balancing task and the measured parameters; the health conditions, size, age and sex of participant groups; and follow-up measurements. A variety of dynamic balancing assessment devices were identified and categorized as 1) Solid ground, 2) Balance board, 3) Rotating platform, 4) Horizontal translational platform, 5) Treadmill, 6) Computerized Dynamic Posturography, and 7) Other devices. The group discrimination ability of the methods was explored and the conclusions of the studies were briefly summarized. Due to the wide scope of this search, it provides an overview of balancing devices and do not represent the state-of-the-art of any single method. The identified dynamic balancing assessment methods are offered as a catalogue of candidate methods to complement static assessments used in studies involving postural control.
Brand, John; Johnson, Aaron P
2014-01-01
In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks.
Brand, John; Johnson, Aaron P.
2014-01-01
In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks. PMID:25520675
Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus
2015-01-01
Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand.
Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus
2015-01-01
Purpose Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity–the synchronized discharge of individual motor units across muscles within time intervals of 5ms–for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Methods Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. Results For all tasks, except for singe-leg balance, coherence between 15–80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30–60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. Conclusion There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand. PMID:26529604
Fernandes, Ângela; Rocha, Nuno; Santos, Rubim; Tavares, João Manuel R S
2015-01-01
The aim of this study was to analyze the efficacy of cognitive-motor dual-task training compared with single-task training on balance and executive functions in individuals with Parkinson's disease. Fifteen subjects, aged between 39 and 75 years old, were randomly assigned to the dual-task training group (n = 8) and single-task training group (n = 7). The training was run twice a week for 6 weeks. The single-task group received balance training and the dual-task group performed cognitive tasks simultaneously with the balance training. There were no significant differences between the two groups at baseline. After the intervention, the results for mediolateral sway with eyes closed were significantly better for the dual-task group and anteroposterior sway with eyes closed was significantly better for the single-task group. The results suggest superior outcomes for the dual-task training compared to the single-task training for static postural control, except in anteroposterior sway with eyes closed.
Franzén, Erika; Paquette, Caroline; Gurfinkel, Victor S; Cordo, Paul J; Nutt, John G; Horak, Fay B
2009-01-01
Rigidity or hypertonicity is a cardinal symptom of Parkinson's disease (PD). We hypothesized that hypertonicity of the body axis affects functional performance of tasks involving balance, walking and turning. The magnitude of axial postural tone in the neck, trunk and hip segments of 15 subjects with PD (both ON and OFF levodopa) and 15 control subjects was quantified during unsupported standing in an axial twisting device in our laboratory as resistance to torsional rotation. Subjects also performed six functional tests (walking in a figure of eight [Figure of Eight], Timed Up & Go, Berg Balance Scale, supine rolling task [rollover], Functional Reach, and standing 360-deg turn-in-place) in the ON and OFF state. Results showed that PD subjects had increased tone throughout the axis compared to control subjects (p=0.008) and that this increase was most prominent in the neck. In PD subjects, axial tone was related to functional performance, but most strongly for tone at the neck and accounted for an especially large portion of the variability in the performance of the Figure of Eight test (rOFF=0.68 and rON=0.74, p<0.05) and the Rollover test (rOFF=0.67and rON=0.55, p<0.05). Our results suggest that neck tone plays a significant role in functional mobility and that abnormally high postural tone may be an important contributor to balance and mobility disorders in individuals with PD. PMID:19573528
Bridging the Gap between Theory and Model: A Reflection on the Balance Scale Task.
ERIC Educational Resources Information Center
Turner, Geoffrey F. W.; Thomas, Hoben
2002-01-01
Focuses on individual strengths of articles by Jensen and van der Maas, and Halford et al., and the power of their combined perspectives. Suggests a performance model that can both evaluate specific theoretical claims and reveal important data features that had been previously obscured using conventional statistical analyses. Maintains that the…
Integrative complexity of wildfire management: development of a scale
Joshua Carroll; Alan Bright
2007-01-01
Wildfire in the West has become a controversial natural resource issue that has divided the public's perceptions regarding its management, and forest managers are now faced with the difficult task of making sound decisions while balancing these varying concerns. Two widely used wildfi re management practices are prescribed fire and mechanical thinning. In order to...
Can a simple balance task be used to assess fitness for duty?
Sargent, Charli; Darwent, David; Ferguson, Sally A; Roach, Gregory D
2012-03-01
Human fatigue, caused by sleep loss, extended wakefulness, and/or circadian misalignment, is a major cause of workplace errors, incidents and accidents. In some industries, employees are required to undertake fitness for duty testing at the start of a shift to identify instances where their fatigue risk is elevated, so that minimisation and/or mitigation strategies can be implemented. Postural balance has been proposed as a fitness for duty test for fatigue, but it is largely untested. Therefore, the purpose of this study was to examine the impact of sleep loss, extended wakefulness and circadian phase on postural balance. Fourteen male participants spent 10 consecutive days in a sleep laboratory, including three adaptation days and eight simulated shiftwork days. To simulate a quickly rotating roster, shiftwork days were scheduled to begin 4h later each day, and consisted of a 23.3-h wake episode and a 4.7-h sleep opportunity. Every 2.5h during wake, balance was measured while standing as still as possible on a force platform with eyes open for one minute, and eyes closed for one minute. Subjective sleepiness was assessed using the Karolinska Sleepiness Scale. Core body temperature, continuously recorded with rectal thermistors, was used to determine circadian phase. For measures of postural balance and subjective sleepiness, data were analysed using three separate repeated measures ANOVA with two within-subjects factors: circadian phase (six phases) and prior wake (nine levels). For subjective sleepiness, there was a significant effect of prior wake and circadian phase. In particular, sleepiness increased as prior wake increased, and was higher during biological night-time than biological daytime. For the eyes open balance task, there was no effect of prior wake or circadian phase. For the eyes closed balance task, there was a significant effect of circadian phase such that balance was poorer during the biological night-time than biological daytime, but there was no effect of prior wake. These results indicate that postural balance may be a viable tool for assessing fatigue associated with time of day, but may not be useful for assessing fatigue associated with extended hours of wake. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dynamic balance during walking adaptability tasks in individuals post-stroke.
Vistamehr, Arian; Balasubramanian, Chitralakshmi K; Clark, David J; Neptune, Richard R; Fox, Emily J
2018-06-06
Maintaining dynamic balance during community ambulation is a major challenge post-stroke. Community ambulation requires performance of steady-state level walking as well as tasks that require walking adaptability. Prior studies on balance control post-stroke have mainly focused on steady-state walking, but walking adaptability tasks have received little attention. The purpose of this study was to quantify and compare dynamic balance requirements during common walking adaptability tasks post-stroke and in healthy adults and identify differences in underlying mechanisms used for maintaining dynamic balance. Kinematic data were collected from fifteen individuals with post-stroke hemiparesis during steady-state forward and backward walking, obstacle negotiation, and step-up tasks. In addition, data from ten healthy adults provided the basis for comparison. Dynamic balance was quantified using the peak-to-peak range of whole-body angular-momentum in each anatomical plane during the paretic, nonparetic and healthy control single-leg-stance phase of the gait cycle. To understand differences in some of the key underlying mechanisms for maintaining dynamic balance, foot placement and plantarflexor muscle activation were examined. Individuals post-stroke had significant dynamic balance deficits in the frontal plane across most tasks, particularly during the paretic single-leg-stance. Frontal plane balance deficits were associated with wider paretic foot placement, elevated body center-of-mass, and lower soleus activity. Further, the obstacle negotiation task imposed a higher balance requirement, particularly during the trailing leg single-stance. Thus, improving paretic foot placement and ankle plantarflexor activity, particularly during obstacle negotiation, may be important rehabilitation targets to enhance dynamic balance during post-stroke community ambulation. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Effects of Specialization and Sex on Anterior Y-Balance Performance in High School Athletes.
Miller, Madeline M; Trapp, Jessica L; Post, Eric G; Trigsted, Stephanie M; McGuine, Timothy A; Brooks, M Alison; Bell, David R
Sport specialization and movement asymmetry have been separately discussed as potential risk factors for lower extremity injury. Early specialization may lead to the development of movement asymmetries that can predispose an athlete to injury, but this has not been thoroughly examined. Athletes rated as specialized would exhibit greater between-limb anterior reach asymmetry and decreased anterior reach distance on the Y-balance test (YBT) as compared with nonspecialized high school athletes, and these differences would not be dependent on sex. Cross-sectional study. Level 3. Two hundred ninety-five athletes (117 male, 178 female; mean age, 15.6 ± 1.2 years) from 2 local high schools participating in basketball, soccer, volleyball, and tennis responded to a questionnaire regarding sport specialization status and performed trials of the YBT during preseason testing. Specialization was categorized according to 3 previously utilized specialization classification methods (single/multisport, 3-point scale, and 6-point scale), and interactions between specialization and sex with Y-balance performance were calculated using 2-way analyses of variance. Single-sport male athletes displayed greater anterior reach asymmetry than other interaction groups. A consistent main effect was observed for sex, with men displaying greater anterior asymmetry and decreased anterior reach distance than women. However, the interaction effects of specialization and sex on anterior Y-balance performance varied based on the classification method used. Single-sport male athletes displayed greater anterior reach asymmetry on the YBT than multisport and female athletes. Specialization classification method is important because the 6- and 3-point scales may not accurately identify balance abnormalities. Male athletes performed worse than female athletes on both of the Y-balance tasks. Clinicians should be aware that single-sport male athletes may display deficits in dynamic balance, potentially increasing their risk of injury.
The effects of moderate fatigue on dynamic balance control and attentional demands.
Simoneau, Martin; Bégin, François; Teasdale, Normand
2006-09-28
During daily activities, the active control of balance often is a task per se (for example, when standing in a moving bus). Other constraints like fatigue can add to the complexity of this balance task. In the present experiment, we examined how moderate fatigue induced by fast walking on a treadmill challenged dynamic balance control. We also examined if the attentional demands for performing the balance task varied with fatigue. Subjects (n = 10) performed simultaneously a dynamic balance control task and a probe reaction time task (RT) (serving as an indicator of attentional demands) before and after three periods of moderate fatigue (fast walking on a treadmill). For the balance control task, the real-time displacement of the centre of pressure (CP) was provided on a monitor placed in front of the subject, at eye level. Subjects were asked to keep their CP within a target (moving box) moving upward and downward on the monitor. The tracking performance was measured (time spent outside the moving box) and the CP behavior analyzed (mean CP speed and mean frequency of the CP velocity). Moderate fatigue led to an immediate decrement of the performance on the balance control task; increase of the percentage of time spent outside the box and increase of the mean CP speed. Across the three fatigue periods, subjects improved their tracking performance and reduced their mean CP speed. This was achieved by increasing their frequency of actions; mean frequency of the CP velocity were higher for the fatigue periods than for the no fatigue periods. Fatigue also induced an increase in the attentional demands suggesting that more cognitive resources had to be allocated to the balance task with than without fatigue. Fatigue induced by fast walking had an initial negative impact on the control of balance. Nonetheless, subjects were able to compensate the effect of the moderate fatigue by increasing the frequency of actions. This adaptation, however, required that a greater proportion of the cognitive resources be allocated to the active control of the balance task.
ERIC Educational Resources Information Center
Schaefer, Sabine; Krampe, Ralf Th.; Lindenberger, Ulman; Baltes, Paul B.
2008-01-01
Task prioritization can lead to trade-off patterns in dual-task situations. The authors compared dual-task performances in 9- and 11-year-old children and young adults performing a cognitive task and a motor task concurrently. The motor task required balancing on an ankle-disc board. Two cognitive tasks measured working memory and episodic memory…
Denommé, Luke T; Mandalfino, Patricia; Cinelli, Michael E
2014-06-01
Changing direction during walking is a common task humans encounter every day. This destabilizing event requires the central nervous system (CNS) to quickly produce an appropriate response, maintain stability, and propel the body in the intended direction. Previous research has demonstrated that 'individuals with multiple sclerosis' (IwMS) with mild balance impairment display differences in gait characteristics during clinical tests compared with controls. The current study used dynamic stability margin [DSM, difference between COM (i.e. the weighted average of the central point of an individual's total body mass) and lateral BOS (i.e. the most lateral border of the foot that is in contact with the ground)] calculations in addition to gait kinematics to determine whether dynamic stability differences during a steering task were present between IwMS with mild balance impairment and 'healthy age-matched individuals' (HAMI) as well as between IwMS with mild balance impairment and 'community-dwelling older adults' (OA). All IwMS reported mild balance impairment with expanded disability status scale scores ranging between 1.0 and 3.0. The steering task required participants to walk 3 m towards a pressure sensitive trigger mat that would illuminate one of five lights to indicate the future direction of travel (i.e. straight, 45° or 60° to the left or right of the midline). Results revealed that IwMS displayed reduced walking speed and cadence during the approach phase in addition to a smaller DSM range (i.e. COM remained close to lateral BOS) during the entire steering task when compared with HAMI. However, when compared to OAs, IwMS did not display differences in any of the gait kinematics or DSM calculations. Findings suggest that the IwMS displayed a conservative gait strategy in order to maintain stability during the steering task. Lack of dynamic stability differences between IwMS and OAs indicate that both groups use similar strategies to adapt locomotion as a result of impaired somatosensory quality and/or processing.
Relationship between strength, power and balance performance in seniors.
Muehlbauer, Thomas; Besemer, Carmen; Wehrle, Anja; Gollhofer, Albert; Granacher, Urs
2012-01-01
Deficits in strength, power and balance represent important intrinsic risk factors for falls in seniors. The purpose of this study was to investigate the relationship between variables of lower extremity muscle strength/power and balance, assessed under various task conditions. Twenty-four healthy and physically active older adults (mean age: 70 ± 5 years) were tested for their isometric strength (i.e. maximal isometric force of the leg extensors) and muscle power (i.e. countermovement jump height and power) as well as for their steady-state (i.e. unperturbed standing, 10-meter walk), proactive (i.e. Timed Up & Go test, Functional Reach Test) and reactive (i.e. perturbed standing) balance. Balance tests were conducted under single (i.e. standing or walking alone) and dual task conditions (i.e. standing or walking plus cognitive and motor interference task). Significant positive correlations were found between measures of isometric strength and muscle power of the lower extremities (r values ranged between 0.608 and 0.720, p < 0.01). Hardly any significant associations were found between variables of strength, power and balance (i.e. no significant association in 20 out of 21 cases). Additionally, no significant correlations were found between measures of steady-state, proactive and reactive balance or balance tests performed under single and dual task conditions (all p > 0.05). The predominately nonsignificant correlations between different types of balance imply that balance performance is task specific in healthy and physically active seniors. Further, strength, power and balance as well as balance under single and dual task conditions seem to be independent of each other and may have to be tested and trained complementarily. Copyright © 2012 S. Karger AG, Basel.
Feasibility and outcomes of the Berg Balance Scale in older adults with intellectual disabilities.
Oppewal, Alyt; Hilgenkamp, Thessa I M; van Wijck, Ruud; Evenhuis, Heleen M
2013-09-01
High incidence of falls and increased risk of fall-related injuries are seen in individuals with intellectual disabilities (ID). The Berg Balance Scale (BBS) is a reliable instrument for balance assessment in the population of (older) adults with ID. The aims of this study were to assess the balance capacities of a large group of older adults with ID with the BBS and look for gender and age effects, as well as reasons for drop-out on separate items, and to identify feasible subtests for subgroups in which the complete BBS is not feasible. The balance capacities of 1050 older clients with borderline to profound ID of three Dutch care-provider services (mean age 61.6 [sd=8.0]) were assessed with the BBS. The participants who completed all items of the BBS (n=508) were the functionally more able part of the study sample. Results showed that even this functionally more able part had poor balance capacities, with a mean BBS score of 47.2, 95% CI [46.3, 48.0], similar to adults in the general population aged around 20 years older. Balance capacities decreased with increasing age and females had poorer balance capacities than males. Difficulties understanding the task and physical limitations were most often the reasons for drop-out. Feasible subtests were identified for the subgroups with very low cognitive levels and wheelchair users. Low balance capacities of older adults with ID show the need for regular screening and the urge for fall prevention programs for individuals with ID. Copyright © 2013 Elsevier Ltd. All rights reserved.
Clark, David J; Chatterjee, Sudeshna A; McGuirk, Theresa E; Porges, Eric C; Fox, Emily J; Balasubramanian, Chitralakshmi K
2018-02-01
Walking adaptability tasks are challenging for people with motor impairments. The construct of perceived challenge is typically measured by self-report assessments, which are susceptible to subjective measurement error. The development of an objective physiologically-based measure of challenge may help to improve the ability to assess this important aspect of mobility function. The objective of this study to investigate the use of sympathetic nervous system (SNS) activity measured by skin conductance to gauge the physiological stress response to challenging walking adaptability tasks in people post-stroke. Thirty adults with chronic post-stroke hemiparesis performed a battery of seventeen walking adaptability tasks. SNS activity was measured by skin conductance from the palmar surface of each hand. The primary outcome variable was the percent change in skin conductance level (ΔSCL) between the baseline resting and walking phases of each task. Task difficulty was measured by performance speed and by physical therapist scoring of performance. Walking function and balance confidence were measured by preferred walking speed and the Activities-specific Balance Confidence Scale, respectively. There was a statistically significant negative association between ΔSCL and task performance speed and between ΔSCL and clinical score, indicating that tasks with greater SNS activity had slower performance speed and poorer clinical scores. ΔSCL was significantly greater for low functioning participants versus high functioning participants, particularly during the most challenging walking adaptability tasks. This study supports the use of SNS activity measured by skin conductance as a valuable approach for objectively quantifying the perceived challenge of walking adaptability tasks in people post-stroke. Published by Elsevier B.V.
Clark, David J.; Chatterjee, Sudeshna A.; McGuirk, Theresa E.; Porges, Eric C.; Fox, Emily J.; Balasubramanian, Chitralakshmi K.
2018-01-01
Background Walking adaptability tasks are challenging for people with motor impairments. The construct of perceived challenge is typically measured by self-report assessments, which are susceptible to subjective measurement error. The development of an objective physiologically-based measure of challenge may help to improve the ability to assess this important aspect of mobility function. The objective of this study to investigate the use of sympathetic nervous system (SNS) activity measured by skin conductance to gauge the physiological stress response to challenging walking adaptability tasks in people post-stroke. Methods Thirty adults with chronic post-stroke hemiparesis performed a battery of seventeen walking adaptability tasks. SNS activity was measured by skin conductance from the palmar surface of each hand. The primary outcome variable was the percent change in skin conductance level (ΔSCL) between the baseline resting and walking phases of each task. Task difficulty was measured by performance speed and by physical therapist grading of performance. Walking function and balance confidence were measured by preferred walking speed and the Activities Specific Balance Confidence Scale, respectively. Results There was a statistically significant negative association between ΔSCL and task performance speed and between ΔSCL and clinical score, indicating that tasks with greater SNS activity had slower performance speed and poorer clinical scores. ΔSCL was significantly greater for low functioning participants versus high functioning participants, particularly during the most challenging walking adaptability tasks. Conclusion This study supports the use of SNS activity measured by skin conductance as a valuable approach for objectively quantifying the perceived challenge of walking adaptability tasks in people post-stroke. PMID:29216598
Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System.
Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama
2017-01-01
Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one's center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one's individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one's overall performance in balance-related tasks belonging to different difficulty levels.
Delay effects in the human sensory system during balancing.
Stepan, Gabor
2009-03-28
Mechanical models of human self-balancing often use the Newtonian equations of inverted pendula. While these mathematical models are precise enough on the mechanical side, the ways humans balance themselves are still quite unexplored on the control side. Time delays in the sensory and motoric neural pathways give essential limitations to the stabilization of the human body as a multiple inverted pendulum. The sensory systems supporting each other provide the necessary signals for these control tasks; but the more complicated the system is, the larger delay is introduced. Human ageing as well as our actual physical and mental state affects the time delays in the neural system, and the mechanical structure of the human body also changes in a large range during our lives. The human balancing organ, the labyrinth, and the vision system essentially adapted to these relatively large time delays and parameter regions occurring during balancing. The analytical study of the simplified large-scale time-delayed models of balancing provides a Newtonian insight into the functioning of these organs that may also serve as a basis to support theories and hypotheses on balancing and vision.
Bermejo, José Luis; García-Massó, Xavier; Paillard, Thierry; Noé, Frédéric
2018-02-01
This study investigated the effects of fatigue on balance control and cognitive performance in a standing shooting position. Nineteen soldiers were asked to stand while holding a rifle (single task - ST). They also had to perform this postural task while simultaneously completing a cognitive task (dual task - DT). Both the ST and DT were performed in pre- and post-fatigue conditions. In pre-fatigue, participants achieved better balance control in the DT than in the ST, thus suggesting that the increased cognitive activity associated with the DT improves balance control by shifting the attentional focus away from a highly automatised activity. In post-fatigue, balance control was degraded in both the ST and DT, while reaction time was enhanced in the first minutes following the fatiguing exercise without affecting the accuracy of response in the cognitive task, which highlights the relative independent effects of fatigue on balance control and cognitive performance.
Ghous, Misbah; Malik, Arshad Nawaz; Amjad, Mian Imran; Kanwal, Maria
2017-07-01
Stroke is one of most disabling condition which directly affects quality of life. The objective of this study was to compare the effect of activity repetition training with salat (prayer) versus task oriented training on functional outcomes of stroke. The study design was randomized control trial and 32 patients were randomly assigned into two groups'. The stroke including infarction or haemorrhagic, age bracket 30-70 years was included. The demographics were recorded and standardized assessment tool included Berg Balance Scale (BBS), Motor assessment scale (MAS) and Time Up and Go Test (TUG). The measurements were obtained at baseline, after four and six weeks. The mean age of the patients was 54.44±10.59 years with 16 (59%) male and 11(41%) female patients. Activity Repetition Training group showed significant improvement (p<0.05) and is effective in enhancing the functional status as compare to task oriented training group. The repetition with motivation and concentration is the key in re-learning process of neural plasticity.
Miller, William C; Deathe, A Barry; Speechley, Mark
2003-05-01
To evaluate the internal consistency, test-retest reliability, and construct validity of the Activities-specific Balance Confidence (ABC) Scale among people who have a lower-limb amputation. Retest design. A university-affiliated outpatient amputee clinic in Ontario. Two samples of individuals who have unilateral transtibial and transfemoral amputation. Sample 1 (n=54) was a consecutive and sample 2 (n=329) a convenience sample of all members of the clinic population. Not applicable. Repeated application of the ABC Scale, a 16-item questionnaire that assesses confidence in performing various mobility-related tasks. Correlation to test hypothesized relationships between the ABC Scale and the 2-minute walk (2MWT) and the timed up-and-go (TUG) tests; and assessment of the ability of the ABC Scale to discriminate among groups based on amputation cause, amputation level, mobility device use, automatic stepping ability, wearing time, stair climbing ability, and walking distance. Test-retest reliability (intraclass correlation coefficient) of the ABC Scale was .91 (95% confidence interval [CI], .84-.95) with individual item test-retest coefficients ranging from .53 to .87. Internal consistency, measured by Cronbach alpha, was .95. Hypothesized associations with the 2MWT and TUG test were observed with correlations of .72 (95% CI, .56-.84) and -.70 (95% CI, -.82 to -.53), respectively. The ABC Scale discriminated between all groups except those based on amputation level. Balance confidence, as measured by the ABC Scale, is a construct that provides unique information potentially useful to clinicians who provide amputee rehabilitation. The ABC Scale is reliable, with strong support for validity. Study of the scale's responsiveness is recommended.
Allen, Michael Todd; Jameson, Molly M; Myers, Catherine E
2017-01-01
Personality factors such as behavioral inhibition (BI), a temperamental tendency for avoidance in the face of unfamiliar situations, have been identified as risk factors for anxiety disorders. Personality factors are generally identified through self-report inventories. However, this tendency to avoid may affect the accuracy of these self-report inventories. Previously, a computer based task was developed in which the participant guides an on-screen "avatar" through a series of onscreen events; performance on the task could accurately predict participants' BI, measured by a standard paper and pencil questionnaire (Adult Measure of Behavioral Inhibition, or AMBI). Here, we sought to replicate this finding as well as compare performance on the avatar task to another measure related to BI, the harm avoidance (HA) scale of the Tridimensional Personality Questionnaire (TPQ). The TPQ includes HA scales as well as scales assessing reward dependence (RD), novelty seeking (NS) and persistence. One hundred and one undergraduates voluntarily completed the avatar task and the paper and pencil inventories in a counter-balanced order. Scores on the avatar task were strongly correlated with BI assessed via the AMBI questionnaire, which replicates prior findings. Females exhibited higher HA scores than males, but did not differ on scores on the avatar task. There was a strong positive relationship between scores on the avatar task and HA scores. One aspect of HA, fear of uncertainty was found to moderately mediate the relationship between AMBI scores and avatar scores. NS had a strong negative relationship with scores on the avatar task, but there was no significant relationship between RD and scores on the avatar task. These findings indicate the effectiveness of the avatar task as a behavioral alternative to self-report measures to assess avoidance. In addition, the use of computer based behavioral tasks are a viable alternative to paper and pencil self-report inventories, particularly when assessing anxiety and avoidance.
Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System
Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama
2018-01-01
Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one’s center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one’s individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one’s overall performance in balance-related tasks belonging to different difficulty levels. PMID:29359128
Madhavan, Sangeetha; Bishnoi, Alka
2017-12-01
The Mini-BESTest is a recently developed balance assessment tool that incorporates challenging dynamic balance tasks. Few studies have compared the psychometric properties of the Mini-BESTest to the commonly used Berg Balance Scale (BBS). However, the utility of these scales in relationship to post stroke walking speeds has not been explored. The purpose of this study was to compare the sensitivity and specificity of the Mini-BESTest and BBS to evaluate walking speeds in individuals with stroke. A retrospective exploratory design. Forty-one individuals with chronic stroke were evaluated with the Mini-BESTest, BBS, and 10-meter self-selected walk test (10MWT). Based on their self-selected gait speeds (below or above 0.8 m/s), participants were classified as slow and fast walkers. Significant linear correlations were observed between the Mini-BESTest vs. BBS (r = 0.72, p ≤ 0.001), Mini-BESTest vs. 10MWT (r = 0.58, p ≤ 0.001), and BBS vs. 10MWT (r = 0.30, p = 0.05). Independent t-tests comparing the balance scores for the slow and fast walkers revealed significant group differences for the Mini-BESTest (p = 0.003), but not for the BBS (p = 0.09). The Mini-BESTest demonstrated higher sensitivity (93%) and specificity (64%) compared to the BBS (sensitivity 81%, specificity 56%) for discriminating participants into slow and fast walkers. The Mini-BESTest has a greater discriminative ability than the BBS to categorize individuals with stroke into slow and fast walkers.
Madhavan, Sangeetha; Bishnoi, Alka
2017-01-01
Background The Mini-BESTest is a recently developed balance assessment tool that incorporates challenging dynamic balance tasks. Few studies have compared the psychometric properties of the Mini-BESTest to the commonly used Berg Balance Scale (BBS). However, the utility of these scales in relationship to post stroke walking speeds has not been explored. Objectives The purpose of this study was to compare the sensitivity and specificity of the Mini-BESTest and BBS to evaluate walking speeds in individuals with stroke. Design A retrospective exploratory design. Methods Forty-one individuals with chronic stroke were evaluated with the Mini-BESTest, BBS, and 10-meter self-selected walk test (10MWT). Based on their self-selected gait speeds (below or above 0.8 m/s), participants were classified as slow and fast walkers. Results Significant linear correlations were observed between the Mini-BESTest vs. BBS (r = 0.72, p ≤ 0.001), Mini-BESTest vs. 10MWT (r = 0.58, p ≤ 0.001), and BBS vs. 10MWT (r = 0.30, p = 0.05). Independent t-tests comparing the balance scores for the slow and fast walkers revealed significant group differences for the Mini-BESTest (p =0.003), but not for the BBS (p = 0.09). The Mini-BESTest demonstrated higher sensitivity (93%) and specificity (64%) compared to the BBS (sensitivity 81%, specificity 56%) for discriminating participants into slow and fast walkers. No significant results were observed with the FMLE-M scores. Conclusions The Mini-BESTest has a greater discriminative ability than the BBS to categorize individuals with stroke into slow and fast walkers. PMID:28826325
The Influence of Task Difficulty and Participant Age on Balance Control in ASD
ERIC Educational Resources Information Center
Graham, Sarah A.; Abbott, Angela E.; Nair, Aarti; Lincoln, Alan J.; Müller, Ralph-Axel; Goble, Daniel J.
2015-01-01
Impairments in sensorimotor integration are reported in Autism Spectrum Disorder (ASD). Poor control of balance in challenging balance tasks is one suggested manifestation of these impairments, and is potentially related to ASD symptom severity. Reported balance and symptom severity relationships disregard age as a potential covariate, however,…
Nicholson, Vaughan P; McKean, Mark R; Burkett, Brendan J
2014-01-01
Purpose The purpose of the study was to evaluate the effect of BodyBalance® training on balance, functional task performance, fear of falling, and health-related quality of life in adults aged over 55 years. Participants and methods A total of 28 healthy, active adults aged 66±5 years completed the randomized controlled trial. Balance, functional task performance, fear of falling, and self-reported quality of life were assessed at baseline and after 12 weeks. Participants either undertook two sessions of BodyBalance per week for 12 weeks (n=15) or continued with their normal activities (n=13). Results Significant group-by-time interactions were found for the timed up and go (P=0.038), 30-second chair stand (P=0.037), and mediolateral center-of-pressure range in narrow stance with eyes closed (P=0.017). There were no significant effects on fear of falling or self-reported quality of life. Conclusion Twelve weeks of BodyBalance training is effective at improving certain balance and functional based tasks in healthy older adults. PMID:25395844
Altered Functional Performance in Patients with Fibromyalgia.
Costa, Isis da Silva; Gamundí, Antoni; Miranda, José G Vivas; França, Lucas G Souza; De Santana, Charles Novaes; Montoya, Pedro
2017-01-01
Fibromyalgia is a common chronic pain condition that exerts a considerable impact on patients' daily activities and quality of life. Objectives: The main objective of the present study was to evaluate kinematic parameters of gait, functional performance, and balance in women with fibromyalgia syndrome. Methods: The study included 26 female patients with fibromyalgia (49.2 ± 8.0 years) according to the criteria of the American College of Rheumatology, as well as 16 pain-free women (43.5 ± 8.5 years). Gait and balance parameters were extracted from video recordings of participants performing several motor tasks. Non-linear dynamic of body sway time series was also analyzed by computing the Hurst exponent. In addition, functional performance and clinical pain were obtained by using standardized motor tests (Berg's balance scale, 6-min walking test, timed up and go task, Romberg's balance test) and self-report questionnaires (Fibromyalgia Impact Questionnaire). Results: Walking speed was significantly diminished ( p < 0.001) in FM patients as compared to pain-free controls, probably due to significant reductions in stride length ( p < 0.001) and cycle frequency ( p < 0.001). Analyses of balance also revealed significant differences between fibromyalgia and pain-free controls on body sway in the medial-lateral and anterior-posterior axes (all ps < 0.01). Several parameters of gait and balance were significantly associated with high levels of pain, depression, stiffness, anxiety, and fatigue in fibromyalgia. Conclusion: Our data revealed that both gait and balance were severely impaired in FM, and that subjective complaints associated with FM could contribute to functional disability in these patients. These findings suggest that optimal rehabilitation and fall prevention in fibromyalgia require a comprehensive assessment of both psychological responses to pain and physical impairments during postural control and gait.
Altered Functional Performance in Patients with Fibromyalgia
Costa, Isis da Silva; Gamundí, Antoni; Miranda, José G. Vivas; França, Lucas G. Souza; De Santana, Charles Novaes; Montoya, Pedro
2017-01-01
Fibromyalgia is a common chronic pain condition that exerts a considerable impact on patients' daily activities and quality of life. Objectives: The main objective of the present study was to evaluate kinematic parameters of gait, functional performance, and balance in women with fibromyalgia syndrome. Methods: The study included 26 female patients with fibromyalgia (49.2 ± 8.0 years) according to the criteria of the American College of Rheumatology, as well as 16 pain-free women (43.5 ± 8.5 years). Gait and balance parameters were extracted from video recordings of participants performing several motor tasks. Non-linear dynamic of body sway time series was also analyzed by computing the Hurst exponent. In addition, functional performance and clinical pain were obtained by using standardized motor tests (Berg's balance scale, 6-min walking test, timed up and go task, Romberg's balance test) and self-report questionnaires (Fibromyalgia Impact Questionnaire). Results: Walking speed was significantly diminished (p < 0.001) in FM patients as compared to pain-free controls, probably due to significant reductions in stride length (p < 0.001) and cycle frequency (p < 0.001). Analyses of balance also revealed significant differences between fibromyalgia and pain-free controls on body sway in the medial-lateral and anterior-posterior axes (all ps < 0.01). Several parameters of gait and balance were significantly associated with high levels of pain, depression, stiffness, anxiety, and fatigue in fibromyalgia. Conclusion: Our data revealed that both gait and balance were severely impaired in FM, and that subjective complaints associated with FM could contribute to functional disability in these patients. These findings suggest that optimal rehabilitation and fall prevention in fibromyalgia require a comprehensive assessment of both psychological responses to pain and physical impairments during postural control and gait. PMID:28184193
Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang
2018-01-01
Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults. PMID:29472847
Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang
2018-01-01
Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults.
Wongcharoen, Suleeporn; Sungkarat, Somporn; Munkhetvit, Peeraya; Lugade, Vipul; Silsupadol, Patima
2017-02-01
The purpose of this study was to compare the efficacy of four different home-based interventions on dual-task balance performance and to determine the generalizability of the four trainings to untrained tasks. Sixty older adults, aged 65 and older, were randomly assigned to one of four home-based interventions: single-task motor training, single-task cognitive training, dual-task motor-cognitive training, and dual-task cognitive-cognitive training. Participants received 60-min individualized training sessions, 3 times a week for 4 weeks. Prior to and following the training program, participants were asked to walk under two single-task conditions (i.e. narrow walking and obstacle crossing) and two dual-task conditions (i.e. a trained narrow walking while performing verbal fluency task and an untrained obstacle crossing while counting backward by 3s task). A nine-camera motion capture system was used to collect the trajectories of 32 reflective markers placed on bony landmarks of participants. Three-dimensional kinematics of the whole body center of mass and base of support were computed. Results from the extrapolated center of mass displacement indicated that motor-cognitive training was more effective than the single-task motor training to improve dual-task balance performance (p=0.04, ES=0.11). Interestingly, balance performance under both single-task and dual-task conditions can also be improved through a non-motor, single-task cognitive training program (p=0.01, ES=0.13, and p=0.01, ES=0.11, respectively). However, improved dual-task processing skills during training were not transferred to the novel dual task (p=0.15, ES=0.09). This is the first study demonstrating that home-based dual-task training can be effectively implemented to improve balance performance during gait in older adults. Copyright © 2016 Elsevier B.V. All rights reserved.
He, Ying; Yang, Lei; Zhou, Jing; Yao, Liqing; Pang, Marco Yiu Chung
2018-02-01
This systematic review aimed to examine the effects of dual-task balance and mobility training in people with stroke. An extensive electronic databases literature search was conducted using MEDLINE, PubMed, EBSCO, The Cochrane Library, Web of Science, SCOPUS, and Wiley Online Library. Randomized controlled studies that assessed the effects of dual-task training in stroke patients were included for the review (last search in December 2017). The methodological quality was evaluated using the Cochrane Collaboration recommendation, and level of evidence was determined according to the criteria described by the Oxford Center for Evidence-Based Medicine. About 13 articles involving 457 participants were included in this systematic review. All had substantial risk of bias and thus provided level IIb evidence only. Dual-task mobility training was found to induce more improvement in single-task walking function (standardized effect size = 0.14-2.24), when compared with single-task mobility training. Its effect on dual-task walking function was not consistent. Cognitive-motor balance training was effective in improving single-task balance function (standardized effect size = 0.27-1.82), but its effect on dual-task balance ability was not studied. The beneficial effect of dual-task training on cognitive function was provided by one study only and thus inconclusive. There is some evidence that dual-task training can improve single-task walking and balance function in individuals with stroke. However, any firm recommendation cannot be made due to the weak methodology of the studies reviewed.
Cha, Yuri; Kim, Young; Hwang, Sujin; Chung, Yijung
2014-01-01
Motor relearning protocols should involve task-oriented movement, focused attention, and repetition of desired movements. To investigate the effect of intensive gait training with rhythmic auditory stimulation on postural control and gait performance in individuals with chronic hemiparetic stroke. Twenty patients with chronic hemiparetic stroke participated in this study. Subjects in the Rhythmic auditory stimulation training group (10 subjects) underwent intensive gait training with rhythmic auditory stimulation for a period of 6 weeks (30 min/day, five days/week), while those in the control group (10 subjects) underwent intensive gait training for the same duration. Two clinical measures, Berg balance scale and stroke specific quality of life scale, and a 2-demensional gait analysis system, were used as outcome measure. To provide rhythmic auditory stimulation during gait training, the MIDI Cuebase musical instrument digital interface program and a KM Player version 3.3 was utilized for this study. Intensive gait training with rhythmic auditory stimulation resulted in significant improvement in scores on the Berg balance scale, gait velocity, cadence, stride length and double support period in affected side, and stroke specific quality of life scale compared with the control group after training. Findings of this study suggest that intensive gait training with rhythmic auditory stimulation improves balance and gait performance as well as quality of life, in individuals with chronic hemiparetic stroke.
Colnat-Coulbois, S; Gauchard, G C; Maillard, L; Barroche, G; Vespignani, H; Auque, J; Perrin, P P
2011-10-13
Parkinson's disease (PD) is known to affect postural control, especially in situations needing a change in balance strategy or when a concurrent task is simultaneously performed. However, few studies assessing postural control in patients with PD included homogeneous population in late stage of the disease. Thus, this study aimed to analyse postural control and strategies in a homogeneous population of patients with idiopathic advanced (late-stage) PD, and to determine the contribution of peripheral inputs in simple and more complex postural tasks, such as sensory conflicting and dynamic tasks. Twenty-four subjects with advanced PD (duration: median (M)=11.0 years, interquartile range (IQR)=4.3 years; Unified Parkinson's Disease Rating Scale (UPDRS): M "on-dopa"=13.5, IQR=7.8; UPDRS: M "off-dopa"=48.5, IQR=16.8; Hoehn and Yahr stage IV in all patients) and 48 age-matched healthy controls underwent static (SPT) and dynamic posturographic (DPT) tests and a sensory organization test (SOT). In SPT, patients with PD showed reduced postural control precision with increased oscillations in both anterior-posterior and medial-lateral planes. In SOT, patients with PD displayed reduced postural performances especially in situations in which visual and vestibular cues became predominant to organize balance control, as was the ability to manage balance in situations for which visual or proprioceptive inputs are disrupted. In DPT, postural restabilization strategies were often inefficient to maintain equilibrium resulting in falls. Postural strategies were often precarious, postural regulation involving more hip joint than ankle joint in patients with advanced PD than in controls. Difficulties in managing complex postural situations, such as sensory conflicting and dynamic situations might reflect an inadequate sensory organization suggesting impairment in central information processing. Copyright © 2011. Published by Elsevier Ltd.
Neuroimaging of Human Balance Control: A Systematic Review
Wittenberg, Ellen; Thompson, Jessica; Nam, Chang S.; Franz, Jason R.
2017-01-01
This review examined 83 articles using neuroimaging modalities to investigate the neural correlates underlying static and dynamic human balance control, with aims to support future mobile neuroimaging research in the balance control domain. Furthermore, this review analyzed the mobility of the neuroimaging hardware and research paradigms as well as the analytical methodology to identify and remove movement artifact in the acquired brain signal. We found that the majority of static balance control tasks utilized mechanical perturbations to invoke feet-in-place responses (27 out of 38 studies), while cognitive dual-task conditions were commonly used to challenge balance in dynamic balance control tasks (20 out of 32 studies). While frequency analysis and event related potential characteristics supported enhanced brain activation during static balance control, that in dynamic balance control studies was supported by spatial and frequency analysis. Twenty-three of the 50 studies utilizing EEG utilized independent component analysis to remove movement artifacts from the acquired brain signals. Lastly, only eight studies used truly mobile neuroimaging hardware systems. This review provides evidence to support an increase in brain activation in balance control tasks, regardless of mechanical, cognitive, or sensory challenges. Furthermore, the current body of literature demonstrates the use of advanced signal processing methodologies to analyze brain activity during movement. However, the static nature of neuroimaging hardware and conventional balance control paradigms prevent full mobility and limit our knowledge of neural mechanisms underlying balance control. PMID:28443007
Cognitive benefit and cost of acute stress is differentially modulated by individual brain state
Hermans, Erno J.; Fernández, Guillén
2017-01-01
Abstract Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain–behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. PMID:28402480
Cognitive benefit and cost of acute stress is differentially modulated by individual brain state.
Kohn, Nils; Hermans, Erno J; Fernández, Guillén
2017-07-01
Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain-behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. © The Author (2017). Published by Oxford University Press.
The Learning of Visually Guided Action: An Information-Space Analysis of Pole Balancing
ERIC Educational Resources Information Center
Jacobs, David M.; Vaz, Daniela V.; Michaels, Claire F.
2012-01-01
In cart-pole balancing, one moves a cart in 1 dimension so as to balance an attached inverted pendulum. We approached perception-action and learning in this task from an ecological perspective. This entailed identifying a space of informational variables that balancers use as they perform the task and demonstrating that they improve by traversing…
Lee, Hyung Young; Kim, You Lim; Lee, Suk Min
2015-06-01
[Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training.
Lee, Hyung Young; Kim, You Lim; Lee, Suk Min
2015-01-01
[Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training. PMID:26180341
Improving balance by performing a secondary cognitive task.
Swan, Laurie; Otani, Hajime; Loubert, Peter V; Sheffert, Sonya M; Dunbar, Gary L
2004-02-01
Contrary to general findings in the attention and memory literature, some studies have shown that performing a secondary cognitive task produces an improvement in balance performance. The purpose of the present experiment was to investigate under what condition such an improvement would occur. Young and older adults were asked to hold as still as possible on a platform that measured sway while performing or not performing the encoding phase of the Brooks' (1967) spatial or non-spatial memory task. The difficulty of maintaining balance was manipulated by varying the availability of visual input and sway-referenced motion of the platform. Sway scores were computed based on the distance between the individual pressure centres and the average centre of pressure during each 20-s trial. The results indicated that both the spatial and non-spatial memory tasks improved balance for older adults under the most difficult balance condition.
The Effects of Specialization and Sex on Anterior Y-Balance Performance in High School Athletes
Miller, Madeline M.; Trapp, Jessica L.; Post, Eric G.; Trigsted, Stephanie M.; McGuine, Timothy A.; Brooks, M. Alison; Bell, David R.
2017-01-01
Background: Sport specialization and movement asymmetry have been separately discussed as potential risk factors for lower extremity injury. Early specialization may lead to the development of movement asymmetries that can predispose an athlete to injury, but this has not been thoroughly examined. Hypothesis: Athletes rated as specialized would exhibit greater between-limb anterior reach asymmetry and decreased anterior reach distance on the Y-balance test (YBT) as compared with nonspecialized high school athletes, and these differences would not be dependent on sex. Study Design: Cross-sectional study. Level of Evidence: Level 3. Methods: Two hundred ninety-five athletes (117 male, 178 female; mean age, 15.6 ± 1.2 years) from 2 local high schools participating in basketball, soccer, volleyball, and tennis responded to a questionnaire regarding sport specialization status and performed trials of the YBT during preseason testing. Specialization was categorized according to 3 previously utilized specialization classification methods (single/multisport, 3-point scale, and 6-point scale), and interactions between specialization and sex with Y-balance performance were calculated using 2-way analyses of variance. Results: Single-sport male athletes displayed greater anterior reach asymmetry than other interaction groups. A consistent main effect was observed for sex, with men displaying greater anterior asymmetry and decreased anterior reach distance than women. However, the interaction effects of specialization and sex on anterior Y-balance performance varied based on the classification method used. Conclusion: Single-sport male athletes displayed greater anterior reach asymmetry on the YBT than multisport and female athletes. Specialization classification method is important because the 6- and 3-point scales may not accurately identify balance abnormalities. Male athletes performed worse than female athletes on both of the Y-balance tasks. Clinical Relevance: Clinicians should be aware that single-sport male athletes may display deficits in dynamic balance, potentially increasing their risk of injury. PMID:28447871
Preschool physics: Using the invisible property of weight in causal reasoning tasks
Williamson, Rebecca A.; Meltzoff, Andrew N.
2018-01-01
Causal reasoning is an important aspect of scientific thinking. Even young human children can use causal reasoning to explain observations, make predictions, and design actions to bring about specific outcomes in the physical world. Weight is an interesting type of cause because it is an invisible property. Here, we tested preschool children with causal problem-solving tasks that assessed their understanding of weight. In an experimental setting, 2- to 5-year-old children completed three different tasks in which they had to use weight to produce physical effects—an object displacement task, a balance-scale task, and a tower-building task. The results showed that the children’s understanding of how to use object weight to produce specific object-to-object causal outcomes improved as a function of age, with 4- and 5-year-olds showing above-chance performance on all three tasks. The younger children’s performance was more variable. The pattern of results provides theoretical insights into which aspects of weight processing are particularly difficult for preschool children and why they find it difficult. PMID:29561840
Preschool physics: Using the invisible property of weight in causal reasoning tasks.
Wang, Zhidan; Williamson, Rebecca A; Meltzoff, Andrew N
2018-01-01
Causal reasoning is an important aspect of scientific thinking. Even young human children can use causal reasoning to explain observations, make predictions, and design actions to bring about specific outcomes in the physical world. Weight is an interesting type of cause because it is an invisible property. Here, we tested preschool children with causal problem-solving tasks that assessed their understanding of weight. In an experimental setting, 2- to 5-year-old children completed three different tasks in which they had to use weight to produce physical effects-an object displacement task, a balance-scale task, and a tower-building task. The results showed that the children's understanding of how to use object weight to produce specific object-to-object causal outcomes improved as a function of age, with 4- and 5-year-olds showing above-chance performance on all three tasks. The younger children's performance was more variable. The pattern of results provides theoretical insights into which aspects of weight processing are particularly difficult for preschool children and why they find it difficult.
Giardini, Marica; Nardone, Antonio; Guglielmetti, Simone; Arcolin, Ilaria; Pisano, Fabrizio
2018-01-01
We hypothesised that rehabilitation specifically addressing balance in Parkinson's disease patients might improve not only balance but locomotion as well. Two balance-training protocols (standing on a moving platform and traditional balance exercises) were assessed by assigning patients to two groups (Platform, n = 15, and Exercises, n = 17). The platform moved periodically in the anteroposterior, laterolateral, and oblique direction, with and without vision in different trials. Balance exercises were based on the Otago Exercise Program. Both platform and exercise sessions were administered from easy to difficult. Outcome measures were (a) balancing behaviour, assessed by both Index of Stability (IS) on platform and Mini-BESTest, and (b) gait, assessed by both baropodometry and Timed Up and Go (TUG) test. Falls Efficacy Scale-International (FES-I) and Parkinson's Disease Questionnaire (PDQ-8) were administered. Both groups exhibited better balance control, as assessed both by IS and by Mini-BESTest. Gait speed at baropodometry also improved in both groups, while TUG was less sensitive to improvement. Scores of FES-I and PDQ-8 showed a marginal improvement. A four-week treatment featuring no gait training but focused on challenging balance tasks produces considerable gait enhancement in mildly to moderately affected patients. Walking problems in PD depend on postural instability and are successfully relieved by appropriate balance rehabilitation. This trial is registered with ClinicalTrials.gov NCT03314597. PMID:29706993
Leach, Susan J; Magill, Richard A; Maring, Joyce R
2017-01-01
A spinal cord injury (SCI) frequently results in impaired balance, endurance, and strength with subsequent limitations in functional mobility and community participation. The purpose of this case report was to implement a training program for an individual with a chronic incomplete SCI using a novel divided-attention stepping accuracy task (DASAT) to determine if improvements could be made in impairments, activities, and participation. The client was a 51-year-old male with a motor incomplete C4 SCI sustained 4 years prior. He presented with decreased quality of life (QOL) and functional independence, and deficits in balance, endurance, and strength consistent with central cord syndrome. The client completed the DASAT intervention 3 times per week for 6 weeks. Each session incorporated 96 multi-directional steps to randomly-assigned targets in response to 3-step verbal commands. QOL, measured using the SF-36, was generally enhanced but fluctuated. Community mobility progressed from close supervision to independence. Significant improvement was achieved in all balance scores: Berg Balance Scale by 9 points [Minimal Detectable Change (MDC) = 4.9 in elderly]; Functional Reach Test by 7.62 cm (MDC = 5.16 in C5/C6 SCI); and Timed Up-and-Go by 0.53 s (MDC not established). Endurance increased on the 6-Minute Walk Test, with the client achieving an additional 47 m (MDC = 45.8 m). Lower extremity isokinetic peak torque strength measures were mostly unchanged. Six minutes of DASAT training per session provided an efficient, low-cost intervention utilizing multiple trials of variable practice, and resulted in better performance in activities, balance, and endurance in this client.
Villiger, Michael; Bohli, Dominik; Kiper, Daniel; Pyk, Pawel; Spillmann, Jeremy; Meilick, Bruno; Curt, Armin; Hepp-Reymond, Marie-Claude; Hotz-Boendermaker, Sabina; Eng, Kynan
2013-10-01
Neurorehabilitation interventions to improve lower limb function and neuropathic pain have had limited success in people with chronic, incomplete spinal cord injury (iSCI). We hypothesized that intense virtual reality (VR)-augmented training of observed and executed leg movements would improve limb function and neuropathic pain. Patients used a VR system with a first-person view of virtual lower limbs, controlled via movement sensors fitted to the patient's own shoes. Four tasks were used to deliver intensive training of individual muscles (tibialis anterior, quadriceps, leg ad-/abductors). The tasks engaged motivation through feedback of task success. Fourteen chronic iSCI patients were treated over 4 weeks in 16 to 20 sessions of 45 minutes. Outcome measures were 10 Meter Walking Test, Berg Balance Scale, Lower Extremity Motor Score, Spinal Cord Independence Measure, Locomotion and Neuropathic Pain Scale (NPS), obtained at the start and at 4 to 6 weeks before intervention. In addition to positive changes reported by the patients (Patients' Global Impression of Change), measures of walking capacity, balance, and strength revealed improvements in lower limb function. Intensity and unpleasantness of neuropathic pain in half of the affected participants were reduced on the NPS test. Overall findings remained stable 12 to 16 weeks after termination of the training. In a pretest/posttest, uncontrolled design, VR-augmented training was associated with improvements in motor function and neuropathic pain in persons with chronic iSCI, several of which reached the level of a minimal clinically important change. A controlled trial is needed to compare this intervention to active training alone or in combination.
Mouthon, A; Ruffieux, J; Wälchli, M; Keller, M; Taube, W
2015-09-10
Non-physical balance training has demonstrated to be efficient to improve postural control in young people. However, little is known about the potential to increase corticospinal excitability by mental simulation in lower leg muscles. Mental simulation of isolated, voluntary contractions of limb muscles increase corticospinal excitability but more automated tasks like walking seem to have no or only minor effects on motor-evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS). This may be related to the way of performing the mental simulation or the task itself. Therefore, the present study aimed to clarify how corticospinal excitability is modulated during AO+MI, MI and action observation (AO) of balance tasks. For this purpose, MEPs and H-reflexes were elicited during three different mental simulations (a) AO+MI, (b) MI and (c) passive AO. For each condition, two balance tasks were evaluated: (1) quiet upright stance (static) and (2) compensating a medio-lateral perturbation while standing on a free-swinging platform (dynamic). AO+MI resulted in the largest facilitation of MEPs followed by MI and passive AO. MEP facilitation was significantly larger in the dynamic perturbation than in the static standing task. Interestingly, passive observation resulted in hardly any facilitation independent of the task. H-reflex amplitudes were not modulated. The current results demonstrate that corticospinal excitability during mental simulation of balance tasks is influenced by both the type of mental simulation and the task difficulty. As H-reflexes and background EMG were not modulated, it may be argued that changes in excitability of the primary motor cortex were responsible for the MEP modulation. From a functional point of view, our findings suggest best training/rehabilitation effects when combining MI with AO during challenging postural tasks. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cherry, Kendra M.; Lenze, Eric J.
2014-01-01
Neurological rehabilitation involving motor training has resulted in clinically meaningful improvements in function but is unable to eliminate many of the impairments associated with neurological injury. Thus there is a growing need for interventions that facilitate motor learning during rehabilitation therapy, to optimize recovery. d-Cycloserine (DCS), a partial N-methyl-d-aspartate (NMDA) receptor agonist that enhances neurotransmission throughout the central nervous system (Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E, Hodges L, Davis M. Arch Gen Psychiatry 61: 1136–1144, 2004), has been shown to facilitate declarative and emotional learning. We therefore tested whether combining DCS with motor training facilitates motor learning after stroke in a series of two experiments. Forty-one healthy adults participated in experiment I, and twenty adults with stroke participated in experiment II of this two-session, double-blind study. Session one consisted of baseline assessment, subject randomization, and oral administration of DCS or placebo (250 mg). Subjects then participated in training on a balancing task, a simulated feeding task, and a cognitive task. Subjects returned 1–3 days later for posttest assessment. We found that all subjects had improved performance from pretest to posttest on the balancing task, the simulated feeding task, and the cognitive task. Subjects who were given DCS before motor training, however, did not show enhanced learning on the balancing task, the simulated feeding task, or the associative recognition task compared with subjects given placebo. Moreover, training on the balancing task did not generalize to a similar, untrained balance task. Our findings suggest that DCS does not enhance motor learning or motor skill generalization in neurologically intact adults or in adults with stroke. PMID:24671538
Serrien, Ben; Hohenauer, Erich; Clijsen, Ron; Taube, Wolfgang; Baeyens, Jean-Pierre; Küng, Ursula
2017-11-01
How humans maintain balance and change postural control due to age, injury, immobility or training is one of the basic questions in motor control. One of the problems in understanding postural control is the large set of degrees of freedom in the human motor system. Therefore, a self-organizing map (SOM), a type of artificial neural network, was used in the present study to extract and visualize information about high-dimensional balance strategies before and after a 6-week slackline training intervention. Thirteen subjects performed a flamingo and slackline balance task before and after the training while full body kinematics were measured. Range of motion, velocity and frequency of the center of mass and joint angles from the pelvis, trunk and lower leg (45 variables) were calculated and subsequently analyzed with an SOM. Subjects increased their standing time significantly on the flamingo (average +2.93 s, Cohen's d = 1.04) and slackline (+9.55 s, d = 3.28) tasks, but the effect size was more than three times larger in the slackline. The SOM analysis, followed by a k-means clustering and marginal homogeneity test, showed that the balance coordination pattern was significantly different between pre- and post-test for the slackline task only (χ 2 = 82.247; p < 0.001). The shift in balance coordination on the slackline could be characterized by an increase in range of motion and a decrease in velocity and frequency in nearly all degrees of freedom simultaneously. The observation of low transfer of coordination strategies to the flamingo task adds further evidence for the task-specificity principle of balance training, meaning that slackline training alone will be insufficient to increase postural control in other challenging situations.
The Dynamical Balance of the Brain at Rest
Deco, Gustavo; Corbetta, Maurizio
2014-01-01
We review evidence that spontaneous, i.e. not stimulus- or task-driven, activity in the brain is not noise, but orderly organized at the level of large scale systems in a series of functional networks that maintain at all times a high level of coherence. These networks of spontaneous activity correlation or resting state networks (RSN) are closely related to the underlying anatomical connectivity, but their topography is also gated by the history of prior task activation. Network coherence does not depend on covert cognitive activity, but its strength and integrity relates to behavioral performance. Some RSN are functionally organized as dynamically competing systems both at rest and during tasks. Computational studies show that one of such dynamics, the anti-correlation between networks, depends on noise driven transitions between different multi-stable cluster synchronization states. These multi-stable states emerge because of transmission delays between regions that are modeled as coupled oscillators systems. Large-scale systems dynamics are useful for keeping different functional sub-networks in a state of heightened competition, which can be stabilized and fired by even small modulations of either sensory or internal signals. PMID:21196530
Fisher-Pipher, Sarah; Kenyon, Lisa K; Westman, Marci
2017-07-01
Improving functional mobility is often a desired outcome for adolescents with cerebral palsy (CP). Traditional neurorehabilitation approaches are frequently directed at impairments; however, improvements may not be carried over into functional mobility. The purpose of this case report was to describe the examination, intervention, and outcomes of a task-oriented physical therapy intervention program to improve dynamic balance, functional mobility, and dual-task performance in an adolescent with CP. The participant was a 15-year-old girl with spastic triplegic CP (Gross Motor Classification System Level II). Examination procedures included the Canadian Occupational Performance Measure, 6-minute walk test, Muscle Power Sprint Test, 10 x 5-meter sprint test, Timed Up and Down Stairs Test, Gross Motor Function Measure, Gillette Functional Assessment Questionnaire, and functional lower extremity strength tests. Intervention focused on task-oriented dynamic balance and mobility tasks that incorporated coordination and speed demands as well as task-specific lower extremity and trunk strengthening activities. Dual task demands were integrated into all intervention activities. Post-intervention testing revealed improvements in cardiovascular endurance, anaerobic power, agility, stair climbing, gross motor skills, and mobility. The participant appeared to benefit from a task-oriented program to improve dynamic balance, functional mobility, and dual-task performance.
Task Analysis - Aircraft Structural Maintenance AFSC 458X2
1989-08-01
GAGES OR METERS 13 10 23 SELECT WEIGHT MEASURING SCALES 15 6 21 RECALL TYPES, PROPERTIES, AND CHARACTERISTICS 8 11 19 OF PLASTICS SELECT COMMON...SURFACES (K0494) 121 00480 SHOT PEEN METAL SURFACES (K0498) 123 00490 BALANCE AIRCRAFT CONTROL SURFACES 125 00500 CLEAN PLASTICS (0275) 127 00510...STORE TRANSPARENT PLASTICS IN PROPER ENVIRONMENT (J0299) 128 00520 POLISH OUT SURFACE SCRATCHES 129 00530 CUT PLASTICS 131 00540 RESEARCH AIRCRAFT
Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu
2018-01-01
Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in designing successful motor learning programs for preventing falls in older adults. PMID:29868597
Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu
2018-01-01
Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in designing successful motor learning programs for preventing falls in older adults.
Chong, Raymond K Y; Mills, Bradley; Dailey, Leanna; Lane, Elizabeth; Smith, Sarah; Lee, Kyoung-Hyun
2010-07-01
We tested the hypothesis that a computational overload results when two activities, one motor and the other cognitive that draw on the same neural processing pathways, are performed concurrently. Healthy young adult subjects carried out two seemingly distinct tasks of maintaining standing balance control under conditions of low (eyes closed), normal (eyes open) or high (eyes open, sway-referenced surround) visuospatial processing load while concurrently performing a cognitive task of either subtracting backwards by seven or generating words of the same first letter. A decrease in the performance of the balance control task and a decrement in the speed and accuracy of responses were noted during the subtraction but not the word generation task. The interference in the subtraction task was isolated to the first trial of the high but not normal or low visuospatial conditions. Balance control improvements with repeated exposures were observed only in the low visuospatial conditions while performance in the other conditions remained compromised. These results suggest that sensory organization for balance control appear to draw on similar visuospatial computational resources needed for the subtraction but not the word generation task. In accordance with the theory of modularity in human performance, the contrast in results between the subtraction and word generation tasks suggests that the neural overload is related to competition for similar visuospatial processes rather than limited attentional resources. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
The Revised Neurobehavioral Severity Scale (NSS-R) for Rodents.
Yarnell, Angela M; Barry, Erin S; Mountney, Andrea; Shear, Deborah; Tortella, Frank; Grunberg, Neil E
2016-04-08
Motor and sensory deficits are common following traumatic brain injury (TBI). Although rodent models provide valuable insight into the biological and functional outcomes of TBI, the success of translational research is critically dependent upon proper selection of sensitive, reliable, and reproducible assessments. Published literature includes various observational scales designed to evaluate post-injury functionality; however, the heterogeneity in TBI location, severity, and symptomology can complicate behavioral assessments. The importance of choosing behavioral outcomes that can be reliably and objectively quantified in an efficient manner is becoming increasingly important. The Revised Neurobehavioral Severity Scale (NSS-R) is a continuous series of specific, sensitive, and standardized observational tests that evaluate balance, motor coordination, and sensorimotor reflexes in rodents. The tasks follow a specific order designed to minimize interference: balance, landing, tail raise, dragging, righting reflex, ear reflex, eye reflex, sound reflex, tail pinch, and hindpaw pinch. The NSS-R has proven to be a reliable method differentiating brain-injured rodents from non-brain-injured rodents across many brain injury models. Copyright © 2016 John Wiley & Sons, Inc.
Cluff, Tyler; Boulet, Jason; Balasubramaniam, Ramesh
2011-08-01
Theories of motor learning argue that the acquisition of novel motor skills requires a task-specific organization of sensory and motor subsystems. We examined task-specific coupling between motor subsystems as subjects learned a novel stick-balancing task. We focused on learning-induced changes in finger movements and body sway and investigated the effect of practice on their coupling. Eight subjects practiced balancing a cylindrical wooden stick for 30 min a day during a 20 day learning period. Finger movements and center of pressure trajectories were recorded in every fifth practice session (4 in total) using a ten camera VICON motion capture system interfaced with two force platforms. Motor learning was quantified using average balancing trial lengths, which increased with practice and confirmed that subjects learned the task. Nonlinear time series and phase space reconstruction methods were subsequently used to investigate changes in the spatiotemporal properties of finger movements, body sway and their progressive coupling. Systematic increases in subsystem coupling were observed despite reduced autocorrelation and differences in the temporal properties of center of pressure and finger trajectories. The average duration of these coupled trajectories increased systematically across the learning period. In short, the abrupt transition between coupled and decoupled subsystem dynamics suggested that stick balancing is regulated by a hierarchical control mechanism that switches from collective to independent control of the finger and center of pressure. In addition to traditional measures of motor performance, dynamical analyses revealed changes in motor subsystem organization that occurred when subjects learned a novel stick-balancing task.
Using a million cell simulation of the cerebellum: network scaling and task generality.
Li, Wen-Ke; Hausknecht, Matthew J; Stone, Peter; Mauk, Michael D
2013-11-01
Several factors combine to make it feasible to build computer simulations of the cerebellum and to test them in biologically realistic ways. These simulations can be used to help understand the computational contributions of various cerebellar components, including the relevance of the enormous number of neurons in the granule cell layer. In previous work we have used a simulation containing 12000 granule cells to develop new predictions and to account for various aspects of eyelid conditioning, a form of motor learning mediated by the cerebellum. Here we demonstrate the feasibility of scaling up this simulation to over one million granule cells using parallel graphics processing unit (GPU) technology. We observe that this increase in number of granule cells requires only twice the execution time of the smaller simulation on the GPU. We demonstrate that this simulation, like its smaller predecessor, can emulate certain basic features of conditioned eyelid responses, with a slight improvement in performance in one measure. We also use this simulation to examine the generality of the computation properties that we have derived from studying eyelid conditioning. We demonstrate that this scaled up simulation can learn a high level of performance in a classic machine learning task, the cart-pole balancing task. These results suggest that this parallel GPU technology can be used to build very large-scale simulations whose connectivity ratios match those of the real cerebellum and that these simulations can be used guide future studies on cerebellar mediated tasks and on machine learning problems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zgonnikov, Arkady; Lubashevsky, Ihor
2015-11-01
When facing a task of balancing a dynamic system near an unstable equilibrium, humans often adopt intermittent control strategy: Instead of continuously controlling the system, they repeatedly switch the control on and off. Paradigmatic example of such a task is stick balancing. Despite the simplicity of the task itself, the complexity of human intermittent control dynamics in stick balancing still puzzles researchers in motor control. Here we attempt to model one of the key mechanisms of human intermittent control, control activation, using as an example the task of overdamped stick balancing. In doing so, we focus on the concept of noise-driven activation, a more general alternative to the conventional threshold-driven activation. We describe control activation as a random walk in an energy potential, which changes in response to the state of the controlled system. By way of numerical simulations, we show that the developed model captures the core properties of human control activation observed previously in the experiments on overdamped stick balancing. Our results demonstrate that the double-well potential model provides tractable mathematical description of human control activation at least in the considered task and suggest that the adopted approach can potentially aid in understanding human intermittent control in more complex processes.
Noh, Dong Koog; Lim, Jae-Young; Shin, Hyung-Ik; Paik, Nam-Jong
2008-01-01
To evaluate the effect of an aquatic therapy programme designed to increase balance in stroke survivors. A randomized, controlled pilot trial. Rehabilitation department of a university hospital. Ambulatory chronic stroke patients (n = 25):13 in an aquatic therapy group and 12 in a conventional therapy group. The aquatic therapy group participated in a programme consisting of Ai Chi and Halliwick methods, which focused on balance and weight-bearing exercises. The conventional therapy group performed gym exercises. In both groups, the interventions occurred for 1 hour, three times per week, for eight weeks. The primary outcome measures were Berg Balance Scale score and weight-bearing ability, as measured by vertical ground reaction force during four standing tasks (rising from a chair and weight-shifting forward, backward and laterally). Secondary measures were muscle strength and gait. Compared with the conventional therapy group, the aquatic therapy group attained significant improvements in Berg Balance Scale scores, forward and backward weight-bearing abilities of the affected limbs, and knee flexor strength (P < 0.05), with effect sizes of 1.03, 1.14, 0.72 and 1.13 standard deviation units and powers of 75, 81, 70 and 26%, respectively. There were no significant changes in the other measures between the two groups. Postural balance and knee flexor strength were improved after aquatic therapy based on the Halliwick and Ai Chi methods in stroke survivors. Because of limited power and a small population base, further studies with larger sample sizes are required.
A Framework for Load Balancing of Tensor Contraction Expressions via Dynamic Task Partitioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Pai-Wei; Stock, Kevin; Rajbhandari, Samyam
In this paper, we introduce the Dynamic Load-balanced Tensor Contractions (DLTC), a domain-specific library for efficient task parallel execution of tensor contraction expressions, a class of computation encountered in quantum chemistry and physics. Our framework decomposes each contraction into smaller unit of tasks, represented by an abstraction referred to as iterators. We exploit an extra level of parallelism by having tasks across independent contractions executed concurrently through a dynamic load balancing run- time. We demonstrate the improved performance, scalability, and flexibility for the computation of tensor contraction expressions on parallel computers using examples from coupled cluster methods.
Nonnekes, Jorik; de Kam, Digna; Geurts, Alexander C H; Weerdesteyn, Vivian; Bloem, Bastiaan R
2013-12-01
Postural instability, one of the cardinal symptoms of Parkinson's disease (PD), has devastating consequences for affected patients. Better strategies to prevent falls are needed, but this calls for an improved understanding of the complex mechanisms underlying postural instability. We must also improve our ability to timely identify patients at risk of falling. Dynamic posturography is a promising avenue to achieve these goals. The latest moveable platforms can deliver 'real-life' balance perturbations, permitting study of everyday fall circumstances. Dynamic posturography studies have shown that PD patients have fundamental problems in scaling their postural responses in accordance with the need of the actual balance task at hand. On-going studies evaluate the predictive ability of impaired posturography performance for daily life falls. We also review recent work aimed at exploring balance correcting steps in PD, and the presumed interaction between startle pathways and postural responses.
The effects of smartphone multitasking on gait and dynamic balance.
Lee, Jeon Hyeong; Lee, Myoung Hee
2018-02-01
[Purpose] This study was performed to analyze the influence of smartphone multitasking on gait and dynamic balance. [Subjects and Methods] The subjects were 19 male and 20 female university students. There were 4 types of gait tasks: General Gait (walking without a task), Task Gait 1 (walking while writing a message), Task Gait 2 (walking while writing a message and listening to music), Task Gait 3 (walking while writing a message and having a conversation). To exclude the learning effect, the order of tasks was randomized. The Zebris FDM-T treadmill system (Zebris Medical GmbH, Germany) was used to measure left and right step length and width, and a 10 m walking test (10MWT) was conducted for gait velocity. In addition, a Timed Up and Go test (TUG) was used to measure dynamic balance. All the tasks were performed 3 times, and the mean of the measured values was analyzed. [Results] There were no statistically significant differences in step length and width. There were statistically significant differences in the 10MWT and TUG tests. [Conclusion] Using a smartphone while walking decreases a person's dynamic balance and walking ability. It is considered that accident rates are higher when using a smartphone.
2012-01-01
Background In rehabilitation, training intensity is usually adapted to optimize the trained system to attain better performance (overload principle). However, in balance rehabilitation, the level of intensity required during training exercises to optimize improvement in balance has rarely been studied, probably due to the difficulty in quantifying the stability level during these exercises. The goal of the present study was to test whether the stabilizing/destabilizing forces model could be used to analyze how stability is challenged during several exergames, that are more and more used in balance rehabilitation, and a dynamic functional task, such as gait. Methods Seven healthy older adults were evaluated with three-dimensional motion analysis during gait at natural and fast speed, and during three balance exergames (50/50 Challenge, Ski Slalom and Soccer). Mean and extreme values for stabilizing force, destabilizing force and the ratio of the two forces (stability index) were computed from kinematic and kinetic data to determine the mean and least level of dynamic, postural and overall balance stability, respectively. Results Mean postural stability was lower (lower mean destabilizing force) during the 50/50 Challenge game than during all the other tasks, but peak postural instability moments were less challenging during this game than during any of the other tasks, as shown by the minimum destabilizing force values. Dynamic stability was progressively more challenged (higher mean and maximum stabilizing force) from the 50/50 Challenge to the Soccer and Slalom games, to the natural gait speed task and to the fast gait speed task, increasing the overall stability difficulty (mean and minimum stability index) in the same manner. Conclusions The stabilizing/destabilizing forces model can be used to rate the level of balance requirements during different tasks such as gait or exergames. The results of our study showed that postural stability did not differ much between the evaluated tasks (except for the 50/50 Challenge), compared to dynamic stability, which was significantly less challenged during the games than during the functional tasks. Games with greater centre of mass displacements and changes in the base of support are likely to stimulate balance control enough to see improvements in balance during dynamic functional tasks, and could be tested in pathological populations with the approach used here. PMID:22607025
Measuring pictorial balance perception at first glance using Japanese calligraphy
Gershoni, Sharon; Hochstein, Shaul
2011-01-01
According to art theory, pictorial balance acts to unify picture elements into a cohesive composition. For asymmetrical compositions, balancing elements is thought to be similar to balancing mechanical weights in a framework of symmetry axes. Assessment of preference for balance (APB), based on the symmetry-axes framework suggested in Arnheim R, 1974 Art and Visual Perception: A Psychology of the Creative Eye (Berkeley, CA: University of California Press), successfully matched subject balance ratings of images of geometrical shapes over unlimited viewing time. We now examine pictorial balance perception of Japanese calligraphy during first fixation, isolated from later cognitive processes, comparing APB measures with results from balance-rating and comparison tasks. Results show high between-task correlation, but low correlation with APB. We repeated the rating task, expanding the image set to include five rotations of each image, comparing balance perception of artist and novice participant groups. Rotation has no effect on APB balance computation but dramatically affects balance rating, especially for art experts. We analyze the variety of rotation effects and suggest that, rather than depending on element size and position relative to symmetry axes, first fixation balance processing derives from global processes such as grouping of lines and shapes, object recognition, preference for horizontal and vertical elements, closure, and completion, enhanced by vertical symmetry. PMID:23145242
Howell, David R; Osternig, Louis R; Chou, Li-Shan
2018-02-16
To examine the acute (within 72h of injury) and long-term (2mo postinjury) independent associations between objective dual-task gait balance and neurocognitive measurements among adolescents and young adults with a concussion and matched controls. Longitudinal case-control. Motion analysis laboratory. A total of 95 participants completed the study: 51 who sustained a concussion (mean age, 17.5±3.3y; 71% men) and 44 controls (mean age, 17.7±2.9y; 72% men). Participants who sustained a concussion underwent a dual-task gait analysis and computerized neurocognitive testing within 72 hours of injury and again 2 months later. Uninjured controls also completed the same test protocol in similar time increments. Not applicable. We compared dual-task gait balance control and computerized neurocognitive test performance between groups using independent samples t tests. Multivariable binary logistic regression models were then constructed for each testing time to determine the association between group membership (concussion vs control), dual-task gait balance control, and neurocognitive function. Medial-lateral center-of-mass displacement during dual-task gait was independently associated with group membership at the initial test (adjusted odds ratio [aOR], 2.432; 95% confidence interval [CI], 1.269-4.661) and 2-month follow-up test (aOR, 1.817; 95% CI, 1.014-3.256) tests. Visual memory composite scores were significantly associated with group membership at the initial hour postinjury time point (aOR, .953; 95% CI, .833-.998). However, the combination of computerized neurocognitive test variables did not predict dual-task gait balance control for participants with concussion, and no single neurocognitive variable was associated with dual-task gait balance control at either testing time. Dual-task assessments concurrently evaluating gait and cognitive performance may allow for the detection of persistent deficits beyond those detected by computerized neurocognitive deficits alone. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Active video gaming to improve balance in the elderly.
Lamoth, Claudine J C; Caljouw, Simone R; Postema, Klaas
2011-01-01
The combination of active video gaming and exercise (exergaming) is suggested to improve elderly people's balance, thereby decreasing fall risk. Exergaming has been shown to increase motivation during exercise therapy, due to the enjoyable and challenging nature, which could support long-term adherence for exercising balance. However, scarce evidence is available of the direct effects of exergaming on postural control. Therefore, the aim of the study was to assess the effect of a six-week videogame-based exercise program aimed at improving balance in elderly people. Task performance and postural control were examined using an interrupted time series design. Results of multilevel analyses showed that performance on the dot task improved within the first two weeks of training. Postural control improved during the intervention. After the intervention period task performance and balance were better than before the intervention. Results of this study show that healthy elderly can benefit from a videogame-based exercise program to improve balance and that all subjects were highly motivated to exercise balance because they found gaming challenging and enjoyable.
Dutta, Arindam; Chugh, Sanjay; Banerjee, Alakananda; Dutta, Anirban
2014-01-01
Non-invasive brain stimulation (NIBS) is a promising tool for facilitating motor function. NIBS therapy in conjunction with training using postural feedback may facilitate physical rehabilitation following posture disorders (e.g., Pusher Syndrome). The objectives of this study were, 1) to develop a low-cost point-of-care-testing (POCT) system for standing posture, 2) to investigate the effects of anodal tDCS on functional reach tasks using the POCT system. Ten community-dwelling elderly (age >50 years) subjects evaluated the POCT system for standing posture during functional reach tasks where their balance score on Berg Balance Scale was compared with that from Center-of-Mass (CoM) - Center-of-Pressure (CoP) posturography. Then, in a single-blind, sham-controlled study, five healthy right-leg dominant subjects (age: 26.4 ± 5.3 yrs) were evaluated using the POCT system under two conditions - with anodal tDCS of primary motor representations of right tibialis anterior muscle and with sham tDCS. The maximum CoP-CoM lean-angle was found to be well correlated with the BBS score in the elderly subjects The anodal tDCS strongly (p = 0.0000) affected the maximum CoP excursions but not the return reaction time in healthy. It was concluded that the CoM-CoP lean-line could be used for posture feedback and monitoring during tDCS therapy in conjunction with balance training exercises.
Knobe, M; Giesen, M; Plate, S; Gradl-Dietsch, G; Buecking, B; Eschbach, D; van Laack, W; Pape, H-C
2016-10-01
The most commonly used mobility assessments for screening risk of falls among older adults are rating scales such as the Tinetti performance oriented mobility assessment (POMA). However, its correlation with falls is not always predictable and disadvantages of the scale include difficulty to assess many of the items on a 3-point scale and poor specificity. The purpose of this study was to describe the ability of the new Aachen Mobility and Balance Index (AMBI) to discriminate between subjects with a fall history and subjects without such events in comparison to the Tinetti POMA Scale. For this prospective cohort study, 24 participants in the study group and 10 in the control group were selected from a population of patients in our hospital who had met the stringent inclusion criteria. Both groups completed the Tinetti POMA Scale (gait and balance component) and the AMBI (tandem stance, tandem walk, ten-meter-walk-test, sit-to-stand with five repetitions, 360° turns, timed-up-and-go-test and measurement of the dominant hand grip strength). A history of falls and hospitalization in the past year were evaluated retrospectively. The relationships among the mobility tests were examined with Bland-Altmananalysis. Receiver-operated characteristics curves, sensitivity and specificity were calculated. The study showed a strong negative correlation between the AMBI (17 points max., highest fall risk) and Tinetti POMA Scale (28 points max., lowest fall risk; r = -0.78, p < 0.001) with an excellent discrimination between community-dwelling older people and a younger control group. However, there were no differences in any of the mobility and balance measurements between participants with and without a fall history with equal characteristics in test comparison (AMBI vs. Tinetti POMA Scale: AUC 0.570 vs. 0.598; p = 0.762). The Tinetti POMA Scale (cut-off <20 points) showed a sensitivity of 0.45 and a specificity of 0.69, the AMBI a sensitivity of 0.64 and a specificity of 0.46 (cut-off >5 points). The AMBI comprises mobility and balance tasks with increasing difficulty as well as a measurement of the dominant hand-grip strength. Its ability to identify fallers was comparable to the Tinetti POMA Scale. However, both measurement sets showed shortcomings in discrimination between fallers and non-fallers based on a self-reported retrospective falls-status.
NASA Astrophysics Data System (ADS)
Denomme, Luke T.
Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system (CNS) and causes a broad range of neurological symptoms. One of the most common symptoms experienced by individuals with MS is poor balance control during standing and walking. The main mechanism underlying impaired balance control in MS appears to result from slowed somatosensory conduction and impaired central integration. The current thesis assessed postural and dynamic control of balance of 'individuals with MS with mild disability' (IwMS). IwMS were compared to 'healthy age-matched individuals' (HAMI) and community-dwelling 'older adults' (OA). The purpose of this thesis was to quantify differences in postural and dynamic control of balance in IwMS to the two populations who display balance control differences across the lifespan and represent two extreme ends of the balance control continuum due to natural aging. IwMS (n = 12, x¯age: 44 +/- 9.4 years), HAMI (n = 12, x¯age: 45 +/- 9.9 years) and community-dwelling OA (n = 12, x¯ age: 68.1 +/- 4.5 years) postural and dynamic balance control were evaluated during a Romberg task as well as a dynamic steering task. The Romberg task required participants to stand with their feet together and hands by their sides for 45 seconds with either their eyes open or closed. The dynamic steering task required participants to walk and change direction along the M-L plane towards a visual goal. Results from these two tasks reveal that IwMS display differences in postural control when compared to HAMI when vision was removed as well as differences in dynamic stability margin during steering situations. During the postural control task IwMS displayed faster A-P and M-L COP velocities when vision was removed and their COP position was closer to their self-selected maximum stability limits compared to HAMI. Assessment of dynamic stability during the steering task revealed that IwMS displayed reduced walking speed and cadence during the straight walking portion of the task in addition to a smaller DSM range (i.e., COM remained close to lateral BOS) during the entire steering task. These results suggest that IwMS adopt postural and dynamic control strategies (i.e., increased COP velocity, smaller self-selected maximal sway comfort zones and reduced walking speed) in order to maintain stability and complete the tasks. Results further revealed that IwMS display similar levels of postural and dynamic stability to OA despite differences in the type of sensory impairment possessed by each group. The findings also provide insights into the comparison of IwMS to two populations who represent the two extreme ends of the balance control continuum: HAMI and OA. Our data indicates that the level of postural and dynamic balance control in IwMS appears to express similar characteristics and may be located closer to the OA population on this continuum. Future research should evaluate the level of somatosensory impairment (i.e., monofilament testing and tuning fork tendon tap testing) between IwMS and OA in order to better differentiate levels of postural and dynamic balance control between groups and to gain a better understanding of where each group may be specifically located on the age-related balance control continuum.
Single- and Dual-Task Balance Training Are Equally Effective in Youth
Lüder, Benjamin; Kiss, Rainer; Granacher, Urs
2018-01-01
Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12–13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed (p < 0.001, d = 5.1), shorter stride length (p < 0.001, d = 4.8), and longer stride time (p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre–post decreases in DT costs for gait velocity (p < 0.001, d = 3.1), stride length (-45%, p < 0.001, d = 2.4), and stride time (-44%, p < 0.01, d = 1.9). Training did not induce any significant changes (p > 0.05, d = 0–0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre–post increases (p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group (p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents. PMID:29928248
Single- and Dual-Task Balance Training Are Equally Effective in Youth.
Lüder, Benjamin; Kiss, Rainer; Granacher, Urs
2018-01-01
Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12-13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed ( p < 0.001, d = 5.1), shorter stride length ( p < 0.001, d = 4.8), and longer stride time ( p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre-post decreases in DT costs for gait velocity ( p < 0.001, d = 3.1), stride length (-45%, p < 0.001, d = 2.4), and stride time (-44%, p < 0.01, d = 1.9). Training did not induce any significant changes ( p > 0.05, d = 0-0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre-post increases ( p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group ( p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents.
Rochefort, Coralie; Walters-Stewart, Coren; Aglipay, Mary; Barrowman, Nick; Zemek, Roger; Sveistrup, Heidi
2017-11-01
To determine if self-reported balance symptoms can be used as a proxy for measures of the center of pressure (COP) to identify balance deficits in a group of concussed adolescents. Case-control. Thirteen adolescents 1-month post-concussion who reported ongoing balance problems (Balance+), 20 adolescent 1-month post-concussion who reported no balance problems (Balance-), and 30 non-injured adolescents (control) completed a series of balance tests. Participants completed two 2-min trials standing on a Nintendo Wii Balance Board™ during which the COP under their feet was recorded: i) double-leg stance, eyes open; ii) double-leg stance, eyes closed. Participants also completed a dual-task condition combining a double-leg stance and a Stroop Colour-word test. Participants in both the Balance+ and Balance- group swayed over a larger ellipse area compared to the control group while completing the Eyes Closed (Balance+, p=0.002; Balance-, p=0.002) and Dual-Task (Balance+, p=0.001; Balance-, p=0.004) conditions and performed the Dual-Task condition with faster medio-lateral velocity (Balance+, p=0.003; Balance-, p=0.009). The participants in the Balance- group also swayed over a larger ellipse area compared to the control group while completing the Eyes Open condition (p=0.005). No significant differences were identified between the Balance+ and Balance- groups. At 1-month post-concussion, adolescents demonstrated balance deficits compared to non-injured adolescents regardless of whether they reported balance problems. These results suggest that self-reported balance status might not be an accurate reflection of balance performance following a concussion in adolescents. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Flynn, Sheryl; Palma, Phyllis; Bender, Anneke
2007-12-01
Many Americans live with physical functional limitations stemming from stroke. These functional limitations can be reduced by task-specific training that is repetitive, motivating, and augmented with feedback. Virtual reality (VR) is reported to offer an engaging environment that is repetitive, safe, motivating, and gives task-specific feedback. The purpose of this case report was to explore the use of a low-cost VR device [Sony PlayStation 2 (PS2) EyeToy] for an individual in the chronic phase of stroke recovery. An individual two years poststroke with residual sensorimotor deficits completed 20 one-hour sessions using the PS2 EyeToy. The game's task requirements included target-based motion, dynamic balance, and motor planning. The feasibility of using the gaming platform was explored and a broad selection of outcomes was used to assess change in performance. Device use was feasible. Clinically relevant improvements were found on the Dynamic Gait Index and trends toward improvement on the Fugl-Meyer Assessment, Berg Balance Scale, UE Functional Index, Motor Activity Log, and Beck Depression Inventory. A low-cost VR system was easily used in the home. In the future it may be used to improve sensory/motor recovery following stroke as an adjunct to standard care physical therapy.
Robot-aided gait training in an individual with chronic spinal cord injury: a case study.
Bishop, Lauri; Stein, Joel; Wong, Christopher Kevin
2012-09-01
Traditional physical therapy is beneficial in restoring mobility in individuals who have sustained spinal cord injury (SCI), but residual limitations often persist. Robotic technologies may offer opportunities for further gains. The purpose of this case study was to document the use and practicality of gait training for an individual with chronic, incomplete SCI with asymmetric lower limb motor deficits using a novel robotic knee orthosis (RKO). The participant was a 22-year-old woman who sustained fractures of the odontoid process and C5-C6 vertebrae from a motor vehicle accident resulting in incomplete SCI with asymmetric tetraparesis, right side more severe than left side. She required supervised assistance with gait and balance tasks, minimal assistance to ascend/descend steps using a handrail, and upper extremity assistance for sit-to-stand tasks. The participant underwent 7 one-hour sessions of mobility training, using a novel RKO. Her primary goal was to increase independence and endurance with mobility. Functional measures included the 6-Minute Walk Test, the Berg Balance Scale, the Timed Up & Go Test, and the 10-Meter Walk Test. Outcomes were assessed and recorded at baseline and on completion of 7 hours of training with the device over a 2-week period. No adverse events occurred. The RKO was well received by both the participant and the treating therapist. The participant demonstrated improvements in the 6-Minute Walk Test and Berg Balance Scale after RKO-training intervention. Outcomes suggest that the use of this device during a physical therapy program for an individual with incomplete SCI is practical and this device may be a useful adjunct to standard training.
Standing balance in individuals with Parkinson's disease during single and dual-task conditions.
Fernandes, Ângela; Coelho, Tiago; Vitória, Ana; Ferreira, Augusto; Santos, Rubim; Rocha, Nuno; Fernandes, Lia; Tavares, João Manuel R S
2015-09-01
This study aimed to examine the differences in standing balance between individuals with Parkinson's disease (PD) and subjects without PD (control group), under single and dual-task conditions. A cross-sectional study was designed using a non-probabilistic sample of 110 individuals (50 participants with PD and 60 controls) aged 50 years old and over. The individuals with PD were in the early or middle stages of the disease (characterized by Hoehn and Yahr as stages 1-3). The standing balance was assessed by measuring the centre of pressure (CoP) displacement in single-task (eyes-open/eyes-closed) and dual-task (while performing two different verbal fluency tasks). No significant differences were found between the groups regarding sociodemographic variables. In general, the standing balance of the individuals with PD was worse than the controls, as the CoP displacement across tasks was significantly higher for the individuals with PD (p<0.01), both in anteroposterior and mediolateral directions. Moreover, there were significant differences in the CoP displacement based parameters between the conditions, mainly between the eyes-open condition and the remaining conditions. However, there was no significant interaction found between group and condition, which suggests that changes in the CoP displacement between tasks were not influenced by having PD. In conclusion, this study shows that, although individuals with PD had a worse overall standing balance than individuals without the disease, the impact of performing an additional task on the CoP displacement is similar for both groups. Copyright © 2015 Elsevier B.V. All rights reserved.
Yow, W. Quin; Li, Xiaoqian
2015-01-01
Recent studies revealed inconsistent evidences of a bilingual advantage in executive processing. One potential source of explanation is the multifaceted experience of the bilinguals in these studies. This study seeks to test whether bilinguals who engage in language selection more frequently would perform better in executive control tasks than those bilinguals who engage in language selection less frequently. We examined the influence of the degree of bilingualism (i.e., language proficiency, frequency of use of two languages, and age of second language acquisition) on executive functioning in bilingual young adults using a comprehensive battery of executive control tasks. Seventy-two 18- to 25-years-old English–Mandarin bilinguals performed four computerized executive function (EF) tasks (Stroop, Eriksen flanker, number–letter switching, and n-back task) that measure the EF components: inhibition, mental-set shifting, and information updating and monitoring. Results from multiple regression analyses, structural equation modeling, and bootstrapping supported the positive association between age of second language acquisition and the interference cost in the Stroop task. Most importantly, we found a significant effect of balanced bilingualism (balanced usage of and balanced proficiency in two languages) on the Stroop and number–letter task (mixing cost only), indicating that a more balanced use and a more balanced level of proficiency in two languages resulted in better executive control skills in the adult bilinguals. We did not find any significant effect of bilingualism on flanker or n-back task. These findings provided important insights to the underlying mechanisms of the bilingual cognitive advantage hypothesis, demonstrating that regular experience with extensive practice in controlling attention to their two language systems results in better performance in related EFs such as inhibiting prepotent responses and global set-shifting. PMID:25767451
Yow, W Quin; Li, Xiaoqian
2015-01-01
Recent studies revealed inconsistent evidences of a bilingual advantage in executive processing. One potential source of explanation is the multifaceted experience of the bilinguals in these studies. This study seeks to test whether bilinguals who engage in language selection more frequently would perform better in executive control tasks than those bilinguals who engage in language selection less frequently. We examined the influence of the degree of bilingualism (i.e., language proficiency, frequency of use of two languages, and age of second language acquisition) on executive functioning in bilingual young adults using a comprehensive battery of executive control tasks. Seventy-two 18- to 25-years-old English-Mandarin bilinguals performed four computerized executive function (EF) tasks (Stroop, Eriksen flanker, number-letter switching, and n-back task) that measure the EF components: inhibition, mental-set shifting, and information updating and monitoring. Results from multiple regression analyses, structural equation modeling, and bootstrapping supported the positive association between age of second language acquisition and the interference cost in the Stroop task. Most importantly, we found a significant effect of balanced bilingualism (balanced usage of and balanced proficiency in two languages) on the Stroop and number-letter task (mixing cost only), indicating that a more balanced use and a more balanced level of proficiency in two languages resulted in better executive control skills in the adult bilinguals. We did not find any significant effect of bilingualism on flanker or n-back task. These findings provided important insights to the underlying mechanisms of the bilingual cognitive advantage hypothesis, demonstrating that regular experience with extensive practice in controlling attention to their two language systems results in better performance in related EFs such as inhibiting prepotent responses and global set-shifting.
Proactive Adjustments of Response Strategies in the Stop-Signal Paradigm
ERIC Educational Resources Information Center
Verbruggen, Frederick; Logan, Gordon D.
2009-01-01
In the stop-signal paradigm, fast responses are harder to inhibit than slow responses, so subjects must balance speed is the go task with successful stopping in the stop task. In theory, subjects achieve this balance by adjusting response thresholds for the go task, making proactive adjustments in response to instructions that indicate that…
Physical load handling and listening comprehension effects on balance control.
Qu, Xingda
2010-12-01
The purpose of this study was to determine the physical load handling and listening comprehension effects on balance control. A total of 16 young and 16 elderly participants were recruited in this study. The physical load handling task required holding a 5-kg load in each hand with arms at sides. The listening comprehension task involved attentive listening to a short conversation. Three short questions were asked regarding the conversation right after the testing trial to test the participants' attentiveness during the experiment. Balance control was assessed by centre of pressure-based measures, which were calculated from the force platform data when the participants were quietly standing upright on a force platform. Results from this study showed that both physical load handling and listening comprehension adversely affected balance control. Physical load handling had a more deleterious effect on balance control under the listening comprehension condition vs. no-listening comprehension condition. Based on the findings from this study, interventions for the improvement of balance could be focused on avoiding exposures to physically demanding tasks and cognitively demanding tasks simultaneously. STATEMENT OF RELEVANCE: Findings from this study can aid in better understanding how humans maintain balance, especially when physical and cognitive loads are applied. Such information is useful for developing interventions to prevent fall incidents and injuries in occupational settings and daily activities.
A balancing act: physical balance, through arousal, influences size perception.
Geuss, Michael N; Stefanucci, Jeanine K; de Benedictis-Kessner, Justin; Stevens, Nicholas R
2010-10-01
Previous research has demonstrated that manipulating vision influences balance. Here, we question whether manipulating balance can influence vision and how it may influence vision--specifically, the perception of width. In Experiment 1, participants estimated the width of beams while balanced and unbalanced. When unbalanced, participants judged the widths to be smaller. One possible explanation is that unbalanced participants did not view the stimulus as long as when balanced because they were focused on remaining balanced. In Experiment 2, we tested this notion by limiting viewing time. Experiment 2 replicated the findings of Experiment 1, but viewing time had no effect on width judgments. In Experiment 3, participants' level of arousal was manipulated, because the balancing task likely produced arousal. While jogging, participants judged the beams to be smaller. In Experiment 4, participants completed another arousing task (counting backward by sevens) that did not involve movement. Again, participants judged the beams to be smaller when aroused. Experiment 5A raised participants' level of arousal before estimating the board widths (to control for potential dual-task effects) and showed that heightened arousal still influenced perceived width of the boards. Collectively, heightened levels of arousal, caused by multiple manipulations (including balance), influenced perceived width.
DISPATCH: a numerical simulation framework for the exa-scale era - I. Fundamentals
NASA Astrophysics Data System (ADS)
Nordlund, Åke; Ramsey, Jon P.; Popovas, Andrius; Küffmeier, Michael
2018-06-01
We introduce a high-performance simulation framework that permits the semi-independent, task-based solution of sets of partial differential equations, typically manifesting as updates to a collection of `patches' in space-time. A hybrid MPI/OpenMP execution model is adopted, where work tasks are controlled by a rank-local `dispatcher' which selects, from a set of tasks generally much larger than the number of physical cores (or hardware threads), tasks that are ready for updating. The definition of a task can vary, for example, with some solving the equations of ideal magnetohydrodynamics (MHD), others non-ideal MHD, radiative transfer, or particle motion, and yet others applying particle-in-cell (PIC) methods. Tasks do not have to be grid based, while tasks that are, may use either Cartesian or orthogonal curvilinear meshes. Patches may be stationary or moving. Mesh refinement can be static or dynamic. A feature of decisive importance for the overall performance of the framework is that time-steps are determined and applied locally; this allows potentially large reductions in the total number of updates required in cases when the signal speed varies greatly across the computational domain, and therefore a corresponding reduction in computing time. Another feature is a load balancing algorithm that operates `locally' and aims to simultaneously minimize load and communication imbalance. The framework generally relies on already existing solvers, whose performance is augmented when run under the framework, due to more efficient cache usage, vectorization, local time-stepping, plus near-linear and, in principle, unlimited OpenMP and MPI scaling.
Effect of Water Immersion on Dual-task Performance: Implications for Aquatic Therapy.
Schaefer, Sydney Y; Louder, Talin J; Foster, Shayla; Bressel, Eadric
2016-09-01
Much is known about cardiovascular and biomechanical responses to exercise during water immersion, yet an understanding of the higher-order neural responses to water immersion is unclear. The purpose of this study was to compare cognitive and motor performance between land and water environments using a dual-task paradigm, which served as an indirect measure of cortical processing. A quasi-experimental crossover research design is used. Twenty-two healthy participants (age = 24.3 ± 5.24 years) and a single-case patient (age = 73) with mild cognitive impairment performed a cognitive (auditory vigilance) and motor (standing balance) task separately (single-task condition) and simultaneously (dual-task condition) on land and in chest-deep water. Listening errors from the auditory vigilance task and centre of pressure (CoP) area for the balance task measured cognitive and motor performance, respectively. Listening errors for the single-task and dual-task conditions were 42% and 45% lower for the water than land condition, respectively (effect size [ES] = 0.38 and 0.55). CoP area for the single-task and dual-task conditions, however, were 115% and 164% lower on land than in water, respectively, and were lower (≈8-33%) when balancing concurrently with the auditory vigilance task compared with balancing alone, regardless of environment (ES = 0.23-1.7). This trend was consistent for the single-case patient. Participants tended to make fewer 'cognitive' errors while immersed chest-deep in water than on land. These same participants also tended to display less postural sway under dual-task conditions, but more in water than on land. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Choi, Wonjae; Lee, GyuChang; Lee, Seungwon
2015-08-01
To investigate the effect of a cognitive-motor dual-task using auditory cues on the balance of patients with chronic stroke. Randomized controlled trial. Inpatient rehabilitation center. Thirty-seven individuals with chronic stroke. The participants were randomly allocated to the dual-task group (n=19) and the single-task group (n=18). The dual-task group performed a cognitive-motor dual-task in which they carried a circular ring from side to side according to a random auditory cue during treadmill walking. The single-task group walked on a treadmill only. All subjects completed 15 min per session, three times per week, for four weeks with conventional rehabilitation five times per week over the four weeks. Before and after intervention, both static and dynamic balance were measured with a force platform and using the Timed Up and Go (TUG) test. The dual-task group showed significant improvement in all variables compared to the single-task group, except for anteroposterior (AP) sway velocity with eyes open and TUG at follow-up: mediolateral (ML) sway velocity with eye open (dual-task group vs. single-task group: 2.11 mm/s vs. 0.38 mm/s), ML sway velocity with eye close (2.91 mm/s vs. 1.35 mm/s), AP sway velocity with eye close (4.84 mm/s vs. 3.12 mm/s). After intervention, all variables showed significant improvement in the dual-task group compared to baseline. The study results suggest that the performance of a cognitive-motor dual-task using auditory cues may influence balance improvements in chronic stroke patients. © The Author(s) 2014.
Caballero Sánchez, Carla; Barbado Murillo, David; Davids, Keith; Moreno Hernández, Francisco J
2016-06-01
This study investigated the extent to which specific interacting constraints of performance might increase or decrease the emergent complexity in a movement system, and whether this could affect the relationship between observed movement variability and the central nervous system's capacity to adapt to perturbations during balancing. Fifty-two healthy volunteers performed eight trials where different performance constraints were manipulated: task difficulty (three levels) and visual biofeedback conditions (with and without the center of pressure (COP) displacement and a target displayed). Balance performance was assessed using COP-based measures: mean velocity magnitude (MVM) and bivariate variable error (BVE). To assess the complexity of COP, fuzzy entropy (FE) and detrended fluctuation analysis (DFA) were computed. ANOVAs showed that MVM and BVE increased when task difficulty increased. During biofeedback conditions, individuals showed higher MVM but lower BVE at the easiest level of task difficulty. Overall, higher FE and lower DFA values were observed when biofeedback was available. On the other hand, FE reduced and DFA increased as difficulty level increased, in the presence of biofeedback. However, when biofeedback was not available, the opposite trend in FE and DFA values was observed. Regardless of changes to task constraints and the variable investigated, balance performance was positively related to complexity in every condition. Data revealed how specificity of task constraints can result in an increase or decrease in complexity emerging in a neurobiological system during balance performance.
Higher Balance Task Demands are Associated with an Increase in Individual Alpha Peak Frequency
Hülsdünker, Thorben; Mierau, Andreas; Strüder, Heiko K.
2016-01-01
Balance control is fundamental for most daily motor activities, and its impairment is associated with an increased risk of falling. Growing evidence suggests the human cortex is essentially contributing to the control of standing balance. However, the exact mechanisms remain unclear and need further investigation. In a previous study, we introduced a new protocol to identify electrocortical activity associated with performance of different continuous balance tasks with the eyes opened. The aim of this study was to extend our previous results by investigating the individual alpha peak frequency (iAPF), a neurophysiological marker of thalamo-cortical information transmission, which remained unconsidered so far in balance research. Thirty-seven subjects completed nine balance tasks varying in surface stability and base of support. Electroencephalography (EEG) was recorded from 32 scalp locations throughout balancing with the eyes closed to ensure reliable identification of the iAPF. Balance performance was quantified as the sum of anterior-posterior and medio-lateral movements of the supporting platform. The iAPF, as well as power in the theta, lower alpha and upper alpha frequency bands were determined for each balance task after applying an ICA-based artifact rejection procedure. Higher demands on balance control were associated with a global increase in iAPF and a decrease in lower alpha power. These results may indicate increased thalamo-cortical information transfer and general cortical activation, respectively. In addition, a significant increase in upper alpha activity was observed in the fronto-central region whereas it decreased in the centro-parietal region. Furthermore, midline theta increased with higher task demands probably indicating activation of error detection/processing mechanisms. IAPF as well as theta and alpha power were correlated with platform movements. The results provide new insights into spectral and spatial characteristics of cortical oscillations subserving balance control. This information may be particularly useful in a clinical context as it could be used to reveal cortical contributions to balance dysfunction in specific populations such as Parkinson’s or vestibular loss. However, this should be addressed in future studies. PMID:26779005
Higher Balance Task Demands are Associated with an Increase in Individual Alpha Peak Frequency.
Hülsdünker, Thorben; Mierau, Andreas; Strüder, Heiko K
2015-01-01
Balance control is fundamental for most daily motor activities, and its impairment is associated with an increased risk of falling. Growing evidence suggests the human cortex is essentially contributing to the control of standing balance. However, the exact mechanisms remain unclear and need further investigation. In a previous study, we introduced a new protocol to identify electrocortical activity associated with performance of different continuous balance tasks with the eyes opened. The aim of this study was to extend our previous results by investigating the individual alpha peak frequency (iAPF), a neurophysiological marker of thalamo-cortical information transmission, which remained unconsidered so far in balance research. Thirty-seven subjects completed nine balance tasks varying in surface stability and base of support. Electroencephalography (EEG) was recorded from 32 scalp locations throughout balancing with the eyes closed to ensure reliable identification of the iAPF. Balance performance was quantified as the sum of anterior-posterior and medio-lateral movements of the supporting platform. The iAPF, as well as power in the theta, lower alpha and upper alpha frequency bands were determined for each balance task after applying an ICA-based artifact rejection procedure. Higher demands on balance control were associated with a global increase in iAPF and a decrease in lower alpha power. These results may indicate increased thalamo-cortical information transfer and general cortical activation, respectively. In addition, a significant increase in upper alpha activity was observed in the fronto-central region whereas it decreased in the centro-parietal region. Furthermore, midline theta increased with higher task demands probably indicating activation of error detection/processing mechanisms. IAPF as well as theta and alpha power were correlated with platform movements. The results provide new insights into spectral and spatial characteristics of cortical oscillations subserving balance control. This information may be particularly useful in a clinical context as it could be used to reveal cortical contributions to balance dysfunction in specific populations such as Parkinson's or vestibular loss. However, this should be addressed in future studies.
Navigating a Maze with Balance Board and Wiimote
NASA Astrophysics Data System (ADS)
Fikkert, Wim; Hoeijmakers, Niek; van der Vet, Paul; Nijholt, Anton
Input from the lower body in human-computer interfaces can be beneficial, enjoyable and even entertaining when users are expected to perform tasks simultaneously. Users can navigate a virtual (game) world or even an (empirical) dataset while having their hands free to issue commands. We compared the Wii Balance Board to a hand-held Wiimote for navigating a maze and found that users completed this task slower with the Balance Board. However, the Balance Board was considered more intuitive, easy to learn and ‘much fun’.
The effects of smartphone multitasking on gait and dynamic balance
Lee, Jeon Hyeong; Lee, Myoung Hee
2018-01-01
[Purpose] This study was performed to analyze the influence of smartphone multitasking on gait and dynamic balance. [Subjects and Methods] The subjects were 19 male and 20 female university students. There were 4 types of gait tasks: General Gait (walking without a task), Task Gait 1 (walking while writing a message), Task Gait 2 (walking while writing a message and listening to music), Task Gait 3 (walking while writing a message and having a conversation). To exclude the learning effect, the order of tasks was randomized. The Zebris FDM-T treadmill system (Zebris Medical GmbH, Germany) was used to measure left and right step length and width, and a 10 m walking test (10MWT) was conducted for gait velocity. In addition, a Timed Up and Go test (TUG) was used to measure dynamic balance. All the tasks were performed 3 times, and the mean of the measured values was analyzed. [Results] There were no statistically significant differences in step length and width. There were statistically significant differences in the 10MWT and TUG tests. [Conclusion] Using a smartphone while walking decreases a person’s dynamic balance and walking ability. It is considered that accident rates are higher when using a smartphone. PMID:29545698
Subramaniam, Savitha; Bhatt, Tanvi
2017-02-01
The purpose of our study was to investigate the effects of Yoga on reducing cognitive-motor interference (CMI) for maintaining balance control during varied balance tasks. Yoga (N=10) and age-similar non-practitioners (N=10) performed three balance tasks including the Limits of Stability test (LOS - Intentional balance), Motor Control test (MCT - Reactive balance), and Sensory Organization Test (SOT -condition 6: inducing both somatosensory and visual conflicts) under single-task (ST) and dual-task (DT, addition of a cognitive working memory task) conditions. The motor performance was assessed by recording the response time (RT) and movement velocity (MV) of the center of pressure (CoP) on LOS test, weight symmetry (WS) of CoP on the MCT test and equilibrium (EQ) of CoP on the SOT test. Cognitive performance was recorded as the number of correct responses enumerated in sitting (ST) and under DT conditions. The Motor cost (MC) and cognitive cost (CC) were computed using the formula ([ST-DT]/ST)*100 for all the variables. Greater cost indicates lower performance under DT versus ST condition. The Yoga group showed a significantly lesser MC for both MCT and SOT tests (p<0.05) in comparison to their counterparts. The CC were significantly lower on LOS and MCT test for the Yoga group (p<0.05). Results suggest that Yoga practice can significantly reduce CMI by improving allocation and utilization of attentional resources for both balance control and executive cognitive functioning; thus resulting in better performance under DT conditions. Copyright © 2016. Published by Elsevier Ltd.
Reduced Cognitive-Motor Interference on Voluntary Balance Control in Older Tai Chi Practitioners.
Varghese, Rini; Hui-Chan, Christina W Y; Bhatt, Tanvi
2016-01-01
Recent dual-task studies suggest that Tai Chi practitioners displayed better control of standing posture and maintained a quicker response time of postural muscle activation during a stepping down activity. Whether this effect extends to voluntary balance control, specifically the limits of excursion of the center of pressure, remains to be examined. The purpose of this study was to evaluate the cognitive-motor interference pattern by examining the effects of a concurrently performed cognitive task on attention of voluntary balance control in older adults who are long-term practitioners of Tai Chi. Ten older Tai Chi practitioners and 10 age-matched nonpractitioners performed a voluntary balance task that required them to shift their weight to reach a preset target in the forward and backward directions, with (single task, ST) and without (dual task, DT) a secondary cognitive task, which was the counting backward task. The counting backward task required the individual to compute and verbalize a series of arithmetic differences between a given pair of randomly generated numbers. The cognitive task was also performed independently (cognitive-ST). All trials were performed in a random order. Balance outcomes included reaction time, movement velocity, and maximal excursion of the center of pressure provided by the NeuroCom system. Cognitive outcome was the number of correct responses generated within the 8-second trial during the ST and DT conditions. Outcome variables were analyzed using a 2-factor, group by task, analysis of variance. DT costs for the variables were calculated as the relative difference between ST and DT conditions and were compared between the 2 groups using independent t tests. Tai Chi practitioners displayed shorter reaction times (P < .001) and faster movement velocities (P < .05) of their center of pressure than older nonpractitioners for both directions; however, no difference was found between the maximal excursions of the 2 groups. Cost analyses revealed that reaction time and cognitive costs were significantly lower in the Tai Chi practitioners for both forward and backward directions (P < .05); however, similar findings for movement velocity costs were significant only in the backward direction (P < .05). Our results suggest that Tai Chi practitioners expended fewer motor and cognitive resources than older nonpractitioners during a fairly complex (dynamic) postural equilibrium task while performing a verbal working memory task. They exhibited lesser cognitive-motor interference and thus better allocation of attentional resources toward the voluntary balance control task. Given that dynamic balance is a crucial prerequisite for walking and dual-tasking ability is considered to be a significant predictor of falls in older adults, our results might point at the possible long-term benefits of Tai Chi practice to counteract age-related decline in dual-tasking ability. Findings present preliminary data for further investigation, especially related to potential benefits in fall prevention.
Devi, D Chitra; Uthariaraj, V Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods.
Devi, D. Chitra; Uthariaraj, V. Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods. PMID:26955656
Model of load balancing using reliable algorithm with multi-agent system
NASA Astrophysics Data System (ADS)
Afriansyah, M. F.; Somantri, M.; Riyadi, M. A.
2017-04-01
Massive technology development is linear with the growth of internet users which increase network traffic activity. It also increases load of the system. The usage of reliable algorithm and mobile agent in distributed load balancing is a viable solution to handle the load issue on a large-scale system. Mobile agent works to collect resource information and can migrate according to given task. We propose reliable load balancing algorithm using least time first byte (LFB) combined with information from the mobile agent. In system overview, the methodology consisted of defining identification system, specification requirements, network topology and design system infrastructure. The simulation method for simulated system was using 1800 request for 10 s from the user to the server and taking the data for analysis. Software simulation was based on Apache Jmeter by observing response time and reliability of each server and then compared it with existing method. Results of performed simulation show that the LFB method with mobile agent can perform load balancing with efficient systems to all backend server without bottleneck, low risk of server overload, and reliable.
Markovic, Goran; Sarabon, Nejc; Greblo, Zrinka; Krizanic, Valerija
2015-01-01
Aging is associated with decline in physical function that could result in the development of physical impairment and disability. Hence, interventions that simultaneously challenge balance ability, trunk (core) and extremity strength of older adults could be particularly effective in preserving and enhancing these physical functions. The purpose of this study was to compare the effects of feedback-based balance and core resistance training utilizing the a special computer-controlled device (Huber®) with the conventional Pilates training on balance ability, neuromuscular function and body composition of healthy older women. Thirty-four older women (age: 70±4 years) were randomly assigned to a Huber group (n=17) or Pilates group (n=17). Both groups trained for 8 weeks, 3 times a week. Maximal isometric strength of the trunk flexors, extensors, and lateral flexors, leg power, upper-body strength, single- and dual-task static balance, and body composition were measured before and after the intervention programs. Significant group×time interactions and main effects of time (p<0.05) were found for body composition, balance ability in standard and dual-task conditions, all trunk muscle strength variables, and leg power in favor of the Huber group. The observed improvements in balance ability under both standard and dual-task conditions in the Huber group were mainly the result of enhanced postural control in medial-lateral direction (p<0.05). Feedback-based balance and core resistance training proved to be more effective in improving single- and dual-task balance ability, trunk muscle strength, leg power, and body composition of healthy older women than the traditional Pilates training. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Negahban, Hossein; Aryan, Najmolhoda; Mazaheri, Masood; Norasteh, Ali Asghar; Sanjari, Mohammad Ali
2013-06-01
It was hypothesized that training in 'static balance' or 'dynamic balance' sports has differential effects on postural control and its attention demands during quiet standing. In order to test this hypothesis, two groups of female athletes practicing shooting, as a 'static balance' sport, and Taekwondo, as a 'dynamic balance' sport, and a control group of non-physically active females voluntarily participated in this study. Postural control was assessed during bipedal and unipedal stance with and without performing a Go/No-go reaction time task. Visual and/or support surface conditions were manipulated in bipedal and unipedal stances in order to modify postural difficulty. Mixed model analysis of variance was used to determine the effects of dual tasking on postural and cognitive performance. Similar pattern of results were found in bipedal and unipedal stances, with Taekwondo practitioners displaying larger sway, shooters displaying lower sway and non-athletes displaying sway characteristics intermediate to Taekwondo and shooting athletes. Larger effect was found in bipedal stance. Single to dual-task comparison of postural control showed no significant effect of mental task on sway velocity in shooters, indicating less cognitive effort invested in balance control during bipedal stance. We suggest that expertise in shooting has a more pronounced effect on decreased sway in static balance conditions. Furthermore, shooters invest less attention in postures that are more specific to their training, i.e. bipedal stance. Copyright © 2012 Elsevier B.V. All rights reserved.
Hakim, Renée M; Davies, Lauren; Jaworski, Kate; Tufano, Nina; Unterstein, Allison
2012-04-01
A systematic review by Barclay-Goddard et al (2004) reported that force platform feedback improved stance symmetry but not sway, clinical balance outcomes, or measures of independence in adults with stroke. However, the role of computerized dynamic posturography (CDP) systems was not explored. The purpose of this case report was to describe a CDP training program to improve balance and reduce fall risk in a patient with a diagnosis of chronic stroke. A 61-year-old patient 8 years poststroke participated in 1 hour of CDP training, three times a week over a period of 6 weeks. Examination was conducted before and after intervention using the Sensory Organization Test (SOT), Limits of Stability (LOS) test, and Weight Bearing/Squat Symmetry test on a CDP system, and clinical testing with the Berg Balance Scale (BBS), Timed Up and Go (TUG), Activities-specific Balance Confidence (ABC) scale, 30-second Chair Stand (CS), and range of motion of the ankle joints. The patient improved in sensory integration abilities on the SOT for conditions 4, 5, and 6, and maximum excursion abilities improved by a range of 23-103% on the LOS test. Scores on the BBS increased from 37/56 to 47/56, which indicated reduced fall risk and her ABC score improved from 50% to 70%. Ankle ROM improved bilaterally by 6 to 8 degrees. This CDP training program showed promise as a systematic, objective method to reduce fall risk with improved overground performance of balance tasks in an individual with chronic stroke.
Objective Biomarkers of Balance and Gait for Parkinson’s Disease using Body-worn Sensors
Horak, Fay B; Mancini, Martina
2014-01-01
Balance and gait impairments characterize progression of Parkinson’s disease (PD), predict fall risk, and are important contributors to reduced quality of life. Advances in technology of small, body-worn inertial sensors have made it possible to develop quick, objective measures of balance and gait impairments in the clinic for research trials and clinical practice. Objective balance and gait metrics may eventually provide useful biomarkers for PD. In fact, objective balance and gait measures are already being used as surrogate end-points for demonstrating clinical efficacy of new treatments, in place of counting falls from diaries, using stop-watch measures of gait speed, or clinical balance rating scales. This review summarizes the types of objective measures available from body-worn sensors. We organize the metrics based on the neural control system for mobility affected by PD: postural stability in stance, postural responses, gait initiation, gait (temporal-spatial lower and upper body coordination and dynamic equilibrium), postural transitions, and freezing of gait. However, the explosion of metrics derived by wearable sensors during prescribed balance and gait tasks that are abnormal in people with PD do not yet qualify as behavioral biomarkers because many balance and gait impairments observed in PD are not specific to the disease, nor shown to be related to specific pathophysiologic biomarkers. In the future, the most useful balance and gait biomarkers for PD will be those that are sensitive and specific for early PD and related to the underlying disease process. PMID:24132842
A clinical measure of maximal and rapid stepping in older women.
Medell, J L; Alexander, N B
2000-08-01
In older adults, clinical measures have been used to assess fall risk based on the ability to maintain stance or to complete a functional task. However, in an impending fall situation, a stepping response is often used when strategies to maintain stance are inadequate. We examined how maximal and rapid stepping performance might differ among healthy young, healthy older, and balance-impaired older adults, and how this stepping performance related to other measures of balance and fall risk. Young (Y; n = 12; mean age, 21 years), unimpaired older (UO; n = 12; mean age, 69 years), and balance-impaired older women IO; n = 10; mean age, 77 years) were tested in their ability to take a maximal step (Maximum Step Length or MSL) and in their ability to take rapid steps in three directions (front, side, and back), termed the Rapid Step Test (RST). Time to complete the RST and stepping errors occurring during the RST were noted. The IO group, compared with the Y and UO groups, demonstrated significantly poorer balance and higher fall risk, based on performance on tasks such as unipedal stance. Mean MSL was significantly higher (by 16%) in the Y than in the UO group and in the UO (by 30%) than in the IO group. Mean RST time was significantly faster in the Y group versus the UO group (by 24%) and in the UO group versus the IO group (by 15%). Mean RST errors tended to be higher in the UO than in the Y group, but were significantly higher only in the UO versus the IO group. Both MSL and RST time correlated strongly (0.5 to 0.8) with other measures of balance and fall risk including unipedal stance, tandem walk, leg strength, and the Activities-Specific Balance Confidence (ABC) scale. We found substantial declines in the ability of both unimpaired and balance-impaired older adults to step maximally and to step rapidly. Stepping performance is closely related to other measures of balance and fall risk and might be considered in future studies as a predictor of falls and fall-related injuries.
de Andrade, Larissa P; Gobbi, Lilian T B; Coelho, Flávia G M; Christofoletti, Gustavo; Costa, José L Riani; Stella, Florindo
2013-11-01
To verify the effects of a systematized multimodal exercise intervention program on frontal cognitive function, postural control, and functional capacity components of individuals with Alzheimer's disease (AD). Nonrandomized controlled trial with pre- and posttraining tests in a training group and a control group. Kinesiotherapy program for seniors with AD, São Paulo State University. Convenience sample of older adults with AD (n = 30) were assigned to a training (n = 14; aged 78.6 ± 7.1) and a control (n = 16; aged 77.0 ± 6.3) group. The intervention program was structured with the aim of simultaneously promoting better balance and frontal cognitive capacity. The participants attended a 1-hour session three times a week for 16 weeks, whereas the control group did not participate in any activity during the same period. Frontal cognitive function was evaluated using the Montreal Cognitive Assessment, the Clock Drawing Test, the Frontal Assessment Battery, and the Symbol Search Subtest. Postural control (center of pressure area) was analyzed under four dual-task conditions. Functional capacity components were analyzed using the Timed Up and Go Test, the 30-second sit-to-stand test, the sit-and-reach test, and the Berg Functional Balance Scale. Intervention group participants showed a significant increase in frontal cognitive function (P < .001, partial η(2) = 0.838), with less body sway (P = .04, partial η(2) = 0.04) during the dual tasks, and greater functional capacity (P = .001, partial η(2) = 0.676) after the 16-week period. Intervention participants performed better on dual-task activities and had better postural balance and greater functional capacity than controls. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.
Downs, Stephen; Marquez, Jodie; Chiarelli, Pauline
2014-06-01
What is the mean Berg Balance Scale score of healthy elderly people living in the community and how does it vary with age? How much variability in Berg Balance Scale scores is present in groups of healthy elderly people and how does this vary with age? Systematic review with meta-analysis. Any group of healthy community-dwelling people with a mean age of 70 years or greater that has undergone assessment using the Berg Balance Scale. Mean and standard deviations of Berg Balance Scale scores within cohorts of elderly people of known mean age. The search yielded 17 relevant studies contributing data from a total of 1363 participants. The mean Berg Balance Scale scores ranged from 37 to 55 out of a possible maximum score of 56. The standard deviation of Berg Balance Scale scores varied from 1.0 to 9.2. Although participants aged around 70 years had very close to normal Berg Balance Scale scores, there was a significant decline in balance with age at a rate of 0.7 points on the 56-point Berg Balance Scale per year. There was also a strong association between increasing age and increasing variability in balance (R(2) = 0.56, p < 0.001). Healthy community-dwelling elderly people have modest balance deficits, as measured by the Berg Balance Scale, although balance scores deteriorate and become more variable with age. Copyright © 2014. Published by Elsevier B.V.
The relationship between balance confidence and control in individuals with Parkinson's disease
Lee, Hyo Keun; Altman, Lori J.P.; McFarland, Nikolaus; Hass, Chris J.
2016-01-01
Introduction A broad range of subjective and objective assessments have been used to assess balance confidence and balance control in persons with Parkinson's disease (PD). However, little is known about the relationship between self-perceived balance confidence and actual balance control in PD. The purpose of this investigation was to determine the relationship between self-perceived balance confidence and objectively measured static/dynamic balance control abilities. Methods Forty-four individuals with PD participated in the study. Patients were stratified into 2 groups based on the modified Hoehn and Yahr (H&Y) disability score: early stage, H&Y≤2.0 and moderate stage, H&Y ≥2.5. All participants completed the activities-specific balance confidence (ABC) scale and performed standing balance and gait initiation tasks to assess static and dynamic balance control. The center of pressure (COP) sway (CE95%Sway) during static balance and the peak distance between the projections of the COP and the center of mass (COM) in the transverse plane (COPCOM) during gait initiation were calculated. Pearson correlation analyses were conducted relating the ABC score and CE95%Sway and COPCOM. Results For early stage PD, there was a moderate correlation between ABC score and CE95 %Sway (r=-0.56, R2=0.32, p=0.002), while no significant correlation was found between ABC score and COPCOM (r=-0.24, R2=0.06, p=0.227). For moderate stage PD, there was a moderate correlation between ABC score and COPCOM (r=0.49, R2=0.24, p=0.044), while no correlation was found between ABC score and CE95%Sway (r=-0.19, R2=0.04, p=0.478). Conclusion Individuals with different disease severities showed different relationships between balance confidence and actual static/dynamic balance control. PMID:26949065
Downs, Stephen; Marquez, Jodie; Chiarelli, Pauline
2013-06-01
What is the intra-rater and inter-rater relative reliability of the Berg Balance Scale? What is the absolute reliability of the Berg Balance Scale? Does the absolute reliability of the Berg Balance Scale vary across the scale? Systematic review with meta-analysis of reliability studies. Any clinical population that has undergone assessment with the Berg Balance Scale. Relative intra-rater reliability, relative inter-rater reliability, and absolute reliability. Eleven studies involving 668 participants were included in the review. The relative intrarater reliability of the Berg Balance Scale was high, with a pooled estimate of 0.98 (95% CI 0.97 to 0.99). Relative inter-rater reliability was also high, with a pooled estimate of 0.97 (95% CI 0.96 to 0.98). A ceiling effect of the Berg Balance Scale was evident for some participants. In the analysis of absolute reliability, all of the relevant studies had an average score of 20 or above on the 0 to 56 point Berg Balance Scale. The absolute reliability across this part of the scale, as measured by the minimal detectable change with 95% confidence, varied between 2.8 points and 6.6 points. The Berg Balance Scale has a higher absolute reliability when close to 56 points due to the ceiling effect. We identified no data that estimated the absolute reliability of the Berg Balance Scale among participants with a mean score below 20 out of 56. The Berg Balance Scale has acceptable reliability, although it might not detect modest, clinically important changes in balance in individual subjects. The review was only able to comment on the absolute reliability of the Berg Balance Scale among people with moderately poor to normal balance. Copyright © 2013 Australian Physiotherapy Association. Published by .. All rights reserved.
Kamiyama, Akikazu; Fujita, Kazuhisa; Kashimori, Yoshiki
2016-12-01
Visual recognition involves bidirectional information flow, which consists of bottom-up information coding from retina and top-down information coding from higher visual areas. Recent studies have demonstrated the involvement of early visual areas such as primary visual area (V1) in recognition and memory formation. V1 neurons are not passive transformers of sensory inputs but work as adaptive processor, changing their function according to behavioral context. Top-down signals affect tuning property of V1 neurons and contribute to the gating of sensory information relevant to behavior. However, little is known about the neuronal mechanism underlying the gating of task-relevant information in V1. To address this issue, we focus on task-dependent tuning modulations of V1 neurons in two tasks of perceptual learning. We develop a model of the V1, which receives feedforward input from lateral geniculate nucleus and top-down input from a higher visual area. We show here that the change in a balance between excitation and inhibition in V1 connectivity is necessary for gating task-relevant information in V1. The balance change well accounts for the modulations of tuning characteristic and temporal properties of V1 neuronal responses. We also show that the balance change of V1 connectivity is shaped by top-down signals with temporal correlations reflecting the perceptual strategies of the two tasks. We propose a learning mechanism by which synaptic balance is modulated. To conclude, top-down signal changes the synaptic balance between excitation and inhibition in V1 connectivity, enabling early visual area such as V1 to gate context-dependent information under multiple task performances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2016-10-01
In the article The use of gaming technology for rehabilitation in people with multiple sclerosis, DOI: 10.1177/1352458514563593, published in Multiple Sclerosis Volume 21 Issue 4, Table 1 was printed incorrectly. The corrected Table 1 is below:spmsj;22/12/NP9/TABLE11352458515585718T1table1-1352458515585718Table 1.Exergaming studies.Ref.PlatformParticipants and interventionOutcomesPlow and Finlayson 31 WiiPre-test vs. post-test repeated measures home-based Wii training. N=30, age 43.2 ± 9.3 years, 9 ± 6.8 years since diagnosis. 3 x per week programme consisting of yoga, balance, strength, and aerobic training in each session. Wii playing minutes ranged from 10-30 minutes based on participants' RPE when playing the "Basic Run" game. No therapist monitored training in the home. Participants were telephoned every other week (a total of four times) for the first seven weeks after receiving Wii-Fit to monitor adverse events and to encourage increases in the duration or frequency of using Wii-Fit. By the end of the seven weeks, all participants were encouraged to play Wii-Fit three to five times a week for 20 to 30 mins.TUG/TUG dual task; Maximum number of push-ups; timed number of sit-ups in 60s; Maximum number of steps in three mins onto a six-inch platform; Single/double leg balance with eyes open/closed on a soft/firm surface; Physical Activity and Disability Survey; SF-36; MFIS; The barrier self-efficacy scale.Improvements pre- vs. post-test: Number of steps and push-ups; Eyes/open closed, single leg balance on firm surface.Post-test vs. follow-up (14 weeks): measures returned to baseline.Kalron et al. 29 WiiPilot intervention. No control group. N=32, age 43.6 ± 1.9 years, 6.9 ± 0.8 years since diagnosis, EDSS 3.1 ± 0.2. Wii Tennis played for one session of 30 mins (3x10 mins).FRT and FSST taken pre- and post-intervention. FRT and FSST both significantly improved by 9.1% and 17.5% respectively.Prosperini et al. 28 WiiRandomized Crossover Trial - Home-Based. N=36, age 36.2 ± 8.6 years, 10.7 ± 5.8 years since diagnosis, and median EDSS of 3.5 (1.5-5.0). Wii group - 12-week duration, daily sessions (with the exception of the weekend) of home-based training with the Wii Balance Board, each lasting 30 mins. No intervention group - 12 weeks of no intervention. They then swapped to the Wii group after 12 weeks and the Wii group had no intervention for 12 weeks. Contact with physiotherapists every four weeks and phone contact once per week.CoP path, Four Square Step, 25-FWT, MSIS-29. Significant improvements for time × treatment interaction for all measures.Plow and Finlayson 35 WiiA repeated measures longitudinal design with a baseline control period. See Plow and Finlayson 31 Intervention: All participants were prescribed a three-times-a-week exercise programme - see Plow and Finalyson. 31 Semi-structured interviews conducted over the phone before and after the 14-week Wii-Fit programme. Examined the usability of Nintendo Wii-Fit and identified reasons for using or not using Wii-Fit on; a regular basis.Nilsagard et al. 25 WiiA multicentre RCT with random (1:1) allocation to exercise group or non-exercise group. Wii group: participants N=42, age 50.0 ± 11.5 years, 12.5 ± 8.0 years since. Individual physiotherapist-supervised sessions of 30 mins of balance exercise using Wii-Fit Plus twice a week for six to seven weeks, a total of 12 sessions. Non-exercise group: participants N=42, age 49.4 ± 11.1 years, 12.2 ± 9.2 years since diagnosis. This group was invited to start exercising using Wii-Fit Plus after the second data collection.TUG; TUG dual task; Four Square Step; Timed Chair Stands; 25-FWT; Dynamic Gait Index; ABC; MSWS-12. Improvements in Wii Group pre- vs. post-test: TUG dual task, Four Square Step, Timed Chair Stands, Dynamic Gait Index.Improvements in Non-exercise group pre- vs. post-test: Dynamic Gait Index.Wii vs. non-exercise at follow-up: No significant difference.Guidi et al. 27 WiiSingle-blind, RCT. Aged between 25-65 years, at least three years since diagnosis, EDSS score 0-3.5. Wii group (N=9) played Physiofun Balance Training - Physio Mode. Sessions 10x45-mins, twice a week for five weeks. Non-exercise group (N=8) received advice about strategies for behaviour and environment aimed at reducing falls.BBS significantly improved for Wii Group vs. Non-exercise group.Brichetto et al. 26 WiiRCT: Wii vs. traditional rehabilitation strategies. Twelve sessions (three 60-minute sessions/week) of intervention. Wii group: participants N=18, age 40.7 ± 11.5 years, years since diagnosis 11.2 ± 6.4 years, mean EDSS 3.9 ± 1.6. One hour of supervised Wii Balance Board sessions. participants N=18, age 43.2 ± 10.6 years, years since diagnosis 12.3 ± 7.2 years, mean EDSS 4.3 ± 1.6. Exercises consisted of static and dynamic exercises in both single leg and double leg stance, with or without an equilibrium board and half-kneeling exercises of increasing difficulty.BBS and MFIS. Postural assessment was quantified with a stabilometric platform (quiet standing, barefoot with open/closed eyes). No significant differences between the groups at baseline. Significant improvements in outcomes for both modes at post-test. A significant group × time interaction, revealing a more marked improvement for BBS score, open/closed-eye stabilometry in the Wii group compared to the control group.Ortiz-Gutiérrez, et al. 32 KinectXbox-group: participants N=24, age 39.7 ± 8.1 years, years since diagnosis 9.7 ± 6.8. 40 sessions - four sessions per week (20 mins per session) for 10 weeks. Individual Tele-Rehabilitation treatments using commercial games. Sessions were monitored via videoconference. participants N=23, age 42.8 ± 7.4 years, years since diagnosis 10.9 ± 5.4. Physiotherapy treatment twice a week (40 mins per session) at a clinic for 10 weeks. Low-load strength exercises, proprioception exercises on unstable surfaces, gait facilitation exercises, and muscle-tendon stretching.Computerized dynamic posturography and SOT. Improvement of general balance in both groups. Visual preference and the contribution of vestibular information, via SOT, yielded significant differences in the exercise group.Kramer et al. 34 WiiMatched controlled trial (3 groups). Three weeks, nine supervised training sessions lasting 30 mins each. N=23, age 42.8 ± 7.4 years, years since diagnosis 10.9 ± 5.4. Conventional balance training (control) group: Consisted of various exercises on the floor. Exergame training (playing exergames on an unstable platform) group: Wii Sports/Sports Resort/Fit games that require arm movements (tennis, table tennis, boxing, archery, and sword fight) or displacements of the whole body to control the game avatar (ski slalom, balance bubble, penguin picnic, soccer heading, tilt city, and perfect ten). Table tennis, tennis, and tilt city were the preferred games. Single task (ST) exercises on the unstable platform group.Pre- and post-testing. Combination of single and dual tasks. Six static balance tests: four balance tests on an unstable surface, and two gait analyses (normal and dual task). All groups significantly improved balance and gait measures. The exergame training group showed significantly higher improvements in the gait dual task condition compared to the single task condition. Adherence to home-based balance training was highest in the exergame group.Goble et al. 24 WiiCase study. N=1, 28 year old Male. Relapsing-remitting MS since age 11. EDSS 5.0. Six-week balance training, 3x30 mins per week. Wii-Fit games (yoga, table-tilt, penguin slide, ski jump and bubble balance).20s double leg standing. CoP path length (body sway). Participant relapsed after five weeks training. Follow-up measure taken post-relapse (two months). Over first two weeks 12% decrease in body sway from baseline. 22% increase in body sway over the next two weeks despite training. Relapse occurred week five. Balance impairment remained upon remittance (follow-up) when compared to week two.Forsberg et al. 33 WiiParticipants: N=15, median age 55 years, median time since diagnosis 13 years. See Nilsagard et al. 25 Qualitative research approach. Interviewed (15-45 mins) within two weeks after the end of the intervention period. Interview covered reflections on using Wii-Fit for exercising. Patients considered Wii-Fit exercises to be fun, challenging, and self-motivating.*Thomas et al. 24 WiiPublished trial methodology multicentre definitive RCT to assess the clinical and cost-effectiveness of a home-based physiotherapist-supported Wii intervention. Immediate arm (N=15): Wii training for 12 months. Delayed arm (N=15): Wii training after six months. Comparison between first six months of immediate arm vs. six months of no training in delayed group, and then 12 months of Wii training in immediate group vs. six months Wii training in delayed group.Balance, gait and mobility: Two-minute walk test, Step test, Steady stance test, Instrumented TUG, Gait stride-time rhythmicity, Static posturography.Physical activity: GLTEQ, ActivPAL.Hand dexterity/coordination: Nine-hole peg test.Self-efficacy: SCI-ESES, MSSE.Psychological well-being and QoL: HADS, EQ-5D-5L, MSIS-29, FSI, SF-36v2. Adherence to training.*published trial methodology25-FWT: 25 Foot Walk Time; ABC: Activities-specific Balance Confidence; AI: Ambulation Index; BBS: Berg Balance Score; CoP: Centre of Pressure; EDSS: Expanded Disability Status Scale; EQ-5D-5L: EuroQual 5 Dimensions-5 Levels; FRT: Functional Reach Test; FSI: Fatigue Symptom Inventory; FSST: Four Square Step Test; GLTEQ: Godin Leisure-Time Exercise Questionnaire; HADS: Hospital Anxiety and Depression Scale; MFIS: Modified Fatigue Impact Scale; MMSE: Mini-Mental State Examination; MS: Multiple Sclerosis; MSIS-29: Multiple Sclerosis Impact Scale; MSSE: Multiple Sclerosis Self-Efficacy Scale; MSWS-12: MS Walking Scale; QoL: Quality of Life; RCT: Randomized Control Trial; RPE: Ratings of Perceived Exertion; SCI-ESES: Spinal Cord Injury Exercise Self-Efficacy Scale; SF-36: Short-Form Health Survey; SOT: Sensory Organization Test; TUG: Timed-Up-and-Go. © The Author(s), 2015.
Solvers for $$\\mathcal{O} (N)$$ Electronic Structure in the Strong Scaling Limit
Bock, Nicolas; Challacombe, William M.; Kale, Laxmikant
2016-01-26
Here we present a hybrid OpenMP/Charm\\tt++ framework for solving themore » $$\\mathcal{O} (N)$$ self-consistent-field eigenvalue problem with parallelism in the strong scaling regime, $$P\\gg{N}$$, where $P$ is the number of cores, and $N$ is a measure of system size, i.e., the number of matrix rows/columns, basis functions, atoms, molecules, etc. This result is achieved with a nested approach to spectral projection and the sparse approximate matrix multiply [Bock and Challacombe, SIAM J. Sci. Comput., 35 (2013), pp. C72--C98], and involves a recursive, task-parallel algorithm, often employed by generalized $N$-Body solvers, to occlusion and culling of negligible products in the case of matrices with decay. Lastly, employing classic technologies associated with generalized $N$-Body solvers, including overdecomposition, recursive task parallelism, orderings that preserve locality, and persistence-based load balancing, we obtain scaling beyond hundreds of cores per molecule for small water clusters ([H$${}_2$$O]$${}_N$$, $$N \\in \\{ 30, 90, 150 \\}$$, $$P/N \\approx \\{ 819, 273, 164 \\}$$) and find support for an increasingly strong scalability with increasing system size $N$.« less
Return to activity after concussion affects dual-task gait balance control recovery.
Howell, David R; Osternig, Louis R; Chou, Li-Shan
2015-04-01
Recent work has identified deficits in dual-task gait balance control for up to 2 months after adolescent concussion; however, how resumption of preinjury physical activities affects recovery is unknown. The objective of this study is to examine how return to activity (RTA) affects recovery from concussion on measures of symptom severity, cognition, and balance control during single-task and dual-task walking. Nineteen adolescents with concussion who returned to preinjury activity within 2 months after injury and 19 uninjured, matched controls completed symptom inventories, computerized cognitive testing, and single-task and dual-task gait analyses. Concussion participants were assessed at five time points: within 72 h, 1 wk, 2 wk, 1 month, and 2 months postinjury. Control participants were assessed at the same time points as their matched concussion counterparts. RTA day was documented as the postinjury day in which physical activity participation was allowed. The effect of returning to physical activity was assessed by examining the percent change on each dependent variable across time before and directly after the RTA. Data were analyzed by two-way mixed effects ANOVAs. After the RTA day, concussion participants significantly increased their total center-of-mass medial/lateral displacement (P = 0.009, ηp = .175) and peak velocity (P = 0.048, ηp = 0.104) during dual-task walking when compared with pre-RTA data, whereas no changes for the concussion group or between groups were detected on measures of single-task walking, forward movement, or cognition. Adolescents with concussion displayed increased center-of-mass medial/lateral displacement and velocity during dual-task walking after RTA, suggesting a regression of recovery in gait balance control. This study reinforces the need for a multifaceted approach to concussion management and continued monitoring beyond the point of clinical recovery.
Toosizadeh, Nima; Lei, Hong; Schwenk, Michael; Sherman, Scott J.; Esternberg, Esther; Mohler, Jane; Najafi, Bijan
2014-01-01
Background Postural balance and potentially fall risk increases among older adults living with neurological diseases, especially Parkinson's disease (PD). Since conventional therapies, such as levodopa or deep brain stimulation may fail to alleviate or may even worsen balance, interest is growing in evaluating alternative PD therapies. Objective The purpose of the current study was to assess improvement in postural balance in PD patients following electro-acupuncture (EA), as an alternative therapy. Methods Fifteen aging adults (70.2 ± 7.3 years) with idiopathic PD and 44 healthy age- matched participants (74.6 ± 6.5 years) were recruited. PD participants were randomly assigned (with a ratio of 2 to 1) to an intervention (n=10) or to a control group (n=5). The intervention group received a 30-minute EA treatment on a weekly basis for three weeks, while the control group received a sham treatment. Outcomes were assessed at baseline and after the final therapy. Measurements included balance assessment, specifically ratio of medial-lateral (ML) center of gravity (COG) sway to anterior-posterior (AP) sway (COGML/AP) and ankle-to-hip sway during eyes-open, eyes-closed, and eyes-open dual-tasks trials, Unified Parkinson's Disease Rating Scale (UPDRS), and quality of life, concerns for fall, and pain questionnaires. Results No difference was observed for assessed parameters between intervention and control groups in baseline. After treatment, improvement in balance performance was observed in the intervention group. Compared with a healthy population, PD patients prior to treatment had larger COGML/AP sway with more dependency on upper-body movements for maintaining balance. Following EA therapy, COGML/AP sway reduced by 31% and Ankle/Hip sway increased by 46% among different conditions (p = 0.02 for dual-task condition). The clinical rating revealed an overall improvement (p < 0.01) in the activity of daily living (UPDRS part II, 46%) and motor examination (UPDRS part III, 40%). There was significant reduction (p < 0.02) in the specific items regarding UPDRS fall status (67%), and rigidity (48%). Changes were small and non-significant in the controls (p > 0.29). Conclusions This pilot study demonstrated improvement in rigidity and balance following EA. These preliminary results suggest EA could be a promising alternative treatment for balance disturbance in PD. PMID:25341431
Capturing the essence of a metabolic network: a flux balance analysis approach.
Murabito, Ettore; Simeonidis, Evangelos; Smallbone, Kieran; Swinton, Jonathan
2009-10-07
As genome-scale metabolic reconstructions emerge, tools to manage their size and complexity will be increasingly important. Flux balance analysis (FBA) is a constraint-based approach widely used to study the metabolic capabilities of cellular or subcellular systems. FBA problems are highly underdetermined and many different phenotypes can satisfy any set of constraints through which the metabolic system is represented. Two of the main concerns in FBA are exploring the space of solutions for a given metabolic network and finding a specific phenotype which is representative for a given task such as maximal growth rate. Here, we introduce a recursive algorithm suitable for overcoming both of these concerns. The method proposed is able to find the alternate optimal patterns of active reactions of an FBA problem and identify the minimal subnetwork able to perform a specific task as optimally as the whole. Our method represents an alternative to and an extension of other approaches conceived for exploring the space of solutions of an FBA problem. It may also be particularly helpful in defining a scaffold of reactions upon which to build up a dynamic model, when the important pathways of the system have not yet been well-defined.
Tisher, Kristen; Mann, Kimberly; VanDyke, Sarah; Johansson, Charity; Vallabhajosula, Srikant
2018-03-05
Supervised balance training shows immediate benefit for older adults at fall risk. The long-term effectiveness of such training can be enhanced by implementing a safe and simple home exercise program (HEP). We investigated the effects of a12-week unsupervised HEP following supervised clinic-based balance training on functional mobility, balance, fall risk, and gait. Six older adults with an elevated fall risk obtained an HEP and comprised the HEP group (HEPG) and five older adults who were not given an HEP comprised the no HEP group (NoHEPG). The HEP consisted of three static balance exercises: feet-together, single-leg stance, and tandem. Each exercise was to be performed twice for 30-60 s, once per day, 3 days per week for 12 weeks. Participants were educated on proper form, safety, and progression of exercises. Pre- and post-HEP testing included Berg Balance Scale (BBS), Timed Up and Go, Short Physical Performance Battery (SPPB) assessments, Activities-Balance Confidence, Late-Life Functional Disability Instrument and instrumented assessments of balance and gait (Limits of Stability, modified Clinical Test of Sensory Interaction on Balance, Gait). A healthy control group (HCG; n = 11) was also tested. For most of the measures, the HEPG improved to the level of HCG. Though task-specific improvements like BBS and SPPB components were seen, the results did not carry over to more dynamic assessments. Results provide proof of concept that a simple HEP can be independently implemented and effective for sustaining and/or improving balance in older adults at elevated fall-risk after they have undergone a clinic-based balance intervention.
Quantitative falls risk estimation through multi-sensor assessment of standing balance.
Greene, Barry R; McGrath, Denise; Walsh, Lorcan; Doheny, Emer P; McKeown, David; Garattini, Chiara; Cunningham, Clodagh; Crosby, Lisa; Caulfield, Brian; Kenny, Rose A
2012-12-01
Falls are the most common cause of injury and hospitalization and one of the principal causes of death and disability in older adults worldwide. Measures of postural stability have been associated with the incidence of falls in older adults. The aim of this study was to develop a model that accurately classifies fallers and non-fallers using novel multi-sensor quantitative balance metrics that can be easily deployed into a home or clinic setting. We compared the classification accuracy of our model with an established method for falls risk assessment, the Berg balance scale. Data were acquired using two sensor modalities--a pressure sensitive platform sensor and a body-worn inertial sensor, mounted on the lower back--from 120 community dwelling older adults (65 with a history of falls, 55 without, mean age 73.7 ± 5.8 years, 63 female) while performing a number of standing balance tasks in a geriatric research clinic. Results obtained using a support vector machine yielded a mean classification accuracy of 71.52% (95% CI: 68.82-74.28) in classifying falls history, obtained using one model classifying all data points. Considering male and female participant data separately yielded classification accuracies of 72.80% (95% CI: 68.85-77.17) and 73.33% (95% CI: 69.88-76.81) respectively, leading to a mean classification accuracy of 73.07% in identifying participants with a history of falls. Results compare favourably to those obtained using the Berg balance scale (mean classification accuracy: 59.42% (95% CI: 56.96-61.88)). Results from the present study could lead to a robust method for assessing falls risk in both supervised and unsupervised environments.
Batista, Wagner Oliveira; Alves Junior, Edmundo de Drummond; Porto, Flávia; Pereira, Fabio Dutra; Santana, Rosimere Ferreira; Gurgel, Jonas Lírio
2014-01-01
to ascertain the influence of the length of institutionalization on older adults' balance and risk of falls. to evaluate the risk of falls, the Berg Balance Scale and the Timed Get Up and Go test were used; and for measuring postural balance, static stabilometry was used, with acquisition of the elliptical area of 95% and mean velocities on the x and y axes of center of pressure displacement. Parametric and nonparametric measures of association and comparison (α<0.05) were used. there was no significant correlation between the length of institutionalization and the tests for evaluation of risk of falling, neither was there difference between groups and within subgroups, stratified by length of institutionalization and age. In the stabilometric measurements, there was a negative correlation between the parameters analyzed and the length of institutionalization, and difference between groups and within subgroups. this study's results point to the difficulty of undertaking postural control tasks, showing a leveling below the clinical tests' reference scores. In the stabilometric behavior, one should note the reduction of the parameters as the length of institutionalization increases, contradicting the assumptions. This study's results offer support for the development of a multi-professional model for intervention with the postural control and balance of older adults living in homes for the aged.
Migration impact on load balancing - an experience on Amoeba
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, W.; Socko, P.
1996-12-31
Load balancing has been extensive study by simulation, positive results were received in most of the researches. With the increase of the availability oftlistributed systems, a few experiments have been carried out on different systems. These experimental studies either depend on task initiation or task initiation plus task migration. In this paper, we present the results of an 0 study of load balancing using a centralizedpolicy to manage the load on a set of processors, which was carried out on an Amoeba system which consists of a set of 386s and linked by 10 Mbps Ethernet. The results on onemore » hand indicate the necessity of a load balancing facility for a distributed system. On the other hand, the results question the impact of using process migration to increase system performance under the configuration used in our experiments.« less
Analysis of tasks for dynamic man/machine load balancing in advanced helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgensen, C.C.
1987-10-01
This report considers task allocation requirements imposed by advanced helicopter designs incorporating mixes of human pilots and intelligent machines. Specifically, it develops an analogy between load balancing using distributed non-homogeneous multiprocessors and human team functions. A taxonomy is presented which can be used to identify task combinations likely to cause overload for dynamic scheduling and process allocation mechanisms. Designer criteria are given for function decomposition, separation of control from data, and communication handling for dynamic tasks. Possible effects of n-p complete scheduling problems are noted and a class of combinatorial optimization methods are examined.
Kaminski, Elisabeth; Hoff, Maike; Rjosk, Viola; Steele, Christopher J.; Gundlach, Christopher; Sehm, Bernhard; Villringer, Arno; Ragert, Patrick
2017-01-01
Older adults frequently experience a decrease in balance control that leads to increased numbers of falls, injuries and hospitalization. Therefore, evaluating older adults’ ability to maintain balance and examining new approaches to counteract age-related decline in balance control is of great importance for fall prevention and healthy aging. Non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) have been shown to beneficially influence motor behavior and motor learning. In the present study, we investigated the influence of tDCS applied over the leg area of the primary motor cortex (M1) on balance task learning of healthy elderly in a dynamic balance task (DBT). In total, 30 older adults were enrolled in a cross-sectional, randomized design including two consecutive DBT training sessions. Only during the first DBT session, either 20 min of anodal tDCS (a-tDCS) or sham tDCS (s-tDCS) were applied and learning improvement was compared between the two groups. Our data showed that both groups successfully learned to perform the DBT on both training sessions. Interestingly, between-group analyses revealed no difference between the a-tDCS and the s-tDCS group regarding their level of task learning. These results indicate that the concurrent application of tDCS over M1 leg area did not elicit DBT learning enhancement in our study cohort. However, a regression analysis revealed that DBT performance can be predicted by the kinematic profile of the movement, a finding that may provide new insights for individualized approaches of treating balance and gait disorders. PMID:28197085
Kaminski, Elisabeth; Hoff, Maike; Rjosk, Viola; Steele, Christopher J; Gundlach, Christopher; Sehm, Bernhard; Villringer, Arno; Ragert, Patrick
2017-01-01
Older adults frequently experience a decrease in balance control that leads to increased numbers of falls, injuries and hospitalization. Therefore, evaluating older adults' ability to maintain balance and examining new approaches to counteract age-related decline in balance control is of great importance for fall prevention and healthy aging. Non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) have been shown to beneficially influence motor behavior and motor learning. In the present study, we investigated the influence of tDCS applied over the leg area of the primary motor cortex (M1) on balance task learning of healthy elderly in a dynamic balance task (DBT). In total, 30 older adults were enrolled in a cross-sectional, randomized design including two consecutive DBT training sessions. Only during the first DBT session, either 20 min of anodal tDCS (a-tDCS) or sham tDCS (s-tDCS) were applied and learning improvement was compared between the two groups. Our data showed that both groups successfully learned to perform the DBT on both training sessions. Interestingly, between-group analyses revealed no difference between the a-tDCS and the s-tDCS group regarding their level of task learning. These results indicate that the concurrent application of tDCS over M1 leg area did not elicit DBT learning enhancement in our study cohort. However, a regression analysis revealed that DBT performance can be predicted by the kinematic profile of the movement, a finding that may provide new insights for individualized approaches of treating balance and gait disorders.
Yasuda, Kazuhiro; Kaibuki, Naomi; Harashima, Hiroaki; Iwata, Hiroyasu
2017-06-01
Impaired balance in patients with hemiparesis caused by stroke is frequently related to deficits in the central integration of afferent inputs, and traditional rehabilitation reinforces excessive visual reliance by focusing on visual compensation. The present study investigated whether a balance task involving a haptic biofeedback (BF) system, which provided supplementary vibrotactile sensory cues associated with center-of-foot-pressure displacement, improved postural control in patients with stroke. Seventeen stroke patients were assigned to two groups: the Vibrotactile BF and Control groups. During the balance task (i.e., standing on a foam mat), participants in the Vibrotactile BF group tried to stabilize their postural sway while wearing the BF system around the pelvic girdle. In the Control group, participants performed an identical postural task without the BF system. Pre- and post-test measurements of postural control using a force plate revealed that the stability of bipedal posture in the Vibrotactile BF group was markedly improved compared with that in the Control group. A balance task involving a vibrotactile BF system improved postural stability in patients with stroke immediately. This confirms the potential of a haptic-based BF system for balance training, both in routine clinical practice and in everyday life.
Unilateral Hearing Loss Is Associated With Impaired Balance in Children: A Pilot Study.
Wolter, Nikolaus E; Cushing, Sharon L; Vilchez-Madrigal, Luis D; James, Adrian L; Campos, Jennifer; Papsin, Blake C; Gordon, Karen A
2016-12-01
To determine if children with unilateral sensorineural hearing loss (UHL) demonstrate impaired balance compared with their normal hearing (NH) peers. Prospective, case-control study. Balance was assessed in14 UHL and 14 NH children using the Bruininks-Oseretsky Test-2 (BOT-2) and time to fall (TTF) in an immersive, virtual-reality laboratory. Postural control was quantified by center of pressure (COP) using force plates. The effect of vision on balance was assessed by comparing scores and COP characteristics on BOT-2 tasks performed with eyes open and closed. Balance ability as measured by the BOT-2 score was significantly worse in children with UHL compared with NH children (p = 0.004). TTF was shorter in children with UHL compared with NH children in the most difficult tasks when visual and somatosensory inputs were limited (p < 0.01). Visual input improved postural control (reduced COP variability) in both groups in all tasks (p < 0.05) but postural control as measured by COP variability was more affected in children with UHL when visual input was removed while performing moderately difficult tasks (i.e., standing on one foot) (p = 0.02). In this pilot study, children with UHL show poorer balance skills than NH children. Significant differences in TTF between the two groups were only seen in the most difficult tasks and therefore may be missed on routine clinical assessment. Children with UHL appear to rely more on vision for maintaining postural control than their NH peers. These findings may point to deficits not only in the hearing but also the vestibular portion of the inner ear.
Evaluation of the reliability and validity for X16 balance testing scale for the elderly.
Ju, Jingjuan; Jiang, Yu; Zhou, Peng; Li, Lin; Ye, Xiaolei; Wu, Hongmei; Shen, Bin; Zhang, Jialei; He, Xiaoding; Niu, Chunjin; Xia, Qinghua
2018-05-10
Balance performance is considered as an indicator of functional status in the elderly, a large scale population screening and evaluation in the community context followed by proper interventions would be of great significance at public health level. However, there has been no suitable balance testing scale available for large scale studies in the unique community context of urban China. A balance scale named X16 balance testing scale was developed, which was composed of 3 domains and 16 items. A total of 1985 functionally independent and active community-dwelling elderly adults' balance abilities were tested using the X16 scale. The internal consistency, split-half reliability, content validity, construct validity, discriminant validity of X16 balance testing scale were evaluated. Factor analysis was performed to identify alternative factor structure. The Eigenvalues of factors 1, 2, and 3 were 8.53, 1.79, and 1.21, respectively, and their cumulative contribution to the total variance reached 72.0%. These 3 factors mainly represented domains static balance, postural stability, and dynamic balance. The Cronbach alpha coefficient for the scale was 0.933. The Spearman correlation coefficients between items and its corresponding domains were ranged from 0.538 to 0.964. The correlation coefficients between each item and its corresponding domain were higher than the coefficients between this item and other domains. With the increase of age, the scores of balance performance, domains static balance, postural stability, and dynamic balance in the elderly declined gradually (P < 0.001). With the increase of age, the proportion of the elderly with intact balance performance decreased gradually (P < 0.001). The reliability and validity of the X16 balance testing scale is both adequate and acceptable. Due to its simple and quick use features, it is practical to be used repeatedly and routinely especially in community setting and on large scale screening.
Hegeman, Judith; Nienhuis, Bart; van den Bemt, Bart; Weerdesteyn, Vivian; van Limbeek, Jacques; Duysens, Jacques
2011-04-01
Accidental falls in older individuals are a major health and research topic. Increased reaction time and impaired postural balance have been determined as reliable predictors for those at risk of falling and are important functions of the central nervous system (CNS). An essential risk factor for falls is medication exposure. Amongst the medications related to accidental falls are the non-steroidal anti-inflammatory drugs (NSAIDs). About 1-10% of all users experience CNS side effects. These side effects, such as dizziness, headaches, drowsiness, mood alteration, and confusion, seem to be more common during treatment with indomethacin. Hence, it is possible that maintenance of (static) postural balance and swift reactions to stimuli are affected by exposure to NSAIDs, indomethacin in particular, consequently putting older individuals at a greater risk for accidental falls. The present study investigated the effect of a high indomethacin dose in healthy middle-aged individuals on two important predictors of falls: postural balance and reaction time. Twenty-two healthy middle-aged individuals (59.5 ± 4.7 years) participated in this double-blind, placebo-controlled, randomized crossover trial. Three measurements were conducted with a week interval each. A measurement consisted of postural balance as a single task and while concurrently performing a secondary cognitive task and reaction time tasks. For the first measurement indomethacin 75 mg (slow-release) or a visually identical placebo was randomly assigned. In total, five capsules were taken orally in the 2.5 days preceding assessment. The second measurement was without intervention, for the final one the first placebo group got indomethacin and vice versa. Repeated measures GLM revealed no significant differences between indomethacin, placebo, and baseline in any of the balance tasks. No differences in postural balance were found between the single and dual task conditions, or on the performance of the dual task itself. Similarly, no differences were found on the manual reaction time tasks. The present study showed that a high indomethacin dose does not negatively affect postural balance and manual reaction time in this healthy middle-aged population. Although the relatively small and young sample limits the direct ability to generalize the results to a population at risk of falling, the results indicate that indomethacin alone is not likely to increase fall risk, as far as this risk is related to above mentioned important functions of the CNS, and not affected by comorbidities. Copyright © 2010 Elsevier B.V. All rights reserved.
Khurana, Meetika; Walia, Shefali
2017-01-01
Objective: To determine whether there is any difference between virtual reality game–based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test–post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game–based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure–III (SCIM-III). Results: There was a significant difference for time (p = .001) and Time × Group effect (p = .001) in mFRT scores, group effect (p = .05) in t-shirt test scores, and time effect (p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game–based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training. PMID:29339902
Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina
2014-12-01
Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.
Khurana, Meetika; Walia, Shefali; Noohu, Majumi M
2017-01-01
Objective: To determine whether there is any difference between virtual reality game-based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test-post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game-based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure-III (SCIM-III). Results: There was a significant difference for time ( p = .001) and Time × Group effect ( p = .001) in mFRT scores, group effect ( p = .05) in t-shirt test scores, and time effect ( p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game-based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training.
Population-based learning of load balancing policies for a distributed computer system
NASA Technical Reports Server (NTRS)
Mehra, Pankaj; Wah, Benjamin W.
1993-01-01
Effective load-balancing policies use dynamic resource information to schedule tasks in a distributed computer system. We present a novel method for automatically learning such policies. At each site in our system, we use a comparator neural network to predict the relative speedup of an incoming task using only the resource-utilization patterns obtained prior to the task's arrival. Outputs of these comparator networks are broadcast periodically over the distributed system, and the resource schedulers at each site use these values to determine the best site for executing an incoming task. The delays incurred in propagating workload information and tasks from one site to another, as well as the dynamic and unpredictable nature of workloads in multiprogrammed multiprocessors, may cause the workload pattern at the time of execution to differ from patterns prevailing at the times of load-index computation and decision making. Our load-balancing policy accommodates this uncertainty by using certain tunable parameters. We present a population-based machine-learning algorithm that adjusts these parameters in order to achieve high average speedups with respect to local execution. Our results show that our load-balancing policy, when combined with the comparator neural network for workload characterization, is effective in exploiting idle resources in a distributed computer system.
Annular Seals of High Energy Centrifugal Pumps: Presentation of Full Scale Measurement
NASA Technical Reports Server (NTRS)
Florjancic, S.; Stuerchler, R.; Mccloskey, T.
1991-01-01
Prediction of rotordynamic behavior for high energy concentration centrifugal pumps is a challenging task which still imposes considerable difficulties. While the mechanical modeling of the rotor is solved most satisfactorily by finite element techniques, accurate boundary conditions for arbitrary operating conditions are known for journal bearings only. Little information is available on the reactive forces of annular seals, such as neck ring and interstage seals and balance pistons, and on the impeller interaction forces. The present focus is to establish reliable boundary conditions at annular seals. For this purpose, a full scale test machine was set up and smooth and serrated seal configurations measured. Dimensionless coefficients are presented and compared with a state of the art theory.
NASA Astrophysics Data System (ADS)
Shiangjen, Kanokwatt; Chaijaruwanich, Jeerayut; Srisujjalertwaja, Wijak; Unachak, Prakarn; Somhom, Samerkae
2018-02-01
This article presents an efficient heuristic placement algorithm, namely, a bidirectional heuristic placement, for solving the two-dimensional rectangular knapsack packing problem. The heuristic demonstrates ways to maximize space utilization by fitting the appropriate rectangle from both sides of the wall of the current residual space layer by layer. The iterative local search along with a shift strategy is developed and applied to the heuristic to balance the exploitation and exploration tasks in the solution space without the tuning of any parameters. The experimental results on many scales of packing problems show that this approach can produce high-quality solutions for most of the benchmark datasets, especially for large-scale problems, within a reasonable duration of computational time.
Bigsby, Kathryn; Mangine, Robert E; Clark, Joseph F; Rauch, Joseph T; Bixenmann, Benjamin; Susaret, Antonia W; Hasselfeld, Kimberly A; Colosimo, Angelo J
2014-08-01
Visuomotor ability is an important parameter for neurologic function and effective sport performance. Adding a balance challenge during a structured eye-hand coordination task, such as hitting lights on a light board (Dynavision™), has not been previously reported. Using Division I football players, the aim of this study was to determine normative data on a dual-task performance regimen combining a visuomotor light board task with a balance task. The intent is to use such normative data and baseline data as part of a concussion management program. Division I college football team members, n=105, were consented. Subjects first performed Dynavision™ D2™ Visuomotor Training Device (D2™) eye-hand coordination tasks, the A* and the RT; they then performed the same tasks with an added balance challenge, standing on a BOSU® ball. Ninety-four athletes completed the full testing procedure on the D2™ system. The mean score of the A* test was 93 ± 11.0 hits per minute; and the mean on the A* test with the added BOSU® balance challenge was 83.7 ± 9.2 hits per minute. The mean RT time was 0.33 ± 0.036 seconds. Mean reaction time increased to 0.38 ± 0.063 while the subject stood on the BOSU® ball. Performance on the D2™ A* and RT were both statistically significantly different in the dual task condition (p<0.05). Results show an approximate 10% decline in D2™ performance when healthy individuals stand on a BOSU® ball. From the data presented here, the authors determined that there is a 10% decrement in performance when one's balance is challenged on the BOSU® ball. A fall in performance of substantially greater than 10% may indicate abnormal vestibulocerebellar regulatory processing of balance and motion. Further research, using these normative data is needed to determine more specific parameters for definitions of impairment and return-to-play and if there is utility for such studies as part of a concussion management program. III.
Manlapaz, Donald G; Sole, Gisela; Jayakaran, Prasath; Chapple, Cathy M
2017-04-01
Balance is crucial in performing functional tasks particularly among older adults. Exergaming is gaining attention as a novel approach to enhance balance in a number of clinical populations. The aim of this review was to synthesize and present published evidence for Nintendo Wii Fit™ gaming system protocols. These include game preference, intervention setting, and exercise dosage for improving balance in healthy older adults. Commonly used outcome measures were also identified. A literature search was developed using the PICOS strategy using keywords such as "older adult," "Nintendo Wii Fit," "exergaming," and "balance" in the databases: MEDLINE, PubMed, EMBASE, CINAHL, Scopus, Science Direct, and Web of Science. Sixteen articles were included with participants (n = 491) mostly female (69%), and mean age ranged between 71 and 85 years old. Participants were recruited mainly from the community. The most commonly used Wii Fit games were Table tilt, Soccer Heading, Ski Slalom, and Ski jump, performed three times per week, with a duration of 30 minutes per session for 6 weeks. Berg Balance Scale, Timed Up and Go Test, and Centre of Pressure were the most commonly used outcome measures. Wii Fit exergames can be a potential alternative to improve balance if safety and technical procedures are provided. With conflicting and mechanism-based evidence on dosage presented, exergaming parameters require further research before firm recommendations can be made. Clinically, effective dosage is an important component in any type of interventions, and exergaming should not be an exception.
Flow theory – goal orientation theory: positive experience is related to athlete’s goal orientation
Stavrou, Nektarios A. M.; Psychountaki, Maria; Georgiadis, Emmanouil; Karteroliotis, Konstantinos; Zervas, Yannis
2015-01-01
The main purpose of this study was to examine the relationship between flow experience and goal orientation theory, as well as, the differences in flow experience based on the orthogonal model of goal orientation theory. Two hundred and seventy eight athletes completed the Task and Ego Orientation Sport Questionnaire based on how they usually feel. The challenge and skills ratings were completed 1 h before the competition, based on how they felt at the exact time of answering. In the following, the Flow State Scale-2 was completed up to 30 min after the competition they just participated, along with the challenge-skill ratings, based on how athletes felt during the competition. The results indicated that the athletes’ task orientation may be an important factor for attaining flow in competitive sport, feeling more skillful and estimating the upcoming competition as challenging, while low ego and low task oriented athletes lack these elements, which are important for them to get into flow. Additionally, not the level of task and ego orientation per se, but the balance between athletes’ goal orientation preferences seems important for the formation of flow experience, indicating that high task – high ego and high task – low ego athletes are experiencing the most positive mental state. PMID:26500577
Influence of birthweight on childhood balance: Evidence from two British birth cohorts.
Okuda, Paola Matiko Martins; Swardfager, Walter; Ploubidis, George B; Pangelinan, Melissa; Cogo-Moreira, Hugo
2018-01-26
Birthweight is an important predictor of various fundamental aspects of childhood health and development. To examine the impact of birthweight on childhood balance performance classification and verify if this is replicable and consistent in different populations. Prospective birth cohort study. To describe heterogeneity in balance skills, latent class analyses were conducted separately with data from the 1958 National Child Development Study - NCDS (n = 12,778), and the 1970 British Cohort Study - BCS (n = 12,115). Four balance tasks for NCDS and five balance tasks for BCS. Birthweight was assessed as a predictor of balance skills. In both cohorts, two latent classes (good and poor balance skills) were identified. In both cohorts, higher birthweight was associated with a higher likelihood of having good balance skills. Boys were less likely to have good balance compared to girls. The results establish the reproducibility and consistency of the effect of birthweight on balance skills and point to early intervention for individuals with lower birthweight to mitigate the impact of motor impairment. Copyright © 2018 Elsevier B.V. All rights reserved.
Cognitive-motor dual-task ability of athletes with and without intellectual impairment.
Van Biesen, Debbie; Jacobs, Lore; McCulloch, Katina; Janssens, Luc; Vanlandewijck, Yves C
2018-03-01
Cognition is important in many sports, for example, making split-second-decisions under pressure, or memorising complex movement sequences. The dual-task (DT) paradigm is an ecologically valid approach for the assessment of cognitive function in conjunction with motor demands. This study aimed to determine the impact of impaired intelligence on DT performance. The motor task required balancing on one leg on a beam, and the cognitive task was a multiple-object-tracking (MOT) task assessing dynamic visual-search capacity. The sample included 206 well-trained athletes with and without intellectual impairment (II), matched for sport, age and training volume (140 males, 66 females, M age = 23.2 ± 4.1 years, M training experience = 12.3 ± 5.7 years). In the single-task condition, II-athletes showed reduced balance control (F = 55.9, P < .001, η 2 = .23) and reduced MOT (F = 86.3, P < .001, η 2 = .32) compared to the control group. A mixed-model ANCOVA revealed significant differences in DT performance for the balance and the MOT task between both groups. The DT costs were significantly larger for the II-athletes (-8.28% versus -1.34% for MOT and -33.13% versus -12.89% for balance). The assessment of MOT in a DT paradigm provided insight in how impaired intelligence constrains the ability of II-athletes to successfully perform at the highest levels in the complex and dynamical sport-environment.
Makizako, Hyuma; Doi, Takehiko; Shimada, Hiroyuki; Yoshida, Daisuke; Tsutsumimoto, Kota; Uemura, Kazuki; Suzuki, Takao
2012-12-01
There has been much interest in exercise interventions as a primary behavioral prevention strategy against cognitive decline. The aim of this study was to evaluate the effect of a multicomponent exercise program on physical and dual-task performances in community-dwelling older adults with amnestic mild cognitive impairment (aMCI). Fifty older adults (23 women) with aMCI (mean age, 76 years) were randomized to an intervention (n=25) or a control group (n=25). The intervention group received a multicomponent exercise program for 90 minutes/day, 2 days/week, or 40 times over six months. The multicomponent exercises included aerobic exercise, muscle strength training and postural balance retraining, which was conducted under multi-task conditions to stimulate attention and memory. Participants in the control group attended two health promotion education classes within six months. Physical and dual-task performances were measured before randomization and after six months. Dual-task performances using reaction times with balance and cognitive demands were measured. The improvement effects on dual-task performances with both balance and cognitive demands were not statistically significant: reaction time with balance demand F1,45=3.3, p=0.07, and cognitive demand F1,45=2.6, p=0.12. However, there was a significant group-by-time interaction on maximal walking speed, which decreased significantly in the control group (F1,45=5.9, p=0.02). This six-month multicomponent exercise program improved maximal walking speed in older adults with aMCI; however, it did not improve dual-task performances assessed by reaction times.
Verrel, Julius; Lisofsky, Nina; Kühn, Simone; Lindenberger, Ulman
2016-02-01
Correlational studies indicate an association between age-related decline in balance and cognitive control, but these functions are rarely addressed within a single task. In this study, we investigate adult age differences in a two-choice response task with balance constraints under three levels of response conflict. Sixteen healthy young (20-30 years) and 16 healthy older adult participants (59-74 years) were cued symbolically (letter L vs. R) to lift either the left or the right foot from the floor in a standing position. Response conflict was manipulated by task-irrelevant visual stimuli showing congruent, incongruent, or no foot lift movement. Preparatory weight shifts (PWS) and foot lift movements were recorded using force plates and optical motion capture. Older adults showed longer response times (foot lift) and more PWS errors than younger adults. Incongruent distractors interfered with performance (greater response time and PWS errors), but this compatibility effect did not reliably differ between age groups. Response time effects of age and compatibility were strongly reduced or absent in trials without PWS errors, and for the onset of the first (erroneous) PWS in trials with preparation error. In addition, in older adults only, compatibility effects in the foot lift task correlated significantly with compatibility effects in the Flanker task. The present results strongly suggest that adult age differences in response latencies in a task with balance constraints are related to age-associated increases in postural preparation errors rather than being an epiphenomenon of general slowing. Copyright © 2015 Elsevier B.V. All rights reserved.
Evaluation of the Display of Cognitive State Feedback to Drive Adaptive Task Sharing
Dorneich, Michael C.; Passinger, Břetislav; Hamblin, Christopher; Keinrath, Claudia; Vašek, Jiři; Whitlow, Stephen D.; Beekhuyzen, Martijn
2017-01-01
This paper presents an adaptive system intended to address workload imbalances between pilots in future flight decks. Team performance can be maximized when task demands are balanced within crew capabilities and resources. Good communication skills enable teams to adapt to changes in workload, and include the balancing of workload between team members This work addresses human factors priorities in the aviation domain with the goal to develop concepts that balance operator workload, support future operator roles and responsibilities, and support new task requirements, while allowing operators to focus on the most safety critical tasks. A traditional closed-loop adaptive system includes the decision logic to turn automated adaptations on and off. This work takes a novel approach of replacing the decision logic, normally performed by the automation, with human decisions. The Crew Workload Manager (CWLM) was developed to objectively display the workload between pilots and recommend task sharing; it is then the pilots who “close the loop” by deciding how to best mitigate unbalanced workload. The workload was manipulated by the Shared Aviation Task Battery (SAT-B), which was developed to provide opportunities for pilots to mitigate imbalances in workload between crew members. Participants were put in situations of high and low workload (i.e., workload was manipulated as opposed to being measured), the workload was then displayed to pilots, and pilots were allowed to decide how to mitigate the situation. An evaluation was performed that utilized the SAT-B to manipulate workload and create workload imbalances. Overall, the CWLM reduced the time spent in unbalanced workload and improved the crew coordination in task sharing while not negatively impacting concurrent task performance. Balancing workload has the potential to improve crew resource management and task performance over time, and reduce errors and fatigue. Paired with a real-time workload measurement system, the CWLM could help teams manage their own task load distribution. PMID:28400716
Evaluation of the Display of Cognitive State Feedback to Drive Adaptive Task Sharing.
Dorneich, Michael C; Passinger, Břetislav; Hamblin, Christopher; Keinrath, Claudia; Vašek, Jiři; Whitlow, Stephen D; Beekhuyzen, Martijn
2017-01-01
This paper presents an adaptive system intended to address workload imbalances between pilots in future flight decks. Team performance can be maximized when task demands are balanced within crew capabilities and resources. Good communication skills enable teams to adapt to changes in workload, and include the balancing of workload between team members This work addresses human factors priorities in the aviation domain with the goal to develop concepts that balance operator workload, support future operator roles and responsibilities, and support new task requirements, while allowing operators to focus on the most safety critical tasks. A traditional closed-loop adaptive system includes the decision logic to turn automated adaptations on and off. This work takes a novel approach of replacing the decision logic, normally performed by the automation, with human decisions. The Crew Workload Manager (CWLM) was developed to objectively display the workload between pilots and recommend task sharing; it is then the pilots who "close the loop" by deciding how to best mitigate unbalanced workload. The workload was manipulated by the Shared Aviation Task Battery (SAT-B), which was developed to provide opportunities for pilots to mitigate imbalances in workload between crew members. Participants were put in situations of high and low workload (i.e., workload was manipulated as opposed to being measured), the workload was then displayed to pilots, and pilots were allowed to decide how to mitigate the situation. An evaluation was performed that utilized the SAT-B to manipulate workload and create workload imbalances. Overall, the CWLM reduced the time spent in unbalanced workload and improved the crew coordination in task sharing while not negatively impacting concurrent task performance. Balancing workload has the potential to improve crew resource management and task performance over time, and reduce errors and fatigue. Paired with a real-time workload measurement system, the CWLM could help teams manage their own task load distribution.
Coelho, Daniel Boari; Bourlinova, Catarina; Teixeira, Luis Augusto
2016-12-01
In the present experiment, we aimed to evaluate the interactive effect of performing a cognitive task simultaneously with a manual task requiring either high or low steadiness on APRs. Young volunteers performed the task of recovering upright balance following a mechanical perturbation provoked by unanticipatedly releasing a load pulling the participant's body backwards. The postural task was performed while holding a cylinder steadily on a tray. One group performed that task under high (cylinder' round side down) and another one under low (cylinder' flat side down) manual steadiness constraint. Those tasks were evaluated in the conditions of performing concurrently a cognitive numeric subtraction task and under no cognitive task. Analysis showed that performance of the cognitive task led to increased body and tray displacement, associated with higher displacement at the hip and upper trunk, and lower magnitude of activation of the GM muscle in response to the perturbation. Conversely, high manual steadiness constraint led to reduced tray velocity in association with lower values of trunk displacement, and decreased rotation amplitude at the ankle and hip joints. We found no interactions between the effects of the cognitive and manual tasks on APRs, suggesting that they were processed in parallel in the generation of responses for balance recovery. Modulation of postural responses from the manual and cognitive tasks indicates participation of higher order neural structures in the generation of APRs, with postural responses being affected by multiple mental processes occurring in parallel. Copyright © 2016 Elsevier B.V. All rights reserved.
Sakamoto, Sadanori; Iguchi, Masaki
2018-06-08
Less attention to a balance task reduces the center of foot pressure (COP) variability by automating the task. However, it is not fully understood how the degree of postural automaticity influences the voluntary movement and anticipatory postural adjustments. Eleven healthy young adults performed a bipedal, eyes closed standing task under the three conditions: Control (C, standing task), Single (S, standing + reaction tasks), and Dual (D, standing + reaction + mental tasks). The reaction task was flexing the right shoulder to an auditory stimulus, which causes counter-clockwise rotational torque, and the mental task was arithmetic task. The COP variance before the reaction task was reduced in the D condition compared to that in the C and S conditions. On average the onsets of the arm movement and the vertical torque (Tz, anticipatory clockwise rotational torque) were both delayed, and the maximal Tz slope (the rate at which the torque develops) became less steep in the D condition compared to those in the S condition. When these data in the D condition were expressed as a percentage of those in the S condition, the arm movement onset and the Tz slope were positively and negatively, respectively, correlated with the COP variance. By using the mental-task induced COP variance reduction as the indicator of postural automaticity, our data suggest that the balance task for those with more COP variance reduction is less cognitively demanding, leading to the shorter reaction time probably due to the attention shift from the automated balance task to the reaction task. Copyright © 2018 Elsevier B.V. All rights reserved.
Effects of Tai Chi intervention on dual-task ability in older adults: a pilot study.
Hall, Courtney D; Miszko, Tanya; Wolf, Steven L
2009-03-01
To determine if a 12-week program of Tai Chi that has been shown to reduce falls incidence in older adults would improve the ability to allocate attention to balance under dual-task conditions. Pre-/posttest experimental research design. Movement studies research laboratory. Community dwelling older adults (N=15; range, 62-85y) participated in either Tai Chi training or health education classes (controls) for 12 weeks. Participants in the Tai Chi group attended a twice-weekly, 1.5-hour class taught by an experienced instructor. The control group attended a biweekly, 1-hour class for lectures on health-related topics. Two cognitive tasks (responding to auditory or visual stimulus as quickly as possible) were performed concurrently while maintaining static balance during the Sensory Organization Test (SOT) and while avoiding obstacles while walking. The percent change in performance relative to the single-task condition was calculated and defined as the dual-task cost. The dual-task cost was calculated for both the postural and cognitive measures. There was no improvement in the performance of postural stability or cognitive task under dual-task conditions for the SOT for Tai Chi versus controls. There was no improvement in avoiding obstacles under dual-task conditions for Tai Chi versus controls. Contrary to our hypothesis, the findings of this study did not support a benefit of Tai Chi on the ability to allocate attention to balance under dual-task conditions.
Mesoscale Models of Fluid Dynamics
NASA Astrophysics Data System (ADS)
Boghosian, Bruce M.; Hadjiconstantinou, Nicolas G.
During the last half century, enormous progress has been made in the field of computational materials modeling, to the extent that in many cases computational approaches are used in a predictive fashion. Despite this progress, modeling of general hydrodynamic behavior remains a challenging task. One of the main challenges stems from the fact that hydrodynamics manifests itself over a very wide range of length and time scales. On one end of the spectrum, one finds the fluid's "internal" scale characteristic of its molecular structure (in the absence of quantum effects, which we omit in this chapter). On the other end, the "outer" scale is set by the characteristic sizes of the problem's domain. The resulting scale separation or lack thereof as well as the existence of intermediate scales are key to determining the optimal approach. Successful treatments require a judicious choice of the level of description which is a delicate balancing act between the conflicting requirements of fidelity and manageable computational cost: a coarse description typically requires models for underlying processes occuring at smaller length and time scales; on the other hand, a fine-scale model will incur a significantly larger computational cost.
Moon, Hyun Im; Pyun, Sung-Bom; Tae, Woo-Suk; Kwon, Hee Kyu
2016-07-01
Stroke impairs motor, balance, and gait function and influences activities of daily living. Understanding the relationship between brain lesions and deficits can help clinicians set goals during rehabilitation. We sought to elucidate the neural substrates of lower extremity motor, balance, and ambulation function using voxel-based lesion symptom mapping (VLSM) in supratentorial stroke patients. We retrospectively screened patients who met the following criteria: first-ever stroke, supratentorial lesion, and available brain magnetic resonance imaging (MRI) data. MRIs of 133 stroke patients were selected for VLSM analysis. We generated statistical maps of lesions related to lower extremity motor (lower extremity Fugl-Meyer assessment, LEFM), balance (Berg Balance Scale, BBS), and gait (Functional Ambulation Category, FAC) using VLSM. VLSM revealed that lower LEFM scores were associated with damage to the bilateral basal ganglia, insula, internal capsule, and subgyral white matter adjacent to the corona radiata. The lesions were more widely distributed in the left than in the right hemisphere, representing motor and praxis function necessary for performing tasks. However, no associations between lesion maps and balance and gait function were established. Motor impairment of the lower extremities was associated with lesions in the basal ganglia, insula, internal capsule, and white matter adjacent to the corona radiata. However, VLSM revealed no specific lesion locations with regard to balance and gait function. This might be because balance and gait are complex skills that require spatial and temporal integration of sensory input and execution of movement patterns. For more accurate prediction, factors other than lesion location need to be investigated.
Alsubiheen, Abdulrahman; Petrofsky, Jerrold; Daher, Noha; Lohman, Everett; Balbas, Edward
2015-10-10
One of the effects of diabetes mellitus (DM), peripheral neuropathy, affects the sensation in the feet and can increase the chance of falling. The purpose of the study was to investigate the effect of 8 weeks of Tai Chi (TC) training combined with mental imagery (MI) on improving balance in people with diabetes and an age matched control group. Seventeen healthy subjects and 12 diabetic sedentary subjects ranging from 40-80 years of age were recruited. All subjects in both groups attended a Yang style of TC class using MI strategies, 2 sessions a week for 8 weeks. Each session was one hour long. Measures were taken using a balance platform test, an Activities-specific Balance Confidence (ABC) Scale, a one leg standing test (OLS), functional reach test (FRT) and hemoglobin A1C. These measures were taken twice, pre and post-study, for both groups. Both groups experienced significant improvements in ABC, OLS, FRT (P<0.01) after completing 8 weeks of TC exercise with no significant improvement between groups. Subjects using the balance platform test demonstrated improvement in balance in all different tasks with no significant change between groups. There was no significant change in HbA1C for the diabetic group. All results showed an improvement in balance in the diabetic and the control groups; however, no significant difference between the groups was observed. Since the DM group had more problems with balance impairment at baseline than the control, the diabetic group showed the most benefit from the TC exercise.
Larivière, Nadine; Denis, Catherine; Payeur, Amélie; Ferron, Amélie; Levesque, Stéphanie; Rivard, Guillaume
2016-12-01
Life balance is associated to health, well-being and quality of life and is a target of psychiatric rehabilitation interventions. However, little is known about this life dimension in women living with personality disorders. The purpose of this descriptive-correlational study was to compare and explore relationships between subjective life balance, objective time use, quality of life and perceived stress in women without a mental health disorder (n = 43) and women with a personality disorder (clusters B and C) (n = 30), aged between 18 and 50 years old. The variables were measured with the Life Balance Inventory (subjective life balance), the Occupational Questionnaire (objective time use), the Depression Anxiety Stress Scale (perceived stress) and the Quality of Life Index (satisfaction and importance with life domains). The analyses showed that women with a personality disorder spend significantly less time in work but more time in daily tasks and leisure. Subjective life balance, quality of life and perceived stress were significantly lower in women with a personality disorder (p < 0.05). In women with a personality disorder, subjective life balance was explained by quality of life (R 2 = 27.5 %). In women without a mental illness, subjective life balance was explained by quality of life and motherhood (R 2 = 36.1 %). To support the recovery of women with personality disorders and their quality of life, it is important to address objective and subjective time use to enable accomplishment of a variety of meaningful activities.
Micarelli, Alessandro; Viziano, Andrea; Augimeri, Ivan; Micarelli, Domenico; Alessandrini, Marco
2017-12-01
Considering the emerging advantages related to virtual reality implementation in clinical rehabilitation, the aim of the present study was to discover possible (i) improvements achievable in unilateral vestibular hypofunction patients using a self-assessed head-mounted device (HMD)-based gaming procedure when combined with a classical vestibular rehabilitation protocol (HMD group) as compared with a group undergoing only vestibular rehabilitation and (ii) HMD procedure-related side effects. Therefore, 24 vestibular rehabilitation and 23-matched HMD unilateral vestibular hypofunction individuals simultaneously underwent a 4-week rehabilitation protocol. Both otoneurological measures (vestibulo-ocular reflex gain and postural arrangement by studying both posturography parameters and spectral values of body oscillation) and performance and self-report measures (Italian Dizziness Handicap Inventory; Activities-specific Balance Confidence scale; Zung Instrument for Anxiety Disorders, Dynamic Gait Index; and Simulator Sickness Questionnaire) were analyzed by means of a between-group/within-subject analysis of variance model. A significant post-treatment between-effect was found, and the HMD group demonstrated an overall improvement in vestibulo-ocular reflex gain on the lesional side, in posturography parameters, in low-frequency spectral domain, as well as in Italian Dizziness Handicap Inventory and Activities-specific Balance Confidence scale scores. Meanwhile, Simulator Sickness Questionnaire scores demonstrated a significant reduction in symptoms related to experimental home-based gaming tasks during the HMD procedure. Our findings revealed the possible advantages of HMD implementation in vestibular rehabilitation, suggesting it as an innovative, self-assessed, low-cost, and compliant tool useful in maximizing vestibular rehabilitation outcomes.
Pilleri, Manuela; Weis, Luca; Zabeo, Letizia; Koutsikos, Konstantinos; Biundo, Roberta; Facchini, Silvia; Rossi, Simonetta; Masiero, Stefano; Antonini, Angelo
2015-08-15
Freezing of Gait (FOG) is a frequent and disabling feature of Parkinson disease (PD). Gait rehabilitation assisted by electromechanical devices, such as training on treadmill associated with sensory cues or assisted by gait orthosis have been shown to improve FOG. Overground robot assisted gait training (RGT) has been recently tested in patients with PD with improvement of several gait parameters. We here evaluated the effectiveness of RGT on FOG severity and gait abnormalities in PD patients. Eighteen patients with FOG resistant to dopaminergic medications were treated with 15 sessions of RGT and underwent an extensive clinical evaluation before and after treatment. The main outcome measures were FOG questionnaire (FOGQ) global score and specific tasks for gait assessment, namely 10 meter walking test (10 MWT), Timed Up and Go test (TUG) and 360° narrow turns (360 NT). Balance was also evaluated through Fear of Falling Efficacy Scale (FFES), assessing self perceived stability and Berg Balance Scale (BBS), for objective examination. After treatment, FOGQ score was significantly reduced (P=0.023). We also found a significant reduction of time needed to complete TUG, 10 MWT, and 360 NT (P=0.009, 0.004 and 0.04, respectively). By contrast the number of steps and the number of freezing episodes recorded at each gait task did not change. FFES and BBS scores also improved, with positive repercussions on performance on daily activity and quality of life. Our results indicate that RGT is a useful strategy for the treatment of drug refractory FOG. Copyright © 2015 Elsevier B.V. All rights reserved.
Two-dimensional systolic-array architecture for pixel-level vision tasks
NASA Astrophysics Data System (ADS)
Vijverberg, Julien A.; de With, Peter H. N.
2010-05-01
This paper presents ongoing work on the design of a two-dimensional (2D) systolic array for image processing. This component is designed to operate on a multi-processor system-on-chip. In contrast with other 2D systolic-array architectures and many other hardware accelerators, we investigate the applicability of executing multiple tasks in a time-interleaved fashion on the Systolic Array (SA). This leads to a lower external memory bandwidth and better load balancing of the tasks on the different processing tiles. To enable the interleaving of tasks, we add a shadow-state register for fast task switching. To reduce the number of accesses to the external memory, we propose to share the communication assist between consecutive tasks. A preliminary, non-functional version of the SA has been synthesized for an XV4S25 FPGA device and yields a maximum clock frequency of 150 MHz requiring 1,447 slices and 5 memory blocks. Mapping tasks from video content-analysis applications from literature on the SA yields reductions in the execution time of 1-2 orders of magnitude compared to the software implementation. We conclude that the choice for an SA architecture is useful, but a scaled version of the SA featuring less logic with fewer processing and pipeline stages yielding a lower clock frequency, would be sufficient for a video analysis system-on-chip.
Dynamic Multiple Work Stealing Strategy for Flexible Load Balancing
NASA Astrophysics Data System (ADS)
Adnan; Sato, Mitsuhisa
Lazy-task creation is an efficient method of overcoming the overhead of the grain-size problem in parallel computing. Work stealing is an effective load balancing strategy for parallel computing. In this paper, we present dynamic work stealing strategies in a lazy-task creation technique for efficient fine-grain task scheduling. The basic idea is to control load balancing granularity depending on the number of task parents in a stack. The dynamic-length strategy of work stealing uses run-time information, which is information on the load of the victim, to determine the number of tasks that a thief is allowed to steal. We compare it with the bottommost first work stealing strategy used in StackThread/MP, and the fixed-length strategy of work stealing, where a thief requests to steal a fixed number of tasks, as well as other multithreaded frameworks such as Cilk and OpenMP task implementations. The experiments show that the dynamic-length strategy of work stealing performs well in irregular workloads such as in UTS benchmarks, as well as in regular workloads such as Fibonacci, Strassen's matrix multiplication, FFT, and Sparse-LU factorization. The dynamic-length strategy works better than the fixed-length strategy because it is more flexible than the latter; this strategy can avoid load imbalance due to overstealing.
Occupational stress, mental health and coping among information technology professionals.
Rao, Jakkula V; Chandraiah, K
2012-01-01
Experience of occupational stress is inevitably involved in the execution of any type of work. Stress has an adaptive value. It motivates the individual to attend to the task and get rid of the tension or demand the unattended task produced. The study was planned to investigate the differences between executives and shop floor workers on occupational stress, mental health, job satisfaction and coping. A random sample of 200 executives and shop floor employees collected from Nuclear Fuel Complex of Hyderabad City. A well developed sub-scales of Occupational Stress indicator like Mental Health, and Coping behavior were used in the present study. The shop floor workers experiencing more job stress and lower mental health. But these two groups did not differ in their coping behaviour. The executives are better with work home balance.
Lawrence, Emily L.; Cesar, Guilherme M.; Bromfield, Martha R.; Peterson, Richard; Valero-Cuevas, Francisco J.; Sigward, Susan M.
2015-01-01
For young adults, balance is essential for participation in physical activities but is often disrupted following lower extremity injury. Clinical outcome measures such as single limb balance (SLB), Y-balance (YBT), and the single limb hop and balance (SLHB) tests are commonly used to quantify balance ability following injury. Given the varying demands across tasks, it is likely that such outcome measures provide useful, although task-specific, information. But the extent to which they are independent and contribute to understanding the multiple contributors to balance is not clear. Therefore, the purpose of this study was to investigate the associations among these measures as they relate to the different contributors to balance. Thirty-seven recreationally active young adults completed measures including Vertical Jump, YBT, SLB, SLHB, and the new Lower Extremity Dexterity test. Principal components analysis revealed that these outcome measures could be thought of as quantifying the strength, multijoint coordination, and sensorimotor processing contributors to balance. Our results challenge the practice of using a single outcome measure to quantify the naturally multidimensional mechanisms for everyday functions such as balance. This multidimensional approach to, and interpretation of, multiple contributors to balance may lead to more effective, specialized training and rehabilitation regimens. PMID:26665007
Effects of Single Compared to Dual Task Practice on Learning a Dynamic Balance Task in Young Adults
Kiss, Rainer; Brueckner, Dennis; Muehlbauer, Thomas
2018-01-01
Background: In everyday life, people engage in situations involving the concurrent processing of motor (balance) and cognitive tasks (i.e., “dual task situations”) that result in performance declines in at least one of the given tasks. The concurrent practice of both the motor and cognitive task may counteract these performance decrements. The purpose of this study was to examine the effects of single task (ST) compared to dual task (DT) practice on learning a dynamic balance task. Methods: Forty-eight young adults were randomly assigned to either a ST (i.e., motor or cognitive task training only) or a DT (i.e., motor-cognitive training) practice condition. The motor task required participants to stand on a platform and keeping the platform as close to horizontal as possible. In the cognitive task, participants were asked to recite serial subtractions of three. For 2 days, participants of the ST groups practiced the motor or cognitive task only, while the participants of the DT group concurrently performed both. Root-mean-square error (RMSE) for the motor and total number of correct calculations for the cognitive task were computed. Results: During practice, all groups improved their respective balance and/or cognitive task performance. With regard to the assessment of learning on day 3, we found significantly smaller RMSE values for the ST motor (d = 1.31) and the DT motor-cognitive (d = 0.76) practice group compared to the ST cognitive practice group but not between the ST motor and the DT motor-cognitive practice group under DT test condition. Further, we detected significantly larger total numbers of correct calculations under DT test condition for the ST cognitive (d = 2.19) and the DT motor-cognitive (d = 1.55) practice group compared to the ST motor practice group but not between the ST cognitive and the DT motor-cognitive practice group. Conclusion: We conclude that ST practice resulted in an effective modulation of the trained domain (i.e., motor or cognitive) while only DT practice resulted in an effective modulation of both domains (i.e., motor and cognitive). Thus, particularly DT practice frees up central resources that were used for an effective modulation of motor and cognitive processing mechanisms. PMID:29593614
Jacobi-Polishook, Talia; Shorer, Zamir; Melzer, Itshak
2009-05-15
To investigate the effects of Methylphenidate (MPH) on postural stability in attention deficit hyperactivity disorder (ADHD) children in single and dual task conditions. A randomized controlled double-blind study analyzing postural stability in 24 ADHD children before and after MPH vs. placebo treatments, in three task conditions: (1) Single task, standing still; (2) dual task, standing still performing a memory-attention demanding task; (3) standing still listening to music. MPH resulted in a significant improvement in postural stability during the dual task condition and while listening to music, with no equivalent improvement in placebo controls. MPH improves postural stability in ADHD, especially when an additional task is performed. This is probably due to enhanced attention abilities, thus contributing to improved balance control during performance of tasks that require attention. MPH remains to be studied as a potential drug treatment to improve balance control and physical functioning in other clinical populations.
ERIC Educational Resources Information Center
Chong, Raymond K. Y.; Mills, Bradley; Dailey, Leanna; Lane, Elizabeth; Smith, Sarah; Lee, Kyoung-Hyun
2010-01-01
We tested the hypothesis that a computational overload results when two activities, one motor and the other cognitive that draw on the same neural processing pathways, are performed concurrently. Healthy young adult subjects carried out two seemingly distinct tasks of maintaining standing balance control under conditions of low (eyes closed),…
NASA Astrophysics Data System (ADS)
Chen, Jie; Hu, Jiangnan
2017-06-01
Industry 4.0 and lean production has become the focus of manufacturing. A current issue is to analyse the performance of the assembly line balancing. This study focus on distinguishing the factors influencing the assembly line balancing. The one-way ANOVA method is applied to explore the significant degree of distinguished factors. And regression model is built to find key points. The maximal task time (tmax ), the quantity of tasks (n), and degree of convergence of precedence graph (conv) are critical for the performance of assembly line balancing. The conclusion will do a favor to the lean production in the manufacturing.
The relationship between balance confidence and control in individuals with Parkinson's disease.
Lee, Hyo Keun; Altmann, Lori J P; McFarland, Nikolaus; Hass, Chris J
2016-05-01
A broad range of subjective and objective assessments have been used to assess balance confidence and balance control in persons with Parkinson's disease (PD). However, little is known about the relationship between self-perceived balance confidence and actual balance control in PD. The purpose of this investigation was to determine the relationship between self-perceived balance confidence and objectively measured static/dynamic balance control abilities. Forty-four individuals with PD participated in the study. Patients were stratified into 2 groups based on the modified Hoehn and Yahr (H&Y) disability score: early stage, H&Y ≤ 2.0 and moderate stage, H&Y ≥ 2.5. All participants completed the activities-specific balance confidence (ABC) scale and performed standing balance and gait initiation tasks to assess static and dynamic balance control. The center of pressure (COP) sway (CE95%Sway) during static balance and the peak distance between the projections of the COP and the center of mass (COM) in the transverse plane (COPCOM) during gait initiation were calculated. Pearson correlation analyses were conducted relating the ABC score and CE95%Sway and COPCOM. For early stage PD, there was a moderate correlation between ABC score and CE95%Sway (r = -0.56, R(2) = 0.32, p = 0.002), while no significant correlation was found between ABC score and COPCOM (r = -0.24, R(2) = 0.06, p = 0.227). For moderate stage PD, there was a moderate correlation between ABC score and COPCOM (r = 0.49, R(2) = 0.24, p = 0.044), while no correlation was found between ABC score and CE95%Sway (r = -0.19, R(2) = 0.04, p = 0.478). Individuals with different disease severities showed different relationships between balance confidence and actual static/dynamic balance control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Goetz, Michal; Schwabova, Jaroslava Paulasova; Hlavka, Zdenek; Ptacek, Radek; Surman, Craig Bh
2017-01-01
Attention-deficit hyperactivity disorder (ADHD) is linked to the presence of motor deficiencies, including balance deficits. The cerebellum serves as an integrative structure for balance control and is also involved in cognition, including timing and anticipatory regulation. Cerebellar development may be delayed in children and adolescents with ADHD, and inconsistent reaction time is commonly seen in ADHD. We hypothesized that dynamic balance deficits would be present in children with ADHD and they would correlate with attention and cerebellar functions. Sixty-two children with ADHD and no other neurological conditions and 62 typically developing (TD) children were examined with five trials of the Phyaction Balance Board, an electronic balancing platform. Cerebellar clinical symptoms were evaluated using an international ataxia rating scale. Conners' Continuous Performance Test was used to evaluate patterns of reaction. Children with ADHD had poorer performance on balancing tasks, compared to TD children ( P <0.001). They exhibited significantly greater sway amplitudes than TD children ( P <0.001) in all of the five balancing trials. The effect size of the difference between the groups increased continuously from the first to the last trial. Balance score in both groups was related to the variation in the reaction time, including reaction time standard error ( r =0.25; P =0.0409, respectively, r =0.31; P =0.0131) and Variability of Standard Error ( r =0.28; P =0.0252, respectively, r =0.41; P <0.001). The burden of cerebellar symptoms was strongly related to balance performance in both groups ( r =0.50, P <0.001; r =0.49, P =0.001). This study showed that ADHD may be associated with poor dynamic balance control. Furthermore, we showed that maintaining balance correlates with neuropsychological measures of consistency of reaction time. Balance deficits and impaired cognitive functioning could reflect a common cerebellar dysfunction in ADHD children.
Goetz, Michal; Schwabova, Jaroslava Paulasova; Hlavka, Zdenek; Ptacek, Radek; Surman, Craig BH
2017-01-01
Background Attention-deficit hyperactivity disorder (ADHD) is linked to the presence of motor deficiencies, including balance deficits. The cerebellum serves as an integrative structure for balance control and is also involved in cognition, including timing and anticipatory regulation. Cerebellar development may be delayed in children and adolescents with ADHD, and inconsistent reaction time is commonly seen in ADHD. We hypothesized that dynamic balance deficits would be present in children with ADHD and they would correlate with attention and cerebellar functions. Methods Sixty-two children with ADHD and no other neurological conditions and 62 typically developing (TD) children were examined with five trials of the Phyaction Balance Board, an electronic balancing platform. Cerebellar clinical symptoms were evaluated using an international ataxia rating scale. Conners’ Continuous Performance Test was used to evaluate patterns of reaction. Results Children with ADHD had poorer performance on balancing tasks, compared to TD children (P<0.001). They exhibited significantly greater sway amplitudes than TD children (P<0.001) in all of the five balancing trials. The effect size of the difference between the groups increased continuously from the first to the last trial. Balance score in both groups was related to the variation in the reaction time, including reaction time standard error (r =0.25; P=0.0409, respectively, r =0.31; P=0.0131) and Variability of Standard Error (r =0.28; P=0.0252, respectively, r =0.41; P<0.001). The burden of cerebellar symptoms was strongly related to balance performance in both groups (r =0.50, P<0.001; r =0.49, P=0.001). Conclusion This study showed that ADHD may be associated with poor dynamic balance control. Furthermore, we showed that maintaining balance correlates with neuropsychological measures of consistency of reaction time. Balance deficits and impaired cognitive functioning could reflect a common cerebellar dysfunction in ADHD children. PMID:28356743
A review on simple assembly line balancing type-e problem
NASA Astrophysics Data System (ADS)
Jusop, M.; Rashid, M. F. F. Ab
2015-12-01
Simple assembly line balancing (SALB) is an attempt to assign the tasks to the various workstations along the line so that the precedence relations are satisfied and some performance measure are optimised. Advanced approach of algorithm is necessary to solve large-scale problems as SALB is a class of NP-hard. Only a few studies are focusing on simple assembly line balancing of Type-E problem (SALB-E) since it is a general and complex problem. SALB-E problem is one of SALB problem which consider the number of workstation and the cycle time simultaneously for the purpose of maximising the line efficiency. This paper review previous works that has been done in order to optimise SALB -E problem. Besides that, this paper also reviewed the Genetic Algorithm approach that has been used to optimise SALB-E. From the reviewed that has been done, it was found that none of the existing works are concern on the resource constraint in the SALB-E problem especially on machine and tool constraints. The research on SALB-E will contribute to the improvement of productivity in real industrial application.
Collectives for Multiple Resource Job Scheduling Across Heterogeneous Servers
NASA Technical Reports Server (NTRS)
Tumer, K.; Lawson, J.
2003-01-01
Efficient management of large-scale, distributed data storage and processing systems is a major challenge for many computational applications. Many of these systems are characterized by multi-resource tasks processed across a heterogeneous network. Conventional approaches, such as load balancing, work well for centralized, single resource problems, but breakdown in the more general case. In addition, most approaches are often based on heuristics which do not directly attempt to optimize the world utility. In this paper, we propose an agent based control system using the theory of collectives. We configure the servers of our network with agents who make local job scheduling decisions. These decisions are based on local goals which are constructed to be aligned with the objective of optimizing the overall efficiency of the system. We demonstrate that multi-agent systems in which all the agents attempt to optimize the same global utility function (team game) only marginally outperform conventional load balancing. On the other hand, agents configured using collectives outperform both team games and load balancing (by up to four times for the latter), despite their distributed nature and their limited access to information.
Holmes, Jeffrey D; Jenkins, Mary E; Johnson, Andrew M; Hunt, Michael A; Clark, Ross A
2013-04-01
Impaired postural stability places individuals with Parkinson's at an increased risk for falls. Given the high incidence of fall-related injuries within this population, ongoing assessment of postural stability is important. To evaluate the validity of the Nintendo Wii(®) balance board as a measurement tool for the assessment of postural stability in individuals with Parkinson's. Twenty individuals with Parkinson's participated. Subjects completed testing on two balance tasks with eyes open and closed on a Wii(®) balance board and biomechanical force platform. Bland-Altman plots and a two-way, random-effects, single measure intraclass correlation coefficient model were used to assess concurrent validity of centre-of-pressure data. Concurrent validity was demonstrated to be excellent across balance tasks (intraclass correlation coefficients = 0.96, 0.98, 0.92, 0.94). This study suggests that the Wii(®) balance board is a valid tool for the quantification of postural stability among individuals with Parkinson's.
Sjöström, Henrik; Allum, John H J; Carpenter, Mark G; Adkin, Allan L; Honegger, Flurin; Ettlin, Thierry
2003-08-01
Trunk sway occurring during clinical stance and gait tasks was compared between a group of subjects with a chronic whiplash injury, resulting from an automobile collision, and a normal collective. To examine if population specific trunk sway patterns for stance and gait could be identified for chronic whiplash injury patients. Our previous work has established that it is possible to identify specific patterns of stance and gait deficits for vestibular loss (both acute and compensated) patients and those with Parkinson's disease. Our question was whether it was possible to use the same stance and gait tasks to identify patterns of trunk sway differences with respect to those of healthy subjects and individuals with a chronic whiplash injury. Twenty-five subjects with history of whiplash injury and 170 healthy age-matched control subjects participated in the study. Trunk sway angular displacements in chronic whiplash patients were assessed for a number of stance and gait tasks similar to those of the Tinetti and Clinical Test of Sensory Interaction and Balance (CTSIB) protocols. We used a lightweight, easy-to-attach, body-worn apparatus to measure trunk angular displacements and velocities in the roll (lateral) and the pitch (forward-backward) planes. Data analysis revealed several significant differences between the two groups. A pattern could be identified, showing greater trunk sway for stance tasks and for complex gait tasks that required task-specific gaze control such as walking up and down stairs. Trunk sway was less, however, for simple gait tasks that demanded large head movements but no task-specific gaze control, such as walking while rotating the head. Subjects who have a chronic whiplash injury show a characteristic pattern of trunk sway that is different from that of other patient groups with balance disorders. Balance was most unstable during gait involving task-specific head movements which possibly enhance a pathologic vestibulo-cervical interaction.
Dual tasking and balance in those with central and peripheral vision loss.
Kotecha, Aachal; Chopra, Reena; Fahy, Rachel T A; Rubin, Gary S
2013-08-09
To investigate the effects of a secondary task on standing balance in patients with glaucoma or AMD compared with age-similar control subjects. Twelve AMD, 12 glaucoma, and 12 control participants underwent posturography under two standing conditions (eyes open on a firm or foam-rubber surface) and two tasks: quiet standing and undertaking a mental arithmetic task. Center of foot-pressure average displacement (root mean square [RMS]; in millimeters) was calculated. The mean (SD) age of the participants in each group was as follows: controls 66.2 (6.4) years, glaucoma 69.2 (4.3) years, and AMD 72.2 (5.3) years. There were significant differences in RMS between controls and AMD patients when undertaking the mental arithmetic task standing on the firm surface (mean difference [SE]: 2.8 [0.8] mm, P = 0.005). There were significant differences between controls and AMD patients when undertaking the mental arithmetic task on the foam surface, with the difference between controls and glaucoma patients approaching significance (mean difference [SE]: control versus AMD = 3.1 [0.9] mm, P = 0.005; control versus glaucoma = 2.2 [0.9] mm, P = 0.06). Postural instability increases with the addition of a secondary task in older persons, which may put them at greater risk of falls. Patients with central losses exhibit greater instability with the addition of a secondary task, particularly during somatosensory perturbations. The negative effects of secondary tasks on balance control in those with peripheral visual losses become more apparent under somatosensory perturbations.
Psychometric Analysis of the Work/Life Balance Self-Assessment Scale.
Smeltzer, Suzanne C; Cantrell, Mary Ann; Sharts-Hopko, Nancy C; Heverly, Mary Ann; Jenkinson, Amanda; Nthenge, Serah
2016-01-01
This study investigated the psychometric properties of the Work/Life Balance Self-Assessment scale among nurse faculty involved in doctoral education. A national random sample of 554 respondents completed the Work/Life Balance Self-Assessment scale, which addresses 3 factors: work interference with personal life (WIPL), personal life interference with work (PLIW), and work/personal life enhancement (WPLE). A principal components analysis with varimax rotation revealed 3 internally consistent aspects of work-life balance, explaining 40.5% of the variance. The Cronbach's alpha coefficients for reliability of the scale were .88 for the total scale and for the subscales, .93 (WIPL), .85 (PLIW), and .69 (WPLE). The Work/Life Balance Self-Assessment scale appears to be a reliable and valid instrument to examine work-life balance among nurse faculty.
Attentional demands and postural recovery: the effects of aging.
Brown, L A; Shumway-Cook, A; Woollacott, M H
1999-04-01
Cognitive demands associated with balance and locomotion may contribute to the incidence of falling among older adults. This study addressed issues related to the effects of aging on the attentional demands of recovering from an external disturbance to balance. This research also investigated whether performing a secondary cognitive task differentially affects postural recovery in young versus older adults. Fifteen young and 10 healthy older adults were exposed to a series of balance disturbances. Attentional demands were assessed using a dual task paradigm where postural recovery served as the primary task, and counting backwards served as a concurrent secondary cognitive task. The effect of the counting task was assessed by comparing kinematic variables related to feet-in-place and stepping recovery strategies. Recovering upright stance was found to be attentionally demanding in both age groups. The type of recovery strategy did not influence attentional demands in young adults; however, a hierarchy of increasing attentional demands between the ankle strategy and compensatory stepping was apparent among older adults. In addition, stepping appears to be more attentionally demanding for older adults than for younger adults. Counting backwards did not affect the type of strategy used; however, it did affect the kinematics of stepping. For both age groups, steps occurred when the center of mass was located in a more central location within the base of support when the secondary task was added. The ability to recover a stable posture following an external perturbation is more attentionally demanding for older adults than for younger adults. This would suggest that for some older adults, an increased risk for loss of balance and falls may result if sufficient attentional resources are not allocated to the task of postural recovery.
Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O
2017-01-01
The use of dual-task training paradigm to enhance postural stability in patients with balance impairments is an emerging area of interest. The differential effects of dual tasks and dual-task training on postural stability still remain unclear. A systematic review and meta-analysis were conducted to analyze the effects of dual task and training application on static and dynamic postural stability among various population groups. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, from inception until June 2016, on the online databases Scopus, PEDro, MEDLINE, EMBASE, and SportDiscus. Experimental studies analyzing the effects of dual task and dual-task training on postural stability were extracted, critically appraised using PEDro scale, and then summarized according to modified PEDro level of evidence. Of 1,284 records, 42 studies involving 1,480 participants met the review’s inclusion criteria. Of the studies evaluating the effects of dual-task training on postural stability, 87.5% of the studies reported significant enhancements, whereas 30% of the studies evaluating acute effects of dual tasks on posture reported significant enhancements, 50% reported significant decrements, and 20% reported no effects. Meta-analysis of the pooled studies revealed moderate but significant enhancements of dual-task training in elderly participants (95% CI: 1.16–2.10) and in patients suffering from chronic stroke (−0.22 to 0.86). The adverse effects of complexity of dual tasks on postural stability were also revealed among patients with multiple sclerosis (−0.74 to 0.05). The review also discusses the significance of verbalization in a dual-task setting for increasing cognitive–motor interference. Clinical implications are discussed with respect to practical applications in rehabilitation settings. PMID:28356727
Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O
2017-01-01
The use of dual-task training paradigm to enhance postural stability in patients with balance impairments is an emerging area of interest. The differential effects of dual tasks and dual-task training on postural stability still remain unclear. A systematic review and meta-analysis were conducted to analyze the effects of dual task and training application on static and dynamic postural stability among various population groups. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, from inception until June 2016, on the online databases Scopus, PEDro, MEDLINE, EMBASE, and SportDiscus. Experimental studies analyzing the effects of dual task and dual-task training on postural stability were extracted, critically appraised using PEDro scale, and then summarized according to modified PEDro level of evidence. Of 1,284 records, 42 studies involving 1,480 participants met the review's inclusion criteria. Of the studies evaluating the effects of dual-task training on postural stability, 87.5% of the studies reported significant enhancements, whereas 30% of the studies evaluating acute effects of dual tasks on posture reported significant enhancements, 50% reported significant decrements, and 20% reported no effects. Meta-analysis of the pooled studies revealed moderate but significant enhancements of dual-task training in elderly participants (95% CI: 1.16-2.10) and in patients suffering from chronic stroke (-0.22 to 0.86). The adverse effects of complexity of dual tasks on postural stability were also revealed among patients with multiple sclerosis (-0.74 to 0.05). The review also discusses the significance of verbalization in a dual-task setting for increasing cognitive-motor interference. Clinical implications are discussed with respect to practical applications in rehabilitation settings.
The Balance Control of Children with and without Hearing Impairment in Singapore--A Case Study
ERIC Educational Resources Information Center
Jernice, Tan Sing Yee; Nonis, Karen P.; Yi, Chow Jia
2011-01-01
The purpose of this study is to compare the balance control of participants with and without HI and also to investigate the effect of a Balance Programme (BP) on their balance control (HI; n = 2, M age = 7 years old). The BP consisted of six practice sessions of 45 minutes each. The Balance Tasks used to assess balance control were static Balance…
Mikolajczyk, Edyta; Jankowicz-Szymanska, Agnieszka
2015-03-01
Maintaining postural balance, overcoming visual and motor coordination disorders and experiencing problems with low general fitness - typical of intellectually disabled individuals - adversely affect the performance quality of their activities of daily living (ADLs). Physical fitness and postural balance can be improved by taking part in special intervention programs. Our study was designed to test whether extending the dual-task intervention program (combining ADLs with balance exercises on unstable surfaces) from 12 to 24 weeks additionally improved postural balance in individuals with intellectual disability (ID). We also attempted to assess whether the effects of the above intervention program were still noticeable after 8 weeks of holidays, in which participants did not take any rehabilitation exercises. A total of 34 adolescents, aged 14-16 years (15.06±0.9), with moderate ID took part in our study. The experimental group (E) consisted of 17 individuals, who continued the intervention program originated 3 months earlier, and the control group (C) comprised the same number of participants. Postural balance was assessed on a stabilometric platform Alfa. Having extended the workout period by another 12 weeks, we noticed that the path length of the center of pressure (COP) covered by participants on tests with their eyes open and closed significantly shortened. After a lapse of 8 weeks from the completion of the program, the experimental group revealed a statistically significant decrease in the velocity along the medio-lateral (M/L) and anterior-posterior (A/P) axes. The remaining variables stayed at the same level and the control group did not demonstrate any statistically significant changes. Dual-task exercises, in which enhancing functional tasks of daily living is combined with a parallel stimulation of balance reactions, may improve static balance in persons with ID. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Medellin-Azuara, J.; Morande, J. A.; Jin, Y.; Chen, Y.; Paw U, K. T.; Viers, J. H.
2016-12-01
Traditional methods for estimating consumptive water use as evapotranspiration (ET) for agriculture in areas with water limitations such as California have always been a challenge for farmers, water managers, researchers and government agencies. Direct measurement of evapotranspiration (ET) and crop water stress in agriculture can be a cumbersome and costly task. Furthermore, spatial variability of applied water and irrigation and stress level in crops, due to inherent heterogeneity in soil conditions, topography, management practices, and lack of uniformity in water applications may affect estimates water use efficiency and water balances. This situation difficult long-term management of agroecosystems. This paper presents a case study for various areas in California's Central Valley using Unmanned Aerial Vehicles (UAVs) for a late portion of the 2016 irrigation season These estimates are compared those obtained by direct measurement (from previously deployed stations), and energy balance approaches with remotely sensed data in a selection of field crop parcels. This research improves information on water use and site conditions in agriculture by enhancing remote sensing-based estimations through the use of higher resolution multi-spectral and thermal imagery captured by UAV. We assess whether more frequent information at higher spatial resolution from UAVs can improve estimations of overall ET through energy balance and imagery. Stress levels and ET are characterized spatially to examine irrigation practices and their performance to improve water use in the agroecosystem. Ground based data such as air and crop temperature and stem water potential is collected to validate UAV aerial measurements. Preliminary results show the potential of UAV technology to improve timing, resolution and accuracy in the ET estimation and assessment of crop stress at a farm scales. Side to side comparison with ground level stations employing surface renewal, eddy covariance and energy balance provides a testbed to improve understanding of consumptive use and crop water management in water scarce irrigated agriculture regions. Keywords. California Central Valley, Agricultural Water Use, Remote Sensing, Energy Balance, Evapotranspiration, Water management,
Striking the Right Balance: Motor Difficulties in Children and Adults with Dyslexia
ERIC Educational Resources Information Center
Brookes, Rebecca L.; Tinkler, Susie; Nicolson, Roderick I.; Fawcett, Angela J.
2010-01-01
Balance difficulties are an enduring feature of dyslexia research, however results have been inconsistent. We propose that between-study heterogeneity may be attributable to variability in balance tasks, balance measurement, participant age, and inclusion of comorbid disorders such as ADHD. This study attempted to clarify these issues, employing…
Batista, Wagner Oliveira; Alves, Edmundo de Drummond; Porto, Flávia; Pereira, Fabio Dutra; Santana, Rosimere Ferreira; Gurgel, Jonas Lírio
2014-01-01
OBJECTIVE: to ascertain the influence of the length of institutionalization on older adults' balance and risk of falls. METHOD: to evaluate the risk of falls, the Berg Balance Scale and the Timed Get Up and Go test were used; and for measuring postural balance, static stabilometry was used, with acquisition of the elliptical area of 95% and mean velocities on the x and y axes of center of pressure displacement. Parametric and nonparametric measures of association and comparison (α<0.05) were used. RESULTS: there was no significant correlation between the length of institutionalization and the tests for evaluation of risk of falling, neither was there difference between groups and within subgroups, stratified by length of institutionalization and age. In the stabilometric measurements, there was a negative correlation between the parameters analyzed and the length of institutionalization, and difference between groups and within subgroups. CONCLUSION: this study's results point to the difficulty of undertaking postural control tasks, showing a leveling below the clinical tests' reference scores. In the stabilometric behavior, one should note the reduction of the parameters as the length of institutionalization increases, contradicting the assumptions. This study's results offer support for the development of a multi-professional model for intervention with the postural control and balance of older adults living in homes for the aged. PMID:25296149
Simulations of Stagewise Development with a Symbolic Architecture
NASA Astrophysics Data System (ADS)
Gobet, Fernand
This chapter compares Piaget's theory of development with Feigenbaum & Simon's (1962; 1984) EPAM theory. An attempt is made to map the concepts of assimilation and accommodation in Piaget's theory onto the concepts of familiarisation and accommodation in EPAM. An EPAM-like model of the balance scale task is then presented, with a discussion of preliminary results showing how it accounts for children's discontinuous, stage-like development. The analysis focuses on the transition between rules, using catastrophe flags (Gilmore, 1981) as criteria. It is argued that some symbolic models may be described as dynamical systems, in the same way as some non-symbolic models.
Balance and muscle power of children with Charcot-Marie-Tooth.
Silva, Tais R; Testa, Amanda; Baptista, Cyntia R J A; Marques, Wilson; Mattiello-Sverzut, Ana C
2014-01-01
In certain diseases, functional constraints establish a greater relationship with muscle power than muscle strength. However, in hereditary peripheral polyneuropathies, no such relationship was found in the literature. In children with Charcot-Marie-Tooth (CMT), to identify the impact of muscle strength and range of movement on the static/dynamic balance and standing long jump based on quantitative and functional variables. The study analyzed 19 participants aged between 6 and 16 years, of both genders and with clinical diagnoses of CMT of different subtypes. Anthropometric data, muscle strength of the lower limbs (hand-held dynamometer), ankle and knee range of movement, balance (Pediatric Balance Scale) and standing long jump distance were obtained by standardized procedures. For the statistical analysis, Pearson and Spearman correlation coefficients were used. There was a strong positive correlation between balance and the muscle strength of the right plantar flexors (r=0.61) and dorsiflexors (r=0.59) and a moderate correlation between balance and the muscle strength of inversion (r=0.41) and eversion of the right foot (r=0.44). For the long jump and range of movement, there was a weak positive correlation with right and left plantar flexion (r=0.20 and r=0.12, respectively) and left popliteal angle (r=0.25), and a poor negative correlation with left dorsiflexion (r=-0.15). The data on the patients analyzed suggests that the maintenance of distal muscle strength favors performance during balance tasks, while limitations in the range of movement of the legs seem not to be enough to influence the performance of the horizontal long jump.
Toosizadeh, Nima; Lei, Hong; Schwenk, Michael; Sherman, Scott J; Sternberg, Esther; Mohler, Jane; Najafi, Bijan
2015-01-01
Postural balance and potentially fall risk increases among older adults living with neurological diseases, especially Parkinson's disease (PD). Since conventional therapies such as levodopa or deep brain stimulation may fail to alleviate or may even worsen balance, interest is growing in evaluating alternative PD therapies. The purpose of the current study was to assess improvement in postural balance in PD patients following electroacupuncture (EA) as an alternative therapy. 15 aging adults (71.2 ± 6.3 years) with idiopathic PD and 44 healthy age-matched participants (74.6 ± 6.5 years) were recruited. The PD participants were randomly assigned (at a ratio of 2:1) to an intervention (n = 10) or to a control group (n = 5). The intervention group received a 30-min EA treatment on a weekly basis for 3 weeks, while the control group received a sham treatment. Outcomes were assessed at baseline and after the final therapy. Measurements included balance assessment, specifically the ratio of medial-lateral (ML) center-of-gravity (COG) sway to anterior-posterior (AP) sway (COGML/AP) and ankle/hip sway during eyes-open, eyes-closed, and eyes-open dual-task trials, the Unified Parkinson's Disease Rating Scale (UPDRS), as well as quality of life, concerns for fall, and pain questionnaires. No difference was observed for the assessed parameters between the intervention and the control group at baseline. After treatment, an improvement in balance performance was observed in the intervention group. Compared with the healthy population, PD patients prior to treatment had larger COGML/AP sway with more dependency on upper-body movements for maintaining balance. Following EA therapy, COGML/AP sway was reduced by 31% and ankle/hip sway increased by 46% in the different conditions (p = 0.02 for the dual-task condition). The clinical rating revealed an overall improvement (p < 0.01) in mentation, behavior, and mood (UPDRS part I, 49%), activities of daily living (UPDRS part II, 46%), and motor examination (UPDRS part III, 40%). There was a significant reduction (p < 0.02) in the specific items regarding UPDRS fall status (67%) and rigidity (48%). Changes were small and nonsignificant in the controls (p > 0.29). This pilot study demonstrates improvement in rigidity and balance following EA. These preliminary results suggest EA could be a promising alternative treatment for balance disturbance in PD. © 2014 S. Karger AG, Basel.
Schwenk, Michael; Grewal, Gurtej S; Holloway, Dustin; Muchna, Amy; Garland, Linda; Najafi, Bijan
2016-01-01
Cancer patients with chemotherapy-induced peripheral neuropathy (CIPN) have deficits in sensory and motor skills leading to inappropriate proprioceptive feedback, impaired postural control, and fall risk. Balance training programs specifically developed for CIPN patients are lacking. This pilot study investigated the effect of an interactive motor adaptation balance training program based on wearable sensors for improving balance in older cancer patients with CIPN. Twenty-two patients (age: 70.3 ± 8.7 years) with objectively confirmed CIPN [vibration perception threshold (VPT) >25 V] were randomized to either an intervention (IG) or a control (CG) group. The IG received interactive game-based balance training including repetitive weight shifting and virtual obstacle crossing tasks. Wearable sensors provided real-time visual/auditory feedback from the lower limb trajectory and allowed the perception of motor errors during each motor action. The CG received no exercise intervention and continued their normal activity. Outcome measures were changes in sway of ankle, hip, and center of mass (CoM) in both mediolateral and anteroposterior (AP) directions during 30-second balance tests with increasing task difficulty [i.e. standing in feet-closed position with eyes open (EO) and eyes closed (EC), and in semi-tandem position with EO] at baseline and after the intervention. Additionally, gait performance (speed, variability) and fear of falling [Falls Efficacy Scale-International (FES-I)] were measured. Training was safe despite the participants' impaired health status, great severity of CIPN (VPT 49.6 ± 26.7 V), and great fear of falling (FES-I score 31.37 ± 11.20). After the intervention, sway of hip, ankle, and CoM was significantly reduced in the IG compared to the CG while standing in feet-closed position with EO (p = 0.010-0.022, except AP CoM sway) and in semi-tandem position (p = 0.008-0.035, except ankle sway). No significant effects were found for balance with EC, gait speed, and FES-I score (p > 0.05). This proof-of-concept study demonstrates that older cancer patients with CIPN can significantly improve their postural balance with specifically tailored, sensor-based exercise training. The training approach has potential as a therapy for improving CIPN-related postural control deficits. However, future studies comparing the proposed technology-based training with traditional balance training are required to evaluate the benefit of the interactive joint movement feedback. © 2015 S. Karger AG, Basel.
Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik
2016-02-01
Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training-progression styles. To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Randomized controlled trial. Research laboratory. A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults.
Classification as clustering: a Pareto cooperative-competitive GP approach.
McIntyre, Andrew R; Heywood, Malcolm I
2011-01-01
Intuitively population based algorithms such as genetic programming provide a natural environment for supporting solutions that learn to decompose the overall task between multiple individuals, or a team. This work presents a framework for evolving teams without recourse to prespecifying the number of cooperating individuals. To do so, each individual evolves a mapping to a distribution of outcomes that, following clustering, establishes the parameterization of a (Gaussian) local membership function. This gives individuals the opportunity to represent subsets of tasks, where the overall task is that of classification under the supervised learning domain. Thus, rather than each team member representing an entire class, individuals are free to identify unique subsets of the overall classification task. The framework is supported by techniques from evolutionary multiobjective optimization (EMO) and Pareto competitive coevolution. EMO establishes the basis for encouraging individuals to provide accurate yet nonoverlaping behaviors; whereas competitive coevolution provides the mechanism for scaling to potentially large unbalanced datasets. Benchmarking is performed against recent examples of nonlinear SVM classifiers over 12 UCI datasets with between 150 and 200,000 training instances. Solutions from the proposed coevolutionary multiobjective GP framework appear to provide a good balance between classification performance and model complexity, especially as the dataset instance count increases.
Mental body transformation deficits in patients with chronic balance disorders.
Allum, J H J; Langewitz, W; Sleptsova, M; Welge-Luessen, A; Honegger, F; Schatz, T H; Biner, C L; Maguire, C; Schmid, D A
2017-01-01
Movements may be generated consistent with imagining one's own body transformed or "disembodied" to a new position. Based on this concept we hypothesized that patients with objective balance deficits (obj-BD) would have altered neural transformation processes executing own body transformation (OBT) with functional consequences on balance control. Also we examined whether feeling unstable due to dizziness only (DO), without an obj-BD, also lead to an impaired OBT. 32 patients with chronic dizziness were tested: 16 patients with obj-BD as determined by balance control during a sequence of stance and gait tasks, 16 patients with dizziness only (DO). Patients and 9 healthy controls (HCs) were asked to replicate roll trunk movements of an instructor in a life size video: first, with spontaneously copied (SPO) or "embodied" egocentric movements (lean when the instructor leans); second, with "disembodied" or "transformed" movements (OBT) with exact replication - lean left when the instructor leans left. Onset latency of trunk roll, rise time to peak roll angle (interval), roll velocity, and amplitude were measured. SPO movements were always mirror-imaged. OBT task latencies were significantly longer and intervals shorter than for SPO tasks (p < 0.03) for all groups. Obj-BD but not DO patients had more errors for the OBT task and, compared to HCs, had longer onset latencies (p < 0.05) and smaller velocities (p < 0.003) and amplitudes (p < 0.001) in both the SPO and OBT tasks. Measures of DO patients were not significantly different from those of HCs. Mental transformation (OBT) and SPO copying abilities are impaired in subjects with obj-BD and dizziness, but not with dizziness only. We conclude that processing the neuropsychological representation of the human body (body schema) slows when balance control is deficient.
Toulotte, Claire; Thevenon, Andre; Fabre, Claudine
2006-01-30
The aim of this study was to evaluate the effects of training based on static and dynamic balance in single and dual task conditions in order to analyse the effects of detraining on static and dynamic balance in healthy elderly fallers and non-fallers. A group of 16 subjects were trained: eight fallers aged 71.1 +/- 5.0 years and eight non-fallers aged 68.4 +/- 4.5 years. The subjects were evaluated 3 months before the training period, 2 days before the training period, 2 days after the end of the training period and 3 months after the training period. All subjects performed a unipedal test with eyes open and eyes closed. Gait parameters were analysed under single-task and dual motor-task conditions. This study demonstrated a loss of physical capacities over 3 months for stride time, single support time for fallers in both conditions. Physical training significantly improves static and dynamic balance under single and dual task conditions. Lastly, after 3 months of detraining, a loss of the physical training effects were measured for fallers and non-fallers on the different walking parameters in the two conditions and on the unipedal tests. The absence of stimulation before the trained period shows a negative effect of ageing on walking and falls whereas training permits an improvement in static balance and the pattern of walking under single and dual task conditions, which could be due to an increase in muscular strength and a better division of attention. On the other hand, 3 months of detraining inhibited the effects of training, which showed the speed of the decline caused by 'natural' ageing.
Dettmer, Marius; Pourmoghaddam, Amir; Lee, Beom-Chan; Layne, Charles S
2015-01-01
Postural control in certain situations depends on functioning of tactile or proprioceptive receptors and their respective dynamic integration. Loss of sensory functioning can lead to increased risk of falls in challenging postural tasks, especially in older adults. Stochastic resonance, a concept describing better function of systems with addition of optimal levels of noise, has shown to be beneficial for balance performance in certain populations and simple postural tasks. In this study, we tested the effects of aging and a tactile stochastic resonance stimulus (TSRS) on balance of adults in a sensory conflict task. Nineteen older (71-84 years of age) and younger participants (22-29 years of age) stood on a force plate for repeated trials of 20 s duration, while foot sole stimulation was either turned on or off, and the visual surrounding was sway-referenced. Balance performance was evaluated by computing an Equilibrium Score (ES) and anterior-posterior sway path length (APPlength). For postural control evaluation, strategy scores and approximate entropy (ApEn) were computed. Repeated-measures ANOVA, Wilcoxon signed-rank tests, and Mann-Whitney U-tests were conducted for statistical analysis. Our results showed that balance performance differed between older and younger adults as indicated by ES (p = 0.01) and APPlength (0.01), and addition of vibration only improved performance in the older group significantly (p = 0.012). Strategy scores differed between both age groups, whereas vibration only affected the older group (p = 0.025). Our results indicate that aging affects specific postural outcomes and that TSRS is beneficial for older adults in a visual sensory conflict task, but more research is needed to investigate the effectiveness in individuals with more severe balance problems, for example, due to neuropathy.
Hallock, Michael J.; Stone, John E.; Roberts, Elijah; Fry, Corey; Luthey-Schulten, Zaida
2014-01-01
Simulation of in vivo cellular processes with the reaction-diffusion master equation (RDME) is a computationally expensive task. Our previous software enabled simulation of inhomogeneous biochemical systems for small bacteria over long time scales using the MPD-RDME method on a single GPU. Simulations of larger eukaryotic systems exceed the on-board memory capacity of individual GPUs, and long time simulations of modest-sized cells such as yeast are impractical on a single GPU. We present a new multi-GPU parallel implementation of the MPD-RDME method based on a spatial decomposition approach that supports dynamic load balancing for workstations containing GPUs of varying performance and memory capacity. We take advantage of high-performance features of CUDA for peer-to-peer GPU memory transfers and evaluate the performance of our algorithms on state-of-the-art GPU devices. We present parallel e ciency and performance results for simulations using multiple GPUs as system size, particle counts, and number of reactions grow. We also demonstrate multi-GPU performance in simulations of the Min protein system in E. coli. Moreover, our multi-GPU decomposition and load balancing approach can be generalized to other lattice-based problems. PMID:24882911
Expanding a dynamic flux balance model of yeast fermentation to genome-scale
2011-01-01
Background Yeast is considered to be a workhorse of the biotechnology industry for the production of many value-added chemicals, alcoholic beverages and biofuels. Optimization of the fermentation is a challenging task that greatly benefits from dynamic models able to accurately describe and predict the fermentation profile and resulting products under different genetic and environmental conditions. In this article, we developed and validated a genome-scale dynamic flux balance model, using experimentally determined kinetic constraints. Results Appropriate equations for maintenance, biomass composition, anaerobic metabolism and nutrient uptake are key to improve model performance, especially for predicting glycerol and ethanol synthesis. Prediction profiles of synthesis and consumption of the main metabolites involved in alcoholic fermentation closely agreed with experimental data obtained from numerous lab and industrial fermentations under different environmental conditions. Finally, fermentation simulations of genetically engineered yeasts closely reproduced previously reported experimental results regarding final concentrations of the main fermentation products such as ethanol and glycerol. Conclusion A useful tool to describe, understand and predict metabolite production in batch yeast cultures was developed. The resulting model, if used wisely, could help to search for new metabolic engineering strategies to manage ethanol content in batch fermentations. PMID:21595919
Hallock, Michael J; Stone, John E; Roberts, Elijah; Fry, Corey; Luthey-Schulten, Zaida
2014-05-01
Simulation of in vivo cellular processes with the reaction-diffusion master equation (RDME) is a computationally expensive task. Our previous software enabled simulation of inhomogeneous biochemical systems for small bacteria over long time scales using the MPD-RDME method on a single GPU. Simulations of larger eukaryotic systems exceed the on-board memory capacity of individual GPUs, and long time simulations of modest-sized cells such as yeast are impractical on a single GPU. We present a new multi-GPU parallel implementation of the MPD-RDME method based on a spatial decomposition approach that supports dynamic load balancing for workstations containing GPUs of varying performance and memory capacity. We take advantage of high-performance features of CUDA for peer-to-peer GPU memory transfers and evaluate the performance of our algorithms on state-of-the-art GPU devices. We present parallel e ciency and performance results for simulations using multiple GPUs as system size, particle counts, and number of reactions grow. We also demonstrate multi-GPU performance in simulations of the Min protein system in E. coli . Moreover, our multi-GPU decomposition and load balancing approach can be generalized to other lattice-based problems.
[Longevity control in fungi and other organisms. The conception of scales].
Mazheĭka, I S; Kudriavtseva, O A; Kamzolkina, O V
2011-01-01
The review deals mainly with gerontological processes that occur on the cellular-colonial level of organization in fungi and cellular-tissular level in other organisms. Aging and anti-aging mechanisms operating on these levels of organization can be considered as common ones for all living things. Fungi, as an object with tissular-like organization of thallus, afford a broad spectrum of possibilities as to solving the tasks of general gerontological import. Three basic (chronological, replicative, and cell-suicidal) and several auxiliary mechanisms of aging are singled out, the classification is given of stochastic aging factors accumulating in cells. It is shown that in complex multi-cellular organisms, aging and anti-aging mechanisms operate on the level of interactions between tissues, though in the base of their actions lie the aforesaid conservative basic mechanisms. Preliminary generalized conception of aging--the conception of scales--is put forward that is founded on the model of balanced and non-balanced counteractions between stressful impacts and various mechanisms of aging and anti-aging with different extent of genetic preprogramming. The importance is reaffirmed of mycological gerontology contribution to broadening of inferences on aging nature.
Xu, Jiansong; Potenza, Marc N.; Calhoun, Vince D.; Zhang, Rubin; Yip, Sarah W.; Wall, John T.; Pearlson, Godfrey D.; Worhunsky, Patrick D.; Garrison, Kathleen A.; Moran, Joseph M.
2016-01-01
Functional magnetic resonance imaging (fMRI) studies regularly use univariate general-linear-model-based analyses (GLM). Their findings are often inconsistent across different studies, perhaps because of several fundamental brain properties including functional heterogeneity, balanced excitation and inhibition (E/I), and sparseness of neuronal activities. These properties stipulate heterogeneous neuronal activities in the same voxels and likely limit the sensitivity and specificity of GLM. This paper selectively reviews findings of histological and electrophysiological studies and fMRI spatial independent component analysis (sICA) and reports new findings by applying sICA to two existing datasets. The extant and new findings consistently demonstrate several novel features of brain functional organization not revealed by GLM. They include overlap of large-scale functional networks (FNs) and their concurrent opposite modulations, and no significant modulations in activity of most FNs across the whole brain during any task conditions. These novel features of brain functional organization are highly consistent with the brain’s properties of functional heterogeneity, balanced E/I, and sparseness of neuronal activity, and may help reconcile inconsistent GLM findings. PMID:27592153
Wollesen, Bettina; Mattes, Klaus; Schulz, Sören; Bischoff, Laura L; Seydell, L; Bell, Jeffrey W; von Duvillard, Serge P
2017-01-01
Background: Dual-task (DT) training is a well-accepted modality for fall prevention in older adults. DT training should include task-managing strategies such as task switching or task prioritization to improve gait performance under DT conditions. Methods: We conducted a randomized controlled trial to evaluate a balance and task managing training (BDT group) in gait performance compared to a single task (ST) strength and resistance training and a control group, which received no training. A total of 78 older individuals (72.0 ± 4.9 years) participated in this study. The DT group performed task managing training incorporating balance and coordination tasks while the ST group performed resistance training only. Training consisted of 12 weekly sessions, 60 min each, for 12 weeks. We assessed the effects of ST and BDT training on walking performance under ST and DT conditions in independent living elderly adults. ST and DT walking (visual verbal Stroop task) were measured utilizing a treadmill at self-selected walking speed (mean for all groups: 4.4 ± 1 km h -1 ). Specific gait variables, cognitive performance, and fear of falling were compared between all groups. > Results: Training improved gait performance for step length ( p < 0.001) and gait-line (ST: p < 0.01; DT p < 0.05) in both training groups. The BDT training group showed greater improvements in step length ( p < 0.001) and gait-line ( p < 0.01) during DT walking but did not have changes in cognitive performance. Both interventions reduced fear of falling ( p < 0.05). Conclusion: Implementation of task management strategies into balance and strength training in our population revealed a promising modality to prevent falls in older individuals. Trial registration: German register of clinical trials DRKS00012382.
Assessment of postural balance function.
Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz
2009-01-01
Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers.
Posture and cognition in the elderly: interaction and contribution to the rehabilitation strategies.
Borel, L; Alescio-Lautier, B
2014-01-01
In this paper we review the effects of aging on sensory systems and their impact on posture, balance and gait. We also address cognitive aging and attempt to specify which altered cognitive functions negatively impact balance and walking. The role of cognition in postural control is tested with dual-task experiments. This situation results in deleterious effects due to an attentional overload. Given the human cognitive system has limited capacities, we propose that simultaneously performing two tasks depends on the capacity of each individual to perform these tasks on a continuum between automatic execution to highly controlled performance. A level of maximum control exceeds the subject's attentional capacity, which makes it impossible to perform both tasks simultaneously. The subject therefore prioritizes one of the tasks. We use representative dual-task studies from the literature to illustrate the relationship between the different cognitive components and their impact on the control of posture and gait in elderly subjects with altered cognitive capacities and with elderly subjects who are fallers or who have altered sensory-motor capacities. Recently this postural-cognitive relationship was addressed with a new approach. We report how cognitive training can improve dual-task management and we attempt to define the cognitive mechanisms that may be responsible for better postural balance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
McCrea, Simon M.; Robinson, Thomas P.
2011-01-01
In this study, five consecutive patients with focal strokes and/or cortical excisions were examined with the Wechsler Adult Intelligence Scale and Wechsler Memory Scale—Fourth Editions along with a comprehensive battery of other neuropsychological tasks. All five of the lesions were large and typically involved frontal, temporal, and/or parietal lobes and were lateralized to one hemisphere. The clinical case method was used to determine the cognitive neuropsychological correlates of mental rotation (Visual Puzzles), Piagetian balance beam (Figure Weights), and visual search (Cancellation) tasks. The pattern of results on Visual Puzzles and Figure Weights suggested that both subtests involve predominately right frontoparietal networks involved in visual working memory. It appeared that Visual Puzzles could also critically rely on the integrity of the left temporoparietal junction. The left temporoparietal junction could be involved in temporal ordering and integration of local elements into a nonverbal gestalt. In contrast, the Figure Weights task appears to critically involve the right temporoparietal junction involved in numerical magnitude estimation. Cancellation was sensitive to left frontotemporal lesions and not right posterior parietal lesions typical of other visual search tasks. In addition, the Cancellation subtest was sensitive to verbal search strategies and perhaps object-based attention demands, thereby constituting a unique task in comparison with previous visual search tasks. PMID:22389807
Challenging Postural Tasks Increase Asymmetry in Patients with Parkinson’s Disease
Beretta, Victor Spiandor; Gobbi, Lilian Teresa Bucken; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Barbieri, Fabio Augusto
2015-01-01
The unilateral predominance of Parkinson’s disease (PD) symptoms suggests that balance control could be asymmetrical during static tasks. Although studies have shown that balance control asymmetries exist in patients with PD, these analyses were performed using only simple bipedal standing tasks. Challenging postural tasks, such as unipedal or tandem standing, could exacerbate balance control asymmetries. To address this, we studied the impact of challenging standing tasks on postural control asymmetry in patients with PD. Twenty patients with PD and twenty neurologically healthy individuals (control group) participated in this study. Participants performed three 30s trials for each postural task: bipedal, tandem adapted and unipedal standing. The center of pressure parameter was calculated for both limbs in each of these conditions, and the asymmetry between limbs was assessed using the symmetric index. A significant effect of condition was observed, with unipedal standing and tandem standing showing greater asymmetry than bipedal standing for the mediolateral root mean square (RMS) and area of sway parameters, respectively. In addition, a group*condition interaction indicated that, only for patients with PD, the unipedal condition showed greater asymmetry in the mediolateral RMS and area of sway than the bipedal condition and the tandem condition showed greater asymmetry in the area of sway than the bipedal condition. Patients with PD exhibited greater asymmetry while performing tasks requiring postural control when compared to neurologically healthy individuals, especially for challenging tasks such as tandem and unipedal standing. PMID:26367032
Alsubiheen, Abdulrahman; Petrofsky, Jerrold; Daher, Noha; Lohman, Everett; Balbas, Edward
2015-01-01
Background One of the effects of diabetes mellitus (DM), peripheral neuropathy, affects the sensation in the feet and can increase the chance of falling. The purpose of the study was to investigate the effect of 8 weeks of Tai Chi (TC) training combined with mental imagery (MI) on improving balance in people with diabetes and an age matched control group. Material/Methods Seventeen healthy subjects and 12 diabetic sedentary subjects ranging from 40–80 years of age were recruited. All subjects in both groups attended a Yang style of TC class using MI strategies, 2 sessions a week for 8 weeks. Each session was one hour long. Measures were taken using a balance platform test, an Activities-specific Balance Confidence (ABC) Scale, a one leg standing test (OLS), functional reach test (FRT) and hemoglobin A1C. These measures were taken twice, pre and post-study, for both groups. Results Both groups experienced significant improvements in ABC, OLS, FRT (P<0.01) after completing 8 weeks of TC exercise with no significant improvement between groups. Subjects using the balance platform test demonstrated improvement in balance in all different tasks with no significant change between groups. There was no significant change in HbA1C for the diabetic group. Conclusions All results showed an improvement in balance in the diabetic and the control groups; however, no significant difference between the groups was observed. Since the DM group had more problems with balance impairment at baseline than the control, the diabetic group showed the most benefit from the TC exercise. PMID:26454826
Vestibular control of standing balance is enhanced with increased cognitive load.
McGeehan, Michael A; Woollacott, Marjorie H; Dalton, Brian H
2017-04-01
When cognitive load is elevated during a motor task, cortical inhibition and reaction time are increased; yet, standing balance control is often unchanged. This disconnect is likely explained by compensatory mechanisms within the balance system such as increased sensitivity of the vestibulomotor pathway. This study aimed to determine the effects of increased cognitive load on the vestibular control of standing balance. Participants stood blindfolded on a force plate with their head facing left and arms relaxed at their sides for two trials while exposed to continuous electrical vestibular stimulation (EVS). Participants either stood quietly or executed a cognitive task (double-digit arithmetic). Surface electromyography (EMG) and anterior-posterior ground-body forces (APF) were measured in order to evaluate vestibular-evoked balance responses in the frequency (coherence and gain) and time (cumulant density) domains. Total distance traveled for anterior-posterior center of pressure (COP) was assessed as a metric of balance variability. Despite similar distances traveled for COP, EVS-medial gastrocnemius (MG) EMG and EVS-APF coherence and EVS-TA EMG and EVS-MG EMG gain were elevated for multiple frequencies when standing with increased cognitive load. For the time domain, medium-latency peak amplitudes increased by 13-54% for EVS-APF and EVS-EMG relationships with the cognitive task compared to without. Peak short-latency amplitudes were unchanged. These results indicate that reliance on vestibular control of balance is enhanced when cognitive load is elevated. This augmented neural strategy may act to supplement divided cortical processing resources within the balance system and compensate for the acute neuromuscular modifications associated with increased cognitive demand.
Motor learning benefits of self-controlled practice in persons with Parkinson's disease.
Chiviacowsky, Suzete; Wulf, Gabriele; Lewthwaite, Rebecca; Campos, Tiago
2012-04-01
The present study examined the effectiveness of a training method to enhance balance in people with PD, which could potentially reduce their risk for falls. Specifically, we investigated whether the benefits of the self-controlled use of a physical assistance device for the learning of a balance task, found previously in healthy adults, would generalize to adults with PD. Twenty-eight individuals with PD were randomly assigned to one of two groups, a self-control and a yoked (control) group. The task required participants to stand on a balance platform (stabilometer), trying to keep the platform as close to horizontal as possible during each 30-s trial. In the self-control group, participants had a choice, on each of 10 practice trials, to use or not to use a balance pole. Participants in the yoked group received the same balance pole on the schedule used by their counterparts in the self-control group, but did not have a choice. Learning was assessed one day later by a retention test. The self-control group demonstrated more effective learning of the task than the yoked group. Questionnaire results indicated that self-control participants were more motivated to learn the task, were less nervous, and less concerned about their body movements relative to yoked participants. Possible reasons for the learning benefits of self-controlled practice, including a basic psychological need for autonomy, are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Renner, Caroline Ie; Outermans, Jacqueline; Ludwig, Ricarda; Brendel, Christiane; Kwakkel, Gert; Hummelsheim, Horst
2016-07-01
To compare the efficacy of intensive daily applied progressive group therapy task training with equally dosed individual progressive task training on self-reported mobility for patients with moderate to severe stroke during inpatient rehabilitation. Randomized controlled clinical trial. In-patient rehabilitation center. A total of 73 subacute patients with stroke who were not able to walk without physical assistance at randomisation. Patients were allocated to group therapy task training (GT) or individual task training (IT). Both interventions were intended to improve walking competency and comprised 30 sessions of 90 minutes over six weeks. Primary outcome was the mobility domain of the Stroke Impact Scale (SIS-3.0). Secondary outcomes were the other domains of SIS-3.0, standing balance, gait speed, walking distance, stair climbing, fatigue, anxiety and depression. No adverse events were reported in either arm of the trial. There were no significant differences between groups for the SIS mobility domain at the end of the intervention (Z= -0.26, P = 0.79). No significant differences between groups were found in gait speed improvements (GT:0.38 ±0.23; IT:0.26±0.35), any other gait related parameters, or in non-physical outcomes such as depression and fatigue. Inpatient group therapy task training for patients with moderate to severe stroke is safe and equally effective as a dose-matched individual task training therapy. Group therapy task training may be delivered as an alternative to individual therapy or as valuable adjunct to increase time spent in gait-related activities. © The Author(s) 2015.
Wang, Jiexin; Uchibe, Eiji; Doya, Kenji
2017-01-01
EM-based policy search methods estimate a lower bound of the expected return from the histories of episodes and iteratively update the policy parameters using the maximum of a lower bound of expected return, which makes gradient calculation and learning rate tuning unnecessary. Previous algorithms like Policy learning by Weighting Exploration with the Returns, Fitness Expectation Maximization, and EM-based Policy Hyperparameter Exploration implemented the mechanisms to discard useless low-return episodes either implicitly or using a fixed baseline determined by the experimenter. In this paper, we propose an adaptive baseline method to discard worse samples from the reward history and examine different baselines, including the mean, and multiples of SDs from the mean. The simulation results of benchmark tasks of pendulum swing up and cart-pole balancing, and standing up and balancing of a two-wheeled smartphone robot showed improved performances. We further implemented the adaptive baseline with mean in our two-wheeled smartphone robot hardware to test its performance in the standing up and balancing task, and a view-based approaching task. Our results showed that with adaptive baseline, the method outperformed the previous algorithms and achieved faster, and more precise behaviors at a higher successful rate. PMID:28167910
Task Force II: Energy and Its Socioeconomic Impacts
ERIC Educational Resources Information Center
Appalachia, 1977
1977-01-01
Summarizing the Task Force Issues Paper presented at the Appalachian Conference on Balanced Growth and Economic Development (1977), this article presents selected comments by Task Force participants, and Task Force recommendations re: a national severence tax on extraction of nonrenewable energy resources; socioeconomic costs of nuclear energy; a…
Task Complexity and Modality: Exploring Learners' Experience from the Perspective of Flow
ERIC Educational Resources Information Center
Cho, Minyoung
2018-01-01
Despite an increased awareness of language learner performance in task-based instruction, little is known about how learners perceive and respond to different task factors. This study investigates the effects of task complexity and modality on (a) learners' perception of task difficulty, skill, and its balance, and on (b) learners' task…
Herman, Talia; Inbar-Borovsky, Noit; Brozgol, Marina; Giladi, Nir; Hausdorff, Jeffrey M
2009-02-01
The Dynamic Gait Index (DGI) was developed as a clinical tool to assess gait, balance and fall risk. Because the DGI evaluates not only usual steady-state walking, but also walking during more challenging tasks, it may be an especially sensitive test. The present investigation evaluated the DGI and its association with falls, fear of falling, depression, anxiety and other measures of balance and mobility in 278 healthy elderly individuals. Measures included the DGI, the Berg Balance Test (BBT), the Timed Up and Go (TUAG), the Mini-Mental State Exam (MMSE), the Unified Parkinson's Disease Rating Scale (UPDRS) motor part, the Activities-specific Balance Confidence (ABC) scale and the number of annual falls. The DGI was moderately correlated with the BBT (r=0.53; p<0.001), the TUAG (r=-0.42; p<0.001) and the ABC (r=0.49; p<0.001). Fallers performed worse on the DGI compared to non-fallers (p=0.029). Scores on the DGI were near perfect in men (23.3+/-1.2), but among women, there was a small, but significant (p<0.001) decrease (22.5+/-1.6). The reduction in the DGI score in women was due to stair climbing performance, with many women (65%) choosing to walk while holding a handrail, compared to only 39% of men. Scores on the BBT, the TUAG, the UPDRS and the MMSE were similar in men and women. Conversely, ABC scores and fall history were different. These findings suggest that the DGI, although susceptible to ceiling effects, appears to be an appropriate tool for assessing function in healthy older adults.
Young, Sonia N; VanWye, William R; Wallmann, Harvey W
2018-06-25
To describe the use of sport simulation activities as a form of implicit motor learning training with a geriatric former athlete following a stroke. An active 76-year-old former professional male softball player presented to outpatient physical therapy with medical history of right stroke with left hemiparesis 2 weeks following onset of symptoms of impaired balance, coordination, gait, and motor planning. Initial physical therapy included gait, balance, and coordination training. Additional sport-related balance and coordination activities were later added to the treatment plan. After approximately 3 weeks of treatment, the patient was able to return to work and had dramatically improved balance, coordination, and gait with sport simulation activities. Implicit motor learning techniques were incorporated through sport and job task simulation activities along with task-oriented neuromuscular reeducation. The patient demonstrated improvements with gait, balance, gross motor function, and decreased fall risk.
Woytowicz, Elizabeth J; Sours, Chandler; Gullapalli, Rao P; Rosenberg, Joseph; Westlake, Kelly P
2018-01-01
Balance and gait deficits can persist after mild traumatic brain injury (TBI), yet an understanding of the underlying neural mechanism remains limited. The purpose of this study was to investigate differences in attention network modulation in patients with and without balance impairments 2-8 weeks following mild TBI. Using functional magnetic resonance imaging, we compared activity and functional connectivity of cognitive brain regions of the default mode, central-executive and salience networks during a 2-back working memory task in participants with mild TBI and balance impairments (n = 7, age 47 ± 15 years) or no balance impairments (n = 7, age 47 ± 15 years). We first identified greater activation in the lateral occipital cortex in the balance impaired group. Second, we observed stronger connectivity of left pre-supplementary motor cortex in the balance impaired group during the working memory task, which was related to decreased activation of regions within the salience and central executive networks and greater suppression of the default mode network. Results suggest a link between impaired balance and modulation of cognitive resources in patients in mTBI. Findings also highlight the potential importance of moving beyond traditional balance assessments towards an integrative assessment of cognition and balance in this population.
Plummer, Prudence; Eskes, Gail; Wallace, Sarah; Giuffrida, Clare; Fraas, Michael; Campbell, Grace; Clifton, Kerrylee; Skidmore, Elizabeth R
2013-12-01
Cognitive-motor interference (CMI) is evident when simultaneous performance of a cognitive task and a motor task results in deterioration in performance in one or both of the tasks, relative to performance of each task separately. The purpose of this review is to present a framework for categorizing patterns of CMI and to examine the specific patterns of CMI evident in published studies comparing single-task and dual-task performance of cognitive and motor tasks during gait and balance activities after stroke. We also examine the literature for associations between patterns of CMI and a history of falls, as well as evidence for the effects of rehabilitation on CMI after stroke. Overall, this review suggests that during gait activities with an added cognitive task, people with stroke are likely to demonstrate significant decrements in motor performance only (cognitive-related motor interference), or decrements in both motor and cognitive performance (mutual interference). In contrast, patterns of CMI were variable among studies examining balance activities. Comparing people poststroke with and without a history of falls, patterns and magnitude of CMI were similar for fallers and nonfallers. Longitudinal studies suggest that conventional rehabilitation has minimal effects on CMI during gait or balance activities. However, early-phase pilot studies suggest that dual-task interventions may reduce CMI during gait performance in community-dwelling stroke survivors. It is our hope that this innovative and critical examination of the existing literature will highlight the limitations in current experimental designs and inform improvements in the design and reporting of dual-task studies in stroke. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
2009-06-01
Jefferson City, MO Phone:573-681-5126 E-mail: rooneyi(a>lincolnu.edu Principle Investigators for contract’s 5 Task Areas: Task I : James Rooney...identified Tasks all structured within a single contract. This contract contained Five Task areas: Task I was an administrative task; Task II-V were...Manager’s Overview of the Report (Task I ) 3. Summary Final Budget Invoice and Budget unspent balance 4. Technical Reports of the Research Tasks (II - V
Sofianidis, George; Dimitriou, Anna-Maria; Hatzitaki, Vassilia
2017-07-01
The present study was designed to compare the effectiveness of exercise programs with Pilates and Latin dance on older adults' static and dynamic balance. Thirty-two older adults were divided into three groups: Pilates group, Dance group, and Control group. Static and dynamic balance was assessed with following tasks: (a) tandem stance, (b) one-leg stance, and (c) periodic sway with and without metronome guidance. Analysis revealed a significant reduction of the trunk sway amplitude during the tandem stance with eyes closed, reduction in the center of pressure (CoP) displacement during one-leg stance, and increase in the amplitude of trunk oscillation during the sway task for both intervention groups, and reduction in the standard deviation of the CoP displacement during the metronome paced task only for the dance group. The differences in specific balance indices between the two programs suggest some specific adaptations that may provide useful knowledge for the selection of exercises that are better tailored to the needs of the old adult.
The effects of concurrent cognitive tasks on postural sway in healthy subjects.
Mujdeci, Banu; Turkyilmaz, Didem; Yagcioglu, Suha; Aksoy, Songul
2016-01-01
Keeping balance of the upright stance is a highly practiced daily task for healthy adults and is effectively performed without overt attentional control in most. The purpose of this study was to examine the influence of concurrent cognitive tasks on postural sway in healthy participants. This was a prospective study. 20 healthy volunteer subjects were included. The cognitive and balance tasks were performed separately and then, concurrently. Postural control task consisted of 6 conditions (C) of the Sensory Organization Test. The cognitive task consisted of digit rehearsal task of varying presentation and varying levels of difficulty. A statistically significant difference was noted between dual task and no task for C1, C2, C3 and C4 Sensory Organization Test scores (p<0.05). There was no statistically significant difference between dual task versus non-task for C5, C6 and combined Sensory Organization Test scores (p>0.05). During dual task, increase has been determined in postural sway for C1, C2, C3 and C4 for all presentation modes and difficulty levels of the cognitive tasks. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Kaewkaen, Kitchana; Wongsamud, Phongphat; Ngaothanyaphat, Jiratchaya; Supawarapong, Papawarin; Uthama, Suraphong; Ruengsirarak, Worasak; Chanabun, Suthin; Kaewkaen, Pratchaya
2018-02-01
The walking gait of older adults with balance impairment is affected by dual tasking. Several studies have shown that external cues can stimulate improvement in older adults' performance. There is, however, no current evidence to support the usefulness of external cues, such as audio-visual cueing, in dual task walking in older adults. Thus, the aim of this study was to investigate the influence of an audio-visual cue (simulated traffic light) on dual task walking in healthy older adults and in older adults with balance impairments. A two-way repeated measures study was conducted on 14 healthy older adults and 14 older adults with balance impairment, who were recruited from the community in Chiang Rai, Thailand. Their walking performance was assessed using a four-metre walking test at their preferred gait speed and while walking under two further gait conditions, in randomised order: dual task walking and dual task walking with a simulated traffic light. Each participant was tested individually, with the testing taking between 15 and 20 minutes to perform, including two-minute rest periods between walking conditions. Two Kinect cameras recorded the spatio-temporal parameters using MFU gait analysis software. Each participant was tested for each condition twice. The mean parameters for each condition were analysed using a two-way repeated measures analysis of variance (ANOVA) with participant group and gait condition as factors. There was no significant between-group effect for walking speed, stride length and cadence. There were also no significant effects between gait condition and stride length or cadence. However, the effect between gait condition and walking speed was found to be significant [F(1.557, 40.485) = 4.568, P = 0.024, [Formula: see text
Shell, Courtney E; Segal, Ava D; Klute, Glenn K; Neptune, Richard R
2017-11-01
Little evidence exists regarding how prosthesis design characteristics affect performance in tasks that challenge mediolateral balance such as turning. This study assesses the influence of prosthetic foot stiffness on amputee walking mechanics and balance control during a continuous turning task. Three-dimensional kinematic and kinetic data were collected from eight unilateral transtibial amputees as they walked overground at self-selected speed clockwise and counterclockwise around a 1-meter circle and along a straight line. Subjects performed the walking tasks wearing three different ankle-foot prostheses that spanned a range of sagittal- and coronal-plane stiffness levels. A decrease in stiffness increased residual ankle dorsiflexion (10-13°), caused smaller adaptations (<5°) in proximal joint angles, decreased residual and increased intact limb body support, increased residual limb propulsion and increased intact limb braking for all tasks. While changes in sagittal-plane joint work due to decreased stiffness were generally consistent across tasks, effects on coronal-plane hip work were task-dependent. When the residual limb was on the inside of the turn and during straight-line walking, coronal-plane hip work increased and coronal-plane peak-to-peak range of whole-body angular momentum decreased with decreased stiffness. Changes in sagittal-plane kinematics and kinetics were similar to those previously observed in straight-line walking. Mediolateral balance improved with decreased stiffness, but adaptations in coronal-plane angles, work and ground reaction force impulses were less systematic than those in sagittal-plane measures. Effects of stiffness varied with the residual limb inside versus outside the turn, which suggests that actively adjusting stiffness to turn direction may be beneficial. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reserve Component Logistics Responsibilities in the Total Force,
1982-10-01
It diferent from Report) 14. SUPPLEMENTARY NOTES Four Service-specific Working Notes are included as Appendices. 19. KEY WORDS (Continue on reverse...During the balance of the task, we will augment the data presented in this working note with: - time phasing of RC units after mobilization for a NATO or...aerial refueling During the balance of the task, we will augment the data presented in this working paper with: - time phasings of RC units after
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Matijevic, J. R.
1987-01-01
Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.
Hellyer, Peter John; Clopath, Claudia; Kehagia, Angie A; Turkheimer, Federico E; Leech, Robert
2017-08-01
In recent years, there have been many computational simulations of spontaneous neural dynamics. Here, we describe a simple model of spontaneous neural dynamics that controls an agent moving in a simple virtual environment. These dynamics generate interesting brain-environment feedback interactions that rapidly destabilize neural and behavioral dynamics demonstrating the need for homeostatic mechanisms. We investigate roles for homeostatic plasticity both locally (local inhibition adjusting to balance excitatory input) as well as more globally (regional "task negative" activity that compensates for "task positive", sensory input in another region) balancing neural activity and leading to more stable behavior (trajectories through the environment). Our results suggest complementary functional roles for both local and macroscale mechanisms in maintaining neural and behavioral dynamics and a novel functional role for macroscopic "task-negative" patterns of activity (e.g., the default mode network).
ERIC Educational Resources Information Center
Lean, Lyn Li; Hong, Ryan Yee Shiun; Ti, Lian Kah
2017-01-01
Communication of feedback during teaching of practical procedures is a fine balance of structure and timing. We investigate if continuous in-task (IT) or end-task feedback (ET) is more effective in teaching spinal anaesthesia to medical students. End-task feedback was hypothesized to improve both short-term and long-term procedural learning…
Attentional Focus Effects as a Function of Task Difficulty
ERIC Educational Resources Information Center
Wulf, Gabriele; Tollner, Thomas; Shea, Charles H.
2007-01-01
The purpose of the present study was to examine whether the advantages of adopting an external focus would be seen primarily for relatively challenging (postural stability) tasks but not less demanding tasks. To examine this, the authors used balance tasks that imposed increased challenges to maintaining stability. The present results support the…
Detailed Drawings for the Force Balance Test Apparatus
The American Society of Mechanical Engineers (ASME)/Canadian Standards Association (CSA) Joint Harmonization Task Force on water-efficient showerheads used the force balance test apparatus shown in these drawings.
2012-01-01
Background There is increasing scientific knowledge about the interaction between physiological (musculoskeletal, neuromuscular, cognitive and sensory) systems and their influence on balance and walking impairments in Parkinson’s disease. We have developed a new conceptual framework for balance training, emphasising specific components of balance control related to Parkinson’s disease symptoms by using highly challenging, progressive and varying training conditions. The primary aim of this proposed randomised controlled trial will be to investigate the short-term and long-term effects of a 10-week balance training regime in elderly with Parkinson’s disease. Methods/Design Eighty participants with mild to moderate idiopathic Parkinson’s disease will be recruited and randomly allocated to an intervention group receiving balance training or a control group whose participants will continue to receive their usual care. The intervention will consist of a 10-week group training regime (1-hour training, three times per week), which will be led by two physiotherapists to ensure training progression and safety. The conceptual framework will be applied by addressing specific balance components (sensory integration, anticipatory postural adjustments, motor agility, stability limits) through varying training conditions and structured progression. Assessment will be conducted through a multi-dimensional battery of outcomes, prior to and immediately after the 10-week intervention, and at 9 and 15 months’ follow-up after entering the study. Primary outcome measures will be balance performance (assessed using the Mini Balance Evaluation Systems Test), change in gait velocity (m/s) between single and dual task walking, and fear of falling (evaluated using the Fall Efficacy Scale International). Discussion This study has the potential to provide new insight and knowledge of the effects of specific, varied and challenging balance training on a wide health spectrum in elderly with PD. If found to be effective, this pragmatic approach with translation of theory into practice, can be implemented in existing outpatient care. Trial registration NCT01417598 PMID:23017069
Attentional Focus Effects in Balance Acrobats
ERIC Educational Resources Information Center
Wulf, Gabriele
2008-01-01
Performing and learning motor skills has been shown to be enhanced if the performer adopts an external relative to internal focus (or no focus) of attention (Wulf, 2007). The present study examined the generalizability of this effect to top-level performers (balance acrobats). Participants performed a balance task (standing on an inflated rubber…
Clark, Ross A; Pua, Yong-Hao; Oliveira, Cristino C; Bower, Kelly J; Thilarajah, Shamala; McGaw, Rebekah; Hasanki, Ksaniel; Mentiplay, Benjamin F
2015-07-01
The Microsoft Kinect V2 for Windows, also known as the Xbox One Kinect, includes new and potentially far improved depth and image sensors which may increase its accuracy for assessing postural control and balance. The aim of this study was to assess the concurrent validity and reliability of kinematic data recorded using a marker-based three dimensional motion analysis (3DMA) system and the Kinect V2 during a variety of static and dynamic balance assessments. Thirty healthy adults performed two sessions, separated by one week, consisting of static standing balance tests under different visual (eyes open vs. closed) and supportive (single limb vs. double limb) conditions, and dynamic balance tests consisting of forward and lateral reach and an assessment of limits of stability. Marker coordinate and joint angle data were concurrently recorded using the Kinect V2 skeletal tracking algorithm and the 3DMA system. Task-specific outcome measures from each system on Day 1 and 2 were compared. Concurrent validity of trunk angle data during the dynamic tasks and anterior-posterior range and path length in the static balance tasks was excellent (Pearson's r>0.75). In contrast, concurrent validity for medial-lateral range and path length was poor to modest for all trials except single leg eyes closed balance. Within device test-retest reliability was variable; however, the results were generally comparable between devices. In conclusion, the Kinect V2 has the potential to be used as a reliable and valid tool for the assessment of some aspects of balance performance. Copyright © 2015 Elsevier B.V. All rights reserved.
GATECloud.net: a platform for large-scale, open-source text processing on the cloud.
Tablan, Valentin; Roberts, Ian; Cunningham, Hamish; Bontcheva, Kalina
2013-01-28
Cloud computing is increasingly being regarded as a key enabler of the 'democratization of science', because on-demand, highly scalable cloud computing facilities enable researchers anywhere to carry out data-intensive experiments. In the context of natural language processing (NLP), algorithms tend to be complex, which makes their parallelization and deployment on cloud platforms a non-trivial task. This study presents a new, unique, cloud-based platform for large-scale NLP research--GATECloud. net. It enables researchers to carry out data-intensive NLP experiments by harnessing the vast, on-demand compute power of the Amazon cloud. Important infrastructural issues are dealt with by the platform, completely transparently for the researcher: load balancing, efficient data upload and storage, deployment on the virtual machines, security and fault tolerance. We also include a cost-benefit analysis and usage evaluation.
Mouthon, A; Ruffieux, J; Mouthon, M; Hoogewoud, H-M; Annoni, J-M; Taube, W
2018-01-01
Age-related changes in brain activation other than in the primary motor cortex are not well known with respect to dynamic balance control. Therefore, the current study aimed to explore age-related differences in the control of static and dynamic postural tasks using fMRI during mental simulation of balance tasks. For this purpose, 16 elderly (72 ± 5 years) and 16 young adults (27 ± 5 years) were asked to mentally simulate a static and a dynamic balance task by motor imagery (MI), action observation (AO), or the combination of AO and MI (AO + MI). Age-related differences were detected in the form of larger brain activations in elderly compared to young participants, especially in the challenging dynamic task when applying AO + MI. Interestingly, when MI (no visual input) was contrasted to AO (visual input), elderly participants revealed deactivation of subcortical areas. The finding that the elderly demonstrated overactivation in mostly cortical areas in challenging postural conditions with visual input (AO + MI and AO) but deactivation in subcortical areas during MI (no vision) may indicate that elderly individuals allocate more cortical resources to the internal representation of dynamic postural tasks. Furthermore, it might be assumed that they depend more strongly on visual input to activate subcortical internal representations.
Ruffieux, J.; Mouthon, M.; Hoogewoud, H.-M.; Taube, W.
2018-01-01
Age-related changes in brain activation other than in the primary motor cortex are not well known with respect to dynamic balance control. Therefore, the current study aimed to explore age-related differences in the control of static and dynamic postural tasks using fMRI during mental simulation of balance tasks. For this purpose, 16 elderly (72 ± 5 years) and 16 young adults (27 ± 5 years) were asked to mentally simulate a static and a dynamic balance task by motor imagery (MI), action observation (AO), or the combination of AO and MI (AO + MI). Age-related differences were detected in the form of larger brain activations in elderly compared to young participants, especially in the challenging dynamic task when applying AO + MI. Interestingly, when MI (no visual input) was contrasted to AO (visual input), elderly participants revealed deactivation of subcortical areas. The finding that the elderly demonstrated overactivation in mostly cortical areas in challenging postural conditions with visual input (AO + MI and AO) but deactivation in subcortical areas during MI (no vision) may indicate that elderly individuals allocate more cortical resources to the internal representation of dynamic postural tasks. Furthermore, it might be assumed that they depend more strongly on visual input to activate subcortical internal representations. PMID:29675037
Liao, Ying-Yi; Yang, Yea-Ru; Cheng, Shih-Jung; Wu, Yih-Ru; Fuh, Jong-Ling; Wang, Ray-Yau
2015-08-01
Obstacle crossing is a balance-challenging task and can cause falls in people with Parkinson's disease (PD). However, programs for people with PD that effectively target obstacle crossing and dynamic balance have not been established. To examine the effects of virtual reality-based exercise on obstacle crossing performance and dynamic balance in participants with PD. Thirty-six participants with a diagnosis of PD (Hoehn and Yahr score ranging 1 to 3) were randomly assigned to one of three groups. In the exercise groups, participants received virtual reality-based Wii Fit exercise (VRWii group) or traditional exercise (TE group) for 45 minutes, followed by 15 minutes of treadmill training in each session for a total of 12 sessions over 6 weeks. Participants in the control group received no structured exercise program. Primary outcomes included obstacle crossing performance (crossing velocity, stride length, and vertical toe obstacle clearance) and dynamic balance (maximal excursion, movement velocity, and directional control measured by the limits-of-stability test). Secondary outcomes included sensory organization test (SOT), Parkinson's Disease Questionnaire (PDQ39), fall efficacy scale (FES-I), and timed up and go test (TUG). All outcomes were assessed at baseline, after training, and at 1-month follow-up. The VRWii group showed greater improvement in obstacle crossing velocity, crossing stride length, dynamic balance, SOT, TUG, FES-I, and PDQ39 than the control group. VRWii training also resulted in greater improvement in movement velocity of limits-of-stability test than TE training. VRWii training significantly improved obstacle crossing performance and dynamic balance, supporting implementation of VRWii training in participants with PD. © The Author(s) 2014.
Tillman, Alex; Muthalib, Makii; Hendy, Ashlee M.; Johnson, Liam G.; Rantalainen, Timo; Kidgell, Dawson J.; Enticott, Peter G.; Teo, Wei-Peng
2015-01-01
The use of progressive resistance training (PRT) to improve gait and balance in people with Parkinson’s disease (PD) is an emerging area of interest. However, the main effects of PRT on lower limb functions such as gait, balance, and leg strength in people with PD remain unclear. Therefore, the aim of the meta-analysis is to evaluate the evidence surrounding the use of PRT to improve gait and balance in people with PD. Five electronic databases, from inception to December 2014, were searched to identify the relevant studies. Data extraction was performed by two independent reviewers and methodological quality was assessed using the PEDro scale. Standardized mean differences (SMD) and 95% confidence intervals (CIs) of fixed and random effects models were used to calculate the effect sizes between experimental and control groups and I2 statistics were used to determine levels of heterogeneity. In total, seven studies were identified consisting of 172 participants (experimental n = 84; control n = 88). The pooled results showed a moderate but significant effect of PRT on leg strength (SMD 1.42, 95% CI 0.464–2.376); however, no significant effects were observed for gait speed (SMD 0.418, 95% CI −0.219 to 1.055). No significant effects were observed for balance measures included in this review. In conclusion, our results showed no discernable effect of PRT on gait and balance measures, although this is likely due to the lack of studies available. It may be suggested that PRT be performed in conjunction with balance or task-specific functional training to elicit greater lower limb functional benefits in people with PD. PMID:25852550
Tillman, Alex; Muthalib, Makii; Hendy, Ashlee M; Johnson, Liam G; Rantalainen, Timo; Kidgell, Dawson J; Enticott, Peter G; Teo, Wei-Peng
2015-01-01
The use of progressive resistance training (PRT) to improve gait and balance in people with Parkinson's disease (PD) is an emerging area of interest. However, the main effects of PRT on lower limb functions such as gait, balance, and leg strength in people with PD remain unclear. Therefore, the aim of the meta-analysis is to evaluate the evidence surrounding the use of PRT to improve gait and balance in people with PD. Five electronic databases, from inception to December 2014, were searched to identify the relevant studies. Data extraction was performed by two independent reviewers and methodological quality was assessed using the PEDro scale. Standardized mean differences (SMD) and 95% confidence intervals (CIs) of fixed and random effects models were used to calculate the effect sizes between experimental and control groups and I (2) statistics were used to determine levels of heterogeneity. In total, seven studies were identified consisting of 172 participants (experimental n = 84; control n = 88). The pooled results showed a moderate but significant effect of PRT on leg strength (SMD 1.42, 95% CI 0.464-2.376); however, no significant effects were observed for gait speed (SMD 0.418, 95% CI -0.219 to 1.055). No significant effects were observed for balance measures included in this review. In conclusion, our results showed no discernable effect of PRT on gait and balance measures, although this is likely due to the lack of studies available. It may be suggested that PRT be performed in conjunction with balance or task-specific functional training to elicit greater lower limb functional benefits in people with PD.
Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik
2016-01-01
Context: Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training–progression styles. Objective: To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Design: Randomized controlled trial. Setting: Research laboratory. Patients or Other Participants: A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). Intervention(s): All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Main Outcome Measure(s): Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Results: Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. Conclusions: A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults. PMID:26878257
Balasubramaniam, Ramesh
2014-01-01
Sensory information from our eyes, skin and muscles helps guide and correct balance. Less appreciated, however, is that delays in the transmission of sensory information between our eyes, limbs and central nervous system can exceed several 10s of milliseconds. Investigating how these time-delayed sensory signals influence balance control is central to understanding the postural system. Here, we investigate how delayed visual feedback and cognitive performance influence postural control in healthy young and older adults. The task required that participants position their center of pressure (COP) in a fixed target as accurately as possible without visual feedback about their COP location (eyes-open balance), or with artificial time delays imposed on visual COP feedback. On selected trials, the participants also performed a silent arithmetic task (cognitive dual task). We separated COP time series into distinct frequency components using low and high-pass filtering routines. Visual feedback delays affected low frequency postural corrections in young and older adults, with larger increases in postural sway noted for the group of older adults. In comparison, cognitive performance reduced the variability of rapid center of pressure displacements in young adults, but did not alter postural sway in the group of older adults. Our results demonstrate that older adults prioritize vision to control posture. This visual reliance persists even when feedback about the task is delayed by several hundreds of milliseconds. PMID:24614576
Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; van Dieën, Jaap H
2013-04-26
Training and testing of balance have potential applications in sports and medicine. Laboratory grade force plates (FP) are considered the gold standard for the measurement of balance performance. Measurements in these systems are based on the parameterization of center of pressure (CoP) trajectories. Previous research validated the inexpensive, widely available and portable Nintendo Wii Balance Board (WBB). The novelty of the present study is that FP and WBB are compared on CoP data that was collected simultaneously, by placing the WBB on the FP. Fourteen healthy participants performed ten sequences of single-leg stance tasks with eyes open (EO), eyes closed (EC) and after a sideways hop (HOP). Within trial comparison of the two systems showed small root-mean-square differences for the CoP trajectories in the x and y direction during the three tasks (mean±SD; EO: 0.33±0.10 and 0.31±0.16 mm; EC: 0.58±0.17 and 0.63±0.19 mm; HOP: 0.74±0.34 and 0.74±0.27 mm, respectively). Additionally, during all 420 trials, comparison of FP and WBB revealed very high Pearson's correlation coefficients (r) of the CoP trajectories (x: 0.999±0.002; y: 0.998±0.003). A general overestimation was found on the WBB compared to the FP for 'CoP path velocity' (EO: 5.3±1.9%; EC: 4.0±1.4%; HOP: 4.6±1.6%) and 'mean absolute CoP sway' (EO: 3.5±0.7%; EC: 3.7±0.5%; HOP: 3.6±1.0%). This overestimation was highly consistent over the 140 trials per task (r>0.996). The present findings demonstrate that WBB is sufficiently accurate in quantifying CoP trajectory, and overall amplitude and velocity during single-leg stance balance tasks. Copyright © 2013 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Lee, Scott Weng Fai
2013-01-01
The assessment of young children's thinking competence in task performances has typically followed the novice-to-expert regimen involving models of strategies that adults use when engaged in cognitive tasks such as problem-solving and decision-making. Socio-constructivists argue for a balanced pedagogical approach between the adult and child that…
Multithreaded Model for Dynamic Load Balancing Parallel Adaptive PDE Computations
NASA Technical Reports Server (NTRS)
Chrisochoides, Nikos
1995-01-01
We present a multithreaded model for the dynamic load-balancing of numerical, adaptive computations required for the solution of Partial Differential Equations (PDE's) on multiprocessors. Multithreading is used as a means of exploring concurrency in the processor level in order to tolerate synchronization costs inherent to traditional (non-threaded) parallel adaptive PDE solvers. Our preliminary analysis for parallel, adaptive PDE solvers indicates that multithreading can be used an a mechanism to mask overheads required for the dynamic balancing of processor workloads with computations required for the actual numerical solution of the PDE's. Also, multithreading can simplify the implementation of dynamic load-balancing algorithms, a task that is very difficult for traditional data parallel adaptive PDE computations. Unfortunately, multithreading does not always simplify program complexity, often makes code re-usability not an easy task, and increases software complexity.
Collado-Mateo, Daniel; Adsuar, Jose C; Olivares, Pedro R; Cano-Plasencia, Ricardo; Gusi, Narcis
2015-01-01
The analysis of brain activity during balance is an important topic in different fields of science. Given that all measurements involve an error that is caused by different agents, like the instrument, the researcher, or the natural human variability, a test-retest reliability evaluation of the electroencephalographic assessment is a needed starting point. However, there is a lack of information about the reliability of electroencephalographic measurements, especially in a new wireless device with dry electrodes. The current study aims to analyze the reliability of electroencephalographic measurements from a wireless device using dry electrodes during two different balance tests. Seventeen healthy male volunteers performed two different static balance tasks on a Biodex Balance Platform: (a) with two feet on the platform and (b) with one foot on the platform. Electroencephalographic data was recorded using Enobio (Neuroelectrics). The mean power spectrum of the alpha band of the central and frontal channels was calculated. Relative and absolute indices of reliability were also calculated. In general terms, the intraclass correlation coefficient (ICC) values of all the assessed channels can be classified as excellent (>0.90). The percentage standard error of measurement oscillated from 0.54% to 1.02% and the percentage smallest real difference ranged from 1.50% to 2.82%. Electroencephalographic assessment through an Enobio device during balance tasks has an excellent reliability. However, its utility was not demonstrated because responsiveness was not assessed.
[Checklist Development for Women-Doctor-Friendly Working Conditions in a Hospital Setting].
Horie, Saki; Takeuchi, Masumi; Yamaoka, Kazue; Nohara, Michiko; Hasunuma, Naoko; Okinaga, Hiroko; Nomura, Kyoko
2015-01-01
This study aims to develop a scale of "women-doctor-friendly working conditions in a hospital setting". A task team consisting of relevant people including a medical doctor and a hospital personnel identified 36 items related to women-doctor-friendly working conditions. From December in 2012 to January in 2013, we sent a self-administered questionnaire to 807 full-time employees including faculty members and medical doctors who worked for a university-affiliated hospital. We asked them to score the extent to which they think it is necessary for women doctors to balance between work and gender role responsibilities on the basis of the Likert scale. We carried out a factor analysis and computed Cronbach's alpha to develop a scale and investigated its construct validity and reliability. Of the 807 employees, 291 returned the questionnaires (response rate, 36.1%). The item-total correlation (between an individual item score and the total score) coefficient was in the range from 0.44 to 0.68. In factor analysis, we deleted six items, and five factors were extracted on the basis of the least likelihood method with the oblique Promax rotation. The factors were termed "gender equality action in an organization", "the compliance of care leave in both sexes and parental leave in men", "balance between life events and work", "childcare support at the workplace", and "flexible employment status". The Cronbach's alpha values of all the factors and the total items were 0.82-0.89 and 0.93, respectively, suggesting that the scale we developed has high reliability. The result indicated that the scale of women-doctor-friendly working conditions consisting of five factors with 30 items is highly validated and reliable.
Influence of spasticity on mobility and balance in persons with multiple sclerosis.
Sosnoff, Jacob J; Gappmaier, Eduard; Frame, Amy; Motl, Robert W
2011-09-01
Spasticity is a motor disorder characterized by a velocity-dependent increase in tonic stretch reflexes that presumably affects mobility and balance. This investigation examined the hypothesis that persons with multiple sclerosis (MS) who have spasticity of the lower legs would have more impairment of mobility and balance compared to those without spasticity. Participants were 34 ambulatory persons with a definite diagnosis of MS. The expanded disability status scale (EDSS) was used to characterize disability in the study sample. All participants underwent measurements of spasticity in the gastroc-soleus muscles of both legs (modified Ashworth scale), walking speed (timed 25-foot walk), mobility (Timed Up and Go), walking endurance (6-minute walk test), self-reported impact of MS on walking ability (Multiple Sclerosis Walking Scale-12), and balance (Berg Balance Test and Activities-specific Balance Confidence Scale). Fifteen participants had spasticity of the gastroc-soleus muscles based on modified Ashworth scale scores. The spasticity group had lower median EDSS scores indicating greater disability (P=0.03). Mobility and balance were significantly more impaired in the group with spasticity compared to the group without spasticity: timed 25-foot walk (P = 0.02, d = -0.74), Timed Up and Go (P = 0.01, d = -0.84), 6-minute walk test (P < 0.01, d = 1.03), Multiple Sclerosis Walking Scale-12 (P = 0.04, d = -0.76), Berg Balance Test (P = 0.02, d = -0.84) and Activities-specific Balance Confidence Scale (P = 0.04, d = -0.59). Spasticity in the gastroc-soleus muscles appears to have negative effect on mobility and balance in persons with MS. The relationship between spasticity and disability in persons with MS requires further exploration.
Water balance model for Kings Creek
NASA Technical Reports Server (NTRS)
Wood, Eric F.
1990-01-01
Particular attention is given to the spatial variability that affects the representation of water balance at the catchment scale in the context of macroscale water-balance modeling. Remotely sensed data are employed for parameterization, and the resulting model is developed so that subgrid spatial variability is preserved and therefore influences the grid-scale fluxes of the model. The model permits the quantitative evaluation of the surface-atmospheric interactions related to the large-scale hydrologic water balance.
A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems.
Budinich, Marko; Bourdon, Jérémie; Larhlimi, Abdelhalim; Eveillard, Damien
2017-01-01
Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.
Hydropower in the Southeast: Balancing Lakeview and Production Optimization
NASA Astrophysics Data System (ADS)
Engstrom, J.
2017-12-01
Hydropower is the most important source of renewable electricity in Southeastern U.S. However, the region is repeatedly struck by droughts, and there are many conflicting interests in the limited water resource. This study takes a historical perspective and investigates how hydropower production patterns have changed over time, considering both natural drivers and human dimensions. Hydropower production is strongly tied to the natural variability of large-scale atmospheric drivers (teleconnections) as they affect the water availability in the whole river system and partly also the market demand. To balance the water resource between different interests is a complex task, and the conflicting interests vary by basin, sometimes over a relatively small geographic area. Here road networks adjacent to the hydropower reservoirs are used as an indicator of human development and recreational activities. Through a network analysis of the historical development of road networks surrounding the reservoir, the local and regional conflicting interests are identified and the influence on renewable electricity production quantified.
Do kinematic metrics of walking balance adapt to perturbed optical flow?
Thompson, Jessica D; Franz, Jason R
2017-08-01
Visual (i.e., optical flow) perturbations can be used to study balance control and balance deficits. However, it remains unclear whether walking balance control adapts to such perturbations over time. Our purpose was to investigate the propensity for visuomotor adaptation in walking balance control using prolonged exposure to optical flow perturbations. Ten subjects (age: 25.4±3.8years) walked on a treadmill while watching a speed-matched virtual hallway with and without continuous mediolateral optical flow perturbations of three different amplitudes. Each of three perturbation trials consisted of 8min of prolonged exposure followed by 1min of unperturbed walking. Using 3D motion capture, we analyzed changes in foot placement kinematics and mediolateral sacrum motion. At their onset, perturbations elicited wider and shorter steps, alluding to a more cautious, general anticipatory balance control strategy. As perturbations continued, foot placement tended toward values seen during unperturbed walking while step width variability and mediolateral sacrum motion concurrently increased. Our findings suggest that subjects progressively shifted from a general anticipatory balance control strategy to a reactive, task-specific strategy using step-to-step adjustments. Prolonged exposure to optical flow perturbations may have clinical utility to reinforce reactive, task-specific balance control through training. Copyright © 2017 Elsevier B.V. All rights reserved.
Control of standing balance while using constructions stilts: comparison of expert and novice users.
Noble, Jeremy W; Singer, Jonathan C; Prentice, Stephen D
2016-01-01
This study examined the control of standing balance while wearing construction stilts. Motion capture data were collected from nine expert stilt users and nine novices. Three standing conditions were analysed: ground, 60 cm stilts and an elevated platform. Each task was also performed with the head extended as a vestibular perturbation. Both expert and novice groups exhibited lower displacement of the whole body centre of mass and centre of pressure on construction stilts. Differences between the groups were only noted in the elevated condition with no stilts, where the expert group had lower levels of medial-lateral displacement of the centre of pressure. The postural manipulation revealed that the expert group had superior balance to the novice group. Conditions where stilts were worn showed lower levels of correspondence to the inverted pendulum model. Under normal conditions, both expert and novice groups were able to control their balance while wearing construction stilts. This work investigated the effects of experience on the control of balance while using construction stilts. Under normal conditions, expert and novice stilt users were able to control their balance while wearing construction stilts. Differences between the expert and novice users were revealed when the balance task was made more difficult, with the experts showing superior balance in these situations.
The balanced mind: the variability of task-unrelated thoughts predicts error monitoring
Allen, Micah; Smallwood, Jonathan; Christensen, Joanna; Gramm, Daniel; Rasmussen, Beinta; Jensen, Christian Gaden; Roepstorff, Andreas; Lutz, Antoine
2013-01-01
Self-generated thoughts unrelated to ongoing activities, also known as “mind-wandering,” make up a substantial portion of our daily lives. Reports of such task-unrelated thoughts (TUTs) predict both poor performance on demanding cognitive tasks and blood-oxygen-level-dependent (BOLD) activity in the default mode network (DMN). However, recent findings suggest that TUTs and the DMN can also facilitate metacognitive abilities and related behaviors. To further understand these relationships, we examined the influence of subjective intensity, ruminative quality, and variability of mind-wandering on response inhibition and monitoring, using the Error Awareness Task (EAT). We expected to replicate links between TUT and reduced inhibition, and explored whether variance in TUT would predict improved error monitoring, reflecting a capacity to balance between internal and external cognition. By analyzing BOLD responses to subjective probes and the EAT, we dissociated contributions of the DMN, executive, and salience networks to task performance. While both response inhibition and online TUT ratings modulated BOLD activity in the medial prefrontal cortex (mPFC) of the DMN, the former recruited a more dorsal area implying functional segregation. We further found that individual differences in mean TUTs strongly predicted EAT stop accuracy, while TUT variability specifically predicted levels of error awareness. Interestingly, we also observed co-activation of salience and default mode regions during error awareness, supporting a link between monitoring and TUTs. Altogether our results suggest that although TUT is detrimental to task performance, fluctuations in attention between self-generated and external task-related thought is a characteristic of individuals with greater metacognitive monitoring capacity. Achieving a balance between internally and externally oriented thought may thus aid individuals in optimizing their task performance. PMID:24223545
Cognitive and behavioural dispositions in offspring at high risk for alcoholism.
Kumar, Rajesh; Kumar, Keshav Janakiprasad; Benegal, Vivek
2018-06-01
Offspring with family history of alcoholism are considered to be at high risk for alcoholism. The present study sought to expand our understanding of cognitive and behavioural dispositions associated with executive control and self-regulation in alcohol naïve offspring with and without family history of alcoholism. Sample comprised of alcohol naive offspring in two groups: (i) at high risk (n = 34) and (ii) at low risk for alcoholism (n = 34). Both groups were matched on age (+/-1 year), education (+/-1 year) and gender. Measures used were: Mini-International Neuropsychiatric Interview, Family Interview for Genetic Studies, Socio-demographic Data Sheet, Annett's Handedness Questionnaire, Barratt's Impulsiveness Scale-version 11, Digit Span Test, Spatial Span Test, Tower of London, Wisconsin Card Sorting Test, Iowa Gambling Task (IGT) and Game of Dice Task (GDT). Results showed that alcohol naive offspring at high risk for alcoholism reported significantly high impulsivity and demonstrated significant differences on executive functions and decision making tasks. Correlation analysis revealed that high impulsivity was significantly associated with poor performance on explicit decision making task (GDT) and executive function task (WCST). There was no significant correlation between two decision making tasks (IGT and GDT) in both groups and performance on IGT was not significantly associated with impulsivity and executive functions. The present study indicates cognitive and behavioural dispositions in alcohol naive offspring at high risk for alcoholism and support the sub-optimal balance between reflective and impulsive system responsible for addiction. Furthermore, present study supports separability between two different types of decision making tasks. Copyright © 2018 Elsevier B.V. All rights reserved.
Wloch, Elizabeth G; Kuh, Diana; Cooper, Rachel
2016-01-01
Difficulties performing a range of physical tasks of daily living have been shown to develop in older populations in a typically observed sequence, known as the hierarchy of loss. Nearly all previous research has been undertaken using populations aged over 75. This study aimed to use cross-sectional and longitudinal data to test for evidence of the hierarchy of loss from midlife onwards. The prevalence of reported difficulty undertaking 16 physical tasks in the MRC National Survey of Health and Development at age 60-64 were calculated, with Mokken scaling used to confirm the hierarchical order. Logistic regression was used to calculate the odds ratios of reporting difficulty performing tasks at the bottom of the hierarchy (i.e. feeding, washing and/or toileting) at age 60-64 by reported difficulty at the top of the hierarchy (i.e. gripping, walking and/or stair climbing) at age 43. At age 60-64, tasks associated with balance, strength and co-ordination, such as climbing stairs, were the first tasks participants reported difficulty with and tasks associated with upper limb mobility, such as feeding yourself, were the last. In a fully-adjusted model, participants who reported difficulty at the top of the hierarchy at age 43 were 2.85 (95% CI: 1.45-5.60) times more likely to report difficulty with tasks at the bottom of the hierarchy at age 60-64. This study presents evidence of the hierarchy of loss in a younger population than previously observed suggesting that targeted interventions to prevent functional decline should not be delayed until old age.
Boström, Gustaf; Conradsson, Mia; Rosendahl, Erik; Nordström, Peter; Gustafson, Yngve; Littbrand, Håkan
2014-01-01
This study examined associations between depressive symptoms and functional capacity, overall dependency in personal activities of daily living (ADLs), and dependency in individual ADL tasks, respectively, in people with a high mean age, large range of functional capacity, and wide spectrum of dependency in ADLs. Cross-sectional data from three studies were used. A total of 392 individuals living in community and residential care facilities were included. Mean age was 86.2 years, 72% were women, 75% were dependent in ADLs, 42% had depression, and 39% had dementia. Depressive symptoms were assessed with the 15-item Geriatric Depression Scale (GDS-15), functional capacity with the Berg Balance Scale (BBS), and ADLs with the Barthel ADL Index. Multiple linear regression analyses with comprehensive adjustments were performed between GDS-15 and BBS, GDS-15 and Barthel ADL Index, and GDS-15 and each individual ADL task, separately. GDS-15 score was associated with BBS score (unstandardized b =-0.03, P=0.008), but not with Barthel ADL Index score (unstandardized b =-0.07, P=0.068). No significant interaction effects of sex, dementia, or living conditions were found in these associations. Among individual ADL tasks, dependency in transfer (unstandardized b =-1.03, P=0.007) and dressing (unstandardized b =-0.70, P=0.035) were associated with depressive symptoms. Functional capacity seems to be independently associated with depressive symptoms in older people living in community and residential care facilities, whereas overall ADL performance may not be associated. Dependency in the individual ADL tasks of transfer and dressing appear to be independently associated with depressive symptoms and may be an important focus of future interdisciplinary multifactorial intervention studies.
Boström, Gustaf; Conradsson, Mia; Rosendahl, Erik; Nordström, Peter; Gustafson, Yngve; Littbrand, Håkan
2014-01-01
Background This study examined associations between depressive symptoms and functional capacity, overall dependency in personal activities of daily living (ADLs), and dependency in individual ADL tasks, respectively, in people with a high mean age, large range of functional capacity, and wide spectrum of dependency in ADLs. Methods Cross-sectional data from three studies were used. A total of 392 individuals living in community and residential care facilities were included. Mean age was 86.2 years, 72% were women, 75% were dependent in ADLs, 42% had depression, and 39% had dementia. Depressive symptoms were assessed with the 15-item Geriatric Depression Scale (GDS-15), functional capacity with the Berg Balance Scale (BBS), and ADLs with the Barthel ADL Index. Multiple linear regression analyses with comprehensive adjustments were performed between GDS-15 and BBS, GDS-15 and Barthel ADL Index, and GDS-15 and each individual ADL task, separately. Results GDS-15 score was associated with BBS score (unstandardized b =−0.03, P=0.008), but not with Barthel ADL Index score (unstandardized b =−0.07, P=0.068). No significant interaction effects of sex, dementia, or living conditions were found in these associations. Among individual ADL tasks, dependency in transfer (unstandardized b =−1.03, P=0.007) and dressing (unstandardized b =−0.70, P=0.035) were associated with depressive symptoms. Conclusion Functional capacity seems to be independently associated with depressive symptoms in older people living in community and residential care facilities, whereas overall ADL performance may not be associated. Dependency in the individual ADL tasks of transfer and dressing appear to be independently associated with depressive symptoms and may be an important focus of future interdisciplinary multifactorial intervention studies. PMID:24523582
ERIC Educational Resources Information Center
Wisconsin Department of Public Instruction, 2009
2009-01-01
The Next Generation Assessment Task Force was convened to formulate Wisconsin's path forward. Task force members listened to leaders from business and technology sectors as well as leaders from PK-12 and higher education. This summary shares the process, definitions, assumptions, and recommendations of the task force. This paper aims to use these…
Staying Mindful in Action: The Challenge of "Double Awareness" on Task and Process in an Action Lab
ERIC Educational Resources Information Center
Svalgaard, Lotte
2016-01-01
Action Learning is a well-proven method to integrate "task" and "process", as learning about team and self (process) takes place while delivering on a task or business challenge of real importance (task). An Action Lab® is an intensive Action Learning programme lasting for 5 days, which aims at balancing and integrating…
Decision theory and the evaluation of risks and benefits of clinical trials.
Bernabe, Rosemarie D C; van Thiel, Ghislaine J M W; Raaijmakers, Jan A M; van Delden, Johannes J M
2012-12-01
Research ethics committees (RECs) are tasked to assess the risks and the benefits of a clinical trial. In previous studies, it was shown that RECs find this task difficult, if not impossible, to do. The current approaches to benefit-risk assessment (i.e. Component Analysis and the Net Risk Test) confound the various risk-benefit tasks, and as such, make balancing impossible. In this article, we show that decision theory, specifically through the expected utility theory and multiattribute utility theory, enable for an explicit and ethically weighted risk-benefit evaluation. This makes a balanced ethical justification possible, and thus a more rationally defensible decision making. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mezzarobba, Susanna; Grassi, Michele; Valentini, Roberto; Bernardis, Paolo
2018-03-01
The intricate linkage between Freezing of Gait (FoG) and postural control in Parkinson's disease (PD) is unclear. We analyzed the impact of FoG on dynamic postural control. 24 PD patients, 12 with (PD + FoG), 12 without FoG (PD-FoG), and 12 healthy controls, were assessed in ON state. Mobility and postural control were measured with clinical scales (UPDRS III, BBS, MPAS) and with kinematic and kinetic analysis during three tasks, characterized by levels of increasing difficulty to plan sequential movement of postural control: walk (W), gait initiation (GI) and sit-to-walk (STW). The groups were balanced by age, disease duration, disease severity, mobility and balance. During STW, the spatial distribution of COP trajectories in PD + FoG patients are spread over medial-lateral space more than in the PD-FoG (p < .001). Moreover, the distribution of COP positions. in the transition between sit-to-stand and gait initiation, is not properly shifted toward the leading leg, as in PD-FoG and healthy controls, but it is more centrally dispersed (p < .01) with a delayed weight forward progression (p < .05). In GI task and walk task, COM and COP differences are less evident and even absent between PD patients. PD + FoG show postural control differences in STW, compared with PD-FoG and healthy. Different spatial distribution of COP trajectories, between two PD groups are probably due to a deficit to plan postural control during a more demanding motor pattern, such as STW. Copyright © 2018 Elsevier B.V. All rights reserved.
Taube, Wolfgang; Lorch, Michael; Zeiter, Sibylle; Keller, Martin
2014-01-01
For consciously performed motor tasks executed in a defined and constant way, both motor imagery (MI) and action observation (AO) have been shown to promote motor learning. It is not known whether these forms of non-physical training also improve motor actions when these actions have to be variably applied in an unstable and unpredictable environment. The present study therefore investigated the influence of MI balance training (MI_BT) and a balance training combining AO and MI (AO+MI_BT) on postural control of undisturbed and disturbed upright stance on unstable ground. As spinal reflex excitability after classical (i.e., physical) balance training (BT) is generally decreased, we tested whether non-physical BT also has an impact on spinal reflex circuits. Thirty-six participants were randomly allocated into an MI_BT group, in which participants imagined postural exercises, an AO+MI_BT group, in which participants observed videos of other people performing balance exercises and imagined being the person in the video, and a non-active control group (CON). Before and after 4 weeks of non-physical training, balance performance was assessed on a free-moving platform during stance without perturbation and during perturbed stance. Soleus H-reflexes were recorded during stable and unstable stance. The post-measurement revealed significantly decreased postural sway during undisturbed and disturbed stance after both MI_BT and AO+MI_BT. Spinal reflex excitability remained unchanged. This is the first study showing that non-physical training (MI_BT and AO+MI_BT) not only promotes motor learning of “rigid” postural tasks but also improves performance of highly variable and unpredictable balance actions. These findings may be relevant to improve postural control and thus reduce the risk of falls in temporarily immobilized patients. PMID:25538598
Acute experimental hip muscle pain alters single-leg squat balance in healthy young adults.
Hatton, Anna L; Crossley, Kay M; Hug, François; Bouma, James; Ha, Bonnie; Spaulding, Kara L; Tucker, Kylie
2015-05-01
Clinical musculoskeletal pain commonly accompanies hip pathology and can impact balance performance. Due to the cross-sectional designs of previous studies, and the multifactorial nature of musculoskeletal pain conditions, it is difficult to determine whether pain is a driver of balance impairments in this population. This study explored the effects of experimentally induced hip muscle pain on static and dynamic balance. Twelve healthy adults (4 women, mean[SD]: 27.1[3] years) performed three balance tasks on each leg, separately: single-leg standing (eyes closed), single-leg squat (eyes open), forward step (eyes open); before and after hypertonic saline injection (1ml, 5% NaCl) into the right gluteus medius. Range, standard deviation (SD), and velocity of the centre of pressure (CoP) in medio-lateral (ML) and anterior-posterior (AP) directions were considered. During the single-leg squat task, experimental hip pain was associated with significantly reduced ML range (-4[13]%, P=0.028), AP range (-14[21]%, P=0.005), APSD (-15[28]%, P=0.009), and AP velocity (-6[13]%, P=0.032), relative to the control condition, in both legs. No effect of pain was observed during single-leg standing and forward stepping. Significant between-leg differences in ML velocity were observed during the forward stepping task (P=0.034). Pain is a potentially modifiable patient-reported outcome in individuals with hip problems. This study demonstrates that acute hip muscle pain alone, without interference of musculoskeletal pathology, does not lead to the same impairments in balance as exhibited in clinical populations with hip pathologies. This is the first step in understanding how and why balance is altered in painful hip pathologies. Copyright © 2015 Elsevier B.V. All rights reserved.
Trombetti, Andrea; Hars, Mélany; Herrmann, François R; Kressig, Reto W; Ferrari, Serge; Rizzoli, René
2011-03-28
Falls occur mainly while walking or performing concurrent tasks. We determined whether a music-based multitask exercise program improves gait and balance and reduces fall risk in elderly individuals. We conducted a 12-month randomized controlled trial involving 134 community-dwelling individuals older than 65 years, who are at increased risk of falling. They were randomly assigned to an intervention group (n = 66) or a delayed intervention control group scheduled to start the program 6 months later (n = 68). The intervention was a 6-month multitask exercise program performed to the rhythm of piano music. Change in gait variability under dual-task condition from baseline to 6 months was the primary end point. Secondary outcomes included changes in balance, functional performances, and fall risk. At 6 months, there was a reduction in stride length variability (adjusted mean difference, -1.4%; P < .002) under dual-task condition in the intervention group, compared with the delayed intervention control group. Balance and functional tests improved compared with the control group. There were fewer falls in the intervention group (incidence rate ratio, 0.46; 95% confidence interval, 0.27-0.79) and a lower risk of falling (relative risk, 0.61; 95% confidence interval, 0.39-0.96). Similar changes occurred in the delayed intervention control group during the second 6-month period with intervention. The benefit of the intervention on gait variability persisted 6 months later. In community-dwelling older people at increased risk of falling, a 6-month music-based multitask exercise program improved gait under dual-task condition, improved balance, and reduced both the rate of falls and the risk of falling. Trial Registration clinicaltrials.gov Identifier: NCT01107288.
Bootsman, Natalia J M; Skinner, Tina L; Lal, Ravin; Glindemann, Delma; Lagasca, Carmela; Peeters, G M E E Geeske
2018-02-01
Insight into modifiable factors related to falls risk in older adults living in residential aged care facilities (RACFs) is necessary to tailor preventive strategies for this high-risk population. Associations between physical activity (PA), physical performance and psycho-cognitive functioning have been understudied in aged care residents. This study investigated associations between PA, and both physical performance and psycho-cognitive functioning in older adults living in RACFs. Cross-sectional study. Forty-four residents aged 85±8years were recruited from four RACFs located in Southeast Queensland. PA was assessed as the average time spent walking in hours/day using activPAL3™. Physical performance tests included balance, gait speed, dual-task ability, reaction time, coordination, grip strength, and leg strength and power. Psycho-cognitive questionnaires included quality of life, balance confidence, fear of falling and cognitive functioning. Associations between PA and each outcome measure were analysed using linear or ordinal regression models. The average time spent walking was 0.5±0.4h/day. Higher levels of PA were significantly associated with better balance (compared with low PA, medium: B=1.6; high: B=1.3) and dual-task ability (OR=7.9 per 0.5h/day increase). No statistically significant associations were found between PA and the other physical and psycho-cognitive measures. More physically active residents scored higher on balance and dual-task ability, which are key predictors of falls risk. This suggests that physical activity programs targeting balance and dual-task ability could help prevent falls in aged care residents. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver
2016-09-01
Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002
The Effects of Class Organization Upon the Balance Performance of Young Children.
ERIC Educational Resources Information Center
MacCracken, Mary Jo
The effects of the presence of others on 120 young children's performance of balancing skills were tested. The boys and girls, aged four, six, and eight, were tested under three different conditions: while acting "alone," in coaction (pairs), and alone before an audience. The tests were divided into simple and complex balance tasks, consisting of…
Frih, Bechir; Mkacher, Wajdi; Jaafar, Hamdi; Frih, Ameur; Ben Salah, Zohra; El May, Mezry; Hammami, Mohamed
2018-04-01
The purpose of this study was to evaluate the effects of 6 months of specific balance training included in endurance-resistance program on postural balance in haemodialysis (HD) patients. Forty-nine male patients undergoing HD were randomly assigned to an intervention group (balance training included in an endurance-resistance training, n = 26) or a control group (resistance-endurance training only, n = 23). Postural control was assessed using six clinical tests; Timed Up and Go test, Tinetti Mobility Test, Berg Balance Scale, Unipodal Stance test, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scale. All balance measures increased significantly after the period of rehabilitation training in the intervention group. Only the Timed Up and Go, Berg Balance Scale, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scores were improved in the control group. The ranges of change in these tests were greater in the balance training group. In HD patients, specific balance training included in a usual endurance-resistance training program improves static and dynamic balance better than endurance-resistance training only. Implications for rehabilitation Rehabilitation using exercise in haemodialysis patients improved global mobility and functional abilities. Specific balance training included in usual endurance resistance training program could lead to improved static and dynamic balance.
Postural sway and exposure to jet propulsion fuel 8 among US Air Force personnel.
Maule, Alexis L; Heaton, Kristin J; Rodrigues, Ema; Smith, Kristen W; McClean, Michael D; Proctor, Susan P
2013-04-01
To determine whether short-term jet propulsion fuel 8 (JP-8) exposure is associated with balance measurements in JP-8-exposed air force personnel. As part of a larger neuroepidemiology study, balance tasks were completed by JP-8-exposed individuals (n = 37). Short-term JP-8 exposure was measured using personal breathing zone levels and urinary biomarkers. Multivariate linear regression analyses were conducted to examine the relationship between workday JP-8 exposure and postural sway. Balance control decreased as the task became more challenging. Workday exposure to JP-8, measured by either personal air or urinary metabolite levels, was not significantly related to postural sway. Increases in workday postural sway were associated with demographic variables, including younger age, being a current smoker, and higher body mass index. Results suggest that short-term workday JP-8 exposure does not significantly contribute to diminished balance control.
Lin, Hui-Yan; Zhao, Yan-Ping; Xu, Gui-Ping; Li, Yun-Si; Xie, Wei-Yun; Bai, Li-Hua; Jin, Hua
2017-07-28
To investigate whether Pi (Spleen) qi-deficiency affected psychological and neural responses in relevance to cognitive control. Pi qi-deficient and balanced participants were asked to perform the Stroop task, a classical cognitive control paradigm. In this paradigm, participants had to judge the color of the prompted word. The word's meaning indicated the color (the consistent condition) or not (the inconsistent condition), or were unrelated to the color (the neutral condition). Electroencephalograph (EEG) was recorded during the task. Event-related potential (ERP) results showed that Pi qi-deficient individuals failed to exhibit a normal Stroop effect as Balanced individuals did, such as the accuracy differences between the consistent and the inconsistent conditions as well as the N450 effect (P>0.05). Meanwhile, Pi qi-deficient individuals displayed larger P2 and P3 amplitudes than balanced individuals did during performing the cognitive control task (P<0.05). Pi qi-deficiency had psychological and neural basis at least in cognitive control aspect.
Balance models for equatorial planetary-scale dynamics
NASA Astrophysics Data System (ADS)
Chan, Ian Hiu-Fung
This thesis aims at advancing our understanding of large-scale dynamics in the tropics, specifically the characterization of slow planetary-scale motions through a balance theory; current balance theories in the tropics are unsatisfactory as they filter out Kelvin waves, which are an important component of variability, along with fast inertia-gravity (IG) waves. (Abstract shortened by UMI.).
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Miller, C. A.; Ploutz-Snyder, R. J.; Guined, J. R.; Buxton, R. E.; Cohen, H. S.
2011-01-01
During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually decreased following an initial increase after the onset of support surface motion. DISCUSSION: Resu lts confirmed that walking in discordant conditions not only compromises locomotor stability and the ability to multi-task, but comes at a quantifiable metabolic cost. Importantly, like locomotor stability and multi-tasking ability, metabolic expenditure while walking in discordant sensory conditions improved during adaptation. This confirms that sensorimotor adaptability training can benefit multiple performance parameters central to the successful completion of critical mission tasks.
Research on virtual network load balancing based on OpenFlow
NASA Astrophysics Data System (ADS)
Peng, Rong; Ding, Lei
2017-08-01
The Network based on OpenFlow technology separate the control module and data forwarding module. Global deployment of load balancing strategy through network view of control plane is fast and of high efficiency. This paper proposes a Weighted Round-Robin Scheduling algorithm for virtual network and a load balancing plan for server load based on OpenFlow. Load of service nodes and load balancing tasks distribution algorithm will be taken into account.
Berg, Regan J; Inaba, Kenji; Sullivan, Maura; Okoye, Obi; Siboni, Stefano; Minneti, Michael; Teixeira, Pedro G; Demetriades, Demetrios
2015-01-01
Increasing ambient temperature to prevent intraoperative patient hypothermia remains widely advocated despite unconvincing evidence of efficacy. Heat stress is associated with decreased cognitive and psychomotor performance across multiple tasks but remains unexamined in an operative context. We assessed the impact of increased ambient temperature on laparoscopic operative performance and surgeon cognitive stress. Forty-two performance measures were obtained from 21 surgery trainees participating in the counter-balanced, within-subjects study protocol. Operative performance was evaluated with adaptations of the validated, peg-transfer, and intracorporeal knot-tying tasks from the Fundamentals of Laparoscopic Surgery program. Participants trained to proficiency before enrollment. Task performance was measured at two ambient temperatures, 19 and 26°C (66 and 79°F). Participants were randomly counterbalanced to initial hot or cold exposure before crossing over to the alternate environment. Cognitive stress was measured using the validated Surgical Task Load Index (SURG-TLX). No differences in performance of the peg-transfer and intracorporeal knot-tying tasks were seen across ambient conditions. Assessed via use of the six bipolar scales of the SURG-TLX, we found differences in task workload between the hot and cold conditions in the areas of physical demands (hot 10 [3-12], cold 5 [2.5-9], P = .013) and distractions (hot 8 [3.5-15.5], cold 3 [1.5-5.5], P = .001). Participant perception of distraction remained greater in the hot condition on full scoring of the SURG-TLX. Increasing ambient temperature to levels advocated for prevention of intraoperative hypothermia does not greatly decrease technical performance in short operative tasks. Surgeons, however, do report increased perceptions of distraction and physical demand. The impact of these findings on performance and outcomes during longer operative procedures remains unclear. Copyright © 2015 Elsevier Inc. All rights reserved.
Hendy, Ashlee M; Tillman, Alex; Rantalainen, Timo; Muthalib, Makii; Johnson, Liam; Kidgell, Dawson J; Wundersitz, Daniel; Enticott, Peter G; Teo, Wei-Peng
2016-07-19
Parkinson's disease (PD) results from a loss of dopamine in the brain, leading to movement dysfunctions such as bradykinesia, postural instability, resting tremor and muscle rigidity. Furthermore, dopamine deficiency in PD has been shown to result in maladaptive plasticity of the primary motor cortex (M1). Progressive resistance training (PRT) is a popular intervention in PD that improves muscular strength and results in clinically significant improvements on the Unified Parkinson's Disease Rating Scale (UPDRS). In separate studies, the application of anodal transcranial direct current stimulation (a-tDCS) to the M1 has been shown to improve motor function in PD; however, the combined use of tDCS and PRT has not been investigated. We propose a 6-week, double-blind randomised controlled trial combining M1 tDCS and PRT of the lower body in participants (n = 42) with moderate PD (Hoehn and Yahr scale score 2-4). Supervised lower body PRT combined with functional balance tasks will be performed three times per week with concurrent a-tDCS delivered at 2 mA for 20 minutes (a-tDCS group) or with sham tDCS (sham group). Control participants will receive standard care (control group). Outcome measures will include functional strength, gait speed and variability, balance, neurophysiological function at rest and during movement execution, and the UPDRS motor subscale, measured at baseline, 3 weeks (during), 6 weeks (post), and 9 weeks (retention). Ethical approval has been granted by the Deakin University Human Research Ethics Committee (project number 2015-014), and the trial has been registered with the Australian New Zealand Clinical Trials Registry (ACTRN12615001241527). This will be the first randomised controlled trial to combine PRT and a-tDCS targeting balance and gait in people with PD. The study will elucidate the functional, clinical and neurophysiological outcomes of combined PRT and a-tDCS. It is hypothesised that combined PRT and a-tDCS will significantly improve lower limb strength, postural sway, gait speed and stride variability compared with PRT with sham tDCS. Further, we hypothesise that pre-frontal cortex activation during dual-task cognitive and gait/balance activities will be reduced, and that M1 excitability and inhibition will be augmented, following the combined PRT and a-tDCS intervention. Australian New Zealand Clinical Trials Registry ACTRN12615001241527 . Registered on 12 November 2015.
Meldrum, Dara; Herdman, Susan; Vance, Roisin; Murray, Deirdre; Malone, Kareena; Duffy, Douglas; Glennon, Aine; McConn-Walsh, Rory
2015-07-01
To compare the effectiveness of virtual reality-based balance exercises to conventional balance exercises during vestibular rehabilitation in patients with unilateral peripheral vestibular loss (UVL). Assessor-blind, randomized controlled trial. Two acute care university teaching hospitals. Patients with UVL (N=71) who had dizziness/vertigo, and gait and balance impairment. Patients with UVL were randomly assigned to receive 6 weeks of either conventional (n=36) or virtual reality-based (n=35) balance exercises during vestibular rehabilitation. The virtual reality-based group received an off-the-shelf virtual reality gaming system for home exercise, and the conventional group received a foam balance mat. Treatment comprised weekly visits to a physiotherapist and a daily home exercise program. The primary outcome was self-preferred gait speed. Secondary outcomes included other gait parameters and tasks, Sensory Organization Test (SOT), dynamic visual acuity, Hospital Anxiety and Depression Scale, Vestibular Rehabilitation Benefits Questionnaire, and Activities Balance Confidence Questionnaire. The subjective experience of vestibular rehabilitation was measured with a questionnaire. Both groups improved, but there were no significant differences in gait speed between the groups postintervention (mean difference, -.03m/s; 95% confidence interval [CI], -.09 to .02m/s). There were also no significant differences between the groups in SOT scores (mean difference, .82%; 95% CI, -5.00% to 6.63%) or on any of the other secondary outcomes (P>.05). In both groups, adherence to exercise was high (∼77%), but the virtual reality-based group reported significantly more enjoyment (P=.001), less difficulty with (P=.009) and less tiredness after (P=.03) balance exercises. At 6 months, there were no significant between-group differences in physical outcomes. Virtual reality-based balance exercises performed during vestibular rehabilitation were not superior to conventional balance exercises during vestibular rehabilitation but may provide a more enjoyable method of retraining balance after unilateral peripheral vestibular loss. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Task allocation in a distributed computing system
NASA Technical Reports Server (NTRS)
Seward, Walter D.
1987-01-01
A conceptual framework is examined for task allocation in distributed systems. Application and computing system parameters critical to task allocation decision processes are discussed. Task allocation techniques are addressed which focus on achieving a balance in the load distribution among the system's processors. Equalization of computing load among the processing elements is the goal. Examples of system performance are presented for specific applications. Both static and dynamic allocation of tasks are considered and system performance is evaluated using different task allocation methodologies.
Effect of smart phone use on dynamic postural balance.
Cho, Sung-Hak; Choi, Mun-Hee; Goo, Bong-Oh
2014-07-01
[Purpose] The present study investigated what kind of effect smart phone use has on dynamic postural balance. [Subjects] The study subjects were 30 healthy students in their 20's who were recruited from a University in Busan, Korea. [Methods] The present experiment was quasi-experimental research which measured the postural balance (Biodex) of subjects while they sent text messages via smart phones in the standing position with the eyes open, and while they used two-way SNS. [Results] There were significant differences between standing and the dual-task situations. Among dual tasks using smart phones, SNS using situations showed the highest instability. [Conclusion] The use of smart phones in less stable conditions such as while walking or in moving vehicles should be discouraged.
Kurz, Ilan; Gimmon, Yoav; Shapiro, Amir; Debi, Ronen; Snir, Yoram; Melzer, Itshak
2016-03-04
Falls are common among elderly, most of them occur while slipping or tripping during walking. We aimed to explore whether a training program that incorporates unexpected loss of balance during walking able to improve risk factors for falls. In a double-blind randomized controlled trial 53 community dwelling older adults (age 80.1±5.6 years), were recruited and randomly allocated to an intervention group (n = 27) or a control group (n = 26). The intervention group received 24 training sessions over 3 months that included unexpected perturbation of balance exercises during treadmill walking. The control group performed treadmill walking with no perturbations. The primary outcome measures were the voluntary step execution times, traditional postural sway parameters and Stabilogram-Diffusion Analysis. The secondary outcome measures were the fall efficacy Scale (FES), self-reported late life function (LLFDI), and Performance-Oriented Mobility Assessment (POMA). Compared to control, participation in intervention program that includes unexpected loss of balance during walking led to faster Voluntary Step Execution Times under single (p = 0.002; effect size [ES] =0.75) and dual task (p = 0.003; [ES] = 0.89) conditions; intervention group subjects showed improvement in Short-term Effective diffusion coefficients in the mediolateral direction of the Stabilogram-Diffusion Analysis under eyes closed conditions (p = 0.012, [ES] = 0.92). Compared to control there were no significant changes in FES, LLFDI, and POMA. An intervention program that includes unexpected loss of balance during walking can improve voluntary stepping times and balance control, both previously reported as risk factors for falls. This however, did not transferred to a change self-reported function and FES. ClinicalTrials.gov NCT01439451 .
Cooperative network clustering and task allocation for heterogeneous small satellite network
NASA Astrophysics Data System (ADS)
Qin, Jing
The research of small satellite has emerged as a hot topic in recent years because of its economical prospects and convenience in launching and design. Due to the size and energy constraints of small satellites, forming a small satellite network(SSN) in which all the satellites cooperate with each other to finish tasks is an efficient and effective way to utilize them. In this dissertation, I designed and evaluated a weight based dominating set clustering algorithm, which efficiently organizes the satellites into stable clusters. The traditional clustering algorithms of large monolithic satellite networks, such as formation flying and satellite swarm, are often limited on automatic formation of clusters. Therefore, a novel Distributed Weight based Dominating Set(DWDS) clustering algorithm is designed to address the clustering problems in the stochastically deployed SSNs. Considering the unique features of small satellites, this algorithm is able to form the clusters efficiently and stably. In this algorithm, satellites are separated into different groups according to their spatial characteristics. A minimum dominating set is chosen as the candidate cluster head set based on their weights, which is a weighted combination of residual energy and connection degree. Then the cluster heads admit new neighbors that accept their invitations into the cluster, until the maximum cluster size is reached. Evaluated by the simulation results, in a SSN with 200 to 800 nodes, the algorithm is able to efficiently cluster more than 90% of nodes in 3 seconds. The Deadline Based Resource Balancing (DBRB) task allocation algorithm is designed for efficient task allocations in heterogeneous LEO small satellite networks. In the task allocation process, the dispatcher needs to consider the deadlines of the tasks as well as the residue energy of different resources for best energy utilization. We assume the tasks adopt a Map-Reduce framework, in which a task can consist of multiple subtasks. The DBRB algorithm is deployed on the head node of a cluster. It gathers the status from each cluster member and calculates their Node Importance Factors (NIFs) from the carried resources, residue power and compute capacity. The algorithm calculates the number of concurrent subtasks based on the deadlines, and allocates the subtasks to the nodes according to their NIF values. The simulation results show that when cluster members carry multiple resources, resource are more balanced and rare resources serve longer in DBRB than in the Earliest Deadline First algorithm. We also show that the algorithm performs well in service isolation by serving multiple tasks with different deadlines. Moreover, the average task response time with various cluster size settings is well controlled within deadlines as well. Except non-realtime tasks, small satellites may execute realtime tasks as well. The location-dependent tasks, such as image capturing, data transmission and remote sensing tasks are realtime tasks that are required to be started / finished on specific time. The resource energy balancing algorithm for realtime and non-realtime mixed workload is developed to efficiently schedule the tasks for best system performance. It calculates the residue energy for each resource type and tries to preserve resources and node availability when distributing tasks. Non-realtime tasks can be preempted by realtime tasks to provide better QoS to realtime tasks. I compared the performance of proposed algorithm with a random-priority scheduling algorithm, with only realtime tasks, non-realtime tasks and mixed tasks. It shows the resource energy reservation algorithm outperforms the latter one with both balanced and imbalanced workloads. Although the resource energy balancing task allocation algorithm for mixed workload provides preemption mechanism for realtime tasks, realtime tasks can still fail due to resource exhaustion. For LEO small satellite flies around the earth on stable orbits, the location-dependent realtime tasks can be considered as periodical tasks. Therefore, it is possible to reserve energy for these realtime tasks. The resource energy reservation algorithm preserves energy for the realtime tasks when the execution routine of periodical realtime tasks is known. In order to reserve energy for tasks starting very early in each period that the node does not have enough energy charged, an energy wrapping mechanism is also designed to calculate the residue energy from the previous period. The simulation results show that without energy reservation, realtime task failure rate can reach more than 60% when the workload is highly imbalanced. In contrast, the resource energy reservation produces zero RT task failures and leads to equal or better aggregate system throughput than the non-reservation algorithm. The proposed algorithm also preserves more energy because it avoids task preemption. (Abstract shortened by ProQuest.).
Leach, Julia M.; Mancini, Martina; Kaye, Jeffrey A.; Hayes, Tamara L.; Horak, Fay B.
2018-01-01
Introduction: Increased variability in motor function has been observed during the initial stages of cognitive decline. However, the natural variability of postural control, as well as its association with cognitive status and decline, remains unknown. The objective of this pilot study was to characterize the day-to-day variability in postural sway in non-demented older adults. We hypothesized that older adults with a lower cognitive status would have higher day-to-day variability in postural sway. Materials and Methods: A Nintendo Wii balance board (WBB) was used to quantify postural sway in the home twice daily for 30 days in 20 non-demented, community-dwelling older adults: once under a single-task condition and once under a dual-task condition (using a daily word search task administered via a Nook tablet). Mean sway distance, velocity, area, centroidal frequency and frequency dispersion were derived from the center of pressure data acquired from the WBB. Results: Linear relationships were observed between the day-to-day variability in postural sway and cognitive status (indexed by cognitive global z-scores). More variability in time-domain postural sway (sway distance and area) and less variability in frequency-domain postural sway (centroidal sway frequency) were associated with a lower cognitive status under both the single- and dual-task conditions. Additionally, lower cognitive performance rates on the daily word search task were related to a lower cognitive status. Discussion: This small pilot study conducted on a short time scale motivates large-scale implementations over more extended time periods. Tracking longitudinal changes in postural sway may further our understanding of early-stage postural decline and its association with cognitive decline and, in turn, may aid in the early detection of dementia during preclinical stages when the utility of disease-modifying therapies would be greatest. PMID:29780319
Leach, Julia M; Mancini, Martina; Kaye, Jeffrey A; Hayes, Tamara L; Horak, Fay B
2018-01-01
Introduction : Increased variability in motor function has been observed during the initial stages of cognitive decline. However, the natural variability of postural control, as well as its association with cognitive status and decline, remains unknown. The objective of this pilot study was to characterize the day-to-day variability in postural sway in non-demented older adults. We hypothesized that older adults with a lower cognitive status would have higher day-to-day variability in postural sway. Materials and Methods : A Nintendo Wii balance board (WBB) was used to quantify postural sway in the home twice daily for 30 days in 20 non-demented, community-dwelling older adults: once under a single-task condition and once under a dual-task condition (using a daily word search task administered via a Nook tablet). Mean sway distance, velocity, area, centroidal frequency and frequency dispersion were derived from the center of pressure data acquired from the WBB. Results : Linear relationships were observed between the day-to-day variability in postural sway and cognitive status (indexed by cognitive global z-scores). More variability in time-domain postural sway (sway distance and area) and less variability in frequency-domain postural sway (centroidal sway frequency) were associated with a lower cognitive status under both the single- and dual-task conditions. Additionally, lower cognitive performance rates on the daily word search task were related to a lower cognitive status. Discussion : This small pilot study conducted on a short time scale motivates large-scale implementations over more extended time periods. Tracking longitudinal changes in postural sway may further our understanding of early-stage postural decline and its association with cognitive decline and, in turn, may aid in the early detection of dementia during preclinical stages when the utility of disease-modifying therapies would be greatest.
Hupfeld, K E; Ketcham, C J; Schneider, H D
2017-03-01
The supplementary motor area (SMA) is believed to be highly involved in the planning and execution of both simple and complex motor tasks. This study aimed to examine the role of the SMA in planning the movements required to complete reaction time, balance, and pegboard tasks using anodal transcranial direct current stimulation (tDCS), which passes a weak electrical current between two electrodes, in order to modulate neuronal activity. Twenty healthy adults were counterbalanced to receive either tDCS (experimental condition) or no tDCS (control condition) for 3 days. During administration of tDCS, participants performed a balance task significantly faster than controls. After tDCS, subjects significantly improved their simple and choice reaction time. These results demonstrate that the SMA is highly involved in planning and executing fine and gross motor skill tasks and that tDCS is an effective modality for increasing SMA-related performance on these tasks. The findings may be generalizable and therefore indicate implications for future interventions using tDCS as a therapeutic tool.
Distributed and cooperative task processing: Cournot oligopolies on a graph.
Pavlic, Theodore P; Passino, Kevin M
2014-06-01
This paper introduces a novel framework for the design of distributed agents that must complete externally generated tasks but also can volunteer to process tasks encountered by other agents. To reduce the computational and communication burden of coordination between agents to perfectly balance load around the network, the agents adjust their volunteering propensity asynchronously within a fictitious trading economy. This economy provides incentives for nontrivial levels of volunteering for remote tasks, and thus load is shared. Moreover, the combined effects of diminishing marginal returns and network topology lead to competitive equilibria that have task reallocations that are qualitatively similar to what is expected in a load-balancing system with explicit coordination between nodes. In the paper, topological and algorithmic conditions are given that ensure the existence and uniqueness of a competitive equilibrium. Additionally, a decentralized distributed gradient-ascent algorithm is given that is guaranteed to converge to this equilibrium while not causing any node to over-volunteer beyond its maximum task-processing rate. The framework is applied to an autonomous-air-vehicle example, and connections are drawn to classic studies of the evolution of cooperation in nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Computational Research Division, Lawrence Berkeley National Laboratory; NERSC, Lawrence Berkeley National Laboratory; Computer Science Department, University of California, Berkeley
2009-05-04
We apply auto-tuning to a hybrid MPI-pthreads lattice Boltzmann computation running on the Cray XT4 at National Energy Research Scientific Computing Center (NERSC). Previous work showed that multicore-specific auto-tuning can improve the performance of lattice Boltzmann magnetohydrodynamics (LBMHD) by a factor of 4x when running on dual- and quad-core Opteron dual-socket SMPs. We extend these studies to the distributed memory arena via a hybrid MPI/pthreads implementation. In addition to conventional auto-tuning at the local SMP node, we tune at the message-passing level to determine the optimal aspect ratio as well as the correct balance between MPI tasks and threads permore » MPI task. Our study presents a detailed performance analysis when moving along an isocurve of constant hardware usage: fixed total memory, total cores, and total nodes. Overall, our work points to approaches for improving intra- and inter-node efficiency on large-scale multicore systems for demanding scientific applications.« less
A multimodal assessment of balance in elderly and young adults.
King, Gregory W; Abreu, Eduardo L; Cheng, An-Lin; Chertoff, Keyna K; Brotto, Leticia; Kelly, Patricia J; Brotto, Marco
2016-03-22
Falling is a significant health issue among elderly adults. Given the multifactorial nature of falls, effective balance and fall risk assessment must take into account factors from multiple sources. Here we investigate the relationship between fall risk and a diverse set of biochemical and biomechanical variables including: skeletal muscle-specific troponin T (sTnT), maximal strength measures derived from isometric grip and leg extension tasks, and postural sway captured from a force platform during a quiet stance task. These measures were performed in eight young and eleven elderly adults, along with estimates of fall risk derived from the Tinetti Balance Assessment. We observed age-related effects in all measurements, including a trend toward increased sTnT levels, increased postural sway, reduced upper and lower extremity strength, and reduced balance scores. We observed a negative correlation between balance scores and sTnT levels, suggesting its use as a biomarker for fall risk. We observed a significant positive correlation between balance scores and strength measures, adding support to the notion that muscle strength plays a significant role in postural control. We observed a significant negative correlation between balance scores and postural sway, suggesting that fall risk is associated with more loosely controlled center of mass regulation.
A multimodal assessment of balance in elderly and young adults
King, Gregory W.; Abreu, Eduardo L.; Cheng, An-Lin; Chertoff, Keyna K.; Brotto, Leticia; Kelly, Patricia J.; Brotto, Marco
2016-01-01
Falling is a significant health issue among elderly adults. Given the multifactorial nature of falls, effective balance and fall risk assessment must take into account factors from multiple sources. Here we investigate the relationship between fall risk and a diverse set of biochemical and biomechanical variables including: skeletal muscle-specific troponin T (sTnT), maximal strength measures derived from isometric grip and leg extension tasks, and postural sway captured from a force platform during a quiet stance task. These measures were performed in eight young and eleven elderly adults, along with estimates of fall risk derived from the Tinetti Balance Assessment. We observed age-related effects in all measurements, including a trend toward increased sTnT levels, increased postural sway, reduced upper and lower extremity strength, and reduced balance scores. We observed a negative correlation between balance scores and sTnT levels, suggesting its use as a biomarker for fall risk. We observed a significant positive correlation between balance scores and strength measures, adding support to the notion that muscle strength plays a significant role in postural control. We observed a significant negative correlation between balance scores and postural sway, suggesting that fall risk is associated with more loosely controlled center of mass regulation. PMID:26934319
Development of motor speed and associated movements from 5 to 18 years.
Gasser, Theo; Rousson, Valentin; Caflisch, Jon; Jenni, Oskar G
2010-03-01
To study the development of motor speed and associated movements in participants aged 5 to 18 years for age, sex, and laterality. Ten motor tasks of the Zurich Neuromotor Assessment (repetitive and alternating movements of hands and feet, repetitive and sequential finger movements, the pegboard, static and dynamic balance, diadochokinesis) were administered to 593 right-handed participants (286 males, 307 females). A strong improvement with age was observed in motor speed from age 5 to 10, followed by a levelling-off between 12 and 18 years. Simple tasks and the pegboard matured early and complex tasks later. Simple tasks showed no associated movements beyond early childhood; in complex tasks associated movements persisted until early adulthood. The two sexes differed only marginally in speed, but markedly in associated movements. A significant laterality (p<0.001) in speed was found for all tasks except for static balance; the pegboard was most lateralized, and sequential finger movements least. Associated movements were lateralized only for a few complex tasks. We also noted a substantial interindividual variability. Motor speed and associated movements improve strongly in childhood, weakly in adolescence, and are both of developmental relevance. Because they correlate weakly, they provide complementary information.
NASA Technical Reports Server (NTRS)
Birman, Kenneth; Cooper, Robert; Marzullo, Keith
1990-01-01
The ISIS project has developed a new methodology, virtual synchony, for writing robust distributed software. High performance multicast, large scale applications, and wide area networks are the focus of interest. Several interesting applications that exploit the strengths of ISIS, including an NFS-compatible replicated file system, are being developed. The META project is distributed control in a soft real-time environment incorporating feedback. This domain encompasses examples as diverse as monitoring inventory and consumption on a factory floor, and performing load-balancing on a distributed computing system. One of the first uses of META is for distributed application management: the tasks of configuring a distributed program, dynamically adapting to failures, and monitoring its performance. Recent progress and current plans are reported.
Clinical applications of selected binaural effects.
Noffsinger, D
1982-01-01
Examination was made of the behaviors exhibited on selected binaural tasks by 556 persons with diagnosed peripheral hearing loss or central nervous system damage. The tasks used included loudness balancing (LB), intracranial midline imaging (MI), masking level differences (MLD), and binaural beats (BB). The methods used were chosen for their clinical utility. Loudness balancing and midline imaging were of the most diagnostic value when hearing loss was present. Masking level differences were best at detecting pathology which did not produce hearing loss. None of the techniques were sensitive to cortical damage.
Face verification with balanced thresholds.
Yan, Shuicheng; Xu, Dong; Tang, Xiaoou
2007-01-01
The process of face verification is guided by a pre-learned global threshold, which, however, is often inconsistent with class-specific optimal thresholds. It is, hence, beneficial to pursue a balance of the class-specific thresholds in the model-learning stage. In this paper, we present a new dimensionality reduction algorithm tailored to the verification task that ensures threshold balance. This is achieved by the following aspects. First, feasibility is guaranteed by employing an affine transformation matrix, instead of the conventional projection matrix, for dimensionality reduction, and, hence, we call the proposed algorithm threshold balanced transformation (TBT). Then, the affine transformation matrix, constrained as the product of an orthogonal matrix and a diagonal matrix, is optimized to improve the threshold balance and classification capability in an iterative manner. Unlike most algorithms for face verification which are directly transplanted from face identification literature, TBT is specifically designed for face verification and clarifies the intrinsic distinction between these two tasks. Experiments on three benchmark face databases demonstrate that TBT significantly outperforms the state-of-the-art subspace techniques for face verification.
Dynamic and functional balance tasks in subjects with persistent whiplash: a pilot trial.
Stokell, Raina; Yu, Annie; Williams, Katrina; Treleaven, Julia
2011-08-01
Disturbances in static balance have been demonstrated in subjects with persistent whiplash. Some also report loss of balance and falls. These disturbances may contribute to difficulties in dynamic tasks. The aim of this study was to determine whether subjects with whiplash had deficits in dynamic and functional balance tasks when compared to a healthy control group. Twenty subjects with persistent pain following a whiplash injury and twenty healthy controls were assessed in single leg stance with eyes open and closed, the step test, Fukuda stepping test, tandem walk on a firm and soft surface, Singleton test with eyes open and closed, a stair walking test and the timed 10 m walk with and without head movement. Subjects with whiplash demonstrated significant deficits (p < 0.01) in single leg stance with eyes closed, the step test, tandem walk on a firm and soft surface, stair walking and the timed 10 m walk with and without head movement when compared to the control subjects. Specific assessment and rehabilitation directed towards improving these deficits may need to be considered in the management of patients with persistent whiplash if these results are confirmed in a larger cohort. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Hegeman, Judith; van den Bemt, Bart; Weerdesteyn, Vivian; Nienhuis, Bart; van Limbeek, Jacques; Duysens, Jacques
2011-01-01
Selective serotonin reuptake inhibitors (SSRIs) are widely used to treat depression and are also associated with an increased falls risk. However, the biological mechanism underlying accidental falls with SSRI intake has yet to be elucidated. The present experimental study was designed to investigate whether obstacle avoidance skills in long-term (>90 days), senior paroxetine users (61 ± 5.8 years) are affected during gait, simple and challenging postural balance tasks, as well as during manual reaction time tasks. The performance of the paroxetine users was compared with healthy group-matched controls (60 ± 4.8 years). The results demonstrated impaired postural balance in the paroxetine users, especially during one-legged stance or under various dual-task conditions. Although the deficit in one-legged stance could indicate vestibular involvement, this was deemed unlikely because performance of standing on compliant surface with closed eyes remained unaffected. Paroxetine use also failed to affect manual reaction times or obstacle avoidance performance. It is suggested that paroxetine affects attentional capacities particularly in conjunction with balance control. Compared with healthy seniors, long-term senior users of paroxetine seem to be at an increased risk of falling due to impairments in balance control, especially when attention has to be divided between 2 concurrent activities.
Bao, Tian; Carender, Wendy J; Kinnaird, Catherine; Barone, Vincent J; Peethambaran, Geeta; Whitney, Susan L; Kabeto, Mohammed; Seidler, Rachael D; Sienko, Kathleen H
2018-01-18
Sensory augmentation has been shown to improve postural stability during real-time balance applications. Limited long-term controlled studies have examined retention of balance improvements in healthy older adults after training with sensory augmentation has ceased. This pilot study aimed to assess the efficacy of long-term balance training with and without sensory augmentation among community-dwelling healthy older adults. Twelve participants (four males, eight females; 75.6 ± 4.9 yrs) were randomly assigned to the experimental group (n = 6) or control group (n = 6). Participants trained in their homes for eight weeks, completing three 45-min exercise sessions per week using smart phone balance trainers that provided written, graphic, and video guidance, and monitored trunk sway. During each session, participants performed six repetitions of six exercises selected from five categories (static standing, compliant surface standing, weight shifting, modified center of gravity, and gait). The experimental group received vibrotactile sensory augmentation for four of the six repetitions per exercise via the smart phone balance trainers, while the control group performed exercises without sensory augmentation. The smart phone balance trainers sent exercise performance data to a physical therapist, who recommended exercises on a weekly basis. Balance performance was assessed using a battery of clinical balance tests (Activity Balance Confidence Scale, Sensory Organization Test, Mini Balance Evaluation Systems Test, Five Times Sit to Stand Test, Four Square Step Test, Functional Reach Test, Gait Speed Test, Timed Up and Go, and Timed Up and Go with Cognitive Task) before training, after four weeks of training, and after eight weeks of training. Participants in the experimental group were able to use vibrotactile sensory augmentation independently in their homes. After training, the experimental group had significantly greater improvements in Sensory Organization Test and Mini Balance Evaluation Systems Test scores than the control group. Significant improvement was also observed for Five Times Sit to Stand Test duration within the experimental group, but not in the control group. No significant improvements between the two groups were observed in the remaining clinical outcome measures. The findings of this study support the use of sensory augmentation devices by community-dwelling healthy older adults as balance rehabilitation tools, and indicate feasibility of telerehabilitation therapy with reduced input from clinicians.
Contributions to lateral balance control in ambulatory older adults.
Sparto, Patrick J; Newman, A B; Simonsick, E M; Caserotti, P; Strotmeyer, E S; Kritchevsky, S B; Yaffe, K; Rosano, C
2018-06-01
In older adults, impaired control of standing balance in the lateral direction is associated with the increased risk of falling. Assessing the factors that contribute to impaired standing balance control may identify areas to address to reduce falls risk. To investigate the contributions of physiological factors to standing lateral balance control. Two hundred twenty-two participants from the Pittsburgh site of the Health, Aging and Body Composition Study had lateral balance control assessed using a clinical sensory integration balance test (standing on level and foam surface with eyes open and closed) and a lateral center of pressure tracking test using visual feedback. The center of pressure was recorded from a force platform. Multiple linear regression models examined contributors of lateral control of balance performance, including concurrently measured tests of lower extremity sensation, knee extensor strength, executive function, and clinical balance tests. Models were adjusted for age, body mass index, and sex. Larger lateral sway during the sensory integration test performed on foam was associated with longer repeated chair stands time. During the lateral center of pressure tracking task, the error in tracking increased at higher frequencies; greater error was associated with worse executive function. The relationship between sway performance and physical and cognitive function differed between women and men. Contributors to control of lateral balance were task-dependent. Lateral standing performance on an unstable surface may be more dependent upon general lower extremity strength, whereas visual tracking performance may be more dependent upon cognitive factors. Lateral balance control in ambulatory older adults is associated with deficits in strength and executive function.
Components of Standing Postural Control Evaluated in Pediatric Balance Measures: A Scoping Review.
Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Paterson, Marie; Wittmeier, Kristy D
2017-10-01
To identify measures of standing balance validated in pediatric populations, and to determine the components of postural control captured in each tool. Electronic searches of MEDLINE, Embase, and CINAHL databases using key word combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests, and child/pediatrics; gray literature; and hand searches. Inclusion criteria were measures with a stated objective to assess balance, with pediatric (≤18y) populations, with at least 1 psychometric evaluation, with at least 1 standing task, with a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. There were 21 measures included. Two reviewers extracted descriptive characteristics, and 2 investigators independently coded components of balance in each measure using a systems perspective for postural control, an established framework for balance in pediatric populations. Components of balance evaluated in measures were underlying motor systems (100% of measures), anticipatory postural control (72%), static stability (62%), sensory integration (52%), dynamic stability (48%), functional stability limits (24%), cognitive influences (24%), verticality (9%), and reactive postural control (0%). Assessing children's balance with valid and comprehensive measures is important for ensuring development of safe mobility and independence with functional tasks. Balance measures validated in pediatric populations to date do not comprehensively assess standing postural control and omit some key components for safe mobility and independence. Existing balance measures, that have been validated in adult populations and address some of the existing gaps in pediatric measures, warrant consideration for validation in children. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.
Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan
2016-01-01
Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.
Role of vestibular information in initiation of rapid postural responses
NASA Technical Reports Server (NTRS)
Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)
1998-01-01
Patients with bilateral vestibular loss have difficulty maintaining balance without stepping when standing in tandem, on compliant surfaces, across narrow beams, or on one foot, especially with eyes closed. Normal individuals (with no sensory impairment) maintain balance in these tasks by employing quick, active hip rotation (a "hip strategy"). The absence of a hip strategy in vestibular patients responding to translations of a short support surface has previously been taken as evidence that the use of hip strategy requires an intact vestibular system. However, many tasks requiring hip strategy alter one or a combination of important system characteristics, such as initial state of the body (tandem stance), dynamics (compliant surfaces), or biomechanical limits of stability (narrow beams). Therefore, the balance deficit in these tasks may result from a failure to account for these support surface alterations when planning and executing sensorimotor responses. In this study, we tested the hypothesis that vestibular information is critical to trigger a hip strategy even on an unaltered support surface, which imposes no changes on the system characteristics. We recorded the postural responses of vestibular patients and control subjects with eyes closed to rearward support surface translations of varying velocity, in erect stance on a firm, flat surface. Subjects were instructed to maintain balance without stepping, if possible. Faster translation velocities (25 cm/s or more) produced a consistent pattern of early hip torque (first 400 ms) in control subjects (i.e., a hip strategy). Most of the patients with bilateral vestibular loss responded to the same translation velocities with similar torques. Contrary to our hypothesis, we conclude that vestibular function is not necessary to trigger a hip strategy. We postulate, therefore, that the balance deficit previously observed in vestibular patients during postural tasks that elicit a hip strategy may have been due to the sensorimotor consequences of the system alterations imposed by the postural tasks used in those studies. Preliminary results from two younger patients who lost vestibular function as infants indicate that age, duration of vestibular loss, and/or the timing of the loss may also be factors that can influence the use of hip strategy as a rapid postural response.
Wu, Wen-Lan; Wei, Ta-Sen; Chen, Shen-Kai; Chang, Jyh-Jong; Guo, Lan-Yuen; Lin, Hwai-Ting
2010-01-01
Walking performance changes with age. This has implications for the problem of falls in older adults. The aim of this study was to investigate the effects of Yuanji-Dance practice on walking balance and the associated attention demand in healthy elderly. Fifteen community-dwelling elderly (comparison group, no regular exercise habit) and fifteen Yuanji- Dance elderly (exercise group, dancing experience: 5.40 ± 1.95 years), aged 60-70 years, were included in this study. The subjects in exercise group participated in a 90-minute Yuanji-Dance practice at least three times per week and the comparison group continued their normal daily physical activity. Walking balance measures (including walking velocity, step length, step width, and percentage of time spent in double limb support, COM velocity and COM-COP inclination angles) and attentional demand tests (button reaction time and accuracy) were conducted under different conditions. Our results showed that stride lengths, walking velocities, peak A/P velocities (AP V) of the COM, medial COM-COP inclination (M angle) angles, reaction time, and accuracy decrease significantly as the dual-task (walking plus hand button pressing tasks) applied for either the comparison or exercise groups. These results demonstrated that walking performance is attenuated in our elderly participants as the cognitive tasks applied. Analysis also identified a significantly faster RT for our exercise group both in standing and walking conditions. This may indicate that physical exercise (Yuanji-Dance) may have facilitating effects on general cognitive and perceptual- motor functions. This implies that Chinese Yuanji-Dance practice for elderly adults may improve their personal safety when walking especially under the condition of multiple task demand. Key points The purpose of this study was to investigate the training effects of a Chinese traditional exercise, Yuanji-Dance, on walking balance and the associated attention demand in the healthy elderly. Walking performance is attenuated in elderly participants as the cognitive tasks applied. A significantly faster reaction time for our exercise group both in standing and walking conditions. Yuanji-Dance exercise training can improve the information processing speed of elderly people and has no influence of the dynamic walking balance. PMID:24149395
de la Vega, Alejandro; Brown, Mark S; Snyder, Hannah R; Singel, Debra; Munakata, Yuko; Banich, Marie T
2014-11-01
Individuals vary greatly in their ability to select one item or response when presented with a multitude of options. Here we investigate the neural underpinnings of these individual differences. Using magnetic resonance spectroscopy, we found that the balance of inhibitory versus excitatory neurotransmitters in pFC predicts the ability to select among task-relevant options in two language production tasks. The greater an individual's concentration of GABA relative to glutamate in the lateral pFC, the more quickly he or she could select a relevant word from among competing options. This outcome is consistent with our computational modeling of this task [Snyder, H. R., Hutchison, N., Nyhus, E., Curran, T., Banich, M. T., O'Reilly, R. C., et al. Neural inhibition enables selection during language processing. Proceedings of the National Academy of Sciences, U.S.A., 107, 16483-16488, 2010], which predicts that greater net inhibition in pFC increases the efficiency of resolving competition among task-relevant options. Moreover, the association with the GABA/glutamate ratio was specific to selection and was not observed for executive function ability in general. These findings are the first to link the balance of excitatory and inhibitory neural transmission in pFC to specific aspects of executive function.
Performance-oriented mobility assessment (POMA) balance score indicates need for assistive device.
Mitchell, Kathryn D; Newton, Roberta A
2006-06-01
To determine (1) if older adults using an assistive device (AD) score lower on the Performance-Oriented Mobility Assessment (POMA) balance subscale (B-subscale) than individuals not using an AD; and (2) if a cut-score of 12 would indicate the need to use an AD. Elderly persons (n = 82, mean age = 82.1 years) were surveyed about AD use, health status, activity level and fall history. A one-time assessment of balance was conducted using the B-subscale. The 'arising task' was repeated to evaluate performance on the sit-to-stand task without using hands. A significant difference in B-subscale scores was observed between the two groups (AD; no AD), (P < 0.001). AD use was associated with lower activity level and health status. A cut-score of 12 points indicated device use (P = 0.000). The repeated 'arising task' demonstrated that 76.8% performed the task without using hands for support. Older adults using an AD will score lower on the B-subscale and report lower activity level and health status. A score of less than 12 on the B-subscale is indicative of AD need. Older adults who use an AD and self-report a falls history will score lower on the B-subscale than individuals using an AD and no reported history of falls.
Chisholm, Amanda E; Malik, Raza Naseem; Blouin, Jean-Sébastien; Borisoff, Jaimie; Forwell, Susan; Lam, Tania
2014-06-06
Previous evidence suggests the effects of task-specific therapy can be further enhanced when sensory stimulation is combined with motor practice. Sensory tongue stimulation is thought to facilitate activation of regions in the brain that are important for balance and gait. Improvements in balance and gait have significant implications for functional mobility for people with incomplete spinal cord injury (iSCI). The aim of this case study was to evaluate the feasibility of a lab- and home-based program combining sensory tongue stimulation with balance and gait training on functional outcomes in people with iSCI. Two male participants (S1 and S2) with chronic motor iSCI completed 12 weeks of balance and gait training (3 lab and 2 home based sessions per week) combined with sensory tongue stimulation using the Portable Neuromodulation Stimulator (PoNS). Laboratory based training involved 20 minutes of standing balance with eyes closed and 30 minutes of body-weight support treadmill walking. Home based sessions consisted of balancing with eyes open and walking with parallel bars or a walker for up to 20 minutes each. Subjects continued daily at-home training for an additional 12 weeks as follow-up. Both subjects were able to complete a minimum of 83% of the training sessions. Standing balance with eyes closed increased from 0.2 to 4.0 minutes and 0.0 to 0.2 minutes for S1 and S2, respectively. Balance confidence also improved at follow-up after the home-based program. Over ground walking speed improved by 0.14 m/s for S1 and 0.07 m/s for S2, and skilled walking function improved by 60% and 21% for S1 and S2, respectively. Sensory tongue stimulation combined with task-specific training may be a feasible method for improving balance and gait in people with iSCI. Our findings warrant further controlled studies to determine the added benefits of sensory tongue stimulation to rehabilitation training.
Detecting Behavioral Deficits in Rats After Traumatic Brain Injury
Parsley, Margaret A.; Guptarak, Jutatip; Spratt, Heidi; Sell, Stacy L.
2018-01-01
With the increasing incidence of traumatic brain injury (TBI) in both civilian and military populations, TBI is now considered a chronic disease; however, few studies have investigated the long-term effects of injury in rodent models of TBI. Shown here are behavioral measures that are well-established in TBI research for times early after injury, such as two weeks, until two months. Some of these methods have previously been used at later times after injury, up to one year, but by very few laboratories. The methods demonstrated here are a short neurological assessment to test reflexes, a Beam-Balance to test balance, a Beam-Walk to test balance and motor coordination, and a working memory version of the Morris water maze that can be sensitive to deficits in reference memory. Male rats were handled and pre-trained to neurological, balance, and motor coordination tests prior to receiving parasagittal fluid percussion injury (FPI) or sham injury. Rats can be tested on the short neurological assessment (neuroscore), the beam-balance, and the Beam-Walk multiple times, while testing on the water maze can only be done once. This difference is because rats can remember the task, thus confounding the results if repeated testing is attempted in the same animal. When testing from one to three days after injury, significant differences are detected in all three non-cognitive tasks. However, differences in the Beam-Walk task were not detectable at later time points (after 3 months). Deficits were detected at 3 months in the Beam-Balance and at 6 months in the neuroscore. Deficits in working memory were detected out to 12 months after injury, and a deficit in a reference memory first appeared at 12 months. Thus, standard behavioral tests can be useful measures of persistent behavioral deficits after FPI. PMID:29443022
Naumann, Tim; Kindermann, Stefan; Joch, Michael; Munzert, Jörn; Reiser, Mathias
2015-03-01
Despite the increasing use of video games involving whole body movements to enhance postural control in health prevention and rehabilitation, there is no consistent proof that training effects actually transfer to other balance tasks. The present study aimed to determine whether training effects on two different video-game-based training devices were task-specific or could be transferred to either postural control in quiet stance or to performance on the other device. 37 young healthy adults were split into three groups: two intervention groups that trained for 30min on either the Nintendo(®) Wii Fit Balance Board or the MFT Challenge Disc(®) three times per week for 4 weeks and a control group that received no training. All games require participants to control virtual avatars by shifting the center of mass in different directions. Both devices differ in their physical properties. The Balance Board provides a stable surface, whereas the Challenge Disc can be tilted in all directions. Dependent variables were the game scores on both devices and the center of pressure (COP) displacements measured via force plate. At posttest, both intervention groups showed significant increases in performance on the trained games compared to controls. However, there were no relevant transfer effects to performance on the untrained device and no changes in COP path length in quiet stance. These results suggest that training effects on both devices are highly specific and do not transfer to tasks with different postural demands. Copyright © 2015 Elsevier B.V. All rights reserved.
Fiori, Katherine; Consedine, Nathan; Magai, Carol
2008-11-01
Negotiating the balance between reliance on others and desires for autonomy is a fundamental task of successful aging. The purpose of the present study was to replicate and extend a three-factor model of interpersonal dependency in a sample of older adults, and to examine the physical and psychological health correlates of this multifaceted construct. Data come from the third wave of a population-based study of older Americans (n = 166; mean age 80 years). We conducted an exploratory factor analysis of selected dependency items from two scales, and then conducted logistic and hierarchical linear regressions to analyze the association of dependency factors with self-reported health, use of hypertension medication, depressed affect and positive affect. We found three factors closely paralleling those of Bornstein and Languirand's (Psychological Bulletin, 112(1), 3-23, 2004) measure: destructive overdependence, healthy dependency and dysfunctional detachment, as well as a fourth factor we labeled 'healthy independence'. Healthy dependency was associated with better self-reported health. Dysfunctional detachment was related to a greater likelihood and healthy independence a lesser likelihood of taking hypertension medication. Whereas both healthy independence and healthy dependency were positively related to positive affect and negatively related to depressed affect, destructive overdependence was positively related to depressed affect. Understanding the complex nature of interpersonal dependency and autonomy in old age, as well as their implications for health and wellbeing, may enable practitioners to assist older adults in negotiating the task of balancing these needs.
Louie, Dennis R; Eng, Janice J
2018-01-10
This retrospective cohort study identified inpatient rehabilitation admission variables that predict walking ability at discharge and established Berg Balance Scale cut-off scores to predict the extent of improvement in walking. Participants (n=123) were assessed for various cognitive and physical outcomes at admission to inpatient stroke rehabilitation. Multivariate logistic regression identified admission predictors of regaining community ambulation (gait speed ≥0.8 m/s) or unassisted ambulation (no physical assistance) after 4 weeks. Receiver operating characteristic curve analysis identified cut-off admission Berg Balance Scale scores. Mini-Mental State Examination (odds ratio (OR) 1.60, 95% confidence interval (95% CI) 1.19-2.14) was a significant predictor when coupled with admission walking speed for regaining community ambulation speed; stroke type (haemorrhagic/ischaemic) was a significant predictor (OR=0.19, 95% CI 0.05-0.77) when coupled with Berg Balance Scale (OR 1.14, 95% CI 1.09-1.20). Only Berg Balance Scale was a significant predictor of regaining unassisted ambulation (OR 1.11, 95% CI 1.05-1.17). A cut-off Berg Balance Scale score of 29 on admission predicts that an individual will go on to achieve community walking speed (n=123, area under the curve (AUC)=0.88, 95% CI 0.81-0.95); a cut-off score of 12 predicts a non-ambulator to regain unassisted ambulation (n=84, AUC 0.73, 95% CI 0.62-0.84). The Berg Balance Scale can be used at rehabilitation admission to predict the degree of improvement in walking for patients with stroke.
Interpretability of Change Scores in Measures of Balance in People With COPD.
Beauchamp, Marla K; Harrison, Samantha L; Goldstein, Roger S; Brooks, Dina
2016-03-01
Balance deficits and an increased fall risk are well documented in individuals with COPD. Despite evidence that balance training programs can improve performance on clinical balance tests, their minimal clinically important difference (MCID) is unknown. The aim of this study was to determine the MCID of the Berg Balance Scale (BBS), Balance Evaluation Systems Test (BESTest), and Activities-Specific Balance Confidence (ABC) scale in patients with COPD undergoing pulmonary rehabilitation. We performed a secondary analysis of data from two studies of balance training in COPD (n = 55). The MCID for each balance measure was estimated using the following anchor and distribution-based approaches: (1) mean change scores on a patient-reported global change in balance scale, (2) optimal cut-point from receiver operating characteristic curves (ROCs), and (3) the minimal detectable change with 95% confidence (MDC95). Data from 55 patients with COPD (mean age, 71.2 ± 7.1 y; mean FEV1, 39.2 ± 15.8% predicted) were used in the analysis. The smallest estimate of MCID was from the ROC method. Anchor-based estimates of the MCID ranged from 3.5 to 7.1 for the BBS, 10.2 to 17.4 for the BESTest, and 14.2 to 18.5 for the ABC scale; their MDC95 values were 5.0, 13.1, and 18.9, respectively. Among patients with COPD undergoing pulmonary rehabilitation, a change of 5 to 7 points for the BBS, 13 to 17 points for the BESTest, and 19 points for the ABC scale is required to be both perceptible to patients and beyond measurement error. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Vergara-Diaz, Gloria; Osypiuk, Kamila; Hausdorff, Jeffrey M; Bonato, Paolo; Gow, Brian J; Miranda, Jose Gv; Sudarsky, Lewis R; Tarsy, Daniel; Fox, Michael D; Gardiner, Paula; Thomas, Cathi A; Macklin, Eric A; Wayne, Peter M
2018-01-01
To assess the feasibility and inform design features of a fully powered randomized controlled trial (RCT) evaluating the effects of Tai Chi (TC) in Parkinson's disease (PD) and to select outcomes most responsive to TC assessed during off-medication states. Two-arm, wait-list controlled RCT. Tertiary care hospital. Thirty-two subjects aged 40-75 diagnosed with idiopathic PD within 10 years. Six-month TC intervention added to usual care (UC) versus UC alone. Primary outcomes were feasibility-related (recruitment rate, adherence, and compliance). Change in dual-task (DT) gait stride-time variability (STV) from baseline to 6 months was defined, a priori, as the clinical outcome measure of primary interest. Other outcomes included: PD motor symptom progression (Unified Parkinson's Disease Rating Scale [UPDRS]), PD-related quality of life (PDQ-39), executive function (Trail Making Test), balance confidence (Activity-Specific Balance Confidence Scale, ABC), and Timed Up and Go test (TUG). All clinical assessments were made in the off-state for PD medications. Thirty-two subjects were enrolled into 3 sequential cohorts over 417 days at an average rate of 0.08 subjects per day. Seventy-five percent (12/16) in the TC group vs 94% (15/16) in the UC group completed the primary 6-month follow-up assessment. Mean TC exposure hours overall: 52. No AEs occurred during or as a direct result of TC exercise. Statistically nonsignificant improvements were observed in the TC group at 6 months in DT gait STV (TC [20.1%] vs UC [-0.1%] group [effect size 0.49; P = .47]), ABC, TUG, and PDQ-39. UPDRS progression was modest and very similar in TC and UC groups. Conducting an RCT of TC for PD is feasible, though measures to improve recruitment and adherence rates are needed. DT gait STV is a sensitive and logical outcome for evaluating the combined cognitive-motor effects of TC in PD.
Video game-based exercises for balance rehabilitation: a single-subject design.
Betker, Aimee L; Szturm, Tony; Moussavi, Zahra K; Nett, Cristabel
2006-08-01
To investigate whether coupling foot center of pressure (COP)-controlled video games to standing balance exercises will improve dynamic balance control and to determine whether the motivational and challenging aspects of the video games would increase a subject's desire to perform the exercises and complete the rehabilitation process. Case study, pre- and postexercise. University hospital outpatient clinic. A young adult with excised cerebellar tumor, 1 middle-aged adult with single right cerebrovascular accident, and 1 middle-aged adult with traumatic brain injury. A COP-controlled, video game-based exercise system. The following were calculated during 12 different tasks: the number of falls, range of COP excursion, and COP path length. Postexercise, subjects exhibited a lower fall count, decreased COP excursion limits for some tasks, increased practice volume, and increased attention span during training. The COP-controlled video game-based exercise regime motivated subjects to increase their practice volume and attention span during training. This in turn improved subjects' dynamic balance control.
Relationship of executive function and educational status with functional balance in older adults.
Voos, Mariana Callil; Custódio, Elaine Bazilio; Malaquias, Joel
2011-01-01
The Berg Balance Scale (BBS) is frequently used to assess functional balance in older adults. The relationship of executive function and level of education with the BBS performance has not been described. The aim of this study was to determine whether (1) the performance on a task requiring executive function (part B of the Trail Making Test, TMT-B) influences results of motor and cognitive tests and (2) the number of years of formal education could be related to performance on BBS in older adults. We also explored whether there would be differences, based on performance on TMT-B (high vs low) in motor function (BBS, the timed up and go [TUG]) or cognitive function (TMT-A and TMTDELTA), the Mini Mental State Examination (MMSE), as well as years of education. Participants included 101 older adults (age range, 60-80 years) residing in São Paulo, Brazil. Functional balance was assessed using BBS and TUG. Executive function was assessed using the TMT and MMSE. Educational status was determined by self-report of participant's total number of years of formal education. The BBS scores were inversely related to TMT-A time (r = -0.63, r = 0.40, P < .001) and TMT-B time (r = -0.56, r = 0.31, P < .001). There was a similar relationship with TMTDELTA (r = -0.47, r = 0.22, P < .001). The BBS scores were positively correlated to years of formal education (r = 0.48, r = 0.23, P < .001). There was a ceiling effect on the TMT-B, with many individuals reaching maximum score of 300 seconds. Participants with high levels of executive function had higher BBS and MMSE scores, more education, and lower TMT-A, TMTDELTA and TUG scores (P < .001) than the lower functioning group. Individuals with higher capacity on tasks requiring visuospatial abilities, psychomotor speed, and executive function, such as the TMT, had better performance on BBS. Individuals with a high executive function, measured by TMT-B, also performed better on other motor and cognitive tests.
Characterizing Task-Based OpenMP Programs
Muddukrishna, Ananya; Jonsson, Peter A.; Brorsson, Mats
2015-01-01
Programmers struggle to understand performance of task-based OpenMP programs since profiling tools only report thread-based performance. Performance tuning also requires task-based performance in order to balance per-task memory hierarchy utilization against exposed task parallelism. We provide a cost-effective method to extract detailed task-based performance information from OpenMP programs. We demonstrate the utility of our method by quickly diagnosing performance problems and characterizing exposed task parallelism and per-task instruction profiles of benchmarks in the widely-used Barcelona OpenMP Tasks Suite. Programmers can tune performance faster and understand performance tradeoffs more effectively than existing tools by using our method to characterize task-based performance. PMID:25860023
van der Logt, Rens; Nedeltchev, Krassen; Achtnichts, Lutz; Allum, John H. J.
2018-01-01
Introduction We compared changes in balance control due to chronic inflammatory demyelinating polyneuropathy (CIDP) and non-inflammatory (non-inf) polyneuropathy (PNP) to each other and with respect to healthy controls (HCs). Differences in patients’ subjective impressions of balance capabilities were also compared. Methods Balance control of 11 CIDP patients (mean age 61.1±(sd) 11, 8 male) and 10 non-inf PNP patients (mean age 68.5±11.7, all male) was examined and compared to that of 18 age- and gender-matched healthy controls. Balance control during stance and gait tasks was measured as trunk sway angles and angular velocities with body-worn gyroscopes. Patients’ subjective impressions of balance were obtained using the Dizziness Handicap Inventory (DHI). The Neuropathy Impairment Score in the Lower Limbs (NIS-LL) was used to measure clinical disease status. Results Non-inf PNP patients had slightly lower NIS-LL (13.5±7.2 vs. 17.9±15.1) and DHI scores (22.6±17.1 vs 27.6±16.3). Gait tasks showed a significant decrease in gait speed with respect to HCs for both patient groups but reduced trunk sway for non-inf PNP patients. Trunk sway during tandem walking and walking on the heels was greater for both groups than that of HCs. Sway during 2-legged stance tasks with eyes closed on a firm or foam surface was also greater than for HCs. Discussion Compared to HCs both groups of patients have significantly greater sway for most stance and gait tasks accompanied by reduced gait speed. As for HCs, non-inf PNP patients reduced trunk sway with slower gait speed. In CIDP patients this compensatory strategy was absent, possibly due to a greater deficit of efferent and motor nerve fibers. An interpretation of these findings is that CIDP patients have reduced ability to decrease trunk sway with slower gait speed and is possibly associated with an increased risk of falls. PMID:29474369
Quantifying catchment water balances and their uncertainties by expert elicitation
NASA Astrophysics Data System (ADS)
Sebok, Eva; Refsgaard, Jens Christian; Warmink, Jord J.; Stisen, Simon; Høgh Jensen, Karsten
2017-04-01
The increasing demand on water resources necessitates a more responsible and sustainable water management requiring a thorough understanding of hydrological processes both on small scale and on catchment scale. On catchment scale, the characterization of hydrological processes is often carried out by calculating a water balance based on the principle of mass conservation in hydrological fluxes. Assuming a perfect water balance closure and estimating one of these fluxes as a residual of the water balance is a common practice although this estimate will contain uncertainties related to uncertainties in the other components. Water balance closure on the catchment scale is also an issue in Denmark, thus, it was one of the research objectives of the HOBE hydrological observatory, that has been collecting data in the Skjern river catchment since 2008. Water balance components in the 1050 km2 Ahlergaarde catchment and the nested 120 km2 Holtum catchment, located in the glacial outwash plan of the Skjern catchment, were estimated using a multitude of methods. As the collected data enables the complex assessment of uncertainty of both the individual water balance components and catchment-scale water balances, the expert elicitation approach was chosen to integrate the results of the hydrological observatory. This approach relies on the subjective opinion of experts whose available knowledge and experience about the subject allows to integrate complex information from multiple sources. In this study 35 experts were involved in a multi-step elicitation process with the aim of (1) eliciting average annual values of water balance components for two nested catchments and quantifying the contribution of different sources of uncertainties to the total uncertainty in these average annual estimates; (2) calculating water balances for two catchments by reaching consensus among experts interacting in form of group discussions. To address the complex problem of water balance closure, the water balance was separated into five components: precipitation, evapotranspiration, surface runoff, recharge and subsurface outflow. During the study, experts first participated in individual interviews where they gave their opinion on the probability distribution of their water balance component of interest. The average annual values and uncertainty of water balance components and catchment-scale water balances were obtained at a later stage by reaching consensus during group discussions. The obtained water balance errors for the Ahlergaarde catchment and the Holtum catchment were -5 and -62 mm/yr, respectively, with an uncertainty of 66 and 86 mm/yr, respectively. As an advantage of the expert elicitation, drawing on the intuitive experience and capabilities of experts to assess complex, site-specific problems, not only the uncertainty of the water balance error was quantified, but the uncertainty of individual water balance components as well.
Li, Xinan; Xu, Hongyuan; Cheung, Jeffrey T
2016-12-01
This work describes a new approach for gait analysis and balance measurement. It uses an inertial measurement unit (IMU) that can either be embedded inside a dynamically unstable platform for balance measurement or mounted on the lower back of a human participant for gait analysis. The acceleration data along three Cartesian coordinates is analyzed by the gait-force model to extract bio-mechanics information in both the dynamic state as in the gait analyzer and the steady state as in the balance scale. For the gait analyzer, the simple, noninvasive and versatile approach makes it appealing to a broad range of applications in clinical diagnosis, rehabilitation monitoring, athletic training, sport-apparel design, and many other areas. For the balance scale, it provides a portable platform to measure the postural deviation and the balance index under visual or vestibular sensory input conditions. Despite its simple construction and operation, excellent agreement has been demonstrated between its performance and the high-cost commercial balance unit over a wide dynamic range. The portable balance scale is an ideal tool for routine monitoring of balance index, fall-risk assessment, and other balance-related health issues for both clinical and household use.
NASA Technical Reports Server (NTRS)
Wood, Eric F.
1993-01-01
The objectives of the research were as follows: (1) Extend the Representative Elementary Area (RE) concept, first proposed and developed in Wood et al, (1988), to the water balance fluxes of the interstorm period (redistribution, evapotranspiration and baseflow) necessary for the analysis of long-term water balance processes. (2) Derive spatially averaged water balance model equations for spatially variable soil, topography and vegetation, over A RANGE OF CLIMATES. This is a necessary step in our goal to derive consistent hydrologic results up to GCM grid scales necessary for global climate modeling. (3) Apply the above macroscale water balance equations with remotely sensed data and begin to explore the feasibility of parameterizing the water balance constitutive equations at GCM grid scale.
Koslucher, Frank; Wade, Michael G; Nelson, Brent; Lim, Kelvin; Chen, Fu-Chen; Stoffregen, Thomas A
2012-07-01
Research has shown that the Nintendo Wii Balance Board (WBB) can reliably detect the quantitative kinematics of the center of pressure in stance. Previous studies used relatively coarse manipulations (1- vs. 2-leg stance, and eyes open vs. closed). We sought to determine whether the WBB could reliably detect postural changes associated with subtle variations in visual tasks. Healthy elderly adults stood on a WBB while performing one of two visual tasks. In the Inspection task, they maintained their gaze within the boundaries of a featureless target. In the Search task, they counted the occurrence of designated target letters within a block of text. Consistent with previous studies using traditional force plates, the positional variability of the center of pressure was reduced during performance of the Search task, relative to movement during performance of the Inspection task. Using detrended fluctuation analysis, a measure of movement dynamics, we found that COP trajectories were more predictable during performance of the Search task than during performance of the Inspection task. The results indicate that the WBB is sensitive to subtle variations in both the magnitude and dynamics of body sway that are related to variations in visual tasks engaged in during stance. The WBB is an inexpensive, reliable technology that can be used to evaluate subtle characteristics of body sway in large or widely dispersed samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Exercise for improving balance in older people.
Howe, Tracey E; Rochester, Lynn; Neil, Fiona; Skelton, Dawn A; Ballinger, Claire
2011-11-09
In older adults, diminished balance is associated with reduced physical functioning and an increased risk of falling. This is an update of a Cochrane review first published in 2007. To examine the effects of exercise interventions on balance in older people, aged 60 and over, living in the community or in institutional care. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, CENTRAL (The Cochrane Library 2011, Issue 1), MEDLINE and EMBASE (to February 2011). Randomised controlled studies testing the effects of exercise interventions on balance in older people. The primary outcomes of the review were clinical measures of balance. Pairs of review authors independently assessed risk of bias and extracted data from studies. Data were pooled where appropriate. This update included 94 studies (62 new) with 9,917 participants. Most participants were women living in their own home.Most trials were judged at unclear risk of selection bias, generally reflecting inadequate reporting of the randomisation methods, but at high risk of performance bias relating to lack of participant blinding, which is largely unavoidable for these trials. Most studies only reported outcome up to the end of the exercise programme.There were eight categories of exercise programmes. These are listed below together with primary measures of balance for which there was some evidence of a statistically significant effect at the end of the exercise programme. Some trials tested more than one type of exercise. Crucially, the evidence for each outcome was generally from only a few of the trials for each exercise category. 1. Gait, balance, co-ordination and functional tasks (19 studies of which 10 provided primary outcome data): Timed Up & Go test (mean difference (MD) -0.82 s; 95% CI -1.56 to -0.08 s, 114 participants, 4 studies); walking speed (standardised mean difference (SMD) 0.43; 95% CI 0.11 to 0.75, 156 participants, 4 studies), and the Berg Balance Scale (MD 3.48 points; 95% CI 2.01 to 4.95 points, 145 participants, 4 studies).2. Strengthening exercise (including resistance or power training) (21 studies of which 11 provided primary outcome data): Timed Up & Go Test (MD -4.30 s; 95% CI -7.60 to -1.00 s, 71 participants, 3 studies); standing on one leg for as long as possible with eyes closed (MD 1.64 s; 95% CI 0.97 to 2.31 s, 120 participants, 3 studies); and walking speed (SMD 0.25; 95% CI 0.05 to 0.46, 375 participants, 8 studies).3. 3D (3 dimensional) exercise (including Tai Chi, qi gong, dance, yoga) (15 studies of which seven provided primary outcome data): Timed Up & Go Test (MD -1.30 s; 95% CI -2.40 to -0.20 s, 44 participants, 1 study); standing on one leg for as long as possible with eyes open (MD 9.60 s; 95% CI 6.64 to 12.56 s, 47 participants, 1 study), and with eyes closed (MD 2.21 s; 95% CI 0.69 to 3.73 s, 48 participants, 1 study); and the Berg Balance Scale (MD 1.06 points; 95% CI 0.37 to 1.76 points, 150 participants, 2 studies).4. General physical activity (walking) (seven studies of which five provided primary outcome data). 5. General physical activity (cycling) (one study which provided data for walking speed). 6. Computerised balance training using visual feedback (two studies, neither of which provided primary outcome data). 7. Vibration platform used as intervention (three studies of which one provided primary outcome data).8. Multiple exercise types (combinations of the above) (43 studies of which 29 provided data for one or more primary outcomes): Timed Up & Go Test (MD -1.63 s; 95% CI -2.28 to -0.98 s, 635 participants, 12 studies); standing on one leg for as long as possible with eyes open (MD 5.03 s; 95% CI 1.19 to 8.87 s, 545 participants, 9 studies), and with eyes closed ((MD 1.60 s; 95% CI -0.01 to 3.20 s, 176 participants, 2 studies); walking speed (SMD 0.04; 95% CI -0.10 to 0.17, 818 participants, 15 studies); and the Berg Balance Scale ((MD 1.84 points; 95% CI 0.71 to 2.97 points, 80 participants, 2 studies).Few adverse events were reported but most studies did not monitor or report adverse events.In general, the more effective programmes ran three times a week for three months and involved dynamic exercise in standing. There is weak evidence that some types of exercise (gait, balance, co-ordination and functional tasks; strengthening exercise; 3D exercise and multiple exercise types) are moderately effective, immediately post intervention, in improving clinical balance outcomes in older people. Such interventions are probably safe. There is either no or insufficient evidence to draw any conclusions for general physical activity (walking or cycling) and exercise involving computerised balance programmes or vibration plates. Further high methodological quality research using core outcome measures and adequate surveillance is required.
Health information management in the home: a human factors assessment.
Zayas-Cabán, Teresa
2012-01-01
Achieving optimal health outcomes requires that consumers maintain myriad health data and understand how to utilize appropriate health information management applications. This case study investigated four families' health information management tasks in their homes. Four different families participated in the study: a single parent household; two nuclear family households; and an extended family household. A work system model known as the balance model was used as a guiding framework for data collection. Data collection consisted of three stages: (1) primary health information manager interviews; (2) family interviews; and (3) task observations. Overall, families reported 69 unique health information management tasks that took place in nine different locations, using 22 different information storage artifacts. Frequently occurring tasks related to health management or health coordination were conducted in public spaces. Less frequent or more time-consuming tasks, such as researching a health concern or storing medical history, were performed in private spaces such as bedrooms or studies. Similarities across households suggest potential foundational design elements that consumer health information technology application designers need to balance with tailored interventions to successfully support variations in individuals' health information management needs.
Chen, Yu-Ling; Pei, Yu-Cheng
2018-01-01
Dual-task training may improve dual-task gait performance, balance, and cognition in older adults with and without cognitive impairment. Although music has been widely utilized in dementia management, there are no existing protocols for music-based dual-task training. This randomized controlled study developed a Musical Dual-Task Training (MDTT) protocol that patients with dementia can use to practice walking and making music simultaneously, to enhance attention control in patients during dual-tasking. Twenty-eight adults diagnosed with mild-to-moderate dementia were assigned to the MDTT (n=15) or control groups (n=13). The MDTT group received MDTT, while the control group participated in non-musical cognitive and walking activities. The effects of MDTT were evaluated through the primary outcome of attention control, and secondary outcomes of dual-task performance, balance, falls efficacy, and agitation. The MDTT group showed a significant improvement in attention control, while the control group did not ( P <0.001). A significant effect favored MDTT over control treatment for the secondary outcome of falls efficacy ( P =0.02) and agitation ( P <0.01). MDTT, a music therapy intervention that demands a high level of cognitive processing, enhances attention control, falls efficacy, and helps alleviate agitation in patients with mild-to-moderate dementia.
Musical dual-task training in patients with mild-to-moderate dementia: a randomized controlled trial
Chen, Yu-Ling; Pei, Yu-Cheng
2018-01-01
Background/aims Dual-task training may improve dual-task gait performance, balance, and cognition in older adults with and without cognitive impairment. Although music has been widely utilized in dementia management, there are no existing protocols for music-based dual-task training. This randomized controlled study developed a Musical Dual-Task Training (MDTT) protocol that patients with dementia can use to practice walking and making music simultaneously, to enhance attention control in patients during dual-tasking. Methods Twenty-eight adults diagnosed with mild-to-moderate dementia were assigned to the MDTT (n=15) or control groups (n=13). The MDTT group received MDTT, while the control group participated in non-musical cognitive and walking activities. The effects of MDTT were evaluated through the primary outcome of attention control, and secondary outcomes of dual-task performance, balance, falls efficacy, and agitation. Results The MDTT group showed a significant improvement in attention control, while the control group did not (P<0.001). A significant effect favored MDTT over control treatment for the secondary outcome of falls efficacy (P=0.02) and agitation (P<0.01). Conclusion MDTT, a music therapy intervention that demands a high level of cognitive processing, enhances attention control, falls efficacy, and helps alleviate agitation in patients with mild-to-moderate dementia. PMID:29881275
Children's Behaviour and Cognitions across Different Balance Tasks
ERIC Educational Resources Information Center
Messer, David J.; Pine, Karen J.; Butler, Cathal
2008-01-01
Children's understanding of the way objects balance has provided important insights about cognitive development [e.g., Karmiloff-Smith, A. (1992). "Beyond modularity: A developmental perspective on cognitive science." Cambridge, MA: MIT Press; Siegler, R. S. (1976). Three aspects of cognitive development. "Cognitive Psychology," 8, 481-520]. We…
NASA Technical Reports Server (NTRS)
Krasteva, Denitza T.
1998-01-01
Multidisciplinary design optimization (MDO) for large-scale engineering problems poses many challenges (e.g., the design of an efficient concurrent paradigm for global optimization based on disciplinary analyses, expensive computations over vast data sets, etc.) This work focuses on the application of distributed schemes for massively parallel architectures to MDO problems, as a tool for reducing computation time and solving larger problems. The specific problem considered here is configuration optimization of a high speed civil transport (HSCT), and the efficient parallelization of the embedded paradigm for reasonable design space identification. Two distributed dynamic load balancing techniques (random polling and global round robin with message combining) and two necessary termination detection schemes (global task count and token passing) were implemented and evaluated in terms of effectiveness and scalability to large problem sizes and a thousand processors. The effect of certain parameters on execution time was also inspected. Empirical results demonstrated stable performance and effectiveness for all schemes, and the parametric study showed that the selected algorithmic parameters have a negligible effect on performance.
A strategy to load balancing for non-connectivity MapReduce job
NASA Astrophysics Data System (ADS)
Zhou, Huaping; Liu, Guangzong; Gui, Haixia
2017-09-01
MapReduce has been widely used in large scale and complex datasets as a kind of distributed programming model. Original Hash partitioning function in MapReduce often results the problem of data skew when data distribution is uneven. To solve the imbalance of data partitioning, we proposes a strategy to change the remaining partitioning index when data is skewed. In Map phase, we count the amount of data which will be distributed to each reducer, then Job Tracker monitor the global partitioning information and dynamically modify the original partitioning function according to the data skew model, so the Partitioner can change the index of these partitioning which will cause data skew to the other reducer that has less load in the next partitioning process, and can eventually balance the load of each node. Finally, we experimentally compare our method with existing methods on both synthetic and real datasets, the experimental results show our strategy can solve the problem of data skew with better stability and efficiency than Hash method and Sampling method for non-connectivity MapReduce task.
Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods
Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.
2011-01-01
Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.
Pichierri, Giuseppe; Murer, Kurt; de Bruin, Eling D
2012-12-14
Computer-based interventions have demonstrated consistent positive effects on various physical abilities in older adults. This study aims to compare two training groups that achieve similar amounts of strength and balance exercise where one group receives an intervention that includes additional dance video gaming. The aim is to investigate the different effects of the training programs on physical and psychological parameters in older adults. Thirty-one participants (mean age ± SD: 86.2 ± 4.6 years), residents of two Swiss hostels for the aged, were randomly assigned to either the dance group (n = 15) or the control group (n = 16). The dance group absolved a twelve-week cognitive-motor exercise program twice weekly that comprised progressive strength and balance training supplemented with additional dance video gaming. The control group performed only the strength and balance exercises during this period. Outcome measures were foot placement accuracy, gait performance under single and dual task conditions, and falls efficacy. After the intervention between-group comparison revealed significant differences for gait velocity (U = 26, P = .041, r = .45) and for single support time (U = 24, P = .029, r = .48) during the fast walking dual task condition in favor of the dance group. No significant between-group differences were observed either in the foot placement accuracy test or in falls efficacy. There was a significant interaction in favor of the dance video game group for improvements in step time. Significant improved fast walking performance under dual task conditions (velocity, double support time, step length) was observed for the dance video game group only. These findings suggest that in older adults a cognitive-motor intervention may result in more improved gait under dual task conditions in comparison to a traditional strength and balance exercise program. This trial has been registered under ISRCTN05350123 (www.controlled-trials.com)
A novel strategy for load balancing of distributed medical applications.
Logeswaran, Rajasvaran; Chen, Li-Choo
2012-04-01
Current trends in medicine, specifically in the electronic handling of medical applications, ranging from digital imaging, paperless hospital administration and electronic medical records, telemedicine, to computer-aided diagnosis, creates a burden on the network. Distributed Service Architectures, such as Intelligent Network (IN), Telecommunication Information Networking Architecture (TINA) and Open Service Access (OSA), are able to meet this new challenge. Distribution enables computational tasks to be spread among multiple processors; hence, performance is an important issue. This paper proposes a novel approach in load balancing, the Random Sender Initiated Algorithm, for distribution of tasks among several nodes sharing the same computational object (CO) instances in Distributed Service Architectures. Simulations illustrate that the proposed algorithm produces better network performance than the benchmark load balancing algorithms-the Random Node Selection Algorithm and the Shortest Queue Algorithm, especially under medium and heavily loaded conditions.
Van Ooteghem, Karen; Frank, James S.; Allard, Fran; Horak, Fay B
2011-01-01
Postural motor learning for dynamic balance tasks has been demonstrated in healthy older adults (Van Ooteghem et al. 2009). The purpose of this study was to investigate the type of knowledge (general or specific) obtained with balance training in this age group and to examine whether embedding perturbation regularities within a balance task masks specific learning. Two groups of older adults maintained balance on a constant frequency-variable amplitude oscillating platform. One group was trained using an embedded sequence (ES) protocol which contained the same 15-s sequence of variable amplitude oscillations in the middle of each trial. A second group was trained using a looped sequence (LS) protocol which contained a 15-s sequence repeated three times to form each trial. All trials were 45-s. Participants were not informed of any repetition. To examine learning, participants performed a retention test following a 24-h delay. LS participants also completed a transfer task. Specificity of learning was examined by comparing performance for repeated versus random sequences (ES) and training versus transfer sequences (LS). Performance was measured by deriving spatial and temporal measures of whole body centre of mass (COM), and trunk orientation. Both groups improved performance with practice as characterized by reduced COM displacement, improved COM-platform phase relationships, and decreased angular trunk motion. Improvements were also characterized by general rather than specific postural motor learning. These findings are similar to young adults (Van Ooteghem et al. 2008) and indicate that age does not influence the type of learning which occurs for balance control. PMID:20544184
Student Life Balance: Myth or Reality?
ERIC Educational Resources Information Center
Doble, Niharika; Supriya, M. V.
2011-01-01
Purpose: Student life stress, student family conflict and student life balance are issues that are scarcely researched. This paper aims to develop a scale for assessing the concept of student life balance. Design/methodology/approach: The study evaluated a 54-item scale for assessing the construct. The data are obtained from 612 Indian students.…
Newton's Third Law on a Scale Balance
ERIC Educational Resources Information Center
Nopparatjamjomras, Suchai; Panijpan, Bhinyo; Huntula, Jiradawan
2009-01-01
We propose a series of experiments involving balance readings of an object naturally floating or forced to be partially or fully immersed in water contained in a beaker sitting on an electronic scale balance. Students were asked to predict, observe and explain each case. The teacher facilitated the learning by asking probing questions, giving…
Fujita, Takaaki; Sato, Atsushi; Ohashi, Yuji; Nishiyama, Kazutaka; Ohashi, Takuro; Yamane, Kazuhiro; Yamamoto, Yuichi; Tsuchiya, Kenji; Otsuki, Koji; Tozato, Fusae
2018-05-01
The purpose of this study was to clarify the amount of balance necessary for the independence of transfer and stair-climbing in stroke patients. This study included 111 stroke inpatients. Simple and multiple regression analyses were conducted to establish the association between the FIM ® instrument scores for transfer or stair-climbing and Berg Balance Scale. Furthermore, receiver operating characteristic curves were used to elucidate the amount of balance necessary for the independence of transfer and stair-climbing. Simple and multiple regression analyses showed that the FIM ® instrument scores for transfer and stair-climbing were strongly associated with Berg Balance Scale. On comparison of the independent and supervision-dependent groups, Berg Balance Scale cut-off values for transfer and stair-climbing were 41/40 and 54/53 points, respectively. On comparison of the independent-supervision and dependent groups, the cut-off values for transfer and stair-climbing were 30/29 and 41/40 points, respectively. The calculated cut-off values indicated the amount of balance necessary for the independence of transfer and stair-climbing, with and without supervision, in stroke patients. Berg Balance Scale has a good discriminatory ability and cut-off values are clinically useful to determine the appropriate independence levels of transfer and stair-climbing in hospital wards. Implications for rehabilitation The Berg Balance Scale's (BBS) strong association with transfer and stair-climbing independence and performance indicates that establishing cut-off values is vitally important for the established use of the BBS clinically. The cut-off values calculated herein accurately demonstrate the level of balance necessary for transfer and stair-climbing independence, with and without supervision, in stroke patients. These criteria should be employed clinically for determining the level of independence for transfer and stair-climbing as well as for setting balance training goals aimed at improving transfer and stair-climbing.
Fling, Brett W.; Dutta, Geetanjali Gera; Schlueter, Heather; Cameron, Michelle H.; Horak, Fay B.
2014-01-01
Mobility and balance impairments are a hallmark of multiple sclerosis (MS), affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to (1) map the cortical proprioceptive pathway in vivo using diffusion-weighted imaging and (2) assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS) would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls (HC). Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere’s proprioceptive pathway was significantly correlated with overall balance performance in HC, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon (1) cerebellar-regulated proprioceptive control, (2) the vestibular system, and/or (3) the visual system. PMID:25368564
Sawers, Andrew; Ting, Lena H
2015-02-01
The ability to quantify differences in walking balance proficiency is critical to curbing the rising health and financial costs of falls. Current laboratory-based approaches typically focus on successful recovery of balance while clinical instruments often pose little difficulty for all but the most impaired patients. Rarely do they test motor behaviors of sufficient difficulty to evoke failures in balance control limiting their ability to quantify balance proficiency. Our objective was to test whether a simple beam-walking task could quantify differences in walking balance proficiency across a range of sensorimotor abilities. Ten experts, ten novices, and five individuals with transtibial limb loss performed six walking trials across three different width beams. Walking balance proficiency was quantified as the ratio of distance walked to total possible distance. Balance proficiency was not significantly different between cohorts on the wide-beam, but clear differences between cohorts on the mid and narrow-beams were identified. Experts walked a greater distance than novices on the mid-beam (average of 3.63±0.04m verus 2.70±0.21m out of 3.66m; p=0.009), and novices walked further than amputees (1.52±0.20m; p=0.03). Amputees were unable to walk on the narrow-beam, while experts walked further (3.07±0.14m) than novices (1.55±0.26m; p=0.0005). A simple beam-walking task and an easily collected measure of distance traveled detected differences in walking balance proficiency across sensorimotor abilities. This approach provides a means to safely study and evaluate successes and failures in walking balance in the clinic or lab. It may prove useful in identifying mechanisms underlying falls versus fall recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.
Fling, Brett W; Dutta, Geetanjali Gera; Schlueter, Heather; Cameron, Michelle H; Horak, Fay B
2014-01-01
Mobility and balance impairments are a hallmark of multiple sclerosis (MS), affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to (1) map the cortical proprioceptive pathway in vivo using diffusion-weighted imaging and (2) assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS) would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls (HC). Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere's proprioceptive pathway was significantly correlated with overall balance performance in HC, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon (1) cerebellar-regulated proprioceptive control, (2) the vestibular system, and/or (3) the visual system.
Smith-Ray, Renae L; Makowski-Woidan, Beth; Hughes, Susan L
2014-10-01
Fall prevention is important for maintaining mobility and independence into old age. Approaches for reducing falls include exercise, tai chi, and home modifications; however, causes of falling are multifactorial and include not just physical but cognitive factors. Cognitive decline occurs with age, but older adults with the greatest declines in executive function experience more falls. The purpose of this study was twofold: to demonstrate the feasibility of a community-based cognitive training program for cognitively intact Black older adults and to analyze its impact on gait and balance in this population. This pilot study used a pretest/posttest randomized trial design with assignment to an intervention or control group. Participants assigned to the intervention completed a computer-based cognitive training class that met 2 days a week for 60 min over 10 weeks. Classes were held at senior/community centers. Primary outcomes included balance as measured by the Berg Balance Scale (BBS), 10-meter gait speed, and 10-meter gait speed under visuospatial dual-task condition. All measures were assessed at baseline and immediately post-intervention. Participants were community-dwelling Black adults with a mean age of 72.5 and history of falls (N = 45). Compared to controls, intervention participants experienced statistically significant improvements in BBS and gait speed. Mean performance on distracted gait speed also improved more for intervention participants compared to controls. Findings from this pilot randomized trial demonstrate the feasibility of a community-based cognitive training intervention. They provide initial evidence that cognitive training may be an efficacious approach toward improving balance and gait in older adults known to have a history of falls. © 2014 Society for Public Health Education.
Rehabilitation Exercises to Induce Balanced Scapular Muscle Activity in an Anti-gravity Posture
Ishigaki, Tomonobu; Yamanaka, Masanori; Hirokawa, Motoki; Tai, Keita; Ezawa, Yuya; Samukawa, Mina; Tohyama, Harukazu; Sugawara, Makoto
2014-01-01
[Purpose] The purpose of this study was to compare the intramuscular balance ratios of the upper trapezius muscle (UT) and the lower trapezius muscle (LT), and the intermuscular balance ratios of the UT and the serratus anterior muscle (SA) among prone extension (ProExt), prone horizontal abduction with external rotation (ProHAbd), forward flexion in the side-lying position (SideFlex), side-lying external rotation (SideEr), shoulder flexion with glenohumeral horizontal abduction load (FlexBand), and shoulder flexion with glenohumeral horizontal adduction load (FlexBall) in the standing posture. [Methods] The electromyographic (EMG) activities of the UT, LT and SA were measured during the tasks. The percentage of maximum voluntary isometric contraction (%MVIC) was calculated for each muscle, and the UT/LT ratios and the UT/SA ratios were compared among the tasks. [Results] The UT/LT ratio with the FlexBand was not significantly different from those of the four exercises in the side-lying and prone postures. The UT/SA ratio with the FlexBall demonstrated appropriate balanced activity. [Conclusion] In an anti-gravity posture, we recommend the FlexBand and the FlexBall for inducing balanced UT/LT and UT/SA ratios, respectively. PMID:25540485
Eltoukhy, Moataz A; Kuenze, Christopher; Oh, Jeonghoon; Signorile, Joseph F
2018-01-01
Reduction in balance is an indicator of fall risk, and therefore, an accurate and cost-effective balance assessment tool is essential for prescribing effective postural control strategies. This study established the validity of the Kinect v2 sensor in assessing center of mass (CoM) excursion and velocity during single-leg balance and voluntary ankle sway tasks among young and elderly subjects. We compared balance outcome measures (anteroposterior (AP) and mediolateral (ML) CoM excursion and velocity and average sway length) to a traditional three-dimensional motion analysis system. Twenty subjects (10 young: age = y, height cm, weight kg; 10 elderly: age y, height cm, weight kg), with no history of lower extremity injury, participated in this study. Subjects performed six randomized trials; four single-leg stand (SLS) and two ankle sway trials. SLS and voluntary ankle sway trials showed that consistency (ICC(2, k)) and agreement (ICC(3, k)) for all variables when all subjects were considered, as well as when the elderly and young groups were analyzed separately. Concordance between systems ranged from poor to nearly perfect depending on the group, task, and variable assessed.
Rehabilitation Exercises to Induce Balanced Scapular Muscle Activity in an Anti-gravity Posture.
Ishigaki, Tomonobu; Yamanaka, Masanori; Hirokawa, Motoki; Tai, Keita; Ezawa, Yuya; Samukawa, Mina; Tohyama, Harukazu; Sugawara, Makoto
2014-12-01
[Purpose] The purpose of this study was to compare the intramuscular balance ratios of the upper trapezius muscle (UT) and the lower trapezius muscle (LT), and the intermuscular balance ratios of the UT and the serratus anterior muscle (SA) among prone extension (ProExt), prone horizontal abduction with external rotation (ProHAbd), forward flexion in the side-lying position (SideFlex), side-lying external rotation (SideEr), shoulder flexion with glenohumeral horizontal abduction load (FlexBand), and shoulder flexion with glenohumeral horizontal adduction load (FlexBall) in the standing posture. [Methods] The electromyographic (EMG) activities of the UT, LT and SA were measured during the tasks. The percentage of maximum voluntary isometric contraction (%MVIC) was calculated for each muscle, and the UT/LT ratios and the UT/SA ratios were compared among the tasks. [Results] The UT/LT ratio with the FlexBand was not significantly different from those of the four exercises in the side-lying and prone postures. The UT/SA ratio with the FlexBall demonstrated appropriate balanced activity. [Conclusion] In an anti-gravity posture, we recommend the FlexBand and the FlexBall for inducing balanced UT/LT and UT/SA ratios, respectively.
Schievano, Andrea; D'Imporzano, Giuliana; Salati, Silvia; Adani, Fabrizio
2011-09-01
The mass balance (input/output mass flows) of full-scale anaerobic digestion (AD) processes should be known for a series of purposes, e.g. to understand carbon and nutrients balances, to evaluate the contribution of AD processes to elemental cycles, especially when digestates are applied to agricultural land and to measure the biodegradation yields and the process efficiency. In this paper, three alternative methods were studied, to determine the mass balance in full-scale processes, discussing their reliability and applicability. Through a 1-year survey on three full-scale AD plants and through 38 laboratory-scale batch digesters, the congruency of the considered methods was demonstrated and a linear equation was provided that allows calculating the wet weight losses (WL) from the methane produced (MP) by the plant (WL=41.949*MP+20.853, R(2)=0.950, p<0.01). Additionally, this new tool was used to calculate carbon, nitrogen, phosphorous and potassium balances of the three observed AD plants. Copyright © 2011 Elsevier Ltd. All rights reserved.
Combining Variables, Controlling Variables, and Proportions: Is There a Psychological Link?
ERIC Educational Resources Information Center
Lawson, Anton E.
1979-01-01
Investigated the degree of relationship among the performance of 28 seventh grade students on the following three formal operations tasks: chemical combinations, bending rods, and balance beam. Results show that task performance ranged widely from early concrete operational to fully operational. (HM)
A Population of Assessment Tasks
ERIC Educational Resources Information Center
Daro, Phil; Burkhardt, Hugh
2012-01-01
We propose the development of a "population" of high-quality assessment tasks that cover the performance goals set out in the "Common Core State Standards for Mathematics." The population will be published. Tests are drawn from this population as a structured random sample guided by a "balancing algorithm."
Chronic Motivational State Interacts with Task Reward Structure in Dynamic Decision-Making
Cooper, Jessica A.; Worthy, Darrell A.; Maddox, W. Todd
2015-01-01
Research distinguishes between a habitual, model-free system motivated toward immediately rewarding actions, and a goal-directed, model-based system motivated toward actions that improve future state. We examined the balance of processing in these two systems during state-based decision-making. We tested a regulatory fit hypothesis (Maddox & Markman, 2010) that predicts that global trait motivation affects the balance of habitual- vs. goal-directed processing but only through its interaction with the task framing as gain-maximization or loss-minimization. We found support for the hypothesis that a match between an individual’s chronic motivational state and the task framing enhances goal-directed processing, and thus state-based decision-making. Specifically, chronic promotion-focused individuals under gain-maximization and chronic prevention-focused individuals under loss-minimization both showed enhanced state-based decision-making. Computational modeling indicates that individuals in a match between global chronic motivational state and local task reward structure engaged more goal-directed processing, whereas those in a mismatch engaged more habitual processing. PMID:26520256
Jansen, Petra; Kaltner, Sandra
2014-01-01
In this study, mental rotation performance was assessed in both an object-based task, human figures and letters as stimuli, and in an egocentric-based task, a human figure as a stimulus, in 60 older persons between 60 and 71 years old (30 women, 30 men). Additionally all participants completed three motor tests measuring balance and mobility. The results show that the reaction time was slower for letters than for both human figure tasks and the mental rotation speed was faster over all for egocentric mental rotation tasks. Gender differences were found in the accuracy measurement, favoring males, and were independent of stimulus type, kind of transformation, and angular disparity. Furthermore, a regression analysis showed that the accuracy rate for object-based transformations with body stimuli could be predicted by gender and balance ability. This study showed that the mental rotation performance in older adults depends on stimulus type, kind of transformation, and gender and that performance partially relates to motor ability.
Cabanas-Valdés, Rosa; Bagur-Calafat, Caritat; Girabent-Farrés, Montserrat; Caballero-Gómez, Fernanda Mª; du Port de Pontcharra-Serra, Helena; German-Romero, Ana; Urrútia, Gerard
2017-11-01
Analyse the effect of core stability exercises in addition to conventional physiotherapy training three months after the intervention ended. A randomized controlled trial. Outpatient services. Seventy-nine stroke survivors. In the intervention period, both groups underwent conventional physiotherapy performed five days/week for five weeks, and in addition the experimental group performed core stability exercises for 15 minutes/day. Afterwards, during a three-month follow-up period, both groups underwent usual care that could eventually include conventional physiotherapy or physical exercise but not in a controlled condition. Primary outcome was trunk control and dynamic sitting balance assessed by the Spanish-Version of Trunk Impairment Scale 2.0 and Function in Sitting Test. Secondary outcomes were standing balance and gait evaluated by the Berg Balance Scale, Tinetti Test, Brunel Balance Assessment, Spanish-Version of Postural Assessment Scale for Stroke and activities of daily living using the Barthel Index. A total of 68 subjects out of 79 completed the three-month follow-up period. The mean difference (SD) between groups was 0.78 (1.51) points ( p = 0.003) for total score on the Spanish-Version of Trunk Impairment Scale 2.0, 2.52 (6.46) points ( p = 0.009) for Function in Sitting Test, dynamic standing balance was 3.30 (9.21) points ( p= 0.009) on the Berg Balance Scale, gait was 0.82 (1.88) points ( p = 0.002) by Brunel Balance Assessment (stepping), and 1.11 (2.94) points ( p = 0.044) by Tinetti Test (gait), all in favour of core stability exercises. Core stability exercises plus conventional physiotherapy have a positive long-term effect on improving dynamic sitting and standing balance and gait in post-stroke patients.
Exploring the dynamics of balance data — movement variability in terms of drift and diffusion
NASA Astrophysics Data System (ADS)
Gottschall, Julia; Peinke, Joachim; Lippens, Volker; Nagel, Volker
2009-02-01
We introduce a method to analyze postural control on a balance board by reconstructing the underlying dynamics in terms of a Langevin model. Drift and diffusion coefficients are directly estimated from the data and fitted by a suitable parametrization. The governing parameters are utilized to evaluate balance performance and the impact of supra-postural tasks on it. We show that the proposed method of analysis gives not only self-consistent results but also provides a plausible model for the reconstruction of balance dynamics.
Fraser, Sarah A.; Li, Karen Z.-H.; Berryman, Nicolas; Desjardins-Crépeau, Laurence; Lussier, Maxime; Vadaga, Kiran; Lehr, Lora; Minh Vu, Thien Tuong; Bosquet, Laurent; Bherer, Louis
2017-01-01
Everyday activities like walking and talking can put an older adult at risk for a fall if they have difficulty dividing their attention between motor and cognitive tasks. Training studies have demonstrated that both cognitive and physical training regimens can improve motor and cognitive task performance. Few studies have examined the benefits of combined training (cognitive and physical) and whether or not this type of combined training would transfer to walking or balancing dual-tasks. This study examines the dual-task benefits of combined training in a sample of sedentary older adults. Seventy-two older adults (≥60 years) were randomly assigned to one of four training groups: Aerobic + Cognitive training (CT), Aerobic + Computer lessons (CL), Stretch + CT and Stretch + CL. It was expected that the Aerobic + CT group would demonstrate the largest benefits and that the active placebo control (Stretch + CL) would show the least benefits after training. Walking and standing balance were paired with an auditory n-back with two levels of difficulty (0- and 1-back). Dual-task walking and balance were assessed with: walk speed (m/s), cognitive accuracy (% correct) and several mediolateral sway measures for pre- to post-test improvements. All groups demonstrated improvements in walk speed from pre- (M = 1.33 m/s) to post-test (M = 1.42 m/s, p < 0.001) and in accuracy from pre- (M = 97.57%) to post-test (M = 98.57%, p = 0.005).They also increased their walk speed in the more difficult 1-back (M = 1.38 m/s) in comparison to the 0-back (M = 1.36 m/s, p < 0.001) but reduced their accuracy in the 1-back (M = 96.39%) in comparison to the 0-back (M = 99.92%, p < 0.001). Three out of the five mediolateral sway variables (Peak, SD, RMS) demonstrated significant reductions in sway from pre to post test (p-values < 0.05). With the exception of a group difference between Aerobic + CT and Stretch + CT in accuracy, there were no significant group differences after training. Results suggest that there can be dual-task benefits from training but that in this sedentary sample Aerobic + CT training was not more beneficial than other types of combined training. PMID:28149274
A task-oriented circuit training in multiple sclerosis: a feasibility study
2014-01-01
Background The aim of this study was to evaluate the safety, feasibility and preliminary effects of a high-intensity rehabilitative task-oriented circuit training (TOCT) in a sample of multiple sclerosis (MS) subjects on walking competency, mobility, fatigue and health-related quality of life (HRQoL). Methods 24 MS subjects (EDSS 4.89 ± 0.54, 17 female and 7 male, 52.58 ± 11.21 years, MS duration 15.21 ± 8.68 years) have been enrolled and randomly assigned to 2 treatment groups: (i) experimental group received 10 TOCT sessions over 2 weeks (2 hours/each session) followed by a 3 months home exercise program, whereas control group did not receive any specific rehabilitation intervention. A feasibility patient-reported questionnaire was administered after TOCT. Functional outcome measures were: walking endurance (Six Minute Walk Test), gait speed (10 Meter Walk Test), mobility (Timed Up and Go test) and balance (Dynamic Gait Index). Furthermore, self-reported questionnaire of motor fatigue (Fatigue Severity Scale), walking ability (Multiple Sclerosis Walking Scale – 12) and health-related quality of life (Multiple Sclerosis Impact Scale – 29) were included. Subjects’ assessments were delivered at baseline (T0), after TOCT (T1) and 3 months of home-based exercise program (T2). Results After TOCT subjects reported a positive global rating on the received treatment. At 3 months, we found a 58.33% of adherence to the home-exercise program. After TOCT, walking ability and health-related quality of life were improved (p < 0.05) with minor retention after 3 months. The control group showed no significant changes in any variables. Conclusions This two weeks high-intensity task-oriented circuit class training followed by a three months home-based exercise program seems feasible and safe in MS people with moderate mobility impairments; moreover it might improve walking abilities. Trial registration NCT01464749 PMID:24906545
Student Off-Task Electronic Multitasking Predictors: Scale Development and Validation
ERIC Educational Resources Information Center
Qian, Yuxia; Li, Li
2017-01-01
In an attempt to better understand factors contributing to students' off-task electronic multitasking behavior in class, the research included two studies that developed a scale of students' off-task electronic multitasking predictors (the SOTEMP scale), and explored relationships between the scale and various classroom communication processes and…
Gray, Vicki L; Ivanova, Tanya D; Garland, S Jayne
2014-01-01
Knowing the reliability of the center of pressure (COP) is important for interpreting balance deficits post-stroke, especially when the balance deficits can necessitate the use of short duration trials. The novel aspect of this reliability study was to examine the center of pressure measures using two adjacent force platforms between and within sessions in stroke and controls. After stroke, it is important to understand the contribution of the paretic and non-paretic leg to the motor control of standing balance. Because there is a considerable body of knowledge on COP reliability on a single platform, we chose to examine reliability using two adjacent platforms which has not been examined previously in stroke. Twenty participants post-stroke and 22 controls performed an arm raise, load drop and quiet stance balance task while standing on two adjacent force platforms, on two separate days. Intraclass correlations coefficient (ICC2,1) and percentage standard error of measurement (SEM%) were calculated for COP velocity, ellipse area, anterior-posterior (AP) displacement, and medial-lateral (ML) displacement. Between sessions, COP velocity was the most reliable with high ICCs and low SEM% across groups and tasks and ellipse area was less reliable with low ICCs across groups and tasks. COP measures were less reliable during the arm raise than load drop post-stroke. Within session reliability was high for COP velocity and ML displacement requiring no more than six trials across tasks. The COP velocity was the most reliable measure with high ICCs between sessions and the high reliability was achieved with fewer trials in both groups in a single session. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Huiping; Yip, Paul S F; Chi, Peilian; Chan, Kinsun; Cheung, Yee Tak; Zhang, Xiulan
2012-02-01
The purpose of this study was to explore the factor structure of the Work-Family Balance Scale (WFBS) and examine its reliability and validity in use in the urban Chinese population. The scale was validated using a sample of 605 urban Chinese residents from 7 cities. Exploratory factor analysis identified two factors: work-family conflict and work-family enrichment. The WFBS showed adequate reliability and concurrent validity. The WFBS is a reliable and valid instrument to measure work-family balance for Chinese working parents. However, further examination of the scale is needed.
Cheng, Kenneth C.; Pratt, Jay; Maki, Brian E.
2013-01-01
A recent study involving young adults showed that rapid perturbation-evoked reach-to-grasp balance-recovery reactions can be guided successfully with visuospatial-information (VSI) retained in memory despite: 1) a reduction in endpoint accuracy due to recall-delay (time between visual occlusion and perturbation-onset, PO) and 2) slowing of the reaction when performing a concurrent cognitive task during the recall-delay interval. The present study aimed to determine whether this capacity is compromised by effects of aging. Ten healthy older adults were tested with the previous protocol and compared with the previously-tested young adults. Reactions to recover balance by grasping a small handhold were evoked by unpredictable antero-posterior platform-translation (barriers deterred stepping reactions), while using liquid-crystal goggles to occlude vision post-PO and for varying recall-delay times (0-10s) prior to PO (the handhold was moved unpredictably to one of four locations 2s prior to vision-occlusion). Subjects also performed a spatial- or non-spatial-memory cognitive task during the delay-time in a subset of trials. Results showed that older adults had slower reactions than the young across all experimental conditions. Both age groups showed similar reduction in medio-lateral end-point accuracy when recall-delay was longest (10s), but differed in the effect of recall delay on vertical hand elevation. For both age groups, engaging in either the non-spatial or spatial-memory task had similar (slowing) effects on the arm reactions; however, the older adults also showed a dual-task interference effect (poorer cognitive-task performance) that was specific to the spatial-memory task. This provides new evidence that spatial working memory plays a role in the control of perturbation-evoked balance-recovery reactions. The delays in completing the reaction that occurred when performing either cognitive task suggest that such dual-task situations in daily life could increase risk of falling in seniors, particularly when combined with the general age-related slowing that was observed across all experimental conditions. PMID:24223942
Gordt, Katharina; Mikolaizak, A Stefanie; Nerz, Corinna; Barz, Carolin; Gerhardy, Thomas; Weber, Michaela; Becker, Clemens; Schwenk, Michael
2018-02-12
Tools to detect subtle balance deficits in high-functioning community-dwelling older adults are lacking. The Community Balance and Mobility Scale (CBM) is a valuable tool to measure balance deficits in this group; however, it is not yet available in the German language. The aim was 1) to translate and cross-culturally adapt the CBM into the German language and 2) to investigate the measurement properties of the German CBM (G-CBM). The original CBM was translated into the German language according to established guidelines. A total of 51 older adults (mean age 69.9 ± 7.1 years) were recruited to measure construct validity by comparing the G‑CBM against standardized balance and/or mobility assessments including the Fullerton Advanced Balance Scale (FAB), Berg Balance Scale (BBS), 3 m Tandem Walk (3MTW), 8 Level Balance Scale (8LBS), 30 s Chair Stand Test (30CST), Timed Up and Go (TUG) test, gait speed, and the Falls Efficacy Scale International (FES-I). Intrarater and interrater reliability and internal consistency reliability were estimated using intraclass correlations (ICC) and Cronbach's alpha, respectively. Ceiling effects were calculated as the percentage of the sample scoring the maximum score. The G‑CBM correlated excellently with FAB and BBS (ρ = 0.78-0.85; P < 0.001), good with 3MTW, TUG, and FES-I (ρ = -0.55 to -0.61; P < 0.001), and moderately with 8LBS, 30CST, and habitual gait speed (ρ = 0.32-0.46; P < 0.001). Intrarater (ICC 3,k = 0.998; P < 0.001) and interrater (ICC 2,k = 0.996; P < 0.001) reliability, and internal consistency reliability (α = 0.998) were also high. The G‑CBM did not show ceiling effects. The G‑CBM is a valid and reliable tool for measuring subtle balance deficits in older high-functioning adults. The absence of ceiling effects emphasizes the use of this scale in this cohort. The G‑CBM can now be utilized in clinical practice.
Bateni, Hamid
2012-09-01
To determine the effectiveness of Wii Fit training on balance control in older adults compared with physical therapy training. Quasi-experimental design. Eight males and nine females aged 53 to 91 years. Participants were divided into three groups: one group received both physical therapy training and Wii Fit training (PW group), one group received Wii Fit training alone (WI group), and one group received physical therapy training alone (PT group). Training consisted of three sessions per week for 4 weeks. Berg Balance Scale (all groups) and Bubble Test (PW and WI groups) scores. Descriptive statistics, medians, interquartile ranges and 95% confidence intervals are reported to identify trends in balance control as a result of different types of training. All subjects showed improvement in the Berg Balance Scale and Bubble Test scores. The PT and PW groups tended to perform better than the WI group on the Berg Balance Scale following treatment. Although the differences in the Bubble Test score were not substantial between the PW and WI groups, the PW group performed slightly better than the WI group on the Berg Balance Scale. Wii Fit training appears to improve balance. However, physical therapy training on its own or in addition to Wii Fit training appears to improve balance to a greater extent than Wii Fit training alone. Copyright © 2011 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
The Role of Diverse Strategies in Sustainable Knowledge Production
Wu, Lingfei; Baggio, Jacopo A.; Janssen, Marco A.
2016-01-01
Online communities are becoming increasingly important as platforms for large-scale human cooperation. These communities allow users seeking and sharing professional skills to solve problems collaboratively. To investigate how users cooperate to complete a large number of knowledge-producing tasks, we analyze Stack Exchange, one of the largest question and answer systems in the world. We construct attention networks to model the growth of 110 communities in the Stack Exchange system and quantify individual answering strategies using the linking dynamics on attention networks. We identify two answering strategies. Strategy A aims at performing maintenance by doing simple tasks, whereas strategy B aims at investing time in doing challenging tasks. Both strategies are important: empirical evidence shows that strategy A decreases the median waiting time for answers and strategy B increases the acceptance rate of answers. In investigating the strategic persistence of users, we find that users tends to stick on the same strategy over time in a community, but switch from one strategy to the other across communities. This finding reveals the different sets of knowledge and skills between users. A balance between the population of users taking A and B strategies that approximates 2:1, is found to be optimal to the sustainable growth of communities. PMID:26934733
The Role of Diverse Strategies in Sustainable Knowledge Production.
Wu, Lingfei; Baggio, Jacopo A; Janssen, Marco A
2016-01-01
Online communities are becoming increasingly important as platforms for large-scale human cooperation. These communities allow users seeking and sharing professional skills to solve problems collaboratively. To investigate how users cooperate to complete a large number of knowledge-producing tasks, we analyze Stack Exchange, one of the largest question and answer systems in the world. We construct attention networks to model the growth of 110 communities in the Stack Exchange system and quantify individual answering strategies using the linking dynamics on attention networks. We identify two answering strategies. Strategy A aims at performing maintenance by doing simple tasks, whereas strategy B aims at investing time in doing challenging tasks. Both strategies are important: empirical evidence shows that strategy A decreases the median waiting time for answers and strategy B increases the acceptance rate of answers. In investigating the strategic persistence of users, we find that users tends to stick on the same strategy over time in a community, but switch from one strategy to the other across communities. This finding reveals the different sets of knowledge and skills between users. A balance between the population of users taking A and B strategies that approximates 2:1, is found to be optimal to the sustainable growth of communities.
Impact of Work Task-Related Acute Occupational Smoke ...
Objective: A repeated measures study was used to assess the effect of work tasks on select proinflammatory biomarkers in firefighters working at prescribed burns. Methods: Ten firefighters and two volunteers were monitored for particulate matter and carbon monoxide on workdays, January-July 2015. Before and after work-shift dried blood spots were analyzed for inflammatory mediators using the Meso Scale Discovery assay, while blood smears were used to assess leukocyte parameters. Results: Firefighters lighting with drip-torches had higher cross-work-shift increases in interleukin-8, C-reactive protein, and serum amyloid A compared to holding, a task involving management of fire boundaries. A positive association between interleukin-8 and segmented-neutrophil was observed. Conclusion: Results from this study suggest that intermittent occupational diesel exposures contribute to cross-work-shift changes in host systemic innate inflammation as indicated by elevated interleukin-8 levels and peripheral blood segmented-neutrophils. The decision whether to perform a prescribed burn balances land use, risk of fire and potential health impacts. Understanding the latter requires a quick non intrusive assay which can be used to monitor the health of those exposed to smoke. This is first study to use blood smears to assess changes in systemic differential leukocyte cell populations following wood smoke exposure from prescribed burn. This research is useful for understandi
Balci, Nilay Çömük; Tonga, Eda; Gülşen, Mustafa
2013-09-01
This pilot study aimed to investigate the effect of balance training by Tetraks Interactive Balance System (TIBS) on balance and fall risk in patients with mild to moderate Parkinson's disease. Four patients with Parkinson's disease between the ages of 56 and 70 years (61.25±6.70) were applied balance training for 3 weeks by TIBS. Sociodemographic features and physical properties of the subjects were recorded. Their motor performance was evaluated by the Unified Parkinson's Disease Rating Scale (UPDRS), balance was measured using the Berg Balance Scale (BBS), Functional Reach Test (FRT), Timed Up and Go Test (TUG), and the Standing on One Leg Balance Test (SOL) and, their fall risks were evaluated by TIBS. Evaluations were performed twice, before and after treatment. Following training, Parkinson's patients showed improvements in UPDRS, TUG, BBS, FRT, SOL and fall risk. Balance training by TIBS has positive effects on balance and decreases fall risk in Parkinson's disease patients.
2015-01-01
Background There are indications that older adults who suffer from poor balance have an increased risk for adverse health outcomes, such as falls and disability. Monitoring the development of balance over time enables early detection of balance decline, which can identify older adults who could benefit from interventions aimed at prevention of these adverse outcomes. An innovative and easy-to-use device that can be used by older adults for home-based monitoring of balance is a modified bathroom scale. Objective The objective of this paper is to study the relationship between balance scores obtained with a modified bathroom scale and falls and disability in a sample of older adults. Methods For this 6-month follow-up study, participants were recruited via physiotherapists working in a nursing home, geriatricians, exercise classes, and at an event about health for older adults. Inclusion criteria were being aged 65 years or older, being able to stand on a bathroom scale independently, and able to provide informed consent. A total of 41 nursing home patients and 139 community-dwelling older adults stepped onto the modified bathroom scale three consecutive times at baseline to measure their balance. Their mean balance scores on a scale from 0 to 16 were calculated—higher scores indicated better balance. Questionnaires were used to study falls and disability at baseline and after 6 months of follow-up. The cross-sectional relationship between balance and falls and disability at baseline was studied using t tests and Spearman rank correlations. Univariate and multivariate logistic regression analyses were conducted to study the relationship between balance measured at baseline and falls and disability development after 6 months of follow-up. Results A total of 128 participants with complete datasets—25.8% (33/128) male—and a mean age of 75.33 years (SD 6.26) were included in the analyses of this study. Balance scores of participants who reported at baseline that they had fallen at least once in the past 6 months were lower compared to nonfallers—8.9 and 11.2, respectively (P<.001). The correlation between mean balance score and disability sum-score at baseline was -.51 (P<.001). No significant associations were found between balance at baseline and falls after 6 months of follow-up. Baseline balance scores were significantly associated with the development of disability after 6 months of follow-up in the univariate analysis—odds ratio (OR) 0.86 (95% CI 0.76-0.98)—but not in the multivariate analysis when correcting for age, gender, baseline disability, and falls at follow-up—OR 0.94 (95% CI 0.79-1.11). Conclusions There is a cross-sectional relationship between balance measured by a modified bathroom scale and falls and disability in older adults. Despite this cross-sectional relationship, longitudinal data showed that balance scores have no predictive value for falls and might only have limited predictive value for disability development after 6 months of follow-up. PMID:26018423
Adams, Edwina J; Cox, Jennifer M; Adamson, Barbara J; Schofield, Deborah J
2010-06-01
The retention of Australian nuclear medicine technologists (NMTs) is poor with the future workforce size in question. As a consequence, the primary aim of this study was to determine Australian NMTs' level of work engagement and the factors influencing this to identify the issues surrounding retention. The job demands resource model assumes that each job has its own demands and resources and the balance between these can influence the level of work engagement. Lower levels of work engagement are predictive of an intention to leave. Work engagement levels can be measured using the Utrecht work engagement scale. This study used the Utrecht Work Engagement Scale in a self-report questionnaire with additional open-ended and closed-ended items designed to evaluate satisfying job characteristics. Members of the professional body in specific geographical locations of Australia were invited to participate. A 49.6% response rate was achieved (n=201); of these, 164 were practicing NMTs. Public sector workers had significantly lower total mean scores (P=0.05) on the Utrecht Work Engagement Scale and the subscale of dedication (P=0.005) compared with private NMTs. Seven of the 14 job satisfaction closed-ended items were statistically significantly lower for public NMTs: the level of decision making; feelings of importance with the tasks performed; feedback on tasks and roles; and relationships with physicians, staff and the organization. To improve the retention of NMTs, changes in the job resources and demands are needed. Advanced practice roles may improve retention by enhancing the job resources.
Assessing the Legality of State Tournament Bans in Interscholastic Athletics
ERIC Educational Resources Information Center
Scott, Beau
2017-01-01
State high school athletic associations are tasked with facilitating equitable athletic opportunities for all member schools. To accomplish this task, state associations implement rules designed to ensure competitive balance (Johnson, Tracy, & Pierce, 2015). With over 7.8 million participants, interscholastic athletics are extremely popular…
Evaluation of target efficiencies for solid-liquid separation steps in biofuels production.
Kochergin, Vadim; Miller, Keith
2011-01-01
Development of liquid biofuels has entered a new phase of large scale pilot demonstration. A number of plants that are in operation or under construction face the task of addressing the engineering challenges of creating a viable plant design, scaling up and optimizing various unit operations. It is well-known that separation technologies account for 50-70% of both capital and operating cost. Additionally, reduction of environmental impact creates technological challenges that increase project cost without adding to the bottom line. Different technologies vary in terms of selection of unit operations; however, solid-liquid separations are likely to be a major contributor to the overall project cost. Despite the differences in pretreatment approaches, similar challenges arise for solid-liquid separation unit operations. A typical process for ethanol production from biomass includes several solid-liquid separation steps, depending on which particular stream is targeted for downstream processing. The nature of biomass-derived materials makes it either difficult or uneconomical to accomplish complete separation in a single step. Therefore, setting realistic efficiency targets for solid-liquid separations is an important task that influences overall process recovery and economics. Experimental data will be presented showing typical characteristics for pretreated cane bagasse at various stages of processing into cellulosic ethanol. Results of generic material balance calculations will be presented to illustrate the influence of separation target efficiencies on overall process recoveries and characteristics of waste streams.
Okonkwo, Uchenna Prosper; Ibeneme, Sam Chidi; Ihegihu, Ebere Yvonne; Egwuonwu, Afamefuna Victor; Ezema, Charles Ikechukwu; Maruf, Fatai Adesina
2018-05-02
Stroke results in varying levels of physical disabilities that may adversely impact balance with increased tendency to falls. This may intensify with cognitive impairments (CI), and impede functional recovery. Therefore, task-specific balance training (TSBT), which presents versatile task-specific training options that matches varied individual needs, was explored as a beneficial rehabilitation regime for stroke survivors with and without CI. It was hypothesized that there will be no significant difference in the balance control measures in stroke survivors with and without CI after a 12-month TSBT. To determine if TSBT will have comparable beneficial effects on the balance control status of sub-acute ischemic stroke survivors with CI and without CI. One hundred of 143 available sub-acute first ever ischemic stroke survivors were recruited using convenience sampling technique in a quasi-experimental study. They were later assigned into the cognitive impaired group (CIG) and non-cognitive impaired group (NCIG), respectively, based on the baseline presence or absence of CI, after screening with the mini-mental examination (MMSE) tool. With the help of four trained research assistants, TSBT was applied to each group, thrice times a week, 60 mins per session, for 12 months. Their balance was measured as Bergs Balance scores (BBS) at baseline, 4th, 8th, and 12th month intervals. Data were analyzed statistically using Kruskal Wallis test, and repeated measure ANOVA, at p < 0.05. There was significant improvement across time points in the balance control of CIG with large effect size of 0.69 after 12 months of TSBT. There was also significant improvement across time points in the balance control of NCIG with large effect size of 0.544 after 12 months of TSBT. There was no significant difference between the improvement in CIG and NCIG after 8th and 12th months of TSBT. Within the groups, a 12-month TSBT intervention significantly improved balance control, respectively, but with broader effects in the CIG than NCIG. Importantly, though between-group comparison at baseline revealed significantly impaired balance control in the CIG than NCIG, these differences were not significant at the 8th month and non-existent at the 12th month of TSBT intervention. These results underscore the robustness of TSBT to evenly address specific balance deficits of stroke survivors with and without CI within a long-term rehabilitation plan as was hypothesized.
Prike, Toby; Arnold, Michelle M; Williamson, Paul
2017-08-01
A growing body of research has shown people who hold anomalistic (e.g., paranormal) beliefs may differ from nonbelievers in their propensity to make probabilistic reasoning errors. The current study explored the relationship between these beliefs and performance through the development of a new measure of anomalistic belief, called the Anomalistic Belief Scale (ABS). One key feature of the ABS is that it includes a balance of both experiential and theoretical belief items. Another aim of the study was to use the ABS to investigate the relationship between belief and probabilistic reasoning errors on conjunction fallacy tasks. As expected, results showed there was a relationship between anomalistic belief and propensity to commit the conjunction fallacy. Importantly, regression analyses on the factors that make up the ABS showed that the relationship between anomalistic belief and probabilistic reasoning occurred only for beliefs about having experienced anomalistic phenomena, and not for theoretical anomalistic beliefs. Copyright © 2017 Elsevier Inc. All rights reserved.
On the use of Schwarz-Christoffel conformal mappings to the grid generation for global ocean models
NASA Astrophysics Data System (ADS)
Xu, S.; Wang, B.; Liu, J.
2015-02-01
In this article we propose two conformal mapping based grid generation algorithms for global ocean general circulation models (OGCMs). Contrary to conventional, analytical forms based dipolar or tripolar grids, the new algorithms are based on Schwarz-Christoffel (SC) conformal mapping with prescribed boundary information. While dealing with the basic grid design problem of pole relocation, these new algorithms also address more advanced issues such as smoothed scaling factor, or the new requirements on OGCM grids arisen from the recent trend of high-resolution and multi-scale modeling. The proposed grid generation algorithm could potentially achieve the alignment of grid lines to coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the generated grids are still orthogonal curvilinear, they can be readily utilized in existing Bryan-Cox-Semtner type ocean models. The proposed methodology can also be applied to the grid generation task for regional ocean modeling where complex land-ocean distribution is present.
Balance and postural skills in normal-weight and overweight prepubertal boys.
Deforche, Benedicte I; Hills, Andrew P; Worringham, Charles J; Davies, Peter S W; Murphy, Alexia J; Bouckaert, Jacques J; De Bourdeaudhuij, Ilse M
2009-01-01
This study investigated differences in balance and postural skills in normal-weight versus overweight prepubertal boys. Fifty-seven 8-10-year-old boys were categorized overweight (N = 25) or normal-weight (N = 32) according to the International Obesity Task Force cut-off points for overweight in children. The Balance Master, a computerized pressure plate system, was used to objectively measure six balance skills: sit-to-stand, walk, step up/over, tandem walk (walking on a line), unilateral stance and limits of stability. In addition, three standardized field tests were employed: standing on one leg on a balance beam, walking heel-to-toe along the beam and the multiple sit-to-stand test. Overweight boys showed poorer performances on several items assessed on the Balance Master. Overweight boys had slower weight transfer (p < 0.05), lower rising index (p < 0.05) and greater sway velocity (p < 0.001) in the sit-to-stand test, greater step width while walking (p < 0.05) and lower speed when walking on a line (p < 0.01) compared with normal-weight counterparts. Performance on the step up/over test, the unilateral stance and the limits of stability were comparable between both groups. On the balance beam, overweight boys could not hold their balance on one leg as long (p < 0.001) and had fewer correct steps in the heel-to-toe test (p < 0.001) than normal-weight boys. Finally, overweight boys were slower in standing up and sitting down five times in the multiple sit-to-stand task (p < 0.01). This study demonstrates that when categorised by body mass index (BMI) level, overweight prepubertal boys displayed lower capacity on several static and dynamic balance and postural skills.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Tae-Hyuk; Sandu, Adrian; Watson, Layne T.
2015-08-01
Ensembles of simulations are employed to estimate the statistics of possible future states of a system, and are widely used in important applications such as climate change and biological modeling. Ensembles of runs can naturally be executed in parallel. However, when the CPU times of individual simulations vary considerably, a simple strategy of assigning an equal number of tasks per processor can lead to serious work imbalances and low parallel efficiency. This paper presents a new probabilistic framework to analyze the performance of dynamic load balancing algorithms for ensembles of simulations where many tasks are mapped onto each processor, andmore » where the individual compute times vary considerably among tasks. Four load balancing strategies are discussed: most-dividing, all-redistribution, random-polling, and neighbor-redistribution. Simulation results with a stochastic budding yeast cell cycle model are consistent with the theoretical analysis. It is especially significant that there is a provable global decrease in load imbalance for the local rebalancing algorithms due to scalability concerns for the global rebalancing algorithms. The overall simulation time is reduced by up to 25 %, and the total processor idle time by 85 %.« less
Sunwook, Kim; Nussbaum, Maury A; Quandt, Sara A; Laurienti, Paul J; Arcury, Thomas A
2016-02-01
The aim of the study was to assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control.
Sunwook, Kim; Nussbaum, Maury A.; Quandt, Sara A.; Laurienti, Paul J.; Arcury, Thomas A.
2015-01-01
Objective Assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Methods Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Results Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Conclusions Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control. PMID:26849257
A dynamic re-partitioning strategy based on the distribution of key in Spark
NASA Astrophysics Data System (ADS)
Zhang, Tianyu; Lian, Xin
2018-05-01
Spark is a memory-based distributed data processing framework, has the ability of processing massive data and becomes a focus in Big Data. But the performance of Spark Shuffle depends on the distribution of data. The naive Hash partition function of Spark can not guarantee load balancing when data is skewed. The time of job is affected by the node which has more data to process. In order to handle this problem, dynamic sampling is used. In the process of task execution, histogram is used to count the key frequency distribution of each node, and then generate the global key frequency distribution. After analyzing the distribution of key, load balance of data partition is achieved. Results show that the Dynamic Re-Partitioning function is better than the default Hash partition, Fine Partition and the Balanced-Schedule strategy, it can reduce the execution time of the task and improve the efficiency of the whole cluster.
Schlenstedt, Christian; Brombacher, Stephanie; Hartwigsen, Gesa; Weisser, Burkhard; Möller, Bettina; Deuschl, Günther
2016-04-01
The correct identification of patients with Parkinson disease (PD) at risk for falling is important to initiate appropriate treatment early. This study compared the Fullerton Advanced Balance (FAB) scale with the Mini-Balance Evaluation Systems Test (Mini-BESTest) and Berg Balance Scale (BBS) to identify individuals with PD at risk for falls and to analyze which of the items of the scales best predict future falls. This was a prospective study to assess predictive criterion-related validity. The study was conducted at a university hospital in an urban community. Eighty-five patients with idiopathic PD (Hoehn and Yahr stages: 1-4) participated in the study. Measures were number of falls (assessed prospectively over 6 months), FAB scale, Mini-BESTest, BBS, and Unified Parkinson's Disease Rating Scale. The FAB scale, Mini-BESTest, and BBS showed similar accuracy to predict future falls, with values for area under the curve (AUC) of the receiver operating characteristic (ROC) curve of 0.68, 0.65, and 0.69, respectively. A model combining the items "tandem stance," "rise to toes," "one-leg stance," "compensatory stepping backward," "turning," and "placing alternate foot on stool" had an AUC of 0.84 of the ROC curve. There was a dropout rate of 19/85 participants. The FAB scale, Mini-BESTest, and BBS provide moderate capacity to predict "fallers" (people with one or more falls) from "nonfallers." Only some items of the 3 scales contribute to the detection of future falls. Clinicians should particularly focus on the item "tandem stance" along with the items "one-leg stance," "rise to toes," "compensatory stepping backward," "turning 360°," and "placing foot on stool" when analyzing postural control deficits related to fall risk. Future research should analyze whether balance training including the aforementioned items is effective in reducing fall risk. © 2016 American Physical Therapy Association.
Research in Parallel Algorithms and Software for Computational Aerosciences
NASA Technical Reports Server (NTRS)
Domel, Neal D.
1996-01-01
Phase I is complete for the development of a Computational Fluid Dynamics parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.
The Influence of Affective Empathy and Autism Spectrum Traits on Empathic Accuracy
aan het Rot, Marije; Hogenelst, Koen
2014-01-01
Autism spectrum disorder is characterized by interpersonal deficits and has been associated with limited cognitive empathy, which includes perspective taking, theory of mind, and empathic accuracy (EA). The capacity for affective empathy may also be impaired. In the present study we aimed to determine if EA in normally developing individuals with varying levels of autism spectrum traits is moderated by trait affective empathy. Fifty male and fifty female participants (‘perceivers’) completed the Autism-Spectrum Quotient and the Balanced Emotional Empathy Scale to assess autism spectrum traits and trait affective empathy, respectively. EA was assessed using a Dutch-language version of a previously developed task and involved rating the feelings of others (‘targets’) verbally recounting autobiographical emotional events. Targets varied in trait emotional expressivity, assessed using the Berkeley Expressivity Questionnaire. Perceivers with more autism spectrum traits performed worse on the EA task, particularly when their trait affective empathy was relatively low. Interpersonal deficits in autism spectrum disorder may be partially explained by low cognitive empathy. Further, they might be aggravated by a limited capacity for affective empathy. PMID:24905105
Research in Parallel Algorithms and Software for Computational Aerosciences
NASA Technical Reports Server (NTRS)
Domel, Neal D.
1996-01-01
Phase 1 is complete for the development of a computational fluid dynamics CFD) parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.
Visual feedback training using WII Fit improves balance in Parkinson's disease.
Zalecki, Tomasz; Gorecka-Mazur, Agnieszka; Pietraszko, Wojciech; Surowka, Artur D; Novak, Pawel; Moskala, Marek; Krygowska-Wajs, Anna
2013-01-01
Postural instability including imbalance is the most disabling long term problem in Parkinson's disease (PD) that does not respond to pharmacotherapy. This study aimed at investigating the effectiveness of a novel visual-feedback training method, using Wii Fit balance board in improving balance in patients with PD. Twenty four patients with moderate PD were included in the study which comprised of a 6-week home-based balance training program using Nintendo Wii Fit and balance board. The PD patients significantly improved their results in Berg Balance Scale, Tinnet's Performance-Oriented Mobility Assessment, Timed Up-and-Go, Sit-to-stand test, 10-Meter Walk test and Activities-specific Balance Confidence scale at the end of the programme. This study suggests that visual feedback training using Wii-Fit with balance board could improve dynamic and functional balance as well as motor disability in PD patients.
Stages of functional processing and the bihemispheric recognition of Japanese Kana script.
Yoshizaki, K
2000-04-01
Two experiments were carried out in order to examine the effects of functional steps on the benefits of interhemispheric integration. The purpose of Experiment 1 was to investigate the validity of the Banich (1995a) model, where the benefits of interhemispheric processing increase as the task involves more functional steps. The 16 right-handed subjects were given two types of Hiragana-Katakana script matching tasks. One was the Name Identity (NI) task, and the other was the vowel matching (VM) task, which involved more functional steps compared to the NI task. The VM task required subjects to make a decision whether or not a pair of Katakana-Hiragana scripts had a common vowel. In both tasks, a pair of Kana scripts (Katakana-Hiragana scripts) was tachistoscopically presented in the unilateral visual fields or the bilateral visual fields, where each letter was presented in each visual field. A bilateral visual fields advantage (BFA) was found in both tasks, and the size of this did not differ between the tasks, suggesting that these findings did not support the Banich model. The purpose of Experiment 2 was to examine the effects of imbalanced processing load between the hemispheres on the benefits of interhemispheric integration. In order to manipulate the balance of processing load across the hemispheres, the revised vowel matching (r-VM) task was developed by amending the VM task. The r-VM task was the same as the VM task in Experiment 1, except that a script that has only vowel sound was presented as a counterpart of a pair of Kana scripts. The 24 right-handed subjects were given the r-VM and NI tasks. The results showed that although a BFA showed up in the NI task, it did not in the r-VM task. These results suggested that the balance of processing load between hemispheres would have an influence on the bilateral hemispheric processing.
Balancing Cognitive Demands: Control Adjustments in the Stop-Signal Paradigm
ERIC Educational Resources Information Center
Bissett, Patrick G.; Logan, Gordon D.
2011-01-01
Cognitive control enables flexible interaction with a dynamic environment. In 2 experiments, the authors investigated control adjustments in the stop-signal paradigm, a procedure that requires balancing speed (going) and caution (stopping) in a dual-task environment. Focusing on the slowing of go reaction times after stop signals, the authors…
Post-Stop-Signal Adjustments: Inhibition Improves Subsequent Inhibition
ERIC Educational Resources Information Center
Bissett, Patrick G.; Logan, Gordon D.
2012-01-01
Performance in the stop-signal paradigm involves a balance between going and stopping, and one way that this balance is struck is through shifting priority away from the go task, slowing responses after a stop signal, and improving the probability of inhibition. In 6 experiments, the authors tested whether there is a corresponding shift in…
ERIC Educational Resources Information Center
Chen, Senlin; Chen, Ang
2012-01-01
Expectancy beliefs and task values are two essential motivators in physical education. This study was designed to identify the relation between the expectancy-value constructs (Eccles & Wigfield, 1995) and high school students' physical activity behavior as associated with their energy balance knowledge. High school students (N = 195) in two…
Leg Preference and Interlateral Asymmetry of Balance Stability in Soccer Players
ERIC Educational Resources Information Center
Teixeira, Luis Augusto; de Oliveira, Dalton Lustosa; Romano, Rosangela Guimaraes; Correa, Sonia Cavalcanti
2011-01-01
To examine the effect of long lasting practice on pedal behavior in sport, we compared experienced adult soccer players and nonsoccer players on leg preference in motor tasks requiring general mobilization, soccer related mobilization, and body balance stabilization. We also evaluated performance asymmetry between the right and left legs in static…
ERIC Educational Resources Information Center
Vieira, Joana Marina; AVila, Marisa; Matos, Paula Mena
2012-01-01
Given the increasingly challenging task of balancing multiple adult life roles in contemporary society, this study examined the influences of both conflicting and (positively) synergistic work and family roles in mediating associations between the quality of adult attachment and both parental satisfaction and parenting stress. Participants were…
Post-Stop-Signal Slowing: Strategies Dominate Reflexes and Implicit Learning
ERIC Educational Resources Information Center
Bissett, Patrick G.; Logan, Gordon D.
2012-01-01
Control adjustments are necessary to balance competing cognitive demands. One task that is well-suited to explore control adjustments is the stop-signal paradigm, in which subjects must balance initiation and inhibition. One common adjustment in the stop-signal paradigm is post-stop-signal slowing. Existing models of sequential adjustments in the…
Jaakkola, Timo; Kalaja, Sami; Liukkonen, Jarmo; Jutila, Ari; Virtanen, Petri; Watt, Anthony
2009-02-01
To investigate the relations among leisure time physical activity and in sport clubs, lifestyle activities, and the locomotor, balance manipulative skills of Grade 7 students participating in Finnish physical education at a secondary school in central Finland completed self-report questionnaires on their physical activity patterns at leisure time and during sport club participation, and time spent watching television and using the computer and other electronic media. Locomotor skills were analyzed by the leaping test, balance skills by the flamingo standing test, and manipulative skills by the accuracy throwing test. Analysis indicated physical activity in sport clubs positively explained scores on balance and locomotor tests but not on accuracy of throwing. Leisure time physical activity and lifestyle activities were not statistically significant predictors of performance on any movement skill tests. Girls scored higher on the static balance skill and boys higher on the throwing task. Overall, physical activity in sport clubs was more strongly associated with performance on the fundamental movement tasks than was physical activity during leisure.
Accelerating Dust Storm Simulation by Balancing Task Allocation in Parallel Computing Environment
NASA Astrophysics Data System (ADS)
Gui, Z.; Yang, C.; XIA, J.; Huang, Q.; YU, M.
2013-12-01
Dust storm has serious negative impacts on environment, human health, and assets. The continuing global climate change has increased the frequency and intensity of dust storm in the past decades. To better understand and predict the distribution, intensity and structure of dust storm, a series of dust storm models have been developed, such as Dust Regional Atmospheric Model (DREAM), the NMM meteorological module (NMM-dust) and Chinese Unified Atmospheric Chemistry Environment for Dust (CUACE/Dust). The developments and applications of these models have contributed significantly to both scientific research and our daily life. However, dust storm simulation is a data and computing intensive process. Normally, a simulation for a single dust storm event may take several days or hours to run. It seriously impacts the timeliness of prediction and potential applications. To speed up the process, high performance computing is widely adopted. By partitioning a large study area into small subdomains according to their geographic location and executing them on different computing nodes in a parallel fashion, the computing performance can be significantly improved. Since spatiotemporal correlations exist in the geophysical process of dust storm simulation, each subdomain allocated to a node need to communicate with other geographically adjacent subdomains to exchange data. Inappropriate allocations may introduce imbalance task loads and unnecessary communications among computing nodes. Therefore, task allocation method is the key factor, which may impact the feasibility of the paralleling. The allocation algorithm needs to carefully leverage the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire system. This presentation introduces two algorithms for such allocation and compares them with evenly distributed allocation method. Specifically, 1) In order to get optimized solutions, a quadratic programming based modeling method is proposed. This algorithm performs well with small amount of computing tasks. However, its efficiency decreases significantly as the subdomain number and computing node number increase. 2) To compensate performance decreasing for large scale tasks, a K-Means clustering based algorithm is introduced. Instead of dedicating to get optimized solutions, this method can get relatively good feasible solutions within acceptable time. However, it may introduce imbalance communication for nodes or node-isolated subdomains. This research shows both two algorithms have their own strength and weakness for task allocation. A combination of the two algorithms is under study to obtain a better performance. Keywords: Scheduling; Parallel Computing; Load Balance; Optimization; Cost Model
ERIC Educational Resources Information Center
Roberts, Lynne; McDougall, Sine
2003-01-01
This study contrasted and compared the extent to which phoneme and rhyme-based skills and letter-sound knowledge predicted 4- and 5-year-olds' performance in the analogy task and in a test of single work reading. Findings suggested that the balance of skills that children drew upon was determined by the demands of the task. Findings pose…
Mix and Switch Effects in Bilingual Language Processing
ERIC Educational Resources Information Center
Koeth, Joel T.
2012-01-01
This study utilized a novel task design in an effort to identify the source of the second language processing advantage commonly reported in mixed language conditions, investigate switch cost asymmetry in non-balanced bilinguals, and identify task-related variables that potentially contribute to inconsistent results across studies with similar…
Library Kiosks: A Balancing Act
ERIC Educational Resources Information Center
Aegard, Joanna
2010-01-01
In 2009, the author spearheaded the Thunder Bay Public Library's (TBPL) service audit on kiosks. A task force comprising staff from the children's, reference, and adult services departments was formed to work on the audit. Task force members worked together and studied how patrons and staff use kiosks, conducted a literature review, surveyed other…
do Vale, Sónia; Selinger, Lenka; Martins, João Martin; Bicho, Manuel; do Carmo, Isabel; Escera, Carles
2016-11-10
Several studies have suggested that dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEAS) may enhance working memory and attention, yet current evidence is still inconclusive. The balance between both forms of the hormone might be crucial regarding the effects that DHEA and DHEAS exert on the central nervous system. To test the hypothesis that higher DHEAS-to-DHEA ratios might enhance working memory and/or involuntary attention, we studied the DHEAS-to-DHEA ratio in relation to involuntary attention and working memory processing by recording the electroencephalogram of 22 young women while performing a working memory load task and a task without working memory load in an audio-visual oddball paradigm. DHEA and DHEAS were measured in saliva before each task. We found that a higher DHEAS-to-DHEA ratio was related to enhanced auditory novelty-P3 amplitudes during performance of the working memory task, indicating an increased processing of the distracter, while on the other hand there was no difference in the processing of the visual target. These results suggest that the balance between DHEAS and DHEA levels modulates involuntary attention during the performance of a task with cognitive load without interfering with the processing of the task-relevant visual stimulus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Deschamps, Thibault; Sauvaget, Anne; Pichot, Anne; Valrivière, Pierre; Maroulidès, Maxime; Bois, Aurore; Bulteau, Samuel; Thomas-Ollivier, Véronique
2016-12-01
This study examined whether postural control variables, particularly the center-of-pressure (COP) velocity-based parameters, could be a relevant hallmark of depression-related psychomotor retardation (PMR). We first aimed at investigating the interplay between the PMR scores and the COP performance in patients with major depressive disorder (MDD), as compared to age-matched healthy controls; secondly, we focused on the impact of a repetitive transcranial magnetic stimulation (rTMS) treatment on depression, PMR scores and postural performance. 16 MDD patients, and a control group of 16 healthy adults, were asked to maintain quiet standing balance during two trials with or without vision, and while backward counting (dual task). All the position and velocity-based COP variables were computed. Before and after the rTMS session (n eligible MDD = 10), we assessed the depression level with the Montgomery-Asberg Depression Rating Scale (MADRS), the PMR scores with the French Retardation Rating Scale for Depression (ERD), and postural performance. Before the treatment, significant positive partial correlations were found between the pre-ERD scores and the velocity-based COP variables, especially in the dual-task conditions (p < 0.05). In contrast, there was no significant correlation between the post-ERD scores and any postural parameter after the treatment. The MADRS and ERD scores showed a significant decrease between before and after the rTMS intervention. For the first time, the findings clearly validated the view that the assessment of postural performance - easy to envisage in clinical settings-constitutes a reliable and objective marker of PMR in MDD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of physical training on age-related balance and postural control.
Lelard, T; Ahmaidi, S
2015-11-01
In this paper, we review the effects of physical activity on balance performance in the elderly. The increase in the incidence of falls with age reflects the disorders of balance-related to aging. We are particularly interested in age-related changes in the balance control system as reflected in different static and dynamic balance tests. We report the results of studies demonstrating the beneficial effects of physical activity on postural balance. By comparing groups of practitioners of different physical activities, it appears that these effects on postural control depend on the type of activity and the time of practice. Thus, we have focused in the present review on "proprioceptive" and "strength" activities. Training programs offering a combination of several activities have demonstrated beneficial effects on the incidence of falls, and we present and compare the effects of these two types of training activities. It emerges that there are differential effects of programs of activities: while all activities improve participants' confidence in their ability, the "proprioceptive" activities rather improve performance in static tasks, while "strength" activities tend to improve performance in dynamic tasks. These effects depend on the targeted population and will have a greater impact on the frailest subjects. The use of new technologies in the form of "exergames" may also be proposed in home-based exercises. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Donath, Lars; Zahner, Lukas; Roth, Ralf; Fricker, Livia; Cordes, Mareike; Hanssen, Henner; Schmidt-Trucksäss, Arno; Faude, Oliver
2013-03-01
Impaired balance and gait performance increase fall-risk in seniors. Acute effects of different exercise bouts on gait and balance were not yet addressed. Therefore, 19 healthy seniors (10 women, 9 men, age: 64.6 ± 3.2 years) were examined on 3 days. After exhaustive treadmill testing, participants randomly completed a 2-km treadmill walking test (76 ± 8 % VO(2max)) and a resting control condition. Standing balance performance (SBALP) was assessed by single limb-eyes opened (SLEO) and double limb-eyes closed (DLEC) stance. Gait parameters were collected at comfortable walking velocity. A condition × time interaction of center of pressure path length (COP(path)) was observed for both balance tasks (p < 0.001). Small (Cohen's d = 0.42, p = 0.05) and large (d = 1.04, p < 0.001) COP(path) increases were found after 2-km and maximal exercise during DLEC. Regarding SLEO, slightly increased COP(path) occurred after 2-km walking (d = 0.29, p = 0.65) and large increases after exhaustive exercise (d = 1.24, p < 0.001). No significant differences were found for gait parameters. Alterations of SBALP after exhaustive exercise might lead to higher fall-risk in seniors. Balance changes upon 2-km testing might be of minor relevance. Gait is not affected during single task walking at given velocities.
Marchese, Roberta; Bove, Marco; Abbruzzese, Giovanni
2003-06-01
To analyse the effect of concomitant cognitive or motor task performance on balance control in Parkinson's disease (PD), we performed a posturographic study in 24 PD patients and in 20 sex- and age-matched control subjects. Postural sway was measured with eyes open (EO) and eyes closed (EC) during quiet stance and during performance of calculation or motor sequence of thumb opposition to the other fingers. No difference of centre of foot pressure (COP) parameters was observed during quiet standing (either EO or EC) between patients and controls, but visual deprivation induced in both groups a worsening of postural stability. COP area was significantly increased in PD patients during dual task performance, whereas no difference of COP path and x-y axes was observed. The effects induced by the performance of cognitive or motor task were significantly more evident in PD patients with clinical evidence of postural instability (presence of prior falls in the history). This study demonstrates that dual task interference on postural control can be observed in PD patients during performance of cognitive as well as motor tasks. The balance deterioration during dual task performance was significantly enhanced in patients with history of prior falls. These findings have some implications for the strategies to be used in reducing the risk of fall in PD. Copyright 2003 Movement Disorder Society
Influence of musical groove on postural sway.
Ross, Jessica M; Warlaumont, Anne S; Abney, Drew H; Rigoli, Lillian M; Balasubramaniam, Ramesh
2016-03-01
Timescales of postural fluctuation reflect underlying neuromuscular processes in balance control that are influenced by sensory information and the performance of concurrent cognitive and motor tasks. An open question is how postural fluctuations entrain to complex environmental rhythms, such as in music, which also vary on multiple timescales. Musical groove describes the property of music that encourages auditory-motor synchronization and is used to study voluntary motor entrainment to rhythmic sounds. The influence of groove on balance control mechanisms remains unexplored. We recorded fluctuations in center of pressure (CoP) of standing participants (N = 40) listening to low and high groove music and during quiet stance. We found an effect of musical groove on radial sway variability, with the least amount of variability in the high groove condition. In addition, we observed that groove influenced postural sway entrainment at various temporal scales. For example, with increasing levels of groove, we observed more entrainment to shorter, local timescale rhythmic musical occurrences. In contrast, we observed more entrainment to longer, global timescale features of the music, such as periodicity, with decreasing levels of groove. Finally, musical experience influenced the amount of postural variability and entrainment at local and global timescales. We conclude that groove in music and musical experience can influence the neural mechanisms that govern balance control, and discuss implications of our findings in terms of multiscale sensorimotor coupling. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Rasouli, Omid; Stensdotter, Ann-Katrin; Van der Meer, Audrey L H
2016-08-01
Impaired postural control has been reported in static conditions in chronic fatigue syndrome and fibromyalgia, but postural control in dynamic tasks have not yet been investigated. Thus, we investigated measurements from a force plate to evaluate dynamic balance control during gait initiation in patients with chronic fatigue syndrome and fibromyalgia compared to matched healthy controls. Thirty female participants (10 per group) performed five trials of gait initiation. Center of pressure (CoP) trajectory of the initial weight shift onto the supporting foot in the mediolateral direction (CoPX) was analyzed using General Tau Theory. We investigated the hypothesis that tau of the CoPX motion-gap (τCoPx) is coupled onto an intrinsic tauG-guide (τG) by keeping the relation τCoPx=KτG, where K is a scaling factor that determines the relevant kinematics of a movement. Mean K values were 0.57, 0.55, and 0.50 in fibromyalgia, chronic fatigue syndrome, and healthy controls, respectively. Both patient groups showed K values significantly higher than 0.50 (P<0.05), indicating that patients showed poorer dynamic balance control, CoPX colliding with the boundaries of the base of support (K>0.5). The findings revealed a lower level of dynamic postural control in both fibromyalgia and chronic fatigue syndrome compared to controls. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mengarelli, Alessandro; Verdini, Federica; Cardarelli, Stefano; Di Nardo, Francesco; Burattini, Laura; Fioretti, Sandro
2018-04-11
Testing balance through squatting exercise is a central part of many rehabilitation programs and sports and plays also an important role in clinical evaluation of residual motor ability. The assessment of center of pressure (CoP) displacement and its parametrization is commonly used to describe and analyze squat movement and the laboratory-grade force plates (FP) are the gold standard for measuring balance performances from a dynamic view-point. However, the Nintendo Wii Balance Board (NWBB) has been recently proposed as an inexpensive and easily available device for measuring ground reaction force and CoP displacement in standing balance tasks. Thus, this study aimed to compare the NWBB-CoP data with those obtained from a laboratory FP during a dynamic motor task, such as the squat task. CoP data of forty-eight subjects were acquired simultaneously from a NWBB and a FP and the analyses were performed over the descending squatting phase. Outcomes showed a very high correlation (r) and limited root-mean-square differences between CoP trajectories in anterior-posterior (r > 0.99, 1.63 ± 1.27 mm) and medial-lateral (r > 0.98, 1.01 ± 0.75 mm) direction. Spatial parameters computed from CoP displacement and ground reaction force peak presented fixed biases between NWBB and FP. Errors showed a high consistency (standard deviation < 2.4% of the FP outcomes) and a random spread distribution around the mean difference. Mean velocity is the only parameter which exhibited a tendency towards proportional values. Findings of this study suggested the NWBB as a valid device for the assessment and parametrization of CoP displacement during squatting movement. Copyright © 2018 Elsevier Ltd. All rights reserved.
Van Ooteghem, Karen; Frank, James S; Allard, Fran; Horak, Fay B
2010-08-01
Postural motor learning for dynamic balance tasks has been demonstrated in healthy older adults (Van Ooteghem et al. in Exp Brain Res 199(2):185-193, 2009). The purpose of this study was to investigate the type of knowledge (general or specific) obtained with balance training in this age group and to examine whether embedding perturbation regularities within a balance task masks specific learning. Two groups of older adults maintained balance on a translating platform that oscillated with variable amplitude and constant frequency. One group was trained using an embedded-sequence (ES) protocol which contained the same 15-s sequence of variable amplitude oscillations in the middle of each trial. A second group was trained using a looped-sequence (LS) protocol which contained a 15-s sequence repeated three times to form each trial. All trials were 45 s. Participants were not informed of any repetition. To examine learning, participants performed a retention test following a 24-h delay. LS participants also completed a transfer task. Specificity of learning was examined by comparing performance for repeated versus random sequences (ES) and training versus transfer sequences (LS). Performance was measured by deriving spatial and temporal measures of whole body center of mass (COM) and trunk orientation. Both groups improved performance with practice as characterized by reduced COM displacement, improved COM-platform phase relationships, and decreased angular trunk motion. Furthermore, improvements reflected general rather than specific postural motor learning regardless of training protocol (ES or LS). This finding is similar to young adults (Van Ooteghem et al. in Exp Brain Res 187(4):603-611, 2008) and indicates that age does not influence the type of learning which occurs for balance control.
Elion, Orit; Sela, Itamar; Bahat, Yotam; Siev-Ner, Itzhak; Weiss, Patrice L Tamar; Karni, Avi
2015-06-03
Does the learning of a balance and stability skill exhibit time-course phases and transfer limitations characteristic of the acquisition and consolidation of voluntary movement sequences? Here we followed the performance of young adults trained in maintaining balance while standing on a moving platform synchronized with a virtual reality road travel scene. The training protocol included eight 3 min long iterations of the road scene. Center of Pressure (CoP) displacements were analyzed for each task iteration within the training session, as well as during tests at 24h, 4 weeks and 12 weeks post-training to test for consolidation phase ("offline") gains and assess retention. In addition, CoP displacements in reaction to external perturbations were assessed before and after the training session and in the 3 subsequent post-training assessments (stability tests). There were significant reductions in CoP displacements as experience accumulated within session, with performance stabilizing by the end of the session. However, CoP displacements were further reduced at 24h post-training (delayed "offline" gains) and these gains were robustly retained. There was no transfer of the practice-related gains to performance in the stability tests. The time-course of learning the balance maintenance task, as well as the limitation on generalizing the gains to untrained conditions, are in line with the results of studies of manual movement skill learning. The current results support the conjecture that a similar repertoire of basic neuronal mechanisms of plasticity may underlay skill (procedural, "how to" knowledge) acquisition and skill memory consolidation in voluntary and balance maintenance tasks. Copyright © 2015 Elsevier B.V. All rights reserved.
Kurt, Emine Eda; Büyükturan, Buket; Büyükturan, Öznur; Erdem, Hatice Rana; Tuncay, Figen
2018-04-01
In this study, we aimed to investigate effects of Ai Chi on balance, functional mobility, health-related quality of life, and motor impairment in patients with Parkinson's disease. This study was conducted as an open-label randomized controlled trial (ISRCTN26292510) with repeated measures. Forty patients with Parkinson's disease stages 2 to 3 according to the Hoehn and Yahr Scale were randomly allocated to either an Ai Chi exercise group or a land-based exercise control group for 5 weeks. Balance was measured using the Biodex-3,1 and the Berg Balance Scale. Functional mobility was evaluated using the Timed Up and Go Test. Additionally, health-related quality of life and motor activity were assessed with the Parkinson's Disease Questionnaire-39 and the Unified Parkinson's Disease Rating Scale-III. Although patients in both groups showed significant improvement in all outcome variables, improvement of dynamic balance was significantly greater in the Ai Chi group (p < 0.001), Berg Balance Scale (p < 0.001), Timed Up and Go Test (p = 0.002), Parkinson's Disease Questionnaire-39 (p < 0.001), Unified Parkinson's Disease Rating Scale-III (p < 0.001). Our results suggest that an Ai Chi exercise program improves balance, mobility, motor ability, and quality of life. In addition, Ai Chi exercise was more effective as an intervention than land-based exercise in patients with mild to moderate Parkinson's disease. Implications for rehabilitation Ai Chi exercises (aquatic exercises) may help improve balance, functional mobility, health-related quality of life, and motor ability in patients with mild to moderate Parkinson's disease more efficiently than similar land-based exercises. Ai Chi exercises should be considered as a rehabilitation option for treatment of patients with mild or moderate Parkinson's disease.
Quinn, Gillian; Comber, Laura; Galvin, Rose; Coote, Susan
2018-05-01
To determine the ability of clinical measures of balance to distinguish fallers from non-fallers and to determine their predictive validity in identifying those at risk of falls. AMED, CINAHL, Medline, Scopus, PubMed Central and Google Scholar. First search: July 2015. Final search: October 2017. Inclusion criteria were studies of adults with a definite multiple sclerosis diagnosis, a clinical balance assessment and method of falls recording. Data were extracted independently by two reviewers. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 scale and the modified Newcastle-Ottawa Quality Assessment Scale. Statistical analysis was conducted for the cross-sectional studies using Review Manager 5. The mean difference with 95% confidence interval in balance outcomes between fallers and non-fallers was used as the mode of analysis. We included 33 studies (19 cross-sectional, 5 randomised controlled trials, 9 prospective) with a total of 3901 participants, of which 1917 (49%) were classified as fallers. The balance measures most commonly reported were the Berg Balance Scale, Timed Up and Go and Falls Efficacy Scale International. Meta-analysis demonstrated fallers perform significantly worse than non-fallers on all measures analysed except the Timed Up and Go Cognitive ( p < 0.05), but discriminative ability of the measures is commonly not reported. Of those reported, the Activities-specific Balance Confidence Scale had the highest area under the receiver operating characteristic curve value (0.92), but without reporting corresponding measures of clinical utility. Clinical measures of balance differ significantly between fallers and non-fallers but have poor predictive ability for falls risk in people with multiple sclerosis.
Solid State Energy Conversion Alliance Delphi SOFC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Shaffer; Gary Blake; Sean Kelly
2006-12-31
The following report details the results under the DOE SECA program for the period July 2006 through December 2006. Developments pertain to the development of a 3 to 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. This report details technical results of the work performed under the following tasks for the SOFC Power System: Task 1 SOFC System Development; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant Components; Task 5 Project Management; and Task 6 System Modeling & Cell Evaluation for Highmore » Efficiency Coal-Based Solid Oxide Fuel Cell Gas Turbine Hybrid System.« less
The influence of an auditory-memory attention-demanding task on postural control in blind persons.
Melzer, Itshak; Damry, Elad; Landau, Anat; Yagev, Ronit
2011-05-01
In order to evaluate the effect of an auditory-memory attention-demanding task on balance control, nine blind adults were compared to nine age-gender-matched sighted controls. This issue is particularly relevant for the blind population in which functional assessment of postural control has to be revealed through "real life" motor and cognitive function. The study aimed to explore whether an auditory-memory attention-demanding cognitive task would influence postural control in blind persons and compare this with blindfolded sighted persons. Subjects were instructed to minimize body sway during narrow base upright standing on a single force platform under two conditions: 1) standing still (single task); 2) as in 1) while performing an auditory-memory attention-demanding cognitive task (dual task). Subjects in both groups were required to stand blindfolded with their eyes closed. Center of Pressure displacement data were collected and analyzed using summary statistics and stabilogram-diffusion analysis. Blind and sighted subjects had similar postural sway in eyes closed condition. However, for dual compared to single task, sighted subjects show significant decrease in postural sway while blind subjects did not. The auditory-memory attention-demanding cognitive task had no interference effect on balance control on blind subjects. It seems that sighted individuals used auditory cues to compensate for momentary loss of vision, whereas blind subjects did not. This may suggest that blind and sighted people use different sensorimotor strategies to achieve stability. Copyright © 2010 Elsevier Ltd. All rights reserved.
Depression is a predictor for balance in people with multiple sclerosis.
Alghwiri, Alia A; Khalil, Hanan; Al-Sharman, Alham; El-Salem, Khalid
2018-05-26
Balance impairments are common and multifactorial among people with multiple sclerosis (MS). Depression is the most common psychological disorder in MS population and is strongly correlated with MS disease. Depression might be one of the factors that contribute to balance deficits in this population. However, the relationship between depression and balance impairments has not been explored in people with MS. To investigate the association between depression and balance impairments in people with MS. Cross sectional design was used in patients with MS. The Activities-specific Balance Confidence scale (ABC) and Berg Balance Scale (BBS) was used to assess balance. Beck Depression Inventory (BDI-II) was used to quantify depression and Kurtizki Expanded Disability Status Scale (EDSS) was utilized for the evaluation of MS disability severity. Pearson correlation coefficient was used to examine the association between depression and balance measurements. Multiple linear stepwise regressions were also conducted to find out if depression is a potential predictor for balance deficits. Seventy-five individuals with MS (Female = 69%) with a mean age (SD) of 38.8 (10) and a mean (SD) EDSS score of 3.0 (1.4) were recruited in this study. Depression was present in 53% of the patients. Depression was significantly correlated with balance measurements and EDSS. However, multiple linear stepwise regressions found that only depression and age significantly predict balance. Depression and balance were found frequent and associated in people with MS. Importantly depression was a significant predictor for balance impairments in individuals with MS. Balance rehabilitation may be hindered by depression. Therefore, depression should be evaluated and treated properly in individuals with MS. Copyright © 2018 Elsevier B.V. All rights reserved.
van het Reve, Eva; de Bruin, Eling D
2014-12-15
Exercise interventions often do not combine physical and cognitive training. However, this combination is assumed to be more beneficial in improving walking and cognitive functioning compared to isolated cognitive or physical training. A multicenter parallel randomized controlled trial was conducted to compare a motor to a cognitive-motor exercise program. A total of 182 eligible residents of homes-for-the-aged (n = 159) or elderly living in the vicinity of the homes (n = 23) were randomly assigned to either strength-balance (SB) or strength-balance-cognitive (SBC) training. Both groups conducted similar strength-balance training during 12 weeks. SBC additionally absolved computerized cognitive training. Outcomes were dual task costs of walking, physical performance, simple reaction time, executive functions, divided attention, fear of falling and fall rate. Participants were analysed with an intention to treat approach. The 182 participants (mean age ± SD: 81.5 ± 7.3 years) were allocated to either SB (n = 98) or SBC (n = 84). The attrition rate was 14.3%. Interaction effects were observed for dual task costs of step length (preferred walking speed: F(1,174) = 4.94, p = 0.028, η2 = 0.027, fast walking speed: F(1,166) = 6.14, p = 0.009, η2 = 0.040) and dual task costs of the standard deviation of step length (F(1,166) = 6.14, p = 0.014, η2 = 0.036), in favor of SBC. Significant interactions in favor of SBC revealed for in gait initiation (F(1,166) = 9.16, p = 0.003, η2 = 0.052), 'reaction time' (F(1,180) = 5.243, p = 0.023, η² = 0.028) & 'missed answers' (F(1,180) = 11.839, p = 0.001, η² = 0.062) as part of the test for divided attention. Within-group comparison revealed significant improvements in dual task costs of walking (preferred speed; velocity (p = 0.002), step time (p = 0.018), step length (p = 0.028), fast speed; velocity (p < 0.001), step time (p = 0.035), step length (p = 0.001)), simple reaction time (p < 0.001), executive functioning (Trail making test B; p < 0.001), divided attention (p < 0.001), fear of falling (p < 0.001), and fall rate (p < 0.001). Combining strength-balance training with specific cognitive training has a positive additional effect on dual task costs of walking, gait initiation, and divided attention. The findings further confirm previous research showing that strength-balance training improves executive functions and reduces falls. This trial has been registered under ISRCTN75134517.
Subjective rating scales as a workload
NASA Technical Reports Server (NTRS)
Bird, K. L.
1981-01-01
A multidimensional bipolar-adjective rating scale is employed as a subjective measure of operator workload in the performance of a one-axis tracking task. The rating scale addressed several dimensions of workload, including cognitive, physical, and perceptual task loading as well as fatigue and stress effects. Eight subjects performed a one-axis tracking task (with six levels of difficulty) and rated these tasks on several workload dimensions. Performance measures were tracking error RMS (root-mean square) and the standard deviation of control stick output. Significant relationships were observed between these performance measures and skill required, task complexity, attention level, task difficulty, task demands, and stress level.
NASA Astrophysics Data System (ADS)
García-Arias, Alicia; Ruiz-Pérez, Guiomar; Francés, Félix
2017-04-01
Vegetation plays a main role in the water balance of most hydrological systems. However, in the past it has been barely considered the effect of the interception and evapotranspiration for hydrological modelling purposes. During the last years many authors have recognised and supported ecohydrological approaches instead of traditional strategies. This contribution is aimed to demonstrate the pivotal role of the vegetation in ecohydrological models and that a better understanding of the hydrological systems can be achieved by considering the appropriate processes related to plants. The study is performed in two scales: the plot scale and the reach scale. At plot scale, only zonal vegetation was considered while at reach scale both zonal and riparian were taken into account. In order to assure the main role of the water on the vegetation development, semiarid environments have been selected for the case studies. Results show an increase of the capabilities to predict plant behaviour and water balance when interception and evapotranspiration are taken into account in the soil water balance
Jácome, Cristina; Cruz, Joana; Oliveira, Ana; Marques, Alda
2016-11-01
The Berg Balance Scale (BBS), Balance Evaluation Systems Test (BESTest), Mini-BESTest, and Brief-BESTest are useful in the assessment of balance. Their psychometric properties, however, have not been tested in patients with chronic obstructive pulmonary disease (COPD). This study aimed to compare the validity, reliability, and ability to identify fall status of the BBS, BESTest, Mini-BESTest, and the Brief-BESTest in patients with COPD. A cross-sectional study was conducted. Forty-six patients (24 men, 22 women; mean age=75.9 years, SD=7.1) were included. Participants were asked to report their falls during the previous 12 months and to fill in the Activity-specific Balance Confidence (ABC) Scale. The BBS and the BESTest were administered. Mini-BESTest and Brief-BESTest scores were computed based on the participants' BESTest performance. Validity was assessed by correlating balance tests with each other and with the ABC Scale. Interrater reliability (2 raters), intrarater reliability (48-72 hours), and minimal detectable changes (MDCs) were established. Receiver operating characteristics assessed the ability of each balance test to differentiate between participants with and without a history of falls. Balance test scores were significantly correlated with each other (Spearman correlation rho=.73-.90) and with the ABC Scale (rho=.53-.75). Balance tests presented high interrater reliability (intraclass correlation coefficient [ICC]=.85-.97) and intrarater reliability (ICC=.52-.88) and acceptable MDCs (MDC=3.3-6.3 points). Although all balance tests were able to identify fall status (area under the curve=0.74-0.84), the BBS (sensitivity=73%, specificity=77%) and the Brief-BESTest (sensitivity=81%, specificity=73%) had the higher ability to identify fall status. Findings are generalizable mainly to older patients with moderate COPD. The 4 balance tests are valid, reliable, and valuable in identifying fall status in patients with COPD. The Brief-BESTest presented slightly higher interrater reliability and ability to differentiate participants' fall status. © 2016 American Physical Therapy Association.
Task difficulty has no effect on haptic anchoring during tandem walking in young and older adults.
Costa, Andréia Abud da Silva; Santos, Luciana Oliveira Dos; Mauerberg-deCastro, Eliane; Moraes, Renato
2018-02-14
This study assessed the contribution of the "anchor system's" haptic information to balance control during walking at two levels of difficulty. Seventeen young adults and seventeen older adults performed 20 randomized trials of tandem walking in a straight line, on level ground and on a slightly-raised balance beam, both with and without the use of the anchors. The anchor consists of two flexible cables, whose ends participants hold in each hand, to which weights (125 g) are attached at the opposing ends, and which rest on the ground. As the participants walk, they pull on the cables, dragging the anchors. Spatiotemporal gait variables (step speed and single- and double-support duration) were processed using retro-reflective markers on anatomical sites. An accelerometer positioned in the cervical region registered trunk acceleration. Walking on the balance beam increased single- and double-support duration and reduced step speed in older adults, which suggests that this condition was more difficult than walking on the level ground. The anchors reduced trunk acceleration in the frontal plane, but the level of difficulty of the walking task showed no effect. Thus, varying the difficulty of the task had no influence on the way in which participants used the anchor system while tandem walking. The older adults exhibited more difficulty in walking on the balance beam as compared to the younger adults; however, the effect of the anchor system was similar in both groups. Copyright © 2017 Elsevier B.V. All rights reserved.
Gandolfi, Marialuisa; Munari, Daniele; Geroin, Christian; Gajofatto, Alberto; Benedetti, Maria Donata; Midiri, Alessandro; Carla, Fontana; Picelli, Alessandro; Waldner, Andreas; Smania, Nicola
2015-10-01
Impaired sensory integration contributes to balance disorders in patients with multiple sclerosis (MS). The objective of this paper is to compare the effects of sensory integration balance training against conventional rehabilitation on balance disorders, the level of balance confidence perceived, quality of life, fatigue, frequency of falls, and sensory integration processing on a large sample of patients with MS. This single-blind, randomized, controlled trial involved 80 outpatients with MS (EDSS: 1.5-6.0) and subjective symptoms of balance disorders. The experimental group (n = 39) received specific training to improve central integration of afferent sensory inputs; the control group (n = 41) received conventional rehabilitation (15 treatment sessions of 50 minutes each). Before, after treatment, and at one month post-treatment, patients were evaluated by a blinded rater using the Berg Balance Scale (BBS), Activities-specific Balance Confidence Scale (ABC), Multiple Sclerosis Quality of Life-54, Fatigue Severity Scale (FSS), number of falls and the Sensory Organization Balance Test (SOT). The experimental training program produced greater improvements than the control group training on the BBS (p < 0.001), the FSS (p < 0.002), number of falls (p = 0.002) and SOT (p < 0.05). Specific training to improve central integration of afferent sensory inputs may ameliorate balance disorders in patients with MS. Clinical Trial Registration (NCT01040117). © The Author(s), 2015.
Yatar, Gozde Iyigun; Yildirim, Sibel Aksu
2015-04-01
[Purpose] The aim of this study was to compare the effects of Wii Fit balance training (WBT) and progressive balance training (PBT) approaches on balance functions, balance confidence, and activities of daily living in chronic stroke patients. [Subjects] A total of 30 patients were randomized into the WBT (n=15) and PBT (n=15) groups. [Methods] All of the subjects received exercise training based on a neurodevelopemental approach in addition to either Wii Fit or progressive balance training for total of 1 hour a day, 3 days per week for 4 weeks. Primary measurements were static balance function measured with a Wii Balance Board and dynamic balance function assessed with the Berg Balance Scale, Timed Up and Go test, Dynamic Gait Index, and Functional Reach Test. Secondary measures were balance confidence assessed with the Activities-specific Balance Confidence scale and activities of daily living evaluated with the Frenchay Activity Index. [Results] There was not remarkable difference between the two treatments in dynamic balance functions, balance confidence, and activities of daily living. [Conclusion] Although both of the approaches were found to be effective in improving the balance functions, balance confidence, and activities of daily living, neither of them were more preferable than the other for the treatment of balance in patients with chronic stroke.
Volpe, Daniele; Giantin, Maria Giulia; Maestri, Roberto; Frazzitta, Giuseppe
2014-12-01
Our aim was to evaluate the feasibility of a hydrotherapy treatment in patients with Parkinson's disease and the effectiveness of this treatment on balance parameters in comparison to a traditional land-based physical therapy. A randomized single-blind controlled trial. Outpatients. Thirty-four patients with Parkinson's disease in Hoehn-Yahr stage 2.5-3. Group 1 hydrotherapy treatment, group 2 land-based rehabilitation treatment. The two groups underwent the same rehabilitation period (60 minutes of treatment, five days a week for two months). The primary outcome measures were the centre of the pressure sway area recorded with open and closed eyes, using a stabilometric platform. Secondary outcome measures were Unified Parkinson's Disease Rating Scale II and III, Timed Up and Go Test, Berg Balance Scale, Activities-specific Balance Confidence Scale, Falls Efficacy Scale, Falls diary and Parkinson's Disease Questionnaire-39. Hydrotherapy treatment proved to be feasible and safe. Patients in both groups had a significant improvement in all outcome variables. There was a better improvement in patients who underwent hydrotherapy than in patients treated with land-based therapy in the centre of pressure sway area closed eyes (mean SD change: 45.4 SD64.9 vs. 6.9 SD45.3, p = 0.05), Berg Balance Scale (51.2 SD3.1 vs. 6.0 SD3.1, p = 0.005), Activities-specific Balance Confidence Scale (16.8 SD10.6 vs. 4.1 SD5.4, p = 0.0001), Falls Efficacy Scale (-5.9 SD4.8 vs. -1.9 SD1.4, p = 0.003), Parkinson's Disease Quetionnaire-39 (-18.4 SD12.9 vs. -8.0 SD7.0, p = 0.006) and falls diary (-2.4 SD2.2 vs. -0.4 SD0.5, p = 0.001). Our study suggests that hydrotherapy may constitute a possible treatment for balance dysfunction in Parkinsonian patients with moderate stage of disease. © The Author(s) 2014.
BALCI, Nilay Çömük; TONGA, Eda; GÜLŞEN, Mustafa
2013-01-01
This pilot study aimed to investigate the effect of balance training by Tetraks Interactive Balance System (TIBS) on balance and fall risk in patients with mild to moderate Parkinson’s disease. Four patients with Parkinson’s disease between the ages of 56 and 70 years (61.25±6.70) were applied balance training for 3 weeks by TIBS. Sociodemographic features and physical properties of the subjects were recorded. Their motor performance was evaluated by the Unified Parkinson’s Disease Rating Scale (UPDRS), balance was measured using the Berg Balance Scale (BBS), Functional Reach Test (FRT), Timed Up and Go Test (TUG), and the Standing on One Leg Balance Test (SOL) and, their fall risks were evaluated by TIBS. Evaluations were performed twice, before and after treatment. Following training, Parkinson’s patients showed improvements in UPDRS, TUG, BBS, FRT, SOL and fall risk. Balance training by TIBS has positive effects on balance and decreases fall risk in Parkinson’s disease patients. PMID:28360557
Park, Shin-Kyu; Kim, Sung-Jin; Yoon, Tak Yong; Lee, Suk-Min
2018-05-01
[Purpose] This study aimed to investigate the effects of circular gait training on balance and balance confidence in patients with stroke. [Subjects and Methods] Fifteen patients with stroke were randomly divided into either the circular gait training (CGT) group (n=8) or the straight gait training (SGT) group (n=7). Both groups had conventional therapy that adhered to the neurodevelopmental treatment (NDT) approach, for 30 min. In addition, the CGT group performed circular gait training, and the SGT group practiced straight gait training for 30 min. Each intervention was applied for 1 h, 5 days a week, for 2 weeks. Berg Balance Scale (BBS), Timed Up and Go (TUG) test, and Activities-specific Balance Confidence (ABC) scale were used to test balance and balance confidence. [Results] After the intervention, both groups showed significant increases in balance and balance confidence. Significant improvements in the balance of the CGT group compared with the SGT group were observed at post-assessment. [Conclusion] This study showed that circular gait training significantly improves balance in patients with stroke.
Agmatine Reduces Balance Deficits In a Rat Model Of Third Trimester Binge-Like Ethanol Exposure
Lewis, B.; Wellman, K.A.; Barron, S.
2007-01-01
This study examined the effects of binge-like ethanol (ETOH) exposure in neonatal rats on a cerebellar-mediated balance task, and the ability of agmatine, an n-methyl-d-aspartate receptor (NMDAR) modulator, to reverse such effects. Five neonatal treatments groups were used, including ETOH (6.0 g/kg/day), AG (20 mg/kg), ETOH plus AG (6.0 g/kg/day and 20 mg/kg), a maltose control, and a non-treated control. Ethanol was administered via oral intubation twice daily for eight days, (AG was administered with the last ETOH intubation only). Two exposure periods were used; PND 1–8 or PND 8–15. On PND 31–33, balance performance on a single dowel was tested. Treatment with AG during withdrawal in ETOH exposed animals improved performance relative to ETOH alone among the PND 1–8 exposure period. ETOH exposure during the 2nd postnatal week did not impair balance. These findings provide further support that exposure to ETOH during critical developmental periods can impair performance on a cerebellar-dependent balance task. Of perhaps greater significance, co-administration of agmatine reduced these deficits suggesting that NMDA modulation via polyamine blockade may provide a novel approach to attenuating damage associated with binge-like ETOH consumption. PMID:17714770
Static and dynamic postural control in low-vision and normal-vision adults.
Tomomitsu, Mônica S V; Alonso, Angelica Castilho; Morimoto, Eurica; Bobbio, Tatiana G; Greve, Julia M D
2013-04-01
This study aimed to evaluate the influence of reduced visual information on postural control by comparing low-vision and normal-vision adults in static and dynamic conditions. Twenty-five low-vision subjects and twenty-five normal sighted adults were evaluated for static and dynamic balance using four protocols: 1) the Modified Clinical Test of Sensory Interaction on Balance on firm and foam surfaces with eyes opened and closed; 2) Unilateral Stance with eyes opened and closed; 3) Tandem Walk; and 4) Step Up/Over. The results showed that the low-vision group presented greater body sway compared with the normal vision during balance on a foam surface (p≤0.001), the Unilateral Stance test for both limbs (p≤0.001), and the Tandem Walk test. The low-vision group showed greater step width (p≤0.001) and slower gait speed (p≤0.004). In the Step Up/Over task, low-vision participants were more cautious in stepping up (right p≤0.005 and left p≤0.009) and in executing the movement (p≤0.001). These findings suggest that visual feedback is crucial for determining balance, especially for dynamic tasks and on foam surfaces. Low-vision individuals had worse postural stability than normal-vision adults in terms of dynamic tests and balance on foam surfaces.
Monti Bragadin, M; Francini, L; Bellone, E; Grandis, M; Reni, L; Canneva, S; Gemelli, C; Ursino, G; Maggi, G; Mori, L; Schenone, A
2015-08-01
The combination of distal muscle weakness, sensory defects and feet deformities leads to disequilibrium in patients affected by Charcot-Marie-Tooth (CMT) neuropathy. Studies relating the outcome of balance scales and clinical severity of CMT are lacking. To evaluate the accuracy of the Tinetti Balance scale (TBS) and Berg Balance scale (BBS) in identifying balance disorders and quantifying disease severity in CMT patients. Observational study. University of Genoa-IRCCS AOU San Martino IST-Department of Neurology, Italy. Nineteen individuals with a diagnosis of CMT (12 females, 7 males, age 41.26±12.42). All subjects underwent an evaluation with both TBS and BBS. Disability was quantified with CMT neuropathy score (CMTNS). Moreover, a complete neurophysiological study was performed. Distal lower limbs strength was evaluated with MRC scale. Pearson rank order correlation was used to determine the correlation between the scores on the two tests and to identify an eventual correlation between TBS or BBS and the CMTNS. Both scales showed a highly significant negative correlation with the CMTNS (r=-0.78, P<0.0005 and r=-0.77, P<0.001, respectively) and distal weakness on the anterior tibial muscles (AT) (TBS: AT left: r=0.65, P<0.005 and AT right: 0.59, P<0.01; BBS: AT left r=+0.71, P<0.001 and AT right r=+0.66, P<0.005). We found also a highly significant, positive correlation between the two different balance scales (r=+0.9, P<0.0001). TBS and BBS strongly correlate with disease disability and distal muscular weakness. Both TBS and BBS may play a relevant role in the assessment of disability in patients affected by CMT. Further studies are needed to validate our results in a larger population.
Subramaniam, Savitha; Wan-Ying Hui-Chan, Christina; Bhatt, Tanvi
2014-10-01
The impaired ability to maintain balance while performing higher-level cognitive tasks (cognitive-motor interference) significantly predisposes stroke survivors to risk of falls. We investigated adherence and intervention-related effects of gaming to improve balance control and decrease cognitive-motor interference in stroke survivors. Community-dwelling individuals with hemiparetic stroke (N = 8) received balance control training using Wii Fit in conjunction with cognitive training for approximately 110 min/d for 5 consecutive days. Changes in balance and cognitive performance were evaluated by the limits of stability test performed under single-task (ST) and dual-task (DT) conditions. The outcome measures from the limits of stability test included reaction time and movement velocity of the center of pressure. The cognitive performance was quantified by the number of errors. The DT cost was computed for the balance and cognitive outcome measures using [(ST - DT)/ST × 100]. Adherence was assessed by change on the Intrinsic Motivation Inventory scores postintervention. No commercial party having a direct financial interest in the research findings reported here has conferred orwill confer. Posttraining, reaction time cost in the forward direction improved from 31 ± 8.02 to ±8.7 ± 6.6. Similarly, movement velocity cost improved from 33.7 ± 12.3 to 11 ± 1. Cognitive cost also decreased from 47.9 ± 13.9 to 20 ± 18.8. There were similar improvements in the backward direction for all the outcome measures. Scores on the Intrinsic Motivation Inventory improved from 16.6 ± 1.3 to 23.5 ± 1.5. The results demonstrate good adherence and evidence of clinical value of this high-intensity, short-duration protocol for reducing cognitive-motor interference and improving balance control in stroke survivors. Future studies should examine the dose-response effects and long-term changes of such DT training paradigm applied to improve fall efficacy.Video Abstract available. See Video (Supplemental Digital Content 1, http://links.lww.com/JNPT/A80) for more insights from the authors.
The physical basis of glacier volume-area scaling
Bahr, D.B.; Meier, M.F.; Peckham, S.D.
1997-01-01
Ice volumes are known for only a few of the roughly 160,000 glaciers worldwide but are important components of many climate and sea level studies which require water flux estimates. A scaling analysis of the mass and momentum conservation equations shows that glacier volumes can be related by a power law to more easily observed glacier surface areas. The relationship requires four closure choices for the scaling behavior of glacier widths, slopes, side drag and mass balance. Reasonable closures predict a volume-area scaling exponent which is consistent with observations, giving a physical and practical basis for estimating ice volumes. Glacier volume is insensitive to perturbations in the mass balance scaling, but changes in average accumulation area ratios reflect significant changes in the scaling of both mass balance and ice volume. Copyright 1997 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)
2001-01-01
Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.
Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain decompositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fattebert, J.-L.; Richards, D.F.; Glosli, J.N.
2012-12-01
We present a new algorithm for automatic parallel load balancing in classical molecular dynamics. It assumes a spatial domain decomposition of particles into Voronoi cells. It is a gradient method which attempts to minimize a cost function by displacing Voronoi sites associated with each processor/sub-domain along steepest descent directions. Excellent load balance has been obtained for quasi-2D and 3D practical applications, with up to 440·10 6 particles on 65,536 MPI tasks.
Walking adaptability therapy after stroke: study protocol for a randomized controlled trial.
Timmermans, Celine; Roerdink, Melvyn; van Ooijen, Marielle W; Meskers, Carel G; Janssen, Thomas W; Beek, Peter J
2016-08-26
Walking in everyday life requires the ability to adapt walking to the environment. This adaptability is often impaired after stroke, and this might contribute to the increased fall risk after stroke. To improve safe community ambulation, walking adaptability training might be beneficial after stroke. This study is designed to compare the effects of two interventions for improving walking speed and walking adaptability: treadmill-based C-Mill therapy (therapy with augmented reality) and the overground FALLS program (a conventional therapy program). We hypothesize that C-Mill therapy will result in better outcomes than the FALLS program, owing to its expected greater amount of walking practice. This is a single-center parallel group randomized controlled trial with pre-intervention, post-intervention, retention, and follow-up tests. Forty persons after stroke (≥3 months) with deficits in walking or balance will be included. Participants will be randomly allocated to either C-Mill therapy or the overground FALLS program for 5 weeks. Both interventions will incorporate practice of walking adaptability and will be matched in terms of frequency, duration, and therapist attention. Walking speed, as determined by the 10 Meter Walking Test, will be the primary outcome measure. Secondary outcome measures will pertain to walking adaptability (10 Meter Walking Test with context or cognitive dual-task and Interactive Walkway assessments). Furthermore, commonly used clinical measures to determine walking ability (Timed Up-and-Go test), walking independence (Functional Ambulation Category), balance (Berg Balance Scale), and balance confidence (Activities-specific Balance Confidence scale) will be used, as well as a complementary set of walking-related assessments. The amount of walking practice (the number of steps taken per session) will be registered using the treadmill's inbuilt step counter (C-Mill therapy) and video recordings (FALLS program). This process measure will be compared between the two interventions. This study will assess the effects of treadmill-based C-Mill therapy compared with the overground FALLS program and thereby the relative importance of the amount of walking practice as a key aspect of effective intervention programs directed at improving walking speed and walking adaptability after stroke. Netherlands Trial Register NTR4030 . Registered on 11 June 2013, amendment filed on 17 June 2016.
Brichetto, Giampaolo; Spallarossa, Patricio; de Carvalho, Maria L Lopes; Battaglia, Mario A
2013-08-01
Improvement of sensory strategies is a relevant part of balance rehabilitation in multiple sclerosis (MS). This study aimed to Assess the effectiveness of visual-feedback exercises in improving balance in MS. We divided 36 patients into Wii and control-treated groups that underwent balance rehabilitation. Outcomes were obtained for Berg Balance Scale (BBS), Modified Fatigue Impact Scale, and sway area under conditions of opened and closed eyes. BBS showed a statistically significant improvement (from 49.6 to 54.6 points, p < 0.05) in the Wii group. Interactive visual-feedback exercises such as Wii could be more effective than the current standard protocol in improving balance disorders in MS.
Cortell-Tormo, Juan M; Sánchez, Pablo Tercedor; Chulvi-Medrano, Ivan; Tortosa-Martínez, Juan; Manchado-López, Carmen; Llana-Belloch, Salvador; Pérez-Soriano, Pedro
2018-02-06
Exercise is important as adjuvant in the chronic low back pain (CLBP) treatment. Functional training could involve benefits for low back pain (LBP) patients. To evaluate the effects of a 12-week period of functional resistance training on health-related quality of life (HRQOL), disability, body pain, and physical fitness in CLBP females. Nineteen females CLBP were recruited according to Paris Task Force on Back Pain criteria. Participants were randomly assigned to an exercise group (EG); and a control group (CG). Subjects were tested at baseline and at week 12 after 24 sessions, 2 days per week. Body pain was assessed using visual analog scale (VAS), disability with Oswestry Disability Index (ODI) and HRQOL with Short Form 36 questionnaire. Physical fitness was measured using: flamingo test, back endurance test, side bridge test, abdominal curl-up tests, and 60-s squat test. EG showed significant improvements in physical function (10%; p< 0.05), body pain (42%; p< 0.05), vitality (31%; p< 0.05), physical component scale (15%; p< 0.05), VAS (62.5%; p< 0.01), ODI (61.3%; p< 0.05), balance (58%; p< 0.05), curl-up (83%; p< 0.01), squat (22%; p< 0.01), static back (67%; p< 0.01), and side bridge (56%; p< 0.01). Periodized functional resistance training decreased pain and disability and improved HRQOL, balance and physical fitness in females with CLBP, and can thus be used safely in this population.
Seidel, Oliver; Carius, Daniel; Kenville, Rouven; Ragert, Patrick
2017-09-01
Studies suggested that motor expertise is associated with functional and structural brain alterations, which positively affect sensorimotor performance and learning capabilities. The purpose of the present study was to unravel differences in motor skill learning and associated functional neuroplasticity between endurance athletes (EA) and nonathletes (NA). For this purpose, participants had to perform a multimodal balance task (MBT) training on 2 sessions, which were separated by 1 wk. Before and after MBT training, a static balance task (SBT) had to be performed. MBT-induced functional neuroplasticity and neuromuscular alterations were assessed by means of functional near-infrared spectroscopy (fNIRS) and electromyography (EMG) during SBT performance. We hypothesized that EA would showed superior initial SBT performance and stronger MBT-induced improvements in SBT learning rates compared with NA. On a cortical level, we hypothesized that MBT training would lead to differential learning-dependent functional changes in motor-related brain regions [such as primary motor cortex (M1)] during SBT performance. In fact, EA showed superior initial SBT performance, whereas learning rates did not differ between groups. On a cortical level, fNIRS recordings (time × group interaction) revealed a stronger MBT-induced decrease in left M1 and inferior parietal lobe (IPL) for deoxygenated hemoglobin in EA. Even more interesting, learning rates were correlated with fNIRS changes in right M1/IPL. On the basis of these findings, we provide novel evidence for superior MBT training-induced functional neuroplasticity in highly trained athletes. Future studies should investigate these effects in different sports disciplines to strengthen previous work on experience-dependent neuroplasticity. NEW & NOTEWORTHY Motor expertise is associated with functional/structural brain plasticity. How such neuroplastic reorganization translates into altered motor learning processes remains elusive. We investigated endurance athletes (EA) and nonathletes (NA) in a multimodal balance task (MBT). EA showed superior static balance performance (SBT), whereas MBT-induced SBT improvements did not differ between groups. Functional near-infrared spectroscopy recordings revealed a differential MBT training-induced decrease of deoxygenated hemoglobin in left primary motor cortex and inferior parietal lobe between groups. Copyright © 2017 the American Physiological Society.
Sjoerds, Z; de Wit, S; van den Brink, W; Robbins, T W; Beekman, A T F; Penninx, B W J H; Veltman, D J
2013-01-01
Substance dependence is characterized by compulsive drug-taking despite negative consequences. Animal research suggests an underlying imbalance between goal-directed and habitual action control with chronic drug use. However, this imbalance, and its associated neurophysiological mechanisms, has not yet been experimentally investigated in human drug abusers. The aim of the present study therefore was to assess the balance between goal-directed and habit-based learning and its neural correlates in abstinent alcohol-dependent (AD) patients. A total of 31 AD patients and 19 age, gender and education matched healthy controls (HC) underwent functional magnetic resonance imaging (fMRI) during completion of an instrumental learning task designed to study the balance between goal-directed and habit learning. Task performance and task-related blood oxygen level-dependent activations in the brain were compared between AD patients and healthy matched controls. Findings were additionally associated with duration and severity of alcohol dependence. The results of this study provide evidence for an overreliance on stimulus-response habit learning in AD compared with HC, which was accompanied by decreased engagement of brain areas implicated in goal-directed action (ventromedial prefrontal cortex and anterior putamen) and increased recruitment of brain areas implicated in habit learning (posterior putamen) in AD patients. In conclusion, this is the first human study to provide experimental evidence for a disturbed balance between goal-directed and habitual control by use of an instrumental learning task, and to directly implicate cortical dysfunction to overreliance on inflexible habits in AD patients. PMID:24346135
Sjoerds, Z; de Wit, S; van den Brink, W; Robbins, T W; Beekman, A T F; Penninx, B W J H; Veltman, D J
2013-12-17
Substance dependence is characterized by compulsive drug-taking despite negative consequences. Animal research suggests an underlying imbalance between goal-directed and habitual action control with chronic drug use. However, this imbalance, and its associated neurophysiological mechanisms, has not yet been experimentally investigated in human drug abusers. The aim of the present study therefore was to assess the balance between goal-directed and habit-based learning and its neural correlates in abstinent alcohol-dependent (AD) patients. A total of 31 AD patients and 19 age, gender and education matched healthy controls (HC) underwent functional magnetic resonance imaging (fMRI) during completion of an instrumental learning task designed to study the balance between goal-directed and habit learning. Task performance and task-related blood oxygen level-dependent activations in the brain were compared between AD patients and healthy matched controls. Findings were additionally associated with duration and severity of alcohol dependence. The results of this study provide evidence for an overreliance on stimulus-response habit learning in AD compared with HC, which was accompanied by decreased engagement of brain areas implicated in goal-directed action (ventromedial prefrontal cortex and anterior putamen) and increased recruitment of brain areas implicated in habit learning (posterior putamen) in AD patients. In conclusion, this is the first human study to provide experimental evidence for a disturbed balance between goal-directed and habitual control by use of an instrumental learning task, and to directly implicate cortical dysfunction to overreliance on inflexible habits in AD patients.
Post-Concussion Tools to Assist with Assessment, Treatment, and Return to Duty
2014-12-01
cognitively engaged in a challenging mental task. 15. SUBJECT TERMS Dizziness, balance dysfunction, vestibular, sway, instability, falls, physiotherapy ...test battery for monitoring treatment during the physiotherapy and 3) development of an enhanced program of rehabilitation. 2. KEYWORDS...Dizziness, balance dysfunction, vestibular, sway, instability, falls, physiotherapy , tactile cueing, vibrotactile, tactors, mild traumatic brain injury, mTBI
Effectiveness of a Learner-Directed Model for e-Learning
ERIC Educational Resources Information Center
Lee, Stella; Barker, Trevor; Kumar, Vivekanandan Suresh
2016-01-01
It is a hard task to strike a balance between extents of control a learner exercises and the amount of guidance, active or passive, afforded by the learning environment to guide, support, and motivate the learner. Adaptive systems strive to find the right balance in a spectrum that spans between self-control and system-guidance. They also concern…
Adaptive Competency Acquisition: Why LPN-to-ADN Career Mobility Education Programs Work.
ERIC Educational Resources Information Center
Coyle-Rogers, Patricia G.
Adaptive competencies are the skills required to effectively complete a particular task and are the congruencies (balance) between personal skills and task demands. The differences between the adaptive competency acquisition of students in licensed practical nurse (LPN) programs and associate degree nurse (ADN) programs were examined in a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram
Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a functionmore » of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain.« less
Work stealing for GPU-accelerated parallel programs in a global address space framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram
Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a functionmore » of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain« less
Chronic motivational state interacts with task reward structure in dynamic decision-making.
Cooper, Jessica A; Worthy, Darrell A; Maddox, W Todd
2015-12-01
Research distinguishes between a habitual, model-free system motivated toward immediately rewarding actions, and a goal-directed, model-based system motivated toward actions that improve future state. We examined the balance of processing in these two systems during state-based decision-making. We tested a regulatory fit hypothesis (Maddox & Markman, 2010) that predicts that global trait motivation affects the balance of habitual- vs. goal-directed processing but only through its interaction with the task framing as gain-maximization or loss-minimization. We found support for the hypothesis that a match between an individual's chronic motivational state and the task framing enhances goal-directed processing, and thus state-based decision-making. Specifically, chronic promotion-focused individuals under gain-maximization and chronic prevention-focused individuals under loss-minimization both showed enhanced state-based decision-making. Computational modeling indicates that individuals in a match between global chronic motivational state and local task reward structure engaged more goal-directed processing, whereas those in a mismatch engaged more habitual processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Schepens, Stacey; Goldberg, Allon; Wallace, Melissa
2010-01-01
A shortened version of the ABC 16-item scale (ABC-16), the ABC-6, has been proposed as an alternative balance confidence measure. We investigated whether the ABC-6 is a valid and reliable measure of balance confidence and examined its relationship to balance impairment and falls in older adults. Thirty-five community-dwelling older adults completed the ABC-16, including the 6 questions of the ABC-6. They also completed the following clinical balance tests: unipedal stance time (UST), functional reach (FR), Timed Up and Go (TUG), and maximum step length (MSL). Participants reported 12-month falls history. Balance confidence on the ABC-6 was significantly lower than on the ABC-16, however scores were highly correlated. Fallers reported lower balance confidence than non-fallers as measured by the ABC-6 scale, but confidence did not differ between the groups with the ABC-16. The ABC-6 significantly correlated with all balance tests assessed and number of falls. The ABC-16 significantly correlated with all balance tests assessed, but not with number of falls. Test-retest reliability for the ABC-16 and ABC-6 was good to excellent. The ABC-6 is a valid and reliable measure of balance confidence in community-dwelling older adults, and shows stronger relationships to falls than does the ABC-16. The ABC-6 may be a more useful balance confidence assessment tool than the ABC-16. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Yang, Wen-Chieh; Wang, Hsing-Kuo; Wu, Ruey-Meei; Lo, Chien-Shun; Lin, Kwan-Hwa
2016-09-01
Virtual reality has the advantage to provide rich sensory feedbacks for training balance function. This study tested if the home-based virtual reality balance training is more effective than the conventional home balance training in improving balance, walking, and quality of life in patients with Parkinson's disease (PD). Twenty-three patients with idiopathic PD were recruited and underwent twelve 50-minute training sessions during the 6-week training period. The experimental group (n = 11) was trained with a custom-made virtual reality balance training system, and the control group (n = 12) was trained by a licensed physical therapist. Outcomes were measured at Week 0 (pretest), Week 6 (posttest), and Week 8 (follow-up). The primary outcome was the Berg Balance Scale. The secondary outcomes included the Dynamic Gait Index, timed Up-and-Go test, Parkinson's Disease Questionnaire, and the motor score of the Unified Parkinson's Disease Rating Scale. The experimental and control groups were comparable at pretest. After training, both groups performed better in the Berg Balance Scale, Dynamic Gait Index, timed Up-and-Go test, and Parkinson's Disease Questionnaire at posttest and follow-up than at pretest. However, no significant differences were found between these two groups at posttest and follow-up. This study did not find any difference between the effects of the home-based virtual reality balance training and conventional home balance training. The two training options were equally effective in improving balance, walking, and quality of life among community-dwelling patients with PD. Copyright © 2015. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Leite, Walter L.; Beretvas, S. Natasha
2005-01-01
The Marlowe-Crowne Social Desirability Scale (MCSDS), the most commonly used social desirability bias (SDB) assessment, conceptualizes SDB as an individual's need for approval. The Balanced Inventory of Desirable Responding (BIDR) measures SDB as two separate constructs: impression management and self-deception. Scores on SDB scales are commonly…
Chisholm, Amanda E; Alamro, Raed A; Williams, Alison M M; Lam, Tania
2017-04-11
Robotic overground gait training devices, such as the Ekso, require users to actively participate in triggering steps through weight-shifting movements. It remains unknown how much the trunk muscles are activated during these movements, and if it is possible to transfer training effects to seated balance control. This study was conducted to compare the activity of postural control muscles of the trunk during overground (Ekso) vs. treadmill-based (Lokomat) robotic gait training, and evaluate changes in seated balance control in people with high-thoracic motor-complete spinal cord injury (SCI). Three individuals with motor-complete SCI from C7-T4, assumed to have no voluntary motor function below the chest, underwent robotic gait training. The participants were randomly assigned to Ekso-Lokomat-Ekso or Lokomat-Ekso-Lokomat for 10 sessions within each intervention phase for a total of 30 sessions. We evaluated static and dynamic balance control through analysis of center of pressure (COP) movements after each intervention phase. Surface electromyography was used to compare activity of the abdominal and erector spinae muscles during Ekso and Lokomat walking. We observed improved postural stability after training with Ekso compared to Lokomat during static balance tasks, indicated by reduced COP root mean square distance and ellipse area. In addition, Ekso training increased total distance of COP movements during a dynamic balance task. The trunk muscles showed increased activation during Ekso overground walking compared to Lokomat walking. Our findings suggest that the Ekso actively recruits trunk muscles through postural control mechanisms, which may lead to improved balance during sitting. Developing effective training strategies to reactivate the trunk muscles is important to facilitate independence during seated balance activity in people with SCI.
Does Kinesiology tape counter exercise-related impairments of balance in the elderly?
Hosp, Simona; Csapo, Robert; Heinrich, Dieter; Hasler, Michael; Nachbauer, Werner
2018-05-01
Maintaining balance is an essential requirement for the performance of daily tasks and sporting activities, particularly in older adults to prevent falls and associated injuries. Kinesiology tape has gained great popularity in sports and is frequently used as a tool for performance enhancement. However, there is little research investigating its influence on balance. The purpose of this study was to evaluate the effect of Kinesiology tape on dynamic balance, postural stability and knee proprioception after physical activity in healthy, older adults. Twelve physically active, healthy men aged 63-77 years performed the test on two separate days, with and without Kinesiology tape at the knee joint (prospective intervention with cross-over design). Dynamic balance during an obstacle-crossing task, postural stability in a single-leg stance test, and knee joint position sense as a measure of proprioception were examined before and after 30 min of downhill walking on a treadmill. The influences of taping condition and physical activity on all parameters were statistically tested using factorial ANOVAs. Factorial ANOVA revealed significant time × taping condition interaction effects on all performance parameters (p < 0.05), indicating that the exercise-related changes in dynamic balance, postural stability and knee proprioception differed between the two taping conditions. The deterioration of performance was always greater when no tape was used. This study demonstrated that physical exercise significantly deteriorated dynamic balance, postural stability and knee proprioception in older men. These effects can be attenuated through the usage of Kinesiology tape. By preventing exercise-related impairments of balance, Kinesiology tape might help reduce the risk of sports-associated falls and associated injuries. Copyright © 2018 Elsevier B.V. All rights reserved.
Inertio-elastic mixing in a straight microchannel with side wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Sun Ok; Cooper-White, Justin J.; School of Chemical Engineering, University of Queensland, St Lucia, 4072 QLD
Mixing remains a challenging task in microfluidic channels because of their inherently small length scale. In this work, we propose an efficient microfluidic mixer based on the chaotic vortex dynamics of a viscoelastic flow in a straight channel with side wells. When the inertia and elasticity of a dilute polymer solution are balanced (i.e., the Reynolds number Re and Weissenberg number Wi are both on the order of 10{sup 1}), chaotic vortices appear in the side wells (inertio-elastic flow instability), enhancing the mixing of adjacent fluid streams. However, there is no chaotic vortex motion in Newtonian flows for any flowmore » rate. Efficient mixing by such an inertio-elastic instability is found to be relevant for a wide range of Re values.« less
Churchill, Nathan W; Spring, Robyn; Grady, Cheryl; Cimprich, Bernadine; Askren, Mary K; Reuter-Lorenz, Patricia A; Jung, Mi Sook; Peltier, Scott; Strother, Stephen C; Berman, Marc G
2016-08-08
There is growing evidence that fluctuations in brain activity may exhibit scale-free ("fractal") dynamics. Scale-free signals follow a spectral-power curve of the form P(f ) ∝ f(-β), where spectral power decreases in a power-law fashion with increasing frequency. In this study, we demonstrated that fractal scaling of BOLD fMRI signal is consistently suppressed for different sources of cognitive effort. Decreases in the Hurst exponent (H), which quantifies scale-free signal, was related to three different sources of cognitive effort/task engagement: 1) task difficulty, 2) task novelty, and 3) aging effects. These results were consistently observed across multiple datasets and task paradigms. We also demonstrated that estimates of H are robust across a range of time-window sizes. H was also compared to alternative metrics of BOLD variability (SDBOLD) and global connectivity (Gconn), with effort-related decreases in H producing similar decreases in SDBOLD and Gconn. These results indicate a potential global brain phenomenon that unites research from different fields and indicates that fractal scaling may be a highly sensitive metric for indexing cognitive effort/task engagement.
Churchill, Nathan W.; Spring, Robyn; Grady, Cheryl; Cimprich, Bernadine; Askren, Mary K.; Reuter-Lorenz, Patricia A.; Jung, Mi Sook; Peltier, Scott; Strother, Stephen C.; Berman, Marc G.
2016-01-01
There is growing evidence that fluctuations in brain activity may exhibit scale-free (“fractal”) dynamics. Scale-free signals follow a spectral-power curve of the form P(f ) ∝ f−β, where spectral power decreases in a power-law fashion with increasing frequency. In this study, we demonstrated that fractal scaling of BOLD fMRI signal is consistently suppressed for different sources of cognitive effort. Decreases in the Hurst exponent (H), which quantifies scale-free signal, was related to three different sources of cognitive effort/task engagement: 1) task difficulty, 2) task novelty, and 3) aging effects. These results were consistently observed across multiple datasets and task paradigms. We also demonstrated that estimates of H are robust across a range of time-window sizes. H was also compared to alternative metrics of BOLD variability (SDBOLD) and global connectivity (Gconn), with effort-related decreases in H producing similar decreases in SDBOLD and Gconn. These results indicate a potential global brain phenomenon that unites research from different fields and indicates that fractal scaling may be a highly sensitive metric for indexing cognitive effort/task engagement. PMID:27498696
An Engineering Model of Human Balance Control-Part I: Biomechanical Model.
Barton, Joseph E; Roy, Anindo; Sorkin, John D; Rogers, Mark W; Macko, Richard
2016-01-01
We developed a balance measurement tool (the balanced reach test (BRT)) to assess standing balance while reaching and pointing to a target moving in three-dimensional space according to a sum-of-sines function. We also developed a three-dimensional, 13-segment biomechanical model to analyze performance in this task. Using kinematic and ground reaction force (GRF) data from the BRT, we performed an inverse dynamics analysis to compute the forces and torques applied at each of the joints during the course of a 90 s test. We also performed spectral analyses of each joint's force activations. We found that the joints act in a different but highly coordinated manner to accomplish the tracking task-with individual joints responding congruently to different portions of the target disk's frequency spectrum. The test and the model also identified clear differences between a young healthy subject (YHS), an older high fall risk (HFR) subject before participating in a balance training intervention; and in the older subject's performance after training (which improved to the point that his performance approached that of the young subject). This is the first phase of an effort to model the balance control system with sufficient physiological detail and complexity to accurately simulate the multisegmental control of balance during functional reach across the spectra of aging, medical, and neurological conditions that affect performance. Such a model would provide insight into the function and interaction of the biomechanical and neurophysiological elements making up this system; and system adaptations to changes in these elements' performance and capabilities.
Rhine, Tara D; Byczkowski, Terri L; Clark, Ross A; Babcock, Lynn
2016-05-01
To examine postural instability in children acutely after concussion, using the Wii Balance Board (WBB). We hypothesized that children with traumatic brain injury would have significantly worse balance relative to children without brain injury. Prospective case-control pilot study. Emergency department of a tertiary urban pediatric hospital. Cases were a convenience sample 11-16 years old who presented within 6 hours of sustaining concussion. Two controls, matched on gender, height, and age, were enrolled for each case that completed study procedures. Controls were children who presented for a minor complaint that was unlikely to affect balance. Not applicable. The participant's postural sway expressed as the displacement in centimeters of the center of pressure during a timed balance task. Balance testing was performed using 4 stances (single or double limb, eyes open or closed). Three of the 17 (17.6%) cases were too dizzy to complete testing. One stance, double limbs eyes open, was significantly higher in cases versus controls (85.6 vs 64.3 cm, P = 0.04). A simple test on the WBB consisting of a 2-legged standing balance task with eyes open discriminated children with concussion from non-head-injured controls. The low cost and feasibility of this device make it a potentially viable tool for assessing postural stability in children with concussion for both longitudinal research studies and clinical care. These pilot data suggest that the WBB is an inexpensive tool that can be used on the sideline or in the outpatient setting to objectively identify and quantify postural instability.
Maestro: an orchestration framework for large-scale WSN simulations.
Riliskis, Laurynas; Osipov, Evgeny
2014-03-18
Contemporary wireless sensor networks (WSNs) have evolved into large and complex systems and are one of the main technologies used in cyber-physical systems and the Internet of Things. Extensive research on WSNs has led to the development of diverse solutions at all levels of software architecture, including protocol stacks for communications. This multitude of solutions is due to the limited computational power and restrictions on energy consumption that must be accounted for when designing typical WSN systems. It is therefore challenging to develop, test and validate even small WSN applications, and this process can easily consume significant resources. Simulations are inexpensive tools for testing, verifying and generally experimenting with new technologies in a repeatable fashion. Consequently, as the size of the systems to be tested increases, so does the need for large-scale simulations. This article describes a tool called Maestro for the automation of large-scale simulation and investigates the feasibility of using cloud computing facilities for such task. Using tools that are built into Maestro, we demonstrate a feasible approach for benchmarking cloud infrastructure in order to identify cloud Virtual Machine (VM)instances that provide an optimal balance of performance and cost for a given simulation.
Maestro: An Orchestration Framework for Large-Scale WSN Simulations
Riliskis, Laurynas; Osipov, Evgeny
2014-01-01
Contemporary wireless sensor networks (WSNs) have evolved into large and complex systems and are one of the main technologies used in cyber-physical systems and the Internet of Things. Extensive research on WSNs has led to the development of diverse solutions at all levels of software architecture, including protocol stacks for communications. This multitude of solutions is due to the limited computational power and restrictions on energy consumption that must be accounted for when designing typical WSN systems. It is therefore challenging to develop, test and validate even small WSN applications, and this process can easily consume significant resources. Simulations are inexpensive tools for testing, verifying and generally experimenting with new technologies in a repeatable fashion. Consequently, as the size of the systems to be tested increases, so does the need for large-scale simulations. This article describes a tool called Maestro for the automation of large-scale simulation and investigates the feasibility of using cloud computing facilities for such task. Using tools that are built into Maestro, we demonstrate a feasible approach for benchmarking cloud infrastructure in order to identify cloud Virtual Machine (VM)instances that provide an optimal balance of performance and cost for a given simulation. PMID:24647123
The effectiveness of Pilates on balance and falls in community dwelling older adults.
Josephs, Sharon; Pratt, Mary Lee; Calk Meadows, Emily; Thurmond, Stephanie; Wagner, Amy
2016-10-01
The purpose of this study was to determine whether Pilates is more effective than traditional strength and balance exercises for improving balance measures, balance confidence and reducing falls in community dwelling older adults with fall risk. Thirty-one participants with fall risk were randomly assigned to the Pilates group (PG) or the traditional exercise group (TG). Both groups participated in 12 weeks of exercise, 2 times/week for 1 h. There was significant improvement in the Fullerton Advanced Balance Scale for both the PG (mean difference = 6.31, p < .05) and the TG (mean difference = 7.45, p = .01). The PG also showed significant improvement in the Activities-Specific Balance Confidence Scale (mean difference = 10.57, p = .008). Both Pilates and traditional balance programs are effective at improving balance measures in community dwelling older adults with fall risk, with the Pilates group showing improved balance confidence. Copyright © 2016 Elsevier Ltd. All rights reserved.
"Merging Yoga and Occupational Therapy (MY-OT): A feasibility and pilot study".
Schmid, Arlene A; Puymbroeck, Marieke Van; Portz, Jennifer D; Atler, Karen E; Fruhauf, Christine A
2016-10-01
To examine the feasibility and benefits of the Merging Yoga and Occupational Therapy (MY-OT) intervention. This is the primary analysis of a non-controlled pretest-posttest pilot study to understand the feasibility and impact of MY-OT on balance, balance self-efficacy, and fall risk factor management in people with chronic stroke. University research laboratory. People with chronic stroke were included in the study if they: had sustained a fall or had fear of falling, were able to stand, and hand impaired balance and were at risk for falls (≤46 on the Berg Balance Scale (BBS)). Individuals completed an 8 week intervention that included 16 sessions of both yoga and group occupational therapy (OT). Yoga included physical postures, breathing exercises, and meditation. OT focused on post-stroke fall risk factor management. The BBS was used to assess balance, the Activities-specific Balance Confidence Scale (ABC) was used to measure balance self-efficacy. Five fall risk factor management scales were used. Overall, the intervention was considered feasible, as individuals were able to safely complete the intervention with little attrition and high attendance. Balance improved by 30% (p=0.002). Balance self-efficacy improved by 15% (p=0.034). Each of the five fall risk factor management scales improved, but only two significantly improved (Fall Prevention and Management Questionnaire, 29%, p=0.004 and Fall Prevention Strategy Survey, 42%, p=0.032). The results demonstrate that MY-OT is a potential intervention to improve multiple fall related outcomes for people with stroke. Therapists may consider these interventions for people with stroke, but additional research is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Malone, A.
2017-12-01
Quantifying mass balance sensitivity to climate change is essential for forecasting glacier evolution and deciphering climate signals embedded in archives of past glacier changes. Ideally, these quantifications result from decades of field measurement, remote sensing, and a hierarchy modeling approach, but in data-sparse regions, such as the Himalayas and tropical Andes, regional-scale modeling rooted in first principles provides a first-order picture. Previous regional-scaling modeling studies have applied a surface energy and mass balance approach in order to quantify equilibrium line altitude sensitivity to climate change. In this study, an expanded regional-scale surface energy and mass balance model is implemented to quantify glacier-wide mass balance sensitivity to climate change for tropical Andean glaciers. Data from the Randolph Glacier Inventory are incorporated, and additional physical processes are included, such as a dynamic albedo and cloud-dependent atmospheric emissivity. The model output agrees well with the limited mass balance records for tropical Andean glaciers. The dominant climate variables driving interannual mass balance variability differ depending on the climate setting. For wet tropical glaciers (annual precipitation >0.75 m y-1), temperature is the dominant climate variable. Different hypotheses for the processes linking wet tropical glacier mass balance variability to temperature are evaluated. The results support the hypothesis that glacier-wide mass balance on wet tropical glaciers is largely dominated by processes at the lowest elevation where temperature plays a leading role in energy exchanges. This research also highlights the transient nature of wet tropical glaciers - the vast majority of tropical glaciers and a vital regional water resource - in an anthropogenic warming world.
Sakakibara, Brodie M.; Miller, William C.; Backman, Catherine L.
2012-01-01
Objective To explore shortened response formats for use with the Activities-specific Balance Confidence scale and then: 1) evaluate the unidimensionality of the scale; 2) evaluate the item difficulty; 3) evaluate the scale for redundancy and content gaps; and 4) evaluate the item standard error of measurement (SEM) and internal consistency reliability among aging individuals (≥50 years) with a lower-limb amputation living in the community. Design Secondary analysis of cross-sectional survey and chart review data. Setting Out-patient amputee clinics, Ontario, Canada. Participants Four hundred forty eight community living adults, at least 50 years old (mean = 68 years), who have used a prosthesis for at least 6 months for a major unilateral lower limb amputation. Three hundred twenty five (72.5%) were men. Intervention N/a Main Outcome Measure(s) Activities-specific Balance Confidence Scale. Results A 5-option response format outperformed 4- and 6-option formats. Factor analyses confirmed a unidimensional scale. The distance between response options is not the same for all items on the scale, evident by the Partial Credit Model (PCM) having a better fit to the data than the Rating Scale Model. Two items, however, did not fit the PCM within statistical reason. Revising the wording of the two items may resolve the misfit, and improve the construct validity and lower the SEM. Overall, the difficulty of the scale’s items is appropriate for use with aging individuals with lower-limb amputation, and is most reliable (Cronbach ∝ = 0.94) for use with individuals with moderately low balance confidence levels. Conclusions The ABC-scale with a simplified 5-option response format is a valid and reliable measure of balance confidence for use with individuals aging with a lower limb amputation. PMID:21704978
Work Environment Questionnaires and Army Unit Effectiveness and Satisfaction Measures
1977-09-01
satisfaction indices (retention rates and disciplinary actions) and place more emphasis on these outcomes. In balance , the work environment and...last me a year"), and that "effective" supervisors and organizations planned carefully to stay within these constraints and balance expenditures over...scale was out of balance with its higher end. Most instruments reviewed used Likert scales with numerical anchors; very few provided specific descriptive
Montagna, Jéssica Cristine; Santos, Bárbara C; Battistuzzo, Camila R; Loureiro, Ana Paula C
2014-01-01
One of the main problems associate with hemiparesis after stroke is the decrease in balance during static and dynamic postures which can highly affect daily life activities. To assess the effects of aquatic physiotherapy on the balance and quality of life (SS-QoL) of people with pos stroke. Chronic stroke participants received at total 18 individual sessions of aquatic physiotherapy using the principle of Halliwick (2x of 40 minutes per week). The outcomes measured were: Berg Balance scale, Timed up & go test (TUG), Stroke Specific Quality of Life Scale (SS-QoL) and baropodometric analysis. These assessment were performed before and one week after intervention. Fifteen participants were included in this study. The mean age was 58.5 and 54% was male. After intervention, participants had a significant improvement on their static balance measured by Berg Balance scale and TUG. Dynamic balance had a significant trend of improvement in mediolateral domain with eyes closed and during sit-to-stand. The mobility domain of the SS-QoL questionnaire was significant higher after intervention. Our results suggest that aquatic physiotherapy using the method of Halliwick can be a useful tool during stroke rehabilitation to improve balance. However, this improvement may not have significant impact of their quality of life.
Evaluation of Predictive Factors Influencing Community Reintegration in Adult Patients with Stroke
Olawale, Olajide Ayinla; Usman, Jibrin Sammani; Oke, Kayode Israel; Osundiya, Oladunni Caroline
2018-01-01
Objectives: Patients with stroke are faced with gait, balance, and fall difficulties which could impact on their community reintegration. In Nigeria, community reintegration after stroke has been understudied. The objective of this study was to evaluate the predictors of community reintegration in adult patients with stroke. Materials and Methods: Participants were 91 adult patients with stroke. Gait variables, balance self-efficacy, community balance/mobility, and fall self-efficacy were assessed using Rivermead Mobility Index, Activities-specific Balance Confidence Scale, Community Balance and Mobility Scale, and Falls Efficacy Scale-International respectively. Reintegration to Normal Living Index was used to assess satisfaction with community reintegration. Pearson Product-Moment Correlation Coefficient was used to determine the relationship between community reintegration and gait spatiotemporal variables, balance performance, and risk of fall. Multiple regression analysis was used to determine predictors of community reintegration (P ≤ 0.05). Results: There was significant positive relationship between community reintegration and cadence (r = 0.250, P = 0.017), functional mobility (r = 0.503, P = 0.001), balance self-efficacy (r = 0.608, P = 0.001), community balance/mobility (r = 0.586, P = 0.001), and duration of stroke (r = 0.220, P = 0.036). Stride time (r = −0.282, P = 0.073) and fall self-efficacy (r = 0.566, P = 0.001) were negatively correlated with community reintegration. Duration of stroke, balance self-efficacy, community balance/mobility, and fall self-efficacy (52.7% of the variance) were the significant predictors of community reintegration. Conclusion: Community reintegration is influenced by cadence, functional mobility, balance self-efficacy, community balance/mobility, and duration of stroke. Hence, improving balance and mobility during rehabilitation is important in enhancing community reintegration in patients with stroke. PMID:29456337
NASA Technical Reports Server (NTRS)
Soede, M.
1977-01-01
Experiments were carried out on a bicycle simulator with alcohol administration and a binary choice task in separate sessions, intending to reduce the subject's mental capacity. Before and after such sessions a visual evoked response measurement was done. The subject's performance was analyzed with describing function techniques. The results indicate that the alcohol affects the course-following task as well as the balancing task. The binary choice task is more specifically influencing the course-following task. The dual task shows a more pronounced effect on the recovery of the evoked response. The alcohol is delaying the recovery curve of the evoked response. A tentative explanation can be given which agrees with the performance data.
2017-01-01
Objective To investigate the clinical feasibility of a newly developed, portable, gait assistive robot (WA-H, ‘walking assist for hemiplegia’) for improving the balance function of patients with stroke-induced hemiplegia. Methods Thirteen patients underwent 12 weeks of gait training on the treadmill while wearing WA-H for 30 minutes per day, 4 days a week. Patients' balance function was evaluated by the Berg Balance Scale (BBS), Fugl-Meyer Assessment Scale (FMAS), Timed Up and Go Test (TUGT), and Short Physical Performance Battery (SPPB) before and after 6 and 12 weeks of training. Results There were no serious complications or clinical difficulties during gait training with WA-H. In three categories of BBS, TUGT, and the balance scale of SPPB, there was a statistically significant improvement at the 6th week and 12th week of gait training with WA-H. In the subscale of balance function of FMAS, there was statistically significant improvement only at the 12th week. Conclusion Gait training using WA-H demonstrated a beneficial effect on balance function in patients with hemiplegia without a safety issue. PMID:28503449
Yatar, Gozde Iyigun; Yildirim, Sibel Aksu
2015-01-01
[Purpose] The aim of this study was to compare the effects of Wii Fit balance training (WBT) and progressive balance training (PBT) approaches on balance functions, balance confidence, and activities of daily living in chronic stroke patients. [Subjects] A total of 30 patients were randomized into the WBT (n=15) and PBT (n=15) groups. [Methods] All of the subjects received exercise training based on a neurodevelopemental approach in addition to either Wii Fit or progressive balance training for total of 1 hour a day, 3 days per week for 4 weeks. Primary measurements were static balance function measured with a Wii Balance Board and dynamic balance function assessed with the Berg Balance Scale, Timed Up and Go test, Dynamic Gait Index, and Functional Reach Test. Secondary measures were balance confidence assessed with the Activities-specific Balance Confidence scale and activities of daily living evaluated with the Frenchay Activity Index. [Results] There was not remarkable difference between the two treatments in dynamic balance functions, balance confidence, and activities of daily living. [Conclusion] Although both of the approaches were found to be effective in improving the balance functions, balance confidence, and activities of daily living, neither of them were more preferable than the other for the treatment of balance in patients with chronic stroke. PMID:25995576
Reducing the language content in ToM tests: A developmental scale.
Burnel, Morgane; Perrone-Bertolotti, Marcela; Reboul, Anne; Baciu, Monica; Durrleman, Stephanie
2018-02-01
The goal of the current study was to statistically evaluate the reliable scalability of a set of tasks designed to assess Theory of Mind (ToM) without language as a confounding variable. This tool might be useful to study ToM in populations where language is impaired or to study links between language and ToM. Low verbal versions of the ToM tasks proposed by Wellman and Liu (2004) for their scale were tested in 234 children (2.5 years to 11.9 years). Results showed that 5 of the tasks formed a scale according to both Guttman and Rasch models whereas all 6 tasks could form a scale according to the Rasch model only. The main difference from the original scale was that the Explicit False Belief task could be included whereas the Knowledge Access (KA) task could not. The authors argue that the more verbal version of the KA task administered in previous studies could have measured language understanding rather than ToM. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Kim, Kyoung; Lee, Dong-Kyu; Jung, Sang-In
2015-01-01
[Purpose] To investigate the effect of coordination movement using the Proprioceptive Neuromuscular Facilitation pattern underwater on the balance and gait of stroke patients. [Subjects and Methods] Twenty stroke patients were randomly assigned to an experimental group that performed coordination movement using the Proprioceptive Neuromuscular Facilitation pattern underwater and a control group (n =10 each). Both the groups underwent neurodevelopmental treatment, and the experimental group performed coordination movement using the Proprioceptive neuromuscular facilitation pattern underwater. Balance was measured using the Berg Balance Scale and Functional Reach Test, and gait was measured using the 10-Meter Walk Test and Timed Up and Go Test. To compare in-group data before and after the intervention, paired t-test was used. Independent t-test was used to compare differences in the results of the Berg Balance Scale, Functional Reach Test, 10-Meter Walk Test, and Timed Up and Go Test before and after the intervention between the groups. [Results] Comparison within the groups showed significant differences in the results of the Berg Balance Scale, Functional Reach Test, 10-Meter Walk Test, and Timed Up and Go Test before and after the experimental intervention. On comparison between the groups, there were greater improvements in the scores of the Berg Balance Scale, Functional Reach Test, 10-Meter Walk Test, and Timed Up and Go Test in the experimental group. [Conclusion] The findings demonstrate that coordination movement using the Proprioceptive Neuromuscular Facilitation pattern under water has a significant effect on the balance and gait of stroke patients. PMID:26834335
Lee, Hsin-Chieh; Huang, Chia-Lin; Ho, Sui-Hua; Sung, Wen-Hsu
2017-10-01
The aim of this study was to investigate the effects of virtual reality (VR) balance training conducted using Kinect for Xbox® games on patients with chronic stroke. Fifty patients with mild to moderate motor deficits were recruited and randomly assigned to two groups: VR plus standard treatment group and standard treatment (ST) group. In total, 12 training sessions (90 minutes a session, twice a week) were conducted in both groups, and performance was assessed at three time points (pretest, post-test, and follow-up) by a blinded assessor. The outcome measures were the Berg Balance Scale (BBS), Functional Reach Test, and Timed Up and Go Test (cognitive; TUG-cog) for balance evaluations; Modified Barthel Index for activities of daily living ability; Activities-specific Balance Confidence Scale for balance confidence; and Stroke Impact Scale for quality of life. The pleasure scale and adverse events were also recorded after each training session. Both groups exhibited significant improvement over time in the BBS (P = 0.000) and TUG-cog test (P = 0.005). The VR group rated the experience as more pleasurable than the ST group during the intervention (P = 0.027). However, no significant difference was observed in other outcome measures within or between the groups. No serious adverse events were observed during the treatment in either group. VR balance training by using Kinect for Xbox games plus the traditional method had positive effects on the balance ability of patients with chronic stroke. The VR group experienced higher pleasure than the ST group during the intervention.
Rankings, Standards, and Competition: Task vs. Scale Comparisons
ERIC Educational Resources Information Center
Garcia, Stephen M.; Tor, Avishalom
2007-01-01
Research showing how upward social comparison breeds competitive behavior has so far conflated local comparisons in "task" performance (e.g. a test score) with comparisons on a more general "scale" (i.e. an underlying skill). Using a ranking methodology (Garcia, Tor, & Gonzalez, 2006) to separate task and scale comparisons, Studies 1-2 reveal that…
Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary M. Blythe
2006-03-01
This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal.more » The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.« less