Sample records for balance simulation model

  1. Seasonal changes in the atmospheric heat balance simulated by the GISS general circulation model

    NASA Technical Reports Server (NTRS)

    Stone, P. H.; Chow, S.; Helfand, H. M.; Quirk, W. J.; Somerville, R. C. J.

    1975-01-01

    Tests of the ability of numerical general circulation models to simulate the atmosphere have focussed so far on simulations of the January climatology. These models generally present boundary conditions such as sea surface temperature, but this does not prevent testing their ability to simulate seasonal changes in atmospheric processes that accompany presented seasonal changes in boundary conditions. Experiments to simulate changes in the zonally averaged heat balance are discussed since many simplified models of climatic processes are based solely on this balance.

  2. Novel models and algorithms of load balancing for variable-structured collaborative simulation under HLA/RTI

    NASA Astrophysics Data System (ADS)

    Yue, Yingchao; Fan, Wenhui; Xiao, Tianyuan; Ma, Cheng

    2013-07-01

    High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.

  3. Evidence in Support of the Independent Channel Model Describing the Sensorimotor Control of Human Stance Using a Humanoid Robot

    PubMed Central

    Pasma, Jantsje H.; Assländer, Lorenz; van Kordelaar, Joost; de Kam, Digna; Mergner, Thomas; Schouten, Alfred C.

    2018-01-01

    The Independent Channel (IC) model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II) to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a humanoid robot. This provides further evidence that the IC model is a valid description of human balance control. PMID:29615886

  4. Evidence in Support of the Independent Channel Model Describing the Sensorimotor Control of Human Stance Using a Humanoid Robot.

    PubMed

    Pasma, Jantsje H; Assländer, Lorenz; van Kordelaar, Joost; de Kam, Digna; Mergner, Thomas; Schouten, Alfred C

    2018-01-01

    The Independent Channel (IC) model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II) to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a humanoid robot. This provides further evidence that the IC model is a valid description of human balance control.

  5. Relative performance of empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps)

    NASA Astrophysics Data System (ADS)

    Réveillet, Marion; Six, Delphine; Vincent, Christian; Rabatel, Antoine; Dumont, Marie; Lafaysse, Matthieu; Morin, Samuel; Vionnet, Vincent; Litt, Maxime

    2018-04-01

    This study focuses on simulations of the seasonal and annual surface mass balance (SMB) of Saint-Sorlin Glacier (French Alps) for the period 1996-2015 using the detailed SURFEX/ISBA-Crocus snowpack model. The model is forced by SAFRAN meteorological reanalysis data, adjusted with automatic weather station (AWS) measurements to ensure that simulations of all the energy balance components, in particular turbulent fluxes, are accurately represented with respect to the measured energy balance. Results indicate good model performance for the simulation of summer SMB when using meteorological forcing adjusted with in situ measurements. Model performance however strongly decreases without in situ meteorological measurements. The sensitivity of the model to meteorological forcing indicates a strong sensitivity to wind speed, higher than the sensitivity to ice albedo. Compared to an empirical approach, the model exhibited better performance for simulations of snow and firn melting in the accumulation area and similar performance in the ablation area when forced with meteorological data adjusted with nearby AWS measurements. When such measurements were not available close to the glacier, the empirical model performed better. Our results suggest that simulations of the evolution of future mass balance using an energy balance model require very accurate meteorological data. Given the uncertainties in the temporal evolution of the relevant meteorological variables and glacier surface properties in the future, empirical approaches based on temperature and precipitation could be more appropriate for simulations of glaciers in the future.

  6. Assessment of a flow-through balance for hypersonic wind tunnel models with scramjet exhaust flow simulation

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Kniskern, Marc W.; Monta, William J.

    1993-01-01

    The purpose of this investigation were twofold: first, to determine whether accurate force and moment data could be obtained during hypersonic wind tunnel tests of a model with a scramjet exhaust flow simulation that uses a representative nonwatercooled, flow-through balance; second, to analyze temperature time histories on various parts of the balance to address thermal effects on force and moment data. The tests were conducted in the NASA Langley Research Center 20-Inch Mach 6 Wind Tunnel at free-stream Reynolds numbers ranging from 0.5 to 7.4 x 10(exp 6)/ft and nominal angles of attack of -3.5 deg, 0 deg, and 5 deg. The simulant exhaust gases were cold air, hot air, and a mixture of 50 percent Argon and 50 percent Freon by volume, which reached stagnation temperatures within the balance of 111, 214, and 283 F, respectively. All force and moment values were unaffected by the balance thermal response from exhaust gas simulation and external aerodynamic heating except for axial-force measurements, which were significantly affected by balance heating. This investigation showed that for this model at the conditions tested, a nonwatercooled, flow-through balance is not suitable for axial-force measurements during scramjet exhaust flow simulation tests at hypersonic speeds. In general, heated exhaust gas may produce unacceptable force and moment uncertainties when used with thermally sensitive balances.

  7. Teaching a Model-based Climatology Using Energy Balance Simulation.

    ERIC Educational Resources Information Center

    Unwin, David

    1981-01-01

    After outlining the difficulties of teaching climatology within an undergraduate geography curriculum, the author describes and evaluates the use of a computer assisted simulation to model surface energy balance and the effects of land use changes on local climate. (AM)

  8. Simulating carbon stocks and fluxes of an African tropical montane forest with an individual-based forest model.

    PubMed

    Fischer, Rico; Ensslin, Andreas; Rutten, Gemma; Fischer, Markus; Schellenberger Costa, David; Kleyer, Michael; Hemp, Andreas; Paulick, Sebastian; Huth, Andreas

    2015-01-01

    Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha(-1) yr(-1). Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances.

  9. A simulation-based approach for solving assembly line balancing problem

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyu

    2017-09-01

    Assembly line balancing problem is directly related to the production efficiency, since the last century, the problem of assembly line balancing was discussed and still a lot of people are studying on this topic. In this paper, the problem of assembly line is studied by establishing the mathematical model and simulation. Firstly, the model of determing the smallest production beat under certain work station number is anysized. Based on this model, the exponential smoothing approach is applied to improve the the algorithm efficiency. After the above basic work, the gas stirling engine assembly line balancing problem is discussed as a case study. Both two algorithms are implemented using the Lingo programming environment and the simulation results demonstrate the validity of the new methods.

  10. Mercury mass balance in Lake Michigan--the knowns and unknowns

    EPA Science Inventory

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  11. A Comparison of Two Balance Calibration Model Building Methods

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Ulbrich, Norbert

    2007-01-01

    Simulated strain-gage balance calibration data is used to compare the accuracy of two balance calibration model building methods for different noise environments and calibration experiment designs. The first building method obtains a math model for the analysis of balance calibration data after applying a candidate math model search algorithm to the calibration data set. The second building method uses stepwise regression analysis in order to construct a model for the analysis. Four balance calibration data sets were simulated in order to compare the accuracy of the two math model building methods. The simulated data sets were prepared using the traditional One Factor At a Time (OFAT) technique and the Modern Design of Experiments (MDOE) approach. Random and systematic errors were introduced in the simulated calibration data sets in order to study their influence on the math model building methods. Residuals of the fitted calibration responses and other statistical metrics were compared in order to evaluate the calibration models developed with different combinations of noise environment, experiment design, and model building method. Overall, predicted math models and residuals of both math model building methods show very good agreement. Significant differences in model quality were attributable to noise environment, experiment design, and their interaction. Generally, the addition of systematic error significantly degraded the quality of calibration models developed from OFAT data by either method, but MDOE experiment designs were more robust with respect to the introduction of a systematic component of the unexplained variance.

  12. SENSITIVITY OF THE REGIONAL WATER BALANCE IN THE COLUMBIA RIVER BASIN TO CLIMATE VARIABILITY: APPLICATION OF A SPATIALLY DISTRIBUTED WATER BALANCE MODEL

    EPA Science Inventory

    A one-dimensional water balance model was developed and used to simulate water balance for the Columbia River Basin. he model was run over a 10 km X 10 km grid for the United State's portion of the basin. he regional water balance was calculated using a monthly time-step for a re...

  13. Simulating Carbon Stocks and Fluxes of an African Tropical Montane Forest with an Individual-Based Forest Model

    PubMed Central

    Fischer, Rico; Ensslin, Andreas; Rutten, Gemma; Fischer, Markus; Schellenberger Costa, David; Kleyer, Michael; Hemp, Andreas; Paulick, Sebastian; Huth, Andreas

    2015-01-01

    Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha-1yr-1. Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances. PMID:25915854

  14. The effect of adjusting model inputs to achieve mass balance on time-dynamic simulations in a food-web model of Lake Huron

    USGS Publications Warehouse

    Langseth, Brian J.; Jones, Michael L.; Riley, Stephen C.

    2014-01-01

    Ecopath with Ecosim (EwE) is a widely used modeling tool in fishery research and management. Ecopath requires a mass-balanced snapshot of a food web at a particular point in time, which Ecosim then uses to simulate changes in biomass over time. Initial inputs to Ecopath, including estimates for biomasses, production to biomass ratios, consumption to biomass ratios, and diets, rarely produce mass balance, and thus ad hoc changes to inputs are required to balance the model. There has been little previous research of whether ad hoc changes to achieve mass balance affect Ecosim simulations. We constructed an EwE model for the offshore community of Lake Huron, and balanced the model using four contrasting but realistic methods. The four balancing methods were based on two contrasting approaches; in the first approach, production of unbalanced groups was increased by increasing either biomass or the production to biomass ratio, while in the second approach, consumption of predators on unbalanced groups was decreased by decreasing either biomass or the consumption to biomass ratio. We compared six simulation scenarios based on three alternative assumptions about the extent to which mortality rates of prey can change in response to changes in predator biomass (i.e., vulnerabilities) under perturbations to either fishing mortality or environmental production. Changes in simulated biomass values over time were used in a principal components analysis to assess the comparative effect of balancing method, vulnerabilities, and perturbation types. Vulnerabilities explained the most variation in biomass, followed by the type of perturbation. Choice of balancing method explained little of the overall variation in biomass. Under scenarios where changes in predator biomass caused large changes in mortality rates of prey (i.e., high vulnerabilities), variation in biomass was greater than when changes in predator biomass caused only small changes in mortality rates of prey (i.e., low vulnerabilities), and was amplified when environmental production was increased. When standardized to mean changes in biomass within each scenario, scenarios when vulnerabilities were low and when fishing mortality was increased explained the most variation in biomass. Our findings suggested that approaches to balancing Ecopath models have relatively little effect on changes in biomass over time, especially when compared to assumptions about how mortality rates of prey change in response to changes in predator biomass. We concluded that when constructing food-web models using EwE, determining the effect of changes in predator biomass on mortality rates of prey should be prioritized over determining the best way to balance the model.

  15. Improving the XAJ Model on the Basis of Mass-Energy Balance

    NASA Astrophysics Data System (ADS)

    Fang, Yuanhao; Corbari, Chiara; Zhang, Xingnan; Mancini, Marco

    2014-11-01

    Introduction: The Xin'anjiang(XAJ) model is a conceptual model developed by the group led by Prof. Ren-Jun Zhao, which takes the pan evaporation as one of its input and then computes the effective evapotranspiration (ET) of the catchment by mass balance. Such scheme can ensure a good performance of discharge simulation but has obvious defects, one of which is that the effective ET is spatially-constant over the computation unit, neglecting the spatial variation of variables that influence the effective ET and therefore the simulation of ET and SM by the XAJ model, comparing with discharge, is less reliable. In this study, The XAJ model was improved to employ both energy and mass balance to compute the ET following the energy-mass balance scheme of FEST-EWB. model.

  16. Improving the XAJ Model on the Basis of Mass-Energy Balance

    NASA Astrophysics Data System (ADS)

    Fang, Yuanghao; Corbari, Chiara; Zhang, Xingnan; Mancini, Marco

    2014-11-01

    The Xin’anjiang(XAJ) model is a conceptual model developed by the group led by Prof. Ren-Jun Zhao, which takes the pan evaporation as one of its input and then computes the effective evapotranspiration (ET) of the catchment by mass balance. Such scheme can ensure a good performance of discharge simulation but has obvious defects, one of which is that the effective ET is spatially-constant over the computation unit, neglecting the spatial variation of variables that influence the effective ET and therefore the simulation of ET and SM by the XAJ model, comparing with discharge, is less reliable. In this study, The XAJ model was improved to employ both energy and mass balance to compute the ET following the energy-mass balance scheme of FEST-EWB. model.

  17. Load Balancing Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearce, Olga Tkachyshyn

    2014-12-01

    The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one atmore » the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.« less

  18. A simulation of cross-country skiing on varying terrain by using a mathematical power balance model

    PubMed Central

    Moxnes, John F; Sandbakk, Øyvind; Hausken, Kjell

    2013-01-01

    The current study simulated cross-country skiing on varying terrain by using a power balance model. By applying the hypothetical inductive deductive method, we compared the simulated position along the track with actual skiing on snow, and calculated the theoretical effect of friction and air drag on skiing performance. As input values in the model, air drag and friction were estimated from the literature, whereas the model included relationships between heart rate, metabolic rate, and work rate based on the treadmill roller-ski testing of an elite cross-country skier. We verified this procedure by testing four models of metabolic rate against experimental data on the treadmill. The experimental data corresponded well with the simulations, with the best fit when work rate was increased on uphill and decreased on downhill terrain. The simulations predicted that skiing time increases by 3%–4% when either friction or air drag increases by 10%. In conclusion, the power balance model was found to be a useful tool for predicting how various factors influence racing performance in cross-country skiing. PMID:24379718

  19. A simulation of cross-country skiing on varying terrain by using a mathematical power balance model.

    PubMed

    Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell

    2013-01-01

    The current study simulated cross-country skiing on varying terrain by using a power balance model. By applying the hypothetical inductive deductive method, we compared the simulated position along the track with actual skiing on snow, and calculated the theoretical effect of friction and air drag on skiing performance. As input values in the model, air drag and friction were estimated from the literature, whereas the model included relationships between heart rate, metabolic rate, and work rate based on the treadmill roller-ski testing of an elite cross-country skier. We verified this procedure by testing four models of metabolic rate against experimental data on the treadmill. The experimental data corresponded well with the simulations, with the best fit when work rate was increased on uphill and decreased on downhill terrain. The simulations predicted that skiing time increases by 3%-4% when either friction or air drag increases by 10%. In conclusion, the power balance model was found to be a useful tool for predicting how various factors influence racing performance in cross-country skiing.

  20. Simulation of demand management and grid balancing with electric vehicles

    NASA Astrophysics Data System (ADS)

    Druitt, James; Früh, Wolf-Gerrit

    2012-10-01

    This study investigates the potential role of electric vehicles in an electricity network with a high contribution from variable generation such as wind power. Electric vehicles are modelled to provide demand management through flexible charging requirements and energy balancing for the network. Balancing applications include both demand balancing and vehicle-to-grid discharging. This study is configured to represent the UK grid with balancing requirements derived from wind generation calculated from weather station wind speeds on the supply side and National Grid data from on the demand side. The simulation models 1000 individual vehicle entities to represent the behaviour of larger numbers of vehicles. A stochastic trip generation profile is used to generate realistic journey characteristics, whilst a market pricing model allows charging and balancing decisions to be based on realistic market price conditions. The simulation has been tested with wind generation capacities representing up to 30% of UK consumption. Results show significant improvements to load following conditions with the introduction of electric vehicles, suggesting that they could substantially facilitate the uptake of intermittent renewable generation. Electric vehicle owners would benefit from flexible charging and selling tariffs, with the majority of revenue derived from vehicle-to-grid participation in balancing markets.

  1. Simulation of 100-300 GHz solid-state harmonic sources

    NASA Technical Reports Server (NTRS)

    Zybura, Michael F.; Jones, J. Robert; Jones, Stephen H.; Tait, Gregory B.

    1995-01-01

    Accurate and efficient simulations of the large-signal time-dependent characteristics of second-harmonic Transferred Electron Oscillators (TEO's) and Heterostructure Barrier Varactor (HBV) frequency triplers have been obtained. This is accomplished by using a novel and efficient harmonic-balance circuit analysis technique which facilitates the integration of physics-based hydrodynamic device simulators. The integrated hydrodynamic device/harmonic-balance circuit simulators allow TEO and HBV circuits to be co-designed from both a device and a circuit point of view. Comparisons have been made with published experimental data for both TEO's and HBV's. For TEO's, excellent correlation has been obtained at 140 GHz and 188 GHz in second-harmonic operation. Excellent correlation has also been obtained for HBV frequency triplers operating near 200 GHz. For HBV's, both a lumped quasi-static equivalent circuit model and the hydrodynamic device simulator have been linked to the harmonic-balance circuit simulator. This comparison illustrates the importance of representing active devices with physics-based numerical device models rather than analytical device models.

  2. Evaluating the spatial distribution of water balance in a small watershed, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Gburek, W. J.; Schwartz, F. W.

    2000-04-01

    A conceptual water-balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice.

  3. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    NASA Astrophysics Data System (ADS)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p < 0.01) in the Everglades of Florida over the years 1996-2001. The modeled monthly soil moisture for Illinois of the US agrees well (R2 = 0.79, p < 0.01) with the observed over the years 1984-2001. The modeled monthly stream flow for most 12 major rivers in the US is consistent R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficients >0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.

  4. Using the power balance model to simulate cross-country skiing on varying terrain.

    PubMed

    Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell

    2014-01-01

    The current study adapts the power balance model to simulate cross-country skiing on varying terrain. We assumed that the skier's locomotive power at a self-chosen pace is a function of speed, which is impacted by friction, incline, air drag, and mass. An elite male skier's position along the track during ski skating was simulated and compared with his experimental data. As input values in the model, air drag and friction were estimated from the literature based on the skier's mass, snow conditions, and speed. We regard the fit as good, since the difference in racing time between simulations and measurements was 2 seconds of the 815 seconds racing time, with acceptable fit both in uphill and downhill terrain. Using this model, we estimated the influence of changes in various factors such as air drag, friction, and body mass on performance. In conclusion, the power balance model with locomotive power as a function of speed was found to be a valid tool for analyzing performance in cross-country skiing.

  5. A GCM simulation of the earth-atmosphere radiation balance for winter and summer

    NASA Technical Reports Server (NTRS)

    Wu, M. L. C.

    1979-01-01

    The radiation balance of the earth-atmosphere system simulated by using the general circulation model (GCM) of the Laboratory for Atmospheric Sciences (GLAS) is examined in regards to its graphical distribution, zonally-averaged distribution, and global mean. Most of the main features of the radiation balance at the top of the atmosphere are reasonably simulated, with some differences in the detailed structure of the patterns and intensities for both summer and winter in comparison with values as derived from Nimbus and NOAA (National Oceanic and Atmospheric Administration) satellite observations. Both the capability and defects of the model are discussed.

  6. The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: Evaluating the surface energy budget in a Regional Climate Model with automatic weather station observations

    NASA Astrophysics Data System (ADS)

    Steffensen Schmidt, Louise; Aðalgeirsdóttir, Guðfinna; Guðmundsson, Sverrir; Langen, Peter L.; Pálsson, Finnur; Mottram, Ruth; Gascoin, Simon; Björnsson, Helgi

    2017-04-01

    The evolution of the surface mass balance of Vatnajökull ice cap, Iceland, from 1981 to the present day is estimated by using the Regional Climate Model HIRHAM5 to simulate the surface climate. A new albedo parametrization is used for the simulation, which describes the albedo with an exponential decay with time. In addition, it utilizes a new background map of the ice albedo created from MODIS data. The simulation is validated against observed daily values of weather parameters from five Automatic Weather Stations (AWSs) from 2001-2014, as well as mass balance measurements from 1995-2014. The modelled albedo is overestimated at the AWS sites in the ablation zone, which we attribute to an overestimation of the thickness of the snow layer and the model not accounting for dust and ash deposition during dust storms and volcanic eruptions. A comparison with the specific summer, winter, and annual mass balance for all Vatnajökull from 1995-2014 shows a good overall fit during the summer, with the model underestimating the balance by only 0.04 m w. eq. on average. The winter balance, on the other hand, is overestimated by 0.5 m w. eq. on average, mostly due to an overestimation of the precipitation at the highest areas of the ice cap. A simple correction of the accumulation at these points reduced the error to 0.15 m w. eq. The model captures the evolution of the specific mass balance well, for example it captures an observed shift in the balance in the mid-1990s, which gives us confidence in the results for the entire model run. Our results show the importance of bare ice albedo for modelled mass balance and that processes not currently accounted for in RCMs, such as dust storms, are an important source of uncertainty in estimates of the snow melt rate.

  7. Implementation and evaluation of a monthly water balance model over the US on an 800 m grid

    USGS Publications Warehouse

    Hostetler, Steven W.; Alder, Jay R.

    2016-01-01

    We simulate the 1950–2010 water balance for the conterminous U.S. (CONUS) with a monthly water balance model (MWBM) using the 800 m Parameter-elevation Regression on Independent Slopes Model (PRISM) data set as model input. We employed observed snow and streamflow data sets to guide modification of the snow and potential evapotranspiration components in the default model and to evaluate model performance. Based on various metrics and sensitivity tests, the modified model yields reasonably good simulations of seasonal snowpack in the West (range of bias of ±50 mm at 68% of 713 SNOTEL sites), the gradients and magnitudes of actual evapotranspiration, and runoff (median correlation of 0.83 and median Nash-Sutcliff efficiency of 0.6 between simulated and observed annual time series at 1427 USGS gage sites). The model generally performs well along the Pacific Coast, the high elevations of the Basin and Range and over the Midwest and East, but not as well over the dry areas of the Southwest and upper Plains regions due, in part, to the apportioning of direct versus delayed runoff. Sensitivity testing and application of the MWBM to simulate the future water balance at four National Parks when driven by 30 climate models from the Climate Model Intercomparison Program Phase 5 (CMIP5) demonstrate that the model is useful for evaluating first-order, climate driven hydrologic change on monthly and annual time scales.

  8. Simulating stand climate, phenology, and photosynthesis of a forest stand with a process-based growth model.

    PubMed

    Rötzer, Thomas; Leuchner, Michael; Nunn, Angela J

    2010-07-01

    In the face of climate change and accompanying risks, forest management in Europe is becoming increasingly important. Model simulations can help to understand the reactions and feedbacks of a changing environment on tree growth. In order to simulate forest growth based on future climate change scenarios, we tested the basic processes underlying the growth model BALANCE, simulating stand climate (air temperature, photosynthetically active radiation (PAR) and precipitation), tree phenology, and photosynthesis. A mixed stand of 53- to 60-year-old Norway spruce (Picea abies) and European beech (Fagus sylvatica) in Southern Germany was used as a reference. The results show that BALANCE is able to realistically simulate air temperature gradients in a forest stand using air temperature measurements above the canopy and PAR regimes at different heights for single trees inside the canopy. Interception as a central variable for water balance of a forest stand was also estimated. Tree phenology, i.e. bud burst and leaf coloring, could be reproduced convincingly. Simulated photosynthesis rates were in accordance with measured values for beech both in the sun and the shade crown. For spruce, however, some discrepancies in the rates were obvious, probably due to changed environmental conditions after bud break. Overall, BALANCE has shown to respond to scenario simulations of a changing environment (e.g., climate change, change of forest stand structure).

  9. Simulation of Assembly Line Balancing in Automotive Component Manufacturing

    NASA Astrophysics Data System (ADS)

    Jamil, Muthanna; Mohd Razali, Noraini

    2016-02-01

    This study focuses on the simulation of assembly line balancing in an automotive component in a vendor manufacturing company. A mixed-model assembly line of charcoal canister product that is used in an engine system as fuel's vapour filter was observed and found that the current production rate of the line does not achieve customer demand even though the company practices buffer stock for two days in advance. This study was carried out by performing detailed process flow and time studies along the line. To set up a model of the line by simulation, real data was taken from a factory floor and tested for distribution fit. The data gathered was then transformed into a simulation model. After verification of the model by comparing it with the actual system, it was found that the current line efficiency is not at its optimum condition due to blockage and idle time. Various what-if analysis were applied to eliminate the cause. Proposed layout shows that the line is balanced by adding buffer to avoid the blockage. Whereas, manpower is added the stations to reduce process time therefore reducing idling time. The simulation study was carried out using ProModel software.

  10. MODELLING SEDIMENT TRANSPORT FOR THE LAKE MICHIGAN MASS BALANCE PROJECT

    EPA Science Inventory

    A sediment transport model is one component of the overall ensemble of models being developed for the Lake Michigan Mass Balance. The SEDZL model is being applied to simulate the fine-grained sediment transport in Lake Michigan for the 1982-1983 and 1994-1995 periods. Model perf...

  11. Impact of microwave derived soil moisture on hydrologic simulations using a spatially distributed water balance model

    NASA Technical Reports Server (NTRS)

    Lin, D. S.; Wood, E. F.; Famiglietti, J. S.; Mancini, M.

    1994-01-01

    Spatial distributions of soil moisture over an agricultural watershed with a drainage area of 60 ha were derived from two NASA microwave remote sensors, and then used as a feedback to determine the initial condition for a distributed water balance model. Simulated hydrologic fluxes over a period of twelve days were compared with field observations and with model predictions based on a streamflow derived initial condition. The results indicated that even the low resolution remotely sensed data can improve the hydrologic model's performance in simulating the dynamics of unsaturated zone soil moisture. For the particular watershed under study, the simulated water budget was not sensitive to the resolutions of the microwave sensors.

  12. Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model

    USDA-ARS?s Scientific Manuscript database

    Studies of global hydrologic cycles, carbon cycles and climate change are greatly facilitated when global estimates of evapotranspiration (E) are available. We have developed an air-relative-humidity-based two-source (ARTS) E model that simulates the surface energy balance, soil water balance, and e...

  13. Enhancement of a parsimonious water balance model to simulate surface hydrology in a glacierized watershed

    USGS Publications Warehouse

    Valentin, Melissa M.; Viger, Roland J.; Van Beusekom, Ashley E.; Hay, Lauren E.; Hogue, Terri S.; Foks, Nathan Leon

    2018-01-01

    The U.S. Geological Survey monthly water balance model (MWBM) was enhanced with the capability to simulate glaciers in order to make it more suitable for simulating cold region hydrology. The new model, MWBMglacier, is demonstrated in the heavily glacierized and ecologically important Copper River watershed in Southcentral Alaska. Simulated water budget components compared well to satellite‐based observations and ground measurements of streamflow, evapotranspiration, snow extent, and total water storage, with differences ranging from 0.2% to 7% of the precipitation flux. Nash Sutcliffe efficiency for simulated and observed streamflow was greater than 0.8 for six of eight stream gages. Snow extent matched satellite‐based observations with Nash Sutcliffe efficiency values of greater than 0.89 in the four Copper River ecoregions represented. During the simulation period 1949 to 2009, glacier ice melt contributed 25% of total runoff, ranging from 12% to 45% in different tributaries, and glacierized area was reduced by 6%. Statistically significant (p < 0.05) decreasing and increasing trends in annual glacier mass balance occurred during the multidecade cool and warm phases of the Pacific Decadal Oscillation, respectively, reinforcing the link between climate perturbations and glacier mass balance change. The simulations of glaciers and total runoff for a large, remote region of Alaska provide useful data to evaluate hydrologic, cryospheric, ecologic, and climatic trends. MWBM glacier is a valuable tool to understand when, and to what extent, streamflow may increase or decrease as glaciers respond to a changing climate.

  14. Snow specific surface area simulation using the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS)

    NASA Astrophysics Data System (ADS)

    Roy, A.; Royer, A.; Montpetit, B.; Bartlett, P. A.; Langlois, A.

    2012-12-01

    Snow grain size is a key parameter for modeling microwave snow emission properties and the surface energy balance because of its influence on the snow albedo, thermal conductivity and diffusivity. A model of the specific surface area (SSA) of snow was implemented in the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS) version 3.4. This offline multilayer model (CLASS-SSA) simulates the decrease of SSA based on snow age, snow temperature and the temperature gradient under dry snow conditions, whereas it considers the liquid water content for wet snow metamorphism. We compare the model with ground-based measurements from several sites (alpine, Arctic and sub-Arctic) with different types of snow. The model provides simulated SSA in good agreement with measurements with an overall point-to-point comparison RMSE of 8.1 m2 kg-1, and a RMSE of 4.9 m2 kg-1 for the snowpack average SSA. The model, however, is limited under wet conditions due to the single-layer nature of the CLASS model, leading to a single liquid water content value for the whole snowpack. The SSA simulations are of great interest for satellite passive microwave brightness temperature assimilations, snow mass balance retrievals and surface energy balance calculations with associated climate feedbacks.

  15. Devon Ice cap's future: results from climate and ice dynamics modelling via surface mass balance modelling

    NASA Astrophysics Data System (ADS)

    Rodehacke, C. B.; Mottram, R.; Boberg, F.

    2017-12-01

    The Devon Ice Cap is an example of a relatively well monitored small ice cap in the Canadian Arctic. Close to Greenland, it shows a similar surface mass balance signal to glaciers in western Greenland. Here we various boundary conditions, ranging from ERA-Interim reanalysis data via global climate model high resolution (5km) output from the regional climate model HIRHAM5, to determine the surface mass balance of the Devon ice cap. These SMB estimates are used to drive the PISM glacier model in order to model the present day and future prospects of this small Arctic ice cap. Observational data from the Devon Ice Cap in Arctic Canada is used to evaluate the surface mass balance (SMB) data output from the HIRHAM5 model for simulations forced with the ERA-Interim climate reanalysis data and the historical emissions scenario run by the EC-Earth global climate model. The RCP8.5 scenario simulated by EC-Earth is also downscaled by HIRHAM5 and this output is used to force the PISM model to simulate the likely future evolution of the Devon Ice Cap under a warming climate. We find that the Devon Ice Cap is likely to continue its present day retreat, though in the future increased precipitation partly offsets the enhanced melt rates caused by climate change.

  16. Simulated CONUS Flash Flood Climatologies from Distributed Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Flamig, Z.; Gourley, J. J.; Vergara, H. J.; Kirstetter, P. E.; Hong, Y.

    2016-12-01

    This study will describe a CONUS flash flood climatology created over the period from 2002 through 2011. The MRMS reanalysis precipitation dataset was used as forcing into the Ensemble Framework For Flash Flood Forecasting (EF5). This high resolution 1-sq km 5-minute dataset is ideal for simulating flash floods with a distributed hydrologic model. EF5 features multiple water balance components including SAC-SMA, CREST, and a hydrophobic model all coupled with kinematic wave routing. The EF5/SAC-SMA and EF5/CREST water balance schemes were used for the creation of dual flash flood climatologies based on the differing water balance principles. For the period from 2002 through 2011 the daily maximum streamflow, unit streamflow, and time of peak streamflow was stored along with the minimum soil moisture. These variables are used to describe the states of the soils right before a flash flood event and the peak streamflow that was simulated during the flash flood event. The results will be shown, compared and contrasted. The resulting model simulations will be verified on basins less than 1,000-sq km with USGS gauges to ensure the distributed hydrologic models are reliable. The results will also be compared spatially to Storm Data flash flood event observations to judge the degree of agreement between the simulated climatologies and observations.

  17. Toward Surface Mass Balance Modeling over Antarctic Peninsula with Improved Snow/Ice Physics within WRF

    NASA Astrophysics Data System (ADS)

    Villamil-Otero, G.; Zhang, J.; Yao, Y.

    2017-12-01

    The Antarctic Peninsula (AP) has long been the focus of climate change studies due to its rapid environmental changes such as significantly increased glacier melt and retreat, and ice-shelf break-up. Progress has been continuously made in the use of regional modeling to simulate surface mass changes over ice sheets. Most efforts, however, focus on the ice sheets of Greenland with considerable fewer studies in Antarctica. In this study the Weather Research and Forecasting (WRF) model, which has been applied to the Antarctic region for weather modeling, is adopted to capture the past and future surface mass balance changes over AP. In order to enhance the capabilities of WRF model simulating surface mass balance over the ice surface, we implement various ice and snow processes within the WRF and develop a new WRF suite (WRF-Ice). The WRF-Ice includes a thermodynamic ice sheet model that improves the representation of internal melting and refreezing processes and the thermodynamic effects over ice sheet. WRF-Ice also couples a thermodynamic sea ice model to improve the simulation of surface temperature and fluxes over sea ice. Lastly, complex snow processes are also taken into consideration including the implementation of a snowdrift model that takes into account the redistribution of blowing snow as well as the thermodynamic impact of drifting snow sublimation on the lower atmospheric boundary layer. Intensive testing of these ice and snow processes are performed to assess the capability of WRF-Ice in simulating the surface mass balance changes over AP.

  18. Water Quality Assessment Simulation Program (WASP8): Upgrades to the Advanced Toxicant Module for Simulating Dissolved Chemicals, Nanomaterials, and Solids

    EPA Science Inventory

    The Water Quality Analysis Simulation Program (WASP) is a dynamic, spatially-resolved, differential mass balance fate and transport modeling framework. WASP is used to develop models to simulate concentrations of environmental contaminants in surface waters and sediments. As a mo...

  19. Distributed energy-balance modeling of snow-cover evolution and melt in rugged terrain: Tobacco Root Mountains, Montana, USA

    USGS Publications Warehouse

    Letsinger, S.L.; Olyphant, G.A.

    2007-01-01

    A distributed energy-balance model was developed for simulating snowpack evolution and melt in rugged terrain. The model, which was applied to a 43-km2 watershed in the Tobacco Root Mountains, Montana, USA, used measured ambient data from nearby weather stations to drive energy-balance calculations and to constrain the model of Liston and Sturm [Liston, G.E., Sturm, M., 1998. A snow-transport model for complex terrain. Journal of Glaciology 44 (148), 498-516] for calculating the initial snowpack thickness. Simulated initial snow-water equivalent ranged between 1 cm and 385 cm w.e. (water equivalent) with high values concentrated on east-facing slopes below tall summits. An interpreted satellite image of the snowcover distribution on May 6, 1998, closely matched the simulated distribution with the greatest discrepancy occurring in the floor of the main trunk valley. Model simulations indicated that snowmelt commenced early in the melt season, but rapid meltout of snow cover did not occur until after the average energy balance of the entire watershed became positive about 45 days into the melt season. Meltout was fastest in the lower part of the watershed where warmer temperatures and tree cover enhanced the energy income of the underlying snow. An interpreted satellite image of the snowcover distribution on July 9, 1998 compared favorably with the simulated distribution, and melt curves for modeled canopy-covered cells mimicked the trends measured at nearby snow pillow stations. By the end of the simulation period (August 3), 28% of the watershed remained snow covered, most of which was concentrated in the highest parts of the watershed where initially thick accumulations had been shaded by surrounding summits. The results of this study provide further demonstration of the critical role that topography plays in the timing and magnitude of snowmelt from high mountain watersheds. ?? 2006 Elsevier B.V. All rights reserved.

  20. Development of an Improved Irrigation Subroutine in SWAT to Simulate the Hydrology of Rice Paddy Grown under Submerged Conditions

    NASA Astrophysics Data System (ADS)

    Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.; Nallasamy, N. D.

    2014-12-01

    Soil Water Assessment Tool (SWAT) is a basin scale, distributed hydrological model commonly used to predict the effect of management decisions on the hydrologic response of watersheds. Hydrologic response is decided by the various components of water balance. In the case of watersheds located in south India as well as in several other tropical countries around the world, paddy is one of the dominant crop controlling the hydrologic response of a watershed. Hence, the suitability of SWAT in replicating the hydrology of paddy fields needs to be verified. Rice paddy fields are subjected to flooding method of irrigation, while the irrigation subroutines in SWAT are developed to simulate crops grown under non flooding conditions. Moreover irrigation is represented well in field scale models, while it is poorly represented within watershed models like SWAT. Reliable simulation of flooding method of irrigation and hydrology of the fields will assist in effective water resources management of rice paddy fields which are one of the major consumers of surface and ground water resources. The current study attempts to modify the irrigation subroutine in SWAT so as to simulate flooded irrigation condition. A field water balance study was conducted on representative fields located within Gadana, a subbasin located in Tamil Nadu (southern part of India) and dominated by rice paddy based irrigation systems. The water balance of irrigated paddy fields simulated with SWAT was compared with the water balance derived by rice paddy based crop growth model named ORYZA. The variation in water levels along with the soil moisture variation predicted by SWAT was evaluated with respect to the estimates derived from ORYZA. The water levels were further validated with field based water balance measurements taken on a daily scale. It was observed that the modified irrigation subroutine was able to simulate irrigation of rice paddy within SWAT in a realistic way compared to the existing method.

  1. Liquid-circulating garment controls thermal balance

    NASA Technical Reports Server (NTRS)

    Kuznetz, L. H.

    1977-01-01

    Experimental data and mathematical model of human thermoregulatory system have been used to investigate use of liquid-circulatory garment (LCG) to control thermal balance. Model proved useful as accurate simulator of such variables as sweat rate, skin temperature, core temperature, and radiative, evaporative, and LCG heat loss.

  2. Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops.

    PubMed

    Lübken, Manfred; Wichern, Marc; Schlattmann, Markus; Gronauer, Andreas; Horn, Harald

    2007-10-01

    Knowledge of the net energy production of anaerobic fermenters is important for reliable modelling of the efficiency of anaerobic digestion processes. By using the Anaerobic Digestion Model No. 1 (ADM1) the simulation of biogas production and composition is possible. This paper shows the application and modification of ADM1 to simulate energy production of the digestion of cattle manure and renewable energy crops. The paper additionally presents an energy balance model, which enables the dynamic calculation of the net energy production. The model was applied to a pilot-scale biogas reactor. It was found in a simulation study that a continuous feeding and splitting of the reactor feed into smaller heaps do not generally have a positive effect on the net energy yield. The simulation study showed that the ratio of co-substrate to liquid manure in the inflow determines the net energy production when the inflow load is split into smaller heaps. Mathematical equations are presented to calculate the increase of biogas and methane yield for the digestion of liquid manure and lipids for different feeding intervals. Calculations of different kinds of energy losses for the pilot-scale digester showed high dynamic variations, demonstrating the significance of using a dynamic energy balance model.

  3. A generalized computer code for developing dynamic gas turbine engine models (DIGTEM)

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.

    1984-01-01

    This paper describes DIGTEM (digital turbofan engine model), a computer program that simulates two spool, two stream (turbofan) engines. DIGTEM was developed to support the development of a real time multiprocessor based engine simulator being designed at the Lewis Research Center. The turbofan engine model in DIGTEM contains steady state performance maps for all the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. DIGTEM features an implicit integration scheme for integrating stiff systems and trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off design points and iterates to a balanced engine condition. Transients are generated by defining the engine inputs as functions of time in a user written subroutine (TMRSP). Closed loop controls can also be simulated. DIGTEM is generalized in the aerothermodynamic treatment of components. This feature, along with DIGTEM's trimming at a design point, make it a very useful tool for developing a model of a specific turbofan engine.

  4. A generalized computer code for developing dynamic gas turbine engine models (DIGTEM)

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.

    1983-01-01

    This paper describes DIGTEM (digital turbofan engine model), a computer program that simulates two spool, two stream (turbofan) engines. DIGTEM was developed to support the development of a real time multiprocessor based engine simulator being designed at the Lewis Research Center. The turbofan engine model in DIGTEM contains steady state performance maps for all the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. DIGTEM features an implicit integration scheme for integrating stiff systems and trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off design points and iterates to a balanced engine condition. Transients are generated by defining the engine inputs as functions of time in a user written subroutine (TMRSP). Closed loop controls can also be simulated. DIGTEM is generalized in the aerothermodynamic treatment of components. This feature, along with DIGTEM's trimming at a design point, make it a very useful tool for developing a model of a specific turbofan engine.

  5. Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849-2012 by forcing prescribed terminus positions in ISSM

    NASA Astrophysics Data System (ADS)

    Haubner, Konstanze; Box, Jason E.; Schlegel, Nicole J.; Larour, Eric Y.; Morlighem, Mathieu; Solgaard, Anne M.; Kjeldsen, Kristian K.; Larsen, Signe H.; Rignot, Eric; Dupont, Todd K.; Kjær, Kurt H.

    2018-04-01

    Tidewater glacier velocity and mass balance are known to be highly responsive to terminus position change. Yet it remains challenging for ice flow models to reproduce observed ice margin changes. Here, using the Ice Sheet System Model (ISSM; Larour et al. 2012), we simulate the ice velocity and thickness changes of Upernavik Isstrøm (north-western Greenland) by prescribing a collection of 27 observed terminus positions spanning 164 years (1849-2012). The simulation shows increased ice velocity during the 1930s, the late 1970s and between 1995 and 2012 when terminus retreat was observed along with negative surface mass balance anomalies. Three distinct mass balance states are evident in the reconstruction: (1849-1932) with near zero mass balance, (1932-1992) with ice mass loss dominated by ice dynamical flow, and (1998-2012), when increased retreat and negative surface mass balance anomalies led to mass loss that was twice that of any earlier period. Over the multi-decadal simulation, mass loss was dominated by thinning and acceleration responsible for 70 % of the total mass loss induced by prescribed change in terminus position. The remaining 30 % of the total ice mass loss resulted directly from prescribed terminus retreat and decreasing surface mass balance. Although the method can not explain the cause of glacier retreat, it enables the reconstruction of ice flow and geometry during 1849-2012. Given annual or seasonal observed terminus front positions, this method could be a useful tool for evaluating simulations investigating the effect of calving laws.

  6. The balance of kinetic and total energy simulated by the OSU two-level atmospheric general circulation model for January and July

    NASA Technical Reports Server (NTRS)

    Wang, J.-T.; Gates, W. L.; Kim, J.-W.

    1984-01-01

    A three-year simulation which prescribes seasonally varying solar radiation and sea surface temperature is the basis of the present study of the horizontal structure of the balances of kinetic and total energy simulated by Oregon State University's two-level atmospheric general circulation model. Mechanisms responsible for the local energy changes are identified, and the energy balance requirement's fulfilment is examined. In January, the vertical integral of the total energy shows large amounts of external heating over the North Pacific and Atlantic, together with cooling over most of the land area of the Northern Hemisphere. In July, an overall seasonal reversal is found. Both seasons are also characterized by strong energy flux divergence in the tropics, in association with the poleward transport of heat and momentum.

  7. Effects of linking a soil-water-balance model with a groundwater-flow model

    USGS Publications Warehouse

    Stanton, Jennifer S.; Ryter, Derek W.; Peterson, Steven M.

    2013-01-01

    A previously published regional groundwater-flow model in north-central Nebraska was sequentially linked with the recently developed soil-water-balance (SWB) model to analyze effects to groundwater-flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater-level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root-mean-squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB-generated recharge, the RMS difference between simulated and estimated base-flow target values for the groundwater-flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater-level and base-flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.

  8. Harmonic balance optimization of terahertz Schottky diode multipliers using an advanced device model

    NASA Technical Reports Server (NTRS)

    Schlecht, E. T.; Chattopadhyay, G.; Maestrini, A.; Pukala, D.; Gill, J.; Mehdi, I.

    2002-01-01

    Substantial proress has been made recently in the advancement of solid state terahertz sources using chains of Schottky diode frequency multipliers. We have developed a harmonic balance simulator and corresponding diode model that incorporates many other factors participating in the diode behavior.

  9. Simulating Mercury And Methyl Mercury Stream Concentrations At Multiple Scales in a Wetland Influenced Coastal Plain Watershed (McTier Creek, SC, USA)

    EPA Science Inventory

    Use of Mechanistic Models to?Improve Understanding: Differential, mass balance, process-based Spatial and temporal resolution Necessary simplifications of system complexity Combing field monitoring and modeling efforts Balance between capturing complexity and maintaining...

  10. OVERVIEW AND STATUS OF LAKE MICHIGAN MASS BALANCE MODELLING PROJECT

    EPA Science Inventory

    With most of the data available from the Lake Michigan Mass Balance Project field program, the modeling efforts have begun in earnest. The tributary and atmospheric load estimates are or will be completed soon, so realistic simulations for calibration are beginning. A Quality Ass...

  11. Computer Simulation in Predicting Biochemical Processes and Energy Balance at WWTPs

    NASA Astrophysics Data System (ADS)

    Drewnowski, Jakub; Zaborowska, Ewa; Hernandez De Vega, Carmen

    2018-02-01

    Nowadays, the use of mathematical models and computer simulation allow analysis of many different technological solutions as well as testing various scenarios in a short time and at low financial budget in order to simulate the scenario under typical conditions for the real system and help to find the best solution in design or operation process. The aim of the study was to evaluate different concepts of biochemical processes and energy balance modelling using a simulation platform GPS-x and a comprehensive model Mantis2. The paper presents the example of calibration and validation processes in the biological reactor as well as scenarios showing an influence of operational parameters on the WWTP energy balance. The results of batch tests and full-scale campaign obtained in the former work were used to predict biochemical and operational parameters in a newly developed plant model. The model was extended with sludge treatment devices, including anaerobic digester. Primary sludge removal efficiency was found as a significant factor determining biogas production and further renewable energy production in cogeneration. Water and wastewater utilities, which run and control WWTP, are interested in optimizing the process in order to save environment, their budget and decrease the pollutant emissions to water and air. In this context, computer simulation can be the easiest and very useful tool to improve the efficiency without interfering in the actual process performance.

  12. Energy balance-based distributed modeling of snow and glacier melt runoff for the Hunza river basin in the Pakistan Karakoram Himalayan region

    NASA Astrophysics Data System (ADS)

    Shrestha, M.; Wang, L.; Koike, T.; Xue, Y.; Hirabayashi, Y.; Ahmad, S.

    2012-12-01

    A spatially distributed biosphere hydrological model with energy balance-based multilayer snow physics and multilayer glacier model, including debris free and debris covered surface (enhanced WEB-DHM-S) has been developed and applied to the Hunza river basin in the Pakistan Karakoram Himalayan region, where about 34% of the basin area is covered by glaciers. The spatial distribution of seasonal snow and glacier cover, snow and glacier melt runoff along with rainfall-contributed runoff, and glacier mass balances are simulated. The simulations are carried out at hourly time steps and at 1-km spatial resolution for the two hydrological years (2002-2003) with the use of APHRODITE precipitation dataset, observed temperature, and other atmospheric forcing variables from the Global Land Data Assimilation System (GLDAS). The pixel-to-pixel comparisons for the snow-free and snow-covered grids over the region reveal that the simulation agrees well with the Moderate Resolution Imaging Spectroradiometer (MODIS) eight-day maximum snow-cover extent data (MOD10A2) with an accuracy of 83% and a positive bias of 2.8 %. The quantitative evaluation also shows that the model is able to reproduce the river discharge satisfactorily with Nash efficiency of 0.92. It is found that the contribution of rainfall to total streamflow is small (about 10-12%) while the contribution of snow and glacier is considerably large (35-40% for snowmelt and 50-53% for glaciermelt, respectively). The model simulates the state of snow and glaciers at each model grid prognostically and thus can estimate the net annual mass balance. The net mass balance varies from -2 m to +2 m water equivalent. Additionally, the hypsography analysis for the equilibrium line altitude (ELA) suggests that the average ELA in this region is about 5700 m with substantial variation from glacier to glacier and region to region. This study is the first to adopt a distributed biosphere hydrological model with the energy balance- based multilayer snow and glacier module to estimate the spatial distribution of snow/glacier cover and snow and glacier melt runoff for a river basin in the Karakoram Himalayan region.

  13. Long-term Evaluation of Landuse Changes On Landscape Water Balance - A Case Study From North-east Germany

    NASA Astrophysics Data System (ADS)

    Wegehenkel, M.

    In this paper, long-term effects of different afforestation scenarios on landscape wa- ter balance will be analyzed taking into account the results of a regional case study. This analysis is based on using a GIS-coupled simulation model for the the spatially distributed calculation of water balance.For this purpose, the modelling system THE- SEUS with a simple GIS-interface will be used. To take into account the special case of change in forest cover proportion, THESEUS was enhanced with a simple for- est growth model. In the regional case study, model runs will be performed using a detailed spatial data set from North-East Germany. This data set covers a mesoscale catchment located at the moraine landscape of North-East Germany. Based on this data set, the influence of the actual landuse and of different landuse change scenarios on water balance dynamics will be investigated taking into account the spatial distributed modelling results from THESEUS. The model was tested using different experimen- tal data sets from field plots as well as obsverded catchment discharge. Additionally to such convential validation techniques, remote sensing data were used to check the simulated regional distribution of water balance components like evapotranspiration in the catchment.

  14. Modeling and Analysis of the Reverse Water Gas Shift Process for In-Situ Propellant Production

    NASA Technical Reports Server (NTRS)

    Whitlow, Jonathan E.

    2000-01-01

    This report focuses on the development of mathematical models and simulation tools developed for the Reverse Water Gas Shift (RWGS) process. This process is a candidate technology for oxygen production on Mars under the In-Situ Propellant Production (ISPP) project. An analysis of the RWGS process was performed using a material balance for the system. The material balance is very complex due to the downstream separations and subsequent recycle inherent with the process. A numerical simulation was developed for the RWGS process to provide a tool for analysis and optimization of experimental hardware, which will be constructed later this year at Kennedy Space Center (KSC). Attempts to solve the material balance for the system, which can be defined by 27 nonlinear equations, initially failed. A convergence scheme was developed which led to successful solution of the material balance, however the simplified equations used for the gas separation membrane were found insufficient. Additional more rigorous models were successfully developed and solved for the membrane separation. Sample results from these models are included in this report, with recommendations for experimental work needed for model validation.

  15. A Markov model for the temporal dynamics of balanced random networks of finite size

    PubMed Central

    Lagzi, Fereshteh; Rotter, Stefan

    2014-01-01

    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between neuronal populations also opens new doors to analyze the joint dynamics of multiple interacting networks. PMID:25520644

  16. Discrete bivariate population balance modelling of heteroaggregation processes.

    PubMed

    Rollié, Sascha; Briesen, Heiko; Sundmacher, Kai

    2009-08-15

    Heteroaggregation in binary particle mixtures was simulated with a discrete population balance model in terms of two internal coordinates describing the particle properties. The considered particle species are of different size and zeta-potential. Property space is reduced with a semi-heuristic approach to enable an efficient solution. Aggregation rates are based on deterministic models for Brownian motion and stability, under consideration of DLVO interaction potentials. A charge-balance kernel is presented, relating the electrostatic surface potential to the property space by a simple charge balance. Parameter sensitivity with respect to the fractal dimension, aggregate size, hydrodynamic correction, ionic strength and absolute particle concentration was assessed. Results were compared to simulations with the literature kernel based on geometric coverage effects for clusters with heterogeneous surface properties. In both cases electrostatic phenomena, which dominate the aggregation process, show identical trends: impeded cluster-cluster aggregation at low particle mixing ratio (1:1), restabilisation at high mixing ratios (100:1) and formation of complex clusters for intermediate ratios (10:1). The particle mixing ratio controls the surface coverage extent of the larger particle species. Simulation results are compared to experimental flow cytometric data and show very satisfactory agreement.

  17. Does Gene Tree Discordance Explain the Mismatch between Macroevolutionary Models and Empirical Patterns of Tree Shape and Branching Times?

    PubMed Central

    Stadler, Tanja; Degnan, James H.; Rosenberg, Noah A.

    2016-01-01

    Classic null models for speciation and extinction give rise to phylogenies that differ in distribution from empirical phylogenies. In particular, empirical phylogenies are less balanced and have branching times closer to the root compared to phylogenies predicted by common null models. This difference might be due to null models of the speciation and extinction process being too simplistic, or due to the empirical datasets not being representative of random phylogenies. A third possibility arises because phylogenetic reconstruction methods often infer gene trees rather than species trees, producing an incongruity between models that predict species tree patterns and empirical analyses that consider gene trees. We investigate the extent to which the difference between gene trees and species trees under a combined birth–death and multispecies coalescent model can explain the difference in empirical trees and birth–death species trees. We simulate gene trees embedded in simulated species trees and investigate their difference with respect to tree balance and branching times. We observe that the gene trees are less balanced and typically have branching times closer to the root than the species trees. Empirical trees from TreeBase are also less balanced than our simulated species trees, and model gene trees can explain an imbalance increase of up to 8% compared to species trees. However, we see a much larger imbalance increase in empirical trees, about 100%, meaning that additional features must also be causing imbalance in empirical trees. This simulation study highlights the necessity of revisiting the assumptions made in phylogenetic analyses, as these assumptions, such as equating the gene tree with the species tree, might lead to a biased conclusion. PMID:26968785

  18. Resource Tracking Model Updates and Trade Studies

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Moore, Michael

    2016-01-01

    The Resource tracking model has been updated to capture system manager and project manager inputs. Both the Trick/GUNNS RTM simulator and the RTM mass balance spreadsheet have been revised to address inputs from system managers and to refine the way mass balance is illustrated. The revisions to the RTM included addition of a Plasma Pyrolysis Assembly (PPA) to recover hydrogen from Sabatier reactor methane which was vented in the prior version of the RTM. The effect of the PPA on the overall balance of resources in an exploration vehicle is illustrated in the increased recycle of vehicle oxygen. Additionally simulation of EVAs conducted from the exploration module was added. Since the focus of the exploration module is to provide a habitat during deep space operations the EVA simulation approach to EVA is based on ISS EVA protocol and processes. Case studies have been run to show the relative effect of performance changes on vehicle resources.

  19. A Framework to Analyze the Performance of Load Balancing Schemes for Ensembles of Stochastic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Tae-Hyuk; Sandu, Adrian; Watson, Layne T.

    2015-08-01

    Ensembles of simulations are employed to estimate the statistics of possible future states of a system, and are widely used in important applications such as climate change and biological modeling. Ensembles of runs can naturally be executed in parallel. However, when the CPU times of individual simulations vary considerably, a simple strategy of assigning an equal number of tasks per processor can lead to serious work imbalances and low parallel efficiency. This paper presents a new probabilistic framework to analyze the performance of dynamic load balancing algorithms for ensembles of simulations where many tasks are mapped onto each processor, andmore » where the individual compute times vary considerably among tasks. Four load balancing strategies are discussed: most-dividing, all-redistribution, random-polling, and neighbor-redistribution. Simulation results with a stochastic budding yeast cell cycle model are consistent with the theoretical analysis. It is especially significant that there is a provable global decrease in load imbalance for the local rebalancing algorithms due to scalability concerns for the global rebalancing algorithms. The overall simulation time is reduced by up to 25 %, and the total processor idle time by 85 %.« less

  20. Adaptive finite volume methods with well-balanced Riemann solvers for modeling floods in rugged terrain: Application to the Malpasset dam-break flood (France, 1959)

    USGS Publications Warehouse

    George, D.L.

    2011-01-01

    The simulation of advancing flood waves over rugged topography, by solving the shallow-water equations with well-balanced high-resolution finite volume methods and block-structured dynamic adaptive mesh refinement (AMR), is described and validated in this paper. The efficiency of block-structured AMR makes large-scale problems tractable, and allows the use of accurate and stable methods developed for solving general hyperbolic problems on quadrilateral grids. Features indicative of flooding in rugged terrain, such as advancing wet-dry fronts and non-stationary steady states due to balanced source terms from variable topography, present unique challenges and require modifications such as special Riemann solvers. A well-balanced Riemann solver for inundation and general (non-stationary) flow over topography is tested in this context. The difficulties of modeling floods in rugged terrain, and the rationale for and efficacy of using AMR and well-balanced methods, are presented. The algorithms are validated by simulating the Malpasset dam-break flood (France, 1959), which has served as a benchmark problem previously. Historical field data, laboratory model data and other numerical simulation results (computed on static fitted meshes) are shown for comparison. The methods are implemented in GEOCLAW, a subset of the open-source CLAWPACK software. All the software is freely available at. Published in 2010 by John Wiley & Sons, Ltd.

  1. Simplified energy-balance model for pragmatic multi-dimensional device simulation

    NASA Astrophysics Data System (ADS)

    Chang, Duckhyun; Fossum, Jerry G.

    1997-11-01

    To pragmatically account for non-local carrier heating and hot-carrier effects such as velocity overshoot and impact ionization in multi-dimensional numerical device simulation, a new simplified energy-balance (SEB) model is developed and implemented in FLOODS[16] as a pragmatic option. In the SEB model, the energy-relaxation length is estimated from a pre-process drift-diffusion simulation using the carrier-velocity distribution predicted throughout the device domain, and is used without change in a subsequent simpler hydrodynamic (SHD) simulation. The new SEB model was verified by comparison of two-dimensional SHD and full HD DC simulations of a submicron MOSFET. The SHD simulations yield detailed distributions of carrier temperature, carrier velocity, and impact-ionization rate, which agree well with the full HD simulation results obtained with FLOODS. The most noteworthy feature of the new SEB/SHD model is its computational efficiency, which results from reduced Newton iteration counts caused by the enhanced linearity. Relative to full HD, SHD simulation times can be shorter by as much as an order of magnitude since larger voltage steps for DC sweeps and larger time steps for transient simulations can be used. The improved computational efficiency can enable pragmatic three-dimensional SHD device simulation as well, for which the SEB implementation would be straightforward as it is in FLOODS or any robust HD simulator.

  2. An efficient soil water balance model based on hybrid numerical and statistical methods

    NASA Astrophysics Data System (ADS)

    Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei

    2018-04-01

    Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new model makes it particularly suitable for large-scale simulation of soil water movement, because the new model can be used with coarse discretization in space and time.

  3. Mathematical model and metaheuristics for simultaneous balancing and sequencing of a robotic mixed-model assembly line

    NASA Astrophysics Data System (ADS)

    Li, Zixiang; Janardhanan, Mukund Nilakantan; Tang, Qiuhua; Nielsen, Peter

    2018-05-01

    This article presents the first method to simultaneously balance and sequence robotic mixed-model assembly lines (RMALB/S), which involves three sub-problems: task assignment, model sequencing and robot allocation. A new mixed-integer programming model is developed to minimize makespan and, using CPLEX solver, small-size problems are solved for optimality. Two metaheuristics, the restarted simulated annealing algorithm and co-evolutionary algorithm, are developed and improved to address this NP-hard problem. The restarted simulated annealing method replaces the current temperature with a new temperature to restart the search process. The co-evolutionary method uses a restart mechanism to generate a new population by modifying several vectors simultaneously. The proposed algorithms are tested on a set of benchmark problems and compared with five other high-performing metaheuristics. The proposed algorithms outperform their original editions and the benchmarked methods. The proposed algorithms are able to solve the balancing and sequencing problem of a robotic mixed-model assembly line effectively and efficiently.

  4. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    EPA Science Inventory

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  5. Application of digital control to a magnetic model suspension and balance model

    NASA Technical Reports Server (NTRS)

    Luh, P. B.; Covert, E. E.; Whitaker, H. P.; Haldeman, C. W.

    1978-01-01

    The feasibility of using a digital computer for performing the automatic control functions for a magnetic suspension and balance system (MSBS) for use with wind tunnel models was investigated. Modeling was done using both a prototype MSBS and a one dimensional magnetic balance. A microcomputer using the Intel 8080 microprocessor is described and results are given using this microprocessor to control the one dimensional balance. Hybrid simulations for one degree of freedom of the MSBS were also performed and are reported. It is concluded that use of a digital computer to control the MSBS is eminently feasible and should extend both the accuracy and utility of the system.

  6. Water-Balance Model to Simulate Historical Lake Levels for Lake Merced, California

    NASA Astrophysics Data System (ADS)

    Maley, M. P.; Onsoy, S.; Debroux, J.; Eagon, B.

    2009-12-01

    Lake Merced is a freshwater lake located in southwestern San Francisco, California. In the late 1980s and early 1990s, an extended, severe drought impacted the area that resulted in significant declines in Lake Merced lake levels that raised concerns about the long-term health of the lake. In response to these concerns, the Lake Merced Water Level Restoration Project was developed to evaluate an engineered solution to increase and maintain Lake Merced lake levels. The Lake Merced Lake-Level Model was developed to support the conceptual engineering design to restore lake levels. It is a spreadsheet-based water-balance model that performs monthly water-balance calculations based on the hydrological conceptual model. The model independently calculates each water-balance component based on available climate and hydrological data. The model objective was to develop a practical, rule-based approach for the water balance and to calibrate the model results to measured lake levels. The advantage of a rule-based approach is that once the rules are defined, they enhance the ability to then adapt the model for use in future-case simulations. The model was calibrated to historical lake levels over a 70-year period from 1939 to 2009. Calibrating the model over this long historical range tested the model over a variety of hydrological conditions including wet, normal and dry precipitation years, flood events, and periods of high and low lake levels. The historical lake level range was over 16 feet. The model calibration of historical to simulated lake levels had a residual mean of 0.02 feet and an absolute residual mean of 0.42 feet. More importantly, the model demonstrated the ability to simulate both long-term and short-term trends with a strong correlation of the magnitude for both annual and seasonal fluctuations in lake levels. The calibration results demonstrate an improved conceptual understanding of the key hydrological factors that control lake levels, reduce uncertainty in the hydrological conceptual model, and increase confidence in the model’s ability to forecast future lake conditions. The Lake Merced Lake-Level Model will help decision-makers with a straightforward, practical analysis of the major contributions to lake-level declines that can be used to support engineering, environmental and other decisions.

  7. Isostasy for Geoscience Labs.

    ERIC Educational Resources Information Center

    Diecchio, Richard Joseph

    1995-01-01

    Presents simple laboratory experiments to help students understand the principle of buoyancy and mass balance. Buoyancy experiments can simulate lithospheric mass balance, crustal loading and unloading, and can be used to model differences between the oceanic and continental lithosphere. (MKR)

  8. A January angular momentum balance in the OSU two-level atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Kim, J.-W.; Grady, W.

    1982-01-01

    The present investigation is concerned with an analysis of the atmospheric angular momentum balance, based on the simulation data of the Oregon State University two-level atmospheric general circulation model (AGCM). An attempt is also made to gain an understanding of the involved processes. Preliminary results on the angular momentum and mass balance in the AGCM are shown. The basic equations are examined, and questions of turbulent momentum transfer are investigated. The methods of analysis are discussed, taking into account time-averaged balance equations, time and longitude-averaged balance equations, mean meridional circulation, the mean meridional balance of relative angular momentum, and standing and transient components of motion.

  9. Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin

    USGS Publications Warehouse

    Hay, L.E.; Leavesley, G.H.; Clark, M.P.; Markstrom, S.L.; Viger, R.J.; Umemoto, M.

    2006-01-01

    The ability to apply a hydrologic model to large numbers of basins for forecasting purposes requires a quick and effective calibration strategy. This paper presents a step wise, multiple objective, automated procedure for hydrologic model calibration. This procedure includes the sequential calibration of a model's simulation of solar radiation (SR), potential evapotranspiration (PET), water balance, and daily runoff. The procedure uses the Shuffled Complex Evolution global search algorithm to calibrate the U.S. Geological Survey's Precipitation Runoff Modeling System in the Yampa River basin of Colorado. This process assures that intermediate states of the model (SR and PET on a monthly mean basis), as well as the water balance and components of the daily hydrograph are simulated, consistently with measured values.

  10. Effects of spatial and temporal resolution on simulated feedbacks from polygonal tundra.

    NASA Astrophysics Data System (ADS)

    Coon, E.; Atchley, A. L.; Painter, S. L.; Karra, S.; Moulton, J. D.; Wilson, C. J.; Liljedahl, A.

    2014-12-01

    Earth system land models typically resolve permafrost regions at spatial resolutions grossly larger than the scales of topographic variation. This observation leads to two critical questions: How much error is introduced by this lack of resolution, and what is the effect of this approximation on other coupled components of the Earth system, notably the energy balance and carbon cycle? Here we use the Arctic Terrestrial Simulator (ATS) to run micro-topography resolving simulations of polygonal ground, driven by meteorological data from Barrow, AK, to address these questions. ATS couples surface and subsurface processes, including thermal hydrology, surface energy balance, and a snow model. Comparisons are made between one-dimensional "column model" simulations (similar to, for instance, CLM or other land models typically used in Earth System models) and higher-dimensional simulations which resolve micro-topography, allowing for distributed surface runoff, horizontal flow in the subsurface, and uneven snow distribution. Additionally, we drive models with meteorological data averaged over different time scales from daily to weekly moving windows. In each case, we compare fluxes important to the surface energy balance including albedo, latent and sensible heat fluxes, and land-to-atmosphere long-wave radiation. Results indicate that spatial topography variation and temporal variability are important in several ways. Snow distribution greatly affects the surface energy balance, fundamentally changing the partitioning of incoming solar radiation between the subsurface and the atmosphere. This has significant effects on soil moisture and temperature, with implications for vegetation and decomposition. Resolving temporal variability is especially important in spring, when early warm days can alter the onset of snowmelt by days to weeks. We show that high-resolution simulations are valuable in evaluating current land models, especially in areas of polygonal ground. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science. LA-UR-14-26227.

  11. Valiant load-balanced robust routing under hose model for WDM mesh networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoning; Li, Lemin; Wang, Sheng

    2006-09-01

    In this paper, we propose Valiant Load-Balanced robust routing scheme for WDM mesh networks under the model of polyhedral uncertainty (i.e., hose model), and the proposed routing scheme is implemented with traffic grooming approach. Our Objective is to maximize the hose model throughput. A mathematic formulation of Valiant Load-Balanced robust routing is presented and three fast heuristic algorithms are also proposed. When implementing Valiant Load-Balanced robust routing scheme to WDM mesh networks, a novel traffic-grooming algorithm called MHF (minimizing hop first) is proposed. We compare the three heuristic algorithms with the VPN tree under the hose model. Finally we demonstrate in the simulation results that MHF with Valiant Load-Balanced robust routing scheme outperforms the traditional traffic-grooming algorithm in terms of the throughput for the uniform/non-uniform traffic matrix under the hose model.

  12. Impacts of Topographic Shading on Surface Energy Balance of High Mountain Asia Glaciers

    NASA Astrophysics Data System (ADS)

    Olson, M.; Rupper, S.

    2016-12-01

    Topographic shading plays an important role in the energy balance of valley glaciers. While previous studies incorporate shading of varying complexity in surface energy balance models, to date, no large-scale studies have explored in depth the effects of topographic shading on glacier surface energy balance, and how these vary geographically within High Mountain Asia (HMA). Here we develop a model to examine the variability in potential insolation during the summer melt season using the ASTER GDEM and multi-hour solar geometry to simulate topographic shading on an idealized glacier. Shading is calculated in simulations utilizing a range of slopes, aspects, and latitudes. We test glacier mass balance sensitivity to these parameters for a suite of glaciers throughout HMA. Our results show that shading impacts on glaciers in HMA are highly variable across different geographic regions, but that they are largely predictable based on topographic characteristics such as slope and aspect. For example, we find in regions with steep topography and high relief that shading frequently dominates in the ablation zone rather than the accumulation zone, contrary to the findings of some previous studies. In these regions, topographic shading may play a more significant role in glacier energy balance. These results will better define the effects of topographic shading on surface energy balance, and improve model accuracy within HMA. Additionally, this topographic shading model provides a framework to quantify how shading effects vary for advancing or retreating glaciers as they respond to fluctuations in climate across HMA.

  13. OBERON: OBliquity and Energy balance Run on N-body systems

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan H.

    2016-08-01

    OBERON (OBliquity and Energy balance Run on N-body systems) models the climate of Earthlike planets under the effects of an arbitrary number and arrangement of other bodies, such as stars, planets and moons. The code, written in C++, simultaneously computes N body motions using a 4th order Hermite integrator, simulates climates using a 1D latitudinal energy balance model, and evolves the orbital spin of bodies using the equations of Laskar (1986a,b).

  14. Regenerative life support system research

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Sections on modeling, experimental activities during the grant period, and topics under consideration for the future are contained. The sessions contain discussions of: four concurrent modeling approaches that were being integrated near the end of the period (knowledge-based modeling support infrastructure and data base management, object-oriented steady state simulations for three concepts, steady state mass-balance engineering tradeoff studies, and object-oriented time-step, quasidynamic simulations of generic concepts); interdisciplinary research activities, beginning with a discussion of RECON lab development and use, and followed with discussions of waste processing research, algae studies and subsystem modeling, low pressure growth testing of plants, subsystem modeling of plants, control of plant growth using lighting and CO2 supply as variables, search for and development of lunar soil simulants, preliminary design parameters for a lunar base life support system, and research considerations for food processing in space; and appendix materials, including a discussion of the CELSS Conference, detailed analytical equations for mass-balance modeling, plant modeling equations, and parametric data on existing life support systems for use in modeling.

  15. Coal conversion systems design and process modeling. Volume 1: Application of MPPR and Aspen computer models

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of a coal gasification system design and mass and energy balance simulation program for the TVA and other similar facilities is described. The materials-process-product model (MPPM) and the advanced system for process engineering (ASPEN) computer program were selected from available steady state and dynamic models. The MPPM was selected to serve as the basis for development of system level design model structure because it provided the capability for process block material and energy balance and high-level systems sizing and costing. The ASPEN simulation serves as the basis for assessing detailed component models for the system design modeling program. The ASPEN components were analyzed to identify particular process blocks and data packages (physical properties) which could be extracted and used in the system design modeling program. While ASPEN physical properties calculation routines are capable of generating physical properties required for process simulation, not all required physical property data are available, and must be user-entered.

  16. MO200: a model for evaluation safeguards through material accountability for a 200 tonne per year mixed-oxide fuel-rod fabrication plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandborn, R.H.

    1976-01-01

    M0200, a computer simulation model, was used to investigate the safeguarding of plutonium dioxide. The computer program operating the model was constructed so that replicate runs could provide data for statistical analysis of the distributions of the randomized variables. The plant model was divided into material balance areas associated with definable unit processes. Indicators of plant operations studied were modified end-of-shift material balances, end-of-blend errors formed by closing material balances between blends, and cumulative sums of the differences between actual and expected performances. (auth)

  17. Spatially Distributed Assimilation of Remotely Sensed Leaf Area Index and Potential Evapotranspiration for Hydrologic Modeling in Wetland Landscapes

    NASA Astrophysics Data System (ADS)

    Rajib, A.; Evenson, G. R.; Golden, H. E.; Lane, C.

    2017-12-01

    Evapotranspiration (ET), a highly dynamic flux in wetland landscapes, regulates the accuracy of surface/sub-surface runoff simulation in a hydrologic model. Accordingly, considerable uncertainty in simulating ET-related processes remains, including our limited ability to incorporate realistic ground conditions, particularly those involved with complex land-atmosphere feedbacks, vegetation growth, and energy balances. Uncertainty persists despite using high resolution topography and/or detailed land use data. Thus, a good hydrologic model can produce right answers for wrong reasons. In this study, we develop an efficient approach for multi-variable assimilation of remotely sensed earth observations (EOs) into a hydrologic model and apply it in the 1700 km2 Pipestem Creek watershed in the Prairie Pothole Region of North Dakota, USA. Our goal is to employ EOs, specifically Leaf Area Index (LAI) and Potential Evapotranspiration (PET), as surrogates for the aforementioned processes without overruling the model's built-in physical/semi-empirical process conceptualizations. To do this, we modified the source code of an already-improved version of the Soil and Water Assessment Tool (SWAT) for wetland hydrology (Evenson et al. 2016 HP 30(22):4168) to directly assimilate remotely-sensed LAI and PET (obtained from the 500 m and 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) gridded products, respectively) into each model Hydrologic Response Unit (HRU). Two configurations of the model, one with and one without EO assimilation, are calibrated against streamflow observations at the watershed outlet. Spatio-temporal changes in the HRU-level water balance, based on calibrated outputs, are evaluated using MODIS Actual Evapotranspiration (AET) as a reference. It is expected that the model configuration having remotely sensed LAI and PET, will simulate more realistic land-atmosphere feedbacks, vegetation growth and energy balance. As a result, this will decrease simulated water balance uncertainties compared to the default model configuration.

  18. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    USGS Publications Warehouse

    Bock, Andrew R.; Hay, Lauren E.; Markstrom, Steven L.; Emmerich, Christopher; Talbert, Marian

    2017-05-03

    The U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) is a user-friendly interface that summarizes monthly historical and simulated future conditions for seven hydrologic and meteorological variables (actual evapotranspiration, potential evapotranspiration, precipitation, runoff, snow water equivalent, atmospheric temperature, and streamflow) at locations across the conterminous United States (CONUS).The estimates of these hydrologic and meteorological variables were derived using a Monthly Water Balance Model (MWBM), a modular system that simulates monthly estimates of components of the hydrologic cycle using monthly precipitation and atmospheric temperature inputs. Precipitation and atmospheric temperature from 222 climate datasets spanning historical conditions (1952 through 2005) and simulated future conditions (2020 through 2099) were summarized for hydrographic features and used to drive the MWBM for the CONUS. The MWBM input and output variables were organized into an open-access database. An Open Geospatial Consortium, Inc., Web Feature Service allows the querying and identification of hydrographic features across the CONUS. To connect the Web Feature Service to the open-access database, a user interface—the Monthly Water Balance Model Futures Portal—was developed to allow the dynamic generation of summary files and plots  based on plot type, geographic location, specific climate datasets, period of record, MWBM variable, and other options. Both the plots and the data files are made available to the user for download 

  19. Planetary Boundary Layer Simulation Using TASS

    NASA Technical Reports Server (NTRS)

    Schowalter, David G.; DeCroix, David S.; Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael

    1996-01-01

    Boundary conditions to an existing large-eddy simulation model have been changed in order to simulate turbulence in the atmospheric boundary layer. Several options are now available, including the use of a surface energy balance. In addition, we compare convective boundary layer simulations with the Wangara and Minnesota field experiments as well as with other model results. We find excellent agreement of modelled mean profiles of wind and temperature with observations and good agreement for velocity variances. Neutral boundary simulation results are compared with theory and with previously used models. Agreement with theory is reasonable, while agreement with previous models is excellent.

  20. Large liquid rocket engine transient performance simulation system

    NASA Technical Reports Server (NTRS)

    Mason, J. R.; Southwick, R. D.

    1991-01-01

    A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.

  1. STREAM TEMPERATURE SIMULATION OF FORESTED RIPARIAN AREAS: II. MODEL APPLICATION

    EPA Science Inventory

    The SHADE-HSPF modeling system described in a companion paper has been tested and applied to the Upper Grande Ronde (UGR) watershed in northeast Oregon. Sensitivities of stream temperature to the heat balance parameters in Hydrologic Simulation Program-FORTRAN (HSPF) and the ripa...

  2. Large and small-scale structures and the dust energy balance problem in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Saftly, W.; Baes, M.; De Geyter, G.; Camps, P.; Renaud, F.; Guedes, J.; De Looze, I.

    2015-04-01

    The interstellar dust content in galaxies can be traced in extinction at optical wavelengths, or in emission in the far-infrared. Several studies have found that radiative transfer models that successfully explain the optical extinction in edge-on spiral galaxies generally underestimate the observed FIR/submm fluxes by a factor of about three. In order to investigate this so-called dust energy balance problem, we use two Milky Way-like galaxies produced by high-resolution hydrodynamical simulations. We create mock optical edge-on views of these simulated galaxies (using the radiative transfer code SKIRT), and we then fit the parameters of a basic spiral galaxy model to these images (using the fitting code FitSKIRT). The basic model includes smooth axisymmetric distributions along a Sérsic bulge and exponential disc for the stars, and a second exponential disc for the dust. We find that the dust mass recovered by the fitted models is about three times smaller than the known dust mass of the hydrodynamical input models. This factor is in agreement with previous energy balance studies of real edge-on spiral galaxies. On the other hand, fitting the same basic model to less complex input models (e.g. a smooth exponential disc with a spiral perturbation or with random clumps), does recover the dust mass of the input model almost perfectly. Thus it seems that the complex asymmetries and the inhomogeneous structure of real and hydrodynamically simulated galaxies are a lot more efficient at hiding dust than the rather contrived geometries in typical quasi-analytical models. This effect may help explain the discrepancy between the dust emission predicted by radiative transfer models and the observed emission in energy balance studies for edge-on spiral galaxies.

  3. Terrestrial ecosystem process model Biome-BGCMuSo v4.0: summary of improvements and new modeling possibilities

    NASA Astrophysics Data System (ADS)

    Hidy, Dóra; Barcza, Zoltán; Marjanović, Hrvoje; Zorana Ostrogović Sever, Maša; Dobor, Laura; Gelybó, Györgyi; Fodor, Nándor; Pintér, Krisztina; Churkina, Galina; Running, Steven; Thornton, Peter; Bellocchi, Gianni; Haszpra, László; Horváth, Ferenc; Suyker, Andrew; Nagy, Zoltán

    2016-12-01

    The process-based biogeochemical model Biome-BGC was enhanced to improve its ability to simulate carbon, nitrogen, and water cycles of various terrestrial ecosystems under contrasting management activities. Biome-BGC version 4.1.1 was used as a base model. Improvements included addition of new modules such as the multilayer soil module, implementation of processes related to soil moisture and nitrogen balance, soil-moisture-related plant senescence, and phenological development. Vegetation management modules with annually varying options were also implemented to simulate management practices of grasslands (mowing, grazing), croplands (ploughing, fertilizer application, planting, harvesting), and forests (thinning). New carbon and nitrogen pools have been defined to simulate yield and soft stem development of herbaceous ecosystems. The model version containing all developments is referred to as Biome-BGCMuSo (Biome-BGC with multilayer soil module; in this paper, Biome-BGCMuSo v4.0 is documented). Case studies on a managed forest, cropland, and grassland are presented to demonstrate the effect of model developments on the simulation of plant growth as well as on carbon and water balance.

  4. Global water dynamics: issues for the 21st century.

    PubMed

    Simonovic, Slobodan P

    2002-01-01

    The WorldWater system dynamics model has been developed for modeling the global world water balance and capturing the dynamic character of the main variables affecting water availability and use in the future. Despite not being a novel approach, system dynamics offers a new way of addressing complex systems. WorldWater simulations are clearly demonstrating the strong feedback relation between water availability and different aspects of world development. Results of numerous simulations are contradictory to the assumption made by many global modelers that water is not an issue on the global scale. Two major observations can be made from early simulations: (a) the use of clean water for dilution and transport of wastewater, if not dealt with in other ways, imposes a major stress on the global world water balance; and (b) water use by different sectors is demonstrating quite different dynamics than predicted by classical forecasting tools and other water-models. Inherent linkages between water quantity and quality sectors with food, industry, persistent pollution, technology, and non-renewable resources sectors of the model create shoot and collapse behavior in water use dynamics. This paper discusses a number of different water-related scenarios and their implications on the global water balance. In particular, two extreme scenarios (business as usual - named "Chaos", and unlimited desalination - named "Ocean") are presented in the paper. Based on the conclusions derived from these two extreme cases a set of more moderate and realistic scenarios (named "Conservation") is proposed and their consequences on the global water balance are evaluated.

  5. Mechanical design of a rotary balance system for NASA. Langley Research Center's vertical spin tunnel

    NASA Technical Reports Server (NTRS)

    Allred, J. W.; Fleck, V. J.

    1992-01-01

    A new lightweight Rotary Balance System is presently being fabricated and installed as part of a major upgrade to the existing 20 Foot Vertical Spin Tunnel. This upgrade to improve model testing productivity of the only free spinning vertical wind tunnel includes a modern fan/drive and tunnel control system, an updated video recording system, and the new rotary balance system. The rotary balance is a mechanical apparatus which enables the measurement of aerodynamic force and moment data under spinning conditions (100 rpm). This data is used in spin analysis and is vital to the implementation of large amplitude maneuvering simulations required for all new high performance aircraft. The new rotary balance system described in this report will permit greater test efficiency and improved data accuracy. Rotary Balance testing with the model enclosed in a tare bag can also be performed to obtain resulting model forces from the spinning operation. The rotary balance system will be stored against the tunnel sidewall during free flight model testing.

  6. High Resolution Modeling of the Water Cycle to Refine GRACE Signal Analysis in the Gulf of Alaska Drainage

    NASA Astrophysics Data System (ADS)

    Beamer, J.; Hill, D. F.; Arendt, A. A.; Luthcke, S. B.; Liston, G. E.

    2015-12-01

    A comprehensive study of the Gulf of Alaska (GOA) drainage basin was carried out to improve understanding of the coastal freshwater discharge (FWD) and surface mass balance (SMB) of glaciers. Coastal FWD and SMB for all glacier surfaces were modeled using a suite of physically based, spatially distributed weather, energy-balance snow/ice melt, soil water balance, and runoff routing models at a high resolution (1 km horizontal grid; daily time step). A 35 year hind cast was performed, providing complete records of precipitation, runoff, snow water equivalent (SWE) depth, evapotranspiration, coastal FWD and glacier SMB. Meteorological forcing was provided by the North American Regional Reanalysis (NARR), Modern Era Retrospective Analysis for Research and Applications (MERRA), and NCEP Climate Forecast System Reanalysis (CFSR) datasets. A fourth dataset was created by bias-correcting the NARR data to recently-developed monthly weather grids based on PRISM climatologies (NARR-BC). Each weather dataset and model combination was individually calibrated using PRISM climatologies, streamflow, and glacier mass balance measurements from four locations in the study domain. Simulated mean annual FWD into the GOA ranged from 600 km3 yr-1 using NARR to 850 km3 yr-1 from NARR-BC. The CFSR-forced simulations with optimized model parameters produced a simulated regional water storage that compared favorably to data from the NASA/DLR Gravity Recovery and Climate Experiment (GRACE) high resolution mascon solutions (Figure). Glacier runoff, taken as the sum of rainfall, snow and ice melt occurring on glacier surfaces, ranged from 260 km3 yr-1 from MERRA to 400 km3 yr-1 from NARR-BC, approximately one half of the signal from both glaciers and surrounding terrain. The large contribution from non-glacier surfaces to the seasonal water balance is likely not being fully removed from GRACE solutions aimed at isolating the glacier signal alone. We will discuss methods to use our simulations to forward-model the hydrology of the Gulf of Alaska region and minimize uncertainty in the partitioning of the hydrological signal. This study provides significant insight into the linkages between hydrological modeling and gravimetric measurements in mountain environments.

  7. Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors.

    PubMed

    Hines, Michael L; Eichner, Hubert; Schürmann, Felix

    2008-08-01

    Neuron tree topology equations can be split into two subtrees and solved on different processors with no change in accuracy, stability, or computational effort; communication costs involve only sending and receiving two double precision values by each subtree at each time step. Splitting cells is useful in attaining load balance in neural network simulations, especially when there is a wide range of cell sizes and the number of cells is about the same as the number of processors. For compute-bound simulations load balance results in almost ideal runtime scaling. Application of the cell splitting method to two published network models exhibits good runtime scaling on twice as many processors as could be effectively used with whole-cell balancing.

  8. Estimating Flow-Through Balance Momentum Tares with CFD

    NASA Technical Reports Server (NTRS)

    Melton, John E.; James, Kevin D.; Long, Kurtis R.; Flamm, Jeffrey D.

    2016-01-01

    This paper describes the process used for estimating flow-through balance momentum tares. The interaction of jet engine exhausts on the BOEINGERA Hybrid Wing Body (HWB) was simulated in the NFAC 40x80 wind tunnel at NASA Ames using a pair of turbine powered simulators (TPS). High-pressure air was passed through a flow-through balance and manifold before being delivered to the TPS units. The force and moment tares that result from the internal shear and pressure distribution were estimated using CFD. Validation of the CFD simulations for these complex internal flows is a challenge, given limited experimental data due to the complications of the internal geometry. Two CFD validation efforts are documented, and comparisons with experimental data from the final model installation are provided.

  9. Modelling and Analysis of a New Piezoelectric Dynamic Balance Regulator

    PubMed Central

    Du, Zhe; Mei, Xue-Song; Xu, Mu-Xun

    2012-01-01

    In this paper, a new piezoelectric dynamic balance regulator, which can be used in motorised spindle systems, is presented. The dynamic balancing adjustment mechanism is driven by an in-plane bending vibration from an annular piezoelectric stator excited by a high-frequency sinusoidal input voltage. This device has different construction, characteristics and operating principles than a conventional balance regulator. In this work, a dynamic model of the regulator is first developed using a detailed analytical method. Thereafter, MATLAB is employed to numerically simulate the relations between the dominant parameters and the characteristics of the regulator based on thedynamic model. Finally, experimental measurements are used to certify the validity of the dynamic model. Consequently, the mathematical model presented and analysed in this paper can be used as a tool for optimising the design of a piezoelectric dynamic balance regulator during steady state operation. PMID:23202182

  10. Diagnostic analysis of two-dimensional monthly average ozone balance with Chapman chemistry

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Jackman, Charles H.; Kaye, Jack A.

    1986-01-01

    Chapman chemistry has been used in a two-dimensional model to simulate ozone balance phenomenology. The similarity between regions of ozone production and loss calculated using Chapman chemistry and those computed using LIMS and SAMS data with a photochemical equilibrium model indicate that such simplified chemistry is useful in studying gross features in stratospheric ozone balance. Net ozone production or loss rates are brought about by departures from the photochemical equilibrium (PCE) condition. If transport drives ozone above its PCE condition, then photochemical loss dominates production. If transport drives ozone below its PCE condition, then photochemical production dominates loss. Gross features of ozone loss/production (L/P) inferred for the real atmosphere from data are also simulated using only eddy diffusion. This indicates that one must be careful in assigning a transport scheme for a two-dimensional model that mimics only behavior of the observed ozone L/P.

  11. Identification of the contribution of the ankle and hip joints to multi-segmental balance control

    PubMed Central

    2013-01-01

    Background Human stance involves multiple segments, including the legs and trunk, and requires coordinated actions of both. A novel method was developed that reliably estimates the contribution of the left and right leg (i.e., the ankle and hip joints) to the balance control of individual subjects. Methods The method was evaluated using simulations of a double-inverted pendulum model and the applicability was demonstrated with an experiment with seven healthy and one Parkinsonian participant. Model simulations indicated that two perturbations are required to reliably estimate the dynamics of a double-inverted pendulum balance control system. In the experiment, two multisine perturbation signals were applied simultaneously. The balance control system dynamic behaviour of the participants was estimated by Frequency Response Functions (FRFs), which relate ankle and hip joint angles to joint torques, using a multivariate closed-loop system identification technique. Results In the model simulations, the FRFs were reliably estimated, also in the presence of realistic levels of noise. In the experiment, the participants responded consistently to the perturbations, indicated by low noise-to-signal ratios of the ankle angle (0.24), hip angle (0.28), ankle torque (0.07), and hip torque (0.33). The developed method could detect that the Parkinson patient controlled his balance asymmetrically, that is, the right ankle and hip joints produced more corrective torque. Conclusion The method allows for a reliable estimate of the multisegmental feedback mechanism that stabilizes stance, of individual participants and of separate legs. PMID:23433148

  12. Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers

    PubMed Central

    Chen, Weiliang; De Schutter, Erik

    2017-01-01

    Stochastic, spatial reaction-diffusion simulations have been widely used in systems biology and computational neuroscience. However, the increasing scale and complexity of models and morphologies have exceeded the capacity of any serial implementation. This led to the development of parallel solutions that benefit from the boost in performance of modern supercomputers. In this paper, we describe an MPI-based, parallel operator-splitting implementation for stochastic spatial reaction-diffusion simulations with irregular tetrahedral meshes. The performance of our implementation is first examined and analyzed with simulations of a simple model. We then demonstrate its application to real-world research by simulating the reaction-diffusion components of a published calcium burst model in both Purkinje neuron sub-branch and full dendrite morphologies. Simulation results indicate that our implementation is capable of achieving super-linear speedup for balanced loading simulations with reasonable molecule density and mesh quality. In the best scenario, a parallel simulation with 2,000 processes runs more than 3,600 times faster than its serial SSA counterpart, and achieves more than 20-fold speedup relative to parallel simulation with 100 processes. In a more realistic scenario with dynamic calcium influx and data recording, the parallel simulation with 1,000 processes and no load balancing is still 500 times faster than the conventional serial SSA simulation. PMID:28239346

  13. Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers.

    PubMed

    Chen, Weiliang; De Schutter, Erik

    2017-01-01

    Stochastic, spatial reaction-diffusion simulations have been widely used in systems biology and computational neuroscience. However, the increasing scale and complexity of models and morphologies have exceeded the capacity of any serial implementation. This led to the development of parallel solutions that benefit from the boost in performance of modern supercomputers. In this paper, we describe an MPI-based, parallel operator-splitting implementation for stochastic spatial reaction-diffusion simulations with irregular tetrahedral meshes. The performance of our implementation is first examined and analyzed with simulations of a simple model. We then demonstrate its application to real-world research by simulating the reaction-diffusion components of a published calcium burst model in both Purkinje neuron sub-branch and full dendrite morphologies. Simulation results indicate that our implementation is capable of achieving super-linear speedup for balanced loading simulations with reasonable molecule density and mesh quality. In the best scenario, a parallel simulation with 2,000 processes runs more than 3,600 times faster than its serial SSA counterpart, and achieves more than 20-fold speedup relative to parallel simulation with 100 processes. In a more realistic scenario with dynamic calcium influx and data recording, the parallel simulation with 1,000 processes and no load balancing is still 500 times faster than the conventional serial SSA simulation.

  14. Modelling the snowmelt and the snow water equivalent by creating a simplified energy balance conceptual snow model

    NASA Astrophysics Data System (ADS)

    Riboust, Philippe; Thirel, Guillaume; Le Moine, Nicolas; Ribstein, Pierre

    2016-04-01

    A better knowledge of the accumulated snow on the watersheds will help flood forecasting centres and hydro-power companies to predict the amount of water released during spring snowmelt. Since precipitations gauges are sparse at high elevations and integrative measurements of the snow accumulated on watershed surface are hard to obtain, using snow models is an adequate way to estimate snow water equivalent (SWE) on watersheds. In addition to short term prediction, simulating accurately SWE with snow models should have many advantages. Validating the snow module on both SWE and snowmelt should give a more reliable model for climate change studies or regionalization for ungauged watersheds. The aim of this study is to create a new snow module, which has a structure that allows the use of measured snow data for calibration or assimilation. Energy balance modelling seems to be the logical choice for designing a model in which internal variables, such as SWE, could be compared to observations. Physical models are complex, needing high computational resources and many different types of inputs that are not widely measured at meteorological stations. At the opposite, simple conceptual degree-day models offer to simulate snowmelt using only temperature and precipitation as inputs with fast computing. Its major drawback is to be empirical, i.e. not taking into account all of the processes of the energy balance, which makes this kind of model more difficult to use when willing to compare SWE to observed measurements. In order to reach our objectives, we created a snow model structured by a simplified energy balance where each of the processes is empirically parameterized in order to be calculated using only temperature, precipitation and cloud cover variables. This model's structure is similar to the one created by M.T. Walter (2005), where parameterizations from the literature were used to compute all of the processes of the energy balance. The conductive fluxes into the snowpack were modelled by using analytical solutions to the heat equation taking phase change into account. This approach has the advantage to use few forcing variables and to take into account all the processes of the energy balance. Indeed, the simulations should be quick enough to allow, for example, ensemble prediction or simulation of numerous basins, more easily than physical snow models. The snow module formulation has been completed and is in its validation phase using data from the experimental station of Col de Porte, Alpes, France. Data from the US SNOTEL product will be used in order to test the model structure on a larger scale and to test diverse calibration procedures, since the aim is to use it on a basin scale for discharge modelling purposes.

  15. Influence of sub-kilometer precipitation datasets on simulated snowpack and glacier winter balance in alpine terrain.

    NASA Astrophysics Data System (ADS)

    Vionnet, Vincent; Six, Delphine; Auger, Ludovic; Lafaysse, Matthieu; Quéno, Louis; Réveillet, Marion; Dombrowski-Etchevers, Ingrid; Thibert, Emmanuel; Dumont, Marie

    2017-04-01

    Capturing spatial and temporal variabilities of meteorological conditions at fine scale is necessary for modelling snowpack and glacier winter mass balance in alpine terrain. In particular, precipitation amount and phase are strongly influenced by the complex topography. In this study, we assess the impact of three sub-kilometer precipitation datasets (rainfall and snowfall) on distributed simulations of snowpack and glacier winter mass balance with the detailed snowpack model Crocus for winter 2011-2012. The different precipitation datasets at 500-m grid spacing over part of the French Alps (200*200 km2 area) are coming either from (i) the SAFRAN precipitation analysis specially developed for alpine terrain, or from (ii) operational outputs of the atmospheric model AROME at 2.5-km grid spacing downscaled to 500 m with fixed lapse rate or from (iii) a version of the atmospheric model AROME at 500-m grid spacing. Others atmospherics forcings (air temperature and humidity, incoming longwave and shortwave radiation, wind speed) are taken from the AROME simulations at 500-m grid spacing. These atmospheric forcings are firstly compared against a network of automatic weather stations. Results are analysed with respect to station location (valley, mid- and high-altitude). The spatial pattern of seasonal snowfall and its dependency with elevation is then analysed for the different precipitation datasets. Large differences between SAFRAN and the two versions of AROME are found at high-altitude. Finally, results of Crocus snowpack simulations are evaluated against (i) punctual in-situ measurements of snow depth and snow water equivalent, and (ii) maps of snow covered areas retrieved from optical satellite data (MODIS). Measurements of winter accumulation of six glaciers of the French Alps are also used and provide very valuable information on precipitation at high-altitude where the conventional observation network is scarce. This study illustrates the potential and limitations of high-resolution atmospheric models to drive simulations of snowpack and glacier winter mass balance in alpine terrain.

  16. Battery model for electrical power system energy balance

    NASA Technical Reports Server (NTRS)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  17. Investigation of a Mercury-Argon Hot Cathode Discharge

    NASA Astrophysics Data System (ADS)

    Wamsley, Robert Charles

    Classical absorption and laser induced fluorescence (LIF) experiments are used to investigate processes in the cathode region of a Hg-Ar hot cathode discharge. The absorption and LIF measurements are used to test the qualitative understanding and develop a quantitative model of a hot cathode discharge. The main contribution of this thesis is a model of the negative glow region that demonstrates the importance of Penning ionization to the ionization balance in the negative glow. We modeled the excited argon balance equation using a Monte Carlo simulation. In this simulation we used the trapped radiative decay rate of the resonance levels and the Penning ionization rate as the dominant loss terms in the balance equation. The simulated data is compared to and found to agree with absolute excited argon densities measured in a classical absorption experiment. We found the primary production rate per unit volume of excited Ar atoms in the simulation is sharply peaked near the cathode hot spot. We used the ion production rate from this simulation and a Green's function solution to the ambipolar diffusion equation to calculate the contribution of Penning ionization to the total ion density. We compared the results of this calculation to our experimental values of the Hg ^+ densities in the negative glow. We found that Penning ionization is an important and possibly the dominant ionization process in the negative glow.

  18. An Integrated Analysis of the Physiological Effects of Space Flight: Executive Summary

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1985-01-01

    A large array of models were applied in a unified manner to solve problems in space flight physiology. Mathematical simulation was used as an alternative way of looking at physiological systems and maximizing the yield from previous space flight experiments. A medical data analysis system was created which consist of an automated data base, a computerized biostatistical and data analysis system, and a set of simulation models of physiological systems. Five basic models were employed: (1) a pulsatile cardiovascular model; (2) a respiratory model; (3) a thermoregulatory model; (4) a circulatory, fluid, and electrolyte balance model; and (5) an erythropoiesis regulatory model. Algorithms were provided to perform routine statistical tests, multivariate analysis, nonlinear regression analysis, and autocorrelation analysis. Special purpose programs were prepared for rank correlation, factor analysis, and the integration of the metabolic balance data.

  19. [Effects of atmospheric thermally stratified condition on sensible heat within forest canopy].

    PubMed

    Diao, Yi-Wei; Wang, An-Zhi; Guan, De-Xin; Jin, Chang-Jie; Pei, Tie-Fan

    2010-01-01

    By using Eulerian second-order closure model, this paper studied the source-sink distribution and flux characteristics of sensible heat within forest canopy under atmospheric thermally stratified condition. In the daytime, a notable feature for the atmospheric stratification of forest canopy was the unstable stratification above the canopy and the stable stratification under the canopy. The changes of temperature profile indicated there was a 'hot spot' at about 2/3 of canopy height. The counter-gradient fluxes within the canopy were discovered by modeling the heat flux under weak stable atmospheric condition. Simulations of the diurnal variation of sensible heat flux were consistent with the measurements (R2 = 0.9035, P < 0.01). Adding buoyancy in the sensible heat balance equation could increase the simulation accuracy of inversion model, and improve the simulation capability for heat flux balance.

  20. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    NASA Astrophysics Data System (ADS)

    Tang, G.; Bartlein, P. J.

    2012-08-01

    Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM) simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i) modify a DGVM for simulating land surface water balances; (ii) evaluate the modified model in simulating actual evapotranspiration (ET), soil moisture, and surface runoff at regional or watershed scales; and (iii) gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH) model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ) DGVM. To evaluate the model we ran LH using historical (1981-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981-2006 (R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficient > 0.52). The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences < 15%) with observed values for these rivers. Compared to a degree-day method for snowmelt computation, the addition of the solar radiation effect on snowmelt enabled LH to better simulate monthly stream flow in winter and early spring for rivers located at mid-to-high latitudes. In addition, LH-modeled monthly soil moisture for the state of Illinois (US) agreed well (R2 = 0.79, p < 0.01) with observed data for the years 1984-2001. Overall, this study justifies both the feasibility of incorporating satellite-based land covers into a DGVM and the reliability of LH to simulate land-surface water balances. To better estimate surface/river runoff at mid-to-high latitudes, we recommended that LPJ-DGVM considers the effects of solar radiation on snowmelt.

  1. Load Balancing Using Time Series Analysis for Soft Real Time Systems with Statistically Periodic Loads

    NASA Technical Reports Server (NTRS)

    Hailperin, M.

    1993-01-01

    This thesis provides design and analysis of techniques for global load balancing on ensemble architectures running soft-real-time object-oriented applications with statistically periodic loads. It focuses on estimating the instantaneous average load over all the processing elements. The major contribution is the use of explicit stochastic process models for both the loading and the averaging itself. These models are exploited via statistical time-series analysis and Bayesian inference to provide improved average load estimates, and thus to facilitate global load balancing. This thesis explains the distributed algorithms used and provides some optimality results. It also describes the algorithms' implementation and gives performance results from simulation. These results show that the authors' techniques allow more accurate estimation of the global system loading, resulting in fewer object migrations than local methods. The authors' method is shown to provide superior performance, relative not only to static load-balancing schemes but also to many adaptive load-balancing methods. Results from a preliminary analysis of another system and from simulation with a synthetic load provide some evidence of more general applicability.

  2. An Examination of Exposure Control and Content Balancing Restrictions on Item Selection in CATs Using the Partial Credit Model.

    ERIC Educational Resources Information Center

    Davis, Laurie Laughlin; Pastor, Dena A.; Dodd, Barbara G.; Chiang, Claire; Fitzpatrick, Steven J.

    2003-01-01

    Examined the effectiveness of the Sympson-Hetter technique and rotated content balancing relative to no exposure control and no content rotation conditions in a computerized adaptive testing system based on the partial credit model. Simulation results show the Sympson-Hetter technique can be used with minimal impact on measurement precision,…

  3. Spring hydrograph simulation of karstic aquifers: Impacts of variable recharge area, intermediate storage and memory effects

    NASA Astrophysics Data System (ADS)

    Hosseini, Seiyed Mossa; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2017-09-01

    A simple conceptual rainfall-runoff model is proposed for the estimation of groundwater balance components in complex karst aquifers. In the proposed model the effects of memory length of different karst flow systems of base-flow, intermediate-flow, and quick-flow and also time variation of recharge area (RA) during a hydrological year were investigated. The model consists of three sub-models: soil moisture balance (SMB), epikarst balance (EPB), and groundwater balance (GWB) to simulate the daily spring discharge. The SMB and EPB sub-models utilize the mass conservation equation to compute the variation of moisture storages in the soil cover and epikarst, respectively. The GWB sub-model computes the spring discharge hydrograph through three parallel linear reservoirs for base-flow, intermediate-flow, and quick-flow. Three antecedent recharge indices are defined and embedded in the model structure to deal with the memory effect of three karst flow systems to antecedent recharge flow. The Sasan Karst aquifer located in the semi-arid region of south-west Iran with a continuous long-term (21-years) daily meteorological and discharge data are considered to describe model calibration and validation procedures. The effects of temporal variations of RA of karst formations during the hydrological year namely invariant RA, two RA (winter and summer), four RA (seasonal), and twelve RA (monthly) are assessed to determine their impact on the model efficiency. Results indicated that the proposed model with monthly-variant RA is able to reproduce acceptable simulation results based on modified Kling-Gupta efficiency (KGE = -0.83). The results of density-based global sensitivity analysis for dry (June to September) and a wet (October to May) period reveal the dominant influence of RA (with sensitivity indices equal to 0.89 and 0.93, respectively) in spring discharge simulation. The sensitivity of simulated spring discharge to memory effect of different karst formations during the dry period is greater than the wet period. In addition, the results reveal the important role of intermediate-flow system in the hydrological modeling of karst systems during the wet period. Precise estimation of groundwater budgets for a better decision making regarding water supplies from complex karst systems with long memory effect can considerably be improved by use of the proposed model.

  4. Analysis of a six-component, flow-through, strain-gage, force balance used for hypersonic wind tunnel models with scramjet exhaust flow simulation. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Kniskern, Marc W.

    1990-01-01

    The thermal effects of simulant gas injection and aerodynamic heating at the model's surface on the measurements of a non-watercooled, flow through balance were investigated. A stainless steel model of a hypersonic air breathing propulsion cruise missile concept (HAPCM-50) was used to evaluate this balance. The tests were conducted in the 20-inch Mach 6 wind tunnel at NASA-Langley. The balance thermal effects were evaluated at freestream Reynolds numbers ranging from .5 to 7 x 10(exp 6) ft and angles of attack between -3.5 to 5 deg at Mach 6. The injection gases considered included cold air, hot air, and a mixture of 50 percent Argon and 50 percent Freon-12. The stagnation temperatures of the cold air, hot air, and Ar-Fr(12) reached 111, 214, and 283 F, respectively within the balance. A bakelite sleeve was inserted into the inner tube of the balance to minimize the thermal effects of these injection gases. Throughout the tests, the normal force, side force, yaw moment, roll moment, and pitching moment balance measurements were unaffected by the balance thermal effects of the injection gases and the wind tunnel flow. However, the axial force (AF) measurement was significantly affected by balance heating. The average zero shifts in the AF measurements were 1.9, 3.8, and 5.9 percent for cold air, hot air, and Ar-Fr(12) injection, respectively. The AF measurements decreased throughout these tests which lasted from 70 to 110 seconds. During the cold air injection tests, the AF measurements were accurate up to at least ten seconds after the model was injected into the wind tunnel test section. For the hot air and Ar-Fr(12) tests, the AF measurements were accurate up to at least five seconds after model injection.

  5. A Biophysical Modeling Framework for Assessing the Environmental Impact of Biofuel Production

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Izaurradle, C.; Manowitz, D.; West, T. O.; Post, W. M.; Thomson, A. M.; Nichols, J.; Bandaru, V.; Williams, J. R.

    2009-12-01

    Long-term sustainability of a biofuel economy necessitates environmentally friendly biofuel production systems. We describe a biophysical modeling framework developed to understand and quantify the environmental value and impact (e.g. water balance, nutrients balance, carbon balance, and soil quality) of different biomass cropping systems. This modeling framework consists of three major components: 1) a Geographic Information System (GIS) based data processing system, 2) a spatially-explicit biophysical modeling approach, and 3) a user friendly information distribution system. First, we developed a GIS to manage the large amount of geospatial data (e.g. climate, land use, soil, and hydrograhy) and extract input information for the biophysical model. Second, the Environmental Policy Integrated Climate (EPIC) biophysical model is used to predict the impact of various cropping systems and management intensities on productivity, water balance, and biogeochemical variables. Finally, a geo-database is developed to distribute the results of ecosystem service variables (e.g. net primary productivity, soil carbon balance, soil erosion, nitrogen and phosphorus losses, and N2O fluxes) simulated by EPIC for each spatial modeling unit online using PostgreSQL. We applied this framework in a Regional Intensive Management Area (RIMA) of 9 counties in Michigan. A total of 4,833 spatial units with relatively homogeneous biophysical properties were derived using SSURGO, Crop Data Layer, County, and 10-digit watershed boundaries. For each unit, EPIC was executed from 1980 to 2003 under 54 cropping scenarios (eg. corn, switchgrass, and hybrid poplar). The simulation results were compared with historical crop yields from USDA NASS. Spatial mapping of the results show high variability among different cropping scenarios in terms of the simulated ecosystem services variables. Overall, the framework developed in this study enables the incorporation of environmental factors into economic and life-cycle analysis in order to optimize biomass cropping production scenarios.

  6. Evaluation of subset matching methods and forms of covariate balance.

    PubMed

    de Los Angeles Resa, María; Zubizarreta, José R

    2016-11-30

    This paper conducts a Monte Carlo simulation study to evaluate the performance of multivariate matching methods that select a subset of treatment and control observations. The matching methods studied are the widely used nearest neighbor matching with propensity score calipers and the more recently proposed methods, optimal matching of an optimally chosen subset and optimal cardinality matching. The main findings are: (i) covariate balance, as measured by differences in means, variance ratios, Kolmogorov-Smirnov distances, and cross-match test statistics, is better with cardinality matching because by construction it satisfies balance requirements; (ii) for given levels of covariate balance, the matched samples are larger with cardinality matching than with the other methods; (iii) in terms of covariate distances, optimal subset matching performs best; (iv) treatment effect estimates from cardinality matching have lower root-mean-square errors, provided strong requirements for balance, specifically, fine balance, or strength-k balance, plus close mean balance. In standard practice, a matched sample is considered to be balanced if the absolute differences in means of the covariates across treatment groups are smaller than 0.1 standard deviations. However, the simulation results suggest that stronger forms of balance should be pursued in order to remove systematic biases due to observed covariates when a difference in means treatment effect estimator is used. In particular, if the true outcome model is additive, then marginal distributions should be balanced, and if the true outcome model is additive with interactions, then low-dimensional joints should be balanced. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Comparisons of observed seasonal climate features with a winter and summer numerical simulation produced with the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Halem, M.; Shukla, J.; Mintz, Y.; Wu, M. L.; Godbole, R.; Herman, G.; Sud, Y.

    1979-01-01

    Results are presented from numerical simulations performed with the general circulation model (GCM) for winter and summer. The monthly mean simulated fields for each integration are compared with observed geographical distributions and zonal averages. In general, the simulated sea level pressure and upper level geopotential height field agree well with the observations. Well simulated features are the winter Aleutian and Icelandic lows, the summer southwestern U.S. low, the summer and winter oceanic subtropical highs in both hemispheres, and the summer upper level Tibetan high and Atlantic ridge. The surface and upper air wind fields in the low latitudes are in good agreement with the observations. The geographical distirbutions of the Earth-atmosphere radiation balance and of the precipitation rates over the oceans are well simulated, but not all of the intensities of these features are correct. Other comparisons are shown for precipitation along the ITCZ, rediation balance, zonally averaged temperatures and zonal winds, and poleward transports of momentum and sensible heat.

  8. Economic effect of reducing nitrogen and phosphorus mass balance on Wisconsin and Québec dairy farms.

    PubMed

    Pellerin, D; Charbonneau, E; Fadul-Pacheco, L; Soucy, O; Wattiaux, M A

    2017-10-01

    Our objective was to explore the trade-offs between economic performance (farm net income, FNI) and environmental outcomes (whole-farm P and N balances) of dairy farms in Wisconsin (WI; United States) and Québec (QC; Canada). An Excel-based linear program model (N-CyCLES; nutrient cycling: crops, livestock, environment, and soil) was developed to optimize feeding, cropping, and manure management as a single unit of management. In addition to FNI, P and N balances model outputs included (1) the mix of up to 9 home-grown and 17 purchased feeds for up to 5 animal groups, (2) the mix of up to 5 crop rotations in up to 5 land units and c) the mix of up to 7 fertilizers (solid and liquid manure and 5 commercial fertilizers) to allocate in each land unit. The model was parameterized with NRC nutritional guidelines and regional nutrient management planning rules. Simulations were conducted on a typical WI farm of 107 cows and 151 ha of cropland and, a Southern QC farm of 87 cows and 142 ha of cropland and all results were expressed per kg of fat- and protein-corrected milk (FPCM). In absence of constraints on P and N balances, maximum FNI was 0.12 and 0.11 $/kg of FPCM for WI and QC, respectively, with P and N balances of 1.05 and 14.29 g/kg of FPCM in WI but 0.60 and 15.70 g/kg of FPCM in QC. The achievable reduction (balance at maximum FNI minus balance when the simulation objective was to minimize P or N balance) was 0.31 and 0.54 g of P/kg of FPCM (29 and 89% reduction), but 2.37 and 3.31 g of N/kg of FPCM (17 and 24% reduction) in WI and QC, respectively. Among other factors, differences in animal unit per hectare and reliance on biological N fixation may have contributed to lower achievable reductions of whole-farm balances in WI compared with QC. Subsequent simulations to maximize FNI under increasing constraints on nutrient balances revealed that it was possible to reduce P balance, N balance, and both together by up to 33% without a substantial effect on FNI. Partial reduction in P balance reduced N balance (synergetic effect) in WI, but increased N balance (antagonistic effect) in QC. In contrast, reducing N balance increased P balance in both regions, albeit in different magnitudes. The regional comparison highlighted the importance of site-specific conditions on modeling outcomes. This study demonstrated that even when recommended guidelines are followed for herd nutrition and crop fertilization, the optimization of herd feeding, cropping, and manure spreading as a single unit of management may help identify management options that preserve FNI, while substantially reducing whole-farm nutrient balance. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. A Predictive Model for Microbial Counts on Beaches where Intertidal Sand is the Primary Source

    PubMed Central

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K.; Solo-Gabriele, Helena M.; Wang, John D.; Fleming, Lora E.

    2015-01-01

    Human health protection at recreational beaches requires accurate and timely information on microbiological conditions to issue advisories. The objective of this study was to develop a new numerical mass balance model for enterococci levels on nonpoint source beaches. The significant advantage of this model is its easy implementation, and it provides a detailed description of the cross-shore distribution of enterococci that is useful for beach management purposes. The performance of the balance model was evaluated by comparing predicted exceedances of a beach advisory threshold value to field data, and to a traditional regression model. Both the balance model and regression equation predicted approximately 70% the advisories correctly at the knee depth and over 90% at the waist depth. The balance model has the advantage over the regression equation in its ability to simulate spatiotemporal variations of microbial levels, and it is recommended for making more informed management decisions. PMID:25840869

  10. An Advanced Simulation Framework for Parallel Discrete-Event Simulation

    NASA Technical Reports Server (NTRS)

    Li, P. P.; Tyrrell, R. Yeung D.; Adhami, N.; Li, T.; Henry, H.

    1994-01-01

    Discrete-event simulation (DEVS) users have long been faced with a three-way trade-off of balancing execution time, model fidelity, and number of objects simulated. Because of the limits of computer processing power the analyst is often forced to settle for less than desired performances in one or more of these areas.

  11. CFD-PBM coupled simulation of a nanobubble generator with honeycomb structure

    NASA Astrophysics Data System (ADS)

    Ren, F.; Noda, N. A.; Ueda, T.; Sano, Y.; Takase, Y.; Umekage, T.; Yonezawa, Y.; Tanaka, H.

    2018-06-01

    In recent years, nanobubble technologies have drawn great attention due to their wide applications in many fields of science and technology. The nitrogen nanobubble water circulation can be used to slow the progressions of oxidation and spoilage for the seafood long- term storage. From previous studies, a kind of honeycomb structure for high-efficiency nanobubble generation has been proposed. In this paper, the bubbly flow in the honeycomb structure was studied. The numerical simulations of honeycomb structure were performed by using a computational fluid dynamics–population balance model (CFD-PBM) coupled model. The numerical model was based on the Eulerian multiphase model and the population balance model (PBM) was used to calculate the gas bubble size distribution. The bubble coalescence and breakage were included. Considering the effect of bubble diameter on the fluid flow, the phase interactions were coupled with the PBM. The bubble size distributions in the honeycomb structure under different work conditions were predicted. The experimental results were compared with the simulation predictions.

  12. A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell-gas turbine hybrid generation system - Part II. Balancing units model library and system simulation

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Cai, Ningsheng; Croiset, Eric

    2011-10-01

    Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.

  13. Model of load balancing using reliable algorithm with multi-agent system

    NASA Astrophysics Data System (ADS)

    Afriansyah, M. F.; Somantri, M.; Riyadi, M. A.

    2017-04-01

    Massive technology development is linear with the growth of internet users which increase network traffic activity. It also increases load of the system. The usage of reliable algorithm and mobile agent in distributed load balancing is a viable solution to handle the load issue on a large-scale system. Mobile agent works to collect resource information and can migrate according to given task. We propose reliable load balancing algorithm using least time first byte (LFB) combined with information from the mobile agent. In system overview, the methodology consisted of defining identification system, specification requirements, network topology and design system infrastructure. The simulation method for simulated system was using 1800 request for 10 s from the user to the server and taking the data for analysis. Software simulation was based on Apache Jmeter by observing response time and reliability of each server and then compared it with existing method. Results of performed simulation show that the LFB method with mobile agent can perform load balancing with efficient systems to all backend server without bottleneck, low risk of server overload, and reliable.

  14. Modelling Cerebral Blood Flow and Temperature Using a Vascular Porous Model

    NASA Astrophysics Data System (ADS)

    Blowers, Stephen; Thrippleton, Michael; Marshall, Ian; Harris, Bridget; Andrews, Peter; Valluri, Prashant

    2016-11-01

    Macro-modelling of cerebral blood flow can assist in determining the impact of temperature intervention to reduce permanent tissue damage during instances of brain trauma. Here we present a 3D two phase fluid-porous model for simulating blood flow through the capillary region linked to intersecting 1D arterial and venous vessel trees. This combined vasculature porous (VaPor) model simulates both flow and energy balances, including heat from metabolism, using a vasculature extracted from MRI data which are expanded upon using a tree generation algorithm. Validation of temperature balance has been achieved using rodent brain data. Direct flow validation is not as straight forward due to the method used in determining regional cerebral blood flow (rCBF). In-vivo measurements are achieved using a tracer, which disagree with direct measurements of simulated flow. However, by modelling a virtual tracer, rCBF values are obtained that agree with those found in literature. Temperature profiles generated with the VaPor model show a reduction in core brain temperature after cooling the scalp not seen previously in other models.

  15. Electrochemical carbon dioxide concentrator: Math model

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Schubert, F. H.; Carlson, J. N.

    1973-01-01

    A steady state computer simulation model of an Electrochemical Depolarized Carbon Dioxide Concentrator (EDC) has been developed. The mathematical model combines EDC heat and mass balance equations with empirical correlations derived from experimental data to describe EDC performance as a function of the operating parameters involved. The model is capable of accurately predicting performance over EDC operating ranges. Model simulation results agree with the experimental data obtained over the prediction range.

  16. Three-Component Force Measurements on a Scramjet in a Reflected-Shock Tunnel

    NASA Technical Reports Server (NTRS)

    Tsai, C.-Y.; Bakos, R. J.; Mee, D. J.

    1998-01-01

    A three-component stress-wave force-balance for a large scramjet has been designed, calibrated and tested in the HYPULSE reflected shock tunnel at GASL Inc., New York. The scramjet model is over 3-foot long and weighs in excess of 90 Ibm. The stress-wave force-balance is comprised of three stress bars which are attached to the model. Calibration results indicate that the force balance responds well within about 1 ms and that the sensitivity of the balance to the distribution of load is not large. Results with and without fuel injection were obtained in the tunnel operated for Mach 7 and Mach 10 flight simulation. These tests showed the force-balance can resolve axial force increments due to combustion of about 40 lb in the presence of model lift forces of 500-700 lb.

  17. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    NASA Astrophysics Data System (ADS)

    Goldenson, N. L.

    2014-12-01

    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect, reservoirs and flows, albedo feedback, Snowball Earth, climate sensitivity, and model experiment design. Climate calculations are extended to Mars with some modifications to the Earth climate component, and could be used in lessons about the Mars atmosphere, and exploring scenarios of Mars climate history.

  18. Comparison of SWAT Hydrological Model Results from TRMM 3B42, NEXRAD Stage III, and Oklahoma Mesonet Data

    NASA Astrophysics Data System (ADS)

    Tobin, K. J.; Bennett, M. E.

    2008-05-01

    The Cimarron River Basin (3110 sq km) between Dodge and Guthrie, Oklahoma is located in northern Oklahoma and was used as a test bed to compare the hydrological model performance associated with different methods of precipitation quantification. The Soil and Water Assessment Tool (SWAT) was selected for this project, which is a comprehensive model that, besides quantifying watershed hydrology, can simulate water quality as well as nutrient and sediment loading within stream reaches. An advantage of this location is the extensive monitoring of MET parameters (precipitation, temperature, relative humidity, wind speed, solar radiation) afforded by the Oklahoma Mesonet, which has been documented to improve the performance of SWAT. The utility of TRMM 3B42 and NEXRAD Stage III data in supporting the hydrologic modeling of Cimarron River Basin is demonstrated. Minor adjustments to selected model parameters were made to make parameter values more realistic based on results from previous studies and information and to more realistically simulate base flow. Significantly, no ad hoc adjustments to major parameters such as Curve Number or Available Soil Water were made and robust simulations were obtained. TRMM and NEXRAD data are aggregated into an average daily estimate of precipitation for each TRMM grid cell (0.25 degree X 0.25 degree). Preliminary simulation of stream flow (year 2004 to 2006) in the Cimarron River Basin yields acceptable monthly results with very little adjustment of model parameters using TRMM 3B42 precipitation data (mass balance error = 3 percent; Monthly Nash-Sutcliffe efficiency coefficients (NS) = 0.77). However, both Oklahoma Mesonet rain gauge (mass balance error = 13 percent; Monthly NS = 0.91; Daily NS = 0.64) and NEXRAD Stage III data (mass balance error = -5 percent; Monthly NS = 0.95; Daily NS = 0.69) produces superior simulations even at a sub-monthly time scale; daily results are time averaged over a three day period. Note that all types of precipitation data perform better than a synthetic precipitation dataset generated using a weather simulator (mass balance error = 12 percent; Monthly NS = 0.40). Our study again documents that merged precipitation satellite products, such as TRMM 3B42, can support semi-distributed hydrologic modeling at the watershed scale. However, apparently additional work is required to improve TRMM precipitation retrievals over land to generate a product that yields more robust hydrological simulations especially at finer time scales. Additionally, ongoing work in this basin will compare TRMM results with stream flow model results generated using CMORPH precipitation estimates. Finally, in the future we plan to use simulated, semi-distributed soil moisture values determined by SWAT for comparison with gridded soil moisture estimates from TRMM-TMI that should provide further validation of our modeling efforts.

  19. Simulation of the water balance of boreal watersheds of northeastern British Columbia, Canada using MIKE SHE, an integrated hydrological model

    NASA Astrophysics Data System (ADS)

    Abadzadesahraei, S.; Déry, S.; Rex, J. F.

    2016-12-01

    Northeastern British Columbia (BC) is undergoing rapid development for oil and gas extraction, largely depending on subsurface hydraulic fracturing (fracking), which relies on available freshwater. Even though this industrial activity has made substantial contributions to regional and provincial economies, it is important to ensure that sufficient and sustainable water supplies are available for all those dependent on the resource, including ecological systems. Further, BC statistics predict that the northeastern region's population will increase by 30% over the next 25 years, thereby amplifying the demands of domestic and industrial water usage. Hence, given the increasing demands for surface water in the complex wetlands of northeastern BC, obtaining accurate long-term water balance information is of vital importance. Thus, this study aims to simulate the 1979-2014 water balance at two boreal watersheds using the MIKE SHE model. More specifically, this research intends to quantify the historical, and regional, water budgets and their associated hydrological processes at two boreal watersheds—the Coles Lake and Tsea Lake watersheds—in northeastern BC. The development of coupled groundwater and surface water model of these watersheds are discussed. The model setup, calibration process, and results are presented, focusing on the water balance of boreal watersheds. Hydrological components within these watersheds are quantified through a combination of intensive fieldwork, observational data, analysis and numerical modeling. The output from the model provides important information for decision makers to manage water resources in northeastern BC. Keywords: Northeastern BC; boreal watershed; water balance; MIKE SHE hydrological model.

  20. The future of the Devon Ice cap: results from climate and ice dynamics modelling

    NASA Astrophysics Data System (ADS)

    Mottram, Ruth; Rodehacke, Christian; Boberg, Fredrik

    2017-04-01

    The Devon Ice Cap is an example of a relatively well monitored small ice cap in the Canadian Arctic. Close to Greenland, it shows a similar surface mass balance signal to glaciers in western Greenland. Here we use high resolution (5km) simulations from HIRHAM5 to drive the PISM glacier model in order to model the present day and future prospects of this small Arctic ice cap. Observational data from the Devon Ice Cap in Arctic Canada is used to evaluate the surface mass balance (SMB) data output from the HIRHAM5 model for simulations forced with the ERA-Interim climate reanalysis data and the historical emissions scenario run by the EC-Earth global climate model. The RCP8.5 scenario simulated by EC-Earth is also downscaled by HIRHAM5 and this output is used to force the PISM model to simulate the likely future evolution of the Devon Ice Cap under a warming climate. We find that the Devon Ice Cap is likely to continue its present day retreat, though in the future increased precipitation partly offsets the enhanced melt rates caused by climate change.

  1. The Performance of the Linear Logistic Test Model When the Q-Matrix Is Misspecified: A Simulation Study

    ERIC Educational Resources Information Center

    MacDonald, George T.

    2014-01-01

    A simulation study was conducted to explore the performance of the linear logistic test model (LLTM) when the relationships between items and cognitive components were misspecified. Factors manipulated included percent of misspecification (0%, 1%, 5%, 10%, and 15%), form of misspecification (under-specification, balanced misspecification, and…

  2. E-Area Low-Level Waste Facility Vadose Zone Model: Confirmation of Water Mass Balance for Subsidence Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J. A.

    In preparation for the next revision of the E-Area Low-Level Waste Facility (LLWF) Performance Assessment (PA), a mass balance model was developed in Microsoft Excel to confirm correct implementation of intact- and subsided-area infiltration profiles for the proposed closure cap in the PORFLOW vadose-zone model. The infiltration profiles are based on the results of Hydrologic Evaluation of Landfill Performance (HELP) model simulations for both intact and subsided cases.

  3. The Development in modeling Tibetan Plateau Land/Climate Interaction

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; Liu, Ye; li, qian; Maheswor Shrestha, Maheswor; Ma, Hsi-Yen; Cox, Peter; Sun, shufen; Koike, Toshio

    2015-04-01

    Tibetan Plateau (TP) plays an important role in influencing the continental and planetary scale climate, including East Asian and South Asian monsoon, circulation and precipitation over West Pacific and Indian Oceans. The numerical study has identified TP as the area with strongest land/atmosphere interactions over the midlatitude land. The land degradation there has also affected the monsoon precipitation in TP along the monsoon pathway. The water cycle there affects water sources for major Asian river systems, which include the Tarim, Amu Darya, Indus, Ganges, Brahmaputra, Irrawaddy, Salween, Mekong, Yellow, and Yangtze Rivers. Despite the importance of TP land process in the climate system, the TP land surface processes are poorly modeled due to lack of data available for model validation. To better understand, simulate, and project the role of Tibetan Plateau land surface processes, better parameterization of the Tibetan Land surface processes have been developed and evaluated. The recently available field measurement there and satellite observation have greatly helped this development. This paper presents these new developments and preliminary results using the newly developed biophysical/dynamic vegetation model, frozen soil model, and glacier model. In recent CMIP5 simulation, the CMIP5 models with dynamic vegetation model show poor performance in simulating the TP vegetation and climate. To better simulate the TP vegetation condition and its interaction with climate, we have developed biophysical/dynamic vegetation model, the Simplified Simple Biosphere Model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID), based on water, carbon, and energy balance. The simulated vegetation variables are updates, driven by carbon assimilation, allocation, and accumulation, as well as competition between plant functional types. The model has been validated with the station data, including those measured over the TP. The offline SSiB4/TRIFFID is integrated using the observed precipitation and reanalysis-based meteorological forcing from 1948 to 2008 with 1 degree horizontal resolution. The simulated vegetation conditions and surface hydrology are compared well with observational data with some bias, and shows strong decadal and interannual variabilities with a linear trend associated with the global warming. The TP region is covered by both discontinuous and sporadic permafrost with irregular snow layers above. A frozen soil model is developed to take the coupling effect of mass and heat transport into consideration and includes a detailed description of mass balances of volumetric liquid water, ice, as well as vapor content. It also considers contributions' of heat conduction to the energy balance. The model has been extensively tested using a number of TP station data, which included soil temperature and soil water measurements. The results suggest that it is important to include the frozen sol process to adequately simulate the surface energy balance during the freezing and thawing periods and surface temperature variability, including its diurnal variation. Issues in simulating permafrost process will also be addressed. To better understand the glacier variations under climate change scenarios, an integrated modeling system with an energy budget-based multilayer scheme for clean glaciers, a single-layer scheme for debris-covered glaciers and multilayer scheme for seasonal snow over glacier, soil and forest are developed within a distributed biosphere hydrological modeling framework (WEB-DHM-S model). Discharge simulations using this model show good agreement with observations for Hunza River Basin (13,733 km2) in the Karakoram region of Pakistan for three hydrologic years (2002-2004). Flow composition analysis reveals that the runoff regime is strongly controlled by the snow and glacier melt runoff (50% snowmelt and 33% glacier melt) and suggests that both topography and glacier hypsometry play key roles in glacier mass balance. This study provides a basis for potential application of such an integrated model to the entire Hindu-Kush-Karakoram-Himalaya region.

  4. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mernild, Sebastian Haugard; Liston, Glen

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of airmore » temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y{sup -1}. The annual glacier loss for the two simulations was 50.7 x 10{sup 6} m{sup 3} y{sup -1} and 64.4 x 10{sup 6} m{sup 3} y{sup -1} for all glaciers - a difference of {approx}21%. The average equilibrium line altitude (ELA) for all glaciers in the simulation domain was located at 875 m a.s.l. and at 900 m a.s.l. for simulations with or without inversion routines, respectively.« less

  5. Modeling, Simulation, and Measurement of Balanced Antipodal Vivaldi (BAV) Antennas for Fully Polarimetric Forward-Looking Ground-Penetrating Radar (FLGPR) Receive Channels

    DTIC Science & Technology

    2017-08-01

    compared against the current receiver. The focus of the design was to maximize low-frequency performance, particularly below 1.0 GHz. The current...Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an...documents the design , simulation, and measurement of balanced antipodal Vivaldi (BAV) antenna elements for the receive channels of a US Army Research

  6. IRIS thermal balance test within ESTEC LSS

    NASA Technical Reports Server (NTRS)

    Messidoro, Piero; Ballesio, Marino; Vessaz, J. P.

    1988-01-01

    The Italian Research Interim Stage (IRIS) thermal balance test was successfully performed in the ESTEC Large Space Simulator (LSS) to qualify the thermal design and to validate the thermal mathematical model. Characteristics of the test were the complexity of the set-up required to simulate the Shuttle cargo bay and allowing IRIS mechanism actioning and operation for the first time in the new LSS facility. Details of the test are presented, and test results for IRIS and the LSS facility are described.

  7. A New Attempt of 2-D Numerical Ice Flow Model to Reconstruct Paleoclimate from Mountain Glaciers

    NASA Astrophysics Data System (ADS)

    Candaş, Adem; Akif Sarıkaya, Mehmet

    2017-04-01

    A new two dimensional (2D) numerical ice flow model is generated to simulate the steady-state glacier extent for a wide range of climate conditions. The simulation includes the flow of ice enforced by the annual mass balance gradient of a valley glacier. The annual mass balance is calculated by the difference of the net accumulation and ablation of snow and (or) ice. The generated model lets users to compare the simulated and field observed ice extent of paleoglaciers. As a result, model results provide the conditions about the past climates since simulated ice extent is a function of predefined climatic conditions. To predict the glacier shape and distribution in two dimension, time dependent partial differential equation (PDE) is solved. Thus, a 2D glacier flow model code is constructed in MATLAB and a finite difference method is used to solve this equation. On the other hand, Parallel Ice Sheet Model (PISM) is used to regenerate paleoglaciers in the same area where the MATLAB code is applied. We chose the Mount Dedegöl, an extensively glaciated mountain in SW Turkey, to apply both models. Model results will be presented and discussed in this presentation. This study was supported by TÜBİTAK 114Y548 project.

  8. Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano

    NASA Astrophysics Data System (ADS)

    Falaize, Antoine; Hélie, Thomas

    2017-03-01

    This paper deals with the time-domain simulation of an electro-mechanical piano: the Fender Rhodes. A simplified description of this multi-physical system is considered. It is composed of a hammer (nonlinear mechanical component), a cantilever beam (linear damped vibrating component) and a pickup (nonlinear magneto-electronic transducer). The approach is to propose a power-balanced formulation of the complete system, from which a guaranteed-passive simulation is derived to generate physically-based realistic sound synthesis. Theses issues are addressed in four steps. First, a class of Port-Hamiltonian Systems is introduced: these input-to-output systems fulfill a power balance that can be decomposed into conservative, dissipative and source parts. Second, physical models are proposed for each component and are recast in the port-Hamiltonian formulation. In particular, a finite-dimensional model of the cantilever beam is derived, based on a standard modal decomposition applied to the Euler-Bernoulli model. Third, these systems are interconnected, providing a nonlinear finite-dimensional Port-Hamiltonian System of the piano. Fourth, a passive-guaranteed numerical method is proposed. This method is built to preserve the power balance in the discrete-time domain, and more precisely, its decomposition structured into conservative, dissipative and source parts. Finally, simulations are performed for a set of physical parameters, based on empirical but realistic values. They provide a variety of audio signals which are perceptively relevant and qualitatively similar to some signals measured on a real instrument.

  9. Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified.

    PubMed

    Brokaw, C J

    1985-10-01

    Computer simulation is used to examine a simple flagellar model that will initiate and propagate bending waves in the absence of viscous resistances. The model contains only an elastic bending resistance and an active sliding mechanism that generates reduced active shear moment with increasing sliding velocity. Oscillation results from a distributed control mechanism that reverses the direction of operation of the active sliding mechanism when the curvature reaches critical magnitudes in either direction. Bend propagation by curvature-controlled flagellar models therefore does not require interaction with the viscous resistance of an external fluid. An analytical examination of moment balance during bend propagation by this model yields a solution curve giving values of frequency and wavelength that satisfy the moment balance equation and give uniform bend propagation, suggesting that the model is underdetermined. At 0 viscosity, the boundary condition of 0 shear rate at the basal end of the flagellum during the development of new bends selects the particular solution that is obtained by computer simulations. Therefore, the details of the pattern of bend initiation at the basal end of a flagellum can be of major significance in determining the properties of propagated bending waves in the distal portion of a flagellum. At high values of external viscosity, the model oscillates at frequencies and wavelengths that give approximately integral numbers of waves on the flagellum. These operating points are selected because they facilitate the balance of bending moments at the ends of the model, where the external viscous moment approaches 0. These mode preferences can be overridden by forcing the model to operate at a predetermined frequency. The strong mode preferences shown by curvature-controlled flagellar models, in contrast to the weak or absent mode preferences shown by real flagella, therefore do not demonstrate the inapplicability of the moment-balance approach to real flagella. Instead, they indicate a need to specify additional properties of real flagella that are responsible for selecting particular operating points.

  10. Comparison of model performance and simulated water balance using NASIM and SWAT for the Wupper River Basin, Germany

    NASA Astrophysics Data System (ADS)

    Lorza, Paula; Nottebohm, Martin; Scheibel, Marc; aus der Beek, Tim

    2017-04-01

    Under the framework of the Horizon 2020 project BINGO (Bringing INnovation to onGOing water management), climate change impacts on the water cycle in the Wupper catchment area are being studied. With this purpose, a set of hydrological models in NASIM and SWAT have been set up, calibrated, and validated for past conditions using available data. NASIM is a physically-based, lumped, hydrological model based on the water balance equation. For the upper part of the Dhünn catchment area - Wupper River's main tributary - a SWAT model was also implemented. Observed and simulated discharge by NASIM and SWAT for the drainage area upstream of Neumühle hydrometric station (close to Große Dhünn reservoir's inlet) are compared. Comparison of simulated water balance for several hydrological years between the two models is also carried out. While NASIM offers high level of detail for modelling of complex urban areas and the possibility of entering precipitation time series at fine temporal resolution (e.g. minutely data), SWAT enables to study long-term impacts offering a huge variety of input and output variables including different soil properties, vegetation and land management practices. Beside runoff, also sediment and nutrient transport can be simulated. For most calculations, SWAT operates on a daily time step. The objective of this and future work is to determine catchment responses on different meteorological events and to study parameter sensitivity of stationary inputs such as soil parameters, vegetation or land use. Model performance is assessed with different statistical metrics (relative volume error, coefficient of determination, and Nash-Sutcliffe Efficiency).

  11. Modeling landscape evapotranspiration by integrating land surface phenology and a water balance algorithm

    USGS Publications Warehouse

    Senay, Gabriel B.

    2008-01-01

    The main objective of this study is to present an improved modeling technique called Vegetation ET (VegET) that integrates commonly used water balance algorithms with remotely sensed Land Surface Phenology (LSP) parameter to conduct operational vegetation water balance modeling of rainfed systems at the LSP’s spatial scale using readily available global data sets. Evaluation of the VegET model was conducted using Flux Tower data and two-year simulation for the conterminous US. The VegET model is capable of estimating actual evapotranspiration (ETa) of rainfed crops and other vegetation types at the spatial resolution of the LSP on a daily basis, replacing the need to estimate crop- and region-specific crop coefficients.

  12. A parallel implementation of an off-lattice individual-based model of multicellular populations

    NASA Astrophysics Data System (ADS)

    Harvey, Daniel G.; Fletcher, Alexander G.; Osborne, James M.; Pitt-Francis, Joe

    2015-07-01

    As computational models of multicellular populations include ever more detailed descriptions of biophysical and biochemical processes, the computational cost of simulating such models limits their ability to generate novel scientific hypotheses and testable predictions. While developments in microchip technology continue to increase the power of individual processors, parallel computing offers an immediate increase in available processing power. To make full use of parallel computing technology, it is necessary to develop specialised algorithms. To this end, we present a parallel algorithm for a class of off-lattice individual-based models of multicellular populations. The algorithm divides the spatial domain between computing processes and comprises communication routines that ensure the model is correctly simulated on multiple processors. The parallel algorithm is shown to accurately reproduce the results of a deterministic simulation performed using a pre-existing serial implementation. We test the scaling of computation time, memory use and load balancing as more processes are used to simulate a cell population of fixed size. We find approximate linear scaling of both speed-up and memory consumption on up to 32 processor cores. Dynamic load balancing is shown to provide speed-up for non-regular spatial distributions of cells in the case of a growing population.

  13. Modelled non-linear response to climate of Hardangerjøkulen ice cap, southern Norway, since the mid-Holocene

    NASA Astrophysics Data System (ADS)

    Åkesson, Henning; Nisancioglu, Kerim H.; Giesen, Rianne H.; Morlighem, Mathieu

    2016-04-01

    Glacier and ice cap volume changes currently amount to half of the total cryospheric contribution to sea-level rise and are projected to remain substantial throughout the 21st century. To simulate glacier behavior on centennial and longer time scales, models rely on simplified dynamics and tunable parameters for processes not well understood. Model calibration is often done using present-day observations, even though the relationship between parameters and parametrized processes may be altered for significantly different glacier states. In this study, we simulate the Hardangerjøkulen ice cap in southern Norway since the mid-Holocene, through the Little Ice Age (LIA) and into the future. We run an ensemble for both calibration and transient experiments, using a two-dimensional ice flow model with mesh refinement. For the Holocene, we apply a simple mass balance forcing based on climate reconstructions. For the LIA until 1962, we use geomorphological evidence and measured outlet glacier positions to find a mass balance history, while we use direct mass balance measurements from 1963 until today. Given a linear climate forcing, we show that Hardangerøkulen grew from ice-free conditions in the mid-Holocene, to its maximum LIA extent in a highly non-linear fashion. We relate this to local bed topography and demonstrate that volume and area of some but not all outlet glaciers, as well as the entire ice cap, become decoupled for several centuries during our simulation of the late Holocene, before co-varying approaching the LIA. Our model is able to simulate most recorded ice cap and outlet glacier changes from the LIA until today. We show that present-day Hardangerøkulen is highly sensitive to mass balance changes, and estimate that the ice cap will melt completely by the year 2100.

  14. On the violation of gradient wind balance at the top of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Cohen, Yair; Harnik, Nili; Heifetz, Eyal; Nolan, David S.; Tao, Dandan; Zhang, Fuqing

    2017-08-01

    The existence of physical solutions for the gradient wind balance is examined at the top of 12 simulated tropical cyclones. The pressure field at the top of these storms, which depends on the vertically integrated effect of the warm core and the near surface low, is found to violate the gradient wind balance—termed here as a state of nonbalance. Using a toy model, it is shown that slight changes in the relative location and relative widths of the warm core drastically increase the isobaric curvature at the upper level pressure maps leading to nonbalance. While idealized storms return to balance within several days, simulations of real-world tropical cyclones retain a considerable degree of nonbalance throughout the model integration. Comparing mean and maximum values of different storms shows that peak nonbalance correlates with either peak intensity or intensification, implying the possible importance of nonbalance at upper levels for the near surface winds.

  15. Challenges of forest landscape modeling - simulating large landscapes and validating results

    Treesearch

    Hong S. He; Jian Yang; Stephen R. Shifley; Frank R. Thompson

    2011-01-01

    Over the last 20 years, we have seen a rapid development in the field of forest landscape modeling, fueled by both technological and theoretical advances. Two fundamental challenges have persisted since the inception of FLMs: (1) balancing realistic simulation of ecological processes at broad spatial and temporal scales with computing capacity, and (2) validating...

  16. Simulating Sustainment for an Unmanned Logistics System Concept of Operation in Support of Distributed Operations

    DTIC Science & Technology

    2017-06-01

    designed experiment to model and explore a ship-to-shore logistics process supporting dispersed units via three types of ULSs, which vary primarily in...systems, simulation, discrete event simulation, design of experiments, data analysis, simplekit, nearly orthogonal and balanced designs 15. NUMBER OF... designed experiment to model and explore a ship-to-shore logistics process supporting dispersed units via three types of ULSs, which vary primarily

  17. Surface Mass Balance of the Greenland Ice Sheet Derived from Paleoclimate Reanalysis

    NASA Astrophysics Data System (ADS)

    Badgeley, J.; Steig, E. J.; Hakim, G. J.; Anderson, J.; Tardif, R.

    2017-12-01

    Modeling past ice-sheet behavior requires independent knowledge of past surface mass balance. Though models provide useful insight into ice-sheet response to climate forcing, if past climate is unknown, then ascertaining the rate and extent of past ice-sheet change is limited to geological and geophysical constraints. We use a novel data-assimilation framework developed under the Last Millennium Reanalysis Project (Hakim et al., 2016) to reconstruct past climate over ice sheets with the intent of creating an independent surface mass balance record for paleo ice-sheet modeling. Paleoclimate data assimilation combines the physics of climate models and the time series evidence of proxy records in an offline, ensemble-based approach. This framework allows for the assimilation of numerous proxy records and archive types while maintaining spatial consistency with known climate dynamics and physics captured by the models. In our reconstruction, we use the Community Climate System Model version 4, CMIP5 last millennium simulation (Taylor et al., 2012; Landrum et al., 2013) and a nearly complete database of ice core oxygen isotope records to reconstruct Holocene surface temperature and precipitation over the Greenland Ice Sheet on a decadal timescale. By applying a seasonality to this reconstruction (from the TraCE-21ka simulation; Liu et al., 2009), our reanalysis can be used in seasonally-based surface mass balance models. Here we discuss the methods behind our reanalysis and the performance of our reconstruction through prediction of unassimilated proxy records and comparison to paleoclimate reconstructions and reanalysis products.

  18. Use of simulation to compare the performance of minimization with stratified blocked randomization.

    PubMed

    Toorawa, Robert; Adena, Michael; Donovan, Mark; Jones, Steve; Conlon, John

    2009-01-01

    Minimization is an alternative method to stratified permuted block randomization, which may be more effective at balancing treatments when there are many strata. However, its use in the regulatory setting for industry trials remains controversial, primarily due to the difficulty in interpreting conventional asymptotic statistical tests under restricted methods of treatment allocation. We argue that the use of minimization should be critically evaluated when designing the study for which it is proposed. We demonstrate by example how simulation can be used to investigate whether minimization improves treatment balance compared with stratified randomization, and how much randomness can be incorporated into the minimization before any balance advantage is no longer retained. We also illustrate by example how the performance of the traditional model-based analysis can be assessed, by comparing the nominal test size with the observed test size over a large number of simulations. We recommend that the assignment probability for the minimization be selected using such simulations. Copyright (c) 2008 John Wiley & Sons, Ltd.

  19. Exploring the Mass Balance and Sea Level Contribution of Global Glaciers During the Last Interglaciation and Mid-Holocene

    NASA Astrophysics Data System (ADS)

    Smith, S.; Ullman, D. J.; He, F.; Carlson, A. E.; Marzeion, B.; Maussion, F.

    2017-12-01

    Understanding the behavior of the world's glaciers during previous interglaciations is key to interpreting the sensitivity and behavior of the cryosphere under scenarios of future anthropogenic warming. Previous studies of the Last Interglaciation (LIG, 130 ka to 116 ka) indicate elevated global temperatures and higher sea levels than the Holocene, but most assessments of the impact on the cryosphere have focused on the mass balance and volume change of polar ice sheets. In assessing sea-level sources, most studies assume complete deglacation of global glaciers, but this has yet to be tested. In addition, the significant changes in orbital forcing during the LIG and the associated impacts on climate seasonality and variability may have led to unique glacier evolution.Here, we explore the effect of LIG climate on the global glacier budget. We employ the Open Global Glacier Model (OGGM), forced by simulated LIG equilibrium climate anomalies (127 ka) from the Community Climate System Model Version 3 (CCSM3). OGGM is a glacier mass balance and dynamics model, specifically designed to reconstruct global glacier volume change. Our simulations have been conducted in an equilibrium state to determine the effect of the prolonged climate forcing of the LIG. Due to unknown flow characteristics of glaciers during the LIG, we explore the parametric uncertainty in the mass balance and flow sensitivity parameters. As a point of comparison, we also conduct a series of simulations using forcing anomalies from the CCSM3 mid-Holocene (6 ka) experiment. Results from both experiments show that glacier mass balance is highly sensitive to these sensitivity parameters, pointing at the need for glacier margin calibration for OGGM in paleoclimate applications.

  20. Mass Balance of a Maritime Glacier on the Southeast Tibetan Plateau and Its Climatic Sensitivity

    NASA Astrophysics Data System (ADS)

    Yang, W.

    2014-12-01

    Based on glacio-meteorological measurements and mass-balance stake records during the five-year period of 2005-2010 on the southeast Tibetan Plateau, an energy-mass balance model was applied to study the surface mass balance of the Parlung No. 94 Glacier, as well as its response to regional climate conditions. The primary physical parameters involved in the model were locally calibrated by using relevant glacio-meteorological datasets. The good agreement between the snowpack height/mass balance simulations and the in-situ measurements available from a total of 12 monitoring stakes over this glacier confirmed the satisfactory performance of the energy-mass balance model. Results suggested that the recent state of the Parlung No. 94 Glacier was far removed from the 'ideal' climatic regime leading to zero mass balance, with its annual mass balance of approximately -0.9 m w.e. during 2005-2010. Climatic sensitivity experiments were also carried out to interpret the observed mass-balance changes, and the experiments demonstrated that the maritime glaciers concerned herein were theoretically more vulnerable to ongoing climate warming on the Tibetan Plateau than potential changes in the amount of precipitation. A plausible causal explanation for the recent glacier shrinkage in this region was concerned with the increasing air temperature. Moreover, both the mass balance simulations and the field measurements indicated that the mass accumulation over this maritime glacier occurred primarily in the boreal spring. Such "spring-accumulation type" glaciers are presumed to be distributed mainly within a narrow wedge-shaped region along the Brahmaputra River. Climatic sensitivities of the glacier mass balanceare also found to be closely linked to the regional precipitation seasonality that is simultaneously modulated by various atmospheric circulation patterns, such as the southern westerlies, the Bay of Bengal vortex in the spring season and the Indian monsoon in the summer season.

  1. Simulating Runoff from a Grid Based Mercury Model: Flow Comparisons

    EPA Science Inventory

    Several mercury cycling models, including general mass balance approaches, mixed-batch reactors in streams or lakes, or regional process-based models, exist to assess the ecological exposure risks associated with anthropogenically increased atmospheric mercury (Hg) deposition, so...

  2. Communication: Note on detailed balance in symmetrical quasi-classical models for electronically non-adiabatic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William H., E-mail: millerwh@berkeley.edu; Cotton, Stephen J., E-mail: StephenJCotton47@gmail.com

    2015-04-07

    It is noted that the recently developed symmetrical quasi-classical (SQC) treatment of the Meyer-Miller (MM) model for the simulation of electronically non-adiabatic dynamics provides a good description of detailed balance, even though the dynamics which results from the classical MM Hamiltonian is “Ehrenfest dynamics” (i.e., the force on the nuclei is an instantaneous coherent average over all electronic states). This is seen to be a consequence of the SQC windowing methodology for “processing” the results of the trajectory calculation. For a particularly simple model discussed here, this is shown to be true regardless of the choice of windowing function employedmore » in the SQC model, and for a more realistic full classical molecular dynamics simulation, it is seen to be maintained correctly for very long time.« less

  3. A mathematical model for simulating spring discharge and estimating sinkhole porosity in a karst watershed

    NASA Astrophysics Data System (ADS)

    Li, Guangquan; Field, Malcolm S.

    2014-03-01

    Documenting and understanding water balances in a karst watershed in which groundwater and surface water resources are strongly interconnected are important aspects for managing regional water resources. Assessing water balances in karst watersheds can be difficult, however, because karst watersheds are so very strongly affected by groundwater flows through solution conduits that are often connected to one or more sinkholes. In this paper we develop a mathematical model to approximate sinkhole porosity from discharge at a downstream spring. The model represents a combination of a traditional linear reservoir model with turbulent hydrodynamics in the solution conduit connecting the downstream spring with the upstream sinkhole, which allows for the simulation of spring discharges and estimation of sinkhole porosity. Noting that spring discharge is an integral of all aspects of water storage and flow, it is mainly dependent on the behavior of the karst aquifer as a whole and can be adequately simulated using the analytical model described in this paper. The model is advantageous in that it obviates the need for a sophisticated numerical model that is much more costly to calibrate and operate. The model is demonstrated using the St. Marks River Watershed in northwestern Florida.

  4. Method for obtaining aerodynamic data on hypersonic configurations with scramjet exhaust flow simulation

    NASA Technical Reports Server (NTRS)

    Hartill, W. R.

    1977-01-01

    A hypersonic wind tunnel test method for obtaining credible aerodynamic data on a complete hypersonic vehicle (generic X-24c) with scramjet exhaust flow simulation is described. The general problems of simulating the scramjet exhaust as well as accounting for scramjet inlet flow and vehicle forces are analyzed, and candidate test methods are described and compared. The method selected as most useful makes use of a thrust-minus-drag flow-through balance with a completely metric model. Inlet flow is diverted by a fairing. The incremental effect of the fairing is determined in the testing of two reference models. The net thrust of the scramjet module is an input to be determined in large-scale module tests with scramjet combustion. Force accounting is described, and examples of force component levels are predicted. Compatibility of the test method with candidate wind tunnel facilities is described, and a preliminary model mechanical arrangement drawing is presented. The balance design and performance requirements are described in a detailed specification. Calibration procedures, model instrumentation, and a test plan for the model are outlined.

  5. Fresh Water Content Variability in the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Proshutinsky, Andrey

    2003-01-01

    Arctic Ocean model simulations have revealed that the Arctic Ocean has a basin wide oscillation with cyclonic and anticyclonic circulation anomalies (Arctic Ocean Oscillation; AOO) which has a prominent decadal variability. This study explores how the simulated AOO affects the Arctic Ocean stratification and its relationship to the sea ice cover variations. The simulation uses the Princeton Ocean Model coupled to sea ice. The surface forcing is based on NCEP-NCAR Reanalysis and its climatology, of which the latter is used to force the model spin-up phase. Our focus is to investigate the competition between ocean dynamics and ice formation/melt on the Arctic basin-wide fresh water balance. We find that changes in the Atlantic water inflow can explain almost all of the simulated fresh water anomalies in the main Arctic basin. The Atlantic water inflow anomalies are an essential part of AOO, which is the wind driven barotropic response to the Arctic Oscillation (AO). The baroclinic response to AO, such as Ekman pumping in the Beaufort Gyre, and ice meldfreeze anomalies in response to AO are less significant considering the whole Arctic fresh water balance.

  6. Adjustment of spatio-temporal precipitation patterns in a high Alpine environment

    NASA Astrophysics Data System (ADS)

    Herrnegger, Mathew; Senoner, Tobias; Nachtnebel, Hans-Peter

    2018-01-01

    This contribution presents a method for correcting the spatial and temporal distribution of precipitation fields in a mountainous environment. The approach is applied within a flood forecasting model in the Upper Enns catchment in the Central Austrian Alps. Precipitation exhibits a large spatio-temporal variability in Alpine areas. Additionally the density of the monitoring network is low and measurements are subjected to major errors. This can lead to significant deficits in water balance estimation and stream flow simulations, e.g. for flood forecasting models. Therefore precipitation correction factors are frequently applied. For the presented study a multiplicative, stepwise linear correction model is implemented in the rainfall-runoff model COSERO to adjust the precipitation pattern as a function of elevation. To account for the local meteorological conditions, the correction model is derived for two elevation zones: (1) Valley floors to 2000 m a.s.l. and (2) above 2000 m a.s.l. to mountain peaks. Measurement errors also depend on the precipitation type, with higher magnitudes in winter months during snow fall. Therefore, additionally, separate correction factors for winter and summer months are estimated. Significant improvements in the runoff simulations could be achieved, not only in the long-term water balance simulation and the overall model performance, but also in the simulation of flood peaks.

  7. Design and implementation of self-balancing coaxial two wheel robot based on HSIC

    NASA Astrophysics Data System (ADS)

    Hu, Tianlian; Zhang, Hua; Dai, Xin; Xia, Xianfeng; Liu, Ran; Qiu, Bo

    2007-12-01

    This thesis has studied the control problem concerning position and orientation control of self-balancing coaxial two wheel robot based on the human simulated intelligent control (HSIC) theory. Adopting Lagrange equation, the dynamic model of self-balancing coaxial two-wheel Robot is built up, and the Sensory-motor Intelligent Schemas (SMIS) of HSIC controller for the robot is designed by analyzing its movement and simulating the human controller. In robot's motion process, by perceiving position and orientation of the robot and using multi-mode control strategy based on characteristic identification, the HSIC controller enables the robot to control posture. Utilizing Matlab/Simulink, a simulation platform is established and a motion controller is designed and realized based on RT-Linux real-time operating system, employing high speed ARM9 processor S3C2440 as kernel of the motion controller. The effectiveness of the new design is testified by the experiment.

  8. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors

    NASA Astrophysics Data System (ADS)

    Allen, John M.; Elbasiouny, Sherif M.

    2018-06-01

    Objective. Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. Approach. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Main results. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Significance. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.

  9. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors.

    PubMed

    Allen, John M; Elbasiouny, Sherif M

    2018-06-01

    Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.

  10. Simulating soil moisture change in a semiarid rangeland watershed with a process-based water-balance model

    Treesearch

    Howard Evan Canfield; Vicente L. Lopes

    2000-01-01

    A process-based, simulation model for evaporation, soil water and streamflow (BROOK903) was used to estimate soil moisture change on a semiarid rangeland watershed in southeastern Arizona. A sensitivity analysis was performed to select parameters affecting ET and soil moisture for calibration. Automatic parameter calibration was performed using a procedure based on a...

  11. Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments.

    PubMed

    Wiechert, W; de Graaf, A A

    1997-07-05

    The extension of metabolite balancing with carbon labeling experiments, as described by Marx et al. (Biotechnol. Bioeng. 49: 11-29), results in a much more detailed stationary metabolic flux analysis. As opposed to basic metabolite flux balancing alone, this method enables both flux directions of bidirectional reaction steps to be quantitated. However, the mathematical treatment of carbon labeling systems is much more complicated, because it requires the solution of numerous balance equations that are bilinear with respect to fluxes and fractional labeling. In this study, a universal modeling framework is presented for describing the metabolite and carbon atom flux in a metabolic network. Bidirectional reaction steps are extensively treated and their impact on the system's labeling state is investigated. Various kinds of modeling assumptions, as usually made for metabolic fluxes, are expressed by linear constraint equations. A numerical algorithm for the solution of the resulting linear constrained set of nonlinear equations is developed. The numerical stability problems caused by large bidirectional fluxes are solved by a specially developed transformation method. Finally, the simulation of carbon labeling experiments is facilitated by a flexible software tool for network synthesis. An illustrative simulation study on flux identifiability from available flux and labeling measurements in the cyclic pentose phosphate pathway of a recombinant strain of Zymomonas mobilis concludes this contribution.

  12. Development of the NTF-117S Semi-Span Balance

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.

    2010-01-01

    A new high-capacity semi-span force and moment balance has recently been developed for use at the National Transonic Facility at the NASA Langley Research Center. This new semi-span balance provides the NTF a new measurement capability that will support testing of semi-span test models at transonic high-lift testing regimes. Future testing utilizing this new balance capability will include active circulation control and propulsion simulation testing of semi-span transonic wing models. The NTF has recently implemented a new highpressure air delivery station that will provide both high and low mass flow pressure lines that are routed out to the semi-span models via a set high/low pressure bellows that are indirectly linked to the metric end of the NTF-117S balance. A new check-load stand is currently being developed to provide the NTF with an in-house capability that will allow for performing check-loads on the NTF-117S balance in order to determine the pressure tare affects on the overall performance of the balance. An experimental design is being developed that will allow for experimentally assessing the static pressure tare affects on the balance performance.

  13. Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency

    NASA Astrophysics Data System (ADS)

    Marthews, T.; Malhi, Y.; Girardin, C.; Silva-Espejo, J.; Aragão, L.; Metcalfe, D.; Rapp, J.; Mercado, L.; Fisher, R.; Galbraith, D.; Fisher, J.; Salinas-Revilla, N.; Friend, A.; Restrepo-Coupe, N.; Williams, R.

    2012-04-01

    A better understanding of the mechanisms controlling the magnitude and sign of carbon components in tropical forest ecosystems is important for reliable estimation of this important regional component of the global carbon cycle. We used the JULES vegetation model to simulate all components of the carbon balance at six sites along an Andes-Amazon transect across Peru and Brazil and compared the results to published field measurements. In the upper montane zone the model predicted a vegetation dieback, indicating a need for better parameterisation of cloud forest vegetation. In the lower montane and lowland zones simulated ecosystem productivity and respiration were predicted with reasonable accuracy, although not always within the error bounds of the observations. Model-predicted carbon use efficiency in this transect surprisingly did not increase with elevation, but remained close to the 'temperate' value 0.5. This may be explained by elevational changes in the balance between growth and maintenance respiration within the forest canopy, as controlled by both temperature- and pressure-mediated processes.

  14. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators.

    PubMed

    Kim, Hyosub; Park, YeJe; Kim, Kyungtae; Sim, H-S; Ahn, Jaewook

    2018-05-04

    Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.

  15. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators

    NASA Astrophysics Data System (ADS)

    Kim, Hyosub; Park, YeJe; Kim, Kyungtae; Sim, H.-S.; Ahn, Jaewook

    2018-05-01

    Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.

  16. The effect of clouds on the earth's radiation balance

    NASA Technical Reports Server (NTRS)

    Herman, G. F.; Wu, M. L. C.; Johnson, W. T.

    1979-01-01

    The effect of global cloudiness on the radiation balance at the top of the atmosphere is studied in general circulation model experiments. Wintertime simulations were conducted with clouds that had realistic optical properties, and were compared with simulations in which the clouds were transparent to either solar or thermal radiation. Clouds increase the net balance by limiting longwave loss to space, but decrease it by reflecting solar radiation. It is found that the net result of cloudiness is to maintain net radiation which is less than would be realized under clear conditions: Clouds cause the net radiation at the top of the atmosphere to increase due to longwave absorption, but to decrease even more due to cloud reflectance of solar radiation.

  17. Groundwater-flow model of the northern High Plains aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming

    USGS Publications Warehouse

    Peterson, Steven M.; Flynn, Amanda T.; Traylor, Jonathan P.

    2016-12-13

    The High Plains aquifer is a nationally important water resource underlying about 175,000 square miles in parts of eight states: Colorado, Kansas, Oklahoma, Nebraska, New Mexico, South Dakota, Texas, and Wyoming. Droughts across much of the Northern High Plains from 2001 to 2007 have combined with recent (2004) legislative mandates to elevate concerns regarding future availability of groundwater and the need for additional information to support science-based water-resource management. To address these needs, the U.S. Geological Survey began the High Plains Groundwater Availability Study to provide a tool for water-resource managers and other stakeholders to assess the status and availability of groundwater resources.A transient groundwater-flow model was constructed using the U.S. Geological Survey modular three-dimensional finite-difference groundwater-flow model with Newton-Rhapson solver (MODFLOW–NWT). The model uses an orthogonal grid of 565 rows and 795 columns, and each grid cell measures 3,281 feet per side, with one variably thick vertical layer, simulated as unconfined. Groundwater flow was simulated for two distinct periods: (1) the period before substantial groundwater withdrawals, or before about 1940, and (2) the period of increasing groundwater withdrawals from May 1940 through April 2009. A soil-water-balance model was used to estimate recharge from precipitation and groundwater withdrawals for irrigation. The soil-water-balance model uses spatially distributed soil and landscape properties with daily weather data and estimated historical land-cover maps to calculate spatial and temporal variations in potential recharge. Mean annual recharge estimated for 1940–49, early in the history of groundwater development, and 2000–2009, late in the history of groundwater development, was 3.3 and 3.5 inches per year, respectively.Primary model calibration was completed using statistical techniques through parameter estimation using the parameter estimation suite of software with Tikhonov regularization. Calibration targets for the groundwater model included 343,067 groundwater levels measured in wells and 10,820 estimated monthly stream base flows at streamgages. A total of 1,312 parameters were adjusted during calibration to improve the match between calibration targets and simulated equivalents. Comparison of calibration targets to simulated equivalents indicated that, at the regional scale, the model correctly reproduced groundwater levels and stream base flows for 1940–2009. This comparison indicates that the model can be used to examine the likely response of the aquifer system to potential future stresses.Mean calibrated recharge for 1940–49 and 2000–2009 was smaller than that estimated with the soil-water-balance model. This indicated that although the general spatial patterns of recharge estimated with the soil-water-balance model were approximately correct at the regional scale of the Northern High Plains aquifer, the soil-water-balance model had overestimated recharge, and adjustments were needed to decrease recharge to improve the match of the groundwater model to calibration targets. The largest components of the simulated groundwater budgets were recharge from precipitation, recharge from canal seepage, outflows to evapotranspiration, and outflows to stream base flow. Simulated outflows to irrigation wells increased from 7 percent of total outflows in 1940–49 to 38 percent of 1970–79 total outflows and 49 percent of 2000–2009 total outflows.

  18. A dynamic human water and electrolyte balance model for verification and optimization of life support systems in space flight applications

    NASA Astrophysics Data System (ADS)

    Hager, P.; Czupalla, M.; Walter, U.

    2010-11-01

    In this paper we report on the development of a dynamic MATLAB SIMULINK® model for the water and electrolyte balance inside the human body. This model is part of an environmentally sensitive dynamic human model for the optimization and verification of environmental control and life support systems (ECLSS) in space flight applications. An ECLSS provides all vital supplies for supporting human life on board a spacecraft. As human space flight today focuses on medium- to long-term missions, the strategy in ECLSS is shifting to closed loop systems. For these systems the dynamic stability and function over long duration are essential. However, the only evaluation and rating methods for ECLSS up to now are either expensive trial and error breadboarding strategies or static and semi-dynamic simulations. In order to overcome this mismatch the Exploration Group at Technische Universität München (TUM) is developing a dynamic environmental simulation, the "Virtual Habitat" (V-HAB). The central element of this simulation is the dynamic and environmentally sensitive human model. The water subsystem simulation of the human model discussed in this paper is of vital importance for the efficiency of possible ECLSS optimizations, as an over- or under-scaled water subsystem would have an adverse effect on the overall mass budget. On the other hand water has a pivotal role in the human organism. Water accounts for about 60% of the total body mass and is educt and product of numerous metabolic reactions. It is a transport medium for solutes and, due to its high evaporation enthalpy, provides the most potent medium for heat load dissipation. In a system engineering approach the human water balance was worked out by simulating the human body's subsystems and their interactions. The body fluids were assumed to reside in three compartments: blood plasma, interstitial fluid and intracellular fluid. In addition, the active and passive transport of water and solutes between those compartments was modeled dynamically. A kidney model regulates the electrolyte concentration in body fluids (osmolality) in narrow confines and a thirst mechanism models the urge to ingest water. A controlled exchange of water and electrolytes with other human subsystems, as well as with the environment, is implemented. Finally, the changes in body composition due to muscle growth are accounted for. The outcome of this is a dynamic water and electrolyte balance, which is capable of representing body reactions like thirst and headaches, as well as heat stroke and collapse, as a response to its work load and environment.

  19. BIOMECHANICAL ANALYSIS OF THE STRESSES GENERATED BY DIFFERENT DISOCCLUSION PATTERNS IN AN IMPLANT-SUPPORTED MANDIBULAR COMPLETE DENTURE

    PubMed Central

    Greco, Gustavo Diniz; Jansen, Wellington Corrêa; Landre, Janis; Seraidarian, Paulo Isaías

    2009-01-01

    Objectives: This study evaluated by three-dimensional finite element analysis the tensions generated by different disocclusion patterns (canine guide and bilateral balanced occlusion) in an implant-supported mandibular complete denture. Material and Methods: A three-dimensional model of implant-supported mandibular complete denture was fabricated according to the Brånemark protocol. A 5-element 3.75 x 13-mm screw-shape dental implant system was modeled for this study. The implants were located in the intermental foramen region with 3-mm-high prosthetic components joined by a nickel-chromium framework with 12-mm bilateral cantilever covered by acrylic resin and 12 acrylic denture teeth. SolidWorks® software was used before and after processing the simulations. The mechanical properties of the components were inserted in the model and a 15 N load was established in fixed points, in each one of the simulations. Data were collected in the entire nickel-chromium framework. The results were displayed three-dimensionally as color graphic scales. Results: The canine guide generated greater tensions in the region of the first implant, while the bilateral balanced occlusion generated great tensions in the entire metallic framework. The maximum tension found in the simulation of the bilateral balanced occlusion was 3.22 fold higher than the one found in the simulation of the disocclusion in canine guide. Conclusion: The pattern of disocclusion in canine guide is the ideal for implant-supported mandibular complete denture. PMID:19936535

  20. Biomechanical analysis of the stresses generated by different disocclusion patterns in an implant-supported mandibular complete denture.

    PubMed

    Greco, Gustavo Diniz; Jansen, Wellington Corrêa; Landre Junior, Janis; Seraidarian, Paulo Isaías

    2009-01-01

    This study evaluated by three-dimensional finite element analysis the tensions generated by different disocclusion patterns (canine guide and bilateral balanced occlusion) in an implant-supported mandibular complete denture. A three-dimensional model of implant-supported mandibular complete denture was fabricated according to the Brånemark protocol. A 5-element 3.75 x 13-mm screw-shape dental implant system was modeled for this study. The implants were located in the inter-mental foramen region with 3-mm-high prosthetic components joined by a nickel-chromium framework with 12-mm bilateral cantilever covered by acrylic resin and 12 acrylic denture teeth. SolidWorks software was used before and after processing the simulations. The mechanical properties of the components were inserted in the model and a 15 N load was established in fixed points, in each one of the simulations. Data were collected in the entire nickel-chromium framework. The results were displayed three-dimensionally as color graphic scales. The canine guide generated greater tensions in the region of the first implant, while the bilateral balanced occlusion generated great tensions in the entire metallic framework. The maximum tension found in the simulation of the bilateral balanced occlusion was 3.22 fold higher than the one found in the simulation of the disocclusion in canine guide. The pattern of disocclusion in canine guide is the ideal for implant-supported mandibular complete denture.

  1. Particle-Size-Grouping Model of Precipitation Kinetics in Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Thomas, Brian G.

    2012-03-01

    The formation, growth, and size distribution of precipitates greatly affects the microstructure and properties of microalloyed steels. Computational particle-size-grouping (PSG) kinetic models based on population balances are developed to simulate precipitate particle growth resulting from collision and diffusion mechanisms. First, the generalized PSG method for collision is explained clearly and verified. Then, a new PSG method is proposed to model diffusion-controlled precipitate nucleation, growth, and coarsening with complete mass conservation and no fitting parameters. Compared with the original population-balance models, this PSG method saves significant computation and preserves enough accuracy to model a realistic range of particle sizes. Finally, the new PSG method is combined with an equilibrium phase fraction model for plain carbon steels and is applied to simulate the precipitated fraction of aluminum nitride and the size distribution of niobium carbide during isothermal aging processes. Good matches are found with experimental measurements, suggesting that the new PSG method offers a promising framework for the future development of realistic models of precipitation.

  2. The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: evaluating the surface energy budget in a regional climate model with automatic weather station observations

    NASA Astrophysics Data System (ADS)

    Steffensen Schmidt, Louise; Aðalgeirsdóttir, Guðfinna; Guðmundsson, Sverrir; Langen, Peter L.; Pálsson, Finnur; Mottram, Ruth; Gascoin, Simon; Björnsson, Helgi

    2017-07-01

    A simulation of the surface climate of Vatnajökull ice cap, Iceland, carried out with the regional climate model HIRHAM5 for the period 1980-2014, is used to estimate the evolution of the glacier surface mass balance (SMB). This simulation uses a new snow albedo parameterization that allows albedo to exponentially decay with time and is surface temperature dependent. The albedo scheme utilizes a new background map of the ice albedo created from observed MODIS data. The simulation is evaluated against observed daily values of weather parameters from five automatic weather stations (AWSs) from the period 2001-2014, as well as in situ SMB measurements from the period 1995-2014. The model agrees well with observations at the AWS sites, albeit with a general underestimation of the net radiation. This is due to an underestimation of the incoming radiation and a general overestimation of the albedo. The average modelled albedo is overestimated in the ablation zone, which we attribute to an overestimation of the thickness of the snow layer and not taking the surface darkening from dirt and volcanic ash deposition during dust storms and volcanic eruptions into account. A comparison with the specific summer, winter, and net mass balance for the whole of Vatnajökull (1995-2014) shows a good overall fit during the summer, with a small mass balance underestimation of 0.04 m w.e. on average, whereas the winter mass balance is overestimated by on average 0.5 m w.e. due to too large precipitation at the highest areas of the ice cap. A simple correction of the accumulation at the highest points of the glacier reduces this to 0.15 m w.e. Here, we use HIRHAM5 to simulate the evolution of the SMB of Vatnajökull for the period 1981-2014 and show that the model provides a reasonable representation of the SMB for this period. However, a major source of uncertainty in the representation of the SMB is the representation of the albedo, and processes currently not accounted for in RCMs, such as dust storms, are an important source of uncertainty in estimates of snow melt rate.

  3. CONSTABLE: A Global Climate Model for Classroom Use.

    ERIC Educational Resources Information Center

    Cerveny, Randall S.; And Others

    1985-01-01

    Described is the global climate model CONSTABLE (Climatic One-Dimensional Numerical Simulation of the Annual Balance of Latitudinal Energy), which can be used in undergraduate and graduate level climatology courses. Classroom exercises that can be used with the model are also included. (RM)

  4. The greenhouse gas balance of European grasslands.

    PubMed

    Chang, Jinfeng; Ciais, Philippe; Viovy, Nicolas; Vuichard, Nicolas; Sultan, Benjamin; Soussana, Jean-François

    2015-10-01

    The greenhouse gas (GHG) balance of European grasslands (EU-28 plus Norway and Switzerland), including CO2 , CH4 and N2 O, is estimated using the new process-based biogeochemical model ORCHIDEE-GM over the period 1961-2010. The model includes the following: (1) a mechanistic representation of the spatial distribution of management practice; (2) management intensity, going from intensively to extensively managed; (3) gridded simulation of the carbon balance at ecosystem and farm scale; and (4) gridded simulation of N2 O and CH4 emissions by fertilized grassland soils and livestock. The external drivers of the model are changing animal numbers, nitrogen fertilization and deposition, land-use change, and variable CO2 and climate. The carbon balance of European grassland (NBP) is estimated to be a net sink of 15 ± 7 g C m(-2 ) year(-1) during 1961-2010, equivalent to a 50-year continental cumulative soil carbon sequestration of 1.0 ± 0.4 Pg C. At the farm scale, which includes both ecosystem CO2 fluxes and CO2 emissions from the digestion of harvested forage, the net C balance is roughly halved, down to a small sink, or nearly neutral flux of 8 g C m(-2 ) year(-1) . Adding CH4 and N2 O emissions to net ecosystem exchange to define the ecosystem-scale GHG balance, we found that grasslands remain a net GHG sink of 19 ± 10 g C-CO2 equiv. m(-2 ) year(-1) , because the CO2 sink offsets N2 O and grazing animal CH4 emissions. However, when considering the farm scale, the GHG balance (NGB) becomes a net GHG source of -50 g C-CO2 equiv. m(-2 ) year(-1) . ORCHIDEE-GM simulated an increase in European grassland NBP during the last five decades. This enhanced NBP reflects the combination of a positive trend of net primary production due to CO2 , climate and nitrogen fertilization and the diminishing requirement for grass forage due to the Europe-wide reduction in livestock numbers. © 2015 John Wiley & Sons Ltd.

  5. Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model

    NASA Astrophysics Data System (ADS)

    Borges Sebastião, Israel; Alexeenko, Alina

    2016-10-01

    The direct simulation Monte Carlo (DSMC) method has been widely applied to study shockwaves, hypersonic reentry flows, and other nonequilibrium flow phenomena. Although there is currently active research on high-fidelity models based on ab initio data, the total collision energy (TCE) and Larsen-Borgnakke (LB) models remain the most often used chemistry and relaxation models in DSMC simulations, respectively. The conventional implementation of the discrete LB model, however, may not satisfy detailed balance when recombination and exchange reactions play an important role in the flow energy balance. This issue can become even more critical in reacting mixtures involving polyatomic molecules, such as in combustion. In this work, this important shortcoming is addressed and an empirical approach to consistently specify the post-reaction vibrational states close to thermochemical equilibrium conditions is proposed within the TCE framework. Following Bird's quantum-kinetic (QK) methodology for populating post-reaction states, the new TCE-based approach involves two main steps. The state-specific TCE reaction probabilities for a forward reaction are first pre-computed from equilibrium 0-D simulations. These probabilities are then employed to populate the post-reaction vibrational states of the corresponding reverse reaction. The new approach is illustrated by application to exchange and recombination reactions relevant to H2-O2 combustion processes.

  6. Missisquoi Bay Phosphorus Model Addendum

    EPA Pesticide Factsheets

    This technical memorandum provides results of an extended load reduction simulation. The memorandum serves as an addendum to the main Missisquoi Bay Phosphorus Mass Balance Model report prepared for the Lake Champlain Basin Program by LimnoTech in 2012

  7. Application of artificial neural networks in hydrological modeling: A case study of runoff simulation of a Himalayan glacier basin

    NASA Technical Reports Server (NTRS)

    Buch, A. M.; Narain, A.; Pandey, P. C.

    1994-01-01

    The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.

  8. Coupled stochastic soil moisture simulation-optimization model of deficit irrigation

    NASA Astrophysics Data System (ADS)

    Alizadeh, Hosein; Mousavi, S. Jamshid

    2013-07-01

    This study presents an explicit stochastic optimization-simulation model of short-term deficit irrigation management for large-scale irrigation districts. The model which is a nonlinear nonconvex program with an economic objective function is built on an agrohydrological simulation component. The simulation component integrates (1) an explicit stochastic model of soil moisture dynamics of the crop-root zone considering interaction of stochastic rainfall and irrigation with shallow water table effects, (2) a conceptual root zone salt balance model, and 3) the FAO crop yield model. Particle Swarm Optimization algorithm, linked to the simulation component, solves the resulting nonconvex program with a significantly better computational performance compared to a Monte Carlo-based implicit stochastic optimization model. The model has been tested first by applying it in single-crop irrigation problems through which the effects of the severity of water deficit on the objective function (net benefit), root-zone water balance, and irrigation water needs have been assessed. Then, the model has been applied in Dasht-e-Abbas and Ein-khosh Fakkeh Irrigation Districts (DAID and EFID) of the Karkheh Basin in southwest of Iran. While the maximum net benefit has been obtained for a stress-avoidance (SA) irrigation policy, the highest water profitability has been resulted when only about 60% of the water used in the SA policy is applied. The DAID with respectively 33% of total cultivated area and 37% of total applied water has produced only 14% of the total net benefit due to low-valued crops and adverse soil and shallow water table conditions.

  9. Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille.

    NASA Astrophysics Data System (ADS)

    Lemonsu, A.; Grimmond, C. S. B.; Masson, V.

    2004-02-01

    The Town Energy Balance (TEB) model, which parameterizes the local-scale energy and water exchanges between urban surfaces and the atmosphere by treating the urban area as a series of urban canyons, coupled to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme, was run in offline mode for Marseille, France. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) urban boundary layer (UBL) campaign. Particular attention was directed to the influence of different surface databases, used for input parameters, on model predictions. Comparison of simulated canyon temperatures with observations resulted in improvements to TEB parameterizations by increasing the ventilation. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model succeeds in simulating a sensible heat flux larger than heat storage, as observed. A sensitivity comparison using generic dense city parameters, derived from the Coordination of Information on the Environment (CORINE) land cover database, and those from a surface database developed specifically for the Marseille city center shows the importance of correctly documenting the urban surface. Overall, the TEB scheme is shown to be fairly robust, consistent with results from previous studies.

  10. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    PubMed

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Elements of complexity in subsurface modeling, exemplified with three case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Vicky L.; Truex, Michael J.; Rockhold, Mark

    2017-04-03

    There are complexity elements to consider when applying subsurface flow and transport models to support environmental analyses. Modelers balance the benefits and costs of modeling along the spectrum of complexity, taking into account the attributes of more simple models (e.g., lower cost, faster execution, easier to explain, less mechanistic) and the attributes of more complex models (higher cost, slower execution, harder to explain, more mechanistic and technically defensible). In this paper, modeling complexity is examined with respect to considering this balance. The discussion of modeling complexity is organized into three primary elements: 1) modeling approach, 2) description of process, andmore » 3) description of heterogeneity. Three examples are used to examine these complexity elements. Two of the examples use simulations generated from a complex model to develop simpler models for efficient use in model applications. The first example is designed to support performance evaluation of soil vapor extraction remediation in terms of groundwater protection. The second example investigates the importance of simulating different categories of geochemical reactions for carbon sequestration and selecting appropriate simplifications for use in evaluating sequestration scenarios. In the third example, the modeling history for a uranium-contaminated site demonstrates that conservative parameter estimates were inadequate surrogates for complex, critical processes and there is discussion on the selection of more appropriate model complexity for this application. All three examples highlight how complexity considerations are essential to create scientifically defensible models that achieve a balance between model simplification and complexity.« less

  12. Elements of complexity in subsurface modeling, exemplified with three case studies

    NASA Astrophysics Data System (ADS)

    Freedman, Vicky L.; Truex, Michael J.; Rockhold, Mark L.; Bacon, Diana H.; Freshley, Mark D.; Wellman, Dawn M.

    2017-09-01

    There are complexity elements to consider when applying subsurface flow and transport models to support environmental analyses. Modelers balance the benefits and costs of modeling along the spectrum of complexity, taking into account the attributes of more simple models (e.g., lower cost, faster execution, easier to explain, less mechanistic) and the attributes of more complex models (higher cost, slower execution, harder to explain, more mechanistic and technically defensible). In this report, modeling complexity is examined with respect to considering this balance. The discussion of modeling complexity is organized into three primary elements: (1) modeling approach, (2) description of process, and (3) description of heterogeneity. Three examples are used to examine these complexity elements. Two of the examples use simulations generated from a complex model to develop simpler models for efficient use in model applications. The first example is designed to support performance evaluation of soil-vapor-extraction remediation in terms of groundwater protection. The second example investigates the importance of simulating different categories of geochemical reactions for carbon sequestration and selecting appropriate simplifications for use in evaluating sequestration scenarios. In the third example, the modeling history for a uranium-contaminated site demonstrates that conservative parameter estimates were inadequate surrogates for complex, critical processes and there is discussion on the selection of more appropriate model complexity for this application. All three examples highlight how complexity considerations are essential to create scientifically defensible models that achieve a balance between model simplification and complexity.

  13. Computer Simulation of the Forces Acting on the Polystyrene Probe Submerged into the Succinonitrile Near Phase Transition

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Kaukler, William F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. At mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. The model of cantilever oscillations is applicable to both non-contact and "tapping" AFM. This model can be farther enhanced to describe nanoparticle manipulation by cantilever. At microscopic level tip contamination and details of tip-surface interaction can be simulated using molecular dynamics approach. Integration of mesoscale model with molecular dynamic model is discussed.

  14. Numerical simulation of abutment pressure redistribution during face advance

    NASA Astrophysics Data System (ADS)

    Klishin, S. V.; Lavrikov, S. V.; Revuzhenko, A. F.

    2017-12-01

    The paper presents numerical simulation data on the abutment pressure redistribution in rock mass during face advance, including isolines of maximum shear stress and pressure epures. The stress state of rock in the vicinity of a breakage heading is calculated by the finite element method using a 2D nonlinear model of a structurally heterogeneous medium with regard to plasticity and internal self-balancing stress. The thus calculated stress field is used as input data for 3D discrete element modeling of the process. The study shows that the abutment pressure increases as the roof span extends and that the distance between the face breast and the peak point of this pressure depends on the elastoplastic properties and internal self-balancing stress of a rock medium.

  15. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    USGS Publications Warehouse

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the measured values for the gaging stations on the Almagosa, Maulap, and Imong Rivers—tributaries to the Fena Valley Reservoir—with Nash-Sutcliffe efficiency values of 0.87 or higher. The southern Guam watershed model simulated the total volume of the critical dry season (January to May) streamflow for the entire simulation period within –0.54 percent at the Almagosa River, within 6.39 percent at the Maulap River, and within 6.06 percent at the Imong River.The recalibrated water-balance model of the Fena Valley Reservoir generally simulated monthly reservoir storage volume with reasonable accuracy. For the calibration and verification periods, errors in end-of-month reservoir-storage volume ranged from 6.04 percent (284.6 acre-feet or 92.7 million gallons) to –5.70 percent (–240.8 acre-feet or –78.5 million gallons). Monthly simulation bias ranged from –0.48 percent for the calibration period to 0.87 percent for the verification period; relative error ranged from –0.60 to 0.88 percent for the calibration and verification periods, respectively. The small bias indicated that the model did not consistently overestimate or underestimate reservoir storage volume.In the entirety of southern Guam, the watershed model has a “satisfactory” to “very good” rating when simulating monthly mean streamflow for all but one of the gaged watersheds during the verification period. The southern Guam watershed model uses a more sophisticated climate-distribution scheme than the older model to make use of the sparse climate data, as well as includes updated land-cover parameters and the capability to simulate closed depression areas.The new Fena Valley Reservoir water-balance model is useful as an updated tool to forecast short-term changes in the surface-water resources of Guam. Furthermore, the now spatially complete southern Guam watershed model can be used to evaluate changes in streamflow and recharge owing to climate or land-cover changes. These are substantial improvements to the previous models of the Fena Valley watershed and Reservoir. Datasets associated with this report are available as a U.S. Geological Survey data release (Rosa and Hay, 2017; DOI:10.5066/F7HH6HV4).

  16. Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment

    NASA Astrophysics Data System (ADS)

    Vivoni, Enrique R.; Mascaro, Giuseppe; Mniszewski, Susan; Fasel, Patricia; Springer, Everett P.; Ivanov, Valeriy Y.; Bras, Rafael L.

    2011-10-01

    SummaryA major challenge in the use of fully-distributed hydrologic models has been the lack of computational capabilities for high-resolution, long-term simulations in large river basins. In this study, we present the parallel model implementation and real-world hydrologic assessment of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS). Our parallelization approach is based on the decomposition of a complex watershed using the channel network as a directed graph. The resulting sub-basin partitioning divides effort among processors and handles hydrologic exchanges across boundaries. Through numerical experiments in a set of nested basins, we quantify parallel performance relative to serial runs for a range of processors, simulation complexities and lengths, and sub-basin partitioning methods, while accounting for inter-run variability on a parallel computing system. In contrast to serial simulations, the parallel model speed-up depends on the variability of hydrologic processes. Load balancing significantly improves parallel speed-up with proportionally faster runs as simulation complexity (domain resolution and channel network extent) increases. The best strategy for large river basins is to combine a balanced partitioning with an extended channel network, with potential savings through a lower TIN resolution. Based on these advances, a wider range of applications for fully-distributed hydrologic models are now possible. This is illustrated through a set of ensemble forecasts that account for precipitation uncertainty derived from a statistical downscaling model.

  17. The Martian climate: Energy balance models with CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.

    1984-01-01

    Progress in the development of a multi-reservoir, time dependent energy balance climate model for Mars driven by prescribed insolation at the top of the atmosphere is reported. The first approximately half-year of the program was devoted to assembling and testing components of the full model. Specific accomplishments were made on a longwave radiation code, coupling seasonal solar input to a ground temperature simulation, and conceptualizing an approach to modeling the seasonal pressure waves that develop in the Martian atmosphere as a result of sublimation and condensation of CO2 in polar regions.

  18. Glacier stagnant in central Karakorum during 2003 to 2008 derived from DEOS Mass Transport Model GRACE data and one monthly degree-day model

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Zhang, Shiqiang; Xu, Junli

    2016-10-01

    Glacier change in central Karakorum is known as `anomony' in the late 1990s, where many glaciers expanded and numbers of glacier surged while most of glaciers in the Greater Himalaya rapidly retreated. However, the understanding of glacier change in this region is still poor. Glacier changes for the Hunza river basin (HRB) in central Karakorum during 2003 to 2008 were investigated from different data sources. The mass variation in HRB were estimated from the DEOS Mass Transport Model (DMT-1) GRACE data and the Variable Infiltration Capacity (VIC) model, and compared with the simulated glacier mass balance by one monthly degree-day model. The surface elevation difference of glaciers between ASTER DEM and SRTM were calculated. The mass variations from GRACE data suggest that the glacier mass balance in HRB during 2003-2007 has no clear trend. The cumulative mass balance is positive during 2003-2008. The average glacier surface elevation difference between SRTM DEM and ASTER DEM is 11.8+/-3.2 m. The average differences of glacier surface elevation of Batura glaciers in accumulation zones is increased with 0.88m.a-1, These results indicate that there is no significant glacier retreat during 1999 to 2008. The seasonal amplitude of simulated mass variation of the monthly degree-day model agreed well with that estimated from DMT-1 GRACE data, but the simulated glacier accumulation is less than that calculated from GRACE data. The main reason probably lies in that the precipitation of glaciers and ungalciated areas were underestimated, especially in alpine areas.

  19. A comparison study of two snow models using data from different Alpine sites

    NASA Astrophysics Data System (ADS)

    Piazzi, Gaia; Riboust, Philippe; Campo, Lorenzo; Cremonese, Edoardo; Gabellani, Simone; Le Moine, Nicolas; Morra di Cella, Umberto; Ribstein, Pierre; Thirel, Guillaume

    2017-04-01

    The hydrological balance of an Alpine catchment is strongly affected by snowpack dynamics. Melt-water supplies a significant component of the annual water budget, both in terms of soil moisture and runoff, which play a critical role in floods generation and impact water resource management in snow-dominated basins. Several snow models have been developed with variable degrees of complexity, mainly depending on their target application and the availability of computational resources and data. According to the level of detail, snow models range from statistical snowmelt-runoff and degree-day methods using composite snow-soil or explicit snow layer(s), to physically-based and energy balance snow models, consisting of detailed internal snow-process schemes. Intermediate-complexity approaches have been widely developed resulting in simplified versions of the physical parameterization schemes with a reduced snowpack layering. Nevertheless, an increasing model complexity does not necessarily entail improved model simulations. This study presents a comparison analysis between two snow models designed for hydrological purposes. The snow module developed at UPMC and IRSTEA is a mono-layer energy balance model analytically resolving heat and phase change equations into the snowpack. Vertical mass exchange into the snowpack is also analytically resolved. The model is intended to be used for hydrological studies but also to give a realistic estimation of the snowpack state at watershed scale (SWE and snow depth). The structure of the model allows it to be easily calibrated using snow observation. This model is further presented in EGU2017-7492. The snow module of SMASH (Snow Multidata Assimilation System for Hydrology) consists in a multi-layer snow dynamic scheme. It is physically based on mass and energy balances and it reproduces the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide an estimation of the snowpack state. In this study, no DA is used. For more details on the DA scheme, please see EGU2017-7777. Observed data supplied by meteorological stations located in three experimental Alpine sites are used: Col de Porte (1325 m, France); Torgnon (2160 m, Italy); Weissfluhjoch (2540 m, Switzerland). Performances of the two models are compared through evaluations of snow mass, snow depth, albedo and surface temperature simulations in order to better understand and pinpoint limits and potentialities of the analyzed schemes and the impact of different parameterizations on models simulations.

  20. Assessing the efficacy of the SWAT auto-irrigation function to simulate Irrigation, evapotranspiration and crop response to irrigation management strategies of the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    The Soil and Water Assessment Tool (SWAT) model is widely used for simulation of hydrologic processes at various temporal and spatial scales. Less common are long-term simulation analyses of water balance components including agricultural management practices such as irrigation management. In the se...

  1. Large scale cardiac modeling on the Blue Gene supercomputer.

    PubMed

    Reumann, Matthias; Fitch, Blake G; Rayshubskiy, Aleksandr; Keller, David U; Weiss, Daniel L; Seemann, Gunnar; Dössel, Olaf; Pitman, Michael C; Rice, John J

    2008-01-01

    Multi-scale, multi-physical heart models have not yet been able to include a high degree of accuracy and resolution with respect to model detail and spatial resolution due to computational limitations of current systems. We propose a framework to compute large scale cardiac models. Decomposition of anatomical data in segments to be distributed on a parallel computer is carried out by optimal recursive bisection (ORB). The algorithm takes into account a computational load parameter which has to be adjusted according to the cell models used. The diffusion term is realized by the monodomain equations. The anatomical data-set was given by both ventricles of the Visible Female data-set in a 0.2 mm resolution. Heterogeneous anisotropy was included in the computation. Model weights as input for the decomposition and load balancing were set to (a) 1 for tissue and 0 for non-tissue elements; (b) 10 for tissue and 1 for non-tissue elements. Scaling results for 512, 1024, 2048, 4096 and 8192 computational nodes were obtained for 10 ms simulation time. The simulations were carried out on an IBM Blue Gene/L parallel computer. A 1 s simulation was then carried out on 2048 nodes for the optimal model load. Load balances did not differ significantly across computational nodes even if the number of data elements distributed to each node differed greatly. Since the ORB algorithm did not take into account computational load due to communication cycles, the speedup is close to optimal for the computation time but not optimal overall due to the communication overhead. However, the simulation times were reduced form 87 minutes on 512 to 11 minutes on 8192 nodes. This work demonstrates that it is possible to run simulations of the presented detailed cardiac model within hours for the simulation of a heart beat.

  2. Resource Tracking Model Updates and Trade Studies

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Moore, Michael

    2016-01-01

    The Resource Tracking Model has been updated to capture system manager and project manager inputs. Both the Trick/General Use Nodal Network Solver Resource Tracking Model (RTM) simulator and the RTM mass balance spreadsheet have been revised to address inputs from system managers and to refine the way mass balance is illustrated. The revisions to the RTM included the addition of a Plasma Pyrolysis Assembly (PPA) to recover hydrogen from Sabatier Reactor methane, which was vented in the prior version of the RTM. The effect of the PPA on the overall balance of resources in an exploration vehicle is illustrated in the increased recycle of vehicle oxygen. Case studies have been run to show the relative effect of performance changes on vehicle resources.

  3. Putting mechanisms into crop production models

    USDA-ARS?s Scientific Manuscript database

    Crop simulation models dynamically predict processes of carbon, nitrogen, and water balance on daily or hourly time-steps to the point of predicting yield and production at crop maturity. A brief history of these models is reviewed, and their level of mechanism for assimilation and respiration, ran...

  4. Phosphorus and Phytoplankton in Lake Michigan: Model Post-audit and Projections

    EPA Science Inventory

    The eutrophication model, LM3-Eutro, was developed in support of the Lake Michigan Mass Balance Project to simulate chlorophyll-a (phytoplankton), phosphorus and carbon concentrations in the lake. This high-resolution carbon-based model was developed and calibrated using extensi...

  5. Intelligent Cooperative MAC Protocol for Balancing Energy Consumption

    NASA Astrophysics Data System (ADS)

    Wu, S.; Liu, K.; Huang, B.; Liu, F.

    To extend the lifetime of wireless sensor networks, we proposed an intelligent balanced energy consumption cooperative MAC protocol (IBEC-CMAC) based on the multi-node cooperative transmission model. The protocol has priority to access high-quality channels for reducing energy consumption of each transmission. It can also balance the energy consumption among cooperative nodes by using high residual energy nodes instead of excessively consuming some node's energy. Simulation results show that IBEC-CMAC can obtain longer network lifetime and higher energy utilization than direct transmission.

  6. Advanced surface design for logistics analysis

    NASA Astrophysics Data System (ADS)

    Brown, Tim R.; Hansen, Scott D.

    The development of anthropometric arm/hand and tool models and their manipulation in a large system model for maintenance simulation are discussed. The use of Advanced Surface Design and s-fig technology in anthropometrics, and three-dimensional graphics simulation tools, are found to achieve a good balance between model manipulation speed and model accuracy. The present second generation models are shown to be twice as fast to manipulate as the first generation b-surf models, to be easier to manipulate into various configurations, and to more closely approximate human contours.

  7. High-resolution coupled ice sheet-ocean modeling using the POPSICLES model

    NASA Astrophysics Data System (ADS)

    Ng, E. G.; Martin, D. F.; Asay-Davis, X.; Price, S. F.; Collins, W.

    2014-12-01

    It is expected that a primary driver of future change of the Antarctic ice sheet will be changes in submarine melting driven by incursions of warm ocean water into sub-ice shelf cavities. Correctly modeling this response on a continental scale will require high-resolution modeling of the coupled ice-ocean system. We describe the computational and modeling challenges in our simulations of the full Southern Ocean coupled to a continental-scale Antarctic ice sheet model at unprecedented spatial resolutions (0.1 degree for the ocean model and adaptive mesh refinement down to 500m in the ice sheet model). The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), with the BISICLES ice-sheet model (Cornford et al., 2012) using a synchronous offline-coupling scheme. Part of the PISCEES SciDAC project and built on the Chombo framework, BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). For the POPSICLES Antarctic-Southern Ocean simulations, ice sheet and ocean models communicate at one-month coupling intervals.

  8. Modeling the Interaction of Radiation Between Vegetation and the Seasonal Snowcover

    NASA Astrophysics Data System (ADS)

    Tribbeck, M. J.; Gurney, R. J.; Morris, E. M.; Pearson, D.

    2001-12-01

    Prediction of meltwater runoff is crucial to communities where the seasonal snowpack is the major water supply. Water is itself a vital resource and it carries nutrients both in solution and in suspension. Simulation of snowpack depletion at a point in open areas has previously been shown to produce accurate results using physically based models such as SNTHERM. However, the radiation balance is more complex under a forest canopy as radiation is scattered and absorbed by canopy elements. This can alter the timing and magnitude of snowpack runoff substantially. The interaction of radiation between a forest canopy and its underlying snowcover is modeled by the coupling of a physically based snow model and an optical and thermal radiation canopy model. The snow model, which is based on SNTHERM (Jordan, 1991), is a discrete, multi-layer, one-dimensional mass and energy budget model for snow and is formulated with an adaptive grid system that compresses with the compacting snowpack and allows retention of snowpack stratigraphy. The vegetation canopy model approximates the canopy as a series of discrete, randomly orientated elements that scatter and absorb optical and thermal radiation. Multiple scattering of radiation between canopy and snow surface is modeled to conserve energy. The coupled model SNOWCAN differs from other vegetation-snow models such as GORT or SNOBAL as it models the albedo feedback mechanism. This is important as the albedo both affects and is affected by (through grain growth) the radiation balance. SNOWCAN is driven by standard atmospheric variables (including incident solar and thermal radiation) measured outside of the canopy and simulates snowpack properties such as temperature and density profiles as well as the sub-canopy radiation balance. The coupled snow and vegetation energy budget model was used to simulate snow depth at an old jack pine site during the 1994 BOREAS campaign. Measured and simulated snow depth showed good agreement throughout the accumulation and ablation periods, yielding an r2 correlation coefficient of 0.94. The snowpack development was also simulated at a point site within a fir stand in Reynolds Creek Experimental Watershed, Idaho, USA for the water year 2000-2001. A sensitivity analysis was carried out and comparisons were made with field observations of snowpack properties and sub-canopy radiation data for model validation.

  9. Enforcing elemental mass and energy balances for reduced order models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J.; Agarwal, K.; Sharma, P.

    2012-01-01

    Development of economically feasible gasification and carbon capture, utilization and storage (CCUS) technologies requires a variety of software tools to optimize the designs of not only the key devices involved (e., g., gasifier, CO{sub 2} adsorber) but also the entire power generation system. High-fidelity models such as Computational Fluid Dynamics (CFD) models are capable of accurately simulating the detailed flow dynamics, heat transfer, and chemistry inside the key devices. However, the integration of CFD models within steady-state process simulators, and subsequent optimization of the integrated system, still presents significant challenges due to the scale differences in both time and length,more » as well the high computational cost. A reduced order model (ROM) generated from a high-fidelity model can serve as a bridge between the models of different scales. While high-fidelity models are built upon the principles of mass, momentum, and energy conservations, ROMs are usually developed based on regression-type equations and hence their predictions may violate the mass and energy conservation laws. A high-fidelity model may also have the mass and energy balance problem if it is not tightly converged. Conservations of mass and energy are important when a ROM is integrated to a flowsheet for the process simulation of the entire chemical or power generation system, especially when recycle streams are connected to the modeled device. As a part of the Carbon Capture Simulation Initiative (CCSI) project supported by the U.S. Department of Energy, we developed a software framework for generating ROMs from CFD simulations and integrating them with Process Modeling Environments (PMEs) for system-wide optimization. This paper presents a method to correct the results of a high-fidelity model or a ROM such that the elemental mass and energy are conserved perfectly. Correction factors for the flow rates of individual species in the product streams are solved using a minimization algorithm based on Lagrangian multiplier method. Enthalpies of product streams are also modified to enforce the energy balance. The approach is illustrated for two ROMs, one based on a CFD model of an entrained-flow gasifier and the other based on the CFD model of a multiphase CO{sub 2} adsorber.« less

  10. The impacts of disturbance on the spatial and temporal variations of carbon balance in forest ecosystems on Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Hirata, R.; Ito, A.; Saigusa, N.

    2013-12-01

    Carbon balance in a forest ecosystem can be quite variable if the forest ecosystem structure and function change abruptly as a result of disturbance and subsequent recovery processes. A map of forest age is useful for upscaling carbon balance from the site level to a regional scale because it provides information about when disturbance occurred and how it spread over a wide area. In this study, we used maps of forest age to help evaluate spatial and temporal variations in the carbon balance of forest ecosystems with a process-based ecosystem model. Forests less than 60 years old account for more than 70% of Japanese forests because forest stands have been quickly replaced after disturbance caused by thinning, harvesting, plantations, fires, typhoons, and insect damage. However, few studies have attempted to quantify how much disturbance affects the spatial and temporal variations of carbon balance. In this study, we focused on how disturbance and subsequent re-growth affected the spatial and temporal variations of the carbon balance of forests. We adapted the Vegetation Integrative SImulator for Trace Gases (VISIT) model in order to simulate carbon balance on Hokkaido, which is the northernmost island of Japan. The model was validated with tower flux data obtained from forests with ages between 0 and 43 years. Simulations of the carbon balance were conducted for the period 1948-2010 after a 1000-year spin-up at a spatial resolution of 1 km × 1 km. We investigated two case studies of simulated carbon balance: one that took into account the spatial distribution of forest ages derived from forest inventory data, and another that ignored the impact of disturbance (i.e., no disturbance and a homogeneous distribution of ages). We first focused on the difference from 2000-2010 in the spatial distribution of net ecosystem production (NEP) between the disturbance and non-disturbance cases. In the non-disturbance case, the temporal and spatial changes in NEP were gradual and ranged from 0 to 1 t C ha-1 y-1, depending on meteorological conditions such as temperature or solar radiation. In the disturbance case, however, large NEP changes ranging from 3 to 5 t C ha-1 y-1 were distributed in patches like hotspots, because the forests in those spots ranged in age from 20 to 100 years and were younger than the forests in the non-disturbance case. In the 1970s, wood harvesting and tree planting were conducted intensively on Hokkaido. In the disturbance case during this period, there were many hotspots where NEP was negative. We next focused on the difference between the disturbance and non-disturbance cases of temporal variations of spatially averaged NEP on Hokkaido. Until 1970, the difference between the two cases of average NEP was less than 0.01 t C ha-1 y-1. After 1970, the difference became large and reached about 0.5 t C ha-1 y-1, the implication being that the regional NEP in the disturbance case increased to as much as 2-5 times the regional NEP of the non-disturbance case. Our results show the importance of considering forest age when simulating the carbon balance of forests. Carbon balance maps that take forest age into account are useful for carbon management and prediction of ecosystem feedbacks on climate change.

  11. Assessing Pedagogical Balance in a Simulated Classroom Environment

    ERIC Educational Resources Information Center

    Knezek, Gerald; Hopper, Susan B.; Christensen, Rhonda; Tyler-Wood, Tandra; Gibson, David C.

    2015-01-01

    simSchool, an online simulator that has been used to enhance teacher preparation since 2003, models different types of students and provides virtual practice sessions for teachers to assign tasks and interact with students. In this article the authors (a) examine changes in preservice teacher perceptions of teaching confidence and teaching…

  12. Integrating Solar PV in Utility System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, A.; Botterud, A.; Wu, J.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, andmore » day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the DA commitments, using 1-min PV data to simulate RT balancing, and estimates of reliability performance through the CPS2 metric, all factors that are important to operating systems with increasing amounts of PV, makes this study unique in its scope.« less

  13. Load Balancing at Emergency Departments using ‘Crowdinforming’

    PubMed Central

    Friesen, Marcia R; Strome, Trevor; Mukhi, Shamir; McLoed, Robert

    2011-01-01

    Background: Emergency Department (ED) overcrowding is an important healthcare issue facing increasing public and regulatory scrutiny in Canada and around the world. Many approaches to alleviate excessive waiting times and lengths of stay have been studied. In theory, optimal ED patient flow may be assisted via balancing patient loads between EDs (in essence spreading patients more evenly throughout this system). This investigation utilizes simulation to explore “Crowdinforming” as a basis for a process control strategy aimed to balance patient loads between six EDs within a mid-sized Canadian city. Methods: Anonymous patient visit data comprising 120,000 ED patient visits over six months to six ED facilities were obtained from the region’s Emergency Department Information System (EDIS) to (1) determine trends in ED visits and interactions between parameters; (2) to develop a process control strategy integrating crowdinforming; and, (3) apply and evaluate the model in a simulated environment to explore the potential impact on patient self-redirection and load balancing between EDs. Results: As in reality, the data available and subsequent model demonstrated that there are many factors that impact ED patient flow. Initial results suggest that for this particular data set used, ED arrival rates were the most useful metric for ED ‘busyness’ in a process control strategy, and that Emergency Department performance may benefit from load balancing efforts. Conclusions: The simulation supports the use of crowdinforming as a potential tool when used in a process control strategy to balance the patient loads between EDs. The work also revealed that the value of several parameters intuitively expected to be meaningful metrics of ED ‘busyness’ was not evident, highlighting the importance of finding parameters meaningful within one’s particular data set. The information provided in the crowdinforming model is already available in a local context at some ED sites. The extension to a wider dissemination of information via an Internet web service accessible by smart phones is readily achievable and not a technological obstacle. Similarly, the system could be extended to help direct patients by including future estimates or predictions in the crowdinformed data. The contribution of the simulation is to allow for effective policy evaluation to better inform the public of ED ‘busyness’ as part of their decision making process in attending an emergency department. In effect, this is a means of providing additional decision support insights garnered from a simulation, prior to a real world implementation. PMID:23569610

  14. PLUM: Parallel Load Balancing for Adaptive Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Mesh adaption is a powerful tool for efficient unstructured-grid computations but causes load imbalance among processors on a parallel machine. We present a novel method called PLUM to dynamically balance the processor workloads with a global view. This paper presents the implementation and integration of all major components within our dynamic load balancing strategy for adaptive grid calculations. Mesh adaption, repartitioning, processor assignment, and remapping are critical components of the framework that must be accomplished rapidly and efficiently so as not to cause a significant overhead to the numerical simulation. A data redistribution model is also presented that predicts the remapping cost on the SP2. This model is required to determine whether the gain from a balanced workload distribution offsets the cost of data movement. Results presented in this paper demonstrate that PLUM is an effective dynamic load balancing strategy which remains viable on a large number of processors.

  15. Controlling Factors of the Surface Energy and Water Balances in cities located in cold climate regions

    NASA Astrophysics Data System (ADS)

    Järvi, L.; Grimmond, S. B.; Christen, A.; McFadden, J. P.; Strachan, I. B.

    2016-12-01

    Urban effects on climate are often pronounced in winter due to large anthropogenic heat releases and differences in snow cover between urban and surrounding rural areas. In this study, we simulate energy and water balances in cities characterized by cold winter climates with snow. Eleven urban sites from Helsinki (Finland), Basel (Switzerland), Montreal (Canada) and Minneapolis (USA) are analysed. The sites were selected based on the availability of either measured turbulent fluxes (from eddy covariance) or surface runoff to be used for model evaluation. The sites vary with respect to land cover fractions, irrigation habits and population densities. For example, the plan area fraction of impervious surface varies from 5% in Minneapolis to 84% in Basel. To simulate urban energy and water balances, we use the Surface Urban Energy and Water balance Scheme (SUEWS) model, which has been designed to minimize the number of required input variables and model parameters. For each site, the model is run in an offline mode using measured hourly meteorological data with a time step of 5-min. As the modelled time periods range from one (Basel) to 7.5 years (Helsinki), a wide range of meteorological conditions occur. Our results show how both evaporation and surface runoff are highly dependent on the fraction of impervious surface cover (r > |0.8|) during snow-free periods. However, high year-to-year variability in simulated evaporation and runoff indicates that climatological factors are also important. In winter, the amount and duration of snow cover become import controlling factor in determining the two components of water balance. The shorter the snow cover period is, the larger the cumulative runoff tends to be. Thus, our results suggest that warmer winters with less snow will increase the stress on drainage systems and modify the urban ecosystem via changes in evaporation and Bowen ratio. Also, our results indicate that simply using the fraction of impervious or pervious surfaces when estimating the surface runoff at different sites is not sufficient, but rather inter-annual variability in climatology also needs to be considered.

  16. Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.

    1995-01-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.

  17. Simulation of streamflow, evapotranspiration, and groundwater recharge in the middle Nueces River watershed, south Texas, 1961-2008

    USGS Publications Warehouse

    Dietsch, Benjamin J.; Wehmeyer, Loren L.

    2012-01-01

    Selected results of the model include streamflow yields for the subwatersheds and water-balance information for the Carrizo–Wilcox aquifer outcrop area. For the entire model domain, the area-weighted mean streamflow yield from 1961 to 2008 was 1.12 inches/year. The mean annual rainfall on the outcrop area during the 1961–2008 simulation period was 21.7 inches. Of this rainfall, an annual mean of 20.1 inches (about 93 percent) was simulated as evapotranspiration, 1.2 inches (about 6 percent) was simulated as groundwater recharge, and 0.5 inches (about 2 percent) was simulated as surface runoff.

  18. Dynamical Systems in Circuit Designer's Eyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odyniec, M.

    Examples of nonlinear circuit design are given. Focus of the design process is on theory and engineering methods (as opposed to numerical analysis). Modeling is related to measurements It is seen that the phase plane is still very useful with proper models Harmonic balance/describing function offers powerful insight (via the combination of simulation with circuit and ODE theory). Measurement and simulation capabilities increased, especially harmonics measurements (since sinusoids are easy to generate)

  19. Simulation-based power calculation for designing interrupted time series analyses of health policy interventions.

    PubMed

    Zhang, Fang; Wagner, Anita K; Ross-Degnan, Dennis

    2011-11-01

    Interrupted time series is a strong quasi-experimental research design to evaluate the impacts of health policy interventions. Using simulation methods, we estimated the power requirements for interrupted time series studies under various scenarios. Simulations were conducted to estimate the power of segmented autoregressive (AR) error models when autocorrelation ranged from -0.9 to 0.9 and effect size was 0.5, 1.0, and 2.0, investigating balanced and unbalanced numbers of time periods before and after an intervention. Simple scenarios of autoregressive conditional heteroskedasticity (ARCH) models were also explored. For AR models, power increased when sample size or effect size increased, and tended to decrease when autocorrelation increased. Compared with a balanced number of study periods before and after an intervention, designs with unbalanced numbers of periods had less power, although that was not the case for ARCH models. The power to detect effect size 1.0 appeared to be reasonable for many practical applications with a moderate or large number of time points in the study equally divided around the intervention. Investigators should be cautious when the expected effect size is small or the number of time points is small. We recommend conducting various simulations before investigation. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Control at stability's edge minimizes energetic costs: expert stick balancing

    PubMed Central

    Meyer, Ryan; Zhvanetsky, Max; Ridge, Sarah; Insperger, Tamás

    2016-01-01

    Stick balancing on the fingertip is a complex voluntary motor task that requires the stabilization of an unstable system. For seated expert stick balancers, the time delay is 0.23 s, the shortest stick that can be balanced for 240 s is 0.32 m and there is a ° dead zone for the estimation of the vertical displacement angle in the saggital plane. These observations motivate a switching-type, pendulum–cart model for balance control which uses an internal model to compensate for the time delay by predicting the sensory consequences of the stick's movements. Numerical simulations using the semi-discretization method suggest that the feedback gains are tuned near the edge of stability. For these choices of the feedback gains, the cost function which takes into account the position of the fingertip and the corrective forces is minimized. Thus, expert stick balancers optimize control with a combination of quick manoeuvrability and minimum energy expenditures. PMID:27278361

  1. An Evaluation Tool for CONUS-Scale Estimates of Components of the Water Balance

    NASA Astrophysics Data System (ADS)

    Saxe, S.; Hay, L.; Farmer, W. H.; Markstrom, S. L.; Kiang, J. E.

    2016-12-01

    Numerous research groups are independently developing data products to represent various components of the water balance (e.g. runoff, evapotranspiration, recharge, snow water equivalent, soil moisture, and climate) at the scale of the conterminous United States. These data products are derived from a range of sources, including direct measurement, remotely-sensed measurement, and statistical and deterministic model simulations. An evaluation tool is needed to compare these data products and the components of the water balance they contain in order to identify the gaps in the understanding and representation of continental-scale hydrologic processes. An ideal tool will be an objective, universally agreed upon, framework to address questions related to closing the water balance. This type of generic, model agnostic evaluation tool would facilitate collaboration amongst different hydrologic research groups and improve modeling capabilities with respect to continental-scale water resources. By adopting a comprehensive framework to consider hydrologic modeling in the context of a complete water balance, it is possible to identify weaknesses in process modeling, data product representation and regional hydrologic variation. As part of its National Water Census initiative, the U.S. Geological survey is facilitating this dialogue to developing prototype evaluation tools.

  2. Finite wing aerodynamics with simulated glaze ice

    NASA Technical Reports Server (NTRS)

    Khodadoust, A.; Bragg, M. B.; Kerho, M.; Wells, S.; Soltani, M. R.

    1992-01-01

    The effect of a simulated glaze ice accretion on the aerodynamic performance of a three-dimensional wing is studied experimentally. The model used for these tests was a semi-span wing of effective aspect ratio five, mounted from the sidewall of the UIUC subsonic wind tunnel. The model has an NACA 0012 airfoil section on a rectangular, untwisted planform with interchangeable leading edges to allow for testing both the baseline and the iced wing geometry. A three-component sidewall balance was used to measure lift, drag and pitching moment on the clean and iced model. A four-beam two-color fiberoptic laser Doppler velocimeter (LDV) was used to map the flowfield along several spanwise cuts on the model. Preliminary results from LDV scans, which will be the bulk of this paper, are presented following the force balance measurement results. Initial comparison of LDV surveys compare favorably with inviscid theory results and 2D split hot-film measurements near the model surface.

  3. Brief Communication: Upper Air Relaxation in RACMO2 Significantly Improves Modelled Interannual Surface Mass Balance Variability in Antarctica

    NASA Technical Reports Server (NTRS)

    van de Berg, W. J.; Medley, B.

    2016-01-01

    The Regional Atmospheric Climate Model (RACMO2) has been a powerful tool for improving surface mass balance (SMB) estimates from GCMs or reanalyses. However, new yearly SMB observations for West Antarctica show that the modelled interannual variability in SMB is poorly simulated by RACMO2, in contrast to ERA-Interim, which resolves this variability well. In an attempt to remedy RACMO2 performance, we included additional upper-air relaxation (UAR) in RACMO2. With UAR, the correlation to observations is similar for RACMO2 and ERA-Interim. The spatial SMB patterns and ice-sheet-integrated SMB modelled using UAR remain very similar to the estimates of RACMO2 without UAR. We only observe an upstream smoothing of precipitation in regions with very steep topography like the Antarctic Peninsula. We conclude that UAR is a useful improvement for regional climate model simulations, although results in regions with steep topography should be treated with care.

  4. Wind tunnel and ground static tests of a .094 scale powered model of a modified T-39 lift/cruise fan V/STOL research airplane

    NASA Technical Reports Server (NTRS)

    Hunt, D.; Clinglan, J.; Salemann, V.; Omar, E.

    1977-01-01

    Ground static and wind tunnel test of a scale model modified T-39 airplane are reported. The configuration in the nose and replacement of the existing nacelles with tilting lift/cruise fans. The model was powered with three 14 cm diameter tip driven turbopowered simulators. Forces and moments were measured by an internal strain guage balance. Engine simulator thrust and mass flow were measured by calibrated pressure and temperature instrumentation mounted downstream of the fans. The low speed handling qualities and general aerodynamic characteristics of the modified T-39 were defined. Test variables include thrust level and thrust balance, forward speed, model pitch and sideslip angle at forward speeds, model pitch, roll, and ground height during static tests, lift/cruise fan tilt angle, flap and aileron deflection angle, and horizonal stabilizer angle. The effects of removing the landing gear, the lift/cruise fans, and the tail surfaces were also investigated.

  5. Evaluating the Dominant Components of Warming in Pliocene Climate Simulations

    NASA Technical Reports Server (NTRS)

    Hill, D. J.; Haywood, A. M.; Lunt, D. J.; Hunter, S. J.; Bragg, F. J.; Contoux, C.; Stepanek, C.; Sohl, L.; Rosenbloom, N. A.; Chan, W.-L.; hide

    2014-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean-atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with the cloud component of planetary albedo enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere midlatitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo, only partially offset by the increases in the cooling impact of cloud albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with clouds in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that albedo feedbacks, particularly those of sea ice and ice sheets, provide the most significant enhancements to high latitude warming in the Pliocene.

  6. Selection of an appropriate animal model for study of bone loss in weightlessness

    NASA Technical Reports Server (NTRS)

    Wolinsky, I.

    1986-01-01

    Prolonged weightlessness in space flight results in a slow progressive demineralization of bone accompanied by an increased calcium output in the urine resulting in negative calcium balances. This possibly irreversible bone loss may constitute a serious limiting factor to long duration manned space flight. A number of preventative measures have been suggested, i.e., exercise during flight, dietary calcium supplements, use of specific prophylactic drugs. In order to facilitate research in these areas it is necessary to develop appropriate ground-based animal models that simulate the human condition of osteoporsis. An appropriate animal model would permit bone density studies, calcium balance studies, biochemical analyses, ground-based simulation models of weightlessness (bed rest, restraint, immobilization) and the planning of inflight experiments. Several animal models have been proposed in the biomedical research literature, but have inherent deficiencies. The purpose of this project was to evaluate models in the literature and determine which of these most closely simulates the phenomenon of bone loss in humans with regard to growth, bone remodeling, structural, chemical and mineralization similarities to human. This was accomplished by a comprehensive computer assisted literature search and report. Three animal models were examined closely for their relative suitability: the albino rat, monkey, and Beagle.

  7. Hydrogen generation in CSP plants and maintenance of DPO/BP heat transfer fluids - A simulation approach

    NASA Astrophysics Data System (ADS)

    Kuckelkorn, Thomas; Jung, Christian; Gnädig, Tim; Lang, Christoph; Schall, Christina

    2016-05-01

    The ageing of diphenyl oxide/ biphenyl (DPO/BP) Heat Transfer Fluids (HTFs) implies challenging tasks for operators of parabolic trough power plants in order to find the economic optimum between plant performance and O&M costs. Focusing on the generation of hydrogen, which is effecting from the HTF ageing process, the balance of hydrogen pressure in the HTF is simulated for different operation scenarios. Accelerated build-up of hydrogen pressure in the HTF is causing increased permeation into the annular vacuum space of the installed receivers and must be avoided in order to maintain the performance of these components. Therefore, the effective hydrogen partial pressure in the HTF has to be controlled and limited according to the specified values so that the vacuum lifetime of the receivers and the overall plant performance can be ensured. In order to simulate and visualize the hydrogen balance of a typical parabolic trough plant, initially a simple model is used to calculate the balance of hydrogen in the system and this is described. As input data for the simulation, extrapolated hydrogen generation rates have been used, which were calculated from results of lab tests performed by DLR in Cologne, Germany. Hourly weather data, surface temperatures of the tubing system calculated by using the simulation tool from NREL, and hydrogen permeation rates for stainless steel and carbon steel grades taken from literature have been added to the model. In a first step the effect of HTF ageing, build-up of hydrogen pressure in the HTF and hydrogen loss rates through piping and receiver components have been modeled. In a second step a selective hydrogen removal process has been added to the model. The simulation results are confirming the need of active monitoring and controlling the effective hydrogen partial pressure in parabolic trough solar thermal power plants with DPO/BP HTF. Following the results of the simulation, the expected plant performance can only be achieved over lifetime, if the hydrogen partial pressure is actively controlled and limited.

  8. A spatially distributed energy balance snowmelt model for application in mountain basins

    USGS Publications Warehouse

    Marks, D.; Domingo, J.; Susong, D.; Link, T.; Garen, D.

    1999-01-01

    Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.

  9. Unraveling the Hydrology of the Glacierized Kaidu Basin by Integrating Multisource Data in the Tianshan Mountains, Northwestern China

    NASA Astrophysics Data System (ADS)

    Shen, Yan-Jun; Shen, Yanjun; Fink, Manfred; Kralisch, Sven; Brenning, Alexander

    2018-01-01

    Understanding the water balance, especially as it relates to the distribution of runoff components, is crucial for water resource management and coping with the impacts of climate change. However, hydrological processes are poorly known in mountainous regions due to data scarcity and the complex dynamics of snow and glaciers. This study aims to provide a quantitative comparison of gridded precipitation products in the Tianshan Mountains, located in Central Asia and in order to further understand the mountain hydrology and distribution of runoff components in the glacierized Kaidu Basin. We found that gridded precipitation products are affected by inconsistent biases based on a spatiotemporal comparison with the nearest weather stations and should be evaluated with caution before using them as boundary conditions in hydrological modeling. Although uncertainties remain in this data-scarce basin, driven by field survey data and bias-corrected gridded data sets (ERA-Interim and APHRODITE), the water balance and distribution of runoff components can be plausibly quantified based on the distributed hydrological model (J2000). We further examined parameter sensitivity and uncertainty with respect to both simulated streamflow and different runoff components based on an ensemble of simulations. This study demonstrated the possibility of integrating gridded products in hydrological modeling. The methodology used can be important for model applications and design in other data-scarce mountainous regions. The model-based simulation quantified the water balance and how the water resources are partitioned throughout the year in Tianshan Mountain basins, although the uncertainties present in this study result in important limitations.

  10. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    USGS Publications Warehouse

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    2012-01-01

    Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from and . Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).

  11. Numerical simulation of transonic compressor under circumferential inlet distortion and rotor/stator interference using harmonic balance method

    NASA Astrophysics Data System (ADS)

    Wang, Ziwei; Jiang, Xiong; Chen, Ti; Hao, Yan; Qiu, Min

    2018-05-01

    Simulating the unsteady flow of compressor under circumferential inlet distortion and rotor/stator interference would need full-annulus grid with a dual time method. This process is time consuming and needs a large amount of computational resources. Harmonic balance method simulates the unsteady flow in compressor on single passage grid with a series of steady simulations. This will largely increase the computational efficiency in comparison with the dual time method. However, most simulations with harmonic balance method are conducted on the flow under either circumferential inlet distortion or rotor/stator interference. Based on an in-house CFD code, the harmonic balance method is applied in the simulation of flow in the NASA Stage 35 under both circumferential inlet distortion and rotor/stator interference. As the unsteady flow is influenced by two different unsteady disturbances, it leads to the computational instability. The instability can be avoided by coupling the harmonic balance method with an optimizing algorithm. The computational result of harmonic balance method is compared with the result of full-annulus simulation. It denotes that, the harmonic balance method simulates the flow under circumferential inlet distortion and rotor/stator interference as precise as the full-annulus simulation with a speed-up of about 8 times.

  12. Rainfall-Runoff and Water-Balance Models for Management of the Fena Valley Reservoir, Guam

    USGS Publications Warehouse

    Yeung, Chiu W.

    2005-01-01

    The U.S. Geological Survey's Precipitation-Runoff Modeling System (PRMS) and a generalized water-balance model were calibrated and verified for use in estimating future availability of water in the Fena Valley Reservoir in response to various combinations of water withdrawal rates and rainfall conditions. Application of PRMS provides a physically based method for estimating runoff from the Fena Valley Watershed during the annual dry season, which extends from January through May. Runoff estimates from the PRMS are used as input to the water-balance model to estimate change in water levels and storage in the reservoir. A previously published model was calibrated for the Maulap and Imong River watersheds using rainfall data collected outside of the watershed. That model was applied to the Almagosa River watershed by transferring calibrated parameters and coefficients because information on daily diversions at the Almagosa Springs upstream of the gaging station was not available at the time. Runoff from the ungaged land area was not modeled. For this study, the availability of Almagosa Springs diversion data allowed the calibration of PRMS for the Almagosa River watershed. Rainfall data collected at the Almagosa rain gage since 1992 also provided better estimates of rainfall distribution in the watershed. In addition, the discontinuation of pan-evaporation data collection in 1998 required a change in the evapotranspiration estimation method used in the PRMS model. These reasons prompted the update of the PRMS for the Fena Valley Watershed. Simulated runoff volume from the PRMS compared reasonably with measured values for gaging stations on Maulap, Almagosa, and Imong Rivers, tributaries to the Fena Valley Reservoir. On the basis of monthly runoff simulation for the dry seasons included in the entire simulation period (1992-2001), the total volume of runoff can be predicted within -3.66 percent at Maulap River, within 5.37 percent at Almagosa River, and within 10.74 percent at Imong River. Month-end reservoir volumes simulated by the reservoir water-balance model for both calibration and verification periods compared closely with measured reservoir volumes. Errors for the calibration periods ranged from 4.51 percent [208.7 acre-feet (acre-ft) or 68.0 million gallons (Mgal)] to -5.90 percent (-317.8 acre-ft or -103.6 Mgal). For the verification periods, errors ranged from 1.69 percent (103.5 acre-ft or 33.7 Mgal) to -4.60 percent (-178.7 acre-ft or -58.2 Mgal). Monthly simulation bias ranged from -0.19 percent for the calibration period to -0.98 percent for the verification period; relative error ranged from -0.37 to -1.12 percent, respectively. Relatively small bias indicated that the model did not consistently overestimate or underestimate reservoir volume.

  13. The Water Balance Portal in Saxony - An interactive web application concerning the impact of climate change on the water balance

    NASA Astrophysics Data System (ADS)

    Hauffe, Corina; Schwarze, Robert; Röhm, Patric; Müller, Ruben; Dröge, Werner; Gurova, Anastasia; Winkler, Peter; Baldy, Agnes

    2016-04-01

    Changes in weather and climate lead to increasing discussions about reasons and possible future impacts on the hydrological cycle. The question of a changed distribution of water also concerns the federal state of Saxony in the eastern part of Germany. Especially with a look at the different and increased requirements for water authorities, water economy and the public. To define and prepare these future requirements estimations of the future development of the natural water resources are necessary. Therefore data, information, and forecast concerning the development of the several components of the water balance are needed. And to make the obtained information easily available for experts and the public, tools like the internet have to be used. Under these frame conditions the water balance portal Saxony (www.wasserhaushaltsportal.sachsen.de) was developed within the project KliWES. The overall approach of the project was devided into the so-called „3 pillars".The first pillar focused on the evaluation of the status quo water balance from 1951-2005 by using a complex area-wide analysis of measured data. Also it contained the generating of a database and the development of a physically based parameter model. Furthermore an extensive model evaluation has been conducted with a number of objective assessment criteria, to select an appropriate model for the project. The second pillar included the calibration of the water balance model and the impact study of climate and land use change (1961-2100) on the water balance of Saxonian catchments. In this context 13 climate scenarios and three land use scenarios were simulated. The web presence of these two pillars represents a classical information service, which provides finalized results at the spatial resolution of sub-catchments using GIS-based webpages. The third pillar focused on the development of an interactive expert system. It allows the user (public, officials and consulting engineers) to simulate the water balance with user defined catchment parameters for catchments in Saxony under recent climatic und climate change conditions.

  14. A Two-Wheeled, Self-Balancing Electric Vehicle Used As an Environmentally Friendly Individual Means of Transport

    NASA Astrophysics Data System (ADS)

    Bździuch, D.; Grzegożek, W.

    2016-09-01

    This paper shows a concept of a model of a two-wheeled self-balancing vehicle with an electric motor drive as an environmentally-friendly personal transporter. The principle of work, modelling of construction and performing a simulation are presented and discussed. The visualization of the designed vehicle was made thanks to using Solid Works a computer-aided design program. The vehicle was modelled as an inverted pendulum. The stability of the mechanism in the equilibrium position was studied. An exemplary steering system was also subjected to the analysis that compared two controllers: PID and LQR which enabled to monitor the balance of the vehicle when the required conditions were fulfilled. Modelling of work of the controllers and the evaluation of the obtained results in required conditions were performed in the MATLAB environment.

  15. A Mercury Transport and Fate Model for Mass Budget Assessment of Mercury Cycling in Lake Michigan

    EPA Science Inventory

    A mercury mass balance model was developed to describe and evaluate the fate, transport, and biogeochemical transformations of mercury in Lake Michigan. Coupling with total suspendable solids (TSS) and dissolved organic carbon (DOC), the mercury transport and fate model simulates...

  16. Development of mpi_EPIC model for global agroecosystem modeling

    DOE PAGES

    Kang, Shujiang; Wang, Dali; Jeff A. Nichols; ...

    2014-12-31

    Models that address policy-maker concerns about multi-scale effects of food and bioenergy production systems are computationally demanding. We integrated the message passing interface algorithm into the process-based EPIC model to accelerate computation of ecosystem effects. Simulation performance was further enhanced by applying the Vampir framework. When this enhanced mpi_EPIC model was tested, total execution time for a global 30-year simulation of a switchgrass cropping system was shortened to less than 0.5 hours on a supercomputer. The results illustrate that mpi_EPIC using parallel design can balance simulation workloads and facilitate large-scale, high-resolution analysis of agricultural production systems, management alternatives and environmentalmore » effects.« less

  17. Simulations of the general circulation of the Martian atmosphere. II - Seasonal pressure variations

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Haberle, Robert M.; Murphy, James R.; Schaeffer, James; Lee, Hilda

    1993-01-01

    The CO2 seasonal cycle of the Martian atmosphere and surface is simulated with a hybrid energy balance model that incorporates dynamical and radiation information from a large number of general circulation model runs. This information includes: heating due to atmospheric heat advection, the seasonally varying ratio of the surface pressure at the two Viking landing sites to the globally averaged pressure, the rate of CO2 condensation in the atmosphere, and solar heating of the atmosphere and surface. The predictions of the energy balance model are compared with the seasonal pressure variations measured at the two Viking landing sites and the springtime retreat of the seasonal polar cap boundaries. The following quantities are found to have a strong influence on the seasonal pressures at the Viking landing sites: albedo of the seasonal CO2 ice deposits, emissivity of this deposit, atmospheric heat advection, and the pressure ratio.

  18. Hydrologic-energy balance constraints on the Holocene lake-level history of lake Titicaca, South America

    NASA Astrophysics Data System (ADS)

    Rowe, H. D.; Dunbar, R. B.

    2004-09-01

    A basin-scale hydrologic-energy balance model that integrates modern climatological, hydrological, and hypsographic observations was developed for the modern Lake Titicaca watershed (northern Altiplano, South America) and operated under variable conditions to understand controls on post-glacial changes in lake level. The model simulates changes in five environmental variables (air temperature, cloud fraction, precipitation, relative humidity, and land surface albedo). Relatively small changes in three meteorological variables (mean annual precipitation, temperature, and/or cloud fraction) explain the large mid-Holocene lake-level decrease (˜85 m) inferred from seismic reflection profiling and supported by sediment-based paleoproxies from lake sediments. Climatic controls that shape the present-day Altiplano and the sediment-based record of Holocene lake-level change are combined to interpret model-derived lake-level simulations in terms of changes in the mean state of ENSO and its impact on moisture transport to the Altiplano.

  19. Toll-like receptor variation in the bottlenecked population of the Seychelles warbler: computer simulations see the 'ghost of selection past' and quantify the 'drift debt'.

    PubMed

    Gilroy, D L; Phillips, K P; Richardson, D S; van Oosterhout, C

    2017-07-01

    Balancing selection can maintain immunogenetic variation within host populations, but detecting its signal in a postbottlenecked population is challenging due to the potentially overriding effects of drift. Toll-like receptor genes (TLRs) play a fundamental role in vertebrate immune defence and are predicted to be under balancing selection. We previously characterized variation at TLR loci in the Seychelles warbler (Acrocephalus sechellensis), an endemic passerine that has undergone a historical bottleneck. Five of seven TLR loci were polymorphic, which is in sharp contrast to the low genomewide variation observed. However, standard population genetic statistical methods failed to detect a contemporary signature of selection at any TLR locus. We examined whether the observed TLR polymorphism could be explained by neutral evolution, simulating the population's demography in the software DIYABC. This showed that the posterior distributions of mutation rates had to be unrealistically high to explain the observed genetic variation. We then conducted simulations with an agent-based model using typical values for the mutation rate, which indicated that weak balancing selection has acted on the three TLR genes. The model was able to detect evidence of past selection elevating TLR polymorphism in the prebottleneck populations, but was unable to discern any effects of balancing selection in the contemporary population. Our results show drift is the overriding evolutionary force that has shaped TLR variation in the contemporary Seychelles warbler population, and the observed TLR polymorphisms might be merely the 'ghost of selection past'. Forecast models predict immunogenetic variation in this species will continue to be eroded in the absence of contemporary balancing selection. Such 'drift debt' occurs when a gene pool has not yet reached its new equilibrium level of polymorphism, and this loss could be an important threat to many recently bottlenecked populations. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  20. A Model-Based Approach for Identifying Signatures of Ancient Balancing Selection in Genetic Data

    PubMed Central

    DeGiorgio, Michael; Lohmueller, Kirk E.; Nielsen, Rasmus

    2014-01-01

    While much effort has focused on detecting positive and negative directional selection in the human genome, relatively little work has been devoted to balancing selection. This lack of attention is likely due to the paucity of sophisticated methods for identifying sites under balancing selection. Here we develop two composite likelihood ratio tests for detecting balancing selection. Using simulations, we show that these methods outperform competing methods under a variety of assumptions and demographic models. We apply the new methods to whole-genome human data, and find a number of previously-identified loci with strong evidence of balancing selection, including several HLA genes. Additionally, we find evidence for many novel candidates, the strongest of which is FANK1, an imprinted gene that suppresses apoptosis, is expressed during meiosis in males, and displays marginal signs of segregation distortion. We hypothesize that balancing selection acts on this locus to stabilize the segregation distortion and negative fitness effects of the distorter allele. Thus, our methods are able to reproduce many previously-hypothesized signals of balancing selection, as well as discover novel interesting candidates. PMID:25144706

  1. A model-based approach for identifying signatures of ancient balancing selection in genetic data.

    PubMed

    DeGiorgio, Michael; Lohmueller, Kirk E; Nielsen, Rasmus

    2014-08-01

    While much effort has focused on detecting positive and negative directional selection in the human genome, relatively little work has been devoted to balancing selection. This lack of attention is likely due to the paucity of sophisticated methods for identifying sites under balancing selection. Here we develop two composite likelihood ratio tests for detecting balancing selection. Using simulations, we show that these methods outperform competing methods under a variety of assumptions and demographic models. We apply the new methods to whole-genome human data, and find a number of previously-identified loci with strong evidence of balancing selection, including several HLA genes. Additionally, we find evidence for many novel candidates, the strongest of which is FANK1, an imprinted gene that suppresses apoptosis, is expressed during meiosis in males, and displays marginal signs of segregation distortion. We hypothesize that balancing selection acts on this locus to stabilize the segregation distortion and negative fitness effects of the distorter allele. Thus, our methods are able to reproduce many previously-hypothesized signals of balancing selection, as well as discover novel interesting candidates.

  2. Assimilation of snow covered area information into hydrologic and land-surface models

    USGS Publications Warehouse

    Clark, M.P.; Slater, A.G.; Barrett, A.P.; Hay, L.E.; McCabe, G.J.; Rajagopalan, B.; Leavesley, G.H.

    2006-01-01

    This paper describes a data assimilation method that uses observations of snow covered area (SCA) to update hydrologic model states in a mountainous catchment in Colorado. The assimilation method uses SCA information as part of an ensemble Kalman filter to alter the sub-basin distribution of snow as well as the basin water balance. This method permits an optimal combination of model simulations and observations, as well as propagation of information across model states. Sensitivity experiments are conducted with a fairly simple snowpack/water-balance model to evaluate effects of the data assimilation scheme on simulations of streamflow. The assimilation of SCA information results in minor improvements in the accuracy of streamflow simulations near the end of the snowmelt season. The small effect from SCA assimilation is initially surprising. It can be explained both because a substantial portion of snowmelts before any bare ground is exposed, and because the transition from 100% to 0% snow coverage occurs fairly quickly. Both of these factors are basin-dependent. Satellite SCA information is expected to be most useful in basins where snow cover is ephemeral. The data assimilation strategy presented in this study improved the accuracy of the streamflow simulation, indicating that SCA is a useful source of independent information that can be used as part of an integrated data assimilation strategy. ?? 2005 Elsevier Ltd. All rights reserved.

  3. Xyce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomquist, Heidi K.; Fixel, Deborah A.; Fett, David Brian

    The Xyce Parallel Electronic Simulator simulates electronic circuit behavior in DC, AC, HB, MPDE and transient mode using standard analog (DAE) and/or device (PDE) device models including several age and radiation aware devices. It supports a variety of computing platforms (both serial and parallel) computers. Lastly, it uses a variety of modern solution algorithms dynamic parallel load-balancing and iterative solvers.

  4. [Optimal solution and analysis of muscular force during standing balance].

    PubMed

    Wang, Hongrui; Zheng, Hui; Liu, Kun

    2015-02-01

    The present study was aimed at the optimal solution of the main muscular force distribution in the lower extremity during standing balance of human. The movement musculoskeletal system of lower extremity was simplified to a physical model with 3 joints and 9 muscles. Then on the basis of this model, an optimum mathematical model was built up to solve the problem of redundant muscle forces. Particle swarm optimization (PSO) algorithm is used to calculate the single objective and multi-objective problem respectively. The numerical results indicated that the multi-objective optimization could be more reasonable to obtain the distribution and variation of the 9 muscular forces. Finally, the coordination of each muscle group during maintaining standing balance under the passive movement was qualitatively analyzed using the simulation results obtained.

  5. Regional simulation of soil nitrogen dynamics and balance in Swiss cropping systems

    NASA Astrophysics Data System (ADS)

    Lee, Juhwan; Necpalova, Magdalena; Six, Johan

    2017-04-01

    We evaluated the regional-scale potential of various crop and soil management practices to reduce the dependency of crop N demand on external N inputs and N losses to the environment. The estimates of soil N balance were simulated and compared under alternative and conventional crop production across all Swiss cropland. Alternative practices were all combinations of organic fertilization, reduced tillage and winter cover cropping. Using the DayCent model, we simulated changes in crop N yields as well as the contribution of inputs and outputs to soil N balance by alternative practices, which was complemented with corresponding measurements from available long-term field experiments and site-level simulations. In addition, the effects of reducing (between 0% and 80% of recommended application rates) or increasing chemical fertilizer input rates (between 120% and 300% of recommended application rates) on system-level N dynamics were also simulated. Modeled yields at recommended N rates were only 37-87% of the maximum yield potential across common Swiss crops, and crop productivity were sensitive to the level of external N inputs, except for grass-clover mixture, soybean and peas. Overall, differences in soil N input and output decreased or increased proportionally with changing the amount of N input only from the recommended rate. As a result, there was no additional difference in soil N balance in response to N application rates. Nitrate leaching accounted for 40-81% of total N output differences, while up to 47% of total N output occurred through harvest and straw removal. Regardless of crops, yield potential became insensitive to high N rates. Differences in N2O and N2 emissions slightly increased with increasing N inputs, in which each gas was only responsible for about 1% of changes in total N output. Overall, there was a positive soil N balance under alternative practices. Particularly, considerable improvement in soil N balance was expected when slowly decomposed organic fertilizer was used in combination with cover cropping and/or reduced tillage. However, the increase in soil N balance was due to the decreases in harvested yield and nitrate leaching under these organic cropping based practices. Instead, the use of fast decomposed organic matter with cover cropping could be considered to avoid any yield penalty while decreasing nitrate leaching, hence reducing total N output. In order to effectively reduce N losses from soils, approaches to utilize multiple alternative options should be taken into account at the regional scale.

  6. Electric Water Heater Modeling and Control Strategies for Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.

    2012-07-22

    Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency supportmore » following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid« less

  7. Documentation of Computer Program INFIL3.0 - A Distributed-Parameter Watershed Model to Estimate Net Infiltration Below the Root Zone

    USGS Publications Warehouse

    ,

    2008-01-01

    This report documents the computer program INFIL3.0, which is a grid-based, distributed-parameter, deterministic water-balance watershed model that calculates the temporal and spatial distribution of daily net infiltration of water across the lower boundary of the root zone. The bottom of the root zone is the estimated maximum depth below ground surface affected by evapotranspiration. In many field applications, net infiltration below the bottom of the root zone can be assumed to equal net recharge to an underlying water-table aquifer. The daily water balance simulated by INFIL3.0 includes precipitation as either rain or snow; snowfall accumulation, sublimation, and snowmelt; infiltration into the root zone; evapotranspiration from the root zone; drainage and water-content redistribution within the root-zone profile; surface-water runoff from, and run-on to, adjacent grid cells; and net infiltration across the bottom of the root zone. The water-balance model uses daily climate records of precipitation and air temperature and a spatially distributed representation of drainage-basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The model does not simulate streamflow originating as ground-water discharge. Drainage-basin characteristics are represented in the model by a set of spatially distributed input variables uniquely assigned to each grid cell of a model grid. The report provides a description of the conceptual model of net infiltration on which the INFIL3.0 computer code is based and a detailed discussion of the methods by which INFIL3.0 simulates the net-infiltration process. The report also includes instructions for preparing input files necessary for an INFIL3.0 simulation, a description of the output files that are created as part of an INFIL3.0 simulation, and a sample problem that illustrates application of the code to a field setting. Brief descriptions of the main program routine and of each of the modules and subroutines of the INFIL3.0 code, as well as definitions of the variables used in each subroutine, are provided in an appendix.

  8. A manifold learning approach to data-driven computational materials and processes

    NASA Astrophysics Data System (ADS)

    Ibañez, Ruben; Abisset-Chavanne, Emmanuelle; Aguado, Jose Vicente; Gonzalez, David; Cueto, Elias; Duval, Jean Louis; Chinesta, Francisco

    2017-10-01

    Standard simulation in classical mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy, …), whereas the second one consists of models that scientists have extracted from collected, natural or synthetic data. In this work we propose a new method, able to directly link data to computers in order to perform numerical simulations. These simulations will employ universal laws while minimizing the need of explicit, often phenomenological, models. They are based on manifold learning methodologies.

  9. [Simulation for balanced effect of soil and water resources on cultivated land in Naoli River Basin, Northeast China under the RCPs climate scene].

    PubMed

    Zhou, Hao; Lei, Guo Ping; Yang, Xue Xin; Zhao, Yu Hui; Zhang, Ji Xin

    2018-04-01

    Under the scenarios of climate change, balancing the land and water resources is one of the key problems needed to be solved in land development. To reveal the water dynamics of the cultivated land in Naoli River Basin, we simulated the future scenarios by using the future land use simulation model based on Landsat Satellite images, the DEM data and the meteorological data. Results showed that the growth rate of cultivated land gradually decreased. It showed different changing characteristics in different time periods, which led to different balancing effect between land and water resources. In 1990, the water dynamics of the cultivated land resources was in good state, At the same time, the adjustment of crops structure caused the paddy fields increased dramatically. During 2002 to 2014, the cultivated land that in moderate and serious moisture shortage state increased slightly, the water deficit was deteriorating to a certain degree, and maintained sound development of water profit and loss situation gradually. By comparing the simulation accuracy with different spatial resolutions and time scales, we selected 200 m as the spatial resolution of the simulation, and simulated the land use status in 2038. The simulation results showed that the cultivated land's water profit and loss degree in the river basin showed significant polarization characteristic, in that the water profit and loss degree of the cultivated land would be further intensified, the area with the higher grades of moisture profit and loss degree would distribute more centralized, and partially high evaluated grades for the moisture shortage would expand. It is needed to develop the cultivated land irrigation schemes and adjust the cultivated land in Naoli River Basin to balance soil and water resources.

  10. Influence of the Aral Sea negative water balance on its seasonal circulation and ventilation patterns: use of a 3d hydrodynamic model.

    NASA Astrophysics Data System (ADS)

    Sirjacobs, D.; Grégoire, M.; Delhez, E.; Nihoul, J.

    2003-04-01

    Within the context of the EU INCO-COPERNICUS program "Desertification in the Aral Sea Region: A study of the Natural and Anthropogenic Impacts" (Contract IAC2-CT-2000-10023), a large-scale 3D hydrodynamic model was adapted to address specifically the macroscale processes affecting the Aral Sea water circulation and ventilation. The particular goal of this research is to simulate the effect of lasting negative water balance on the 3D seasonal circulation, temperature, salinity and water-mixing fields of the Aral Sea. The original Aral Sea seasonal hydrodynamism is simulated with the average seasonal forcings corresponding to the period from 1956 to 1960. This first investigation concerns a period of relative stability of the water balance, before the beginning of the drying process. The consequences of the drying process on the hydrodynamic of the Sea will be studied by comparing this first results with the simulation representing the average situation for the years 1981 to 1985, a very low river flow period. For both simulation periods, the forcing considered are the seasonal fluctuations of wind fields, precipitation, evaporation, river discharge and salinity, cloud cover, air temperature and humidity. The meteorological forcings were adapted to the common optimum one-month temporal resolution of the available data sets. Monthly mean kinetic energy flux and surface tensions were calculated from daily ECMWF wind data. Monthly in situ precipitation, surface air temperature and humidity fields were interpolated from data obtained from the Russian Hydrological and Meteorological Institute. Monthly water discharge and average salinity of the river water were considered for both Amu Darya and Syr Darya river over each simulation periods. The water mass conservation routines allowed the simulation of a changing coastline by taking into account local drying and flooding events of particular grid points. Preliminary barotropic runs were realised (for the 1951-1960 situation, before drying up began) in order to get a first experience of the behaviour of the hydrodynamic model. These first runs provide results about the evolution of the following state variables: elevation of the sea surface, 3D fields of vertical and horizontal flows, 2D fields of average horizontal flows and finally the 3D fields of turbulent kinetic energy. The mean seasonal salinity and temperature fields (in-situ data gathered by the Russian Hydrological and Meteorological Institute) are available for the two simulated periods and will allow a first validation of the hydrodynamic model. Various satellites products were identified, collected and processed in the frame of this research project and will be used for the validation of the model outputs. Seasonal level changes measurements derived from water table change will serve for water balance validation and sea surface temperature for hydrodynamics validation.

  11. Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; Tregoning, Paul; Renzullo, Luigi J.; van Dijk, Albert I. J. M.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.; Allgeyer, Sébastien

    2017-03-01

    The accuracy of global water balance estimates is limited by the lack of observations at large scale and the uncertainties of model simulations. Global retrievals of terrestrial water storage (TWS) change and soil moisture (SM) from satellites provide an opportunity to improve model estimates through data assimilation. However, combining these two data sets is challenging due to the disparity in temporal and spatial resolution at both vertical and horizontal scale. For the first time, TWS observations from the Gravity Recovery and Climate Experiment (GRACE) and near-surface SM observations from the Soil Moisture and Ocean Salinity (SMOS) were jointly assimilated into a water balance model using the Ensemble Kalman Smoother from January 2010 to December 2013 for the Australian continent. The performance of joint assimilation was assessed against open-loop model simulations and the assimilation of either GRACE TWS anomalies or SMOS SM alone. The SMOS-only assimilation improved SM estimates but reduced the accuracy of groundwater and TWS estimates. The GRACE-only assimilation improved groundwater estimates but did not always produce accurate estimates of SM. The joint assimilation typically led to more accurate water storage profile estimates with improved surface SM, root-zone SM, and groundwater estimates against in situ observations. The assimilation successfully downscaled GRACE-derived integrated water storage horizontally and vertically into individual water stores at the same spatial scale as the model and SMOS, and partitioned monthly averaged TWS into daily estimates. These results demonstrate that satellite TWS and SM measurements can be jointly assimilated to produce improved water balance component estimates.

  12. Well-balanced Schemes for Gravitationally Stratified Media

    NASA Astrophysics Data System (ADS)

    Käppeli, R.; Mishra, S.

    2015-10-01

    We present a well-balanced scheme for the Euler equations with gravitation. The scheme is capable of maintaining exactly (up to machine precision) a discrete hydrostatic equilibrium without any assumption on a thermodynamic variable such as specific entropy or temperature. The well-balanced scheme is based on a local hydrostatic pressure reconstruction. Moreover, it is computationally efficient and can be incorporated into any existing algorithm in a straightforward manner. The presented scheme improves over standard ones especially when flows close to a hydrostatic equilibrium have to be simulated. The performance of the well-balanced scheme is demonstrated on an astrophysically relevant application: a toy model for core-collapse supernovae.

  13. Quantitative modeling of soil genesis processes

    NASA Technical Reports Server (NTRS)

    Levine, E. R.; Knox, R. G.; Kerber, A. G.

    1992-01-01

    For fine spatial scale simulation, a model is being developed to predict changes in properties over short-, meso-, and long-term time scales within horizons of a given soil profile. Processes that control these changes can be grouped into five major process clusters: (1) abiotic chemical reactions; (2) activities of organisms; (3) energy balance and water phase transitions; (4) hydrologic flows; and (5) particle redistribution. Landscape modeling of soil development is possible using digitized soil maps associated with quantitative soil attribute data in a geographic information system (GIS) framework to which simulation models are applied.

  14. Electroacoustic analysis, design, and implementation of a small balanced armature speaker.

    PubMed

    Bai, Mingsian R; You, Bo-Cheng; Lo, Yi-Yang

    2014-11-01

    This paper presents a new design and implementation of a balanced armature speaker (BAS), which is composed of permanent magnetic circuits, a moving armature, and a coil. The armature rocks about a pivot with the coil at one end and the permanent magnet on another. A magnetic circuit analysis is conducted for the designed BAS to formulate the force factor, which is required for modeling the coupling between the electrical and mechanical systems. In addition, an electromechanoacoustical analogous circuit is established for the BAS, which bears the same structure as the moving coil loudspeaker, except that the force factor is different. A hybrid model, which combines the lumped parameter model in the electrical and acoustical domains with a finite element model in the mechanical domain, is developed to model the high-frequency response because of the high-order modes of the membrane, the drive rod, and the armature. The electroacoustic analysis is experimentally verified. The results indicate that the sound pressure response that is simulated using the hybrid model is in superior agreement with the measured response to that simulated using the lumped parameter model.

  15. The Influence of Subglacial Hydrology on Ice Stream Velocity in a Physical Model

    NASA Astrophysics Data System (ADS)

    Wagman, B. M.; Catania, G.; Buttles, J. L.

    2011-12-01

    We use a physical model to investigate how changes in subglacial hydrology affect ice motion in ice streams found in the West Antarctic Ice Sheet. Ice streams are modeled using silicone polymer placed over a thin water layer to simulate ice flow dominated by basal sliding. Dynamic similarity between modeled and natural ice streams is achieved through direct comparison of the glacier force balance using the conditions on Whillans Ice Stream (WIS) as our goal.This ice stream has a force balance that has evolved through time due to increased basal resistance. Currently, between 50-90% of the driving stress is supported by the ice stream shear margins [Stearns et al., JGlac 2005]. A similar force balance can be achieved in our model with a surface slope of 0.025. We test two hypotheses; 1) the distribution and thickness of the subglacial water layer influences the ice flow speed and thus the force balance and can reproduce the observed slowdown of WIS and; 2) shear margins are locations where transitions in water layer thickness occur.

  16. The Impact of Structural Heterogeneity on Excitation-Inhibition Balance in Cortical Networks.

    PubMed

    Landau, Itamar D; Egger, Robert; Dercksen, Vincent J; Oberlaender, Marcel; Sompolinsky, Haim

    2016-12-07

    Models of cortical dynamics often assume a homogeneous connectivity structure. However, we show that heterogeneous input connectivity can prevent the dynamic balance between excitation and inhibition, a hallmark of cortical dynamics, and yield unrealistically sparse and temporally regular firing. Anatomically based estimates of the connectivity of layer 4 (L4) rat barrel cortex and numerical simulations of this circuit indicate that the local network possesses substantial heterogeneity in input connectivity, sufficient to disrupt excitation-inhibition balance. We show that homeostatic plasticity in inhibitory synapses can align the functional connectivity to compensate for structural heterogeneity. Alternatively, spike-frequency adaptation can give rise to a novel state in which local firing rates adjust dynamically so that adaptation currents and synaptic inputs are balanced. This theory is supported by simulations of L4 barrel cortex during spontaneous and stimulus-evoked conditions. Our study shows how synaptic and cellular mechanisms yield fluctuation-driven dynamics despite structural heterogeneity in cortical circuits. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Signatures of microevolutionary processes in phylogenetic patterns.

    PubMed

    Costa, Carolina L N; Lemos-Costa, Paula; Marquitti, Flavia M D; Fernandes, Lucas D; Ramos, Marlon F; Schneider, David M; Martins, Ayana B; Aguiar, Marcus A M

    2018-06-23

    Phylogenetic trees are representations of evolutionary relationships among species and contain signatures of the processes responsible for the speciation events they display. Inferring processes from tree properties, however, is challenging. To address this problem we analysed a spatially-explicit model of speciation where genome size and mating range can be controlled. We simulated parapatric and sympatric (narrow and wide mating range, respectively) radiations and constructed their phylogenetic trees, computing structural properties such as tree balance and speed of diversification. We showed that parapatric and sympatric speciation are well separated by these structural tree properties. Balanced trees with constant rates of diversification only originate in sympatry and genome size affected both the balance and the speed of diversification of the simulated trees. Comparison with empirical data showed that most of the evolutionary radiations considered to have developed in parapatry or sympatry are in good agreement with model predictions. Even though additional forces other than spatial restriction of gene flow, genome size, and genetic incompatibilities, do play a role in the evolution of species formation, the microevolutionary processes modeled here capture signatures of the diversification pattern of evolutionary radiations, regarding the symmetry and speed of diversification of lineages.

  18. Building complex simulations rapidly using MATRIX(x): The Space Station redesign

    NASA Technical Reports Server (NTRS)

    Carrington, C. K.

    1994-01-01

    MSFC's quick response to the Space Station redesign effort last year required the development of a computer simulation to model the attitude and station-keeping dynamics of a complex body with rotating solar arrays in orbit around the Earth. The simulation was written using a rapid-prototyping graphical simulation and design tool called MATRIX(x) and provided the capability to quickly remodel complex configuration changes by icon manipulation using a mouse. The simulation determines time-dependent inertia properties, and models forces and torques from gravity-gradient, solar radiation, and aerodynamic disturbances. Surface models are easily built from a selection of beams, plates, tetrahedrons, and cylinders. An optimization scheme was written to determine the torque equilibrium attitudes that balance gravity-gradient and aerodynamic torques over an orbit, and propellant-usage estimates were determined. The simulation has been adapted to model the attitude dynamics for small spacecraft.

  19. Viscous Overstability in Saturn's B-Ring. II. Hydrodynamic Theory and Comparison to Simulations

    NASA Astrophysics Data System (ADS)

    Schmidt, Jürgen; Salo, Heikki; Spahn, Frank; Petzschmann, Olaf

    2001-10-01

    We investigate the viscous oscillatory instability (overstability) of an unperturbed dense planetary ring, an instability that might play a role in the formation of radial structure in Saturn's B-ring. We generalize existing hydrodynamic models by including the heat flow equation in the analysis and compare our results to the development of overstable modes in local particle simulations. With the heat flow, in addition to the balance equations for mass and momentum, we take into account the balance law for the energy of the random motion; i.e., we allow for a thermal mode in a stability analysis of the stationary Keplerian flow. We also incorporate the effects of nonlocal transport of momentum and energy on the stability of the ring. In a companion paper (Salo, H., J. Schmidt, and F. Spahn 2001. Icarus, doi:10.1006/icar.2001.6680) we describe the determination of the local and nonlocal parts of the viscosity, the heat conductivity, the pressure, as well as the collisional cooling, together with their dependences on temperature and density, in local event-driven simulations of a planetary ring. The ring's self-gravity is taken into account in these simulations by an enhancement of the frequency of vertical oscillations Ω z>Ω. We use these values as parameters in our hydrodynamic model for the comparison to overstability in simulated rings of meter-sized inelastic particles of large optical depth with Ω z/Ω=3.6. We find that the inclusion of the energy-balance equation has a stabilizing influence on the overstable modes, shifting the stability boundary to higher optical depths, and moderating the growth rates of the instability, as compared to a purely isothermal treatment. The non-isothermal model predicts correctly the growth rates and oscillation frequencies of overstable modes in the simulations, as well as the phase shifts and relative amplitudes of the perturbations in density and radial and tangential velocity.

  20. BOREAS TE-19 Ecosystem Carbon Balance Model

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Frolking, Steve

    2000-01-01

    The BOREAS TE-19 team developed a model called the Spruce and Moss Model (SPAM) designed to simulate the daily carbon balance of a black spruce/moss boreal forest ecosystem. It is driven by daily weather conditions, and consists of four components: (1) soil climate, (2) tree photosynthesis and respiration, (3) moss photosynthesis and respiration, and (4) litter decomposition and associated heterotrophic respiration. The model simulates tree gross and net photosynthesis, wood respiration, live root respiration, moss gross and net photosynthesis, and heterotrophic respiration (decomposition of root litter, young needle and moss litter, and humus). These values can be combined to generate predictions of total site net ecosystem exchange of carbon (NEE), total soil dark respiration (live roots + heterotrophs + live moss), spruce and moss net productivity, and net carbon accumulation in the soil. To date, simulations have been of the BOREAS NSA-OBS and SSA-OBS tower sites, from 1968-95 (except 1990-93). The files include source code and sample input and output files in ASCII format. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  1. A glacier runoff extension to the Precipitation Runoff Modeling System

    USGS Publications Warehouse

    Van Beusekom, Ashley E.; Viger, Roland

    2016-01-01

    A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while maintaining model usability. PRMSglacier is validated on two basins in Alaska, Wolverine, and Gulkana Glacier basin, which have been studied since 1966 and have a substantial amount of data with which to test model performance over a long period of time covering a wide range of climatic and hydrologic conditions. When error in field measurements is considered, the Nash-Sutcliffe efficiencies of streamflow are 0.87 and 0.86, the absolute bias fractions of the winter mass balance simulations are 0.10 and 0.08, and the absolute bias fractions of the summer mass balances are 0.01 and 0.03, all computed over 42 years for the Wolverine and Gulkana Glacier basins, respectively. Without taking into account measurement error, the values are still within the range achieved by the more computationally expensive codes tested over shorter time periods.

  2. A Computational Modeling Approach for Investigating Soft Tissue Balancing in Bicruciate Retaining Knee Arthroplasty

    PubMed Central

    Amiri, Shahram; Wilson, David R.

    2012-01-01

    Bicruciate retaining knee arthroplasty, although has shown improved functions and patient satisfaction compared to other designs of total knee replacement, remains a technically demanding option for treating severe cases of arthritic knees. One of the main challenges in bicruciate retaining arthroplasty is proper balancing of the soft tissue during the surgery. In this study biomechanics of soft tissue balancing was investigated using a validated computational model of the knee joint with high fidelity definitions of the soft tissue structures along with a Taguchi method for design of experiments. The model was used to simulate intraoperative balancing of soft tissue structures following the combinations suggested by an orthogonal array design. The results were used to quantify the corresponding effects on the laxity of the joint under anterior-posterior, internal-external, and varus-valgus loads. These effects were ranked for each ligament bundle to identify the components of laxity which were most sensitive to the corresponding surgical modifications. The resulting map of sensitivity for all the ligament bundles determined the components of laxity most suitable for examination during intraoperative balancing of the soft tissue. Ultimately, a sequence for intraoperative soft tissue balancing was suggested for a bicruciate retaining knee arthroplasty. PMID:23082090

  3. An efficient Cellular Potts Model algorithm that forbids cell fragmentation

    NASA Astrophysics Data System (ADS)

    Durand, Marc; Guesnet, Etienne

    2016-11-01

    The Cellular Potts Model (CPM) is a lattice based modeling technique which is widely used for simulating cellular patterns such as foams or biological tissues. Despite its realism and generality, the standard Monte Carlo algorithm used in the scientific literature to evolve this model preserves connectivity of cells on a limited range of simulation temperature only. We present a new algorithm in which cell fragmentation is forbidden for all simulation temperatures. This allows to significantly enhance realism of the simulated patterns. It also increases the computational efficiency compared with the standard CPM algorithm even at same simulation temperature, thanks to the time spared in not doing unrealistic moves. Moreover, our algorithm restores the detailed balance equation, ensuring that the long-term stage is independent of the chosen acceptance rate and chosen path in the temperature space.

  4. A prediction model for lift-fan simulator performance. M.S. Thesis - Cleveland State Univ.

    NASA Technical Reports Server (NTRS)

    Yuska, J. A.

    1972-01-01

    The performance characteristics of a model VTOL lift-fan simulator installed in a two-dimensional wing are presented. The lift-fan simulator consisted of a 15-inch diameter fan driven by a turbine contained in the fan hub. The performance of the lift-fan simulator was measured in two ways: (1) the calculated momentum thrust of the fan and turbine (total thrust loading), and (2) the axial-force measured on a load cell force balance (axial-force loading). Tests were conducted over a wide range of crossflow velocities, corrected tip speeds, and wing angle of attack. A prediction modeling technique was developed to help in analyzing the performance characteristics of lift-fan simulators. A multiple linear regression analysis technique is presented which calculates prediction model equations for the dependent variables.

  5. Coupling Cellular Automata Land Use Change with Distributed Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Shu, L.; Duffy, C.

    2017-12-01

    There has been extensive research on LUC modeling with broad applications to simulating urban growth and changing demographic patterns across multiple scales. The importance of land conversion is a critical issue in watershed scale studies and is generally not treated in most watershed modeling approaches. In this study we apply spatially explicit hydrologic and landuse change models and the Conestoga Watershed in Lancaster County, Pennsylvania. The Penn State Integrated Hydrologic Model (PIHM) partitions the water balance in space and time over the urban catchment, the coupled Cellular Automata Land Use Change model (CALUC) dynamically simulates the evolution of land use classes based on physical measures associated with population change and land use demand factors. The CALUC model is based on iteratively applying discrete rules to each individual spatial cell. The essence the CA modeling involves calculation of the Transition Potential (TP) for conversion of a grid cell from one land use class to another. This potential includes five factors: random perturbation, suitability, accessibility, neighborhood effect, inertia effects and zonal factors. In spite of simplicity, this CALUC model has been shown to be very effective for simulating LUC leading to the emergence of complex spatial patterns. The components of TP are derived from present land use data for landuse reanalysis and for realistic future land use scenarios. For the CALUC we use early-settlement (circa 1790) initial land class values and final or present-day (2010) land classes to calibrate the model. CALUC- PIHM dynamically simulates the hydrologic response of conversion from pre-settlement to present landuse. The simulations highlight the capability and value of dynamic coupling of catchment hydrology with land use change over long time periods. Analysis of the simulation uses various metrics such as the distributed water balance, flow duration curves, etc. to show how deforestation, urbanization and agricultural land development interact for the period 1790- present.

  6. Modeling and Simulation of Optimal Resource Management during the Diurnal Cycle in Emiliania huxleyi by Genome-Scale Reconstruction and an Extended Flux Balance Analysis Approach.

    PubMed

    Knies, David; Wittmüß, Philipp; Appel, Sebastian; Sawodny, Oliver; Ederer, Michael; Feuer, Ronny

    2015-10-28

    The coccolithophorid unicellular alga Emiliania huxleyi is known to form large blooms, which have a strong effect on the marine carbon cycle. As a photosynthetic organism, it is subjected to a circadian rhythm due to the changing light conditions throughout the day. For a better understanding of the metabolic processes under these periodically-changing environmental conditions, a genome-scale model based on a genome reconstruction of the E. huxleyi strain CCMP 1516 was created. It comprises 410 reactions and 363 metabolites. Biomass composition is variable based on the differentiation into functional biomass components and storage metabolites. The model is analyzed with a flux balance analysis approach called diurnal flux balance analysis (diuFBA) that was designed for organisms with a circadian rhythm. It allows storage metabolites to accumulate or be consumed over the diurnal cycle, while keeping the structure of a classical FBA problem. A feature of this approach is that the production and consumption of storage metabolites is not defined externally via the biomass composition, but the result of optimal resource management adapted to the diurnally-changing environmental conditions. The model in combination with this approach is able to simulate the variable biomass composition during the diurnal cycle in proximity to literature data.

  7. Computer model of hydroponics nutrient solution pH control using ammonium.

    PubMed

    Pitts, M; Stutte, G

    1999-01-01

    A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.

  8. Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model.

    PubMed

    Ekama, G A

    2009-05-01

    Steady-state models are useful for design of wastewater treatment plants (WWTPs) because they allow reactor sizes and interconnecting flows to be simply determined from explicit equations in terms of unit operation performance criteria. Once the overall WWTP scheme is established and the main system defining parameters of the individual unit operations estimated, dynamic models can be applied to the connected unit operations to refine their design and evaluate their performance under dynamic flow and load conditions. To model anaerobic digestion (AD) within plant-wide WWTP models, not only COD and nitrogen (N) but also carbon (C) fluxes entering the AD need to be defined. Current plant-wide models, like benchmark simulation model No 2 (BSM2), impose a C flux at the AD influent. In this paper, the COD and N mass balance steady-state models of activated sludge (AS) organics degradation, nitrification and denitrification (ND) and anaerobic (AD) and aerobic (AerD) digestion of wastewater sludge are extended and linked with bioprocess transformation stoichiometry to form C, H, O, N, chemical oxygen demand (COD) and charge mass balance based models so that also C (and H and O) can be tracked through the whole WWTP. By assigning a stoichiometric composition (x, y, z and a in C(x)H(y)O(z)N(a)) to each of the five main influent wastewater organic fractions and ammonia, these, and the products generated from them via the biological processes, are tracked through the WWTP. The model is applied to two theoretical case study WWTPs treating the same raw wastewater (WW) to the same final sludge residual biodegradable COD. It is demonstrated that much useful information can be generated with the relatively simple steady-state models to aid WWTP layout design and track the different products exiting the WWTP via the solid, liquid and gas streams, such as aerobic versus anaerobic digestion of waste activated sludge, N loads in recycle streams, methane production for energy recovery and green house gas (CO(2), CH(4)) generation. To reduce trial and error usage of WWTP simulation software, it is recommended that they are extended to include pre-processors based on mass balance steady-state models to assist with WWTP layout design, unit operation selection, reactor sizing, option evaluation and comparison and wastewater characterization before dynamic simulation.

  9. Evaluation of energy balance closure adjustment methods by independent evapotranspiration estimates from lysimeters and hydrological simulations

    DOE PAGES

    Mauder, Matthias; Genzel, Sandra; Fu, Jin; ...

    2017-11-10

    Here, we report non-closure of the surface energy balance is a frequently observed phenomenon of hydrometeorological field measurements, when using the eddy-covariance method, which can be ascribed to an underestimation of the turbulent fluxes. Several approaches have been proposed in order to adjust the measured fluxes for this apparent systematic error. However, there are uncertainties about partitioning of the energy balance residual between the sensible and latent heat flux and whether such a correction should be applied on 30-minute data or longer time scales. The data for this study originate from two grassland sites in southern Germany, where measurements frommore » weighable lysimeters are available as reference. The adjusted evapotranspiration rates are also compared with joint energy and water balance simulations using a physically-based distributed hydrological model. We evaluate two adjustment methods: the first one preserves the Bowen ratio and the correction factor is determined on a daily basis. The second one attributes a smaller portion of the residual energy to the latent heat flux than to the sensible heat flux for closing the energy balance for every 30-minute flux integration interval. Both methods lead to an improved agreement of the eddy-covariance based fluxes with the independent lysimeter estimates and the physically-based model simulations. The first method results in a better comparability of evapotranspiration rates, and the second method leads to a smaller overall bias. These results are similar between both sites despite considerable differences in terrain complexity and grassland management. Moreover, we found that a daily adjustment factor leads to less scatter than a complete partitioning of the residual for every half-hour time interval. Lastly, the vertical temperature gradient in the surface layer and friction velocity were identified as important predictors for a potential future parameterization of the energy balance residual.« less

  10. Evaluation of energy balance closure adjustment methods by independent evapotranspiration estimates from lysimeters and hydrological simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauder, Matthias; Genzel, Sandra; Fu, Jin

    Here, we report non-closure of the surface energy balance is a frequently observed phenomenon of hydrometeorological field measurements, when using the eddy-covariance method, which can be ascribed to an underestimation of the turbulent fluxes. Several approaches have been proposed in order to adjust the measured fluxes for this apparent systematic error. However, there are uncertainties about partitioning of the energy balance residual between the sensible and latent heat flux and whether such a correction should be applied on 30-minute data or longer time scales. The data for this study originate from two grassland sites in southern Germany, where measurements frommore » weighable lysimeters are available as reference. The adjusted evapotranspiration rates are also compared with joint energy and water balance simulations using a physically-based distributed hydrological model. We evaluate two adjustment methods: the first one preserves the Bowen ratio and the correction factor is determined on a daily basis. The second one attributes a smaller portion of the residual energy to the latent heat flux than to the sensible heat flux for closing the energy balance for every 30-minute flux integration interval. Both methods lead to an improved agreement of the eddy-covariance based fluxes with the independent lysimeter estimates and the physically-based model simulations. The first method results in a better comparability of evapotranspiration rates, and the second method leads to a smaller overall bias. These results are similar between both sites despite considerable differences in terrain complexity and grassland management. Moreover, we found that a daily adjustment factor leads to less scatter than a complete partitioning of the residual for every half-hour time interval. Lastly, the vertical temperature gradient in the surface layer and friction velocity were identified as important predictors for a potential future parameterization of the energy balance residual.« less

  11. Interpretation of open system petrogenetic processes: Phase equilibria constraints on magma evolution

    NASA Astrophysics Data System (ADS)

    Defant, Marc J.; Nielsen, Roger L.

    1990-01-01

    We have used a computer model (TRACES) to simulate low pressure differentiation of natural basaltic magmas in an attempt to investigate the chemical dynamics of open system magmatic processes. Our results, in the form of simulated liquid lines of descent and the calculated equilibrium mineralogy, were determined for perfect fractional crystallization; fractionation paired with recharge and eruption (PRF); fractionation paired with assimilation (AFC); and fractionation paired with recharge, eruption, and assimilation (FEAR). These simulations were calculated in an attempt to assess the effects of combinations of petrogenetic processes on major and trace element evolution of natural systems and to test techniques that have been used to decipher the relative roles of these processes. If the results of PRF calculations are interpreted in terms of a mass balance based fractionation model (e.g., Bryan et al., 1969), it is possible to generate low residuals even if one assumes that fractional crystallization was the only active process. In effect, the chemical consequences of recharge are invisible to mass balance models. Pearce element ratio analyses, however, can effectively discern the effects of PRF versus simple fractionation. The fractionating mineral proportions, and therefore, bulk distribution coefficients ( D¯) of a differentiating system are dependent on the recharge or assimilation rate. Comparison of the results of simulations assuming constant D¯ with the results calculated by TRACES show that the steady state liquid concentrations of some elements can differ by a factor of 2 to 5. If the PRF simulation is periodic, with episodes of mixing separated by intervals of fractionation, parallel liquidus mineral control lines are produced. Most of these control lines do not project back to the parental composition. This must be an important consideration when attempting to calculate a potential parental magma for any natural suite where magma chamber recharge has occurred. Most basaltic magmas cannot evolve to high silica compositions without magnetite fractionation. Small amounts of rhyolite assimilation (assimilation/fractionation < 0.1), however, can drive evolving basalts to more silica rich compositions. If mass balance models are used to interpret these synthetic AFC data, low residuals are obtained if magnetite is added to the crystallizing assemblage. This approach works even for cases where magnetite was not a fractionating phase. Thus, the mass balance results are mathematically correct, but are geologically irrelevant.

  12. Mathematical model of whole-process calculation for bottom-blowing copper smelting

    NASA Astrophysics Data System (ADS)

    Li, Ming-zhou; Zhou, Jie-min; Tong, Chang-ren; Zhang, Wen-hai; Li, He-song

    2017-11-01

    The distribution law of materials in smelting products is key to cost accounting and contaminant control. Regardless, the distribution law is difficult to determine quickly and accurately by mere sampling and analysis. Mathematical models for material and heat balance in bottom-blowing smelting, converting, anode furnace refining, and electrolytic refining were established based on the principles of material (element) conservation, energy conservation, and control index constraint in copper bottom-blowing smelting. Simulation of the entire process of bottom-blowing copper smelting was established using a self-developed MetCal software platform. A whole-process simulation for an enterprise in China was then conducted. Results indicated that the quantity and composition information of unknown materials, as well as heat balance information, can be quickly calculated using the model. Comparison of production data revealed that the model can basically reflect the distribution law of the materials in bottom-blowing copper smelting. This finding provides theoretical guidance for mastering the performance of the entire process.

  13. Dispatchable Renewable Energy Model for Microgrid Power System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiou, Fred; Gentle, Jake P.; McJunkin, Timothy R.

    2017-04-01

    Over the years, many research projects have been performed and focused on finding out the effective ways to balance the power demands and supply on the utility grid. The causes of the imbalance could be the increasing demands from the end users, the loss of power generation (generators down), faults on the transmission lines, power tripped due to overload, and weather conditions, etc. An efficient Load Frequency Control (LFC) can assure the desired electricity quality provided to the residential, commercial and industrial end users. A simulation model is built in this project to investigate the contribution of the modeling ofmore » dispatchable energy such as solar energy, wind power, hydro power and energy storage to the balance of the microgrid power system. An analysis of simplified feedback control system with proportional, integral, and derivative (PID) controller was performed. The purpose of this research is to investigate a simulation model that achieves certain degree of the resilient control for the microgrid.« less

  14. Spacecraft thermal balance testing using infrared sources

    NASA Technical Reports Server (NTRS)

    Tan, G. B. T.; Walker, J. B.

    1982-01-01

    A thermal balance test (controlled flux intensity) on a simple black dummy spacecraft using IR lamps was performed and evaluated, the latter being aimed specifically at thermal mathematical model (TMM) verification. For reference purposes the model was also subjected to a solar simulation test (SST). The results show that the temperature distributions measured during IR testing for two different model attitudes under steady state conditions are reproducible with a TMM. The TMM test data correlation is not as accurate for IRT as for SST. Using the standard deviation of the temperature difference distribution (analysis minus test) the SST data correlation is better by a factor of 1.8 to 2.5. The lower figure applies to the measured and the higher to the computer-generated IR flux intensity distribution. Techniques of lamp power control are presented. A continuing work program is described which is aimed at quantifying the differences between solar simulation and infrared techniques for a model representing the thermal radiating surfaces of a large communications spacecraft.

  15. Large signal design - Performance and simulation of a 3 W C-band GaAs power MMIC

    NASA Astrophysics Data System (ADS)

    White, Paul M.; Hendrickson, Mary A.; Chang, Wayne H.; Curtice, Walter R.

    1990-04-01

    This paper describes a C-band GaAs power MMIC amplifier that achieved a gain of 17 dB and 1 dB compressed CW power output of 34 dBm across a 4.5-6.25-GHz frequency range, without design iteration. The first-pass design success was achieved due to the application of a harmonic balance simulator to define the optimum output load, using a large-signal FET model determined statistically on a well controlled foundry-ready process line. The measured performance was close to that predicted by a full harmonic balance circuit analysis.

  16. Simulation of the toxicokinetics of trichloroethylene, methylene chloride, styrene and n-hexane by a toxicokinetics/toxicodynamics model using experimental data.

    PubMed

    Nakayama, Yumiko; Kishida, Fumio; Nakatsuka, Iwao; Matsuo, Masatoshi

    2005-01-01

    The toxicokinetics/toxicodynamics (TKTD) model simulates the toxicokinetics of a chemical based on physiological data such as blood flow, tissue partition coefficients and metabolism. In this study, Andersen and Clewell's TKTD model was used with seven compartments and ten differential equations for calculating chemical balances in the compartments (Andersen and Clewell 1996, Workshop on physiologically-based pharmacokinetic/pharmacodynamic modeling and risk assessment, Aug. 5-16 at Colorado State University, U.S.A) . Using this model, the authors attempted to simulate the behavior of four chemicals: trichloroethylene, methylene chloride, styrene and n-hexane, and the results were evaluated. Simulations of the behavior of trichloroethylene taken in via inhalation and oral exposure routes were also done. The differences between simulations and measurements are due to the differences between the absorption rates of the exposure routes. By changing the absorption rates, the simulation showed agreement with the measured values. The simulations of the other three chemicals showed good results. Thus, this model is useful for simulating the behavior of chemicals for preliminary toxicity assessment.

  17. A coupled chemo-thermo-hygro-mechanical model of concrete at high temperature and failure analysis

    NASA Astrophysics Data System (ADS)

    Li, Xikui; Li, Rongtao; Schrefler, B. A.

    2006-06-01

    A hierarchical mathematical model for analyses of coupled chemo-thermo-hygro-mechanical behaviour in concretes at high temperature is presented. The concretes are modelled as unsaturated deforming reactive porous media filled with two immiscible pore fluids, i.e. the gas mixture and the liquid mixture, in immiscible-miscible levels. The thermo-induced desalination process is particularly integrated into the model. The chemical effects of both the desalination and the dehydration processes on the material damage and the degradation of the material strength are taken into account. The mathematical model consists of a set of coupled, partial differential equations governing the mass balance of the dry air, the mass balance of the water species, the mass balance of the matrix components dissolved in the liquid phases, the enthalpy (energy) balance and momentum balance of the whole medium mixture. The governing equations, the state equations for the model and the constitutive laws used in the model are given. A mixed weak form for the finite element solution procedure is formulated for the numerical simulation of chemo-thermo-hygro-mechanical behaviours. Special considerations are given to spatial discretization of hyperbolic equation with non-self-adjoint operator nature. Numerical results demonstrate the performance and the effectiveness of the proposed model and its numerical procedure in reproducing coupled chemo-thermo-hygro-mechanical behaviour in concretes subjected to fire and thermal radiation.

  18. A Simple Climate Model Program for High School Education

    NASA Astrophysics Data System (ADS)

    Dommenget, D.

    2012-04-01

    The future climate change projections of the IPCC AR4 are based on GCM simulations, which give a distinct global warming pattern, with an arctic winter amplification, an equilibrium land sea contrast and an inter-hemispheric warming gradient. While these simulations are the most important tool of the IPCC predictions, the conceptual understanding of these predicted structures of climate change are very difficult to reach if only based on these highly complex GCM simulations and they are not accessible for ordinary people. In this study presented here we will introduce a very simple gridded globally resolved energy balance model based on strongly simplified physical processes, which is capable of simulating the main characteristics of global warming. The model shall give a bridge between the 1-dimensional energy balance models and the fully coupled 4-dimensional complex GCMs. It runs on standard PC computers computing globally resolved climate simulation with 2yrs per second or 100,000yrs per day. The program can compute typical global warming scenarios in a few minutes on a standard PC. The computer code is only 730 line long with very simple formulations that high school students should be able to understand. The simple model's climate sensitivity and the spatial structure of the warming pattern is within the uncertainties of the IPCC AR4 models simulations. It is capable of simulating the arctic winter amplification, the equilibrium land sea contrast and the inter-hemispheric warming gradient with good agreement to the IPCC AR4 models in amplitude and structure. The program can be used to do sensitivity studies in which students can change something (e.g. reduce the solar radiation, take away the clouds or make snow black) and see how it effects the climate or the climate response to changes in greenhouse gases. This program is available for every one and could be the basis for high school education. Partners for a high school project are wanted!

  19. A tool for simulating parallel branch-and-bound methods

    NASA Astrophysics Data System (ADS)

    Golubeva, Yana; Orlov, Yury; Posypkin, Mikhail

    2016-01-01

    The Branch-and-Bound method is known as one of the most powerful but very resource consuming global optimization methods. Parallel and distributed computing can efficiently cope with this issue. The major difficulty in parallel B&B method is the need for dynamic load redistribution. Therefore design and study of load balancing algorithms is a separate and very important research topic. This paper presents a tool for simulating parallel Branchand-Bound method. The simulator allows one to run load balancing algorithms with various numbers of processors, sizes of the search tree, the characteristics of the supercomputer's interconnect thereby fostering deep study of load distribution strategies. The process of resolution of the optimization problem by B&B method is replaced by a stochastic branching process. Data exchanges are modeled using the concept of logical time. The user friendly graphical interface to the simulator provides efficient visualization and convenient performance analysis.

  20. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianbao; Ma, Zhongjun, E-mail: mzj1234402@163.com; Chen, Guanrong

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding ormore » deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.« less

  1. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-06-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  2. Power of Models in Longitudinal Study: Findings from a Full-Crossed Simulation Design

    ERIC Educational Resources Information Center

    Fang, Hua; Brooks, Gordon P.; Rizzo, Maria L.; Espy, Kimberly Andrews; Barcikowski, Robert S.

    2009-01-01

    Because the power properties of traditional repeated measures and hierarchical multivariate linear models have not been clearly determined in the balanced design for longitudinal studies in the literature, the authors present a power comparison study of traditional repeated measures and hierarchical multivariate linear models under 3…

  3. Metrics for covariate balance in cohort studies of causal effects.

    PubMed

    Franklin, Jessica M; Rassen, Jeremy A; Ackermann, Diana; Bartels, Dorothee B; Schneeweiss, Sebastian

    2014-05-10

    Inferring causation from non-randomized studies of exposure requires that exposure groups can be balanced with respect to prognostic factors for the outcome. Although there is broad agreement in the literature that balance should be checked, there is confusion regarding the appropriate metric. We present a simulation study that compares several balance metrics with respect to the strength of their association with bias in estimation of the effect of a binary exposure on a binary, count, or continuous outcome. The simulations utilize matching on the propensity score with successively decreasing calipers to produce datasets with varying covariate balance. We propose the post-matching C-statistic as a balance metric and found that it had consistently strong associations with estimation bias, even when the propensity score model was misspecified, as long as the propensity score was estimated with sufficient study size. This metric, along with the average standardized difference and the general weighted difference, outperformed all other metrics considered in association with bias, including the unstandardized absolute difference, Kolmogorov-Smirnov and Lévy distances, overlapping coefficient, Mahalanobis balance, and L1 metrics. Of the best-performing metrics, the C-statistic and general weighted difference also have the advantage that they automatically evaluate balance on all covariates simultaneously and can easily incorporate balance on interactions among covariates. Therefore, when combined with the usual practice of comparing individual covariate means and standard deviations across exposure groups, these metrics may provide useful summaries of the observed covariate imbalance. Copyright © 2013 John Wiley & Sons, Ltd.

  4. A balanced Kalman filter ocean data assimilation system with application to the South Australian Sea

    NASA Astrophysics Data System (ADS)

    Li, Yi; Toumi, Ralf

    2017-08-01

    In this paper, an Ensemble Kalman Filter (EnKF) based regional ocean data assimilation system has been developed and applied to the South Australian Sea. This system consists of the data assimilation algorithm provided by the NCAR Data Assimilation Research Testbed (DART) and the Regional Ocean Modelling System (ROMS). We describe the first implementation of the physical balance operator (temperature-salinity, hydrostatic and geostrophic balance) to DART, to reduce the spurious waves which may be introduced during the data assimilation process. The effect of the balance operator is validated in both an idealised shallow water model and the ROMS model real case study. In the shallow water model, the geostrophic balance operator eliminates spurious ageostrophic waves and produces a better sea surface height (SSH) and velocity analysis and forecast. Its impact increases as the sea surface height and wind stress increase. In the real case, satellite-observed sea surface temperature (SST) and SSH are assimilated in the South Australian Sea with 50 ensembles using the Ensemble Adjustment Kalman Filter (EAKF). Assimilating SSH and SST enhances the estimation of SSH and SST in the entire domain, respectively. Assimilation with the balance operator produces a more realistic simulation of surface currents and subsurface temperature profile. The best improvement is obtained when only SSH is assimilated with the balance operator. A case study with a storm suggests that the benefit of the balance operator is of particular importance under high wind stress conditions. Implementing the balance operator could be a general benefit to ocean data assimilation systems.

  5. Mesoscale research activities with the LAMPS model

    NASA Technical Reports Server (NTRS)

    Kalb, M. W.

    1985-01-01

    Researchers achieved full implementation of the LAMPS mesoscale model on the Atmospheric Sciences Division computer and derived balanced and real wind initial states for three case studies: March 6, April 24, April 26, 1982. Numerical simulations were performed for three separate studies: (1) a satellite moisture data impact study using Vertical Atmospheric Sounder (VAS) precipitable water as a constraint on model initial state moisture analyses; (2) an evaluation of mesoscale model precipitation simulation accuracy with and without convective parameterization; and (3) the sensitivity of model precipitation to mesoscale detail of moisture and vertical motion in an initial state.

  6. Simulating Donnan equilibria based on the Nernst-Planck equation

    NASA Astrophysics Data System (ADS)

    Gimmi, Thomas; Alt-Epping, Peter

    2018-07-01

    Understanding ion transport through clays and clay membranes is important for many geochemical and environmental applications. Ion transport is affected by electrostatic forces exerted by charged clay surfaces. Anions are partly excluded from pore water near these surfaces, whereas cations are enriched. Such effects can be modeled by the Donnan approach. Here we introduce a new, comparatively simple way to represent Donnan equilibria in transport simulations. We include charged surfaces as immobile ions in the balance equation and calculate coupled transport of all components, including the immobile charges, with the Nernst-Planck equation. This results in an additional diffusion potential that influences ion transport, leading to Donnan ion distributions while maintaining local charge balance. The validity of our new approach was demonstrated by comparing Nernst-Planck simulations using the reactive transport code Flotran with analytical solutions available for simple Donnan systems. Attention has to be paid to the numerical evaluation of the electrochemical migration term in the Nernst-Planck equation to obtain correct results for asymmetric electrolytes. Sensitivity simulations demonstrate the influence of various Donnan model parameters on simulated anion accessible porosities. It is furthermore shown that the salt diffusion coefficient in a Donnan pore depends on local concentrations, in contrast to the aqueous salt diffusion coefficient. Our approach can be easily implemented into other transport codes. It is versatile and facilitates, for instance, assessing the implications of different activity models for the Donnan porosity.

  7. Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong

    Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less

  8. Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability

    DOE PAGES

    Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong

    2017-11-15

    Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less

  9. An Engineering Model of Human Balance Control-Part I: Biomechanical Model.

    PubMed

    Barton, Joseph E; Roy, Anindo; Sorkin, John D; Rogers, Mark W; Macko, Richard

    2016-01-01

    We developed a balance measurement tool (the balanced reach test (BRT)) to assess standing balance while reaching and pointing to a target moving in three-dimensional space according to a sum-of-sines function. We also developed a three-dimensional, 13-segment biomechanical model to analyze performance in this task. Using kinematic and ground reaction force (GRF) data from the BRT, we performed an inverse dynamics analysis to compute the forces and torques applied at each of the joints during the course of a 90 s test. We also performed spectral analyses of each joint's force activations. We found that the joints act in a different but highly coordinated manner to accomplish the tracking task-with individual joints responding congruently to different portions of the target disk's frequency spectrum. The test and the model also identified clear differences between a young healthy subject (YHS), an older high fall risk (HFR) subject before participating in a balance training intervention; and in the older subject's performance after training (which improved to the point that his performance approached that of the young subject). This is the first phase of an effort to model the balance control system with sufficient physiological detail and complexity to accurately simulate the multisegmental control of balance during functional reach across the spectra of aging, medical, and neurological conditions that affect performance. Such a model would provide insight into the function and interaction of the biomechanical and neurophysiological elements making up this system; and system adaptations to changes in these elements' performance and capabilities.

  10. An Engineering Model of Human Balance Control—Part I: Biomechanical Model

    PubMed Central

    Barton, Joseph E.; Roy, Anindo; Sorkin, John D.; Rogers, Mark W.; Macko, Richard

    2016-01-01

    We developed a balance measurement tool (the balanced reach test (BRT)) to assess standing balance while reaching and pointing to a target moving in three-dimensional space according to a sum-of-sines function. We also developed a three-dimensional, 13-segment biomechanical model to analyze performance in this task. Using kinematic and ground reaction force (GRF) data from the BRT, we performed an inverse dynamics analysis to compute the forces and torques applied at each of the joints during the course of a 90 s test. We also performed spectral analyses of each joint's force activations. We found that the joints act in a different but highly coordinated manner to accomplish the tracking task—with individual joints responding congruently to different portions of the target disk's frequency spectrum. The test and the model also identified clear differences between a young healthy subject (YHS), an older high fall risk (HFR) subject before participating in a balance training intervention; and in the older subject's performance after training (which improved to the point that his performance approached that of the young subject). This is the first phase of an effort to model the balance control system with sufficient physiological detail and complexity to accurately simulate the multisegmental control of balance during functional reach across the spectra of aging, medical, and neurological conditions that affect performance. Such a model would provide insight into the function and interaction of the biomechanical and neurophysiological elements making up this system; and system adaptations to changes in these elements' performance and capabilities. PMID:26328608

  11. Finding the Cell Center by a Balance of Dynein and Myosin Pulling and Microtubule Pushing: A Computational Study

    PubMed Central

    Zhu, Jie; Burakov, Anton; Rodionov, Vladimir

    2010-01-01

    The centrosome position in many types of interphase cells is actively maintained in the cell center. Our previous work indicated that the centrosome is kept at the center by pulling force generated by dynein and actin flow produced by myosin contraction and that an unidentified factor that depends on microtubule dynamics destabilizes position of the centrosome. Here, we use modeling to simulate the centrosome positioning based on the idea that the balance of three forces—dyneins pulling along microtubule length, myosin-powered centripetal drag, and microtubules pushing on organelles—is responsible for the centrosome displacement. By comparing numerical predictions with centrosome behavior in wild-type and perturbed interphase cells, we rule out several plausible hypotheses about the nature of the microtubule-based force. We conclude that strong dynein- and weaker myosin-generated forces pull the microtubules inward competing with microtubule plus-ends pushing the microtubule aster outward and that the balance of these forces positions the centrosome at the cell center. The model also predicts that kinesin action could be another outward-pushing force. Simulations demonstrate that the force-balance centering mechanism is robust yet versatile. We use the experimental observations to reverse engineer the characteristic forces and centrosome mobility. PMID:20980619

  12. Finding the cell center by a balance of dynein and myosin pulling and microtubule pushing: a computational study.

    PubMed

    Zhu, Jie; Burakov, Anton; Rodionov, Vladimir; Mogilner, Alex

    2010-12-01

    The centrosome position in many types of interphase cells is actively maintained in the cell center. Our previous work indicated that the centrosome is kept at the center by pulling force generated by dynein and actin flow produced by myosin contraction and that an unidentified factor that depends on microtubule dynamics destabilizes position of the centrosome. Here, we use modeling to simulate the centrosome positioning based on the idea that the balance of three forces-dyneins pulling along microtubule length, myosin-powered centripetal drag, and microtubules pushing on organelles-is responsible for the centrosome displacement. By comparing numerical predictions with centrosome behavior in wild-type and perturbed interphase cells, we rule out several plausible hypotheses about the nature of the microtubule-based force. We conclude that strong dynein- and weaker myosin-generated forces pull the microtubules inward competing with microtubule plus-ends pushing the microtubule aster outward and that the balance of these forces positions the centrosome at the cell center. The model also predicts that kinesin action could be another outward-pushing force. Simulations demonstrate that the force-balance centering mechanism is robust yet versatile. We use the experimental observations to reverse engineer the characteristic forces and centrosome mobility.

  13. Forecasting Glacier Evolution and Hindcasting Paleoclimates In Light of Mass Balance Nonlinearities

    NASA Astrophysics Data System (ADS)

    Malone, A.; Doughty, A. M.; MacAyeal, D. R.

    2016-12-01

    Glaciers are commonly used barometers of present and past climate change, with their variations often being linked to shifts in the mean climate. Climate variability within a unchanging mean state, however, can produce short term mass balance and glacier length anomalies, complicating this linkage. Also, the mass balance response to this variability can be nonlinear, possibly impacting the longer term state of the glacier. We propose a conceptual model to understand these nonlinearities and quantify their impacts on the longer term mass balance and glacier length. The relationship between mass balance and elevation, i.e. the vertical balance profile (VBP), illuminates these nonlinearities (Figure A). The VBP, given here for a wet tropical glacier, is piecewise, which can lead to different mass balance responses to climate anomalies of similar magnitude but opposite sign. We simulate the mass balance response to climate variability by vertically (temperature anomalies) and horizontally (precipitation anomalies) transposing the VBP for the mean climate (Figure A). The resulting anomalous VBP is the superposition of the two translations. We drive a 1-D flowline model with 10,000 years of anomalous VBPs. The aggregate VBP for the mean climate including variability differs from the VBP for the mean climate excluding variability, having a higher equilibrium line altitude (ELA) and a negative mass balance (Figure B). Accordingly, the glacier retreats, and the equilibrium glacier length for the aggregate VBP is the same as the mean length from the 10,000 year flowline simulation (Figure C). The magnitude of the VBP shift and glacier retreat increases with greater temperature variability and larger discontinuities in the VBP slope. These results highlight the importance of both the climate mean and variability in determining the longer term state of the glacier. Thus, forecasting glacier evolution or hindcasting past climates should also include representation of climate variability.

  14. Uncovering glacier dynamics beneath a debris mantle

    NASA Astrophysics Data System (ADS)

    Lefeuvre, P.-M.; Ng, F. S. L.

    2012-04-01

    Debris-covered glaciers (DCGs) have an extensive sediment mantle whose low albedo influences their surface energy balance to cause a buffering effect that could enhance or reduce ablation rates depending on the sediment thickness. The last effect suggests that some DCGs may be less sensitive to climate change and survive for longer than debris-free (or 'clean') glaciers under sustained climatic warming. However, the origin of DCGs is debated and the precise impact of the debris mantle on their flow dynamics and surface geometry has not been quantified. Here we investigate these issues with a numerical model that encapsulates ice-flow physics and surface debris evolution and transport along a glacier flow-line, as well as couples these with glacier mass balance. We model the impact of surface debris on ablation rates by a mathematical function based on published empirical data (including Ostrem's curve). A key interest is potential positive feedback of ablation on debris thickening and lowering of surface albedo. Model simulations show that when DCGs evolve to attain steady-state profiles, they reach lower elevations than clean glaciers do for the same initial and climatic conditions. Their mass-balance profile at steady state displays an inversion near the snout (where the debris cover is thickest) that is not observed in the clean-glacier simulations. In these cases, where the mantle causes complete buffering to inhibit ablation, the DCG does not reach a steady-state profile, and the sediment thickness evolves to a steady value that depends sensitively on the glacier surface velocities. Variation in the assumed englacial debris concentration in our simulations also determines glacier behaviour. With low englacial debris concentration, the DCG retreats initially while its mass-balance gradient steepens, but the glacier re-advances if it subsequently builds up a thick enough debris cover to cause complete buffering. We identify possible ways and challenges of testing this model with field observations of DCGs, given the inherent difficulty that such glaciers may not be in steady state.

  15. The “Dry-Run” Analysis: A Method for Evaluating Risk Scores for Confounding Control

    PubMed Central

    Wyss, Richard; Hansen, Ben B.; Ellis, Alan R.; Gagne, Joshua J.; Desai, Rishi J.; Glynn, Robert J.; Stürmer, Til

    2017-01-01

    Abstract A propensity score (PS) model's ability to control confounding can be assessed by evaluating covariate balance across exposure groups after PS adjustment. The optimal strategy for evaluating a disease risk score (DRS) model's ability to control confounding is less clear. DRS models cannot be evaluated through balance checks within the full population, and they are usually assessed through prediction diagnostics and goodness-of-fit tests. A proposed alternative is the “dry-run” analysis, which divides the unexposed population into “pseudo-exposed” and “pseudo-unexposed” groups so that differences on observed covariates resemble differences between the actual exposed and unexposed populations. With no exposure effect separating the pseudo-exposed and pseudo-unexposed groups, a DRS model is evaluated by its ability to retrieve an unconfounded null estimate after adjustment in this pseudo-population. We used simulations and an empirical example to compare traditional DRS performance metrics with the dry-run validation. In simulations, the dry run often improved assessment of confounding control, compared with the C statistic and goodness-of-fit tests. In the empirical example, PS and DRS matching gave similar results and showed good performance in terms of covariate balance (PS matching) and controlling confounding in the dry-run analysis (DRS matching). The dry-run analysis may prove useful in evaluating confounding control through DRS models. PMID:28338910

  16. Remotely sensed soil moisture input to a hydrologic model

    NASA Technical Reports Server (NTRS)

    Engman, E. T.; Kustas, W. P.; Wang, J. R.

    1989-01-01

    The possibility of using detailed spatial soil moisture maps as input to a runoff model was investigated. The water balance of a small drainage basin was simulated using a simple storage model. Aircraft microwave measurements of soil moisture were used to construct two-dimensional maps of the spatial distribution of the soil moisture. Data from overflights on different dates provided the temporal changes resulting from soil drainage and evapotranspiration. The study site and data collection are described, and the soil measurement data are given. The model selection is discussed, and the simulation results are summarized. It is concluded that a time series of soil moisture is a valuable new type of data for verifying model performance and for updating and correcting simulated streamflow.

  17. Performance of distributed multiscale simulations

    PubMed Central

    Borgdorff, J.; Ben Belgacem, M.; Bona-Casas, C.; Fazendeiro, L.; Groen, D.; Hoenen, O.; Mizeranschi, A.; Suter, J. L.; Coster, D.; Coveney, P. V.; Dubitzky, W.; Hoekstra, A. G.; Strand, P.; Chopard, B.

    2014-01-01

    Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption. PMID:24982258

  18. Summary of: Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, P.; Hummon, M.

    2013-02-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test systemmore » consisting of two balancing areas located primarily in Colorado.« less

  19. Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, P.; Hummon, M.

    2012-11-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test systemmore » consisting of two balancing areas located primarily in Colorado.« less

  20. Forward-looking Assimilation of MODIS-derived Snow Covered Area into a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Zaitchik, Benjamin F.; Rodell, Matthew

    2008-01-01

    Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation SCA indicates only the presence or absence of snow, and not snow volume and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to non-physical artifacts in the local water balance. In this paper we present a novel assimilation algorithm that introduces MODIS SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm utilizes observations from up to 72 hours ahead of the model simulation in order to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes both during the snow season and, in some regions, on into the following spring.

  1. Finite Element Analysis of Walking Beam of a New Compound Adjustment Balance Pumping Unit

    NASA Astrophysics Data System (ADS)

    Wu, Jufei; Wang, Qian; Han, Yunfei

    2017-12-01

    In this paper, taking the designer of the new compound balance pumping unit beam as our research target, the three-dimensional model is established by Solid Works, the load and the constraint are determined. ANSYS Workbench is used to analyze the tail and the whole of the beam, the stress and deformation are obtained to meet the strength requirements. The finite element simulation and theoretical calculation of the moment of the center axis beam are carried out. The finite element simulation results are compared with the calculated results of the theoretical mechanics model to verify the correctness of the theoretical calculation. Finally, the finite element analysis is consistent with the theoretical calculation results. The theoretical calculation results are preferable, and the bending moment value provides the theoretical reference for the follow-up optimization and research design.

  2. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  3. Simulated Net Ecosystem Carbon Balance of Western US Forests Under Contemporary Climate and Management

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Law, B. E.; Jones, M. O.

    2015-12-01

    Previous projections of the contemporary forest carbon balance in the western US showed uncertainties associated with impacts of climate extremes and a coarse spatio-temporal resolution implemented over heterogeneous mountain regions. We modified the Community Land Model (CLM) 4.5 to produce 4km resolution forest carbon changes with drought, fire and management in the western US. We parameterized the model with species data using local plant trait observations for 30 species. To quantify uncertainty, we evaluated the model with data from flux sites, inventories and ancillary data in the region. Simulated GPP was lower than the measurements at our AmeriFlux sites by 17-22%. Simulated burned area was generally higher than Landsat observations, suggesting the model overestimates fire emissions with the new fire model. Landsat MTBS data show high severity fire represents only a small portion of the total burnt area (12-14%), and no increasing trend from 1984 to 2011. Moderate severity fire increased ~0.23%/year due to fires in the Sierra Nevada (Law & Waring 2014). Oregon, California, and Washington were a net carbon sink, and net ecosystem carbon balance (NECB) declined in California over the past 15 years, partly due to drought impacts. Fire emissions were a small portion of the regional carbon budget compared with the effect of harvest removals. Fossil fuel emissions in CA are more than 3x that of OR and WA combined, but are lower per capita. We also identified forest regions that are most vulnerable to climate-driven transformations and to evaluate the effects of management strategies on forest NECB. Differences in forest NECB among states are strongly influenced by the extent of drought (drier longer in the SW) and management intensity (higher in the PNW).

  4. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor.

    PubMed

    Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei

    2016-04-01

    A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Towards an Automated Full-Turbofan Engine Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Turner, Mark G.; Norris, Andrew; Veres, Joseph P.

    2003-01-01

    The objective of this study was to demonstrate the high-fidelity numerical simulation of a modern high-bypass turbofan engine. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled three-dimensional computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady-state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the three-dimensional component models are integrated into the cycle model via partial performance maps generated automatically from the CFD flow solutions using one-dimensional meanline turbomachinery programs. This paper reports on the progress made towards the full-engine simulation of the GE90-94B engine, highlighting the generation of the high-pressure compressor partial performance map. The ongoing work will provide a system to evaluate the steady and unsteady aerodynamic and mechanical interactions between engine components at design and off-design operating conditions.

  6. Measuring and modeling the temporal dynamics of nitrogen balance in an experimental-scale paddy field

    NASA Astrophysics Data System (ADS)

    Tseng, C.; Lin, Y.

    2013-12-01

    Nitrogen balance involves many mechanisms and plays an important role to maintain the function of nature. Fertilizer application in agriculture activity is usually seen as a common and significant nitrogen input to environment. Improper fertilizer application on paddy field can result in great amount of various types of nitrogen losses. Hence, it is essential to understand and quantify the nitrogen dynamics in paddy field for fertilizer management and pollution control. In this study, we develop a model which considers major transformation processes of nitrogen (e.g. volatilization, nitrification, denitrification and plant uptake). In addition, we measured different types of nitrogen in plants, soil and water at plant growth stages in an experimental-scale paddy field in Taiwan. The measurement includes total nitrogen in plants and soil, and ammonium-N (NH4+-N), nitrate-N (NO3--N) and organic nitrogen in water. The measured data were used to calibrate the model parameters and validate the model for nitrogen balance simulation. The results showed that the model can accurately estimate the temporal dynamics of nitrogen balance in paddy field during the whole growth stage. This model might be helpful and useful for future fertilizer management and pollution control in paddy field.

  7. Evaluation of a distributed catchment scale water balance model

    NASA Technical Reports Server (NTRS)

    Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.

  8. Forest gradient response in Sierran landscapes: the physical template

    USGS Publications Warehouse

    Urban, Dean L.; Miller, Carol; Halpin, Patrick N.; Stephenson, Nathan L.

    2000-01-01

    Vegetation pattern on landscapes is the manifestation of physical gradients, biotic response to these gradients, and disturbances. Here we focus on the physical template as it governs the distribution of mixed-conifer forests in California's Sierra Nevada. We extended a forest simulation model to examine montane environmental gradients, emphasizing factors affecting the water balance in these summer-dry landscapes. The model simulates the soil moisture regime in terms of the interaction of water supply and demand: supply depends on precipitation and water storage, while evapotranspirational demand varies with solar radiation and temperature. The forest cover itself can affect the water balance via canopy interception and evapotranspiration. We simulated Sierran forests as slope facets, defined as gridded stands of homogeneous topographic exposure, and verified simulated gradient response against sample quadrats distributed across Sequoia National Park. We then performed a modified sensitivity analysis of abiotic factors governing the physical gradient. Importantly, the model's sensitivity to temperature, precipitation, and soil depth varies considerably over the physical template, particularly relative to elevation. The physical drivers of the water balance have characteristic spatial scales that differ by orders of magnitude. Across large spatial extents, temperature and precipitation as defined by elevation primarily govern the location of the mixed conifer zone. If the analysis is constrained to elevations within the mixed-conifer zone, local topography comes into play as it influences drainage. Soil depth varies considerably at all measured scales, and is especially dominant at fine (within-stand) scales. Physical site variables can influence soil moisture deficit either by affecting water supply or water demand; these effects have qualitatively different implications for forest response. These results have clear implications about purely inferential approaches to gradient analysis, and bear strongly on our ability to use correlative approaches in assessing the potential responses of montane forests to anthropogenic climatic change.

  9. Investigation of Future Thermal Comforts in a Tropical Megacity Using Coupling of Energy Balance Model and Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Sueishi, T.; Yucel, M.; Ashie, Y.; Varquez, A. C. G.; Inagaki, A.; Darmanto, N. S.; Nakayoshi, M.; Kanda, M.

    2017-12-01

    Recently, temperature in urban areas continue to rise as an effect of climate change and urbanization. Specifically, Asian megacities are projected to expand rapidly resulting to serious in the future atmospheric environment. Thus, detailed analysis of urban meteorology for Asian megacities is needed to prescribe optimum against these negative climate modifications. A building-resolving large eddy simulation (LES) coupled with an energy balance model is conducted for a highly urbanized district in central Jakarta on typical daytime hours. Five cases were considered; case 1 utilizes present urban scenario and four cases representing different urban configurations in 2050. The future configurations were based on representative concentration pathways (RCP) and shared socio-economic pathways (SSP). Building height maps and land use maps of simulation domains are shown in the attached figure (top). Case 1 3 focuses on the difference of future scenarios. Case 1 represents current climatic and urban conditions, case 2 and 3 was an idealized future represented by RCP2.6/SSP1 and RCP8.5/SSP3, respectively. More complex urban morphology was applied in case 4, vegetation and building area were changed in case 5. Meteorological inputs and anthropogenic heat emission (AHE) were calculated using Weather Research and Forecasting (WRF) model (Varquez et al [2017]). Sensible and latent heat flux from surfaces were calculated using an energy balance model (Ashie et al [2011]), with considers multi-reflection, evapotranspiration and evaporation. The results of energy balance model (shown in the middle line of figure), in addition to WRF outputs, were used as input into the PArallelized LES Model (PALM) (Raasch et al [2001]). From standard new effective temperature (SET*) which included the effects of temperature, wind speed, humidity and radiation, thermal comfort in urban area was evaluated. SET* contours at 1 m height are shown in the bottom line of the figure. Extreme climate change increase average SET* as expected; however, construction of dense high-rise buildings (case 2) can minimize this effect due to increased shading throughout the district. Acknowledgement: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.

  10. Evaluation de l'impact du vent et des manoeuvres hydrauliques sur le calcul des apports naturels par bilan hydrique pour un reservoir hydroelectrique

    NASA Astrophysics Data System (ADS)

    Roy, Mathieu

    Natural inflow is an important data for a water resource manager. In fact, Hydro-Quebec uses historical natural inflow data to perform a daily prediction of the amount of water that will be received in each of its hydroelectric reservoirs. This prediction allows the establishment of reservoir operating rules in order to optimize hydropower without compromising the safety of hydraulic structures. To obtain an accurate prediction, it follows that the system's input needs to be very well known. However, it can be very difficult to accurately measure the natural supply of a set of regulated reservoirs. Therefore, Hydro-Quebec uses an indirect method of calculation. This method consists of evaluating the reservoir's inflow using the water balance equation. Yet, this equation is not immune to errors and uncertainties. Water level measurement is an important input in order to compute the water balance equation. However, several sources of uncertainty including the effect of wind and hydraulic maneuvers can affect the readings of limnimetric gages. Fluctuations in water level caused by these effects carry over in the water balance equation. Consequently, natural inflow's signal may become noisy and affected by external errors. The main objective of this report is to evaluate the uncertainty caused by the effects of wind and hydraulic maneuvers on water balance equation. To this end, hydrodynamic models of reservoirs Outardes 4 and Gouin were prepared. According to the literature review, wind effects can be studied either by an unsteady state approach or by assuming steady state approach. Unsteady state simulation of wind effects on reservoir Gouin and Outardes 4 were performed by hydrodynamic modelling. Consideration of an unsteady state implies that the wind conditions vary throughout the simulation. This feature allows taking into account temporal effect of wind duration. In addition, it also allows the consideration of inertial forces such as seiches which are caused by wind conditions that can vary abruptly. Once the models were calibrated, unsteady state simulations were conducted in closed system where unsteady observed winds were the only forces included. From the simulated water levels obtained at each gage, water balance equation was calculated to determine the daily uncertainty of natural inflow in unsteady conditions. At Outardes 4, a maximum uncertainty of 20 m3/s was estimated during the month of October 2010. On the other hand, at the Gouin reservoir, a maximum uncertainty of 340m3/s was estimated during the month of July 2012. Steady state modelling is another approach to evaluate wind effect uncertainty in the water balance equation. This type of approach consists of assuming that the water level is instantly tilted under the influence of wind. Hence, temporal effect of wind duration and seiches cannot be taken into account. However, the advantage of steady state modelling is that it's better suited than unsteady state modelling to evaluate wind uncertainty in real time. Two steady state modelling methods were experimented to estimate water level difference between gages in function of wind characteristics: hydrodynamic modelling and non-parametric regression. It has been found that non-parametric models are more efficient when it comes to estimate water level differences between gages. However, the use of hydrodynamic model demonstrated that to study wind uncertainty in the water balance equation, it is preferable to assess wind responses individually at each gage instead of using water level differences. Finally, a combination method of water level gages observations has been developed. It allows reducing wind/hydraulic maneuvers impacts on the water balance equation. This method, which is applicable in real time, consists of assigning a variable weight at each limnimetric gages. In other words, the weights automatically adjust in order to minimize steady state modeled wind responses. The estimation of hydraulic maneuvers has also been included in the gage weight adjustment. It has been found that this new combination method allows the correction of noisy natural inflow signal under wind and hydraulic maneuvers effects. However, some fluctuations persist which reflects the complexity of correcting these effects on a real time based daily water balance equation. (Abstract shortened by UMI.).

  11. Balancing selection on immunity genes: review of the current literature and new analysis in Drosophila melanogaster.

    PubMed

    Croze, Myriam; Živković, Daniel; Stephan, Wolfgang; Hutter, Stephan

    2016-08-01

    Balancing selection has been widely assumed to be an important evolutionary force, yet even today little is known about its abundance and its impact on the patterns of genetic diversity. Several studies have shown examples of balancing selection in humans, plants or parasites, and many genes under balancing selection are involved in immunity. It has been proposed that host-parasite coevolution is one of the main forces driving immune genes to evolve under balancing selection. In this paper, we review the literature on balancing selection on immunity genes in several organisms, including Drosophila. Furthermore, we performed a genome scan for balancing selection in an African population of Drosophila melanogaster using coalescent simulations of a demographic model with and without selection. We find very few genes under balancing selection and only one novel candidate gene related to immunity. Finally, we discuss the possible causes of the low number of genes under balancing selection. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  12. Response of the Antarctic ice sheet to ocean forcing using the POPSICLES coupled ice sheet-ocean model

    NASA Astrophysics Data System (ADS)

    Martin, D. F.; Asay-Davis, X.; Price, S. F.; Cornford, S. L.; Maltrud, M. E.; Ng, E. G.; Collins, W.

    2014-12-01

    We present the response of the continental Antarctic ice sheet to sub-shelf-melt forcing derived from POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1 degree (~5 km) ocean resolution and ice sheet resolution as fine as 500 m using adaptive mesh refinement. A comparison of fully-coupled and comparable standalone ice-sheet model results demonstrates the importance of two-way coupling between the ice sheet and the ocean. The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). A companion presentation, "Present-day circum-Antarctic simulations using the POPSICLES coupled land ice-ocean model" in session C027 describes the ocean-model perspective of this work, while we focus on the response of the ice sheet and on details of the model. The figure shows the BISICLES-computed vertically-integrated ice velocity field about 1 month into a 20-year coupled Antarctic run. Groundling lines are shown in green.

  13. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    USGS Publications Warehouse

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  14. Hydrological cycle in the Danube basin in present and projected future climate conditions: a models' intercomparison perspective

    NASA Astrophysics Data System (ADS)

    Lucarini, V.

    2010-09-01

    We present an intercomparison and verification analysis of several GCMs and RCMs included in the 4th IPCC assessment report on their representation of the hydrological cycle on the Danube river basin for present and (in the case of the GCMs) projected future climate conditions. The basin-scale properties of the hydrological cycle are computed by spatially integrating the precipitation, evaporation, and runoff fields using the Voronoi-Thiessen tessellation formalism. Large discrepancies exist among RCMs for the monthly climatology as well as for the mean and variability of the annual balances, and only few data sets are consistent with the observed discharge values of the Danube at its Delta. This occurs in spite of common nesting of the RCMs into the same run of the same AGCM, and even if the driving AGCM provides itself an excellent estimate. We find consistently that, for a given model, increases in the resolution do not alter the net water balance, while speeding up the hydrological cycle through the enhancement of both precipitation and evaporation by the same amount. We propose that the atmospheric components of RCMs still face difficulties in representing the water balance even on a relatively large scale. Moreover, since for some models the hydrological balance estimates obtained with the runoff fields do not agree with those obtained via precipitation and evaporation, some deficiencies of the land models are also apparent. In the case of the GCMs, the span of the model- simulated mean annual water balances is of the same order of magnitude of the observed Danube discharge of the Delta; the true value is within the range simulated by the models. Some land components seem to have deficiencies since there are cases of violation of water conservation when annual means are considered. The overall performance and the degree of agreement of the GCMs are, surprisingly, comparable to those of the RCMs. Both RCMs and GCMs greatly outperform the NCEP-NCAR and ERA-40 reanalyses in representing the present climate conditions. The reanalyses result to be largely inadequate for describing the hydrology of the Danube river basin, both for the reconstruction of the long-term averages and of the seasonal cycle. The reanalyses cannot in any sense be used as verification. In global warming conditions, for basically all models the water balance decreases, whereas its interannual variability increases. Changes in the strength of the hydrological cycle are not consistent among models: it is confirmed that capturing the impact of climate change on the hydrological cycle is not an easy task over land areas. We note that for some of the diagnostics the ensemble mean does not represent any sort of "average" model, and it often falls between the models’ clusters. We suggest that these results should be carefully considered in the perspective of auditing climate models and assessing their ability to simulate future climate changes.

  15. Effects of meteorological models on the solution of the surface energy balance and soil temperature variations in bare soils

    NASA Astrophysics Data System (ADS)

    Saito, Hirotaka; Šimůnek, Jiri

    2009-07-01

    SummaryA complete evaluation of the soil thermal regime can be obtained by evaluating the movement of liquid water, water vapor, and thermal energy in the subsurface. Such an evaluation requires the simultaneous solution of the system of equations for the surface water and energy balance, and subsurface heat transport and water flow. When only daily climatic data is available, one needs not only to estimate diurnal cycles of climatic data, but to calculate the continuous values of various components in the energy balance equation, using different parameterization methods. The objective of this study is to quantify the impact of the choice of different estimation and parameterization methods, referred together to as meteorological models in this paper, on soil temperature predictions in bare soils. A variety of widely accepted meteorological models were tested on the dataset collected at a proposed low-level radioactive-waste disposal site in the Chihuahua Desert in West Texas. As the soil surface was kept bare during the study, no vegetation effects were evaluated. A coupled liquid water, water vapor, and heat transport model, implemented in the HYDRUS-1D program, was used to simulate diurnal and seasonal soil temperature changes in the engineered cover installed at the site. The modified version of HYDRUS provides a flexible means for using various types of information and different models to evaluate surface mass and energy balance. Different meteorological models were compared in terms of their prediction errors for soil temperatures at seven observation depths. The results obtained indicate that although many available meteorological models can be used to solve the energy balance equation at the soil-atmosphere interface in coupled water, vapor, and heat transport models, their impact on overall simulation results varies. For example, using daily average climatic data led to greater prediction errors, while relatively simple meteorological models may significantly improve soil temperature predictions. On the other hand, while models for the albedo and soil emissivity had little impact on soil temperature predictions, the choice of the atmospheric emissivity models had a greater impact. A comparison of all the different models indicates that the error introduced at the soil atmosphere interface propagates to deeper layers. Therefore, attention needs to be paid not only to the precise determination of the soil hydraulic and thermal properties, but also to the selection of proper meteorological models for the components involved in the surface energy balance calculations.

  16. Radicals and Reservoirs in the GMI Chemistry and Transport Model: Comparison to Measurements

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Stolarski, Richard S.; Strahan, Susan E.; Connell, Peter S.

    2004-01-01

    We have used a three-dimensional chemistry and transport model (CTM), developed under the Global Modeling Initiative (GMI), to carry out two simulations of the composition of the stratosphere under changing halogen loading for 1995 through 2030. The two simulations differ only in that one uses meteorological fields from a general circulation model while the other uses meteorological fields from a data assimilation system. A single year's winds and temperatures are repeated for each 36-year simulation. We compare results from these two simulations with an extensive collection of data from satellite and ground-based measurements for 1993-2000. Comparisons of simulated fields with observations of radical and reservoir species for some of the major ozone-destroying compounds are of similar quality for both simulations. Differences in the upper stratosphere, caused by transport of total reactive nitrogen and methane, impact the balance among the ozone loss processes and the sensitivity of the two simulations to the change in composition.

  17. Toward Balance Recovery With Leg Prostheses Using Neuromuscular Model Control

    PubMed Central

    Geyer, Hartmut

    2016-01-01

    Objective Lower limb amputees are at high risk of falling as current prosthetic legs provide only limited functionality for recovering balance after unexpected disturbances. For instance, the most established control method used on powered leg prostheses tracks local joint impedance functions without taking the global function of the leg in balance recovery into account. Here we explore an alternative control policy for powered transfemoral prostheses that considers the global leg function and is based on a neuromuscular model of human locomotion. Methods We adapt this model to describe and simulate an amputee walking with a powered prosthesis using the proposed control, and evaluate the gait robustness when confronted with rough ground and swing leg disturbances. We then implement and partially evaluate the resulting controller on a leg prosthesis prototype worn by a non-amputee user. Results In simulation, the proposed prosthesis control leads to gaits that are more robust than those obtained by the impedance control method. The initial hardware experiments with the prosthesis prototype show that the proposed control reproduces normal walking patterns qualitatively and effectively responds to disturbances in early and late swing. However, the response to mid-swing disturbances neither replicates human responses nor averts falls. Conclusions The neuromuscular model control is a promising alternative to existing prosthesis controls, although further research will need to improve on the initial implementation and determine how well these results transfer to amputee gait. Significance This work provides a potential avenue for future development of control policies that help improve amputee balance recovery. PMID:26315935

  18. Integration of PKPD relationships into benefit–risk analysis

    PubMed Central

    Bellanti, Francesco; van Wijk, Rob C; Danhof, Meindert; Della Pasqua, Oscar

    2015-01-01

    Aim Despite the continuous endeavour to achieve high standards in medical care through effectiveness measures, a quantitative framework for the assessment of the benefit–risk balance of new medicines is lacking prior to regulatory approval. The aim of this short review is to summarise the approaches currently available for benefit–risk assessment. In addition, we propose the use of pharmacokinetic–pharmacodynamic (PKPD) modelling as the pharmacological basis for evidence synthesis and evaluation of novel therapeutic agents. Methods A comprehensive literature search has been performed using MESH terms in PubMed, in which articles describing benefit–risk assessment and modelling and simulation were identified. In parallel, a critical review of multi-criteria decision analysis (MCDA) is presented as a tool for characterising a drug's safety and efficacy profile. Results A definition of benefits and risks has been proposed by the European Medicines Agency (EMA), in which qualitative and quantitative elements are included. However, in spite of the value of MCDA as a quantitative method, decisions about benefit–risk balance continue to rely on subjective expert opinion. By contrast, a model-informed approach offers the opportunity for a more comprehensive evaluation of benefit–risk balance before extensive evidence is generated in clinical practice. Conclusions Benefit–risk balance should be an integral part of the risk management plan and as such considered before marketing authorisation. Modelling and simulation can be incorporated into MCDA to support the evidence synthesis as well evidence generation taking into account the underlying correlations between favourable and unfavourable effects. In addition, it represents a valuable tool for the optimization of protocol design in effectiveness trials. PMID:25940398

  19. Integration of PKPD relationships into benefit-risk analysis.

    PubMed

    Bellanti, Francesco; van Wijk, Rob C; Danhof, Meindert; Della Pasqua, Oscar

    2015-11-01

    Despite the continuous endeavour to achieve high standards in medical care through effectiveness measures, a quantitative framework for the assessment of the benefit-risk balance of new medicines is lacking prior to regulatory approval. The aim of this short review is to summarise the approaches currently available for benefit-risk assessment. In addition, we propose the use of pharmacokinetic-pharmacodynamic (PKPD) modelling as the pharmacological basis for evidence synthesis and evaluation of novel therapeutic agents. A comprehensive literature search has been performed using MESH terms in PubMed, in which articles describing benefit-risk assessment and modelling and simulation were identified. In parallel, a critical review of multi-criteria decision analysis (MCDA) is presented as a tool for characterising a drug's safety and efficacy profile. A definition of benefits and risks has been proposed by the European Medicines Agency (EMA), in which qualitative and quantitative elements are included. However, in spite of the value of MCDA as a quantitative method, decisions about benefit-risk balance continue to rely on subjective expert opinion. By contrast, a model-informed approach offers the opportunity for a more comprehensive evaluation of benefit-risk balance before extensive evidence is generated in clinical practice. Benefit-risk balance should be an integral part of the risk management plan and as such considered before marketing authorisation. Modelling and simulation can be incorporated into MCDA to support the evidence synthesis as well evidence generation taking into account the underlying correlations between favourable and unfavourable effects. In addition, it represents a valuable tool for the optimization of protocol design in effectiveness trials. © 2015 The British Pharmacological Society.

  20. Modeling of the spectral evolution in a narrow-linewidth fiber amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Kuang, Wenjun; Jiang, Man; Xu, Jiangming; Zhou, Pu; Liu, Zejin

    2016-03-01

    Efficient numerical modeling of the spectral evolution in a narrow-linewidth fiber amplifier is presented. By describing the seeds using a statistical model and simulating the amplification process through power balanced equations combined with the nonlinear Schrödinger equations, the spectral evolution of different seeds in the fiber amplifier can be evaluated accurately. The simulation results show that the output spectra are affected by the temporal stability of the seeds and the seeds with constant amplitude in time are beneficial to maintain the linewidth of the seed in the fiber amplifier.

  1. Propulsion simulation for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Beerman, Henry P.; Chen, James; Krech, Robert H.; Lintz, Andrew L.; Rosen, David I.

    1990-01-01

    The feasibility of simulating propulsion-induced aerodynamic effects on scaled aircraft models in wind tunnels employing Magnetic Suspension and Balance Systems. The investigation concerned itself with techniques of generating exhaust jets of appropriate characteristics. The objectives were to: (1) define thrust and mass flow requirements of jets; (2) evaluate techniques for generating propulsive gas within volume limitations imposed by magnetically-suspended models; (3) conduct simple diagnostic experiments for techniques involving new concepts; and (4) recommend experiments for demonstration of propulsion simulation techniques. Various techniques of generating exhaust jets of appropriate characteristics were evaluated on scaled aircraft models in wind tunnels with MSBS. Four concepts of remotely-operated propulsion simulators were examined. Three conceptual designs involving innovative adaptation of convenient technologies (compressed gas cylinders, liquid, and solid propellants) were developed. The fourth innovative concept, namely, the laser-assisted thruster, which can potentially simulate both inlet and exhaust flows, was found to require very high power levels for small thrust levels.

  2. A carbon balance model for the great dismal swamp ecosystem

    USGS Publications Warehouse

    Sleeter, Rachel; Sleeter, Benjamin M.; Williams, Brianna; Hogan, Dianna; Hawbaker, Todd J.; Zhu, Zhiliang

    2017-01-01

    BackgroundCarbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting.ResultsWe modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985–2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus.ConclusionsNatural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha−1/year−1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.

  3. A carbon balance model for the great dismal swamp ecosystem.

    PubMed

    Sleeter, Rachel; Sleeter, Benjamin M; Williams, Brianna; Hogan, Dianna; Hawbaker, Todd; Zhu, Zhiliang

    2017-12-01

    Carbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting. We modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985-2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus. Natural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha -1 /year -1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.

  4. Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow

    NASA Astrophysics Data System (ADS)

    Gupta, Atma Ram; Kumar, Ashwani

    2017-12-01

    Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.

  5. Simulating potato gas exchange as influenced by CO2 and irrigation

    USDA-ARS?s Scientific Manuscript database

    Recent research suggests that an energy balance approach is required for crop models to adequately respond to current and future climatic conditions associated with elevated CO2, higher temperatures, and water scarcity. More realistic models are needed in order to understand the impact of, and deve...

  6. Economic impacts of climate change on water resources in the coterminous United States

    EPA Science Inventory

    A national-scale simulation-optimization model was created to generate estimates of economic impacts associated with changes in water supply and demand as influenced by climate change. Water balances were modeled for the 99 assessment sub-regions, and are presented for 18 water r...

  7. Projected climate change impacts on skiing and snowmobiling: A case study of the United States

    EPA Science Inventory

    A physically-based water and energy balance model is used to simulate natural snow accumulation at 247 winter recreation locations across the continental United States. We combine this model with projections of snowmaking conditions to determine downhill skiing, cross-country ski...

  8. A comparison of reduced-order modelling techniques for application in hyperthermia control and estimation.

    PubMed

    Bailey, E A; Dutton, A W; Mattingly, M; Devasia, S; Roemer, R B

    1998-01-01

    Reduced-order modelling techniques can make important contributions in the control and state estimation of large systems. In hyperthermia, reduced-order modelling can provide a useful tool by which a large thermal model can be reduced to the most significant subset of its full-order modes, making real-time control and estimation possible. Two such reduction methods, one based on modal decomposition and the other on balanced realization, are compared in the context of simulated hyperthermia heat transfer problems. The results show that the modal decomposition reduction method has three significant advantages over that of balanced realization. First, modal decomposition reduced models result in less error, when compared to the full-order model, than balanced realization reduced models of similar order in problems with low or moderate advective heat transfer. Second, because the balanced realization based methods require a priori knowledge of the sensor and actuator placements, the reduced-order model is not robust to changes in sensor or actuator locations, a limitation not present in modal decomposition. Third, the modal decomposition transformation is less demanding computationally. On the other hand, in thermal problems dominated by advective heat transfer, numerical instabilities make modal decomposition based reduction problematic. Modal decomposition methods are therefore recommended for reduction of models in which advection is not dominant and research continues into methods to render balanced realization based reduction more suitable for real-time clinical hyperthermia control and estimation.

  9. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms☆

    PubMed Central

    Mori, Takaharu; Miyashita, Naoyuki; Im, Wonpil; Feig, Michael; Sugita, Yuji

    2016-01-01

    This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins. Guest Editors: J.C. Gumbart and Sergei Noskov. PMID:26766517

  10. Impact of Load Balancing on Unstructured Adaptive Grid Computations for Distributed-Memory Multiprocessors

    NASA Technical Reports Server (NTRS)

    Sohn, Andrew; Biswas, Rupak; Simon, Horst D.

    1996-01-01

    The computational requirements for an adaptive solution of unsteady problems change as the simulation progresses. This causes workload imbalance among processors on a parallel machine which, in turn, requires significant data movement at runtime. We present a new dynamic load-balancing framework, called JOVE, that balances the workload across all processors with a global view. Whenever the computational mesh is adapted, JOVE is activated to eliminate the load imbalance. JOVE has been implemented on an IBM SP2 distributed-memory machine in MPI for portability. Experimental results for two model meshes demonstrate that mesh adaption with load balancing gives more than a sixfold improvement over one without load balancing. We also show that JOVE gives a 24-fold speedup on 64 processors compared to sequential execution.

  11. Construction of a 3D structural model based on balanced cross sections and borehole data to create a fundament for further geolocial and hydrological simulations

    NASA Astrophysics Data System (ADS)

    Donndorf, St.; Malz, A.; Kley, J.

    2012-04-01

    Cross section balancing is a generally accepted method for studying fault zone geometries. We show a method for the construction of structural 3D models of complex fault zones using a combination of gOcad modelling and balanced cross sections. In this work a 3D model of the Schlotheim graben in the Thuringian basin was created from serial, parallel cross sections and existing borehole data. The Thuringian Basin is originally a part of the North German Basin, which was separated from it by the Harz uplift in the Late Cretaceous. It comprises several parallel NW-trending inversion structures. The Schlotheim graben is one example of these inverted graben zones, whose structure poses special challenges to 3D modelling. The fault zone extends 30 km in NW-SE direction and 1 km in NE-SW direction. This project was split into two parts: data management and model building. To manage the fundamental data a central database was created in ESRI's ArcGIS. The development of a scripting interface handles the data exchange between the different steps of modelling. The first step is the pre-processing of the base data in ArcGIS, followed by cross section balancing with Midland Valley's Move software and finally the construction of the 3D model in Paradigm's gOcad. With the specific aim of constructing a 3D model based on cross sections, the functionality of the gOcad software had to be extended. These extensions include pre-processing functions to create a simplified and usable data base for gOcad as well as construction functions to create surfaces based on linearly distributed data and processing functions to create the 3D model from different surfaces. In order to use the model for further geological and hydrological simulations, special requirements apply to the surface properties. The first characteristic of the surfaces should be a quality mesh, which contains triangles with maximized internal angles. To achieve that, an external meshing tool was included in gOcad. The second characteristic is that intersecting lines between two surfaces must be included in both surfaces and share nodes with them. To finish the modelling process 3D balancing was performed to further improve the model quality.

  12. Development and assessment of a physics-based simulation model to investigate residential PM2.5 infiltration across the US housing stock

    EPA Science Inventory

    The Lawrence Berkeley National Laboratory Population Impact Assessment Modeling Framework (PIAMF) was expanded to enable determination of indoor PM2.5 concentrations and exposures in a set of 50,000 homes representing the US housing stock. A mass-balance model is used to calculat...

  13. Simulating Soil Organic Matter with CQESTR (v.2.0): Model Description and Validation against Long-term Experiments across North America

    USDA-ARS?s Scientific Manuscript database

    Soil carbon (C) models are important tools for examining complex interactions between climate, crop and soil management practices, and to evaluate the long-term effects of management practices on C-storage potential in soils. CQESTR is a process-based carbon balance model that relates crop residue a...

  14. The Eastern Renewable Generation Integration Study: Insights on System Stress: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, Aaron; Novacheck, Josh

    The Eastern Renewable Generation Integration Study (ERGIS) explores the operational impacts of the wide spread adoption of wind and solar photovoltaics (PV) resources in North America's Eastern and Quebec Interconnections. We explore the impact of large scale adoption of wind and solar generation on the unit commitment and economic dispatch of the largest coordinated power system in the world by simulating hourly and five-minute operations. Using NREL's high-performance computing capabilities and new methodologies to model operations, we found that the modeled system, as simulated with evolutionary change in 2026, could balance the variability and uncertainty of wind and solar PVmore » at a five-minute level under a variety of conditions. Our simulations achieve instantaneous penetrations that exceed 50% of load while meeting an annual penetration of 30% on an energy basis. The system meets balanced load and supply in all intervals, with modest curtailment, using technologies and practices that are widely available today. However, a variety of the conditions present in these simulations deviate substantially from historical practice. In this work, we analyze potentially stressful system conditions that occur in the simulations and identify opportunities for innovation, regulatory reform, and changes in operating practices that require further analysis to enable the transition to a system with more wind and solar PV.« less

  15. Hybrid modeling of nitrate fate in large catchments using fuzzy-rules

    NASA Astrophysics Data System (ADS)

    van der Heijden, Sven; Haberlandt, Uwe

    2010-05-01

    Especially for nutrient balance simulations, physically based ecohydrological modeling needs an abundance of measured data and model parameters, which for large catchments all too often are not available in sufficient spatial or temporal resolution or are simply unknown. For efficient large-scale studies it is thus beneficial to have methods at one's disposal which are parsimonious concerning the number of model parameters and the necessary input data. One such method is fuzzy-rule based modeling, which compared to other machine-learning techniques has the advantages to produce models (the fuzzy-rules) which are physically interpretable to a certain extent, and to allow the explicit introduction of expert knowledge through pre-defined rules. The study focuses on the application of fuzzy-rule based modeling for nitrate simulation in large catchments, in particular concerning decision support. Fuzzy-rule based modeling enables the generation of simple, efficient, easily understandable models with nevertheless satisfactory accuracy for problems of decision support. The chosen approach encompasses a hybrid metamodeling, which includes the generation of fuzzy-rules with data originating from physically based models as well as a coupling with a physically based water balance model. For the generation of the needed training data and also as coupled water balance model the ecohydrological model SWAT is employed. The conceptual model divides the nitrate pathway into three parts. The first fuzzy-module calculates nitrate leaching with the percolating water from soil surface to groundwater, the second module simulates groundwater passage, and the final module replaces the in-stream processes. The aim of this modularization is to create flexibility for using each of the modules on its own, for changing or completely replacing it. For fuzzy-rule based modeling this can explicitly mean that the re-training of one of the modules with newly available data will be possible without problem, while the module assembly does not have to be modified. Apart from the concept of hybrid metamodeling first results are presented for the fuzzy-module for nitrate passage through the unsaturated zone.

  16. Quantifying Uncertainty in the Greenland Surface Mass Balance Elevation Feedback

    NASA Astrophysics Data System (ADS)

    Edwards, T.

    2015-12-01

    As the shape of the Greenland ice sheet responds to changes in surface mass balance (SMB) and dynamics, it affects the surface mass balance through the atmospheric lapse rate and by altering atmospheric circulation patterns. Positive degree day models include simplified representations of this feedback, but it is difficult to simulate with state-of-the-art models because it requires coupling of regional climate models with dynamical ice sheet models, which is technically challenging. This difficulty, along with the high computational expense of regional climate models, also drastically limits opportunities for exploring the impact of modelling uncertainties on sea level projections. We present a parameterisation of the SMB-elevation feedback in the MAR regional climate model that provides a far easier and quicker estimate than atmosphere-ice sheet model coupling, which can be used with any ice sheet model. This allows us to use ensembles of different parameter values and ice sheet models to assess the effect of uncertainty in the feedback and ice sheet model structure on future sea level projections. We take a Bayesian approach to uncertainty in the feedback parameterisation, scoring the results from multiple possible "SMB lapse rates" according to how well they reproduce a MAR simulation with altered ice sheet topography. We test the impact of the resulting parameterisation on sea level projections using five ice sheet models forced by MAR (in turned forced by two different global climate models) under the emissions scenario A1B. The estimated additional sea level contribution due to the SMB-elevation feedback is 4.3% at 2100 (95% credibility interval 1.8-6.9%), and 9.6% at 2200 (3.6-16.0%).

  17. Modeling biophysical/biogeochemical/ecological/ocean/atmosphere two-way interactions using NCEP CFS/SSiB5/TRIFFID/DAYCENT: challenge and promising

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Liu, Y.; Cox, P. M.; De Sales, F.; Lee, J.; Marx, L.; Hartman, M. D.; Yang, R.; Parton, W. J.; Qiu, B.; Ek, M. B.

    2016-12-01

    Evaluations of several dynamic vegetation models' (DVM) performances in the offline experiments and in the CMIP5 simulations suggest that most of the DVMs substantially overestimate leaf area index (LAI) and length of the growing season, which contribute to overestimation in their coupled models' precipitation. These results suggest important deficiencies in today's DVMs but also show the importance of proper ecological processes in the Earth System Modeling. We have developed a water-carbon-energy balance-based ecosystem model (SSiB4/TRIFFID) and verified it with field and satellite measurement at seasonal to decadal and longer scales. In the global offline tests, the model was integrated from 1950 to 2010 driven by observed meteorological forcing. The simulated trend and decadal variabilities in surface ecosystem conditions (e.g., Plant functional types, LAI, GPP), and surface water and energy balances are analyzed; further experiments and analyses are carried to isolate the contribution due to elevated atmospheric carbon concentration, global warming, soil moisture, and climate variability. How nitrogen processes simulated by the DayCent model Climate Forecast System (CFS) model, which has consistently shown improvements in simulated atmospheric & ocean conditions compared with those runs with specified vegetation conditions. In an experiment, two parametrizations that calculate the mean water potential in soil layers, which affect transpiration and plants' mortality, are tested. It shows that these two methods have substantial impact on global decadal variability of precipitation and surface temperature, with even opposite signs over some regions in the worlds. These results show the uncertainty in DVM modeling with significant implication for the future prediction. It is imperative to evaluate DVMs with comprehensive observational data.

  18. Exploring Biomolecular Recognition by Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Wade, Rebecca

    2007-12-01

    Biomolecular recognition is complex. The balance between the different molecular properties that contribute to molecular recognition, such as shape, electrostatics, dynamics and entropy, varies from case to case. This, along with the extent of experimental characterization, influences the choice of appropriate computational approaches to study biomolecular interactions. I will present computational studies in which we aim to make concerted use of bioinformatics, biochemical network modeling and molecular simulation techniques to study protein-protein and protein-small molecule interactions and to facilitate computer-aided drug design.

  19. Approaching a realistic force balance in geodynamo simulations

    PubMed Central

    Yadav, Rakesh K.; Gastine, Thomas; Christensen, Ulrich R.; Wolk, Scott J.; Poppenhaeger, Katja

    2016-01-01

    Earth sustains its magnetic field by a dynamo process driven by convection in the liquid outer core. Geodynamo simulations have been successful in reproducing many observed properties of the geomagnetic field. However, although theoretical considerations suggest that flow in the core is governed by a balance between Lorentz force, rotational force, and buoyancy (called MAC balance for Magnetic, Archimedean, Coriolis) with only minute roles for viscous and inertial forces, dynamo simulations must use viscosity values that are many orders of magnitude larger than in the core, due to computational constraints. In typical geodynamo models, viscous and inertial forces are not much smaller than the Coriolis force, and the Lorentz force plays a subdominant role; this has led to conclusions that these simulations are viscously controlled and do not represent the physics of the geodynamo. Here we show, by a direct analysis of the relevant forces, that a MAC balance can be achieved when the viscosity is reduced to values close to the current practical limit. Lorentz force, buoyancy, and the uncompensated (by pressure) part of the Coriolis force are of very similar strength, whereas viscous and inertial forces are smaller by a factor of at least 20 in the bulk of the fluid volume. Compared with nonmagnetic convection at otherwise identical parameters, the dynamo flow is of larger scale and is less invariant parallel to the rotation axis (less geostrophic), and convection transports twice as much heat, all of which is expected when the Lorentz force strongly influences the convection properties. PMID:27790991

  20. Simulation of the West African Monsoon using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Gianotti, Rebecca L.; Eltahir, Elfatih A. B.

    2013-04-01

    We test the performance of the MIT Regional Climate Model (MRCM) in simulating the West African Monsoon. MRCM introduces several improvements over Regional Climate Model version 3 (RegCM3) including coupling of Integrated Biosphere Simulator (IBIS) land surface scheme, a new albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Using MRCM, we carried out a series of experiments implementing two different land surface schemes (IBIS and BATS) and three convection schemes (Grell with the Fritsch-Chappell closure, standard Emanuel, and modified Emanuel that includes the new convective cloud scheme). Our analysis primarily focused on comparing the precipitation characteristics, surface energy balance and large scale circulations against various observations. We document a significant sensitivity of the West African monsoon simulation to the choices of the land surface and convection schemes. In spite of several deficiencies, the simulation with the combination of IBIS and modified Emanuel schemes shows the best performance reflected in a marked improvement of precipitation in terms of spatial distribution and monsoon features. In particular, the coupling of IBIS leads to representations of the surface energy balance and partitioning that are consistent with observations. Therefore, the major components of the surface energy budget (including radiation fluxes) in the IBIS simulations are in better agreement with observation than those from our BATS simulation, or from previous similar studies (e.g Steiner et al., 2009), both qualitatively and quantitatively. The IBIS simulations also reasonably reproduce the dynamical structure of vertically stratified behavior of the atmospheric circulation with three major components: westerly monsoon flow, African Easterly Jet (AEJ), and Tropical Easterly Jet (TEJ). In addition, since the modified Emanuel scheme tends to reduce the precipitation amount, it improves the precipitation over regions suffering from systematic wet bias.

  1. Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849-2017 with ISSM

    NASA Astrophysics Data System (ADS)

    Haubner, K.; Box, J.; Schlegel, N.; Larour, E. Y.; Morlighem, M.; Solgaard, A.; Kjeldsen, K. K.; Larsen, S. H.; Rignot, E. J.; Dupont, T. K.; Kjaer, K. H.

    2017-12-01

    Tidewater terminus changes have a significant influence on glacier velocity and mass balance and impact therefore Greenland's ice mass balance. Improving glacier front changes in ice sheet models helps understanding the processes that are driving glacier mass changes and improves predictions on Greenland's mass loss. We use the level set based moving boundary capability (Bondzio et al., 2016) included in the Ice Sheet System Model ISSM to reconstruct velocity and thickness changes on Upernavik Isstrøm, Greenland from 1849 to 2017. During the simulation, we use various data sets. For the model initialization, trim line data and an observed calving front position determine the shape of the ice surface elevation. The terminus changes are prescribed by observations. Data sets like the GIMP DEM, ArcticDEM, IceBridge surface elevation and ice surface velocities from the ESA project CCI and NASA project MEaSUREs help evaluating the simulation performance. The simulation is sensitive to the prescribed terminus changes, showing an average acceleration along the three flow lines between 50% and 190% from 1849 to 2017. Simulated ice surface velocity and elevation between 1990 and 2012 are within +/-20% of observations (GIMP, ArcticDEM, IceBridge, CCI and MEaSUREs). Simulated mass changes indicate increased dynamical ice loss from 1932 onward, amplified by increased negative SMB anomalies after 1998. More detailed information about methods and findings can be found in Haubner et al., 2017 (in TC discussion, describing simulation results between 1849-2012). Future goals are the comparison of ice surface velocity changes simulated with prescribed terminus retreat against other retreat schemes (Morlighem et al., 2016; Levermann et al., 2012; Bondzio et al., 2017) and applying the method onto other tidewater glaciers.

  2. Impacts of vegetation change on groundwater recharge

    NASA Astrophysics Data System (ADS)

    Bond, W. J.; Verburg, K.; Smith, C. J.

    2003-12-01

    Vegetation change is the accepted cause of increasing river salt concentrations and the salinisation of millions of hectares of farm land in Australia. Replacement of perennial native vegetation by annual crops and pastures following European settlement has altered the water balance causing increased groundwater recharge and mobilising the naturally saline groundwater. The Redesigning Agriculture for Australian Landscapes Program, of which the work described here is a part, was established to develop agricultural practices that are more attuned to the delicate water balance described above. Results of field measurements will be presented that contrast the water balance characteristics of native vegetation with those of conventional agricultural plants, and indicate the functional characteristics required of new agricultural practices to reduce recharge. New agricultural practices may comprise different management of current crops and pastures, or may involve introducing totally new species. In either case, long-term testing is required to examine their impact on recharge over a long enough climate record to encompass the natural variability of rainfall that is characteristic of most Australian farming regions. Field experimentation therefore needs to be complemented and extended by computer simulation. This requires a modelling approach that is more robust than conventional crop modelling because (a) it needs to be sensitive enough to predict small changes in the residual recharge term, (b) it needs to be able to simulate a variety of vegetation in different sequences, (c) it needs to be able to simulate continuously for several decades of input data, and (d) it therefore needs to be able to simulate the period between crops, which often has a critical impact on recharge. The APSIM simulation framework will be used to illustrate these issues and to explore the effect of different vegetation combinations on recharge.

  3. Validation of a robotic balance system for investigations in the control of human standing balance.

    PubMed

    Luu, Billy L; Huryn, Thomas P; Van der Loos, H F Machiel; Croft, Elizabeth A; Blouin, Jean-Sébastien

    2011-08-01

    Previous studies have shown that human body sway during standing approximates the mechanics of an inverted pendulum pivoted at the ankle joints. In this study, a robotic balance system incorporating a Stewart platform base was developed to provide a new technique to investigate the neural mechanisms involved in standing balance. The robotic system, programmed with the mechanics of an inverted pendulum, controlled the motion of the body in response to a change in applied ankle torque. The ability of the robotic system to replicate the load properties of standing was validated by comparing the load stiffness generated when subjects balanced their own body to the robot's mechanical load programmed with a low (concentrated-mass model) or high (distributed-mass model) inertia. The results show that static load stiffness was not significantly (p > 0.05) different for standing and the robotic system. Dynamic load stiffness for the robotic system increased with the frequency of sway, as predicted by the mechanics of an inverted pendulum, with the higher inertia being accurately matched to the load properties of the human body. This robotic balance system accurately replicated the physical model of standing and represents a useful tool to simulate the dynamics of a standing person. © 2011 IEEE

  4. Double-well dynamics of noise-driven control activation in human intermittent control: the case of stick balancing.

    PubMed

    Zgonnikov, Arkady; Lubashevsky, Ihor

    2015-11-01

    When facing a task of balancing a dynamic system near an unstable equilibrium, humans often adopt intermittent control strategy: Instead of continuously controlling the system, they repeatedly switch the control on and off. Paradigmatic example of such a task is stick balancing. Despite the simplicity of the task itself, the complexity of human intermittent control dynamics in stick balancing still puzzles researchers in motor control. Here we attempt to model one of the key mechanisms of human intermittent control, control activation, using as an example the task of overdamped stick balancing. In doing so, we focus on the concept of noise-driven activation, a more general alternative to the conventional threshold-driven activation. We describe control activation as a random walk in an energy potential, which changes in response to the state of the controlled system. By way of numerical simulations, we show that the developed model captures the core properties of human control activation observed previously in the experiments on overdamped stick balancing. Our results demonstrate that the double-well potential model provides tractable mathematical description of human control activation at least in the considered task and suggest that the adopted approach can potentially aid in understanding human intermittent control in more complex processes.

  5. Simulation of heat storages and associated heat budgets in the Pacific Ocean: 2. Interdecadal timescale

    NASA Astrophysics Data System (ADS)

    Auad, Guillermo; Miller, Arthur J.; White, Warren B.

    1998-11-01

    We use a primitive equation isopycnal model of the Pacific Ocean to simulate and diagnose the anomalous heat balance on interdecadal timescales associated with heat storage changes observed from 1970-1988 in the expendable bathythermograph (XBT) data set. Given the smallness of the interdecadal signals compared to the El Niño-Southern Oscillation (ENSO) signal, the agreement between model and observations is remarkably good. The total anomalous heat balance is made up of two parts, the diabatic part (from the model temperature equation) and the adiabatic part (from the model mass conservation equation) due to thermocline heave. We therefore describe our analysis of both the total and diabatic anomalous heat balances in four areas of the tropical and subtropical North Pacific Ocean in the upper 400 m. The interdecadal total (diabatic plus adiabatic) heat balance in the North Pacific Ocean is characterized by a complicated interplay of different physical processes, especially revealed in basin-scale averages of the heat budget components that have comparable amounts of variance. In smaller subregions, simpler balances hold. For example, in the western equatorial Pacific (area 1) the total heat content tendency term is nearly zero, so that a simple balance exists between surface heat flux, vertical heat transport, and horizontal mixing. In the western subtropical Pacific the total heat content tendency balances the three-dimensional divergence of the heat flux. We speculate that this complexity is indicative of multiple physical mechanisms involved in the generation of North Pacific interdecadal variability. The diabatic heat balance north of 24°N, a region of special interest to The World Ocean Circulation Experiment (WOCE), can be simplified to a balance between the tendency term, surface heat flux, and meridional advection, the last term dominated by anomalous advection of mean temperature gradients. For the western equatorial region the diabatic heat content tendency is nearly zero and the steady balance involves simply horizontal advection and the surface heat flux, which at these latitudes has a damping role in the model. An important finding of this study is the identification of two interdecadal timescales, roughly 10 and 20 years, both similar to those reported by other investigators in recent years. [Tourre et al., 1998; Latif and Barnett, 1994; Robertson, 1995; White et al, 1997; Gu and Philander, 1997; Jacobs et al., 1994]. The 20-year timescale is only present in diabatic heat budget components, while the 10-year timescale is present in both diabatic and adiabatic components. The 10-year timescale can also be seen in the surface heat flux time series, but it occurs in the ocean adiabatic components which demonstrates the importance of oceanic adjustment through Rossby wave dynamics on decadal timescales.

  6. Assessment of the terrestrial water balance using the global water availability and use model WaterGAP - status and challenges

    NASA Astrophysics Data System (ADS)

    Müller Schmied, Hannes; Döll, Petra

    2017-04-01

    The estimation of the World's water resources has a long tradition and numerous methods for quantification exists. The resulting numbers vary significantly, leaving room for improvement. Since some decades, global hydrological models (GHMs) are being used for large scale water budget assessments. GHMs are designed to represent the macro-scale hydrological processes and many of those models include human water management, e.g. irrigation or reservoir operation, making them currently the first choice for global scale assessments of the terrestrial water balance within the Anthropocene. The Water - Global Assessment and Prognosis (WaterGAP) is a model framework that comprises both the natural and human water dimension and is in development and application since the 1990s. In recent years, efforts were made to assess the sensitivity of water balance components to alternative climate forcing input data and, e.g., how this sensitivity is affected by WaterGAP's calibration scheme. This presentation shows the current best estimate of terrestrial water balance components as simulated with WaterGAP by 1) assessing global and continental water balance components for the climate period 1971-2000 and the IPCC reference period 1986-2005 for the most current WaterGAP version using a homogenized climate forcing data, 2) investigating variations of water balance components for a number of state-of-the-art climate forcing data and 3) discussing the benefit of the calibration approach for a better observation-data constrained global water budget. For the most current WaterGAP version 2.2b and a homogenized combination of the two WATCH Forcing Datasets, global scale (excluding Antarctica and Greenland) river discharge into oceans and inland sinks (Q) is assessed to be 40 000 km3 yr-1 for 1971-2000 and 39 200 km3 yr-1 for 1986-2005. Actual evapotranspiration (AET) is close to each other with around 70 600 (70 700) km3 yr-1 as well as water consumption with 1000 (1100) km3 yr-1. The main reason for differing Q is varying precipitation (P, 111 600 km3 yr-1 vs. 110 900 km3 yr-1). The sensitivity of water balance components to alternative climate forcing data is high. Applying 5 state-of-the-art climate forcing data sets, long term average P differs globally by 8000 km3 yr-1, mainly due to different handling of precipitation undercatch correction (or neglecting it). AET differs by 5500 km3 yr-1 whereas Q varies by 3000 km3 yr-1. The sensitivity of human water consumption to alternative climate input data is only about 5%. WaterGAP's calibration approach forces simulated long-term river discharge to be approximately equal to observed values at 1319 gauging stations during the time period selected for calibration. This scheme greatly reduces the impact of uncertain climate input on simulated Q data in these upstream drainage basins (as well as downstream). In calibration areas, the Q variation among the climate input data is much lower (1.6%) than in non-calibrated areas (18.5%). However, variation of Q at the grid cell-level is still high (an average of 37% for Q in grid cells in calibration areas vs. 74% outside). Due to the closed water balance, variation of AET is higher in calibrated areas than in non-calibrated areas. Main challenges in assessing the world's water resources by GHMs like WaterGAP are 1) the need of consistent long-term climate forcing input data sets, especial considering a suitable handling of P undercatch, 2) the accessibility of in-situ data for river discharge or alternative calibration data for currently non-calibrated areas, and 3) an improved simulation in semi-arid and arid river basins. As an outlook, a multi-model, multi-forcing study of global water balance components within the frame of the Inter-Sectoral Impact Model Intercomparison Project is proposed.

  7. Present-day Circum-Antarctic Simulations using the POPSICLES Coupled Ice Sheet-Ocean Model

    NASA Astrophysics Data System (ADS)

    Asay-Davis, X.; Martin, D. F.; Price, S. F.; Maltrud, M. E.; Collins, W.

    2014-12-01

    We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1o (~5 km) ocean resolution and with adaptive ice-sheet model resolution as fine as 500 m. We compare time-averaged melt rates below a number of major ice shelves with those reported by Rignot et al. (2013) as well as other recent studies. We also present seasonal variability and decadal trends in submarine melting from several Antarctic regions. Finally, we explore the influence on basal melting and system dynamics resulting from two different choices of climate forcing: a "normal-year" climatology and the CORE v. 2 forcing data (Large and Yeager 2008).POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh (2009) to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3D; Pattyn et al., 2013) and realistic configurations (Favier et al. 2014).A companion presentation, "Response of the Antarctic Ice Sheet to ocean forcing using the POPSICLES coupled ice sheet-ocean model" in session C024 covers the ice-sheet response to these melt rates in the coupled simulation. The figure shows eddy activity in the vertically integrated (barotropic) velocity nearly six years into a POPSICLES simulation of the Antarctic region.

  8. Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity from Observations

    NASA Technical Reports Server (NTRS)

    Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.

    2018-01-01

    An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2-radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.

  9. Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity From Observations

    NASA Astrophysics Data System (ADS)

    Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.

    2018-02-01

    An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2 radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.

  10. Understanding the Impacts of Climate Change and Land Use Dynamics Using a Fully Coupled Hydrologic Feedback Model between Surface and Subsurface Systems

    NASA Astrophysics Data System (ADS)

    Park, C.; Lee, J.; Koo, M.

    2011-12-01

    Climate is the most critical driving force of the hydrologic system of the Earth. Since the industrial revolution, the impacts of anthropogenic activities to the Earth environment have been expanded and accelerated. Especially, the global emission of carbon dioxide into the atmosphere is known to have significantly increased temperature and affected the hydrologic system. Many hydrologists have contributed to the studies regarding the climate change on the hydrologic system since the Intergovernmental Panel on Climate Change (IPCC) was created in 1988. Among many components in the hydrologic system groundwater and its response to the climate change and anthropogenic activities are not fully understood due to the complexity of subsurface conditions between the surface and the groundwater table. A new spatio-temporal hydrologic model has been developed to estimate the impacts of climate change and land use dynamics on the groundwater. The model consists of two sub-models: a surface model and a subsurface model. The surface model involves three surface processes: interception, runoff, and evapotranspiration, and the subsurface model does also three subsurface processes: soil moisture balance, recharge, and groundwater flow. The surface model requires various input data including land use, soil types, vegetation types, topographical elevations, and meteorological data. The surface model simulates daily hydrological processes for rainfall interception, surface runoff varied by land use change and crop growth, and evapotranspiration controlled by soil moisture balance. The daily soil moisture balance is a key element to link two sub-models as it calculates infiltration and groundwater recharge by considering a time delay routing through a vadose zone down to the groundwater table. MODFLOW is adopted to simulate groundwater flow and interaction with surface water components as well. The model is technically flexible to add new model or modify existing model as it is developed with an object-oriented language - Python. The model also can easily be localized by simple modification of soil and crop properties. The actual application of the model after calibration was successful and results showed reliable water balance and interaction between the surface and subsurface hydrologic systems.

  11. Space-flight simulations of calcium metabolism using a mathematical model of calcium regulation

    NASA Technical Reports Server (NTRS)

    Brand, S. N.

    1985-01-01

    The results of a series of simulation studies of calcium matabolic changes which have been recorded during human exposure to bed rest and space flight are presented. Space flight and bed rest data demonstrate losses of total body calcium during exposure to hypogravic environments. These losses are evidenced by higher than normal rates of urine calcium excretion and by negative calcium balances. In addition, intestinal absorption rates and bone mineral content are assumed to decrease. The bed rest and space flight simulations were executed on a mathematical model of the calcium metabolic system. The purpose of the simulations is to theoretically test hypotheses and predict system responses which are occurring during given experimental stresses. In this case, hypogravity occurs through the comparison of simulation and experimental data and through the analysis of model structure and system responses. The model reliably simulates the responses of selected bed rest and space flight parameters. When experimental data are available, the simulated skeletal responses and regulatory factors involved in the responses agree with space flight data collected on rodents. In addition, areas within the model that need improvement are identified.

  12. Attributing runoff changes to climate variability and human activities: uncertainty analysis using four monthly water balance models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuai; Xiong, Lihua; Li, Hong-Yi

    2015-05-26

    Hydrological simulations to delineate the impacts of climate variability and human activities are subjected to uncertainties related to both parameter and structure of the hydrological models. To analyze the impact of these uncertainties on the model performance and to yield more reliable simulation results, a global calibration and multimodel combination method that integrates the Shuffled Complex Evolution Metropolis (SCEM) and Bayesian Model Averaging (BMA) of four monthly water balance models was proposed. The method was applied to the Weihe River Basin (WRB), the largest tributary of the Yellow River, to determine the contribution of climate variability and human activities tomore » runoff changes. The change point, which was used to determine the baseline period (1956-1990) and human-impacted period (1991-2009), was derived using both cumulative curve and Pettitt’s test. Results show that the combination method from SCEM provides more skillful deterministic predictions than the best calibrated individual model, resulting in the smallest uncertainty interval of runoff changes attributed to climate variability and human activities. This combination methodology provides a practical and flexible tool for attribution of runoff changes to climate variability and human activities by hydrological models.« less

  13. Modelling temporal variance of component temperatures and directional anisotropy over vegetated canopy

    NASA Astrophysics Data System (ADS)

    Bian, Zunjian; du, yongming; li, hua

    2016-04-01

    Land surface temperature (LST) as a key variable plays an important role on hydrological, meteorology and climatological study. Thermal infrared directional anisotropy is one of essential factors to LST retrieval and application on longwave radiance estimation. Many approaches have been proposed to estimate directional brightness temperatures (DBT) over natural and urban surfaces. While less efforts focus on 3-D scene and the surface component temperatures used in DBT models are quiet difficult to acquire. Therefor a combined 3-D model of TRGM (Thermal-region Radiosity-Graphics combined Model) and energy balance method is proposed in the paper for the attempt of synchronously simulation of component temperatures and DBT in the row planted canopy. The surface thermodynamic equilibrium can be final determined by the iteration strategy of TRGM and energy balance method. The combined model was validated by the top-of-canopy DBTs using airborne observations. The results indicated that the proposed model performs well on the simulation of directional anisotropy, especially the hotspot effect. Though we find that the model overestimate the DBT with Bias of 1.2K, it can be an option as a data reference to study temporal variance of component temperatures and DBTs when field measurement is inaccessible

  14. Investigation of Climate Change Impact on Water Resources for an Alpine Basin in Northern Italy: Implications for Evapotranspiration Modeling Complexity

    PubMed Central

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required beacause of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied. PMID:25285917

  15. Investigation of climate change impact on water resources for an Alpine basin in northern Italy: implications for evapotranspiration modeling complexity.

    PubMed

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.

  16. Comparing mass balance and adjoint methods for inverse modeling of nitrogen dioxide columns for global nitrogen oxide emissions

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew; Martin, Randall V.; Padmanabhan, Akhila; Henze, Daven K.

    2017-04-01

    Satellite observations offer information applicable to top-down constraints on emission inventories through inverse modeling. Here we compare two methods of inverse modeling for emissions of nitrogen oxides (NOx) from nitrogen dioxide (NO2) columns using the GEOS-Chem chemical transport model and its adjoint. We treat the adjoint-based 4D-Var modeling approach for estimating top-down emissions as a benchmark against which to evaluate variations on the mass balance method. We use synthetic NO2 columns generated from known NOx emissions to serve as "truth." We find that error in mass balance inversions can be reduced by up to a factor of 2 with an iterative process that uses finite difference calculations of the local sensitivity of NO2 columns to a change in emissions. In a simplified experiment to recover local emission perturbations, horizontal smearing effects due to NOx transport are better resolved by the adjoint approach than by mass balance. For more complex emission changes, or at finer resolution, the iterative finite difference mass balance and adjoint methods produce similar global top-down inventories when inverting hourly synthetic observations, both reducing the a priori error by factors of 3-4. Inversions of simulated satellite observations from low Earth and geostationary orbits also indicate that both the mass balance and adjoint inversions produce similar results, reducing a priori error by a factor of 3. As the iterative finite difference mass balance method provides similar accuracy as the adjoint method, it offers the prospect of accurately estimating top-down NOx emissions using models that do not have an adjoint.

  17. Physical lumping methods for developing linear reduced models for high speed propulsion systems

    NASA Technical Reports Server (NTRS)

    Immel, S. M.; Hartley, Tom T.; Deabreu-Garcia, J. Alex

    1991-01-01

    In gasdynamic systems, information travels in one direction for supersonic flow and in both directions for subsonic flow. A shock occurs at the transition from supersonic to subsonic flow. Thus, to simulate these systems, any simulation method implemented for the quasi-one-dimensional Euler equations must have the ability to capture the shock. In this paper, a technique combining both backward and central differencing is presented. The equations are subsequently linearized about an operating point and formulated into a linear state space model. After proper implementation of the boundary conditions, the model order is reduced from 123 to less than 10 using the Schur method of balancing. Simulations comparing frequency and step response of the reduced order model and the original system models are presented.

  18. Modeling the effects of naturally occurring organic carbon on chlorinated ethene transport to a public supply well

    USGS Publications Warehouse

    Chapelle, Francis H.; Kauffman, Leon J.; Widdowson, Mark A.

    2013-01-01

    The vulnerability of public supply wells to chlorinated ethene (CE) contamination in part depends on the availability of naturally occurring organic carbon to consume dissolved oxygen (DO) and initiate reductive dechlorination. This was quantified by building a mass balance model of the Kirkwood-Cohansey aquifer, which is widely used for public water supply in New Jersey. This model was built by telescoping a calibrated regional three-dimensional (3D) MODFLOW model to the approximate capture zone of a single public supply well that has a history of CE contamination. This local model was then used to compute a mass balance between dissolved organic carbon (DOC), particulate organic carbon (POC), and adsorbed organic carbon (AOC) that act as electron donors and DO, CEs, ferric iron, and sulfate that act as electron acceptors (EAs) using the Sequential Electron Acceptor Model in three dimensions (SEAM3D) code. SEAM3D was constrained by varying concentrations of DO and DOC entering the aquifer via recharge, varying the bioavailable fraction of POC in aquifer sediments, and comparing observed and simulated vertical concentration profiles of DO and DOC. This procedure suggests that approximately 15% of the POC present in aquifer materials is readily bioavailable. Model simulations indicate that transport of perchloroethene (PCE) and its daughter products trichloroethene (TCE), cis-dichloroethene (cis-DCE), and vinyl chloride (VC) to the public supply well is highly sensitive to the assumed bioavailable fraction of POC, concentrations of DO entering the aquifer with recharge, and the position of simulated PCE source areas in the flow field. The results are less sensitive to assumed concentrations of DOC in aquifer recharge. The mass balance approach used in this study also indicates that hydrodynamic processes such as advective mixing, dispersion, and sorption account for a significant amount of the observed natural attenuation in this system.

  19. Modeling the Effects of Naturally Occurring Organic Carbon on Chlorinated Ethene Transport to a Public Supply Well†

    PubMed Central

    Chapelle, Francis H; Kauffman, Leon J; Widdowson, Mark A

    2014-01-01

    The vulnerability of public supply wells to chlorinated ethene (CE) contamination in part depends on the availability of naturally occurring organic carbon to consume dissolved oxygen (DO) and initiate reductive dechlorination. This was quantified by building a mass balance model of the Kirkwood-Cohansey aquifer, which is widely used for public water supply in New Jersey. This model was built by telescoping a calibrated regional three-dimensional (3D) MODFLOW model to the approximate capture zone of a single public supply well that has a history of CE contamination. This local model was then used to compute a mass balance between dissolved organic carbon (DOC), particulate organic carbon (POC), and adsorbed organic carbon (AOC) that act as electron donors and DO, CEs, ferric iron, and sulfate that act as electron acceptors (EAs) using the Sequential Electron Acceptor Model in three dimensions (SEAM3D) code. SEAM3D was constrained by varying concentrations of DO and DOC entering the aquifer via recharge, varying the bioavailable fraction of POC in aquifer sediments, and comparing observed and simulated vertical concentration profiles of DO and DOC. This procedure suggests that approximately 15% of the POC present in aquifer materials is readily bioavailable. Model simulations indicate that transport of perchloroethene (PCE) and its daughter products trichloroethene (TCE), cis-dichloroethene (cis-DCE), and vinyl chloride (VC) to the public supply well is highly sensitive to the assumed bioavailable fraction of POC, concentrations of DO entering the aquifer with recharge, and the position of simulated PCE source areas in the flow field. The results are less sensitive to assumed concentrations of DOC in aquifer recharge. The mass balance approach used in this study also indicates that hydrodynamic processes such as advective mixing, dispersion, and sorption account for a significant amount of the observed natural attenuation in this system. PMID:24372440

  20. Nonlinear Model Reduction in Power Systems by Balancing of Empirical Controllability and Observability Covariances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Junjian; Wang, Jianhui; Liu, Hui

    Abstract: In this paper, nonlinear model reduction for power systems is performed by the balancing of empirical controllability and observability covariances that are calculated around the operating region. Unlike existing model reduction methods, the external system does not need to be linearized but is directly dealt with as a nonlinear system. A transformation is found to balance the controllability and observability covariances in order to determine which states have the greatest contribution to the input-output behavior. The original system model is then reduced by Galerkin projection based on this transformation. The proposed method is tested and validated on a systemmore » comprised of a 16-machine 68-bus system and an IEEE 50-machine 145-bus system. The results show that by using the proposed model reduction the calculation efficiency can be greatly improved; at the same time, the obtained state trajectories are close to those for directly simulating the whole system or partitioning the system while not performing reduction. Compared with the balanced truncation method based on a linearized model, the proposed nonlinear model reduction method can guarantee higher accuracy and similar calculation efficiency. It is shown that the proposed method is not sensitive to the choice of the matrices for calculating the empirical covariances.« less

  1. A method for simulating transient ground-water recharge in deep water-table settings in central Florida by using a simple water-balance/transfer-function model

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    2004-01-01

    A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if the moisture content, and consequently the unsaturated hydraulic conductivity, below the root zone does not vary substantially with time. Results of the WBTF model were compared to those of the U.S. Geological Survey variably saturated flow model, VS2DT, and to field-based estimates of recharge to demonstrate the applicability of the WBTF model for a range of conditions relevant to deep water-table settings in central Florida. The WBTF model reproduced independently obtained estimates of recharge reasonably well for different soil types and water-table depths.

  2. An Evolving Entrepreneurship Simulation as a Vehicle for Career and Technical Education

    ERIC Educational Resources Information Center

    Troudt, Edgar E.; Schulman, Stuart A.; Winkler, Christoph

    2017-01-01

    This paper explores the model of a pedagogical system for business and entrepreneurship education and discusses the effects of its evolution on the balance between fidelity of implementation and ease of adoption.

  3. Modeling Advance Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan

    1996-01-01

    Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.

  4. Simulation capability for dynamics of two-body flexible satellites

    NASA Technical Reports Server (NTRS)

    Austin, F.; Zetkov, G.

    1973-01-01

    An analysis and computer program were prepared to realistically simulate the dynamic behavior of a class of satellites consisting of two end bodies separated by a connecting structure. The shape and mass distribution of the flexible end bodies are arbitrary; the connecting structure is flexible but massless and is capable of deployment and retraction. Fluid flowing in a piping system and rigid moving masses, representing a cargo elevator or crew members, have been modeled. Connecting structure characteristics, control systems, and externally applied loads are modeled in easily replaced subroutines. Subroutines currently available include a telescopic beam-type connecting structure as well as attitude, deployment, spin and wobble control. In addition, a unique mass balance control system was developed to sense and balance mass shifts due to the motion of a cargo elevator. The mass of the cargo may vary through a large range. Numerical results are discussed for various types of runs.

  5. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow

    USGS Publications Warehouse

    Kurylyk, Barret L.; Masaki, Masaki; Quinton, William L.; McKenzie, Jeffrey M.; Voss, Clifford I.

    2016-01-01

    Recent climate change has reduced the spatial extent and thickness of permafrost in many discontinuous permafrost regions. Rapid permafrost thaw is producing distinct landscape changes in the Taiga Plains of the Northwest Territories, Canada. As permafrost bodies underlying forested peat plateaus shrink, the landscape slowly transitions into unforested wetlands. The expansion of wetlands has enhanced the hydrologic connectivity of many watersheds via new surface and near-surface flow paths, and increased streamflow has been observed. Furthermore, the decrease in forested peat plateaus results in a net loss of boreal forest and associated ecosystems. This study investigates fundamental processes that contribute to permafrost thaw by comparing observed and simulated thaw development and landscape transition of a peat plateau-wetland complex in the Northwest Territories, Canada from 1970 to 2012. Measured climate data are first used to drive surface energy balance simulations for the wetland and peat plateau. Near-surface soil temperatures simulated in the surface energy balance model are then applied as the upper boundary condition to a three-dimensional model of subsurface water flow and coupled energy transport with freeze-thaw. Simulation results demonstrate that lateral heat transfer, which is not considered in many permafrost models, can influence permafrost thaw rates. Furthermore, the simulations indicate that landscape evolution arising from permafrost thaw acts as a positive feedback mechanism that increases the energy absorbed at the land surface and produces additional permafrost thaw. The modeling results also demonstrate that flow rates in local groundwater flow systems may be enhanced by the degradation of isolated permafrost bodies.

  6. A catchment scale water balance model for FIFE

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, E. F.; Sivapalan, M.; Thongs, D. J.

    1992-01-01

    A catchment scale water balance model is presented and used to predict evaporation from the King's Creek catchment at the First ISLSCP Field Experiment site on the Konza Prairie, Kansas. The model incorporates spatial variability in topography, soils, and precipitation to compute the land surface hydrologic fluxes. A network of 20 rain gages was employed to measure rainfall across the catchment in the summer of 1987. These data were spatially interpolated and used to drive the model during storm periods. During interstorm periods the model was driven by the estimated potential evaporation, which was calculated using net radiation data collected at site 2. Model-computed evaporation is compared to that observed, both at site 2 (grid location 1916-BRS) and the catchment scale, for the simulation period from June 1 to October 9, 1987.

  7. Simulating Snow in Canadian Boreal Environments with CLASS for ESM-SnowMIP

    NASA Astrophysics Data System (ADS)

    Wang, L.; Bartlett, P. A.; Derksen, C.; Ireson, A. M.; Essery, R.

    2017-12-01

    The ability of land surface schemes to provide realistic simulations of snow cover is necessary for accurate representation of energy and water balances in climate models. Historically, this has been particularly challenging in boreal forests, where poor treatment of both snow masking by forests and vegetation-snow interaction has resulted in biases in simulated albedo and snowpack properties, with subsequent effects on both regional temperatures and the snow albedo feedback in coupled simulations. The SnowMIP (Snow Model Intercomparison Project) series of experiments or `MIPs' was initiated in order to provide assessments of the performance of various snow- and land-surface-models at selected locations, in order to understand the primary factors affecting model performance. Here we present preliminary results of simulations conducted for the third such MIP, ESM-SnowMIP (Earth System Model - Snow Model Intercomparison Project), using the Canadian Land Surface Scheme (CLASS) at boreal forest sites in central Saskatchewan. We assess the ability of our latest model version (CLASS 3.6.2) to simulate observed snowpack properties (snow water equivalent, density and depth) and above-canopy albedo over 13 winters. We also examine the sensitivity of these simulations to climate forcing at local and regional scales.

  8. Glacial Inception in north-east Canada: The Role of Topography and Clouds

    NASA Astrophysics Data System (ADS)

    Birch, Leah; Tziperman, Eli; Cronin, Timothy

    2016-04-01

    Over the past 0.8 million years, ice ages have dominated Earth's climate on a 100 thousand year cycle. Interglacials were brief, sometimes lasting only a few thousand years, leading to the next inception. Currently, state-of-the-art global climate models (GCMs) are incapable of simulating the transition of Earth's climate from interglacial to glaciated. We hypothesize that this failure may be related to their coarse spatial resolution, which does not allow resolving the topography of inception areas, and their parameterized representation of clouds and atmospheric convection. To better understand the small scale topographic and cloud processes mis-represented by GCMs, we run the Weather Research and Forecasting model (WRF), which is a regional, cloud-resolving atmospheric model capable of a realistic simulation of the regional mountain climate and therefore of surface ice and snow mass balance. We focus our study on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred at 115kya. We examine the sensitivity of mountain glaciers to Milankovitch Forcing, topography, and meteorology, while observing impacts of a cloud resolving model. We first verify WRF's ability to simulate present day climate in the region surrounding the Penny Ice Cap, and then investigate how a GCM-like biased representation of topography affects sensitivity of this mountain glacier to Milankovitch forcing. Our results show the possibility of ice cap growth on an initially snow-free landscape with realistic topography and insolation values from the last glacial inception. Whereas, smoothed topography as seen in GCMs has a negative surface mass balance, even with the relevant orbital parameter configuration. We also explore the surface mass balance feedbacks from an initially ice-covered Baffin Island and discuss the role of clouds and convection.

  9. Integration of Linear Dynamic Emission and Climate Models with Air Traffic Simulations

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Ng, Hok K.; Chen, Neil Y.

    2012-01-01

    Future air traffic management systems are required to balance the conflicting objectives of maximizing safety and efficiency of traffic flows while minimizing the climate impact of aviation emissions and contrails. Integrating emission and climate models together with air traffic simulations improve the understanding of the complex interaction between the physical climate system, carbon and other greenhouse gas emissions and aviation activity. This paper integrates a national-level air traffic simulation and optimization capability with simple climate models and carbon cycle models, and climate metrics to assess the impact of aviation on climate. The capability can be used to make trade-offs between extra fuel cost and reduction in global surface temperature change. The parameters in the simulation can be used to evaluate the effect of various uncertainties in emission models and contrails and the impact of different decision horizons. Alternatively, the optimization results from the simulation can be used as inputs to other tools that monetize global climate impacts like the FAA s Aviation Environmental Portfolio Management Tool for Impacts.

  10. Implementing ADM1 for plant-wide benchmark simulations in Matlab/Simulink.

    PubMed

    Rosen, C; Vrecko, D; Gernaey, K V; Pons, M N; Jeppsson, U

    2006-01-01

    The IWA Anaerobic Digestion Model No.1 (ADM1) was presented in 2002 and is expected to represent the state-of-the-art model within this field in the future. Due to its complexity the implementation of the model is not a simple task and several computational aspects need to be considered, in particular if the ADM1 is to be included in dynamic simulations of plant-wide or even integrated systems. In this paper, the experiences gained from a Matlab/Simulink implementation of ADM1 into the extended COST/IWA Benchmark Simulation Model (BSM2) are presented. Aspects related to system stiffness, model interfacing with the ASM family, mass balances, acid-base equilibrium and algebraic solvers for pH and other troublesome state variables, numerical solvers and simulation time are discussed. The main conclusion is that if implemented properly, the ADM1 will also produce high-quality results in dynamic plant-wide simulations including noise, discrete sub-systems, etc. without imposing any major restrictions due to extensive computational efforts.

  11. Assessing modeled Greenland surface mass balance in the GISS Model E2 and its sensitivity to surface albedo

    NASA Astrophysics Data System (ADS)

    Alexander, Patrick; LeGrande, Allegra N.; Koenig, Lora S.; Tedesco, Marco; Moustafa, Samiah E.; Ivanoff, Alvaro; Fischer, Robert P.; Fettweis, Xavier

    2016-04-01

    The surface mass balance (SMB) of the Greenland Ice Sheet (GrIS) plays an important role in global sea level change. Regional Climate Models (RCMs) such as the Modèle Atmosphérique Régionale (MAR) have been employed at high spatial resolution with relatively complex physics to simulate ice sheet SMB. Global climate models (GCMs) incorporate less sophisticated physical schemes and provide outputs at a lower spatial resolution, but have the advantage of modeling the interaction between different components of the earth's oceans, climate, and land surface at a global scale. Improving the ability of GCMs to represent ice sheet SMB is important for making predictions of future changes in global sea level. With the ultimate goal of improving SMB simulated by the Goddard Institute for Space Studies (GISS) Model E2 GCM, we compare simulated GrIS SMB against the outputs of the MAR model and radar-derived estimates of snow accumulation. In order to reproduce present-day climate variability in the Model E2 simulation, winds are constrained to match the reanalysis datasets used to force MAR at the lateral boundaries. We conduct a preliminary assessment of the sensitivity of the simulated Model E2 SMB to surface albedo, a parameter that is known to strongly influence SMB. Model E2 albedo is set to a fixed value of 0.8 over the entire ice sheet in the initial configuration of the model (control case). We adjust this fixed value in an ensemble of simulations over a range of 0.4 to 0.8 (roughly the range of observed summer GrIS albedo values) to examine the sensitivity of ice-sheet-wide SMB to albedo. We prescribe albedo from the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A3 v6 to examine the impact of a more realistic spatial and temporal variations in albedo. An age-dependent snow albedo parameterization is applied, and its impact on SMB relative to observations and the RCM is assessed.

  12. Simulations of Antarctic ice shelves and the Southern Ocean in the POP2x ocean model coupled with the BISICLES ice-sheet model

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Martin, Daniel; Price, Stephen; Maltrud, Mathew

    2014-05-01

    We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and ice-sheet evolution models. This presentation focuses on the ocean model, POP2x, which is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). A companion presentation, 'Fully resolved whole-continent Antarctica simulations using the BISICLES AMR ice sheet model coupled with the POP2x Ocean Model', concentrates more on the ice-sheet model, BISICLES (Cornford et al., 2012), which includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (Southern Ocean) simulations using POP2x at 0.1 degree resolution with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to sequentially update the sub-shelf cavity geometry seen by POP2x.

  13. Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway

    USGS Publications Warehouse

    Wold, Steven R.; Thomas, Blakemore E.; Waddell, Kidd M.

    1997-01-01

    The water and salt balance of Great Salt Lake primarily depends on the amount of inflow from tributary streams and the conveyance properties of a causeway constructed during 1957-59 that divides the lake into the south and north parts. The conveyance properties of the causeway originally included two culverts, each 15 feet wide, and the permeable rock-fill material.During 1980-86, the salt balance changed as a result of record high inflow that averaged 4,627,000 acre-feet annually and modifications made to the conveyance properties of the causeway that included opening a 300-foot-wide breach. In this study, a model developed in 1973 by Waddell and Bolke to simulate the water and salt balance of the lake was revised to accommodate the high water-surface altitude and modifications made to the causeway. This study, done by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of State Lands and Forestry, updates the model with monitoring data collected during 1980-86. This report describes the calibration of the model and presents the results of simulations for three hypothetical 10-year periods.During January 1, 1980, to July 31, 1984, a net load of 0.5 billion tons of dissolved salt flowed from the south to the north part of the lake primarily as a result of record inflows. From August 1, 1984, when the breach was opened, to December 31,1986, a net load of 0.3 billion tons of dissolved salt flowed from the north to the south part of the lake primarily as a result of the breach.For simulated inflow rates during a hypothetical 10-year period resulting in the water-surface altitude decreasing from about 4,200 to 4,192 feet, there was a net movement of about 1.0 billion tons of dissolved salt from the south to the north part, and about 1.7 billion tons of salt precipitated in the north part. For simulated inflow rates during a hypothetical 10-year period resulting in a rise in water-surface altitude from about 4,200 to 4,212 feet, there was a net movement of about 0.2 billion tons of dissolved salt from the south to the north part and no salt was precipitated in the north part of the lake.

  14. Effect of climate data on simulated carbon and nitrogen balances for Europe

    NASA Astrophysics Data System (ADS)

    Blanke, Jan Hendrik; Lindeskog, Mats; Lindström, Johan; Lehsten, Veiko

    2016-05-01

    In this study, we systematically assess the spatial variability in carbon and nitrogen balance simulations related to the choice of global circulation models (GCMs), representative concentration pathways (RCPs), spatial resolutions, and the downscaling methods used as calculated with LPJ-GUESS. We employed a complete factorial design and performed 24 simulations for Europe with different climate input data sets and different combinations of these four factors. Our results reveal that the variability in simulated output in Europe is moderate with 35.6%-93.5% of the total variability being common among all combinations of factors. The spatial resolution is the most important factor among the examined factors, explaining 1.5%-10.7% of the total variability followed by GCMs (0.3%-7.6%), RCPs (0%-6.3%), and downscaling methods (0.1%-4.6%). The higher-order interactions effect that captures nonlinear relations between the factors and random effects is pronounced and accounts for 1.6%-45.8% to the total variability. The most distinct hot spots of variability include the mountain ranges in North Scandinavia and the Alps, and the Iberian Peninsula. Based on our findings, we advise to conduct the application of models such as LPJ-GUESS at a reasonably high spatial resolution which is supported by the model structure. There is no notable gain in simulations of ecosystem carbon and nitrogen stocks and fluxes from using regionally downscaled climate in preference to bias-corrected, bilinearly interpolated CMIP5 projections.

  15. Disentangling residence time and temperature sensitivity of microbial decomposition in a global soil carbon model

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.-F.; Pitman, A. J.; Abramowitz, G.

    2014-12-01

    Recent studies have identified the first-order representation of microbial decomposition as a major source of uncertainty in simulations and projections of the terrestrial carbon balance. Here, we use a reduced complexity model representative of current state-of-the-art models of soil organic carbon decomposition. We undertake a systematic sensitivity analysis to disentangle the effect of the time-invariant baseline residence time (k) and the sensitivity of microbial decomposition to temperature (Q10) on soil carbon dynamics at regional and global scales. Our simulations produce a range in total soil carbon at equilibrium of ~ 592 to 2745 Pg C, which is similar to the ~ 561 to 2938 Pg C range in pre-industrial soil carbon in models used in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). This range depends primarily on the value of k, although the impact of Q10 is not trivial at regional scales. As climate changes through the historical period, and into the future, k is primarily responsible for the magnitude of the response in soil carbon, whereas Q10 determines whether the soil remains a sink, or becomes a source in the future mostly by its effect on mid-latitude carbon balance. If we restrict our simulations to those simulating total soil carbon stocks consistent with observations of current stocks, the projected range in total soil carbon change is reduced by 42% for the historical simulations and 45% for the future projections. However, while this observation-based selection dismisses outliers, it does not increase confidence in the future sign of the soil carbon feedback. We conclude that despite this result, future estimates of soil carbon and how soil carbon responds to climate change should be more constrained by available data sets of carbon stocks.

  16. Evaluation of the precision agricultural landscape modeling system (PALMS) in the semiarid Texas southern high plains

    USDA-ARS?s Scientific Manuscript database

    Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Land...

  17. Evaluation of the Precision Agricultural Landscape Modeling System (PALMS) in the Semiarid Texas Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Land...

  18. Comparison of wheat yield simulated using three N cycling options in the SWAT model

    USDA-ARS?s Scientific Manuscript database

    The Soil and Water Assessment Tool (SWAT) model has been successfully used to predict alterations in streamflow, evapotranspiration and soil water; however, it is not clear how effective or accurate SWAT is at predicting crop growth. Previous research suggests that while the hydrologic balance in e...

  19. Simulation of Soil-Plant Nitrogen Interactions for Educational Purposes.

    ERIC Educational Resources Information Center

    Huck, M. G.; Hoeft, R. G.

    1994-01-01

    Describes a computer model characterizing the balance of soil-plant Nitrogen that allows students to see the likely consequences of different biological and weather-related parameters. Proposes three uses for the model: (1) orienting beginning students to understand the soil Nitrogen cycle; (2) providing information for advanced students; and (3)…

  20. Applications of numerical methods to simulate the movement of contaminants in groundwater.

    PubMed Central

    Sun, N Z

    1989-01-01

    This paper reviews mathematical models and numerical methods that have been extensively used to simulate the movement of contaminants through the subsurface. The major emphasis is placed on the numerical methods of advection-dominated transport problems and inverse problems. Several mathematical models that are commonly used in field problems are listed. A variety of numerical solutions for three-dimensional models are introduced, including the multiple cell balance method that can be considered a variation of the finite element method. The multiple cell balance method is easy to understand and convenient for solving field problems. When the advection transport dominates the dispersion transport, two kinds of numerical difficulties, overshoot and numerical dispersion, are always involved in solving standard, finite difference methods and finite element methods. To overcome these numerical difficulties, various numerical techniques are developed, such as upstream weighting methods and moving point methods. A complete review of these methods is given and we also mention the problems of parameter identification, reliability analysis, and optimal-experiment design that are absolutely necessary for constructing a practical model. PMID:2695327

  1. A Simple Water Balance Model Adapted for Arctic Hydrology Reveals Glacier and Streamflow Responses to Climate Change in the Copper River, Alaska

    NASA Astrophysics Data System (ADS)

    Valentin, M. M.; Hay, L.; Van Beusekom, A. E.; Viger, R. J.; Hogue, T. S.

    2016-12-01

    Forecasting the hydrologic response to climate change in Alaska's glaciated watersheds remains daunting for hydrologists due to sparse field data and few modeling tools, which frustrates efforts to manage and protect critical aquatic habitat. Approximately 20% of the 64,000 square kilometer Copper River watershed is glaciated, and its glacier-fed tributaries support renowned salmon fisheries that are economically, culturally, and nutritionally invaluable to the local communities. This study adapts a simple, yet powerful, conceptual hydrologic model to simulate changes in the timing and volume of streamflow in the Copper River, Alaska as glaciers change under plausible future climate scenarios. The USGS monthly water balance model (MWBM), a hydrologic tool used for two decades to evaluate a broad range of hydrologic questions in the contiguous U.S., was enhanced to include glacier melt simulations and remotely sensed data. In this presentation we summarize the technical details behind our MWBM adaptation and demonstrate its use in the Copper River Basin to evaluate glacier and streamflow responses to climate change.

  2. Estimation of dew yield from radiative condensers by means of an energy balance model

    NASA Astrophysics Data System (ADS)

    Maestre-Valero, J. F.; Ragab, R.; Martínez-Alvarez, V.; Baille, A.

    2012-08-01

    SummaryThis paper presents an energy balance modelling approach to predict the nightly water yield and the surface temperature (Tf) of two passive radiative dew condensers (RDCs) tilted 30° from horizontal. One was fitted with a white hydrophilic polyethylene foil recommended for dew harvest and the other with a black polyethylene foil widely used in horticulture. The model was validated in south-eastern Spain by comparing the simulation outputs with field measurements of Tf and dew yield. The results indicate that the model is robust and accurate in reproducing the behaviour of the two RDCs, especially in what refers to Tf, whose estimates were very close to the observations. The results were somewhat less precise for dew yield, with a larger scatter around the 1:1 relationship. A sensitivity analysis showed that the simulated dew yield was highly sensitive to changes in relative humidity and downward longwave radiation. The proposed approach provides a useful tool to water managers for quantifying the amount of dew that could be harvested as a valuable water resource in arid, semiarid and water stressed regions.

  3. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.

    PubMed

    Lee, Kuo Hao; Chen, Jianhan

    2017-06-15

    Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. DEVELOPMENT OF A POPULATION BALANCE MODEL TO SIMULATE FRACTIONATION OF GROUND SWITCHGRASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naimi, L.J.; Bi, X.T.; Lau, A.K.

    The population balance model represents a time-dependent formulation of mass conservation for a ground biomass that flows through a set of sieves. The model is suitable for predicting the change in size and distribution of ground biomass while taking into account the flow rate processes of particles through a grinder. This article describes the development and application of this model to a switchgrass grinding operation. The mass conservation formulation of the model contains two parameters: breakage rate and breakage ratio. A laboratory knife mill was modified to act as a batch or flow-through grinder. The ground switchgrass was analyzed overmore » a set of six Tyler sieves with apertures ranging from 5.66 mm (top sieve) to 1 mm (bottom sieve). The breakage rate was estimated from the sieving tests. For estimating the breakage ratio, each of the six fractions was further ground and sieved to 11 fractions on a set of sieves with apertures ranging from 5.66 to 0.25 mm (and pan). These data formed a matrix of values for determining the breakage ratio. Using the two estimated parameters, the transient population balance model was solved numerically. Results indicated that the population balance model generally underpredicted the fractions remaining on sieves with 5.66, 4.00, and 2.83 mm apertures and overpredicted fractions remaining on sieves with 2.00, 1.41, and 1.00 mm apertures. These trends were similar for both the batch and flow-through grinder configurations. The root mean square of residuals (RSE), representing the difference between experimental and simulated mass of fractions, was 0.32 g for batch grinding and 0.1 g for flow-through grinding. The breakage rate exhibited a linear function of the logarithm of particle size, with a regression coefficient of 0.99.« less

  5. Decadal-Scale Response of the Antarctic Ice sheet to a Warming Ocean using the POPSICLES Coupled Ice Sheet-Ocean model

    NASA Astrophysics Data System (ADS)

    Martin, D. F.; Asay-Davis, X.; Cornford, S. L.; Price, S. F.; Ng, E. G.; Collins, W.

    2015-12-01

    We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period from 1990 to 2010. We use the CORE v. 2 interannual forcing data to force the ocean model. Simulations are performed at 0.1o(~5 km) ocean resolution with adaptive ice sheet resolution as fine as 500 m to adequately resolve the grounding line dynamics. We discuss the effect of improved ocean mixing and subshelf bathymetry (vs. the standard Bedmap2 bathymetry) on the behavior of the coupled system, comparing time-averaged melt rates below a number of major ice shelves with those reported in the literature. We also present seasonal variability and decadal melting trends from several Antarctic regions, along with the response of the ice shelves and the consequent dynamic response of the grounded ice sheet.POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program, and the BISICLES ice-sheet model. POP2x includes sub-ice-shelf circulation using partial top cells and the commonly used three-equation boundary layer physics. Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP) and other continental-scale simulations and melt-rate observations. BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3d) and realistic configurations.The figure shows the BISICLES-computed vertically-integrated grounded ice velocity field 5 years into a 20-year coupled full-continent Antarctic-Southern-Ocean simulation. Submarine melt rates are painted onto the surface of the floating ice shelves. Grounding lines are shown in green.

  6. A Generalized Framework for Different Drought Indices: Testing its Suitability in a Simulation of the last two Millennia for Europe

    NASA Astrophysics Data System (ADS)

    Raible, Christoph C.; Baerenbold, Oliver; Gomez-Navarro, Juan Jose

    2016-04-01

    Over the past decades, different drought indices have been suggested in the literature. This study tackles the problem of how to characterize drought by defining a general framework and proposing a generalized family of drought indices that is flexible regarding the use of different water balance models. The sensitivity of various indices and its skill to represent drought conditions is evaluated using a regional model simulation in Europe spanning the last two millennia as test bed. The framework combines an exponentially damped memory with a normalization method based on quantile mapping. Both approaches are more robust and physically meaningful compared to the existing methods used to define drought indices. Still, framework is flexible with respect to the water balance, enabling users to adapt the index formulation to the data availability of different locations. Based on the framework, indices with different complex water balances are compared with each other. The comparison shows that a drought index considering only precipitation in the water balance is sufficient for Western to Central Europe. However, in the Mediterranean temperature effects via evapotranspiration need to be considered in order to produce meaningful indices representative of actual water deficit. Similarly, our results indicate that in north-eastern Europe and Scandinavia, snow and runoff effects needs to be considered in the index definition to obtain accurate results.

  7. Assimilation of altimeter data into a quasigeostrophic ocean model using optimal interpolation and eofs

    NASA Astrophysics Data System (ADS)

    Rienecker, M. M.; Adamec, D.

    1995-01-01

    An ensemble of fraternal-twin experiments is used to assess the utility of optimal interpolation and model-based vertical empirical orthogonal functions (eofs) of streamfunction variability to assimilate satellite altimeter data into ocean models. Simulated altimeter data are assimilated into a basin-wide 3-layer quasi-geostrophic model with a horizontal grid spacing of 15 km. The effects of bottom topography are included and the model is forced by a wind stress curl distribution which is constant in time. The simulated data are extracted, along altimeter tracks with spatial and temporal characteristics of Geosat, from a reference model ocean with a slightly different climatology from that generated by the model used for assimilation. The use of vertical eofs determined from the model-generated streamfunction variability is shown to be effective in aiding the model's dynamical extrapolation of the surface information throughout the rest of the water column. After a single repeat cycle (17 days), the analysis errors are reduced markedly from the initial level, by 52% in the surface layer, 41% in the second layer and 11% in the bottom layer. The largest differences between the assimilation analysis and the reference ocean are found in the nonlinear regime of the mid-latitude jet in all layers. After 100 days of assimilation, the error in the upper two layers has been reduced by over 50% and that in the bottom layer by 38%. The essence of the method is that the eofs capture the statistics of the dynamical balances in the model and ensure that this balance is not inappropriately disturbed during the assimilation process. This statistical balance includes any potential vorticity homogeneity which may be associated with the eddy stirring by mid-latitude surface jets.

  8. Red mud flocculation process in alumina production

    NASA Astrophysics Data System (ADS)

    Fedorova, E. R.; Firsov, A. Yu

    2018-05-01

    The process of thickening and washing red mud is a gooseneck of alumina production. The existing automated systems of the thickening process control involve stabilizing the parameters of the primary technological circuits of the thickener. The actual direction of scientific research is the creation and improvement of models and systems of the thickening process control by model. But the known models do not fully consider the presence of perturbing effects, in particular the particle size distribution in the feed process, distribution of floccules by size after the aggregation process in the feed barrel. The article is devoted to the basic concepts and terms used in writing the population balance algorithm. The population balance model is implemented in the MatLab environment. The result of the simulation is the particle size distribution after the flocculation process. This model allows one to foreseen the distribution range of floccules after the process of aggregation of red mud in the feed barrel. The mud of Jamaican bauxite was acting as an industrial sample of red mud; Cytec Industries of HX-3000 series with a concentration of 0.5% was acting as a flocculant. When simulating, model constants obtained in a tubular tank in the laboratories of CSIRO (Australia) were used.

  9. A heuristic simulation model of Lake Ontario circulation and mass balance transport

    USGS Publications Warehouse

    McKenna, J.E.; Chalupnicki, M.A.

    2011-01-01

    The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.

  10. Analysis Model and Numerical Simulation of Thermoelectric Response of CFRP Composites

    NASA Astrophysics Data System (ADS)

    Lin, Yueguo

    2018-05-01

    An electric current generates Joule heating, and under steady state conditions, a sample exhibits a balance between the strength dissipated by the Joule effect and the heat exchange with the environment by radiation and convection. In the present paper, theoretical model, numerical FEM and experimental methods have been used to analyze the radiation and free convection properties in CFRP composite samples heated by an electric current. The materials employed in these samples have applications in many aeronautic devices. This study addresses two types of composite materials, UD [0]8 and QI [45/90/-45/0]S, which were prepared for thermoelectric experiments. A DC electric current (ranging from 1A to 8A) was injected through the specimen ends to find the coupling effect between the electric current and temperature. An FE model and simplified thermoelectric analysis model are presented in detail to represent the thermoelectric data. These are compared with the experimental results. All of the test equipments used to obtain the experimental data and the numerical simulations are characterized, and we find that the numerical simulations correspond well with the experiments. The temperature of the surface of the specimen is almost proportional to the electric current. The simplified analysis model was used to calculate the balance time of the temperature, which is consistent throughout all of the experimental investigations.

  11. Parallel processing for nonlinear dynamics simulations of structures including rotating bladed-disk assemblies

    NASA Technical Reports Server (NTRS)

    Hsieh, Shang-Hsien

    1993-01-01

    The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.

  12. Simulated water budget of a small forested watershed in the continental/maritime hydroclimatic region of the United States

    Treesearch

    Liang Wei; Timothy E. Link; Andrew T. Hudak; John D. Marshall; Kathleen L. Kavanagh; John T. Abatzoglou; Hang Zhou; Robert E. Pangle; Gerald N. Flerchinger

    2016-01-01

    Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long-term water balances by explicitly simulating the internal...

  13. Improving the performance of surgery-based clinical pathways: a simulation-optimization approach.

    PubMed

    Ozcan, Yasar A; Tànfani, Elena; Testi, Angela

    2017-03-01

    This paper aims to improve the performance of clinical processes using clinical pathways (CPs). The specific goal of this research is to develop a decision support tool, based on a simulation-optimization approach, which identify the proper adjustment and alignment of resources to achieve better performance for both the patients and the health-care facility. When multiple perspectives are present in a decision problem, critical issues arise and often require the balancing of goals. In our approach, meeting patients' clinical needs in a timely manner, and to avoid worsening of clinical conditions, we assess the level of appropriate resources. The simulation-optimization model seeks and evaluates alternative resource configurations aimed at balancing the two main objectives-meeting patient needs and optimal utilization of beds and operating rooms.Using primary data collected at a Department of Surgery of a public hospital located in Genoa, Italy. The simulation-optimization modelling approach in this study has been applied to evaluate the thyroid surgical treatment together with the other surgery-based CPs. The low rate of bed utilization and the long elective waiting lists of the specialty under study indicates that the wards were oversized while the operating room capacity was the bottleneck of the system. The model enables hospital managers determine which objective has to be given priority, as well as the corresponding opportunity costs.

  14. Influence of the Size of Cohorts in Adaptive Design for Nonlinear Mixed Effects Models: An Evaluation by Simulation for a Pharmacokinetic and Pharmacodynamic Model for a Biomarker in Oncology

    PubMed Central

    Lestini, Giulia; Dumont, Cyrielle; Mentré, France

    2015-01-01

    Purpose In this study we aimed to evaluate adaptive designs (ADs) by clinical trial simulation for a pharmacokinetic-pharmacodynamic model in oncology and to compare them with one-stage designs, i.e. when no adaptation is performed, using wrong prior parameters. Methods We evaluated two one-stage designs, ξ0 and ξ*, optimised for prior and true population parameters, Ψ0 and Ψ*, and several ADs (two-, three- and five-stage). All designs had 50 patients. For ADs, the first cohort design was ξ0. The next cohort design was optimised using prior information updated from the previous cohort. Optimal design was based on the determinant of the Fisher information matrix using PFIM. Design evaluation was performed by clinical trial simulations using data simulated from Ψ*. Results Estimation results of two-stage ADs and ξ* were close and much better than those obtained with ξ0. The balanced two-stage AD performed better than two-stage ADs with different cohort sizes. Three-and five-stage ADs were better than two-stage with small first cohort, but not better than the balanced two-stage design. Conclusions Two-stage ADs are useful when prior parameters are unreliable. In case of small first cohort, more adaptations are needed but these designs are complex to implement. PMID:26123680

  15. Influence of the Size of Cohorts in Adaptive Design for Nonlinear Mixed Effects Models: An Evaluation by Simulation for a Pharmacokinetic and Pharmacodynamic Model for a Biomarker in Oncology.

    PubMed

    Lestini, Giulia; Dumont, Cyrielle; Mentré, France

    2015-10-01

    In this study we aimed to evaluate adaptive designs (ADs) by clinical trial simulation for a pharmacokinetic-pharmacodynamic model in oncology and to compare them with one-stage designs, i.e., when no adaptation is performed, using wrong prior parameters. We evaluated two one-stage designs, ξ0 and ξ*, optimised for prior and true population parameters, Ψ0 and Ψ*, and several ADs (two-, three- and five-stage). All designs had 50 patients. For ADs, the first cohort design was ξ0. The next cohort design was optimised using prior information updated from the previous cohort. Optimal design was based on the determinant of the Fisher information matrix using PFIM. Design evaluation was performed by clinical trial simulations using data simulated from Ψ*. Estimation results of two-stage ADs and ξ * were close and much better than those obtained with ξ 0. The balanced two-stage AD performed better than two-stage ADs with different cohort sizes. Three- and five-stage ADs were better than two-stage with small first cohort, but not better than the balanced two-stage design. Two-stage ADs are useful when prior parameters are unreliable. In case of small first cohort, more adaptations are needed but these designs are complex to implement.

  16. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-04-01

    Stand-replacing fires are the dominant fire type in North American boreal forest and leave a historical legacy of a mosaic landscape of different aged forest cohorts. To accurately quantify the role of fire in historical and current regional forest carbon balance using models, one needs to explicitly simulate the new forest cohort that is established after fire. The present study adapted the global process-based vegetation model ORCHIDEE to simulate boreal forest fire CO2 emissions and follow-up recovery after a stand-replacing fire, with representation of postfire new cohort establishment, forest stand structure and the following self-thinning process. Simulation results are evaluated against three clusters of postfire forest chronosequence observations in Canada and Alaska. Evaluation variables for simulated postfire carbon dynamics include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index (LAI), and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). The model simulation results, when forced by local climate and the atmospheric CO2 history on each chronosequence site, generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that current postfire forest carbon sink on evaluation sites observed by chronosequence methods is mainly driven by historical atmospheric CO2 increase when forests recover from fire disturbance. Historical climate generally exerts a negative effect, probably due to increasing water stress caused by significant temperature increase without sufficient increase in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon stocks evolution after fire, making it suitable for regional simulations in boreal regions where fire regimes play a key role on ecosystem carbon balance.

  17. Water-balance wodel of a wetland on the Fort Berthold Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.

    2007-01-01

    A numerical water-balance model was developed to simulate the responses of a wetland on the Fort Berthold Reservation, North Dakota, to historical and possible extreme hydrological inputs and to changes in hydrological inputs that might occur if a proposed refinery is built on the reservation. Results from model simulations indicated that the study wetland would likely contain water during most historical and extreme-precipitation events with the addition of maximum potential discharges of 0.6 acre-foot per day from proposed refinery holding ponds. Extended periods with little precipitation and above-normal temperatures may result in the wetland becoming nearly dry, especially if potential holding-pond discharges are near zero. Daily simulations based on the historical-enhanced climate data set for May and June 2005, which included holding-pond discharges of 0.6 acre-foot per day, indicated that the study-wetland maximum simulated water volume was about 16.2 acre-feet and the maximum simulated water level was about 1.2 feet at the outlet culvert. Daily simulations based on the extreme summer data set, created to represent an extreme event with excessive June precipitation and holding-pond discharges of 0.6 acre-foot per day, indicated that the study-wetland maximum simulated water volume was about 38.6 acre-feet and the maximum simulated water level was about 2.6 feet at the outlet culvert. A simulation performed using the extreme winter climate data set and an outlet culvert blocked with snow and ice resulted in the greatest simulated wetland water volume of about 132 acre-feet and the greatest simulated water level, which would have been about 6.2 feet at the outlet culvert, but water was not likely to overflow an adjacent highway.

  18. Assessing the performances of low impact development alternatives by long-term simulation for a semi-arid area in Tianjin, northern China.

    PubMed

    Huang, Jinhui Jeanne; Li, Yu; Niu, Shuai; Zhou, Shu H

    2014-01-01

    For areas that are urbanized rapidly, the practice of low impact development (LID) has gained an important place in stormwater management and urban planning due to its capability and beneficial effects in restoring the original hydrological cycle. The performances of LID alternatives can vary substantially due to different climate conditions. This study investigated the performances of five LID alternatives under a semi-arid climate in northern China on water balance and flood control. A numerical model, Storm Water Management Model version 5 (US Environmental Protection Agency), was employed to run 10 years' rainfall events for these objectives. Two evaluation methods were proposed in this study: the efficiency index for water balance and a performance radar chart. The investigation of the five LID alternatives revealed that these LID alternatives functioned differently in flood control and water balance, and porous pavement performed best in all indices except the lag time. The two evaluation methods, in conjunction with the long-term numerical simulation, can facilitate design and decision making by providing a clear picture of the performance and functions for these LID alternatives.

  19. The mid-cretaceous water bearer: Isotope mass balance quantification of the Albian hydrologic cycle

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.

    2002-01-01

    A latitudinal gradient in meteoric ??18O compositions compiled from paleosol sphaerosiderites throughout the Cretaceous Western Interior Basin (KWIB) (34-75??N paleolatitude) exhibits a steeper, more depleted trend than modern (predicted) values (3.0??? [34??N latitude] to 9.7??? [75??N] lighter). Furthermore, the sphaerosiderite meteoric ??18O latitudinal gradient is significantly steeper and more depleted (5.8??? [34??N] to 13.8??? [75??N] lighter) than a predicted gradient for the warm mid-Cretaceous using modern empirical temperature-??18O precipitation relationships. We have suggested that the steeper and more depleted (relative to the modern theoretical gradient) meteoric sphaerosiderite ??18O latitudinal gradient resulted from increased air mass rainout effects in coastal areas of the KWIB during the mid-Cretaceous. The sphaerosiderite isotopic data have been used to constrain a mass balance model of the hydrologic cycle in the northern hemisphere and to quantify precipitation rates of the equable 'greenhouse' Albian Stage in the KWIB. The mass balance model tracks the evolving isotopic composition of an air mass and its precipitation, and is driven by latitudinal temperature gradients. Our simulations indicate that significant increases in Albian precipitation (34-52%) and evaporation fluxes (76-96%) are required to reproduce the difference between modern and Albian meteoric siderite ??18O latitudinal gradients. Calculations of precipitation rates from model outputs suggest mid-high latitude precipitation rates greatly exceeded modern rates (156-220% greater in mid latitudes [2600-3300 mm/yr], 99% greater at high latitudes [550 mm/yr]). The calculated precipitation rates are significantly different from the precipitation rates predicted by some recent general circulation models (GCMs) for the warm Cretaceous, particularly in the mid to high latitudes. Our mass balance model by no means replaces GCMs. However, it is a simple and effective means of obtaining quantitative data regarding the mid-Cretaceous hydrologic cycle in the KWIB. Our goal is to encourage the incorporation of isotopic tracers into GCM simulations of the mid-Cretaceous, and to show how our empirical data and mass balance model estimates help constrain the boundary conditions. ?? 2002 Elsevier Science B.V. All rights reserved.

  20. A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks

    PubMed Central

    Sotiropoulos, Stamatios N.; Brookes, Matthew J.; Woolrich, Mark W.

    2018-01-01

    Over long timescales, neuronal dynamics can be robust to quite large perturbations, such as changes in white matter connectivity and grey matter structure through processes including learning, aging, development and certain disease processes. One possible explanation is that robust dynamics are facilitated by homeostatic mechanisms that can dynamically rebalance brain networks. In this study, we simulate a cortical brain network using the Wilson-Cowan neural mass model with conduction delays and noise, and use inhibitory synaptic plasticity (ISP) to dynamically achieve a spatially local balance between excitation and inhibition. Using MEG data from 55 subjects we find that ISP enables us to simultaneously achieve high correlation with multiple measures of functional connectivity, including amplitude envelope correlation and phase locking. Further, we find that ISP successfully achieves local E/I balance, and can consistently predict the functional connectivity computed from real MEG data, for a much wider range of model parameters than is possible with a model without ISP. PMID:29474352

  1. Brief communication: Improved simulation of the present-day Greenland firn layer (1960-2016)

    NASA Astrophysics Data System (ADS)

    Ligtenberg, Stefan R. M.; Kuipers Munneke, Peter; Noël, Brice P. Y.; van den Broeke, Michiel R.

    2018-05-01

    By providing pore space for storage or refreezing of meltwater, the Greenland ice sheet firn layer strongly modulates runoff. Correctly representing the firn layer is therefore crucial for Greenland (surface) mass balance studies. Here, we present a simulation of the Greenland firn layer with the firn model IMAU-FDM forced by the latest output of the regional climate model RACMO2, version 2.3p2. In the percolation zone, much improved agreement is found with firn density and temperature observations. A full simulation of Greenland firn at high temporal (10 days) and spatial (11 km) resolution is available for the period 1960-2016.

  2. Meso-beta scale numerical simulation studies of terrain-induced jet streak mass/momentum perturbations

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Kaplan, Michael L.

    1993-01-01

    The first section is on 3-D numerical modeling of terrain-induced circulations and covers the following: (1) additional insights into gravity wave generation mechanisms based on the control simulation; (2) ongoing nested-grid numerical simulations; (3) work to be completed during the remainder of FY-93; and (4) work objectives for FY-94. The second section is on linear theory and theoretical modeling and covers the following: (1) the free response of a uniform barotropic flow to an initially stationary unbalanced (ageostrophic) zonal wind anomaly; and (2) the free response of a uniform barotropic flow to an initially stationary balanced zonal wind anomaly.

  3. Model predictive control based on reduced order models applied to belt conveyor system.

    PubMed

    Chen, Wei; Li, Xin

    2016-11-01

    In the paper, a model predictive controller based on reduced order model is proposed to control belt conveyor system, which is an electro-mechanics complex system with long visco-elastic body. Firstly, in order to design low-degree controller, the balanced truncation method is used for belt conveyor model reduction. Secondly, MPC algorithm based on reduced order model for belt conveyor system is presented. Because of the error bound between the full-order model and reduced order model, two Kalman state estimators are applied in the control scheme to achieve better system performance. Finally, the simulation experiments are shown that balanced truncation method can significantly reduce the model order with high-accuracy and model predictive control based on reduced-model performs well in controlling the belt conveyor system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Simulations of coupled, Antarctic ice-ocean evolution using POP2x and BISICLES (Invited)

    NASA Astrophysics Data System (ADS)

    Price, S. F.; Asay-Davis, X.; Martin, D. F.; Maltrud, M. E.; Hoffman, M. J.

    2013-12-01

    We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and land ice evolution models. The ocean model, POP2x is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (1999), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008; Kimura et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). The land ice model, BISICLES (Cornford et al., 2012), includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (southern ocean) simulations using POP2x with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to sequentially update the sub-shelf cavity geometry seen by POP2x.

  5. NUNOA: a computer simulator of individuals, families, and extended families of the high-altitude Quechua

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.C.; Weinstein, D.A.; Shugart, H.H.

    1980-10-01

    The Quechua Indians of the Peruvian Andes are an example of a human population which has developed special cultural adaptations to deal with hypocaloric stress imposed by a harsh environment. A highly detailed human ecosystem model, NUNOA, which simulates the yearly energy balance of individuals, families, and extended families in a hypothetical farming and herding Quechua community of the high Andes was developed. Unlike most population models which use sets of differential equations in which individuals are aggregated into groups, this model considers the response of each individual to a stochastic environment. The model calculates the yearly energy demand formore » each family based on caloric requirements of its members. For each family, the model simulates the cultivation of seven different crops and the impact of precipitation, temperature, and disease on yield. Herding, slaughter, and market sales of three different animal species are also simulated. Any energy production in excess of the family's energy demand is placed into extended family storage for possible redistribution. A family failing to meet their annual energy demand may slaughter additional herd animals, temporarily migrate from the community, or borrow food from the extended family storage. The energy balance is used in determining births, deaths, marriages, and resource sharing in the Indian community. In addition, the model maintains a record of each individual's ancestry as well as seven genetic traits for use in tracing lineage and gene flow. The model user has the opportunity to investigate the effect of changes in marriage patterns, resource sharing patterns, or subsistence activities on the ability of the human population to survive in the harsh Andean environment. In addition, the user may investigate the impact of external technology on the Indian culture.« less

  6. Calibration by Hydrological Response Unit of a National Hydrologic Model to Improve Spatial Representation and Distribution of Parameters

    NASA Astrophysics Data System (ADS)

    Norton, P. A., II

    2015-12-01

    The U. S. Geological Survey is developing a National Hydrologic Model (NHM) to support consistent hydrologic modeling across the conterminous United States (CONUS). The Precipitation-Runoff Modeling System (PRMS) simulates daily hydrologic and energy processes in watersheds, and is used for the NHM application. For PRMS each watershed is divided into hydrologic response units (HRUs); by default each HRU is assumed to have a uniform hydrologic response. The Geospatial Fabric (GF) is a database containing initial parameter values for input to PRMS and was created for the NHM. The parameter values in the GF were derived from datasets that characterize the physical features of the entire CONUS. The NHM application is composed of more than 100,000 HRUs from the GF. Selected parameter values commonly are adjusted by basin in PRMS using an automated calibration process based on calibration targets, such as streamflow. Providing each HRU with distinct values that captures variability within the CONUS may improve simulation performance of the NHM. During calibration of the NHM by HRU, selected parameter values are adjusted for PRMS based on calibration targets, such as streamflow, snow water equivalent (SWE) and actual evapotranspiration (AET). Simulated SWE, AET, and runoff were compared to value ranges derived from multiple sources (e.g. the Snow Data Assimilation System, the Moderate Resolution Imaging Spectroradiometer (i.e. MODIS) Global Evapotranspiration Project, the Simplified Surface Energy Balance model, and the Monthly Water Balance Model). This provides each HRU with a distinct set of parameter values that captures the variability within the CONUS, leading to improved model performance. We present simulation results from the NHM after preliminary calibration, including the results of basin-level calibration for the NHM using: 1) default initial GF parameter values, and 2) parameter values calibrated by HRU.

  7. Spatially distributed potential evapotranspiration modeling and climate projections.

    PubMed

    Gharbia, Salem S; Smullen, Trevor; Gill, Laurence; Johnston, Paul; Pilla, Francesco

    2018-08-15

    Evapotranspiration integrates energy and mass transfer between the Earth's surface and atmosphere and is the most active mechanism linking the atmosphere, hydrosphsophere, lithosphere and biosphere. This study focuses on the fine resolution modeling and projection of spatially distributed potential evapotranspiration on the large catchment scale as response to climate change. Six potential evapotranspiration designed algorithms, systematically selected based on a structured criteria and data availability, have been applied and then validated to long-term mean monthly data for the Shannon River catchment with a 50m 2 cell size. The best validated algorithm was therefore applied to evaluate the possible effect of future climate change on potential evapotranspiration rates. Spatially distributed potential evapotranspiration projections have been modeled based on climate change projections from multi-GCM ensembles for three future time intervals (2020, 2050 and 2080) using a range of different Representative Concentration Pathways producing four scenarios for each time interval. Finally, seasonal results have been compared to baseline results to evaluate the impact of climate change on the potential evapotranspiration and therefor on the catchment dynamical water balance. The results present evidence that the modeled climate change scenarios would have a significant impact on the future potential evapotranspiration rates. All the simulated scenarios predicted an increase in potential evapotranspiration for each modeled future time interval, which would significantly affect the dynamical catchment water balance. This study addresses the gap in the literature of using GIS-based algorithms to model fine-scale spatially distributed potential evapotranspiration on the large catchment systems based on climatological observations and simulations in different climatological zones. Providing fine-scale potential evapotranspiration data is very crucial to assess the dynamical catchment water balance to setup management scenarios for the water abstractions. This study illustrates a transferable systematic method to design GIS-based algorithms to simulate spatially distributed potential evapotranspiration on the large catchment systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity

    NASA Astrophysics Data System (ADS)

    Dessler, Andrew E.; Mauritsen, Thorsten; Stevens, Bjorn

    2018-04-01

    Our climate is constrained by the balance between solar energy absorbed by the Earth and terrestrial energy radiated to space. This energy balance has been widely used to infer equilibrium climate sensitivity (ECS) from observations of 20th-century warming. Such estimates yield lower values than other methods, and these have been influential in pushing down the consensus ECS range in recent assessments. Here we test the method using a 100-member ensemble of the Max Planck Institute Earth System Model (MPI-ESM1.1) simulations of the period 1850-2005 with known forcing. We calculate ECS in each ensemble member using energy balance, yielding values ranging from 2.1 to 3.9 K. The spread in the ensemble is related to the central assumption in the energy budget framework: that global average surface temperature anomalies are indicative of anomalies in outgoing energy (either of terrestrial origin or reflected solar energy). We find that this assumption is not well supported over the historical temperature record in the model ensemble or more recent satellite observations. We find that framing energy balance in terms of 500 hPa tropical temperature better describes the planet's energy balance.

  9. Active model-based balancing strategy for self-reconfigurable batteries

    NASA Astrophysics Data System (ADS)

    Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter

    2016-08-01

    This paper describes a novel balancing strategy for self-reconfigurable batteries where the discharge and charge rates of each cell can be controlled. While much effort has been focused on improving the hardware architecture of self-reconfigurable batteries, energy equalization algorithms have not been systematically optimized in terms of maximizing the efficiency of the balancing system. Our approach includes aspects of such optimization theory. We develop a balancing strategy for optimal control of the discharge rate of battery cells. We first formulate the cell balancing as a nonlinear optimal control problem, which is modeled afterward as a network program. Using dynamic programming techniques and MATLAB's vectorization feature, we solve the optimal control problem by generating the optimal battery operation policy for a given drive cycle. The simulation results show that the proposed strategy efficiently balances the cells over the life of the battery, an obvious advantage that is absent in the other conventional approaches. Our algorithm is shown to be robust when tested against different influencing parameters varying over wide spectrum on different drive cycles. Furthermore, due to the little computation time and the proved low sensitivity to the inaccurate power predictions, our strategy can be integrated in a real-time system.

  10. Efficient Control of Epidemics Spreading on Networks: Balance between Treatment and Recovery

    PubMed Central

    Oleś, Katarzyna; Gudowska-Nowak, Ewa; Kleczkowski, Adam

    2013-01-01

    We analyse two models describing disease transmission and control on regular and small-world networks. We use simulations to find a control strategy that minimizes the total cost of an outbreak, thus balancing the costs of disease against that of the preventive treatment. The models are similar in their epidemiological part, but differ in how the removed/recovered individuals are treated. The differences in models affect choice of the strategy only for very cheap treatment and slow spreading disease. However for the combinations of parameters that are important from the epidemiological perspective (high infectiousness and expensive treatment) the models give similar results. Moreover, even where the choice of the strategy is different, the total cost spent on controlling the epidemic is very similar for both models. PMID:23750205

  11. Efficient control of epidemics spreading on networks: balance between treatment and recovery.

    PubMed

    Oleś, Katarzyna; Gudowska-Nowak, Ewa; Kleczkowski, Adam

    2013-01-01

    We analyse two models describing disease transmission and control on regular and small-world networks. We use simulations to find a control strategy that minimizes the total cost of an outbreak, thus balancing the costs of disease against that of the preventive treatment. The models are similar in their epidemiological part, but differ in how the removed/recovered individuals are treated. The differences in models affect choice of the strategy only for very cheap treatment and slow spreading disease. However for the combinations of parameters that are important from the epidemiological perspective (high infectiousness and expensive treatment) the models give similar results. Moreover, even where the choice of the strategy is different, the total cost spent on controlling the epidemic is very similar for both models.

  12. Joint Seasonal ARMA Approach for Modeling of Load Forecast Errors in Planning Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.

    2014-04-14

    To make informed and robust decisions in the probabilistic power system operation and planning process, it is critical to conduct multiple simulations of the generated combinations of wind and load parameters and their forecast errors to handle the variability and uncertainty of these time series. In order for the simulation results to be trustworthy, the simulated series must preserve the salient statistical characteristics of the real series. In this paper, we analyze day-ahead load forecast error data from multiple balancing authority locations and characterize statistical properties such as mean, standard deviation, autocorrelation, correlation between series, time-of-day bias, and time-of-day autocorrelation.more » We then construct and validate a seasonal autoregressive moving average (ARMA) model to model these characteristics, and use the model to jointly simulate day-ahead load forecast error series for all BAs.« less

  13. Some Aspects of Advanced Tokamak Modeling in DIII-D

    NASA Astrophysics Data System (ADS)

    St John, H. E.; Petty, C. C.; Murakami, M.; Kinsey, J. E.

    2000-10-01

    We extend previous work(M. Murakami, et al., General Atomics Report GA-A23310 (1999).) done on time dependent DIII-D advanced tokamak simulations by introducing theoretical confinement models rather than relying on power balance derived transport coefficients. We explore using NBCD and off axis ECCD together with a self-consistent aligned bootstrap current, driven by the internal transport barrier dynamics generated with the GLF23 confinement model, to shape the hollow current profile and to maintain MHD stable conditions. Our theoretical modeling approach uses measured DIII-D initial conditions to start off the simulations in a smooth consistent manner. This mitigates the troublesome long lived perturbations in the ohmic current profile that is normally caused by inconsistent initial data. To achieve this goal our simulation uses a sequence of time dependent eqdsks generated autonomously by the EFIT MHD equilibrium code in analyzing experimental data to supply the history for the simulation.

  14. High order finite volume WENO schemes for the Euler equations under gravitational fields

    NASA Astrophysics Data System (ADS)

    Li, Gang; Xing, Yulong

    2016-07-01

    Euler equations with gravitational source terms are used to model many astrophysical and atmospheric phenomena. This system admits hydrostatic balance where the flux produced by the pressure is exactly canceled by the gravitational source term, and two commonly seen equilibria are the isothermal and polytropic hydrostatic solutions. Exact preservation of these equilibria is desirable as many practical problems are small perturbations of such balance. High order finite difference weighted essentially non-oscillatory (WENO) schemes have been proposed in [22], but only for the isothermal equilibrium state. In this paper, we design high order well-balanced finite volume WENO schemes, which can preserve not only the isothermal equilibrium but also the polytropic hydrostatic balance state exactly, and maintain genuine high order accuracy for general solutions. The well-balanced property is obtained by novel source term reformulation and discretization, combined with well-balanced numerical fluxes. Extensive one- and two-dimensional simulations are performed to verify well-balanced property, high order accuracy, as well as good resolution for smooth and discontinuous solutions.

  15. Modeling and control of plasma rotation and βn for NSTX-U using Neoclassical Toroidal Viscosity and Neutral Beam Injection

    NASA Astrophysics Data System (ADS)

    Goumiri, Imene; Rowley, Clarence; Sabbagh, Steven; Gates, David; Gerhardt, Stefan; Boyer, Mark

    2015-11-01

    A model-based system is presented allowing control of the plasma rotation profile in a magnetically confined toroidal fusion device to maintain plasma stability for long pulse operation. The analysis, using NSTX data and NSTX-U TRANSP simulations, is aimed at controlling plasma rotation using momentum from six injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields as actuators. Based on the momentum diffusion and torque balance model obtained, a feedback controller is designed and predictive simulations using TRANSP will be presented. Robustness of the model and the rotation controller will be discussed.

  16. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect

    NASA Astrophysics Data System (ADS)

    Carenzo, M.; Pellicciotti, F.; Mabillard, J.; Reid, T.; Brock, B. W.

    2016-08-01

    Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the Østrem curve. Its large number of parameters might be a limitation, but we show that the model is transferable in time and space to a second glacier with little loss of performance. We thus suggest that the new DETI model can be included in continuous mass balance models of debris-covered glaciers, because of its limited data requirements. As such, we expect its application to lead to an improvement in simulations of the debris-covered glacier response to climate in comparison with models that simply recalibrate empirical parameters to prescribe a constant across glacier reduction in melt.

  17. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect.

    PubMed

    Carenzo, M; Pellicciotti, F; Mabillard, J; Reid, T; Brock, B W

    2016-08-01

    Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the Østrem curve. Its large number of parameters might be a limitation, but we show that the model is transferable in time and space to a second glacier with little loss of performance. We thus suggest that the new DETI model can be included in continuous mass balance models of debris-covered glaciers, because of its limited data requirements. As such, we expect its application to lead to an improvement in simulations of the debris-covered glacier response to climate in comparison with models that simply recalibrate empirical parameters to prescribe a constant across glacier reduction in melt.

  18. Simulation of aerosolized oil droplets capture in a range hood exhaust using coupled CFD-population balance method

    NASA Astrophysics Data System (ADS)

    Liu, Shuyuan; Zhang, Yong; Feng, Yu; Shi, Changbin; Cao, Yong; Yuan, Wei

    2018-02-01

    A coupled population balance sectional method (PBSM) coupled with computational fluid dynamics (CFD) is presented to simulate the capture of aerosolized oil droplets (AODs) in a range hood exhaust. The homogeneous nucleation and coagulation processes are modeled and simulated with this CFD-PBSM method. With the design angle, α of the range hood exhaust varying from 60° to 30°, the AODs capture increases meanwhile the pressure drop between the inlet and the outlet of the range hood also increases from 8.38Pa to 175.75Pa. The increasing inlet flow velocities also result in less AODs capture although the total suction increases due to higher flow rates to the range hood. Therefore, the CFD-PBSM method provides an insight into the formation and capture of AODs as well as their impact on the operation and design of the range hood exhaust.

  19. The Interplay Between Transpiration and Runoff Formulations in Land Surface Schemes Used with Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Koster, Rindal D.; Milly, P. C. D.

    1997-01-01

    The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) has shown that different land surface models (LSMS) driven by the same meteorological forcing can produce markedly different surface energy and water budgets, even when certain critical aspects of the LSMs (vegetation cover, albedo, turbulent drag coefficient, and snow cover) are carefully controlled. To help explain these differences, the authors devised a monthly water balance model that successfully reproduces the annual and seasonal water balances of the different PILPS schemes. Analysis of this model leads to the identification of two quantities that characterize an LSM's formulation of soil water balance dynamics: (1) the efficiency of the soil's evaporation sink integrated over the active soil moisture range, and (2) the fraction of this range over which runoff is generated. Regardless of the LSM's complexity, the combination of these two derived parameters with rates of interception loss, potential evaporation, and precipitation provides a reasonable estimate for the LSM's simulated annual water balance. The two derived parameters shed light on how evaporation and runoff formulations interact in an LSM, and the analysis as a whole underscores the need for compatibility in these formulations.

  20. The interplay between transpiration and Runoff formulations in land surface schemes used with atmospheric models

    USGS Publications Warehouse

    Koster, R.D.; Milly, P.C.D.

    1997-01-01

    The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) has shown that different land surface models (LSMs) driven by the same meteorological forcing can produce markedly different surface energy and water budgets, even when certain critical aspects of the LSMs (vegetation cover, albedo, turbulent drag coefficient, and snowcover) are carefully controlled. To help explain these differences, the authors devised a monthly water balance model that successfully reproduces the annual and seasonal water balances of the different PILPS schemes. Analysis of this model leads to the identification of two quantities that characterize an LSM's formulation of soil water balance dynamics: 1) the efficiency of the soil's evaporation sink integrated over the active soil moisture range, and 2) the fraction of this range over which runoff is generated. Regardless of the LSM's complexity, the combination of these two derived parameters with rates of interception loss, potential evaporation, and precipitation provides a reasonable estimate for the LSM's simulated annual water balance. The two derived parameters shed light on how evaporation and runoff formulations interact in an LSM, and the analysis as a whole underscores the need for compatibility in these formulations.

  1. An examination of the spatial variability of the United States surface water balance using the Budyko relationship for current and projected climates

    NASA Astrophysics Data System (ADS)

    Ficklin, D. L.; Abatzoglou, J. T.

    2017-12-01

    The spatial variability in the balance between surface runoff (Q) and evapotranspiration (ET) is critical for understanding water availability. The Budyko framework suggests that this balance is solely a function of aridity. Observed deviations from this framework for individual watersheds, however, can vary significantly, resulting in uncertainty in using the Budyko framework in ungauged catchments and under future climate and land use scenarios. Here, we model the spatial variability in the partitioning of precipitation into Q and ET using a set of climatic, physiographic, and vegetation metrics for 211 near-natural watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. Using a generalized additive model, we found that precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow explained 81.2% of the variability in ω. This ω model applied to the Budyko framework explained 97% of the spatial variability in long-term Q for an independent set of near-natural watersheds. The developed ω model was also used to estimate the entire CONUS surface water balance for both contemporary and mid-21st century conditions. The contemporary CONUS surface water balance compared favorably to more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western US. The Budyko framework using the modeled ω lends itself to an alternative approach for assessing the potential response of catchment water balance to climate change to complement other approaches.

  2. Analysis of vibrational-translational energy transfer using the direct simulation Monte Carlo method

    NASA Technical Reports Server (NTRS)

    Boyd, Iain D.

    1991-01-01

    A new model is proposed for energy transfer between the vibrational and translational modes for use in the direct simulation Monte Carlo method (DSMC). The model modifies the Landau-Teller theory for a harmonic oscillator and the rate transition is related to an experimental correlation for the vibrational relaxation time. Assessment of the model is made with respect to three different computations: relaxation in a heat bath, a one-dimensional shock wave, and hypersonic flow over a two-dimensional wedge. These studies verify that the model achieves detailed balance, and excellent agreement with experimental data is obtained in the shock wave calculation. The wedge flow computation reveals that the usual phenomenological method for simulating vibrational nonequilibrium in the DSMC technique predicts much higher vibrational temperatures in the wake region.

  3. Heider balance in human networks

    NASA Astrophysics Data System (ADS)

    Gawroński, P.; Kułakowski, K.

    2005-07-01

    Recently, a continuous dynamics was proposed to simulate dynamics of interpersonal relations in a society represented by a fully connected graph. The final state of such a society was found to be identical with the so-called Heider balance (HB), where the society is divided into two mutually hostile groups. In the continuous model, a polarization of opinions was found in HB. Here we demonstrate that the polarization occurs also in Barabási-Albert networks, where the Heider balance is not necessarily present. In the second part of this work we demonstrate the results of our formalism, when applied to reference examples: the Southern women and the Zachary club.

  4. On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models

    USGS Publications Warehouse

    Alley, William M.

    1984-01-01

    Several two- to six-parameter regional water balance models are examined by using 50-year records of monthly streamflow at 10 sites in New Jersey. These models include variants of the Thornthwaite-Mather model, the Palmer model, and the more recent Thomas abcd model. Prediction errors are relatively similar among the models. However, simulated values of state variables such as soil moisture storage differ substantially among the models, and fitted parameter values for different models sometimes indicated an entirely different type of basin response to precipitation. Some problems in parameter identification are noted, including difficulties in identifying an appropriate time lag factor for the Thornthwaite-Mather-type model for basins with little groundwater storage, very high correlations between upper and lower storages in the Palmer-type model, and large sensitivity of parameter a of the abcd model to bias in estimates of precipitation and potential evapotranspiration. Modifications to the threshold concept of the Thornthwaite-Mather model were statistically valid for the six stations in northern New Jersey. The abcd model resulted in a simulated seasonal cycle of groundwater levels similar to fluctuations observed in nearby wells but with greater persistence. These results suggest that extreme caution should be used in attaching physical significance to model parameters and in using the state variables of the models in indices of drought and basin productivity.

  5. Control of movement initiation underlies the development of balance

    PubMed Central

    Ehrlich, David E.; Schoppik, David

    2017-01-01

    Summary Balance arises from the interplay of external forces acting on the body and internally generated movements. Many animal bodies are inherently unstable, necessitating corrective locomotion to maintain stability. Understanding how developing animals come to balance remains a challenge. Here we study the interplay between environment, sensation, and action as balance develops in larval zebrafish. We first model the physical forces that challenge underwater balance and experimentally confirm that larvae are subject to constant destabilization. Larvae propel in swim bouts that, we find, tend to stabilize the body. We confirm the relationship between locomotion and balance by changing larval body composition, exacerbating instability and eliciting more frequent swimming. Intriguingly, developing zebrafish come to control the initiation of locomotion, swimming preferentially when unstable, thus restoring preferred postures. To test the sufficiency of locomotor-driven stabilization and the developing control of movement timing, we incorporate both into a generative model of swimming. Simulated larvae recapitulate observed postures and movement timing across early development, but only when locomotor-driven stabilization and control of movement initiation are both utilized. We conclude the ability to move when unstable is the key developmental improvement to balance in larval zebrafish. Our work informs how emerging sensorimotor ability comes to impact how and why animals move when they do. PMID:28111151

  6. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    DOE PAGES

    Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra; ...

    2017-11-20

    The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less

  7. An Introduction to System-Level, Steady-State and Transient Modeling and Optimization of High-Power-Density Thermoelectric Generator Devices Made of Segmented Thermoelectric Elements

    NASA Astrophysics Data System (ADS)

    Crane, D. T.

    2011-05-01

    High-power-density, segmented, thermoelectric (TE) elements have been intimately integrated into heat exchangers, eliminating many of the loss mechanisms of conventional TE assemblies, including the ceramic electrical isolation layer. Numerical models comprising simultaneously solved, nonlinear, energy balance equations have been created to simulate these novel architectures. Both steady-state and transient models have been created in a MATLAB/Simulink environment. The models predict data from experiments in various configurations and applications over a broad range of temperature, flow, and current conditions for power produced, efficiency, and a variety of other important outputs. Using the validated models, devices and systems are optimized using advanced multiparameter optimization techniques. Devices optimized for particular steady-state operating conditions can then be dynamically simulated in a transient operating model. The transient model can simulate a variety of operating conditions including automotive and truck drive cycles.

  8. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra

    The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less

  9. A Modulated-Gradient Parametrization for the Large-Eddy Simulation of the Atmospheric Boundary Layer Using the Weather Research and Forecasting Model

    NASA Astrophysics Data System (ADS)

    Khani, Sina; Porté-Agel, Fernando

    2017-12-01

    The performance of the modulated-gradient subgrid-scale (SGS) model is investigated using large-eddy simulation (LES) of the neutral atmospheric boundary layer within the weather research and forecasting model. Since the model includes a finite-difference scheme for spatial derivatives, the discretization errors may affect the simulation results. We focus here on understanding the effects of finite-difference schemes on the momentum balance and the mean velocity distribution, and the requirement (or not) of the ad hoc canopy model. We find that, unlike the Smagorinsky and turbulent kinetic energy (TKE) models, the calculated mean velocity and vertical shear using the modulated-gradient model, are in good agreement with Monin-Obukhov similarity theory, without the need for an extra near-wall canopy model. The structure of the near-wall turbulent eddies is better resolved using the modulated-gradient model in comparison with the classical Smagorinsky and TKE models, which are too dissipative and yield unrealistic smoothing of the smallest resolved scales. Moreover, the SGS fluxes obtained from the modulated-gradient model are much smaller near the wall in comparison with those obtained from the regular Smagorinsky and TKE models. The apparent inability of the LES model in reproducing the mean streamwise component of the momentum balance using the total (resolved plus SGS) stress near the surface is probably due to the effect of the discretization errors, which can be calculated a posteriori using the Taylor-series expansion of the resolved velocity field. Overall, we demonstrate that the modulated-gradient model is less dissipative and yields more accurate results in comparison with the classical Smagorinsky model, with similar computational costs.

  10. A Hydrogen Peroxide Hot-Jet Simulator for Wind-Tunnel Tests of Turbojet-Exit Models

    NASA Technical Reports Server (NTRS)

    Runckel, Jack F.; Swihart, John M.

    1959-01-01

    A turbojet-engine-exhaust simulator which utilizes a hydrogen peroxide gas generator has been developed for powered-model testing in wind tunnels with air exchange. Catalytic decomposition of concentrated hydrogen peroxide provides a convenient and easily controlled method of providing a hot jet with characteristics that correspond closely to the jet of a gas turbine engine. The problems associated with simulation of jet exhausts in a transonic wind tunnel which led to the selection of a liquid monopropellant are discussed. The operation of the jet simulator consisting of a thrust balance, gas generator, exit nozzle, and auxiliary control system is described. Static-test data obtained with convergent nozzles are presented and shown to be in good agreement with ideal calculated values.

  11. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model.

    PubMed

    Matzarakis, Andreas; Rutz, Frank; Mayer, Helmut

    2010-03-01

    Short- and long-wave radiation flux densities absorbed by people have a significant influence on their energy balance. The heat effect of the absorbed radiation flux densities is parameterised by the mean radiant temperature. This paper presents the physical basis of the RayMan model, which simulates the short- and long-wave radiation flux densities from the three-dimensional surroundings in simple and complex environments. RayMan has the character of a freely available radiation and human-bioclimate model. The aim of the RayMan model is to calculate radiation flux densities, sunshine duration, shadow spaces and thermo-physiologically relevant assessment indices using only a limited number of meteorological and other input data. A comparison between measured and simulated values for global radiation and mean radiant temperature shows that the simulated data closely resemble measured data.

  12. Modeling VLF signal modulation during solar flares with GEANT4 Monte Carlo simulation, a simple chemical model and LWPC

    NASA Astrophysics Data System (ADS)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Pal, Sujay; Basak, Tamal

    Extra ionization by X-rays during solar flares affects VLF signal propagation through D-region ionosphere. Ionization produced in the lower ionosphere due to X-ray spectra of solar flares are simulated with an efficient detector simulation program, GEANT4. The balancing between the ionization and loss processes, causing the lower ionosphere to settle back to its undisturbed state is handled with a simple chemical model consisting of four broad species of ion densities. Using the electron densities, modified VLF signal amplitude is then computed with LWPC code. VLF signal along NWC (Australia) to IERC/ICSP (India) propagation path is examined during a M and a X-type solar flares and observational deviations are compared with simulated results. The agreement is found to be excellent.

  13. Estimating future flood frequency and magnitude in basins affected by glacier wastage.

    DOT National Transportation Integrated Search

    2015-03-01

    We present field measurements of meteorology, hydrology and glaciers and long-term modeled projections of glacier mass balance and : stream flow informed by downscaled climate simulations. The study basins include Valdez Glacier Stream (342 km2 : ), ...

  14. Rainfall runoff modelling of the Upper Ganga and Brahmaputra basins using PERSiST.

    PubMed

    Futter, M N; Whitehead, P G; Sarkar, S; Rodda, H; Crossman, J

    2015-06-01

    There are ongoing discussions about the appropriate level of complexity and sources of uncertainty in rainfall runoff models. Simulations for operational hydrology, flood forecasting or nutrient transport all warrant different levels of complexity in the modelling approach. More complex model structures are appropriate for simulations of land-cover dependent nutrient transport while more parsimonious model structures may be adequate for runoff simulation. The appropriate level of complexity is also dependent on data availability. Here, we use PERSiST; a simple, semi-distributed dynamic rainfall-runoff modelling toolkit to simulate flows in the Upper Ganges and Brahmaputra rivers. We present two sets of simulations driven by single time series of daily precipitation and temperature using simple (A) and complex (B) model structures based on uniform and hydrochemically relevant land covers respectively. Models were compared based on ensembles of Bayesian Information Criterion (BIC) statistics. Equifinality was observed for parameters but not for model structures. Model performance was better for the more complex (B) structural representations than for parsimonious model structures. The results show that structural uncertainty is more important than parameter uncertainty. The ensembles of BIC statistics suggested that neither structural representation was preferable in a statistical sense. Simulations presented here confirm that relatively simple models with limited data requirements can be used to credibly simulate flows and water balance components needed for nutrient flux modelling in large, data-poor basins.

  15. Computational model of in vivo human energy metabolism during semi-starvation and re-feeding

    PubMed Central

    Hall, Kevin D.

    2008-01-01

    Changes of body weight and composition are the result of complex interactions among metabolic fluxes contributing to macronutrient balances. To better understand these interactions, a mathematical model was constructed that used the measured dietary macronutrient intake during semi-starvation and re-feeding as model inputs and computed whole-body energy expenditure, de novo lipogenesis, gluconeogenesis, as well as turnover and oxidation of carbohydrate, fat and protein. Published in vivo human data provided the basis for the model components which were integrated by fitting a few unknown parameters to the classic Minnesota human starvation experiment. The model simulated the measured body weight and fat mass changes during semi-starvation and re-feeding and predicted the unmeasured metabolic fluxes underlying the body composition changes. The resting metabolic rate matched the experimental measurements and required a model of adaptive thermogenesis. Re-feeding caused an elevation of de novo lipogenesis which, along with increased fat intake, resulted in a rapid repletion and overshoot of body fat. By continuing the computer simulation with the pre-starvation diet and physical activity, the original body weight and composition was eventually restored, but body fat mass was predicted to take more than one additional year to return to within 5% of its original value. The model was validated by simulating a recently published short-term caloric restriction experiment without changing the model parameters. The predicted changes of body weight, fat mass, resting metabolic rate, and nitrogen balance matched the experimental measurements thereby providing support for the validity of the model. PMID:16449298

  16. Load Balancing Using Time Series Analysis for Soft Real Time Systems with Statistically Periodic Loads

    NASA Technical Reports Server (NTRS)

    Hailperin, Max

    1993-01-01

    This thesis provides design and analysis of techniques for global load balancing on ensemble architectures running soft-real-time object-oriented applications with statistically periodic loads. It focuses on estimating the instantaneous average load over all the processing elements. The major contribution is the use of explicit stochastic process models for both the loading and the averaging itself. These models are exploited via statistical time-series analysis and Bayesian inference to provide improved average load estimates, and thus to facilitate global load balancing. This thesis explains the distributed algorithms used and provides some optimality results. It also describes the algorithms' implementation and gives performance results from simulation. These results show that our techniques allow more accurate estimation of the global system load ing, resulting in fewer object migration than local methods. Our method is shown to provide superior performance, relative not only to static load-balancing schemes but also to many adaptive methods.

  17. Predicting chaos in memristive oscillator via harmonic balance method.

    PubMed

    Wang, Xin; Li, Chuandong; Huang, Tingwen; Duan, Shukai

    2012-12-01

    This paper studies the possible chaotic behaviors in a memristive oscillator with cubic nonlinearities via harmonic balance method which is also called the method of describing function. This method was proposed to detect chaos in classical Chua's circuit. We first transform the considered memristive oscillator system into Lur'e model and present the prediction of the existence of chaotic behaviors. To ensure the prediction result is correct, the distortion index is also measured. Numerical simulations are presented to show the effectiveness of theoretical results.

  18. Iterative load-balancing method with multigrid level relaxation for particle simulation with short-range interactions

    NASA Astrophysics Data System (ADS)

    Furuichi, Mikito; Nishiura, Daisuke

    2017-10-01

    We developed dynamic load-balancing algorithms for Particle Simulation Methods (PSM) involving short-range interactions, such as Smoothed Particle Hydrodynamics (SPH), Moving Particle Semi-implicit method (MPS), and Discrete Element method (DEM). These are needed to handle billions of particles modeled in large distributed-memory computer systems. Our method utilizes flexible orthogonal domain decomposition, allowing the sub-domain boundaries in the column to be different for each row. The imbalances in the execution time between parallel logical processes are treated as a nonlinear residual. Load-balancing is achieved by minimizing the residual within the framework of an iterative nonlinear solver, combined with a multigrid technique in the local smoother. Our iterative method is suitable for adjusting the sub-domain frequently by monitoring the performance of each computational process because it is computationally cheaper in terms of communication and memory costs than non-iterative methods. Numerical tests demonstrated the ability of our approach to handle workload imbalances arising from a non-uniform particle distribution, differences in particle types, or heterogeneous computer architecture which was difficult with previously proposed methods. We analyzed the parallel efficiency and scalability of our method using Earth simulator and K-computer supercomputer systems.

  19. Mass balances for a biological life support system simulation model

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rumel, John D.

    1987-01-01

    Design decisions to aid the development of future space-based biological life support systems (BLSS) can be made with simulation models. Here the biochemical stoichiometry is developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady-state system with wheat as the sole food source.

  20. Development of the BIOME-BGC model for the simulation of managed Moso bamboo forest ecosystems.

    PubMed

    Mao, Fangjie; Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing

    2016-05-01

    Numerical models are the most appropriate instrument for the analysis of the carbon balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based model BIOME-BGC is widely used in simulation of carbon balance within vegetation, litter and soil of unmanaged ecosystems. For Moso bamboo forests, however, simulations with BIOME-BGC are inaccurate in terms of the growing season and the carbon allocation, due to the oversimplified representation of phenology. Our aim was to improve the applicability of BIOME-BGC for managed Moso bamboo forest ecosystem by implementing several new modules, including phenology, carbon allocation, and management. Instead of the simple phenology and carbon allocation representations in the original version, a periodic Moso bamboo phenology and carbon allocation module was implemented, which can handle the processes of Moso bamboo shooting and high growth during "on-year" and "off-year". Four management modules (digging bamboo shoots, selective cutting, obtruncation, fertilization) were integrated in order to quantify the functioning of managed ecosystems. The improved model was calibrated and validated using eddy covariance measurement data collected at a managed Moso bamboo forest site (Anji) during 2011-2013 years. As a result of these developments and calibrations, the performance of the model was substantially improved. Regarding the measured and modeled fluxes (gross primary production, total ecosystem respiration, net ecosystem exchange), relative errors were decreased by 42.23%, 103.02% and 18.67%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator.

    PubMed

    Roh, S D; Kim, S W; Cho, W S

    2001-10-01

    The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator were accomplished. In the numerical modelling, two models applied to the modelling within the kiln are the combustion chamber model including the mass and energy balance equations for two combustion chambers and 3D thermal model. The combustion chamber model predicts temperature within the kiln, flue gas composition, flux and heat of combustion. Using the combustion chamber model and 3D thermal model, the production-rules for the process simulation can be obtained through interrelation analysis between control and operation variables. The process simulation of the kiln is operated with the production-rules for automatic operation. The process simulation aims to provide fundamental solutions to the problems in incineration process by introducing an online expert control system to provide an integrity in process control and management. Knowledge-based expert control systems use symbolic logic and heuristic rules to find solutions for various types of problems. It was implemented to be a hybrid intelligent expert control system by mutually connecting with the process control systems which has the capability of process diagnosis, analysis and control.

  2. Numerical Modeling of Nanocellular Foams Using Classical Nucleation Theory and Influence Volume Approach

    NASA Astrophysics Data System (ADS)

    Khan, Irfan; Costeux, Stephane; Bunker, Shana; Moore, Jonathan; Kar, Kishore

    2012-11-01

    Nanocellular porous materials present unusual optical, dielectric, thermal and mechanical properties and are thus envisioned to find use in a variety of applications. Thermoplastic polymeric foams show considerable promise in achieving these properties. However, there are still considerable challenges in achieving nanocellular foams with densities as low as conventional foams. Lack of in-depth understanding of the effect of process parameters and physical properties on the foaming process is a major obstacle. A numerical model has been developed to simulate the simultaneous nucleation and bubble growth during depressurization of thermoplastic polymers saturated with supercritical blowing agents. The model is based on the popular ``Influence Volume Approach,'' which assumes a growing boundary layer with depleted blowing agent surrounds each bubble. Classical nucleation theory is used to predict the rate of nucleation of bubbles. By solving the mass balance, momentum balance and species conservation equations for each bubble, the model is capable of predicting average bubble size, bubble size distribution and bulk porosity. The model is modified to include mechanisms for Joule-Thompson cooling during depressurization and secondary foaming. Simulation results for polymer with and without nucleating agents will be discussed and compared with experimental data.

  3. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  4. Projection-free approximate balanced truncation of large unstable systems

    NASA Astrophysics Data System (ADS)

    Flinois, Thibault L. B.; Morgans, Aimee S.; Schmid, Peter J.

    2015-08-01

    In this article, we show that the projection-free, snapshot-based, balanced truncation method can be applied directly to unstable systems. We prove that even for unstable systems, the unmodified balanced proper orthogonal decomposition algorithm theoretically yields a converged transformation that balances the Gramians (including the unstable subspace). We then apply the method to a spatially developing unstable system and show that it results in reduced-order models of similar quality to the ones obtained with existing methods. Due to the unbounded growth of unstable modes, a practical restriction on the final impulse response simulation time appears, which can be adjusted depending on the desired order of the reduced-order model. Recommendations are given to further reduce the cost of the method if the system is large and to improve the performance of the method if it does not yield acceptable results in its unmodified form. Finally, the method is applied to the linearized flow around a cylinder at Re = 100 to show that it actually is able to accurately reproduce impulse responses for more realistic unstable large-scale systems in practice. The well-established approximate balanced truncation numerical framework therefore can be safely applied to unstable systems without any modifications. Additionally, balanced reduced-order models can readily be obtained even for large systems, where the computational cost of existing methods is prohibitive.

  5. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms.

    PubMed

    Mori, Takaharu; Miyashita, Naoyuki; Im, Wonpil; Feig, Michael; Sugita, Yuji

    2016-07-01

    This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. The Aqua-Planet Experiment (APE): CONTROL SST Simulation

    NASA Technical Reports Server (NTRS)

    Blackburn, Michael; Williamson, David L.; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut; hide

    2013-01-01

    Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE.Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies.The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed.The aqua-planet configuration is intended as one component of an experimental hierarchy used to evaluate AGCMs. This comparison does suggest that the range of model behaviour could be better understood and reduced in conjunction with Earth climate simulations. Controlled experimentation is required to explore individual model behavior and investigate convergence of the aqua-planet climate with increasing resolution.

  7. Mathematical modelling of solar ultraviolet radiation induced optical degradation in anodized aluminum

    NASA Technical Reports Server (NTRS)

    Ruley, John D.

    1986-01-01

    In the design of spacecraft for proper thermal balance, accurate information on the long-term optical behavior of the spacecraft outer skin materials is necessary. A phenomenological model for such behavior is given. The underlying principles are explained and some examples are given of the model's fit to actual measurements under simulated Earth-orbit conditions. Comments are given on the applicability of the model to materials testing and thermal modelling.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Atul K.

    The overall objectives of this DOE funded project is to combine scientific and computational challenges in climate modeling by expanding our understanding of the biogeophysical-biogeochemical processes and their interactions in the northern high latitudes (NHLs) using an earth system modeling (ESM) approach, and by adopting an adaptive parallel runtime system in an ESM to achieve efficient and scalable climate simulations through improved load balancing algorithms.

  9. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China

    USDA-ARS?s Scientific Manuscript database

    In this paper we proposed: (1) an algorithm of glacier melt, sublimation/evaporation, accumulation, mass balance and retreat; (2) a dynamic Hydrological Response Unit approach for incorporating the algorithm into the Soil and Water Assessment Tool (SWAT) model; and (3) simulated the transient glacie...

  10. Estimation of Groundwater Recharge in a Japanese Headwater Area by Intensive Collaboration of Field Survey and Modelling Work

    NASA Astrophysics Data System (ADS)

    Yano, S.; Kondo, H.; Tawara, Y.; Yamada, T.; Mori, K.; Yoshida, A.; Tada, K.; Tsujimura, M.; Tokunaga, T.

    2017-12-01

    It is important to understand groundwater systems, including their recharge, flow, storage, discharge, and withdrawal, so that we can use groundwater resources efficiently and sustainably. To examine groundwater recharge, several methods have been discussed based on water balance estimation, in situ experiments, and hydrological tracers. However, few studies have developed a concrete framework for quantifying groundwater recharge rates in an undefined area. In this study, we established a robust method to quantitatively determine water cycles and estimate the groundwater recharge rate by combining the advantages of field surveys and model simulations. We replicated in situ hydrogeological observations and three-dimensional modeling in a mountainous basin area in Japan. We adopted a general-purpose terrestrial fluid-flow simulator (GETFLOWS) to develop a geological model and simulate the local water cycle. Local data relating to topology, geology, vegetation, land use, climate, and water use were collected from the existing literature and observations to assess the spatiotemporal variations of the water balance from 2011 to 2013. The characteristic structures of geology and soils, as found through field surveys, were parameterized for incorporation into the model. The simulated results were validated using observed groundwater levels and resulted in a Nash-Sutcliffe Model Efficiency Coefficient of 0.92. The results suggested that local groundwater flows across the watershed boundary and that the groundwater recharge rate, defined as the flux of water reaching the local unconfined groundwater table, has values similar to the level estimated in the `the lower soil layers on a long-term basis. This innovative method enables us to quantify the groundwater recharge rate and its spatiotemporal variability with high accuracy, which contributes to establishing a foundation for sustainable groundwater management.

  11. Simulation and prediction the impact of climate change into water resources in Bengawan Solo watershed based on CCAM (Conformal Cubic Atmospheric Model) data

    NASA Astrophysics Data System (ADS)

    Sipayung, Sinta B.; Nurlatifah, Amalia; Siswanto, Bambang

    2018-05-01

    Bengawan Solo Watershed is one of the largest watersheds in Indonesia. This watershed flows in many areas both in Central Java and East Java. Therefore, the water resources condition greatly affects many people. This research will be conducted on prediction of climate change effect on water resources condition in terms of rainfall conditions in Bengawan Solo River Basin. The goal of this research is to know and predict the climate change impact on water resources based on CCAM (Conformal Cubic Atmosphere Model) with downscaling baseline (historical) model data from 1949 to 2005 and RCP 4.5 from 2006 to 2069. The modeling data was validated with in-situ data (measurement data). To analyse the water availability condition in Bengawan Solo Watershed, the simulation of river flow and water balance condition were done in Bengawan Solo River. Simulation of river flow and water balance conditions were done with ArcSWAT model using climate data from CCAM, DEM SRTM 90 meter, soil type, and land use data. The results of this simulation indicate there is (i) The CCAM data itself after validation has a pretty good result when compared to the insitu data. Based on CCAM simulation results, it is predicted that in 2040-2069 rainfall in Bengawan Solo River Basin will decrease, to a maximum of only about 1 mm when compared to 1971-2000. (ii) The CCAM rainfall prediction itself shows that rainfall in Bengawan Solo River basin will decline until 2069 although the decline itself is not significant and tends to be negligible (rainfall is considered unchanged) (iii) Both in the DJF and JJA seasons, precipitation is predicted to decline as well despite the significant decline. (iv) The river flow simulation show that the water resources in Bengawan Solo River did not change significantly. This event occurred because the rainfall also did not change greatly and close to 0 mm/month.

  12. Streamlining DOD Acquisitions: Balancing Schedule with Complexity

    DTIC Science & Technology

    2006-09-01

    from them has a distinct industrial flavor: streamlined processes, benchmarking, and business models . The requirements generation com- munity led by... model ), and the Department of the Navy assumed program lead. [Stable Program Inputs (-)] By 1984, the program goals included delivery of 913 V-22...they subsequently specified a crew of two. [Stable Program Input (-)] The contractor team won in a “fly-off” solely via modeling and simulation

  13. Disentangling residence time and temperature sensitivity of microbial decomposition in a global soil carbon model

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.-F.; Pitman, A. J.; Abramowitz, G.

    2014-03-01

    Recent studies have identified the first-order parameterization of microbial decomposition as a major source of uncertainty in simulations and projections of the terrestrial carbon balance. Here, we use a reduced complexity model representative of the current state-of-the-art parameterization of soil organic carbon decomposition. We undertake a systematic sensitivity analysis to disentangle the effect of the time-invariant baseline residence time (k) and the sensitvity of microbial decomposition to temperature (Q10) on soil carbon dynamics at regional and global scales. Our simulations produce a range in total soil carbon at equilibrium of ~ 592 to 2745 Pg C which is similar to the ~ 561 to 2938 Pg C range in pre-industrial soil carbon in models used in the fifth phase of the Coupled Model Intercomparison Project. This range depends primarily on the value of k, although the impact of Q10 is not trivial at regional scales. As climate changes through the historical period, and into the future, k is primarily responsible for the magnitude of the response in soil carbon, whereas Q10 determines whether the soil remains a sink, or becomes a source in the future mostly by its effect on mid-latitudes carbon balance. If we restrict our simulations to those simulating total soil carbon stocks consistent with observations of current stocks, the projected range in total soil carbon change is reduced by 42% for the historical simulations and 45% for the future projections. However, while this observation-based selection dismisses outliers it does not increase confidence in the future sign of the soil carbon feedback. We conclude that despite this result, future estimates of soil carbon, and how soil carbon responds to climate change should be constrained by available observational data sets.

  14. The Charge-Balancing Role of Calcium and Alkali Ions in Per-Alkaline Aluminosilicate Glasses.

    PubMed

    Thomsen, René M; Skibsted, Jørgen; Yue, Yuanzheng

    2018-03-29

    The structural arrangement of alkali-modified calcium aluminosilicate glasses has implications for important properties of these glasses in a wide range of industrial applications. The roles of sodium and potassium and their competition with calcium as network modifiers in peralkaline aluminosilicate glasses have been investigated by 27 Al and 29 Si MAS NMR spectroscopy. The 29 Si MAS NMR spectra are simulated using two models for distributing Al in the silicate glass network. One model assumes a hierarchical, quasi-heterogeneous aluminosilicate network, whereas the other is based on differences in relative lattice energies between Si-O-Si, Al-O-Al, and Si-O-Al linkages. A systematic divergence between these simulations and the experimental 29 Si NMR spectra is observed as a function of the sodium content exceeding that required for stoichiometric charge-balancing of the negatively charged AlO 4 tetrahedra. Similar correlations between simulations and experimental 29 Si NMR spectra cannot be made for the excess calcium content. Moreover, systematic variations in the 27 Al isotropic chemical shifts and the second-order quadrupole effect parameters, derived from the 27 Al MAS NMR spectra, are reported as a function of the SiO 2 content. These observations strongly suggest that alkali ions preferentially charge-balance AlO 4 3- as compared to alkaline earth (calcium) ions. In contrast, calcium dominates over the alkali ions in the formation of nonbridging oxygens associated with the SiO 4 tetrahedra.

  15. Glide performance and aerodynamics of non-equilibrium glides in northern flying squirrels (Glaucomys sabrinus)

    PubMed Central

    Bahlman, Joseph W.; Swartz, Sharon M.; Riskin, Daniel K.; Breuer, Kenneth S.

    2013-01-01

    Gliding is an efficient form of travel found in every major group of terrestrial vertebrates. Gliding is often modelled in equilibrium, where aerodynamic forces exactly balance body weight resulting in constant velocity. Although the equilibrium model is relevant for long-distance gliding, such as soaring by birds, it may not be realistic for shorter distances between trees. To understand the aerodynamics of inter-tree gliding, we used direct observation and mathematical modelling. We used videography (60–125 fps) to track and reconstruct the three-dimensional trajectories of northern flying squirrels (Glaucomys sabrinus) in nature. From their trajectories, we calculated velocities, aerodynamic forces and force coefficients. We determined that flying squirrels do not glide at equilibrium, and instead demonstrate continuously changing velocities, forces and force coefficients, and generate more lift than needed to balance body weight. We compared observed glide performance with mathematical simulations that use constant force coefficients, a characteristic of equilibrium glides. Simulations with varying force coefficients, such as those of live squirrels, demonstrated better whole-glide performance compared with the theoretical equilibrium state. Using results from both the observed glides and the simulation, we describe the mechanics and execution of inter-tree glides, and then discuss how gliding behaviour may relate to the evolution of flapping flight. PMID:23256188

  16. Glide performance and aerodynamics of non-equilibrium glides in northern flying squirrels (Glaucomys sabrinus).

    PubMed

    Bahlman, Joseph W; Swartz, Sharon M; Riskin, Daniel K; Breuer, Kenneth S

    2013-03-06

    Gliding is an efficient form of travel found in every major group of terrestrial vertebrates. Gliding is often modelled in equilibrium, where aerodynamic forces exactly balance body weight resulting in constant velocity. Although the equilibrium model is relevant for long-distance gliding, such as soaring by birds, it may not be realistic for shorter distances between trees. To understand the aerodynamics of inter-tree gliding, we used direct observation and mathematical modelling. We used videography (60-125 fps) to track and reconstruct the three-dimensional trajectories of northern flying squirrels (Glaucomys sabrinus) in nature. From their trajectories, we calculated velocities, aerodynamic forces and force coefficients. We determined that flying squirrels do not glide at equilibrium, and instead demonstrate continuously changing velocities, forces and force coefficients, and generate more lift than needed to balance body weight. We compared observed glide performance with mathematical simulations that use constant force coefficients, a characteristic of equilibrium glides. Simulations with varying force coefficients, such as those of live squirrels, demonstrated better whole-glide performance compared with the theoretical equilibrium state. Using results from both the observed glides and the simulation, we describe the mechanics and execution of inter-tree glides, and then discuss how gliding behaviour may relate to the evolution of flapping flight.

  17. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments

    USGS Publications Warehouse

    Potter, N.J.; Zhang, L.; Milly, P.C.D.; McMahon, T.A.; Jakeman, A.J.

    2005-01-01

    An important factor controlling catchment‐scale water balance is the seasonal variation of climate. The aim of this study is to investigate the effect of the seasonal distributions of water and energy, and their interactions with the soil moisture store, on mean annual water balance in Australia at catchment scales using a stochastic model of soil moisture balance with seasonally varying forcing. The rainfall regime at 262 catchments around Australia was modeled as a Poisson process with the mean storm arrival rate and the mean storm depth varying throughout the year as cosine curves with annual periods. The soil moisture dynamics were represented by use of a single, finite water store having infinite infiltration capacity, and the potential evapotranspiration rate was modeled as an annual cosine curve. The mean annual water budget was calculated numerically using a Monte Carlo simulation. The model predicted that for a given level of climatic aridity the ratio of mean annual evapotranspiration to rainfall was larger where the potential evapotranspiration and rainfall were in phase, that is, in summer‐dominant rainfall catchments, than where they were out of phase. The observed mean annual evapotranspiration ratios have opposite results. As a result, estimates of mean annual evapotranspiration from the model compared poorly with observational data. Because the inclusion of seasonally varying forcing alone was not sufficient to explain variability in the mean annual water balance, other catchment properties may play a role. Further analysis showed that the water balance was highly sensitive to the catchment‐scale soil moisture capacity. Calibrations of this parameter indicated that infiltration‐excess runoff might be an important process, especially for the summer‐dominant rainfall catchments; most similar studies have shown that modeling of infiltration‐excess runoff is not required at the mean annual timescale.

  18. Hydrogeochemical Investigation of Recharge Pathways to Intermediate and Regional Groundwater in Canon de Valle and Technical Area 16, Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Brendan W.

    In aquifers consisting of fractured or porous igneous rocks, as well as conglomerate and sandstone products of volcanic formations, silicate minerals actively dissolve and precipitate (Eby, 2004; Eriksson, 1985; Drever, 1982). Dissolution of hydrated volcanic glass is also known to influence the character of groundwater to which it is exposed (White et al., 1980). Hydrochemical evolution, within saturated zones of volcanic formations, is modeled here as a means to resolve the sources feeding a perched groundwater zone. By observation of solute mass balances in groundwater, together with rock chemistry, this study characterizes the chemical weathering processes active along recharge pathwaysmore » in a mountain front system. Inverse mass balance modeling, which accounts for mass fluxes between solid phases and solution, is used to contrive sets of quantitative reactions that explain chemical variability of water between sampling points. Model results are used, together with chloride mass balance estimation, to evaluate subsurface mixing scenarios generated by further modeling. Final model simulations estimate contributions of mountain block and local recharge to various contaminated zones.« less

  19. Design, calibration and testing of a force balance for a hypersonic shock tunnel

    NASA Astrophysics Data System (ADS)

    Vadassery, Pravin

    The forces acting on a flight vehicle are critical for determining its performance. Of particular interest is the hypersonic regime. Force measurements are much more complex in hypersonic flows, where those speeds are simulated in shock tunnels. A force balance for such facilities contains sensitive gages that measure stress waves and ultimately determine the different components of force acting on the model. An external force balance was designed and fabricated for the UTA Hypersonic shock tunnel to measure drag at Mach 10. Static and dynamic calibrations were performed to find the transfer function of the system. Forces were recovered using a deconvolution procedure. To validate the force balance, experiments were conducted on a blunt cone. The measured forces were compared to Newtonian theory.

  20. Development of a two-dimensional skin friction balance nulling circuit using multivariable control theory

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Patek, Stephen D.

    1988-01-01

    Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.

  1. Quantifying agricultural drought impacts using soil moisture model and drought indices in South Korea

    NASA Astrophysics Data System (ADS)

    Nam, W. H.; Bang, N.; Hong, E. M.; Pachepsky, Y. A.; Han, K. H.; Cho, H.; Ok, J.; Hong, S. Y.

    2017-12-01

    Agricultural drought is defined as a combination of abnormal deficiency of precipitation, increased crop evapotranspiration demands from high-temperature anomalies, and soil moisture deficits during the crop growth period. Soil moisture variability and their spatio-temporal trends is a key component of the hydrological balance, which determines the crop production and drought stresses in the context of agriculture. In 2017, South Korea has identified the extreme drought event, the worst in one hundred years according to the South Korean government. The objective of this study is to quantify agricultural drought impacts using observed and simulated soil moisture, and various drought indices. A soil water balance model is used to simulate the soil water content in the crop root zone under rain-fed (no irrigation) conditions. The model used includes physical process using estimated effective rainfall, infiltration, redistribution in soil water zone, and plant water uptake in the form of actual crop evapotranspiration. Three widely used drought indices, including the Standardized Precipitation Index (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI), and the Self-Calibrated Palmer Drought Severity Index (SC-PDSI) are compared with the observed and simulated soil moisture in the context of agricultural drought impacts. These results demonstrated that the soil moisture model could be an effective tool to provide improved spatial and temporal drought monitoring for drought policy.

  2. Sport simulation as a form of implicit motor training in a geriatric athlete after stroke: a case report.

    PubMed

    Young, Sonia N; VanWye, William R; Wallmann, Harvey W

    2018-06-25

    To describe the use of sport simulation activities as a form of implicit motor learning training with a geriatric former athlete following a stroke. An active 76-year-old former professional male softball player presented to outpatient physical therapy with medical history of right stroke with left hemiparesis 2 weeks following onset of symptoms of impaired balance, coordination, gait, and motor planning. Initial physical therapy included gait, balance, and coordination training. Additional sport-related balance and coordination activities were later added to the treatment plan. After approximately 3 weeks of treatment, the patient was able to return to work and had dramatically improved balance, coordination, and gait with sport simulation activities. Implicit motor learning techniques were incorporated through sport and job task simulation activities along with task-oriented neuromuscular reeducation. The patient demonstrated improvements with gait, balance, gross motor function, and decreased fall risk.

  3. Effect of Horseback Riding Simulation Machine Training on Trunk Balance and Gait of Chronic Stroke Patients

    PubMed Central

    Kim, Hyungguen; Her, Jin Gang; Ko, Jooyeon

    2014-01-01

    [Purpose] The purpose of this study was to assess the effect of horseback riding simulation machine training on trunk balance and gait of patients with chronic stroke. [Subjects and Methods] The subjects were 20 patients hospitalized for treatment after being diagnosed with stroke. Horseback riding simulation training was provided for 30 minutes, 5 times a week, for 6 weeks. Trunk balance was assessed using the Trunk Impairment Scale (TIS) and a balance measuring device (Biorescue, RM ingenierie, France), and gait ability was measured using the Functional Gait Assessment (FGA) and a gait analyzer (GAITRite, CIR system Inc., USA). [Results] There were significant changes in movement area, distance and velocity of body sway as measured by the TIS and the balance measuring device, and in gait velocity, cadence, stride length and double limb support as measured by the FGA and gait analyzer. [Conclusion] Horseback riding simulation training improved the trunk balance and gait of chronic stroke patients. This present study provides preliminary objective data for future research, and useful clinical information for physical therapists using horseback riding simulation machines as a treatment modality for patients with chronic stroke. PMID:24567670

  4. Using an integrated approach between hydrological and crop models to assess surface water balance in ungauged basin

    NASA Astrophysics Data System (ADS)

    Negm, Amro; D'Agostino, Daniela; Lamaddalena, Nicola; Bacchi, Baldassare; Iacobellis, Vito

    2013-04-01

    In the last decades hydrological models have been extensively used in research fields in order to improve water balance assessment and to support integrated water resources management by quantifying the soil-plant-atmosphere interface. Due to complexity of the physical system, the mathematical models can generally represent and simulate only the basic components of the system. On the other hand, calibration and validation processes of the hydrological models in ungauged basins are still complex tasks, due to the lack of reliable methods and the uncertainty in representing the hydrological processes and the physical features of a basin. Therefore, in order to practically apply model's results, there is a continuous needing to assess their accuracy through the calibration and validation processes at gauged sites. In this context, an integrated approach is presented that couples a semi-distributed hydrological model called Distributed model for Runoff, Evapotranspiration, and Antecedent soil Moisture simulation (DREAM) with the FAO's Crop Water Productivity Simulation Model (AQUACROP). DREAM uses rainfall, Leaf Area Index (LAI) and potential evapotranspiration as inputs and streamflow, infiltration, real evapotranspiration, subsurface flow and deep percolation as outputs. Soil moisture content is accounted for as an internal variable. The simulations were done for Lama San Giorgio, a basin located in a wadi area in the central part of Apulia region (Southern Italy) for the period 2001-2005 and the meadow is mainly covered by durum wheat. According to ACLA2 project survey (Caliandro et al., 2005), the depth of the soil upper layers is about 80 cm. Calibration and validation of the DREAM model were carried out by assessing an accurate estimation of soil water content using AQUACROP model which is a more detailed model in terms of soil water dynamics. Instead, one of the most significant features of DREAM model is the evaluation of lateral flow exchanges by means of a redistribution function weighted by the wetness index. The calibration process was done by adjusting a specific parameter of the water balance, the subsurface flow (through a subsurface flow coefficient C), by exploiting the results of soil moisture content provided by AQUACROP model. Then, the outputs of daily soil water content obtained by DREAM model were compared with the estimations of soil behaviour provided by the AQUACROP model. The simulations were done for a certain number of cells in the study area, for different years. The chosen factors were used to obtain an average value of C in time and space, which in this study is equal to 0.5. Finally, the results of the DREAM model in terms of evapotranspiration provided a satisfactory approximation of those obtained by AQUACROP model, while the Canopy Cover, an output of AQUACROP, was compared with the LAI used as input for the DREAM model.

  5. An economic model of friendship and enmity for measuring social balance in networks

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Min; Shin, Euncheol; You, Seungil

    2017-12-01

    We propose a dynamic economic model of networks where agents can be friends or enemies with one another. This is a decentralized relationship model in that agents decide whether to change their relationships so as to minimize their imbalanced triads. In this model, there is a single parameter, which we call social temperature, that captures the degree to which agents care about social balance in their relationships. We show that the global structure of relationship configuration converges to a unique stationary distribution. Using this stationary distribution, we characterize the maximum likelihood estimator of the social temperature parameter. Since the estimator is computationally challenging to calculate from real social network datasets, we provide a simple simulation algorithm and verify its performance with real social network datasets.

  6. Hydrological Modeling of the Jiaoyi Watershed (China) Using HSPF Model

    PubMed Central

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie

    2014-01-01

    A watershed hydrological model, hydrological simulation program-Fortran (HSPF), was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001–2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R 2), and the relative error (RE). The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin. PMID:25013863

  7. Thermal regime of an ice-wedge polygon landscape near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Daanen, R. P.; Liljedahl, A. K.

    2017-12-01

    Tundra landscapes are changing all over the circumpolar Arctic due to permafrost degradation. Soil cracking and infilling of meltwater repeated over thousands of years form ice wedges, which produce the characteristic surface pattern of ice-wedge polygon tundra. Rapid top-down thawing of massive ice leads to differential ground subsidence and sets in motion a series of short- and long-term hydrological and ecological changes. Subsequent responses in the soil thermal regime drive further permafrost degradation and/or stabilization. Here we explore the soil thermal regime of an ice-wedge polygon terrain near Utqiagvik (formerly Barrow) with the Water balance Simulation Model (WaSiM). WaSiM is a hydro-thermal model developed to simulate the water balance at the watershed scale and was recently refined to represent the hydrological processes unique to cold climates. WaSiM includes modules that represent surface runoff, evapotranspiration, groundwater, and soil moisture, while active layer freezing and thawing is based on a direct coupling of hydrological and thermal processes. A new snow module expands the vadose zone calculations into the snow pack, allowing the model to simulate the snow as a porous medium similar to soil. Together with a snow redistribution algorithm based on local topography, this latest addition to WaSiM makes simulation of the ground thermal regime much more accurate during winter months. Effective representation of ground temperatures during winter is crucial in the simulation of the permafrost thermal regime and allows for refined predictions of future ice-wedge degradation or stabilization.

  8. Role of meteorology in simulating methane seasonal cycle and growth rate

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Patra, P. K.; Ishijima, K.; Morimoto, S.; Aoki, S.; Nakazawa, T.

    2012-12-01

    Methane (CH4) is the second most important anthropogenically produced greenhouse gas whose radiative effect is comparable to that of carbon dioxide since the preindustrial time. Methane also contributes to formation of tropospheric ozone and water vapor in the stratosphere, further increasing its importance to the Earth's radiative balance. In the present study, model simulation of CH4 for three different emission scenarios has been conducted using the CCSR/NIES/FRCGC Atmospheric General Circulation Model (AGCM) based Chemistry Transport Model (ACTM) with and without nudging of meteorological parameters for the period of 1981-2011. The model simulations are compared with measurements at monthly timescale at surface monitoring stations. We show the overall trends in CH4 growth rate and seasonal cycle at most measurement sites can be fairly successfully modeled by using existing knowledge of CH4 flux trends and seasonality. Detailed analysis reveals the model simulation without nudging has greater seasonal cycle amplitude compared to observation as well as the model simulation with nudging. The growth rate is slightly overestimated for the model simulation without nudging. For better representation of regional/global flux distribution pattern and strength in the future, we are exploring various dynamical and chemical aspects in the forward model with and without nudging.

  9. Winter wheat: A model for the simulation of growth and yield in winter wheat

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Smika, D. E.; Black, A. L.; Willis, W. O.; Bauer, A. (Principal Investigator)

    1981-01-01

    The basic ideas and constructs for a general physical/physiological process level winter wheat simulation model are documented. It is a materials balance model which calculates daily increments of photosynthate production and respiratory losses in the crop canopy. The partitioning of the resulting dry matter to the active growing tissues in the plant each day, transpiration and the uptake of nitrogen from the soil profile are simulated. It incorporates the RHIZOS model which simulates, in two dimensions, the movement of water, roots, and soluble nutrients through the soil profile. It records the time of initiation of each of the plant organs. These phenological events are calculated from temperature functions with delays resulting from physiological stress. Stress is defined mathematically as an imbalance in the metabolite supply; demand ratio. Physiological stress is also the basis for the calculation of rates of tiller and floret abortion. Thus, tillering and head differentiation are modeled as the resulants of the two processes, morphogenesis and abortion, which may be occurring simulaneously.

  10. Multi-A Graph Patrolling and Partitioning

    NASA Astrophysics Data System (ADS)

    Elor, Y.; Bruckstein, A. M.

    2012-12-01

    We introduce a novel multi agent patrolling algorithm inspired by the behavior of gas filled balloons. Very low capability ant-like agents are considered with the task of patrolling an unknown area modeled as a graph. While executing the proposed algorithm, the agents dynamically partition the graph between them using simple local interactions, every agent assuming the responsibility for patrolling his subgraph. Balanced graph partition is an emergent behavior due to the local interactions between the agents in the swarm. Extensive simulations on various graphs (environments) showed that the average time to reach a balanced partition is linear with the graph size. The simulations yielded a convincing argument for conjecturing that if the graph being patrolled contains a balanced partition, the agents will find it. However, we could not prove this. Nevertheless, we have proved that if a balanced partition is reached, the maximum time lag between two successive visits to any vertex using the proposed strategy is at most twice the optimal so the patrol quality is at least half the optimal. In case of weighted graphs the patrol quality is at least (1)/(2){lmin}/{lmax} of the optimal where lmax (lmin) is the longest (shortest) edge in the graph.

  11. Modeling eutrophic lakes: From mass balance laws to ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Marasco, Addolorata; Ferrara, Luciano; Romano, Antonio

    Starting from integral balance laws, a model based on nonlinear ordinary differential equations (ODEs) describing the evolution of Phosphorus cycle in a lake is proposed. After showing that the usual homogeneous model is not compatible with the mixture theory, we prove that an ODEs model still holds but for the mean values of the state variables provided that the nonhomogeneous involved fields satisfy suitable conditions. In this model the trophic state of a lake is described by the mean densities of Phosphorus in water and sediments, and phytoplankton biomass. All the quantities appearing in the model can be experimentally evaluated. To propose restoration programs, the evolution of these state variables toward stable steady state conditions is analyzed. Moreover, the local stability analysis is performed with respect to all the model parameters. Some numerical simulations and a real application to lake Varese conclude the paper.

  12. A dynamical model for describing behavioural interventions for weight loss and body composition change

    PubMed Central

    Navarro-Barrientos, J.-Emeterio; Rivera, Daniel E.; Collins, Linda M.

    2011-01-01

    We present a dynamical model incorporating both physiological and psychological factors that predicts changes in body mass and composition during the course of a behavioral intervention for weight loss. The model consists of a three-compartment energy balance integrated with a mechanistic psychological model inspired by the Theory of Planned Behavior (TPB). The latter describes how important variables in a behavioural intervention can influence healthy eating habits and increased physical activity over time. The novelty of the approach lies in representing the behavioural intervention as a dynamical system, and the integration of the psychological and energy balance models. Two simulation scenarios are presented that illustrate how the model can improve the understanding of how changes in intervention components and participant differences affect outcomes. Consequently, the model can be used to inform behavioural scientists in the design of optimised interventions for weight loss and body composition change. PMID:21673826

  13. An eleven-year validation of a physically-based distributed dynamic ecohydorological model tRIBS+VEGGIE: Walnut Gulch Experimental Watershed

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Bisht, G.; Ivanov, V. Y.; Bras, R. L.

    2008-12-01

    A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was applied to the semiarid Walnut Gulch Experimental Watershed in Arizona. The physically-based, distributed nature of the coupled model allows for parameterization and simulation of watershed vegetation-water-energy dynamics on timescales varying from hourly to interannual. The model also allows for explicit spatial representation of processes that vary due to complex topography, such as lateral redistribution of moisture and partitioning of radiation with respect to aspect and slope. Model parameterization and forcing was conducted using readily available databases for topography, soil types, and land use cover as well as the data from network of meteorological stations located within the Walnut Gulch watershed. In order to test the performance of the model, three sets of simulations were conducted over an 11 year period from 1997 to 2007. Two simulations focus on heavily instrumented nested watersheds within the Walnut Gulch basin; (i) Kendall watershed, which is dominated by annual grasses; and (ii) Lucky Hills watershed, which is dominated by a mixture of deciduous and evergreen shrubs. The third set of simulations cover the entire Walnut Gulch Watershed. Model validation and performance were evaluated in relation to three broad categories; (i) energy balance components: the network of meteorological stations were used to validate the key energy fluxes; (ii) water balance components: the network of flumes, rain gauges and soil moisture stations installed within the watershed were utilized to validate the manner in which the model partitions moisture; and (iii) vegetation dynamics: remote sensing products from MODIS were used to validate spatial and temporal vegetation dynamics. Model results demonstrate satisfactory spatial and temporal agreement with observed data, giving confidence that key ecohydrological processes can be adequately represented for future applications of tRIBS+VEGGIE in regional modeling of land-atmosphere interactions.

  14. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wei, E-mail: yangwei861212@126.com; Zhou, Qianhong; Dong, Zhiwei

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N{sub 2}, O{sub 2}, and air, as well as femtosecond laser filament discharge in dry andmore » humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.« less

  15. Modelling of groundwater recharge and drought statistics within the framework of a climate impact study in a Mediterranean catchment (Thau Lagoon, France)

    NASA Astrophysics Data System (ADS)

    Herrmann, Frank; Baghdadi, Nicolas; Deidda, Roberto; La Jeunesse, Isabelle; Ludwig, Ralf; Sellami, Haykel; Vereecken, Harry; Wendland, Frank

    2014-05-01

    According to current climate projections until the year 2100, Mediterranean countries are likely to be at high risk for decreasing groundwater recharge during the hydrological winter half year as well as increasing drought severity and duration during summer. Thus, the irrigation needs of agricultural land might increase during the vegetation period and will have to be covered regionally specific partially from groundwater resources. This issue seems to be equally important to be investigated compared to the possible future change of the river discharge regime under changed climate conditions. Within the framework of the EU-founded CLIMB project (Climate Induced Changes on the Hydrology of Mediterranean Basins) the water balance model mGROWA (Herrmann, 2013) was applied in order to simulate the water balance within the Thau Lagoon catchment (France) under present and possible future climate conditions. The model was originally developed in order to simulate actual evapotranspiration and runoff components (e.g. groundwater recharge) in daily time-steps and with high spatial resolution (50 m grid). Area-differentiated groundwater recharge and soil water content can be simulated consistently using mGROWA because of an integrated multi-layer soil water module. In the framework of CLIMB, this module has been extended by routines to calculate drought statistics. The mGROWA-model will be briefly introduced and its application to the Thau Lagoon catchment will be presented. At first water balance was simulated for the reference period (1995-2010) based on observed climate data. Special attention will be paid to the simulated temporal variable water content in the root zone and thus to percolation water fluxes and drought statistics. Second, a possible bandwidth of future groundwater recharge (until 2070) is forecasted using climate data from a Regional-Climate-Modell-ensemble (RCM; Deidda, 2013). Three of the four RCM-mGROWA combinations indicate decreasing groundwater recharge up to 25 mm/a until 2070 compared to the reference period 1971-2000, whereas one RCM-mGROWA combination projects a nearly constant level of groundwater recharge for the future. The calculated drought indices however indicate that the frequency and duration of droughts will increase until 2070. References: Deidda R., M. Marrocu, G. Caroletti, G. Pusceddu, A. Langousis, V. Lucarini, M. Puliga, and A. Speranza (2013), Regional climate models' performance in representing precipitation and temperature over selected Mediterranean areas, Hydrology and Earth System Sciences, 17, 5041-5059, doi:10.5194/hess-17-5041-2013 Herrmann, F., Chen, S., Heidt, L., Elbracht, J., Engel, N., Kunkel, R., Müller, U., Röhm, H., Vereecken, H., Wendland, F., 2013. Zeitlich und räumlich hochaufgelöste flächendifferenzierte Simulation des Landschaftswasserhaushalts in Niedersachsen mit dem Model mGROWA. Hydrologie und Wasserbewirtschaftung, 57(5): 206-224.

  16. MODFLOW-LGR-Modifications to the streamflow-routing package (SFR2) to route streamflow through locally refined grids

    USGS Publications Warehouse

    Mehl, Steffen W.; Hill, Mary C.

    2011-01-01

    This report documents modifications to the Streamflow-Routing Package (SFR2) to route streamflow through grids constructed using the multiple-refined-areas capability of shared node Local Grid Refinement (LGR) of MODFLOW-2005. MODFLOW-2005 is the U.S. Geological Survey modular, three-dimensional, finite-difference groundwater-flow model. LGR provides the capability to simulate groundwater flow by using one or more block-shaped, higher resolution local grids (child model) within a coarser grid (parent model). LGR accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundaries. Compatibility with SFR2 allows for streamflow routing across grids. LGR can be used in two- and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems.

  17. Visualization of the Eastern Renewable Generation Integration Study: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruchalla, Kenny; Novacheck, Joshua; Bloom, Aaron

    The Eastern Renewable Generation Integration Study (ERGIS), explores the operational impacts of the wide spread adoption of wind and solar photovoltaics (PV) resources in the U.S. Eastern Interconnection and Quebec Interconnection (collectively, EI). In order to understand some of the economic and reliability challenges of managing hundreds of gigawatts of wind and PV generation, we developed state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NREL's high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated withmore » evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions. state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NRELs high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated with evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions.« less

  18. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zuwei; Zhao, Haibo, E-mail: klinsmannzhb@163.com; Zheng, Chuguang

    2015-01-15

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule providesmore » a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are demonstrated in a physically realistic Brownian coagulation case. The computational accuracy is validated with benchmark solution of discrete-sectional method. The simulation results show that the comprehensive approach can attain very favorable improvement in cost without sacrificing computational accuracy.« less

  19. Nonlinear dynamic macromodeling techniques for audio systems

    NASA Astrophysics Data System (ADS)

    Ogrodzki, Jan; Bieńkowski, Piotr

    2015-09-01

    This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.

  20. Optimal Management of Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, I. H.; Bielicki, J. M.; Buscheck, T. A.

    2015-12-01

    Geothermal energy technologies use the constant heat flux from the subsurface in order to produce heat or electricity for societal use. As such, a geothermal energy system is not inherently variable, like systems based on wind and solar resources, and an operator can conceivably control the rate at which heat is extracted and used directly, or converted into a commodity that is used. Although geothermal heat is a renewable resource, this heat can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal (Rybach, 2003). For heat extraction used for commodities that are sold on the market, sustainability entails balancing the rate at which the reservoir renews with the rate at which heat is extracted and converted into profit, on a net present value basis. We present a model that couples natural resource economic approaches for managing renewable resources with simulations of geothermal reservoir performance in order to develop an optimal heat mining strategy that balances economic gain with the performance and renewability of the reservoir. Similar optimal control approaches have been extensively studied for renewable natural resource management of fisheries and forests (Bonfil, 2005; Gordon, 1954; Weitzman, 2003). Those models determine an optimal path of extraction of fish or timber, by balancing the regeneration of stocks of fish or timber that are not harvested with the profit from the sale of the fish or timber that is harvested. Our model balances the regeneration of reservoir temperature with the net proceeds from extracting heat and converting it to electricity that is sold to consumers. We used the Non-isothermal Unconfined-confined Flow and Transport (NUFT) model (Hao, Sun, & Nitao, 2011) to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are incorporated into the natural resource economics model to determine production strategies that maximize net present value given the performance of the geothermal resource.

  1. Digital computer program for generating dynamic turbofan engine models (DIGTEM)

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Krosel, S. M.; Szuch, J. R.; Westerkamp, E. J.

    1983-01-01

    This report describes DIGTEM, a digital computer program that simulates two spool, two-stream turbofan engines. The turbofan engine model in DIGTEM contains steady-state performance maps for all of the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. Altogether there are 16 state variables and state equations. DIGTEM features a backward-differnce integration scheme for integrating stiff systems. It trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off-design points and iterates to a balanced engine condition. Transients can also be run. They are generated by defining controls as a function of time (open-loop control) in a user-written subroutine (TMRSP). DIGTEM has run on the IBM 370/3033 computer using implicit integration with time steps ranging from 1.0 msec to 1.0 sec. DIGTEM is generalized in the aerothermodynamic treatment of components.

  2. Particle-in-cell and global simulations of α to γ transition in atmospheric pressure Penning-dominated capacitive discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Chabert, P.; Lazzaroni, C.

    2014-06-01

    Atmospheric pressure radio-frequency (rf) capacitive micro-discharges are of interest due to emerging applications, especially in the bio-medical field. A previous global model did not consider high-power phenomena such as sheath multiplication, thus limiting its applicability to the lower power range. To overcome this, we use one-dimensional particle-in-cell (PIC) simulations of atmospheric He/0.1% N2 capacitive discharges over a wide range of currents and frequencies to guide the development of a more general global model which is also valid at higher powers. The new model includes sheath multiplication and two classes of electrons: the higher temperature ‘hot’ electrons associated with the sheaths, and the cooler ‘warm’ electrons associated with the bulk. The electric field and the electron power balance are solved analytically to determine the time-varying hot and warm temperatures and the effective rate coefficients. The particle balance equations are integrated numerically to determine the species densities. The model and PIC results are compared, showing reasonable agreement over the range of currents and frequencies studied. They indicate a transition from an α mode at low power characterized by relatively high electron temperature Te with a near uniform profile to a γ mode at high power with a Te profile strongly depressed in the bulk plasma. The transition is accompanied by an increase in density and a decrease in sheath widths. The current and frequency scalings of the model are confirmed by the PIC simulations.

  3. Indicators of Arctic Sea Ice Bistability in Climate Model Simulations and Observations

    DTIC Science & Technology

    2014-09-30

    ultimately developed a novel mathematical method to solve the system of equations involving the addition of a numerical “ ghost ” layer, as described in the...balance models ( EBMs ) and (ii) seasonally-varying single-column models (SCMs). As described in Approach item #1, we developed an idealized model that...includes both latitudinal and seasonal variations (Fig. 1). The model reduces to a standard EBM or SCM as limiting cases in the parameter space, thus

  4. Surfzone alongshore advective accelerations: observations and modeling

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Raubenheimer, B.; Elgar, S.

    2014-12-01

    The sources, magnitudes, and impacts of non-linear advective accelerations on alongshore surfzone currents are investigated with observations and a numerical model. Previous numerical modeling results have indicated that advective accelerations are an important contribution to the alongshore force balance, and are required to understand spatial variations in alongshore currents (which may result in spatially variable morphological change). However, most prior observational studies have neglected advective accelerations in the alongshore force balance. Using a numerical model (Delft3D) to predict optimal sensor locations, a dense array of 26 colocated current meters and pressure sensors was deployed between the shoreline and 3-m water depth over a 200 by 115 m region near Duck, NC in fall 2013. The array included 7 cross- and 3 alongshore transects. Here, observational and numerical estimates of the dominant forcing terms in the alongshore balance (pressure and radiation-stress gradients) and the advective acceleration terms will be compared with each other. In addition, the numerical model will be used to examine the force balance, including sources of velocity gradients, at a higher spatial resolution than possible with the instrument array. Preliminary numerical results indicate that at O(10-100 m) alongshore scales, bathymetric variations and the ensuing alongshore variations in the wave field and subsequent forcing are the dominant sources of the modeled velocity gradients and advective accelerations. Additional simulations and analysis of the observations will be presented. Funded by NSF and ASDR&E.

  5. Computer software tool REALM for sustainable water allocation and management.

    PubMed

    Perera, B J C; James, B; Kularathna, M D U

    2005-12-01

    REALM (REsource ALlocation Model) is a generalised computer simulation package that models harvesting and bulk distribution of water resources within a water supply system. It is a modeling tool, which can be applied to develop specific water allocation models. Like other water resource simulation software tools, REALM uses mass-balance accounting at nodes, while the movement of water within carriers is subject to capacity constraints. It uses a fast network linear programming algorithm to optimise the water allocation within the network during each simulation time step, in accordance with user-defined operating rules. This paper describes the main features of REALM and provides potential users with an appreciation of its capabilities. In particular, it describes two case studies covering major urban and rural water supply systems. These case studies illustrate REALM's capabilities in the use of stochastically generated data in water supply planning and management, modelling of environmental flows, and assessing security of supply issues.

  6. Quantifying the drivers of ocean-atmosphere CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.

    2016-07-01

    A mechanistic framework for quantitatively mapping the regional drivers of air-sea CO2 fluxes at a global scale is developed. The framework evaluates the interplay between (1) surface heat and freshwater fluxes that influence the potential saturated carbon concentration, which depends on changes in sea surface temperature, salinity and alkalinity, (2) a residual, disequilibrium flux influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total flux of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 fluxes driven by surface heat fluxes and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated fluxes when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world air-sea flux of CO2.

  7. Monte Carlo Simulation of THz Multipliers

    NASA Technical Reports Server (NTRS)

    East, J.; Blakey, P.

    1997-01-01

    Schottky Barrier diode frequency multipliers are critical components in submillimeter and Thz space based earth observation systems. As the operating frequency of these multipliers has increased, the agreement between design predictions and experimental results has become poorer. The multiplier design is usually based on a nonlinear model using a form of harmonic balance and a model for the Schottky barrier diode. Conventional voltage dependent lumped element models do a poor job of predicting THz frequency performance. This paper will describe a large signal Monte Carlo simulation of Schottky barrier multipliers. The simulation is a time dependent particle field Monte Carlo simulation with ohmic and Schottky barrier boundary conditions included that has been combined with a fixed point solution for the nonlinear circuit interaction. The results in the paper will point out some important time constants in varactor operation and will describe the effects of current saturation and nonlinear resistances on multiplier operation.

  8. Forecasting a winner for Malaysian Cup 2013 using soccer simulation model

    NASA Astrophysics Data System (ADS)

    Yusof, Muhammad Mat; Fauzee, Mohd Soffian Omar; Latif, Rozita Abdul

    2014-07-01

    This paper investigates through soccer simulation the calculation of the probability for each team winning Malaysia Cup 2013. Our methodology used here is we predict the outcomes of individual matches and then we simulate the Malaysia Cup 2013 tournament 5000 times. As match outcomes are always a matter of uncertainty, statistical model, in particular a double Poisson model is used to predict the number of goals scored and conceded for each team. Maximum likelihood estimation is use to measure the attacking strength and defensive weakness for each team. Based on our simulation result, LionXII has a higher probability in becoming the winner, followed by Selangor, ATM, JDT and Kelantan. Meanwhile, T-Team, Negeri Sembilan and Felda United have lower probabilities to win Malaysia Cup 2013. In summary, we find that the probability for each team becominga winner is small, indicating that the level of competitive balance in Malaysia Cup 2013 is quite high.

  9. Numerical Simulation of Stationary AC Tungsten Inert Gas Welding of Aluminum Plate in Consideration of Oxide Layer Cleaning

    NASA Astrophysics Data System (ADS)

    Tashiro, Shinichi; Tanaka, Manabu

    An unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.

  10. Passive force balancing of an active magnetic regenerative liquefier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teyber, R.; Meinhardt, K.; Thomsen, E.

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Finally, implementation details aremore » investigated which affirm the potential of the proposed methodology.« less

  11. Passive force balancing of an active magnetic regenerative liquefier

    DOE PAGES

    Teyber, R.; Meinhardt, K.; Thomsen, E.; ...

    2017-11-02

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Finally, implementation details aremore » investigated which affirm the potential of the proposed methodology.« less

  12. Passive force balancing of an active magnetic regenerative liquefier

    NASA Astrophysics Data System (ADS)

    Teyber, R.; Meinhardt, K.; Thomsen, E.; Polikarpov, E.; Cui, J.; Rowe, A.; Holladay, J.; Barclay, J.

    2018-04-01

    Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Implementation details are investigated which affirm the potential of the proposed methodology.

  13. Feedback loops and temporal misalignment in component-based hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  14. Comparison of digital controllers used in magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, William A.

    1990-01-01

    Dynamic systems that were once controlled by analog circuits are now controlled by digital computers. Presented is a comparison of the digital controllers presently used with magnetic suspension and balance systems. The overall responses of the systems are compared using a computer simulation of the magnetic suspension and balance system and the digital controllers. The comparisons include responses to both simulated force and position inputs. A preferred digital controller is determined from the simulated responses.

  15. Soil and variety effects on the energy and carbon balances of switchgrass-derived ethanol

    USDA-ARS?s Scientific Manuscript database

    This study examined the effects of soil and switchgrass variety on sustainability and eco-friendliness of switchgrass-based ethanol production. Using the Agricultural Land Management Alternatives with Numerical Assessment Criteria (ALMANAC) model, switchgrass biomass yields were simulated for severa...

  16. Effect of mosaic representation of vegetation in land surface schemes on simulated energy and carbon balances

    NASA Astrophysics Data System (ADS)

    Li, R.; Arora, V. K.

    2012-01-01

    Energy and carbon balance implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for energy and water balance calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach energy and water balance calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon balance evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus mosaic approaches of representing vegetation. These idealized simulations use 50% fractional coverage for each of the two dominant PFTs in a grid cell. Differences in simulated grid averaged primary energy fluxes at selected sites are generally less than 5% between the two approaches. Simulated grid-averaged carbon fluxes and pool sizes at these sites can, however, differ by as much as 46%. Simulation results suggest that differences in carbon balance between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.

  17. Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model

    DOE PAGES

    Lenaerts, Jan T. M.; Vizcaino, Miren; Fyke, Jeremy Garmeson; ...

    2016-02-01

    Here, we present climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS) as simulated by the global, coupled ocean–atmosphere–land Community Earth System Model (CESM) with a horizontal resolution of ~1° in the past, present and future (1850–2100). CESM correctly simulates present-day Antarctic sea ice extent, large-scale atmospheric circulation and near-surface climate, but fails to simulate the recent expansion of Antarctic sea ice. The present-day Antarctic ice sheet SMB equals 2280 ± 131Gtyear –1, which concurs with existing independent estimates of AIS SMB. When forced by two CMIP5 climate change scenarios (high mitigation scenario RCP2.6 and high-emission scenariomore » RCP8.5), CESM projects an increase of Antarctic ice sheet SMB of about 70 Gtyear –1 per degree warming. This increase is driven by enhanced snowfall, which is partially counteracted by more surface melt and runoff along the ice sheet’s edges. This intensifying hydrological cycle is predominantly driven by atmospheric warming, which increases (1) the moisture-carrying capacity of the atmosphere, (2) oceanic source region evaporation, and (3) summer AIS cloud liquid water content.« less

  18. The estimation of soil water fluxes using lysimeter data

    NASA Astrophysics Data System (ADS)

    Wegehenkel, M.

    2009-04-01

    The validation of soil water balance models regarding soil water fluxes in the field is still a problem. This requires time series of measured model outputs. In our study, a soil water balance model was validated using lysimeter time series of measured model outputs. The soil water balance model used in our study was the Hydrus-1D-model. This model was tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin, Germany. One potential source of error in lysimeter experiments is preferential flow caused by an artificial channeling of water due to the occurrence of air space between the soil monolith and the inside wall of the lysimeters. To analyse such sources of errors, Hydrus-1D was applied with different modelling procedures. The first procedure consists of a general uncalibrated appli-cation of Hydrus-1D. The second one includes a calibration of soil hydraulic parameters via inverse modelling of different percolation events with Hydrus-1D. In the third procedure, the model DUALP_1D was applied with the optimized hydraulic parameter set to test the hy-pothesis of the existence of preferential flow paths in the lysimeters. The results of the different modelling procedures indicated that, in addition to a precise determination of the soil water retention functions, vegetation parameters such as rooting depth should also be taken into account. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.

  19. Parse, simulation, and prediction of NOx emission across the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Fang, H.; Michalski, G. M.; Spak, S.

    2017-12-01

    Accurately constraining N emissions in space and time has been a challenge for atmospheric scientists. It has been suggested that 15N isotopes may be a way of tracking N emission sources across various spatial and temporal scales. However, the complexity of multiple N sources that can quickly change in intensity has made this a difficult problem. We have used a SMOKE emission model to parse NOx emission across the Midwestern United States for a one-year simulation. An isotope mass balance methods was used to assign 15N values to road, non-road, point, and area sources. The SMOKE emissions and isotope mass balance were then combined to predict the 15N of NOx emissions (Figure 1). This ^15N of NOx emissions model was then incorporated into CMAQ to assess the role of transport and chemistry would impact the 15N value of NOx due to mixing and removal processes. The predicted 15N value of NOx was compared to those in recent measurements of NOx and atmospheric nitrate.

  20. Computational Fluid Dynamics-Population Balance Model Simulation of Effects of Cell Design and Operating Parameters on Gas-Liquid Two-Phase Flows and Bubble Distribution Characteristics in Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Zhan, Shuiqing; Wang, Junfeng; Wang, Zhentao; Yang, Jianhong

    2018-02-01

    The effects of different cell design and operating parameters on the gas-liquid two-phase flows and bubble distribution characteristics under the anode bottom regions in aluminum electrolysis cells were analyzed using a three-dimensional computational fluid dynamics-population balance model. These parameters include inter-anode channel width, anode-cathode distance (ACD), anode width and length, current density, and electrolyte depth. The simulations results show that the inter-anode channel width has no significant effect on the gas volume fraction, electrolyte velocity, and bubble size. With increasing ACD, the above values decrease and more uniform bubbles can be obtained. Different effects of the anode width and length can be concluded in different cell regions. With increasing current density, the gas volume fraction and electrolyte velocity increase, but the bubble size keeps nearly the same. Increasing electrolyte depth decreased the gas volume fraction and bubble size in particular areas and the electrolyte velocity increased.

  1. Numerical and experimental investigation of downdraft gasification of woody residues.

    PubMed

    Simone, Marco; Nicolella, Cristiano; Tognotti, Leonardo

    2013-04-01

    A pilot scale throated downdraft gasifier was operated with vine prunings as feedstock to assess the effect of biomass loading rate on process performance. A distributed 1D model of mass and heat transfer and reactions was applied to aid the interpretation of experimental evidence. The model takes into account peculiar gasifier design features (air inlets and throat) and it reproduces satisfactorily the temperature profiles and the mass fluxes of gaseous species at different biomass loading rates. The integration of pilot-scale experiments and numerical simulations provides sound indications for the gasifier operation. In particular, simulations performed at different loading rates and feedstock humidity show that steady state operation and stable performance of the gasifier rely on the thermal balance between the enthalpy of cold biomass moving downward and the counter-current radiative heat fluxes moving upward from the oxidation zone. This balance can be destabilized by high loading rate and moisture contents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Xitian; Yang, Zong-Liang; Xia, Youlong

    2014-12-27

    This study assesses the hydrologic performance of four land surface models (LSMs) for the conterminous United States using the North American Land Data Assimilation System (NLDAS) test bed. The four LSMs are the baseline community Noah LSM (Noah, version 2.8), the Variable Infiltration Capacity (VIC, version 4.0.5) model, the substantially augmented Noah LSM with multiparameterization options (hence Noah-MP), and the Community Land Model version 4 (CLM4). All four models are driven by the same NLDAS-2 atmospheric forcing. Modeled terrestrial water storage (TWS), streamflow, evapotranspiration (ET), and soil moisture are compared with each other and evaluated against the identical observations. Relativemore » to Noah, the other three models offer significant improvements in simulating TWS and streamflow and moderate improvements in simulating ET and soil moisture. Noah-MP provides the best performance in simulating soil moisture and is among the best in simulating TWS, CLM4 shows the best performance in simulating ET, and VIC ranks the highest in performing the streamflow simulations. Despite these improvements, CLM4, Noah-MP, and VIC exhibit deficiencies, such as the low variability of soil moisture in CLM4, the fast growth of spring ET in Noah-MP, and the constant overestimation of ET in VIC.« less

  3. Simulation of Boreal Ecosystem Carbon and Water Budgets: Scaling from Local to Regional Extents

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.

    1997-01-01

    A coupled water and energy balance model is developed. This model can predict the partitioning of water and energy between major source, sink and storage elements within the Boreal-Ecosystem-Atmospheric Study (BOREAS) areas. The results of testing the model against data collected at BOREAS tower sites during Intensive Field Campaigns and remotely sensed data collected across the BOREAS region are presented.

  4. WHATCH’EM: A Weather-Driven Energy Balance Model for Determining Water Height and Temperature in Container Habitats for Aedes aegypti

    PubMed Central

    Steinhoff, Daniel F.; Monaghan, Andrew J.; Eisen, Lars; Barlage, Michael J.; Hopson, Thomas M.; Tarakidzwa, Isaac; Ortiz-Rosario, Karielys; Lozano-Fuentes, Saul; Hayden, Mary H.; Bieringer, Paul E.; Welsh Rodríguez, Carlos M.

    2017-01-01

    The mosquito virus vector Aedes (Ae.) aegypti exploits a wide range of containers as sites for egg laying and development of the immature life stages, yet the approaches for modeling meteorologically sensitive container water dynamics have been limited. This study introduces the Water Height and Temperature in Container Habitats Energy Model (WHATCH’EM), a state-of-the-science, physically based energy balance model of water height and temperature in containers that may serve as development sites for mosquitoes. The authors employ WHATCH’EM to model container water dynamics in three cities along a climatic gradient in México ranging from sea level, where Ae. aegypti is highly abundant, to ~2100 m, where Ae. aegypti is rarely found. When compared with measurements from a 1-month field experiment in two of these cities during summer 2013, WHATCH’EM realistically simulates the daily mean and range of water temperature for a variety of containers. To examine container dynamics for an entire season, WHATCH’EM is also driven with field-derived meteorological data from May to September 2011 and evaluated for three commonly encountered container types. WHATCH’EM simulates the highly nonlinear manner in which air temperature, humidity, rainfall, clouds, and container characteristics (shape, size, and color) determine water temperature and height. Sunlight exposure, modulated by clouds and shading from nearby objects, plays a first-order role. In general, simulated water temperatures are higher for containers that are larger, darker, and receive more sunlight. WHATCH’EM simulations will be helpful in understanding the limiting meteorological and container-related factors for proliferation of Ae. aegypti and may be useful for informing weather-driven early warning systems for viruses transmitted by Ae. aegypti. PMID:29123363

  5. Numerical simulation of flood inundation using a well-balanced kinetic scheme for the shallow water equations with bulk recharge and discharge

    NASA Astrophysics Data System (ADS)

    Ersoy, Mehmet; Lakkis, Omar; Townsend, Philip

    2016-04-01

    The flow of water in rivers and oceans can, under general assumptions, be efficiently modelled using Saint-Venant's shallow water system of equations (SWE). SWE is a hyperbolic system of conservation laws (HSCL) which can be derived from a starting point of incompressible Navier-Stokes. A common difficulty in the numerical simulation of HSCLs is the conservation of physical entropy. Work by Audusse, Bristeau, Perthame (2000) and Perthame, Simeoni (2001), proposed numerical SWE solvers known as kinetic schemes (KSs), which can be shown to have desirable entropy-consistent properties, and are thus called well-balanced schemes. A KS is derived from kinetic equations that can be integrated into the SWE. In flood risk assessment models the SWE must be coupled with other equations describing interacting meteorological and hydrogeological phenomena such as rain and groundwater flows. The SWE must therefore be appropriately modified to accommodate source and sink terms, so kinetic schemes are no longer valid. While modifications of SWE in this direction have been recently proposed, e.g., Delestre (2010), we depart from the extant literature by proposing a novel model that is "entropy-consistent" and naturally extends the SWE by respecting its kinetic formulation connections. This allows us to derive a system of partial differential equations modelling flow of a one-dimensional river with both a precipitation term and a groundwater flow model to account for potential infiltration and recharge. We exhibit numerical simulations of the corresponding kinetic schemes. These simulations can be applied to both real world flood prediction and the tackling of wider issues on how climate and societal change are affecting flood risk.

  6. Virtual milk for modelling and simulation of dairy processes.

    PubMed

    Munir, M T; Zhang, Y; Yu, W; Wilson, D I; Young, B R

    2016-05-01

    The modeling of dairy processing using a generic process simulator suffers from shortcomings, given that many simulators do not contain milk components in their component libraries. Recently, pseudo-milk components for a commercial process simulator were proposed for simulation and the current work extends this pseudo-milk concept by studying the effect of both total milk solids and temperature on key physical properties such as thermal conductivity, density, viscosity, and heat capacity. This paper also uses expanded fluid and power law models to predict milk viscosity over the temperature range from 4 to 75°C and develops a succinct regressed model for heat capacity as a function of temperature and fat composition. The pseudo-milk was validated by comparing the simulated and actual values of the physical properties of milk. The milk thermal conductivity, density, viscosity, and heat capacity showed differences of less than 2, 4, 3, and 1.5%, respectively, between the simulated results and actual values. This work extends the capabilities of the previously proposed pseudo-milk and of a process simulator to model dairy processes, processing different types of milk (e.g., whole milk, skim milk, and concentrated milk) with different intrinsic compositions, and to predict correct material and energy balances for dairy processes. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. [Development and Application of a Performance Prediction Model for Home Care Nursing Based on a Balanced Scorecard using the Bayesian Belief Network].

    PubMed

    Noh, Wonjung; Seomun, Gyeongae

    2015-06-01

    This study was conducted to develop key performance indicators (KPIs) for home care nursing (HCN) based on a balanced scorecard, and to construct a performance prediction model of strategic objectives using the Bayesian Belief Network (BBN). This methodological study included four steps: establishment of KPIs, performance prediction modeling, development of a performance prediction model using BBN, and simulation of a suggested nursing management strategy. An HCN expert group and a staff group participated. The content validity index was analyzed using STATA 13.0, and BBN was analyzed using HUGIN 8.0. We generated a list of KPIs composed of 4 perspectives, 10 strategic objectives, and 31 KPIs. In the validity test of the performance prediction model, the factor with the greatest variance for increasing profit was maximum cost reduction of HCN services. The factor with the smallest variance for increasing profit was a minimum image improvement for HCN. During sensitivity analysis, the probability of the expert group did not affect the sensitivity. Furthermore, simulation of a 10% image improvement predicted the most effective way to increase profit. KPIs of HCN can estimate financial and non-financial performance. The performance prediction model for HCN will be useful to improve performance.

  8. Relaxometry model of strong dipolar perturbers for balanced-SSFP: application to quantification of SPIO loaded cells.

    PubMed

    Lebel, R Marc; Menon, Ravi S; Bowen, Chris V

    2006-03-01

    Magnetic resonance microscopy using magnetically labeled cells is an emerging discipline offering the potential for non-destructive studies targeting numerous cellular events in medical research. The present work develops a technique to quantify superparamagnetic iron-oxide (SPIO) loaded cells using fully balanced steady state free precession (b-SSFP) imaging. An analytic model based on phase cancellation was derived for a single particle and extended to predict mono-exponential decay versus echo time in the presence of multiple randomly distributed particles. Numerical models verified phase incoherence as the dominant contrast mechanism and evaluated the model using a full range of tissue decay rates, repetition times, and flip angles. Numerical simulations indicated a relaxation rate enhancement (DeltaR(2b)=0.412 gamma . LMD) proportional to LMD, the local magnetic dose (the additional sample magnetization due to the SPIO particles), a quantity related to the concentration of contrast agent. A phantom model of SPIO loaded cells showed excellent agreement with simulations, demonstrated comparable sensitivity to gradient echo DeltaR(*) (2) enhancements, and 14 times the sensitivity of spin echo DeltaR(2) measurements. We believe this model can be used to facilitate the generation of quantitative maps of targeted cell populations. Magn Reson Med, 2006. (c) 2006 Wiley-Liss, Inc.

  9. Implications of Climate Change for Glaciated Watersheds in western Canada

    NASA Astrophysics Data System (ADS)

    Schnorbus, M.; Menounos, B.; Schoeneberg (Werner), A. T.; Anslow, F. S.; Jost, G.; Moore, R. D.

    2017-12-01

    The cryosphere is particularly vulnerable to changes in climate. For many catchments, glaciers provide water to streams, especially during summer and early autumn when seasonal snow packs have been depleted. Increased concentrations of greenhouse gasses will promote further warming in the decades ahead leading to strong mass loss and a continuation of the rapid retreat of alpine glaciers. Understanding how the contribution of glacier runoff may change in future has important implications for a variety of water resources issues ranging from the impacts of higher water temperatures and lower summer flows on aquatic habitat to the effects of seasonal changes in runoff on hydropower generation. Consequently, there is a need to increase understanding of the influence of glacier storage changes on runoff and streamflow in mountainous watersheds. We developed a modeling system that explicitly simulates ice dynamics, glacier mass balance and runoff. The modelling system employs an upgraded version of the Variable Infiltration Capacity (VIC) hydrology model (which now includes glacier mass balance) coupled to a glacier dynamics model (UBC Regional Glaciation Model) that will be used to assess potential future hydrologic changes in glaciated drainages throughout western Canada. Our presentation will focus on the application of this new model to simulate climate change effects on inflows for several hydropower reservoirs located in heavily glaciated basins in British Columbia, Canada.

  10. Concept verification of three dimensional free motion simulator for space robot

    NASA Technical Reports Server (NTRS)

    Okamoto, Osamu; Nakaya, Teruomi; Pokines, Brett

    1994-01-01

    In the development of automatic assembling technologies for space structures, it is an indispensable matter to investigate and simulate the movements of robot satellites concerned with mission operation. The movement investigation and simulation on the ground will be effectively realized by a free motion simulator. Various types of ground systems for simulating free motion have been proposed and utilized. Some of these methods are a neutral buoyancy system, an air or magnetic suspension system, a passive suspension balance system, and a free flying aircraft or drop tower system. In addition, systems can be simulated by computers using an analytical model. Each free motion simulation method has limitations and well known problems, specifically, disturbance by water viscosity, limited number of degrees-of-freedom, complex dynamics induced by the attachment of the simulation system, short experiment time, and the lack of high speed super-computer simulation systems, respectively. The basic idea presented here is to realize 3-dimensional free motion. This is achieved by combining a spherical air bearing, a cylindrical air bearing, and a flat air bearing. A conventional air bearing system has difficulty realizing free vertical motion suspension. The idea of free vertical suspension is that a cylindrical air bearing and counter balance weight realize vertical free motion. This paper presents a design concept, configuration, and basic performance characteristics of an innovative free motion simulator. A prototype simulator verifies the feasibility of 3-dimensional free motion simulation.

  11. Simulating drought impacts on energy balance in an Amazonian rainforest

    NASA Astrophysics Data System (ADS)

    Imbuzeiro, H. A.; Costa, M. H.; Galbraith, D.; Christoffersen, B. O.; Powell, T.; Harper, A. B.; Levine, N. M.; Rowland, L.; Moorcroft, P. R.; Benezoli, V. H.; Meir, P.; da Costa, A. C. L.; Brando, P. M.; Malhi, Y.; Saleska, S. R.; Williams, M. D.

    2014-12-01

    The studies of the interaction between vegetation and climate change in the Amazon Basin indicate that up to half of the region's forests may be displaced by savanna vegetation by the end of the century. Additional analyses suggest that complex interactions among land use, fire-frequency, and episodic drought are driving an even more rapid process of the forest impoverishment and displacement referred here as "savannization". But it is not clear whether surface/ecosystem models are suitable to analyze extreme events like a drought. Long-term simulations of throughfall exclusion experiments has provided unique insights into the energy dynamics of Amazonian rainforests during drought conditions. In this study, we evaluate how well six surface/ecosystem models quantify the energy dynamics from two Amazonian throughfall exclusion experiments. All models were run for the Tapajós and Caxiuanã sites with one control plot using normal precipitation (i.e. do not impose a drought) and then the drought manipulation was imposed for several drought treatments (10 to 90% rainfall exclusion). The sap flow, net radiation (Rn), sensible (H), latent (LE) and ground (G) heat flux are used to analyze if the models are able to capture the dynamics of water stress and what the implications for the energy dynamics are. With respect to the model validation, when we compare the sap flow observed and transpiration simulated, models are more accurate to simulate control plots than drought treatments (50% rainfall exclusion). The results show that the models overestimate the sap flow data during the drought conditions, but they were able to capture the changes in the main energy balance components for different drought treatments. The Rn and LE decreased and H increased with more intensity of drought. The models sensitivity analysis indicate that models are more sensitive to drought when rainfall is excluded for more than 60% and when this reduction occurs during the dry season.

  12. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    NASA Astrophysics Data System (ADS)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims Branch watershed at Savannah River Site.

  13. Simulation of within-canopy radiation exchange

    USDA-ARS?s Scientific Manuscript database

    Radiation exchange at the surface plays a critical role in the surface energy balance, plant microclimate, and plant growth. The ability to simulate the surface energy balance and the microclimate within the plant canopy is contingent upon simulation of the surface radiation exchange. A validation a...

  14. Money-center structures in dynamic banking systems

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; Zhang, Minghui

    2016-10-01

    In this paper, we propose a dynamic model for banking systems based on the description of balance sheets. It generates some features identified through empirical analysis. Through simulation analysis of the model, we find that banking systems have the feature of money-center structures, that bank asset distributions are power-law distributions, and that contract size distributions are log-normal distributions.

  15. Simulated tempering based on global balance or detailed balance conditions: Suwa-Todo, heat bath, and Metropolis algorithms.

    PubMed

    Mori, Yoshiharu; Okumura, Hisashi

    2015-12-05

    Simulated tempering (ST) is a useful method to enhance sampling of molecular simulations. When ST is used, the Metropolis algorithm, which satisfies the detailed balance condition, is usually applied to calculate the transition probability. Recently, an alternative method that satisfies the global balance condition instead of the detailed balance condition has been proposed by Suwa and Todo. In this study, ST method with the Suwa-Todo algorithm is proposed. Molecular dynamics simulations with ST are performed with three algorithms (the Metropolis, heat bath, and Suwa-Todo algorithms) to calculate the transition probability. Among the three algorithms, the Suwa-Todo algorithm yields the highest acceptance ratio and the shortest autocorrelation time. These suggest that sampling by a ST simulation with the Suwa-Todo algorithm is most efficient. In addition, because the acceptance ratio of the Suwa-Todo algorithm is higher than that of the Metropolis algorithm, the number of temperature states can be reduced by 25% for the Suwa-Todo algorithm when compared with the Metropolis algorithm. © 2015 Wiley Periodicals, Inc.

  16. Platform-Independence and Scheduling In a Multi-Threaded Real-Time Simulation

    NASA Technical Reports Server (NTRS)

    Sugden, Paul P.; Rau, Melissa A.; Kenney, P. Sean

    2001-01-01

    Aviation research often relies on real-time, pilot-in-the-loop flight simulation as a means to develop new flight software, flight hardware, or pilot procedures. Often these simulations become so complex that a single processor is incapable of performing the necessary computations within a fixed time-step. Threads are an elegant means to distribute the computational work-load when running on a symmetric multi-processor machine. However, programming with threads often requires operating system specific calls that reduce code portability and maintainability. While a multi-threaded simulation allows a significant increase in the simulation complexity, it also increases the workload of a simulation operator by requiring that the operator determine which models run on which thread. To address these concerns an object-oriented design was implemented in the NASA Langley Standard Real-Time Simulation in C++ (LaSRS++) application framework. The design provides a portable and maintainable means to use threads and also provides a mechanism to automatically load balance the simulation models.

  17. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE - Part 2: Carbon emissions and the role of fires in the global carbon balance

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Cadule, P.; Thonicke, K.; van Leeuwen, T. T.

    2015-05-01

    Carbon dioxide emissions from wild and anthropogenic fires return the carbon absorbed by plants to the atmosphere, and decrease the sequestration of carbon by land ecosystems. Future climate warming will likely increase the frequency of fire-triggering drought, so that the future terrestrial carbon uptake will depend on how fires respond to altered climate variation. In this study, we modelled the role of fires in the global terrestrial carbon balance for 1901-2012, using the ORCHIDEE global vegetation model equipped with the SPITFIRE model. We conducted two simulations with and without the fire module being activated, using a static land cover. The simulated global fire carbon emissions for 1997-2009 are 2.1 Pg C yr-1, which is close to the 2.0 Pg C yr-1 as estimated by GFED3.1. The simulated land carbon uptake after accounting for emissions for 2003-2012 is 3.1 Pg C yr-1, which is within the uncertainty of the residual carbon sink estimation (2.8 ± 0.8 Pg C yr-1). Fires are found to reduce the terrestrial carbon uptake by 0.32 Pg C yr-1 over 1901-2012, or 20% of the total carbon sink in a world without fire. The fire-induced land sink reduction (SRfire) is significantly correlated with climate variability, with larger sink reduction occurring in warm and dry years, in particular during El Niño events. Our results suggest a "fire respiration partial compensation". During the 10 lowest SRfire years (SRfire = 0.17 Pg C yr-1), fires mainly compensate for the heterotrophic respiration that would occur in a world without fire. By contrast, during the 10 highest SRfire fire years (SRfire = 0.49 Pg C yr-1), fire emissions far exceed their respiration partial compensation and create a larger reduction in terrestrial carbon uptake. Our findings have important implications for the future role of fires in the terrestrial carbon balance, because the capacity of terrestrial ecosystems to sequester carbon will be diminished by future climate change characterized by increased frequency of droughts and extreme El Niño events.

  18. Canonical Statistical Model for Maximum Expected Immission of Wire Conductor in an Aperture Enclosure

    NASA Technical Reports Server (NTRS)

    Bremner, Paul G.; Vazquez, Gabriel; Christiano, Daniel J.; Trout, Dawn H.

    2016-01-01

    Prediction of the maximum expected electromagnetic pick-up of conductors inside a realistic shielding enclosure is an important canonical problem for system-level EMC design of space craft, launch vehicles, aircraft and automobiles. This paper introduces a simple statistical power balance model for prediction of the maximum expected current in a wire conductor inside an aperture enclosure. It calculates both the statistical mean and variance of the immission from the physical design parameters of the problem. Familiar probability density functions can then be used to predict the maximum expected immission for deign purposes. The statistical power balance model requires minimal EMC design information and solves orders of magnitude faster than existing numerical models, making it ultimately viable for scaled-up, full system-level modeling. Both experimental test results and full wave simulation results are used to validate the foundational model.

  19. High-resolution modeling of coastal freshwater discharge and glacier mass balance in the Gulf of Alaska watershed

    NASA Astrophysics Data System (ADS)

    Beamer, J. P.; Hill, D. F.; Arendt, A.; Liston, G. E.

    2016-05-01

    A comprehensive study of the Gulf of Alaska (GOA) drainage basin was carried out to improve understanding of the coastal freshwater discharge (FWD) and glacier volume loss (GVL). Hydrologic processes during the period 1980-2014 were modeled using a suite of physically based, spatially distributed weather, energy-balance snow/ice melt, soil water balance, and runoff routing models at a high-resolution (1 km horizontal grid; daily time step). Meteorological forcing was provided by the North American Regional Reanalysis (NARR), Modern Era Retrospective Analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis (CFSR) data sets. Streamflow and glacier mass balance modeled using MERRA and CFSR compared well with observations in four watersheds used for calibration in the study domain. However, only CFSR produced regional seasonal and long-term trends in water balance that compared favorably with independent Gravity Recovery and Climate Experiment (GRACE) and airborne altimetry data. Mean annual runoff using CFSR was 760 km3 yr-1, 8% of which was derived from the long-term removal of stored water from glaciers (glacier volume loss). The annual runoff from CFSR was partitioned into 63% snowmelt, 17% glacier ice melt, and 20% rainfall. Glacier runoff, taken as the sum of rainfall, snow, and ice melt occurring each season on glacier surfaces, was 38% of the total seasonal runoff, with the remaining runoff sourced from nonglacier surfaces. Our simulations suggests that existing GRACE solutions, previously reported to represent glacier mass balance alone, are actually measuring the full water budget of land and ice surfaces.

  20. MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model - Documentation of the Multiple-Refined-Areas Capability of Local Grid Refinement (LGR) and the Boundary Flow and Head (BFH) Package

    USGS Publications Warehouse

    Mehl, Steffen W.; Hill, Mary C.

    2007-01-01

    This report documents the addition of the multiple-refined-areas capability to shared node Local Grid Refinement (LGR) and Boundary Flow and Head (BFH) Package of MODFLOW-2005, the U.S. Geological Survey modular, three-dimensional, finite-difference ground-water flow model. LGR now provides the capability to simulate ground-water flow by using one or more block-shaped, higher resolution local grids (child model) within a coarser grid (parent model). LGR accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundaries. The ability to have multiple, nonoverlapping areas of refinement is important in situations where there is more than one area of concern within a regional model. In this circumstance, LGR can be used to simulate these distinct areas with higher resolution grids. LGR can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined ground-water systems. The BFH Package can be used to simulate these situations by using either the parent or child models independently.

Top