Science.gov

Sample records for balanced chromosome rearrangements

  1. Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project.

    PubMed

    Higgins, Anne W; Alkuraya, Fowzan S; Bosco, Amy F; Brown, Kerry K; Bruns, Gail A P; Donovan, Diana J; Eisenman, Robert; Fan, Yanli; Farra, Chantal G; Ferguson, Heather L; Gusella, James F; Harris, David J; Herrick, Steven R; Kelly, Chantal; Kim, Hyung-Goo; Kishikawa, Shotaro; Korf, Bruce R; Kulkarni, Shashikant; Lally, Eric; Leach, Natalia T; Lemyre, Emma; Lewis, Janine; Ligon, Azra H; Lu, Weining; Maas, Richard L; MacDonald, Marcy E; Moore, Steven D P; Peters, Roxanna E; Quade, Bradley J; Quintero-Rivera, Fabiola; Saadi, Irfan; Shen, Yiping; Shendure, Jay; Williamson, Robin E; Morton, Cynthia C

    2008-03-01

    Apparently balanced chromosomal rearrangements in individuals with major congenital anomalies represent natural experiments of gene disruption and dysregulation. These individuals can be studied to identify novel genes critical in human development and to annotate further the function of known genes. Identification and characterization of these genes is the goal of the Developmental Genome Anatomy Project (DGAP). DGAP is a multidisciplinary effort that leverages the recent advances resulting from the Human Genome Project to increase our understanding of birth defects and the process of human development. Clinically significant phenotypes of individuals enrolled in DGAP are varied and, in most cases, involve multiple organ systems. Study of these individuals' chromosomal rearrangements has resulted in the mapping of 77 breakpoints from 40 chromosomal rearrangements by FISH with BACs and fosmids, array CGH, Southern-blot hybridization, MLPA, RT-PCR, and suppression PCR. Eighteen chromosomal breakpoints have been cloned and sequenced. Unsuspected genomic imbalances and cryptic rearrangements were detected, but less frequently than has been reported previously. Chromosomal rearrangements, both balanced and unbalanced, in individuals with multiple congenital anomalies continue to be a valuable resource for gene discovery and annotation.

  2. De novo balanced complex chromosome rearrangements involving chromosomes 1B and 3B of wheat and 1R of rye.

    PubMed

    Ren, Tianheng; Li, Zhi; Yan, Benju; Tan, Feiquan; Tang, Zongxiang; Fu, Shulan; Yang, Manyu; Ren, Zhenglong

    2016-12-01

    Complex chromosome rearrangements (CCRs) are defined as structural abnormalities involving more than two chromosome breaks, coupled with exchanges of chromosomal segments. Information on CCRs in plants is limited. In the present study, a plant (26-4) harboring translocation chromosomes 1RS.1BL and 4RS.4DL was selected from a double monosomic (1R and 4R) addition line, which was derived from the hybrid between wheat cultivar MY11 and a Chinese local rye variety. The genome of the plant with double alien translocation chromosomes in the monosomic form showed more instability than that harboring a single translocation. The CCRs involving chromosomes 1RS.1BL and 3B, which were generated de novo in this plant, showed double monosomic translocation chromosomes. A new CCR line with balanced reciprocal translocations 1RS.3BL and 3BS.1BL was developed, which presented normal morphological traits of wheat and underwent rapid growth in the field. A new 1RS.1BL translocation line was also selected from the progeny of plant 26-4. The CCRs and simple 1RS.1BL translocation lines showed significant improvement in grain yield, number of spikes per square meter, kernel number per spike, and resistance to stripe rust and powdery mildew. The CCR line exhibited better agronomic traits and adult plant resistance in the field than its sister line, which harbored a simple 1RS.1BL translocation. The CCRs are remarkable genetic resources for crop improvement.

  3. Prenatally diagnosed de novo apparently balanced complex chromosome rearrangements: Two new cases and review of the literature

    SciTech Connect

    Ruiz, C.; Grubs, R.E.; Jewett, T.

    1996-08-23

    Complex chromosome rearrangements (CCR) are rare structural rearrangements. Currently six cases of prenatally diagnosed balanced de novo CCR have been described. We present two new cases of prenatally ascertained balanced de novo CCR. In the first case, an amniocentesis revealed a balanced de novo three-way CCR involving chromosomes 5,6, and 11 with a pericentric inversion of chromosome 5 [four breaks]. In the second case a balanced de novo rearrangement was identified by amniocentesis which involved a reciprocal translocation between chromosomes 3 and 8 and a CCR involving chromosomes 6,7, and 18 [six breaks]. The use of whole chromosome painting helped elucidate the nature of these rearrangements. A review of the postnatally ascertained cases suggests that most patients have congenital anomalies, minor anomalies, and/or developmental delay/mental retardation. In addition, there appears to be a relationship between the number of chromosome breaks and the extent of phenotypic effects. The paucity of information regarding prenatally diagnosed CCR and the bias of ascertainment of postnatal CCR cases poses a problem in counseling families. 38 refs., 3 figs., 4 tabs.

  4. Meiotic Recombination Analyses in Pigs Carrying Different Balanced Structural Chromosomal Rearrangements

    PubMed Central

    Mary, Nicolas; Barasc, Harmonie; Ferchaud, Stéphane; Priet, Aurélia; Calgaro, Anne; Loustau-Dudez, Anne-Marie; Bonnet, Nathalie; Yerle, Martine; Ducos, Alain; Pinton, Alain

    2016-01-01

    Correct pairing, synapsis and recombination between homologous chromosomes are essential for normal meiosis. All these events are strongly regulated, and our knowledge of the mechanisms involved in this regulation is increasing rapidly. Chromosomal rearrangements are known to disturb these processes. In the present paper, synapsis and recombination (number and distribution of MLH1 foci) were studied in three boars (Sus scrofa domestica) carrying different chromosomal rearrangements. One (T34he) was heterozygote for the t(3;4)(p1.3;q1.5) reciprocal translocation, one (T34ho) was homozygote for that translocation, while the third (T34Inv) was heterozygote for both the translocation and a pericentric inversion inv(4)(p1.4;q2.3). All three boars were normal for synapsis and sperm production. This particular situation allowed us to rigorously study the impact of rearrangements on recombination. Overall, the rearrangements induced only minor modifications of the number of MLH1 foci (per spermatocyte or per chromosome) and of the length of synaptonemal complexes for chromosomes 3 and 4. The distribution of MLH1 foci in T34he was comparable to that of the controls. Conversely, the distributions of MLH1 foci on chromosome 4 were strongly modified in boar T34Inv (lack of crossover in the heterosynaptic region of the quadrivalent, and crossover displaced to the chromosome extremities), and also in boar T34ho (two recombination peaks on the q-arms compared with one of higher magnitude in the controls). Analyses of boars T34he and T34Inv showed that the interference was propagated through the breakpoints. A different result was obtained for boar T34ho, in which the breakpoints (transition between SSC3 and SSC4 chromatin on the bivalents) seemed to alter the transmission of the interference signal. Our results suggest that the number of crossovers and crossover interference could be regulated by partially different mechanisms. PMID:27124413

  5. Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research.

    PubMed

    Talkowski, Michael E; Ernst, Carl; Heilbut, Adrian; Chiang, Colby; Hanscom, Carrie; Lindgren, Amelia; Kirby, Andrew; Liu, Shangtao; Muddukrishna, Bhavana; Ohsumi, Toshiro K; Shen, Yiping; Borowsky, Mark; Daly, Mark J; Morton, Cynthia C; Gusella, James F

    2011-04-08

    The contribution of balanced chromosomal rearrangements to complex disorders remains unclear because they are not detected routinely by genome-wide microarrays and clinical localization is imprecise. Failure to consider these events bypasses a potentially powerful complement to single nucleotide polymorphism and copy-number association approaches to complex disorders, where much of the heritability remains unexplained. To capitalize on this genetic resource, we have applied optimized sequencing and analysis strategies to test whether these potentially high-impact variants can be mapped at reasonable cost and throughput. By using a whole-genome multiplexing strategy, rearrangement breakpoints could be delineated at a fraction of the cost of standard sequencing. For rearrangements already mapped regionally by karyotyping and fluorescence in situ hybridization, a targeted approach enabled capture and sequencing of multiple breakpoints simultaneously. Importantly, this strategy permitted capture and unique alignment of up to 97% of repeat-masked sequences in the targeted regions. Genome-wide analyses estimate that only 3.7% of bases should be routinely omitted from genomic DNA capture experiments. Illustrating the power of these approaches, the rearrangement breakpoints were rapidly defined to base pair resolution and revealed unexpected sequence complexity, such as co-occurrence of inversion and translocation as an underlying feature of karyotypically balanced alterations. These findings have implications ranging from genome annotation to de novo assemblies and could enable sequencing screens for structural variations at a cost comparable to that of microarrays in standard clinical practice.

  6. Characterization of a balanced complex chromosomal rearrangement carrier ascertained through a fetus with dup15q26.3 and del5p15.33: case report.

    PubMed

    Lledo, Belen; Ortiz, Jose Antonio; Morales, Ruth; Manchon, Irene; Galan, Francisco; Bernabeu, Andrea; Bernabeu, Rafael

    2013-09-01

    Complex chromosomal rearrangements (CCRs) are structural aberrations involving more than two chromosomes which rarely appear in individuals with normal phenotypes. These individuals report fertility problems, recurrent miscarriages, or congenital anomalies in newborn offspring as a consequence of either meiotic failure or imbalanced chromosome segregation. A CCR involving chromosomes 5, 15, and 18 was discovered in a phenotypically normal man through a fetus with congenital malformations and partial trisomy of chromosome 15 and monosomy of chromosome 5. Ultrasound examination at 20 weeks of gestation showed severe oligoamnios and hydrothorax. Prenatal cytogenetic analysis and array comparative genomic hybridization (array-CGH) revealed a female fetus with dup15q26.3 and del5p15.33. We diagnosed the CCR using three-color fluorescence in situ hybridization (three-color FISH), and a balanced CCR using array-CGH and FISH was diagnosed in the paternal karyotype. The father is a carrier of a balanced translocation 46,XY,t(5;15;18)(p15.31;q26.3;p11.2). Due to the complexity of these rearrangements the diagnosis is difficult and the reproductive outcome uncertain. Reporting such rare cases is important to enable such information to be used for genetic counseling in similar situations and help estimate the risk of miscarriage or of newborns with congenital abnormalities.

  7. Chromosomal rearrangement interferes with meiotic X chromosome inactivation.

    PubMed

    Homolka, David; Ivanek, Robert; Capkova, Jana; Jansa, Petr; Forejt, Jiri

    2007-10-01

    Heterozygosity for certain mouse and human chromosomal rearrangements is characterized by the incomplete meiotic synapsis of rearranged chromosomes, by their colocalization with the XY body in primary spermatocytes, and by male-limited sterility. Previously, we argued that such X-autosomal associations could interfere with meiotic sex chromosome inactivation. Recently, supporting evidence has reported modifications of histones in rearranged chromosomes by a process called the meiotic silencing of unsynapsed chromatin (MSUC). Here, we report on the transcriptional down-regulation of genes within the unsynapsed region of the rearranged mouse chromosome 17, and on the subsequent disturbance of X chromosome inactivation. The partial transcriptional suppression of genes in the unsynapsed chromatin was most prominent prior to the mid-pachytene stage of primary spermatocytes. Later, during the mid-late pachytene, the rearranged autosomes colocalized with the XY body, and the X chromosome failed to undergo proper transcriptional silencing. Our findings provide direct evidence on the MSUC acting at the mRNA level, and implicate that autosomal asynapsis in meiosis may cause male sterility by interfering with meiotic sex chromosome inactivation.

  8. Chromosomal rearrangements detected by FISH and G-banding.

    PubMed

    Hou, J W; Wang, T R

    1996-09-01

    Fluorescence in situ hybridization (FISH) using chromosome-specific DNA libraries as painting probes, locus-specific unique sequence (cosmid) probes, and Y-specific repetitive sequences was applied in the analysis of eighteen cases of chromosomal rearrangements of undetermined nature. FISH clarified the origin of the extra or translocated chromosome segments in seventeen patients, one with 2q+, two with 4q+, one each with 6p+, 7p+, 9q+, 10p+, 11q+ and 12p+, two with 13q+, and one each with 15q+, 17p+, 18p+, 20p+, 21p+ and Yq+, as well as the nature of a de novo supernumerary chromosome marker in a previously reported case. By G-banding and molecular cytogenetic studies of the family members, six cases were determined to have unbalanced translocations inherited from the carrier parent. The extra translocated genetic material may cause specific trisomic syndromes, including partial 6p21.3-p23, 9q32-q34.3, 13q32-q34, 15q24-q26, and 17p11.2-p13 trisomies in those patients. A translocated 21q segment on 12p was shown by a painting probe in a patient with Down features. A patient with cat cry syndrome resulting from a loss of the terminal segment of the short arm of chromosome 5 was confirmed by a cosmid probe showing de novo reciprocal translocation between chromosomes 5 and 18:t(5;18) (p13.3;p11.31). With FISH, the extra material on the rearranged chromosome could also be identified as duplicated or translocated. The FISH technique thus provides a method for the analysis of extra structurally abnormal chromosomes (especially in de novo cases), recognizable syndromes (contiguous gene syndromes) caused by translocated deletion from parental balanced chromosome rearrangements, and supernumerary marker chromosomes. FISH subsequent to G-banding is also of great help in the confirmation of preliminary abnormal G-banded karyotypes after a modified destaining procedure. In conclusion, the combination of G-banding and FISH is very useful in the accurate diagnosis of chromosomal

  9. Human structural variation: mechanisms of chromosome rearrangements

    PubMed Central

    Weckselblatt, Brooke; Rudd, M. Katharine

    2015-01-01

    Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. PMID:26209074

  10. Induced dicentric chromosome formation promotes genomic rearrangements and tumorigenesis.

    PubMed

    Gascoigne, Karen E; Cheeseman, Iain M

    2013-07-01

    Chromosomal rearrangements can radically alter gene products and their function, driving tumor formation or progression. However, the molecular origins and evolution of such rearrangements are varied and poorly understood, with cancer cells often containing multiple, complex rearrangements. One mechanism that can lead to genomic rearrangements is the formation of a "dicentric" chromosome containing two functional centromeres. Indeed, such dicentric chromosomes have been observed in cancer cells. Here, we tested the ability of a single dicentric chromosome to contribute to genomic instability and neoplastic conversion in vertebrate cells. We developed a system to transiently and reversibly induce dicentric chromosome formation on a single chromosome with high temporal control. We find that induced dicentric chromosomes are frequently damaged and mis-segregated during mitosis, and that this leads to extensive chromosomal rearrangements including translocations with other chromosomes. Populations of pre-neoplastic cells in which a single dicentric chromosome is induced acquire extensive genomic instability and display hallmarks of cellular transformation including anchorage-independent growth in soft agar. Our results suggest that a single dicentric chromosome could contribute to tumor initiation.

  11. Developmental arrest at early stages of Chinese hamster embryos homozygous for chromosomal rearrangements

    SciTech Connect

    Sonta, S.; Yamada, M.; Iida, T.; Ohashi, H. )

    1991-03-01

    Forty-three Chinese hamster stocks with autosomal rearrangements produced by X-irradiation were used. These rearrangements, 38 reciprocal translocations and 5 inversions, were chromosomally balanced. Heterozygotes for these rearrangements were all fertile and morphologically normal in both sexes except for one line with growth retardation. By crossing male and female heterozygotes for the same rearrangements, homozygotes were obtained in 37 lines. In the remaining 6 lines (5 with reciprocal translocations and 1 with an inversion), no homozygotes were viable. These 6 lines revealed arrested development of homozygous embryos at the two-cell stage, around the eight-cell stage, and after implantation, respectively. The bands of the breakpoints of rearrangements associated with lethality of homozygous embryos were different for each rearrangement. These results suggest that abnormal expression including embryonic lethality in homozygotes may be due to an influence of genes at the breakpoints.

  12. A comprehensive molecular cytogenetic analysis of chromosome rearrangements in gibbons

    PubMed Central

    Capozzi, Oronzo; Carbone, Lucia; Stanyon, Roscoe R.; Marra, Annamaria; Yang, Fengtang; Whelan, Christopher W.; de Jong, Pieter J.; Rocchi, Mariano; Archidiacono, Nicoletta

    2012-01-01

    Chromosome rearrangements in small apes are up to 20 times more frequent than in most mammals. Because of their complexity, the full extent of chromosome evolution in these hominoids is not yet fully documented. However, previous work with array painting, BAC-FISH, and selective sequencing in two of the four karyomorphs has shown that high-resolution methods can precisely define chromosome breakpoints and map the complex flow of evolutionary chromosome rearrangements. Here we use these tools to precisely define the rearrangements that have occurred in the remaining two karyomorphs, genera Symphalangus (2n = 50) and Hoolock (2n = 38). This research provides the most comprehensive insight into the evolutionary origins of chromosome rearrangements involved in transforming small apes genome. Bioinformatics analyses of the human–gibbon synteny breakpoints revealed association with transposable elements and segmental duplications, providing some insight into the mechanisms that might have promoted rearrangements in small apes. In the near future, the comparison of gibbon genome sequences will provide novel insights to test hypotheses concerning the mechanisms of chromosome evolution. The precise definition of synteny block boundaries and orientation, chromosomal fusions, and centromere repositioning events presented here will facilitate genome sequence assembly for these close relatives of humans. PMID:22892276

  13. A New Case of a Complex Small Supernumerary Marker Chromosome: A Der(9)t(7;9)(p22;q22) due to a Maternal Balanced Rearrangement

    PubMed Central

    Manvelyan, Marine; Simonyan, Izabella; Hovhannisyan, Galina; Aroutiounian, Rouben; Hamid, Ahmed B.; Liehr, Thomas

    2015-01-01

    Complex small supernumerary marker chromosomes (sSMCs) constitute one of the smallest subsets within the patients with an sSMC. Complex sSMCs consist of chromosomal material derived from more than one chromosome, for example, the derivative der(22)t(11;22)(q23;q11.2) in Emanuel syndrome. Here, a yet unreported case of a complex sSMC formed due to a t(7;9)(p22;q22)mat is presented. PMID:27617132

  14. A Girl with Pervasive Developmental Disorder and Complex Chromosome Rearrangement Involving 8p and 10p

    ERIC Educational Resources Information Center

    Zwaigenbaum, L; Sonnenberg, L. K.; Heshka, T.; Eastwood, S.; Xu, J.

    2005-01-01

    We report a 4-year-old girl with a "de novo", apparently balanced complex chromosome rearrangement. She initially presented for assessment of velopharyngeal insufficiency due to hypernasal speech. She has distinctive facial features (long face, broad nasal bridge, and protuberant ears with simplified helices), bifid uvula, strabismus,…

  15. Rapid identification of chromosomal rearrangements by PRINS technique

    SciTech Connect

    Pellestor, F.; Giradet, A.; Andreo, B.

    1994-09-01

    Chromosomal rearrangements contribute significantly to human reproductive failure, malformation/mental retardation syndromes and carcinogenesis. The variety of structural rearrangements is almost infinite and an identification by conventional cytogenetics is often labor intensive and may remain doubtful. Recent advances in molecular cytogenetics have provided new tools for detecting chromosomal abnormalities. The fluorescence in situ hybridization (FISH) procedure is actually the most employed technique and has led to numerous clinical applications. However, techniques required to produce suitable probes are time consuming and not accessible to all cytogenetics laboratories. The PRimed In Situ labeling (PRINS) method provides an alternate way for in situ chromosome screening. In this procedure, the chromosomal detection is performed by in situ annealing of a specific primer and subsequent primer extension by a Taq DNA polymerase in the presence of labeled nucleotides. Application of PRINS in clinical diagnosis is still limited. We have developed a semi-automatic PRINS protocol and used it to identify the origin of several chromosomal abnormalities. We report here the results of studies of three structural rearrangements: a translocation t(21;21), a supernumerary ring marker chromosome 18 and a complex chromosome 13 mosaicism involving a 13;13 Robertsonian translocation and a ring chromosome 13.

  16. Engineering the Drosophila Genome: Chromosome Rearrangements by Design

    PubMed Central

    Golic, K. G.; Golic, M. M.

    1996-01-01

    We show that site-specific recombination can be used to engineer chromosome rearrangements in Drosophila melanogaster. The FLP site-specific recombinase acts on chromosomal target sites located within specially constructed P elements to provide an easy screen for the recovery of rearrangements with breakpoints that can be chosen in advance. Paracentric and pericentric inversions are easily recovered when two elements lie in the same chromosome in opposite orientation. These inversions are readily reversible. Duplications and deficiencies can be recovered by recombination between two elements that lie in the same orientation on the same chromosome or on homologues. We observe that the frequency of recombination between FRTs at ectopic locations decreases as the distance that separates those FRTs increases. We also describe methods to determine the absolute orientation of these P elements within the chromosome. The ability to produce chromosome rearrangements precisely between preselected sites provides a powerful new tool for investigations into the relationships between chromosome arrangement, structure, and function. PMID:8978056

  17. Different proximal and distal rearrangements of chromosome 7q associated with holoprosencephaly.

    PubMed Central

    Benzacken, B; Siffroi, J P; Le Bourhis, C; Krabchi, K; Joyé, N; Maschino, F; Viguié, F; Soulié, J; Gonzales, M; Migné, G; Bucourt, M; Encha-Razavi, F; Carbillon, L; Taillemite, J L

    1997-01-01

    Four new cases of holoprosencephaly are described in fetuses exhibiting abnormal karyotypes with different distal and proximal rearrangements of the long arm of chromosome 7. Three of them showed terminal deletions of chromosome 7q, confirming the importance of the 7q36 region in holoprosencephaly. The karyotype of the fourth fetus showed an apparently balanced de novo translocation, t(7;13) (q21.2;q33), without any visible loss of the distal part of chromosome 7q. The involvement of new genes, different from the human Sonic Hedgehog gene (hShh) responsible for holoprosencephaly, or a positional effect are discussed. Images PMID:9391882

  18. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements.

    PubMed

    Liu, Pengfei; Erez, Ayelet; Nagamani, Sandesh C Sreenath; Dhar, Shweta U; Kołodziejska, Katarzyna E; Dharmadhikari, Avinash V; Cooper, M Lance; Wiszniewska, Joanna; Zhang, Feng; Withers, Marjorie A; Bacino, Carlos A; Campos-Acevedo, Luis Daniel; Delgado, Mauricio R; Freedenberg, Debra; Garnica, Adolfo; Grebe, Theresa A; Hernández-Almaguer, Dolores; Immken, LaDonna; Lalani, Seema R; McLean, Scott D; Northrup, Hope; Scaglia, Fernando; Strathearn, Lane; Trapane, Pamela; Kang, Sung-Hae L; Patel, Ankita; Cheung, Sau Wai; Hastings, P J; Stankiewicz, Paweł; Lupski, James R; Bi, Weimin

    2011-09-16

    Complex genomic rearrangements (CGRs) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here, we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated, we observed localization and multiple copy number changes including deletions, duplications, and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism's life cycle.

  19. Unusual maternal uniparental isodisomic x chromosome mosaicism with asymmetric y chromosomal rearrangement.

    PubMed

    Lee, B Y; Kim, S Y; Park, J Y; Choi, E Y; Kim, D J; Kim, J W; Ryu, H M; Cho, Y H; Park, S Y; Seo, J T

    2014-01-01

    Infertile men with azoospermia commonly have associated microdeletions in the azoospermia factor (AZF) region of the Y chromosome, sex chromosome mosaicism, or sex chromosome rearrangements. In this study, we describe an unusual 46,XX and 45,X mosaicism with a rare Y chromosome rearrangement in a phenotypically normal male patient. The patient's karyotype was 46,XX[50]/45,X[25]/46,X,der(Y)(pter→q11.222::p11.2→pter)[25]. The derivative Y chromosome had a deletion at Yq11.222 and was duplicated at Yp11.2. Two copies of the SRY gene were confirmed by fluorescence in situ hybridization analysis, and complete deletion of the AZFb and AZFc regions was shown by multiplex-PCR for microdeletion analysis. Both X chromosomes of the predominant mosaic cell line (46,XX) were isodisomic and derived from the maternal gamete, as determined by examination of short tandem repeat markers. We postulate that the derivative Y chromosome might have been generated during paternal meiosis or early embryogenesis. Also, we suggest that the very rare mosaicism of isodisomic X chromosomes might be formed during maternal meiosis II or during postzygotic division derived from the 46,X,der(Y)/ 45,X lineage because of the instability of the derivative Y chromosome. To our knowledge, this is the first confirmatory study to verify the origin of a sex chromosome mosaicism with a Y chromosome rearrangement.

  20. Using Chromosomes to Teach Evolution: Chromosomal Rearrangements in Speciation Events.

    ERIC Educational Resources Information Center

    Offner, Susan

    1994-01-01

    Uses diagrams to aid in discussing how the English map of the human chromosomes, published by Offner in 1993, can be used to illustrate some important questions in evolution, as well as give students a glimpse into some of the mechanisms underlying evolutionary change. (ZWH)

  1. Prenatally diagnosed de novo complex chromosome rearrangements: Two new cases and review of the literature

    SciTech Connect

    Ruiz, C.; Grubs, R.E.; Jewett, T.

    1994-09-01

    Complex chromosome rearrangements (CCR) are rare structural rearrangements involving at least three chromosomes with three or more breakpoints. Although there have been numerous reports of individuals with CCR, most have been ascertained through the presence of multiple congenital anomalies, recurrent pregnancy loss, or infertility. Few cases have been ascertained prenatally. We present two new cases of prenatally ascertained CCR. In the first case, an amniocentesis revealed an apparently balanced de novo rearrangement in which chromosomes 5, 6 and 11 were involved in a three-way translocation: 46,XY,t(6;5)(5;11)(q23;p14.3;q15;p13). The pregnancy was unevenful. Recently, at the age of 9 months, a physical and developmental evaluation were normal but, height, weight, and head circumference were below the 5th percentile. In the second case an amniocentesis revealed an unbalanced de novo rearrangement involving separate translocations and an interstitial deletion: 46,XY,del(6)(q25.3q27),t(3;8)(p13;q21.3),t(6;18)(p11.2;q11.2). A meconium plug was present at birth and at 6 months of age surgery for Hirschsprung`s disease was required. Currently, at 10 months of age, the patient has hypotonia and developmental delay. The paucity of information regarding prenatally diagnosed CCR poses a problem in counseling families. Of the four prenatally diagnosed balanced de novo CCR cases, three had abnormal outcomes. In a review of the literature, approximately 70% of the postnatally ascertained balanced de novo CCR cases were associated with congenital anomalies, growth retardation and/or mental retardation. More information regarding the outcome of prenatally ascertained balanced de novo CCR is required for accurate risk assessment.

  2. Chromosome-specific staining to detect genetic rearrangements

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas; Westbrook, Carol

    2013-04-09

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  3. Somatic engineering of oncogenic chromosomal rearrangements: a perspective

    PubMed Central

    Maddalo, Danilo; Ventura, Andrea

    2016-01-01

    The ability to engineer specific mutations in mice has proven essential to advancing our understanding of the molecular basis of cancer. Chromosomal rearrangements, a common and clinically relevant class of cancer-causing mutations, have however remained difficult to faithfully recapitulate in vivo. The development of genetic tools for in vivo somatic genome editing has recently overcome this limitation and led to the generation of more sophisticated and accurate preclinical models of human cancers. Here we review the potential applications of these new technologies to the study of tumor biology and discuss their advantages over more conventional strategies, their limitations, and the remaining challenges. PMID:27520450

  4. Complex Chromosomal Rearrangements Induced in Vivo by Heavy Ions

    NASA Technical Reports Server (NTRS)

    Durante, M.; Ando, K.; Furusawa, G.; Obe, G.; George, K.; Cucinotta, F. A.

    2004-01-01

    It has been suggested that the ratio complex/simple exchanges can be used as a biomarker of exposure to high-LET radiation. We tested this hypothesis in vivo, by considering data from several studies that measured complex exchanges in peripheral blood from humans exposed to mixed fields of low- and high-LET radiation. In particular, we studied data from astronauts involved in long-term missions in low-Earth-orbit, and uterus cancer patients treated with accelerated carbon ions. Data from two studies of chromosomal aberrations in astronauts used blood samples obtained before and after space flight, and a third study used blood samples from patients before and after radiotherapy course. Similar methods were used in each study, where lymphocytes were stimulated to grow in vitro, and collected after incubation in either colcemid or calyculin A. Slides were painted with whole-chromosome DNA fluorescent probes (FISH), and complex and simple chromosome exchanges in the painted genome were classified separately. Complex-type exchanges were observed at low frequencies in control subjects, and in our test subjects before the treatment. No statistically significant increase in the yield of complex-type exchanges was induced by the space flight. Radiation therapy induced a high fraction of complex exchanges, but no significant differences could be detected between patients treated with accelerated carbon ions or X-rays. Complex chromosomal rearrangements do not represent a practical biomarker of radiation quality in our test subjects. Copyright 2003 S. Karger AG, Basel.

  5. Chromosomal rearrangements and karyotype evolution in carnivores revealed by chromosome painting.

    PubMed

    Nie, W; Wang, J; Su, W; Wang, D; Tanomtong, A; Perelman, P L; Graphodatsky, A S; Yang, F

    2012-01-01

    Chromosomal evolution in carnivores has been revisited extensively using cross-species chromosome painting. Painting probes derived from flow-sorted chromosomes of the domestic dog, which has one of the most rearranged karyotypes in mammals and the highest dipoid number (2n=78) in carnivores, are a powerful tool in detecting both evolutionary intra- and inter-chromosomal rearrangements. However, only a few comparative maps have been established between dog and other non-Canidae species. Here, we extended cross-species painting with dog probes to seven more species representing six carnivore families: Eurasian lynx (Lynx lynx), the stone marten (Martes foina), the small Indian civet (Viverricula indica), the Asian palm civet (Paradoxurus hermaphrodites), Javan mongoose (Hepestes javanicas), the raccoon (Procyon lotor) and the giant panda (Ailuropoda melanoleuca). The numbers and positions of intra-chromosomal rearrangements were found to differ among these carnivore species. A comparative map between human and stone marten, and a map among the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), stone marten and human were also established to facilitate outgroup comparison and to integrate comparative maps between stone marten and other carnivores with such maps between human and other species. These comparative maps give further insight into genome evolution and karyotype phylogenetic relationships among carnivores, and will facilitate the transfer of gene mapping data from human, domestic dog and cat to other species.

  6. Chromosomal rearrangements and karyotype evolution in carnivores revealed by chromosome painting

    PubMed Central

    Nie, W; Wang, J; Su, W; Wang, D; Tanomtong, A; Perelman, P L; Graphodatsky, A S; Yang, F

    2012-01-01

    Chromosomal evolution in carnivores has been revisited extensively using cross-species chromosome painting. Painting probes derived from flow-sorted chromosomes of the domestic dog, which has one of the most rearranged karyotypes in mammals and the highest dipoid number (2n=78) in carnivores, are a powerful tool in detecting both evolutionary intra- and inter-chromosomal rearrangements. However, only a few comparative maps have been established between dog and other non-Canidae species. Here, we extended cross-species painting with dog probes to seven more species representing six carnivore families: Eurasian lynx (Lynx lynx), the stone marten (Martes foina), the small Indian civet (Viverricula indica), the Asian palm civet (Paradoxurus hermaphrodites), Javan mongoose (Hepestes javanicas), the raccoon (Procyon lotor) and the giant panda (Ailuropoda melanoleuca). The numbers and positions of intra-chromosomal rearrangements were found to differ among these carnivore species. A comparative map between human and stone marten, and a map among the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), stone marten and human were also established to facilitate outgroup comparison and to integrate comparative maps between stone marten and other carnivores with such maps between human and other species. These comparative maps give further insight into genome evolution and karyotype phylogenetic relationships among carnivores, and will facilitate the transfer of gene mapping data from human, domestic dog and cat to other species. PMID:22086079

  7. On the association between chromosomal rearrangements and genic evolution in humans and chimpanzees

    PubMed Central

    Marques-Bonet, Tomàs; Sànchez-Ruiz, Jesús; Armengol, Lluís; Khaja, Razi; Bertranpetit, Jaume; Lopez-Bigas, Núria; Rocchi, Mariano; Gazave, Elodie; Navarro, Arcadi

    2007-01-01

    Background The role that chromosomal rearrangements might have played in the speciation processes that have separated the lineages of humans and chimpanzees has recently come into the spotlight. To date, however, results are contradictory. Here we revisit this issue by making use of the available human and chimpanzee genome sequence to study the relationship between chromosomal rearrangements and rates of DNA sequence evolution. Results Contrary to previous findings for this pair of species, we show that genes located in the rearranged chromosomes that differentiate the genomes of humans and chimpanzees, especially genes within rearrangements themselves, present lower divergence than genes elsewhere in the genome. Still, there are considerable differences between individual chromosomes. Chromosome 4, in particular, presents higher divergence in genes located within its rearrangement. Conclusion A first conclusion of our analysis is that divergence is lower for genes located in rearranged chromosomes than for those in colinear chromosomes. We also report that non-coding regions within rearranged regions tend to have lower divergence than non-coding regions outside them. These results suggest an association between chromosomal rearrangements and lower non-coding divergence that has not been reported before, even if some chromosomes do not follow this trend and could be potentially associated with a speciation episode. In summary, without excluding it, our results suggest that chromosomal speciation has not been common along the human and chimpanzee lineage. PMID:17971225

  8. Precise detection of rearrangement breakpoints in mammalian chromosomes

    PubMed Central

    Lemaitre, Claire; Tannier, Eric; Gautier, Christian; Sagot, Marie-France

    2008-01-01

    Background Genomes undergo large structural changes that alter their organisation. The chromosomal regions affected by these rearrangements are called breakpoints, while those which have not been rearranged are called synteny blocks. We developed a method to precisely delimit rearrangement breakpoints on a genome by comparison with the genome of a related species. Contrary to current methods which search for synteny blocks and simply return what remains in the genome as breakpoints, we propose to go further and to investigate the breakpoints themselves in order to refine them. Results Given some reliable and non overlapping synteny blocks, the core of the method consists in refining the regions that are not contained in them. By aligning each breakpoint sequence against its specific orthologous sequences in the other species, we can look for weak similarities inside the breakpoint, thus extending the synteny blocks and narrowing the breakpoints. The identification of the narrowed breakpoints relies on a segmentation algorithm and is statistically assessed. Since this method requires as input synteny blocks with some properties which, though they appear natural, are not verified by current methods for detecting such blocks, we further give a formal definition and provide an algorithm to compute them. The whole method is applied to delimit breakpoints on the human genome when compared to the mouse and dog genomes. Among the 355 human-mouse and 240 human-dog breakpoints, 168 and 146 respectively span less than 50 Kb. We compared the resulting breakpoints with some publicly available ones and show that we achieve a better resolution. Furthermore, we suggest that breakpoints are rarely reduced to a point, and instead consist in often large regions that can be distinguished from the sequences around in terms of segmental duplications, similarity with related species, and transposable elements. Conclusion Our method leads to smaller breakpoints than already published ones

  9. Familial Constitutional Rearrangement of Chromosomes 4 & 8: Phenotypically Normal Mother and Abnormal Progeny

    PubMed Central

    Kunwar, Fulesh

    2016-01-01

    Balanced chromosome translocations carriers mostly do not have recognizable phenotypic expression but may have more risk of recurrent spontaneous abortions &/or children with serious birth defects due to unbalanced chromosome complements. Unbalanced chromosomal rearrangements have variable clinical expression and are rare. We present here a case report of three siblings affected with intellectual disability and minor dysmorphic features of face and limbs, born to a non-consanguineous couple in which mother had 5 abortions. The constitutional chromosome analysis revealed balanced translocation t (4;8) in mother and all the three siblings were karyotypically normal. Chromosomal microarray in one of the probands revealed partial monosomy 8pter-p23 and a partial trisomy 4pter-p16. Phenotypic features were recorded in 3 probands using Human Phenotype Ontology terms to query web-based tool Phenomizer. The harmonized description using globally accepted ontology is very important especially in case of rare genetic conditions and the heterogeneous phenotypes which make it even more challenging. The prevalence of sub-microscopic unbalanced translocations may be under-reported due to lesser use of molecular genetic analysis. The familial expression of abnormal phenotypes including intellectual disability make the individuals candidate for molecular genetic analysis and phenotyping to help defer the status of idiopathic mental retardation and identify sub-entity of genetic condition. PMID:27190830

  10. Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas.

    PubMed

    Bayani, Jane; Zielenska, Maria; Pandita, Ajay; Al-Romaih, Khaldoun; Karaskova, Jana; Harrison, Karen; Bridge, Julia A; Sorensen, Poul; Thorner, Paul; Squire, Jeremy A

    2003-01-01

    Conventional cytogenetic studies have shown that osteosarcomas (OSs) are often highly aneuploid, with a large number of both structural and numerical chromosomal alterations. To investigate the complexity of OS karyotypes in detail, we applied spectral karyotyping (SKY) to a series of 14 primary OS tumors and four established OS cell lines. A total of 531 rearrangements were identified by SKY, of which 300 breakpoints could be assigned to a specific chromosome band. There was an average of 38.5 breakpoints identified by SKY per primary tumor. Chromosome 20 was involved in a disproportionately high number of structural rearrangements, with 38 different aberrations being detected. Chromosomal rearrangements between chromosomes 20 and 8 were evident in four tumors. FISH analysis using a 20q13 subtelomeric probe identified frequent involvement of 20q in complex structural rearrangements of OS cell lines. Characterization of the structural aberrations of chromosomes 8 and 17 by use of SKY demonstrated frequent duplication or partial gains of chromosome bands 8q23-24 and 17p11-13. Other chromosomes frequently involved in structural alteration were chromosomes 1 (47 rearrangements) and 6 (38 rearrangements). Centromeric rearrangements often involving chromosomes 1, 6, 13, 14, 17, and 20 were present. Four of the 14 primary OS tumors were characterized by nonclonal changes that included both structural and numerical alterations. In summary, OS tumors have a very high frequency of structural and numerical alterations, compounded by gross changes in ploidy. This intrinsic karyotype instability leads to a diversity of rearrangements and the acquisition of composite chromosomal rearrangements, with the highest frequency of alteration leading to gain of 8q23-24 and 17p11-13 and rearrangement of 20q. These findings suggest that specific sequences mapping to these chromosomal regions will likely have a role in the development and progression of OS.

  11. Characterization of a complex chromosomal rearrangement using chromosome, FISH, and microarray assays in a girl with multiple congenital abnormalities and developmental delay

    PubMed Central

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are balanced or unbalanced structural rearrangements involving three or more cytogenetic breakpoints on two or more chromosomal pairs. The phenotypic anomalies in such cases are attributed to gene disruption, superimposed cryptic imbalances in the genome, and/or position effects. We report a 14-year-old girl who presented with multiple congenital anomalies and developmental delay. Chromosome and FISH analysis indicated a highly complex chromosomal rearrangement involving three chromosomes (3, 7 and 12), seven breakpoints as a result of one inversion, two insertions, and two translocations forming three derivative chromosomes. Additionally, chromosomal microarray study (CMA) revealed two submicroscopic deletions at 3p12.3 (467 kb) and 12q13.12 (442 kb). We postulate that microdeletion within the ROBO1 gene at 3p12.3 may have played a role in the patient’s developmental delay, since it has potential activity-dependent role in neurons. Additionally, factors other than genomic deletions such as loss of function or position effects may also contribute to the abnormal phenotype in our patient. PMID:25478007

  12. Characterization of a complex chromosomal rearrangement using chromosome, FISH, and microarray assays in a girl with multiple congenital abnormalities and developmental delay.

    PubMed

    Hemmat, Morteza; Yang, Xiaojing; Chan, Patricia; McGough, Robert A; Ross, Leslie; Mahon, Loretta W; Anguiano, Arturo L; Boris, Wang T; Elnaggar, Mohamed M; Wang, Jia-Chi J; Strom, Charles M; Boyar, Fatih Z

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are balanced or unbalanced structural rearrangements involving three or more cytogenetic breakpoints on two or more chromosomal pairs. The phenotypic anomalies in such cases are attributed to gene disruption, superimposed cryptic imbalances in the genome, and/or position effects. We report a 14-year-old girl who presented with multiple congenital anomalies and developmental delay. Chromosome and FISH analysis indicated a highly complex chromosomal rearrangement involving three chromosomes (3, 7 and 12), seven breakpoints as a result of one inversion, two insertions, and two translocations forming three derivative chromosomes. Additionally, chromosomal microarray study (CMA) revealed two submicroscopic deletions at 3p12.3 (467 kb) and 12q13.12 (442 kb). We postulate that microdeletion within the ROBO1 gene at 3p12.3 may have played a role in the patient's developmental delay, since it has potential activity-dependent role in neurons. Additionally, factors other than genomic deletions such as loss of function or position effects may also contribute to the abnormal phenotype in our patient.

  13. Rearrangement hotspots in the sex chromosome of the Palearctic black fly Simulium bergi (Diptera, Simuliidae)

    PubMed Central

    Adler, Peter H.; Yildirim, Alparslan; Onder, Zuhal; Tasci, G. Taskin; Duzlu, Onder; Arslan, M. Ozkan; Ciloglu, Arif; Sari, Baris; Parmaksizoglu, Nilgun; Inci, Abdullah

    2016-01-01

    Abstract An extreme example of nonrandom rearrangements, especially inversion breaks, is described in the polytene chromosomes of the black fly Simulium bergi Rubtsov, 1956 from Armenia and Turkey. A total of 48 rearrangements was discovered, relative to the standard banding sequence for the subgenus Simulium Latreille, 1802. One rearrangement, an inversion (IIS-C) in the short arm of the second chromosome, was fixed. Six (12.5%) of the rearrangements were autosomal polymorphisms, and the remaining 41 (85.4%) were sex linked. More than 40 X- and Y-linked rearrangements, predominantly inversions, were clustered in the long arm of the second chromosome (IIL), representing about 15% of the total complement. The pattern conforms to a nonrandom model of chromosome breakage, perhaps associated with an underlying molecular mechanism. PMID:27551350

  14. Extending the algebraic formalism for genome rearrangements to include linear chromosomes.

    PubMed

    Feijão, Pedro; Meidanis, João

    2013-01-01

    Algebraic rearrangement theory, as introduced by Meidanis and Dias, focuses on representing the order in which genes appear in chromosomes, and applies to circular chromosomes only. By shifting our attention to genome adjacencies, we introduce the adjacency algebraic theory, extending the original algebraic theory to linear chromosomes in a very natural way, also allowing the original algebraic distance formula to be used to the general multichromosomal case, with both linear and circular chromosomes. The resulting distance, which we call algebraic distance here, is very similar to, but not quite the same as, double-cut-and-join distance. We present linear time algorithms to compute it and to sort genomes. We show how to compute the rearrangement distance from the adjacency graph, for an easier comparison with other rearrangement distances. A thorough discussion on the relationship between the chromosomal and adjacency representation is also given, and we show how all classic rearrangement operations can be modeled using the algebraic theory.

  15. A complex chromosome rearrangement involving four chromosomes, nine breakpoints and a cryptic 0.6-Mb deletion in a boy with cerebellar hypoplasia and defects in skull ossification.

    PubMed

    Guilherme, R S; Cernach, M C S P; Sfakianakis, T E; Takeno, S S; Nardozza, L M M; Rossi, C; Bhatt, S S; Liehr, T; Melaragno, M I

    2013-01-01

    Constitutional complex chromosomal rearrangements (CCRs) are considered rare cytogenetic events. Most apparently balanced CCRs are de novo and are usually found in patients with abnormal phenotypes. High-resolution techniques are unveiling genomic imbalances in a great percentage of these cases. In this paper, we report a patient with growth and developmental delay, dysmorphic features, nervous system anomalies (pachygyria, hypoplasia of the corpus callosum and cerebellum), a marked reduction in the ossification of the cranial vault, skull base sclerosis, and cardiopathy who presents a CCR with 9 breakpoints involving 4 chromosomes (3, 6, 8 and 14) and a 0.6-Mb deletion in 14q24.1. Although the only genomic imbalance revealed by the array technique was a deletion, the clinical phenotype of the patient most likely cannot be attributed exclusively to haploinsufficiency. Other events must also be considered, including the disruption of critical genes and position effects. A combination of several different investigative approaches (G-banding, FISH with different probes and SNP array techniques) was required to describe this CCR in full, suggesting that CCRs may be more frequent than initially thought. Additionally, we propose that a chain chromosome breakage mechanism may have occurred as a single rearrangement event resulting in this CCR. This study demonstrates the importance of applying different cytogenetic and molecular techniques to detect subtle rearrangements and to delineate the rearrangements at a more accurate level, providing a better understanding of the mechanisms involved in CCR formation and a better correlation with phenotype.

  16. Complex Chromosomal Rearrangements in B-Cell Lymphoma: Evidence of Chromoanagenesis? A Case Report

    PubMed Central

    Ortega, Veronica; Chaubey, Alka; Mendiola, Christina; Ehman, William; Vadlamudi, Kumari; Dupont, Barbara; Velagaleti, Gopalrao

    2016-01-01

    Genomic instability is a well-known hallmark of cancer. Recent genome sequencing studies have led to the identification of novel phenomena called chromothripsis and chromoanasynthesis in which complex genomic rearrangements are thought to be derived from a single catastrophic event rather than by several incremental steps. A new term chromoanagenesis or chromosomal rebirth was coined recently to group these two one-step catastrophic events together. These phenomena suggest an evolutionary modality for cancer cells to circumvent individual mutational events with one simultaneous shattering of chromosomes resulting in the random reassembling of segmented genetic material to form complex derivative chromosomes. We report a case of possible chromoanagenesis in a patient with diffuse large B-cell lymphoma. Chromosome analysis from the biopsy showed a complex karyotype with multiple numerical and structural rearrangements including a translocation of chromosomes 3 and 7 involving the BCL6 gene region, with the derivative chromosome further rearranging with chromosomes 14, 7, and 22 with involvement of the IGH gene region. Fluorescence in situ hybridization studies confirmed these findings. Chromosomal microarray studies showed multiple complex copy number variations including a chromosome 12 abnormality, the complexity of which appears to suggest the phenomenon of chromoanagenesis. Our case further illustrates that lymphomagenesis can be complex and may arise from a catastrophic event resulting in multiple complex chromosome rearrangements. PMID:27108385

  17. Generation of Gross Chromosomal Rearrangements by a Single Engineered DNA Double Strand Break

    PubMed Central

    Qiu, Zhijun; Zhang, Zhenhua; Roschke, Anna; Varga, Tamas; Aplan, Peter D.

    2017-01-01

    Gross chromosomal rearrangements (GCRs), including translocations, inversions amplifications, and deletions, can be causal events leading to malignant transformation. GCRs are thought to be triggered by DNA double strand breaks (DSBs), which in turn can be spontaneous or induced by external agents (eg. cytotoxic chemotherapy, ionizing radiation). It has been shown that induction of DNA DSBs at two defined loci can produce stable balanced chromosomal translocations, however, a single engineered DNA DSB could not. Herein, we report that although a single engineered DNA DSB in H2AX “knockdown” cells did not generate GCRs, repair of a single engineered DNA DSB in fibroblasts that had ablated H2ax did produce clonal, stable GCRs, including balanced translocations and megabase-pair inversions. Upon correction of the H2ax deficiency, cells no longer generated GCRs following a single engineered DNA DSB. These findings demonstrate that clonal, stable GCRs can be produced by a single engineered DNA DSB in H2ax knockout cells, and that the production of these GCRs is ameliorated by H2ax expression. PMID:28225067

  18. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2009-10-06

    Methods and compositions for staining based upon nucleic acid sequence that employ .[.nudeic.]. .Iadd.nucleic .Iaddend.acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  19. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2002-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nudeic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  20. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2008-09-09

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  1. The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of Drosophila melanogaster

    SciTech Connect

    Wakimoto, B.T.; Hearn, M.G. )

    1990-05-01

    The light (lt) gene of Drosophila melanogaster is located at the base of the left arm of chromosome 2, within or very near centromeric heterochromatin (2Lh). Chromosome rearrangements that move the lt{sup +} gene from its normal proximal position and place the gene in distal euchromatin result in mosaic or variegated expression of the gene. The cytogenetic and genetic properties of 17 lt-variegated rearrangements induced by X radiation are described in this report. The authors show that five of the heterochromatic genes adjacent to lt are subject to inactivation by these rearrangements and that the euchromatic loci in proximal 2L are not detectably affected. The properties of the rearrangements suggest that proximity to heterochromatin is an important regulatory requirement for at least six 2Lh genes. They discuss how the properties of the position effects on heterochromatic genes relate to other proximity-dependent phenomena such as transvection.

  2. Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement

    PubMed Central

    Willis, Nicholas A.; Rass, Emilie; Scully, Ralph

    2015-01-01

    Chromosome rearrangement plays a causal role in tumorigenesis by contributing to the inactivation of tumor suppressor genes, the dysregulated expression or amplification of oncogenes and the generation of novel gene fusions. Chromosome breaks are important intermediates in this process. How, when and where these breaks arise and the specific mechanisms engaged in their repair strongly influence the resulting patterns of chromosome rearrangement. Here, we review recent progress in understanding how certain distinctive features of the cancer genome, including clustered mutagenesis, tandem segmental duplications, complex breakpoints, chromothripsis, chromoplexy and chromoanasynthesis may arise. PMID:26726318

  3. Contribution of canonical nonhomologous end joining to chromosomal rearrangements is enhanced by ATM kinase deficiency.

    PubMed

    Bhargava, Ragini; Carson, Caree R; Lee, Gabriella; Stark, Jeremy M

    2017-01-24

    A likely mechanism of chromosomal rearrangement formation involves joining the ends from two different chromosomal double-strand breaks (DSBs). These events could potentially be mediated by either of two end-joining (EJ) repair pathways [canonical nonhomologous end joining (C-NHEJ) or alternative end joining (ALT-EJ)], which cause distinct rearrangement junction patterns. The relative role of these EJ pathways during rearrangement formation has remained controversial. Along these lines, we have tested whether the DNA damage response mediated by the Ataxia Telangiectasia Mutated (ATM) kinase may affect the relative influence of C-NHEJ vs. ALT-EJ on rearrangement formation. We developed a reporter in mouse cells for a 0.4-Mbp deletion rearrangement that is formed by EJ between two DSBs induced by the Cas9 endonuclease. We found that disruption of the ATM kinase causes an increase in the frequency of the rearrangement as well as a shift toward rearrangement junctions that show hallmarks of C-NHEJ. Furthermore, ATM suppresses rearrangement formation in an experimental condition, in which C-NHEJ is the predominant EJ repair event (i.e., expression of the 3' exonuclease Trex2). Finally, several C-NHEJ factors are required for the increase in rearrangement frequency caused by inhibition of the ATM kinase. We also examined ATM effectors and found that H2AX shows a similar influence as ATM, whereas the influence of ATM on this rearrangement seems independent of 53BP1. We suggest that the contribution of the C-NHEJ pathway to the formation of a 0.4-Mbp deletion rearrangement is enhanced in ATM-deficient cells.

  4. Acentric chromosome ends are prone to fusion with functional chromosome ends through a homology-directed rearrangement.

    PubMed

    Ohno, Yuko; Ogiyama, Yuki; Kubota, Yoshino; Kubo, Takuya; Ishii, Kojiro

    2016-01-08

    The centromeres of many eukaryotic chromosomes are established epigenetically on potentially variable tandem repeats; hence, these chromosomes are at risk of being acentric. We reported previously that artificially created acentric chromosomes in the fission yeast Schizosaccharomyces pombe can be rescued by end-to-end fusion with functional chromosomes. Here, we show that most acentric/functional chromosome fusion events in S. pombe cells harbouring an acentric chromosome I differed from the non-homologous end-joining-mediated rearrangements that result in deleterious dicentric fusions in normal cells, and were elicited by a previously unidentified homologous recombination (HR) event between chromosome end-associated sequences. The subtelomere repeats associated with the non-fusogenic ends were also destabilized in the surviving cells, suggesting a causal link between general subtelomere destabilization and acentric/functional chromosome fusion. A mutational analysis indicated that a non-canonical HR pathway was involved in the rearrangement. These findings are indicative of a latent mechanism that conditionally induces general subtelomere instability, presumably in the face of accidental centromere loss events, resulting in rescue of the fatal acentric chromosomes by interchromosomal HR.

  5. The frequency and mutation rate of balanced autosomal rearrangements in man estimated from prenatal genetic studies for advanced maternal age.

    PubMed Central

    Van Dyke, D L; Weiss, L; Roberson, J R; Babu, V R

    1983-01-01

    The frequencies of balanced chromosome rearrangements were estimated from three series of advanced maternal-age prenatal genetic studies, and were compared to the frequencies that had been estimated from consecutive newborn surveys. In the maternal-age prenatal studies, the frequencies were: Robertsonian translocations, 0.11%; reciprocal translocations, 0.17%; and inversions, 0.12%. The total frequency of balanced rearrangements in the prenatal genetic studies performed with banding (0.40%, or 1 in 250) was twice that in the consecutive newborn surveys performed without banding (0.19%, or 1 in 526). The difference was limited to inversions and reciprocal translocations; the frequency of Robertsonian translocations was similar in the prenatal series and the newborn surveys. Both familial and de novo rearrangements were more common than anticipated. The de novo cases provided a mutation rate estimate of 4.3 per 10,000 gametes per generation (compared with 1.78 to 2.2 per 10,000 gametes in other surveys). These higher estimates may more reliably approximate the true mutation rate and frequencies of balanced rearrangements in the newborn population than do the newborn surveys. PMID:6837576

  6. Complex chromosomal rearrangement leading to partial trisomy 22.

    PubMed Central

    Hansteen, I L; Schirmer, L; Hestetun, S; Brøgger, A

    1980-01-01

    We have examined a boy with a peculiar facial appearance and mental retardation. Cytogenetic studies showed 47,XY, monosomy 22, two marker chromosomes, M1 and M2. The karotype is interpreted as functionally partial trisomy 22. Chromosome analyses of both parents and three sibs were normal. Images PMID:7365766

  7. Chromosomal rearrangements directly cause underdominant F1 pollen sterility in Mimulus lewisii-Mimulus cardinalis hybrids.

    PubMed

    Stathos, Angela; Fishman, Lila

    2014-11-01

    Chromosomal rearrangements can contribute to the evolution of postzygotic reproductive isolation directly, by disrupting meiosis in F1 hybrids, or indirectly, by suppressing recombination among genic incompatibilities. Because direct effects of rearrangements on fertility imply fitness costs during their spread, understanding the mechanism of F1 hybrid sterility is integral to reconstructing the role(s) of rearrangements in speciation. In hybrids between monkeyflowers Mimulus cardinalis and Mimulus lewisii, rearrangements contain all quantitative trait loci (QTLs) for both premating barriers and pollen sterility, suggesting that they may have facilitated speciation in this model system. We used artificial chromosome doubling and comparative mapping to test whether heterozygous rearrangements directly cause underdominant male sterility in M. lewisii-M. cardinalis hybrids. Consistent with a direct chromosomal basis for hybrid sterility, synthetic tetraploid F1 s showed highly restored fertility (83.4% pollen fertility) relative to diploids F1 s (36.0%). Additional mapping with Mimulus parishii-M. cardinalis and M. parishii-M. lewisii hybrids demonstrated that underdominant male sterility is caused by one M. lewisii specific and one M. cardinalis specific reciprocal translocation, but that inversions had no direct effects on fertility. We discuss the importance of translocations as causes of reproductive isolation, and consider models for how underdominant rearrangements spread and fix despite intrinsic fitness costs.

  8. Chromosomal Rainbows detect Oncogenic Rearrangements of Signaling Molecules in Thyroid Tumors

    SciTech Connect

    O'Brien, Benjamin; Jossart, Gregg H.; Ito, Yuko; Greulich-Bode, Karin M.; Weier, Jingly F.; Munne, Santiago; Clark, Orlo H.; Weier, Heinz-Ulrich G.

    2010-08-19

    Altered signal transduction can be considered a hallmark of many solid tumors. In thyroid cancers the receptor tyrosine kinase (rtk) genes NTRK1 (Online Mendelian Inheritance in Man = OMIM *191315, also known as 'TRKA'), RET ('Rearranged during Transfection protooncogene', OMIM *164761) and MET (OMIM *164860) have been reported as activated, rearranged or overexpressed. In many cases, a combination of cytogenetic and molecular techniques allows elucidation of cellular changes that initiate tumor development and progression. While the mechanisms leading to overexpression of the rtk MET gene remain largely unknown, a variety of chromosomal rearrangements of the RET or NTKR1 gene could be demonstrated in thyroid cancer. Abnormal expressions in these tumors seem to follow a similar pattern: the rearrangement translocates the 3'-end of the rtk gene including the entire catalytic domain to an expressed gene leading to a chimeric RNA and protein with kinase activity. Our research was prompted by an increasing number of reports describing translocations involving ret and previously unknown translocation partners. We developed a high resolution technique based on fluorescence in situ hybridization (FISH) to allow rapid screening for cytogenetic rearrangements which complements conventional chromosome banding analysis. Our technique applies simultaneous hybridization of numerous probes labeled with different reporter molecules which are distributed along the target chromosome allowing the detection of cytogenetic changes at near megabase-pair (Mbp) resolution. Here, we report our results using a probe set specific for human chromosome 10, which is altered in a significant portion of human thyroid cancers (TC's). While rendering accurate information about the cytogenetic location of rearranged elements, our multi-locus, multi-color analysis was developed primarily to overcome limitations of whole chromosome painting (WCP) and chromosome banding techniques for fine mapping of

  9. A complex chromosomal rearrangement involving chromosomes 2, 5, and X in autism spectrum disorder.

    PubMed

    Griesi-Oliveira, Karina; Moreira, Danielle de Paula; Davis-Wright, Nicole; Sanders, Stephan; Mason, Christopher; Orabona, Guilherme Müller; Vadasz, Estevão; Bertola, Débora Romeo; State, Matthew W; Passos-Bueno, Maria Rita

    2012-07-01

    Here, we describe a female patient with autism spectrum disorder and dysmorphic features that harbors a complex genetic alteration, involving a de novo balanced translocation t(2;X)(q11;q24), a 5q11 segmental trisomy and a maternally inherited isodisomy on chromosome 5. All the possibly damaging genetic effects of such alterations are discussed. In light of recent findings on ASD genetic causes, the hypothesis that all these alterations might be acting in orchestration and contributing to the phenotype is also considered.

  10. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus.

    PubMed

    Xiong, Zhiyong; Gaeta, Robert T; Pires, J Chris

    2011-05-10

    Polyploidy has contributed to the evolution of eukaryotes, particularly flowering plants. The genomic consequences of polyploidy have been extensively studied, but the mechanisms for chromosome stability and diploidization in polyploids remain largely unknown. By using new cytogenetic tools to identify all of the homoeologous chromosomes, we conducted a cytological investigation of 50 resynthesized Brassica napus allopolyploids across generations S(0:1) to S(5:6) and in the S(10:11) generation. Changes in copy number of individual chromosomes were detected in the S(0:1) generation and increased in subsequent generations, despite the fact that the mean chromosome number among lines was approximately 38. The chromosome complement of individual plants (segregants) ranged from 36 to 42, with a bias toward the accumulation of extra chromosomes. Karyotype analysis of the S(10:11) generation detected aneuploidy and inter- and intragenomic rearrangements, chromosome breakage and fusion, rDNA changes, and loss of repeat sequences. Chromosome sets with extensive homoeology showed the greatest instability. Dosage balance requirements maintained chromosome numbers at or near the tetraploid level, and the loss and gain of chromosomes frequently involved homoeologous chromosome replacement and compensation. These data indicate that early generations of resynthesized B. napus involved aneuploidy and gross chromosomal rearrangements, and that dosage balance mechanisms enforced chromosome number stability. Seed yield and pollen viability were inversely correlated with increasing aneuploidy, and the greatest fertility was observed in two lines that were additive for parental chromosomes. These data on resynthesized B. napus and the correlation of fertility with additive karyotypes cast light on the origins and establishment of natural B. napus.

  11. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry

    PubMed Central

    Joron, Mathieu; Frezal, Lise; Jones, Robert T.; Chamberlain, Nicola L.; Lee, Siu F.; Haag, Christoph R.; Whibley, Annabel; Becuwe, Michel; Baxter, Simon W.; Ferguson, Laura; Wilkinson, Paul A.; Salazar, Camilo; Davidson, Claire; Clark, Richard; Quail, Michael A.; Beasley, Helen; Glithero, Rebecca; Lloyd, Christine; Sims, Sarah; Jones, Matthew C.; Rogers, Jane; Jiggins, Chris D.; ffrench-Constant, Richard H.

    2013-01-01

    Supergenes are tight clusters of loci that facilitate the co-segregation of adaptive variation, providing integrated control of complex adaptive phenotypes1. Polymorphic supergenes, in which specific combinations of traits are maintained within a single population, were first described for ‘pin’ and ‘thrum’ floral types in Primula1 and Fagopyrum2, but classic examples are also found in insect mimicry3–5 and snail morphology6. Understanding the evolutionary mechanisms that generate these co-adapted gene sets, as well as the mode of limiting the production of unfit recombinant forms, remains a substantial challenge7–10. Here we show that individual wing-pattern morphs in the polymorphic mimetic butterfly Heliconius numata are associated with different genomic rearrangements at the supergene locus P. These rearrangements tighten the genetic linkage between at least two colour-pattern loci that are known to recombine in closely related species9–11, with complete suppression of recombination being observed in experimental crosses across a 400-kilobase interval containing at least 18 genes. In natural populations, notable patterns of linkage disequilibrium (LD) are observed across the entire P region. The resulting divergent haplotype clades and inversion breakpoints are found in complete association with wing-pattern morphs. Our results indicate that allelic combinations at known wing-patterning loci have become locked together in a polymorphic rearrangement at the Plocus, forming a supergene that acts as a simple switch between complex adaptive phenotypes found in sympatry. These findings highlight how genomic rearrangements can have a central role in the coexistence of adaptive phenotypes involving several genes acting in concert, by locally limiting recombination and gene flow. PMID:21841803

  12. Screening for submicroscopic chromosome rearrangements in children with idiopathic mental retardation using microsatellite markers for the chromosome telomeres

    PubMed Central

    Slavotinek, A; Rosenberg, M; Knight, S; Gaunt, L; Fergusson, W; Killoran, C; Clayton-Smith, J; Kingston, H; Campbell, R; Flint, J; Donnai, D; Biesecker, L

    1999-01-01

    Recently much attention has been given to the detection of submicroscopic chromosome rearrangements in patients with idiopathic mental retardation. We have screened 27 subjects with mental retardation and dysmorphic features for such rearrangements using a genetic marker panel screening. The screening was a pilot project using markers from the subtelomeric regions of all 41 chromosome arms. The markers were informative for monosomy in both parents at 366/902 loci (40.6%, 95% confidence interval 37.0-44.2%) in the 22 families where DNA was available from both parents. In two of the 27 subjects, submicroscopic chromosomal aberrations were detected. The first patient had a 5-6 Mb deletion of chromosome 18q and the second patient had a 4 Mb deletion of chromosome 1p. The identification of two deletions in 27 cases gave an aberration frequency of 7.5% without adjustment for marker informativeness (95% confidence interval 1-24%) and an estimated frequency of 18% if marker informativeness for monosomy was taken into account. This frequency is higher than previous estimates of the number of subtelomeric chromosome abnormalities in children with idiopathic mental retardation (5-10%) although the confidence interval is overlapping. Our study suggests that in spite of the low informativeness of this pilot screening, submicroscopic chromosome aberrations may be a common cause of dysmorphic features and mental retardation.


Keywords: idiopathic mental retardation; submicroscopic chromosome rearrangement; chromosome telomeres; 1p monosomy PMID:10353788

  13. Chromosome-specific staining to detect genetic rearrangements associated with chromosome 3 and/or chromosome 17

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2009-10-06

    Methods and compositions for staining based upon nucleic acid sequence that employ nudeic nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  14. The gene orders on human chromosome 15 and chicken chromosome 10 reveal multiple inter- and intrachromosomal rearrangements.

    PubMed

    Crooijmans, R P; Dijkhof, R J; Veenendaal, T; van der Poel, J J; Nicholls, R D; Bovenhuis, H; Groenen, M A

    2001-11-01

    Comparative mapping between the human and chicken genomes has revealed a striking conservation of synteny between the genomes of these two species, but the results have been based on low-resolution comparative maps. To address this conserved synteny in much more detail, a high-resolution human-chicken comparative map was constructed from human chromosome 15. Mapping, sequencing, and ordering of specific chicken bacterial artificial chromosomes has improved the comparative map of chromosome 15 (Hsa15) and the homologous regions in chicken with almost 100 new genes and/or expressed sequence tags. A comparison of Hsa15 with chicken identified seven conserved chromosomal segments between the two species. In chicken, these were on chromosome 1 (Gga1; two segments), Gga5 (two segments), and Gga10 (three segments). Although four conserved segments were also observed between Hsa15 and mouse, only one of the underlying rearrangement breakpoints was located at the same position as in chicken, indicating that the rearrangements generating the other three breakpoints occurred after the divergence of the rodent and the primate lineages. A high-resolution comparison of Gga10 with Hsa15 identified 19 conserved blocks, indicating the presence of at least 16 intrachromosomal rearrangement breakpoints in the bird lineage after the separation of birds and mammals. These results improve our knowledge of the evolution and dynamics of the vertebrate genomes and will aid in the clarification of the mechanisms that underlie the differentiation between the vertebrate species.

  15. Chromosomal rearrangements underlying karyotype differences between Chinese pangolin (Manis pentadactyla) and Malayan pangolin (Manis javanica) revealed by chromosome painting.

    PubMed

    Nie, Wenhui; Wang, Jinhuan; Su, Weiting; Wang, Yingxiang; Yang, Fengtang

    2009-01-01

    The Chinese pangolin (Manis pentadactyla), a representative species of the order Pholidota, has been enlisted in the mammalian whole-genome sequencing project mainly because of its phylogenetic importance. Previous studies showed that the diploid number of M. pentadactyla could vary from 2n = 36 to 42. To further characterize the genome organization of M. pentadactyla and to elucidate chromosomal mechanism underlying the karyotype diversity of Pholidota, we flow-sorted the chromosomes of 2n = 40 M. pentadactyla, and generated a set of chromosome-specific probes by DOP-PCR amplification of flow-sorted chromosomes. A comparative chromosome map between M. pentadactyla and the Malayan pangolin (Manis javanica, 2n = 38), as well as between human and M. pentadactyla, was established by chromosome painting for the first time. Our results demonstrate that seven Robertsonian rearrangements, together with considerable variations in the quantity of heterochromatin and in the number of nucleolar organizer regions (NORs) differentiate the karyotypes of 2n = 38 M. javanica and 2n = 40 M. pentadactyla. Moreover, we confirm that the M. javanica Y chromosome bears one NOR. Comparison of human homologous segment associations found in the genomes of M. javanica and M. pentadactyla revealed seven shared associations (HSA 1q/11, 2p/5, 2q/10q, 4p+q/20, 5/13, 6/19p and 8q/10p) that could constitute the potential Pholidota-specific signature rearrangements.

  16. Chromosomal rearrangements associated with LINE elements in the mouse genome.

    PubMed Central

    Shyman, S; Weaver, S

    1985-01-01

    Two segments of DNA that have apparently inserted in the interval between the two adult beta-globin genes in BALB/c (Hbbd haplotype) but not in C57B1/10 (Hbbs haplotype) mouse strains have been described (1). These putative insertions, each about 1000 bp in length, mapped near a repetitive element. To determine the precise position of these alleged insertions, their target sites, and the nature of their boundaries, we cloned and sequenced the appropriate regions of both chromosomes. One of the two segments is not an insertion but rather a region between two independently integrated L1 repetitive elements (LINEs) (2), one in Hbbd and the other in the Hbbs chromosome. The other segment is an insertion of 940 bp which is located within the L1 element in the Hbbd chromosome. This insert is unusual in that it exists in only one copy in the BALB/c genome. PMID:2991852

  17. A constitutional complex chromosome rearrangement involving meiotic arrest in an azoospermic male: case report.

    PubMed

    Coco, R; Rahn, M I; Estanga, P García; Antonioli, G; Solari, A J

    2004-12-01

    Complex chromosome rearrangements are rare aberrations that frequently lead to reproductive failure and that may hinder assisted reproduction. A 25-year-old azoospermic male was studied cytogenetically with synaptonemal complex analysis of spermatocytes from a testicular biopsy and fluorescence in situ hybridization (FISH) of lymphocytes. The spermatocytes showed a pentavalent plus a univalent chromosome. Cell death occurred mainly at advanced pachytene stages. The sex chromosomes were involved in the multiple, as shown by their typical axial excrescences. Two autosomal pairs, including an acrocentric chromosome (15), were also involved in the multiple. FISH allowed the definite identification of all the involved chromosomes. An inverted chromosome 12 is translocated with most of one long arm of chromosome 15, while the centromeric piece of this chromosome 15 is translocated with Yqh, forming a small marker chromosome t(15;Y). The euchromatic part of the Y chromosome is joined to the remaining piece of chromosome 12, forming a neo-Y chromosome. The patient shows azoospermia and a normal phenotype. The disruption of spermatogenesis is hypothetically due to the extent of asynaptic segments and to sex-body association during pachytene. This CCR occurred 'de novo' during paternal spermatogenesis. Meiotic analysis and FISH are valuable diagnostic tools in these cases.

  18. FASEB Summer Research Conference. Genetic Recombination and Chromosome Rearrangements

    SciTech Connect

    Jinks-Robertson, Sue

    2002-02-01

    The 2001 meeting entitled ''Genetic Recombination and Genome Rearrangements'' was held July 21-26 in Snowmass, Colorado. The goal of the meeting was to bring together scientists using diverse approaches to study all aspects of genetic recombination. This goal was achieved by integrating talks covering the genetics, biochemistry and structural biology of homologous recombination, site-specific recombination, and nonhomologous recombination. The format of the meeting consisted of a keynote address on the opening evening, two formal plenary sessions on each of the four full meeting days, a single afternoon workshop consisting of short talks chosen from among submitted abstracts, and afternoon poster sessions on each of the four full meeting days. The eight plenary session were entitled: (1) Recombination Mechanisms, (2) Prokaryotic Recombination, (3) Repair and Recombination, (4) Site-specific Recombination and Transposition, (5) Eukaryotic Recombination I, (6) Genome Rearrangements, (7) Meiosis, and (8) Eukaryotic Recombination II. Each session included a mix of genetic, biochemical and structural talks; talks were limited to 20 minutes, followed by 10 minutes of very lively, general discussion. Much of the data presented in the plenary sessions was unpublished, thus providing attendees with the most up-to-date knowledge of this rapidly-moving field.

  19. Chromosomes tell half of the story: the correlation between karyotype rearrangements and genetic diversity in sedges, a group with holocentric chromosomes.

    PubMed

    Hipp, Andrew L; Rothrock, Paul E; Whitkus, Richard; Weber, Jaime A

    2010-08-01

    Chromosome rearrangements may affect the rate and patterns of gene flow within species, through reduced fitness of structural heterozygotes or by reducing recombination rates in rearranged areas of the genome. While the effects of chromosome rearrangements on gene flow have been studied in a wide range of organisms with monocentric chromosomes, the effects of rearrangements in holocentric chromosomes--chromosomes in which centromeric activity is distributed along the length of the chromosome--have not. We collected chromosome number and molecular genetic data in Carex scoparia, an eastern North American plant species with holocentric chromosomes and highly variable karyotype (2n = 56-70). There are no deep genetic breaks within C. scoparia that would suggest cryptic species differentiation. However, genetic distance between individuals is positively correlated with chromosome number difference and geographic distance. A positive correlation is also found between chromosome number and genetic distance in the western North American C. pachystachya (2n = 74-81). These findings suggest that geographic distance and the number of karyotype rearrangements separating populations affect the rate of gene flow between those populations. This is the first study to quantify the effects of holocentric chromosome rearrangements on the partitioning of intraspecific genetic variance.

  20. Molecular Mechanisms and Diagnosis of Chromosome 22q11.2 Rearrangements

    ERIC Educational Resources Information Center

    Emanuel, Beverly S.

    2008-01-01

    Several recurrent, constitutional genomic disorders are present on chromosome 22q. These include the translocations and deletions associated with DiGeorge and velocardiofacial syndrome and the translocations that give rise to the recurrent t(11;22) supernumerary der(22) syndrome (Emanuel syndrome). The rearrangement breakpoints on 22q cluster…

  1. Differences in chromosome number and genome rearrangements in the genus Brucella.

    PubMed

    Jumas-Bilak, E; Michaux-Charachon, S; Bourg, G; O'Callaghan, D; Ramuz, M

    1998-01-01

    We have studied the genomic structure and constructed the SpeI, PacI and I-CeuI restriction maps of the four biovars of the pathogenic bacterium Brucella suis. B. suis biovar 1 has two chromosomes of 2.1 Mb and 1.15 Mb, similar to those of the other Brucella species: B. melitensis, B. abortus, B. ovis and B. neotomae. Two chromosomes were also observed in the genome of B. suis biovars 2 and 4, but with sizes of 1.85 Mb and 1.35 Mb, whereas only one chromosome with a size of 3.1 Mb was found in B. suis biovar 3. We show that the differences in chromosome size and number can be explained by rearrangements at chromosomal regions containing the three rrn genes. The location and orientation of these genes confirmed that these rearrangements are due to homologous recombination at the rrn loci. This observation allows us to propose a scheme for the evolution of the genus Brucella in which the two chromosome-containing strains can emerge from an hypothetical ancestor with a single chromosome, which is probably similar to that of B. suis biovar 3. As the genus Brucella is certainly monospecific, this is the first time that differences in chromosome number have been observed in strains of the same bacterial species.

  2. Chromosomal Rearrangements as Barriers to Genetic Homogenization between Archaic and Modern Humans

    PubMed Central

    Rogers, Rebekah L.

    2015-01-01

    Chromosomal rearrangements, which shuffle DNA throughout the genome, are an important source of divergence across taxa. Using a paired-end read approach with Illumina sequence data for archaic humans, I identify changes in genome structure that occurred recently in human evolution. Hundreds of rearrangements indicate genomic trafficking between the sex chromosomes and autosomes, raising the possibility of sex-specific changes. Additionally, genes adjacent to genome structure changes in Neanderthals are associated with testis-specific expression, consistent with evolutionary theory that new genes commonly form with expression in the testes. I identify one case of new-gene creation through transposition from the Y chromosome to chromosome 10 that combines the 5′-end of the testis-specific gene Fank1 with previously untranscribed sequence. This new transcript experienced copy number expansion in archaic genomes, indicating rapid genomic change. Among rearrangements identified in Neanderthals, 13% are transposition of selfish genetic elements, whereas 32% appear to be ectopic exchange between repeats. In Denisovan, the pattern is similar but numbers are significantly higher with 18% of rearrangements reflecting transposition and 40% ectopic exchange between distantly related repeats. There is an excess of divergent rearrangements relative to polymorphism in Denisovan, which might result from nonuniform rates of mutation, possibly reflecting a burst of transposable element activity in the lineage that led to Denisovan. Finally, loci containing genome structure changes show diminished rates of introgression from Neanderthals into modern humans, consistent with the hypothesis that rearrangements serve as barriers to gene flow during hybridization. Together, these results suggest that this previously unidentified source of genomic variation has important biological consequences in human evolution. PMID:26399483

  3. Co-existence of 9p deletion and Silver-Russell syndromes in a patient with maternally inherited cryptic complex chromosome rearrangement involving chromosomes 4, 9, and 11.

    PubMed

    Hu, Jie; Sathanoori, Malini; Kochmar, Sally; Madan-Khetarpal, Suneeta; McGuire, Marianne; Surti, Urvashi

    2013-01-01

    We report a patient with a maternally inherited unbalanced complex chromosomal rearrangement (CCR) involving chromosomes 4, 9, and 11 detected by microarray comparative genomic hybridization (aCGH) and fluorescence in situ hybridization (FISH). This patient presents with clinical features of 9p deletion syndrome and Silver-Russell syndrome (SRS). Chromosome analysis performed in 2000 showed what appeared to be a simple terminal deletion of chromosome 9p22.1. aCGH performed in 2010 revealed a 1.63 Mb duplication at 4q28.3, a 15.48 Mb deletion at 9p24.3p22.3, and a 1.95 Mb duplication at 11p15.5. FISH analysis revealed a derivative chromosome 9 resulting from an unbalanced translocation between chromosomes 9 and 11, a chromosome 4 fragment inserted near the breakpoint of the translocation. The 4q28.3 duplication does not contain any currently known genes. The 9p24.3p22.3 deletion region contains 36 OMIM genes including a 3.5 Mb critical region for the 9p-phenotype. The 11p15.5 duplication contains 49 OMIM genes including H19 and IGF2. Maternal aCGH was normal. However, maternal chromosomal and FISH analyses revealed an apparently balanced CCR involving chromosomes 4, 9, and 11. To the best of our knowledge, this is the first report of a patient with maternally inherited trans-duplication of the entire imprinting control region 1 (ICR1) among the 11p15.5 duplications reported in SRS patients. This report supports the hypothesis that the trans-duplication of the maternal copy of ICR1 alone is sufficient for the clinical manifestation of SRS and demonstrates the usefulness of combining aCGH with karyotyping and FISH for detecting cryptic genomic imbalances.

  4. Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral “Salicoid” Genome Duplication

    PubMed Central

    Hou, Jing; Ye, Ning; Dong, Zhongyuan; Lu, Mengzhu; Li, Laigeng; Yin, Tongming

    2016-01-01

    Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the “salicoid” duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants. PMID:27352946

  5. Major Chromosomal Rearrangements Distinguish Willow and Poplar After the Ancestral "Salicoid" Genome Duplication.

    PubMed

    Hou, Jing; Ye, Ning; Dong, Zhongyuan; Lu, Mengzhu; Li, Laigeng; Yin, Tongming

    2016-06-27

    Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the "salicoid" duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants.

  6. DNA Double-Strand Breaks, Chromosomal Rearrangements, and GenomicInstability

    SciTech Connect

    Morgan, W.F.; Corcoran, J.; Hartmann, A.; Kaplan, M.I.; Limoli,C.L.; Ponnaiya, B.

    1998-03-09

    DNA double-strand breaks can lead to chromosomalrearrangements at the first mitosis after exposure to the DNAstrand-breaking agent. The evidence suggests a number of differentpathways for DNA double-strand break rejoining in mammalian cells, but itis unclear what factors determine the fate of the induced break andwhether or not it will lead to chromosomal rearrangement. If a cell doessurvive and proliferate after DNA cleavage, delayed chromosomalinstability can be observedin the clonal descendants of the exposedcell. Most, but not all DNA double-strand breaking agents are effectiveat inducing this delayed chromosomal instability. In this paper, wereview the evidence for the role of the DNA double-strand break indirectly induced and delayed chromosomal rearrangements. Copyright 1998Elsevier Science B.V.

  7. Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: a study of 59 patients

    PubMed Central

    De Gregori, M; Ciccone, R; Magini, P; Pramparo, T; Gimelli, S; Messa, J; Novara, F; Vetro, A; Rossi, E; Maraschio, P; Bonaglia, M C; Anichini, C; Ferrero, G B; Silengo, M; Fazzi, E; Zatterale, A; Fischetto, R; Previderé, C; Belli, S; Turci, A; Calabrese, G; Bernardi, F; Meneghelli, E; Riegel, M; Rocchi, M; SGuerneri; Lalatta, F; Zelante, L; Romano, C; Fichera, Ma; Mattina, T; Arrigo, G; Zollino, M; Giglio, S; Lonardo, F; Bonfante, A; Ferlini, A; Cifuentes, F; Van Esch, H; Backx, L; Schinzel, A; Vermeesch, J R; Zuffardi, O

    2007-01-01

    Using array comparative genome hybridisation (CGH) 41 de novo reciprocal translocations and 18 de novo complex chromosome rearrangements (CCRs) were screened. All cases had been interpreted as “balanced” by conventional cytogenetics. In all, 27 cases of reciprocal translocations were detected in patients with an abnormal phenotype, and after array CGH analysis, 11 were found to be unbalanced. Thus 40% (11 of 27) of patients with a “chromosomal phenotype” and an apparently balanced translocation were in fact unbalanced, and 18% (5 of 27) of the reciprocal translocations were instead complex rearrangements with >3 breakpoints. Fourteen fetuses with de novo, apparently balanced translocations, all but two with normal ultrasound findings, were also analysed and all were found to be normal using array CGH. Thirteen CCRs were detected in patients with abnormal phenotypes, two in women who had experienced repeated spontaneous abortions and three in fetuses. Sixteen patients were found to have unbalanced mutations, with up to 4 deletions. These results suggest that genome‐wide array CGH may be advisable in all carriers of “balanced” CCRs. The parental origin of the deletions was investigated in 5 reciprocal translocations and 11 CCRs; all were found to be paternal. Using customised platforms in seven cases of CCRs, the deletion breakpoints were narrowed down to regions of a few hundred base pairs in length. No susceptibility motifs were associated with the imbalances. These results show that the phenotypic abnormalities of apparently balanced de novo CCRs are mainly due to cryptic deletions and that spermatogenesis is more prone to generate multiple chaotic chromosome imbalances and reciprocal translocations than oogenesis. PMID:17766364

  8. Mapping autism risk loci using genetic linkage and chromosomal rearrangements

    PubMed Central

    Szatmari, Peter; Paterson, Andrew; Zwaigenbaum, Lonnie; Roberts, Wendy; Brian, Jessica; Liu, Xiao-Qing; Vincent, John; Skaug, Jennifer; Thompson, Ann; Senman, Lili; Feuk, Lars; Qian, Cheng; Bryson, Susan; Jones, Marshall; Marshall, Christian; Scherer, Stephen; Vieland, Veronica; Bartlett, Christopher; Mangin, La Vonne; Goedken, Rhinda; Segre, Alberto; Pericak-Vance, Margaret; Cuccaro, Michael; Gilbert, John; Wright, Harry; Abramson, Ruth; Betancur, Catalina; Bourgeron, Thomas; Gillberg, Christopher; Leboyer, Marion; Buxbaum, Joseph; Davis, Kenneth; Hollander, Eric; Silverman, Jeremy; Hallmayer, Joachim; Lotspeich, Linda; Sutcliffe, James; Haines, Jonathan; Folstein, Susan; Piven, Joseph; Wassink, Thomas; Sheffield, Val; Geschwind, Daniel; Bucan, Maja; Brown, Ted; Cantor, Rita; Constantino, John; Gilliam, Conrad; Herbert, Martha; Lajonchere, Clara; Ledbetter, David; Lese-Martin, Christa; Miller, Janet; Nelson, Stan; Samango-Sprouse, Carol; Spence, Sarah; State, Matthew; Tanzi, Rudolph; Coon, Hilary; Dawson, Geraldine; Devlin, Bernie; Estes, Annette; Flodman, Pamela; Klei, Lambertus; Mcmahon, William; Minshew, Nancy; Munson, Jeff; Korvatska, Elena; Rodier, Patricia; Schellenberg, Gerard; Smith, Moyra; Spence, Anne; Stodgell, Chris; Tepper, Ping Guo; Wijsman, Ellen; Yu, Chang-En; Rogé, Bernadette; Mantoulan, Carine; Wittemeyer, Kerstin; Poustka, Annemarie; Felder, Bärbel; Klauck, Sabine; Schuster, Claudia; Poustka, Fritz; Bölte, Sven; Feineis-Matthews, Sabine; Herbrecht, Evelyn; Schmötzer, Gabi; Tsiantis, John; Papanikolaou, Katerina; Maestrini, Elena; Bacchelli, Elena; Blasi, Francesca; Carone, Simona; Toma, Claudio; Van Engeland, Herman; De Jonge, Maretha; Kemner, Chantal; Koop, Frederieke; Langemeijer, Marjolein; Hijmans, Channa; Staal, Wouter; Baird, Gillian; Bolton, Patrick; Rutter, Michael; Weisblatt, Emma; Green, Jonathan; Aldred, Catherine; Wilkinson, Julie-Anne; Pickles, Andrew; Le Couteur, Ann; Berney, Tom; Mcconachie, Helen; Bailey, Anthony; Francis, Kostas; Honeyman, Gemma; Hutchinson, Aislinn; Parr, Jeremy; Wallace, Simon; Monaco, Anthony; Barnby, Gabrielle; Kobayashi, Kazuhiro; Lamb, Janine; Sousa, Ines; Sykes, Nuala; Cook, Edwin; Guter, Stephen; Leventhal, Bennett; Salt, Jeff; Lord, Catherine; Corsello, Christina; Hus, Vanessa; Weeks, Daniel; Volkmar, Fred; Tauber, Maïté; Fombonne, Eric; Shih, Andy; Meyer, Kacie

    2007-01-01

    Autism spectrum disorders (ASD) are common, heritable neurodevelopmental conditions. The genetic architecture of ASD is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASD by using Affymetrix 10K single nucleotide polymorphism (SNP) arrays and 1168 families with ≥ 2 affected individuals to perform the largest linkage scan to date, while also analyzing copy number variation (CNV) in these families. Linkage and CNV analyses implicate chromosome 11p12-p13 and neurexins, respectively, amongst other candidate loci. Neurexins team with previously-implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for ASD. PMID:17322880

  9. Crossing-over in rearranging chromosomes of Drosophila: The role of delayed pairing

    SciTech Connect

    Chadov, B.F.; Chadova, E.V.; Khotskina, E.A.

    1995-11-01

    A Df(2R)MS2-10 deletion of pericentromeric heterochromatin and an Is(Y;2L)419 insertion of Y material in the region 34A, as well as nondisjunction of chromosomes 2 in 2/F(2L); F(2R) females did not directly prevent chromosome arms in chromosome 2 of Drosophila from pairing. However, these events resulted in (1) two- to four-fold decrease in the rate of crossing-over in chromosome 2; (2) a decreased proportion of exchange tetrads two to three times greater for multiple-exchange tetrads than for single-exchange ones; and (3) a decreased rate of crossing-over throughout the entire chromosome arm enhanced in a proximal direction. An In(1)dl-49+B{sup M1}inversion in the X chromosome cancelled the suppression of crossing-over. Crossing-over increased due to an increasing proportion of single-exchange tretrads. The changes in crossing-over found cannot be explained by asynapsis in the chromosomes with rearrangements. According to the authors, these changes are probably accounted for by a delayed pairing of these chromosomes. The delayed pairing of individual chromosome regions or the whole chromosome is considered the most common type of pairing disturbance. It effects on meiosis are discussed. 39 refs., 6 figs., 1 tab.

  10. Chromosomal rearrangements in a Somali wild ass pedigree, Equus africanus somaliensis (Perissodactyla, Equidae).

    PubMed

    Houck, M L; Kumamoto, A T; Cabrera, R M; Benirschke, K

    1998-01-01

    Chromosome analyses were conducted on 15 animals in a pedigree of Somali wild ass, Equus africanus somaliensis. G- and C-banded karyotypes are presented for the first time on this endangered species. The diploid number ranged from 62 to 64. Numerical chromosomal variation was the result of a centric fission which was accompanied by a heterochromatic deletion. The fission polymorphism involved acrocentric elements 19 and 21 as determined by G-banding. These autosomes are homologous to those involved in centric fission/fusion polymorphisms in other equids: E. asinus (domestic donkey), E. hemionus (onager), E. kiang (kiang), and E. burchelli (common zebra). Banding analyses also revealed a paracentric inversion polymorphism in submetacentric chromosome pair 2 of E. a. somaliensis. Both the centric fission and paracentric inversion polymorphisms involved heterochromatic regions. One individual was found to be heterozygous for two de novo chromosomal rearrangements: a centric fission (involving acrocentric elements 19 and 21) and a heterochromatic deletion of chromosome 2.

  11. Delineating Rearrangements in Single Yeast Artificial Chromosomes by Quantitative DNA Fiber Mapping

    SciTech Connect

    Weier, Heinz-Ulrich G.; Greulich-Bode, Karin M.; Wu, Jenny; Duell, Thomas

    2009-09-18

    Cloning of large chunks of human genomic DNA in recombinant systems such as yeast or bacterial artificial chromosomes has greatly facilitated the construction of physical maps, the positional cloning of disease genes or the preparation of patient-specific DNA probes for diagnostic purposes. For this process to work efficiently, the DNA cloning process and subsequent clone propagation need to maintain stable inserts that are neither deleted nor otherwise rearranged. Some regions of the human genome; however, appear to have a higher propensity than others to rearrange in any host system. Thus, techniques to detect and accurately characterize such rearrangements need to be developed. We developed a technique termed 'Quantitative DNA Fiber Mapping (QDFM)' that allows accurate tagging of sequence elements of interest with near kilobase accuracy and optimized it for delineation of rearrangements in recombinant DNA clones. This paper demonstrates the power of this microscopic approach by investigating YAC rearrangements. In our examples, high-resolution physical maps for regions within the immunoglobulin lambda variant gene cluster were constructed for three different YAC clones carrying deletions of 95 kb and more. Rearrangements within YACs could be demonstrated unambiguously by pairwise mapping of cosmids along YAC DNA molecules. When coverage by YAC clones was not available, distances between cosmid clones were estimated by hybridization of cosmids onto DNA fibers prepared from human genomic DNA. In addition, the QDFM technology provides essential information about clone stability facilitating closure of the maps of the human genome as well as those of model organisms.

  12. Reproductive Incompatibility Involving Senegalese Aedes aegypti (L) Is Associated with Chromosome Rearrangements

    PubMed Central

    Dickson, Laura B.; Sharakhova, Maria V.; Timoshevskiy, Vladimir A.; Fleming, Karen L.; Caspary, Alex; Sylla, Massamba; Black, William C.

    2016-01-01

    was used to identify AT-rich regions, chromomycin A3 following pretreatment with barium hydroxide stained for GC-rich regions and stained the ribosomal RNA locus and YOYO-1 was used to test for differential staining. Chromosome patterns in SenAae strains revealed by these three stains differed from those in IB12. For FISH, 40 BAC clones previously physically mapped on Aaa chromosomes were used to test for chromosome rearrangements in SenAae relative to IB12. Differences in the order of markers identified two chromosomal rearrangements between IB12 and SenAae strains. The first rearrangement involves two overlapping pericentric (containing the centromere) inversions in chromosome 3 or an insertion of a large fragment into the 3q arm. The second rearrangement is close to the centromere on the p arm of chromosome 2. Linkage analysis of the SDL and the white-eye locus identified a likely chromosomal rearrangement on chromosome 1. The reproductive incompatibility observed within SenAae and between SenAae and Aaa may be generally associated with chromosome rearrangements on all three chromosomes and specifically caused by pericentric inversions on chromosomes 2 and 3. PMID:27105225

  13. Reproductive Incompatibility Involving Senegalese Aedes aegypti (L) Is Associated with Chromosome Rearrangements.

    PubMed

    Dickson, Laura B; Sharakhova, Maria V; Timoshevskiy, Vladimir A; Fleming, Karen L; Caspary, Alex; Sylla, Massamba; Black, William C

    2016-04-01

    used to identify AT-rich regions, chromomycin A3 following pretreatment with barium hydroxide stained for GC-rich regions and stained the ribosomal RNA locus and YOYO-1 was used to test for differential staining. Chromosome patterns in SenAae strains revealed by these three stains differed from those in IB12. For FISH, 40 BAC clones previously physically mapped on Aaa chromosomes were used to test for chromosome rearrangements in SenAae relative to IB12. Differences in the order of markers identified two chromosomal rearrangements between IB12 and SenAae strains. The first rearrangement involves two overlapping pericentric (containing the centromere) inversions in chromosome 3 or an insertion of a large fragment into the 3q arm. The second rearrangement is close to the centromere on the p arm of chromosome 2. Linkage analysis of the SDL and the white-eye locus identified a likely chromosomal rearrangement on chromosome 1. The reproductive incompatibility observed within SenAae and between SenAae and Aaa may be generally associated with chromosome rearrangements on all three chromosomes and specifically caused by pericentric inversions on chromosomes 2 and 3.

  14. Mendelian and non-Mendelian inheritance of newly-arisen chromosome rearrangements.

    PubMed

    Wilby, A S; Parker, J S

    1988-04-01

    Seven centric shifts and three reciprocal interchanges, all newly-arisen in natural populations, have been tested for their inheritance in the dioecious flowering plant Rumex acetosa. In backcrosses between the heterozygote and standard plants transmissions ranged from 0.36 to 0.85 per gamete for the novel chromosome. The inheritance of only four rearrangements correspond to Mendelian expectations while others exhibited either drive or drag. Drive was observed both through the egg and through the pollen indicating heterogeneity of mechanisms in the generation of non-Mendelian patterns of inheritance. This suggests that accumulation may play a significant role in the establishment of chromosomal variants in natural populations.

  15. Chromosome homologies of the highly rearranged karyotypes of four Akodon species (Rodentia, Cricetidae) resolved by reciprocal chromosome painting: the evolution of the lowest diploid number in rodents.

    PubMed

    Ventura, Karen; O'Brien, Patricia C M; Yonenaga-Yassuda, Yatiyo; Ferguson-Smith, Malcolm A

    2009-01-01

    Traditionally comparative cytogenetic studies are based mainly on banding patterns. Nevertheless, when dealing with species with highly rearranged genomes, as in Akodon species, or with other highly divergent species, cytogenetic comparisons of banding patterns prove inadequate. Hence, comparative chromosome painting has become the method of choice for genome comparisons at the cytogenetic level since it allows complete chromosome probes of a species to be hybridized in situ onto chromosomes of other species, detecting homologous genomic regions between them. In the present study, we have explored the highly rearranged complements of the Akodon species using reciprocal chromosome painting through species-specific chromosome probes obtained by chromosome sorting. The results revealed complete homology among the complements of Akodon sp. n. (ASP), 2n = 10; Akodon cursor (ACU), 2n = 15; Akodon montensis (AMO), 2n = 24; and Akodon paranaensis (APA), 2n = 44, and extensive chromosome rearrangements have been detected within the species with high precision. Robertsonian and tandem rearrangements, pericentric inversions and/or centromere repositioning, paracentric inversion, translocations, insertions, and breakpoints, where chromosomal rearrangements, seen to be favorable, were observed. Chromosome painting using the APA set of 21 autosomes plus X and Y revealed eight syntenic segments that are shared with A. montensis, A. cursor, and ASP, and one syntenic segment shared by A. montensis and A. cursor plus five exclusive chromosome associations for A. cursor and six for ASP chromosome X, except for the heterochromatin region of ASP X, and even chromosome Y shared complete homology among the species. These data indicate that all those closely related species have experienced a recent extensive process of autosomal rearrangement in which, except for ASP, there is still complete conservation of sex chromosomes homologies.

  16. Describing sequencing results of structural chromosome rearrangements with a suggested next-generation cytogenetic nomenclature.

    PubMed

    Ordulu, Zehra; Wong, Kristen E; Currall, Benjamin B; Ivanov, Andrew R; Pereira, Shahrin; Althari, Sara; Gusella, James F; Talkowski, Michael E; Morton, Cynthia C

    2014-05-01

    With recent rapid advances in genomic technologies, precise delineation of structural chromosome rearrangements at the nucleotide level is becoming increasingly feasible. In this era of "next-generation cytogenetics" (i.e., an integration of traditional cytogenetic techniques and next-generation sequencing), a consensus nomenclature is essential for accurate communication and data sharing. Currently, nomenclature for describing the sequencing data of these aberrations is lacking. Herein, we present a system called Next-Gen Cytogenetic Nomenclature, which is concordant with the International System for Human Cytogenetic Nomenclature (2013). This system starts with the alignment of rearrangement sequences by BLAT or BLAST (alignment tools) and arrives at a concise and detailed description of chromosomal changes. To facilitate usage and implementation of this nomenclature, we are developing a program designated BLA(S)T Output Sequence Tool of Nomenclature (BOSToN), a demonstrative version of which is accessible online. A standardized characterization of structural chromosomal rearrangements is essential both for research analyses and for application in the clinical setting.

  17. Quantification of Somatic Chromosomal Rearrangements in Circulating Cell-Free DNA from Ovarian Cancers

    PubMed Central

    Harris, Faye R.; Kovtun, Irina V.; Smadbeck, James; Multinu, Francesco; Jatoi, Aminah; Kosari, Farhad; Kalli, Kimberly R.; Murphy, Stephen J.; Halling, Geoffrey C.; Johnson, Sarah H.; Liu, Minetta C.; Mariani, Andrea; Vasmatzis, George

    2016-01-01

    Recently, the use of a liquid biopsy has shown promise in monitoring tumor burden. While point mutations have been extensively studied, chromosomal rearrangements have demonstrated greater tumor specificity. Such rearrangements can be identified in the tumor and subsequently detected in the plasma of patients using quantitative PCR (qPCR). In this study we used a whole-genome mate-pair protocol to characterize a landscape of genomic rearrangements in the primary tumors of ten ovarian cancer patients. Individualized tumor-specific primer panels of aberrant chromosomal junctions were identified for each case and detected by qPCR within the cell-free DNA. Selected chromosomal junctions were detected in pre-surgically drawn blood in eight of the ten patients. Of these eight, three demonstrated the continued presence of circulating tumor DNA (ctDNA) post-surgery, consistent with their documented presence of disease, and in five ctDNA was undetectable in the post-surgical blood collection, consistent with their lack of detectable disease. The ctDNA fraction was calculated using a novel algorithm designed for the unique challenges of quantifying ctDNA using qPCR to allow observations of real-time tumor dynamics. In summary, a panel of individualized junctions derived from tumor DNA could be an effective way to monitor cancer patients for relapse and therapeutic efficacy using cfDNA. PMID:27436510

  18. Palindrome-Mediated Translocations in Humans: A New Mechanistic Model for Gross Chromosomal Rearrangements

    PubMed Central

    Inagaki, Hidehito; Kato, Takema; Tsutsumi, Makiko; Ouchi, Yuya; Ohye, Tamae; Kurahashi, Hiroki

    2016-01-01

    Palindromic DNA sequences, which can form secondary structures, are widely distributed in the human genome. Although the nature of the secondary structure—single-stranded “hairpin” or double-stranded “cruciform”—has been extensively investigated in vitro, the existence of such unusual non-B DNA in vivo remains controversial. Here, we review palindrome-mediated gross chromosomal rearrangements possibly induced by non-B DNA in humans. Recent advances in next-generation sequencing have not yet overcome the difficulty of palindromic sequence analysis. However, a dozen palindromic AT-rich repeat (PATRR) sequences have been identified at the breakpoints of recurrent or non-recurrent chromosomal translocations in humans. The breakages always occur at the center of the palindrome. Analyses of polymorphisms within the palindromes indicate that the symmetry and length of the palindrome affect the frequency of the de novo occurrence of these palindrome-mediated translocations, suggesting the involvement of non-B DNA. Indeed, experiments using a plasmid-based model system showed that the formation of non-B DNA is likely the key to palindrome-mediated genomic rearrangements. Some evidence implies a new mechanism that cruciform DNAs may come close together first in nucleus and illegitimately joined. Analysis of PATRR-mediated translocations in humans will provide further understanding of gross chromosomal rearrangements in many organisms. PMID:27462347

  19. Scoliosis and vertebral anomalies: additional abnormal phenotypes associated with chromosome 16p11.2 rearrangement.

    PubMed

    Al-Kateb, Hussam; Khanna, Geetika; Filges, Isabel; Hauser, Natalie; Grange, Dorothy K; Shen, Joseph; Smyser, Christopher D; Kulkarni, Shashikant; Shinawi, Marwan

    2014-05-01

    The typical chromosome 16p11.2 rearrangements are estimated to occur at a frequency of approximately 0.6% of all samples tested clinically and have been identified as a major cause of autism spectrum disorders, developmental delay, behavioral abnormalities, and seizures. Careful examination of patients with these rearrangements revealed association with abnormal head size, obesity, dysmorphism, and congenital abnormalities. In this report, we extend this list of phenotypic abnormalities to include scoliosis and vertebral anomalies. We present detailed characterization of phenotypic and radiological data of 10 new patients, nine with the 16p11.2 deletion and one with the duplication within the coordinates chr16:29,366,195 and 30,306,956 (hg19) with a minimal size of 555 kb. We discuss the phenotypical and radiological findings in our patients and review 5 previously reported patients with 16p11.2 rearrangement and similar skeletal abnormalities. Our data suggest that patients with the recurrent 16p11.2 rearrangement have increased incidence of scoliosis and vertebral anomalies. However, additional studies are required to confirm this observation and to establish the incidence of these anomalies. We discuss the potential implications of our findings on the diagnosis, surveillance and genetic counseling of patients with 16p11.2 rearrangement.

  20. De novo dup p/del q or dup q/del p rearranged chromosomes: review of 104 cases of a distinct chromosomal mutation.

    PubMed

    Rivera, H; Domínguez, M G; Vásquez-Velásquez, A I; Lurie, I W

    2013-01-01

    We compiled 104 constitutional de novo or sporadic rearranged chromosomes mimicking recombinants from a parental pericentric inversion in order to comment on their occurrence and parental derivation, meiotic or postzygotic origin, mean parental ages, and underlying pathways. Chromosomes involved were 1-9, 13-18, 20-22, and X (64 autosomes and 40 X chromosomes). In the whole series, mean paternal and maternal ages in cases of paternal (proved or possible; n=29) or maternal (proved or possible; n=36) descent were 31.14 and 28.31 years, respectively. Rearranged X chromosomes appeared to be of paternal descent and to arise through intrachromosomal non-allelic homologous recombination (NAHR), whereas rec-like autosomes were of either maternal or paternal origin and resulted from mechanisms proper of non-recurrent rearrangements. Except for some mosaic cases, most rearranged chromosomes apparently had a meiotic origin. Except for 8 rearranged X chromosomes transmitted maternally, all other cases compiled here were sporadic. Hence, the recurrence risk for sibs of propositi born to euploid parents is virtually zero, regardless of the imbalance's size. In brief, recombinant-like or rea chromosomes are not related to advanced parental age, may (chromosome X) or may not (autosomes) have a parent-of-origin bias, arise in meiosis or postzygotically, and appear to be mediated by NAHR, nonhomologous end joining, and telomere transposition. Because rearranged chromosomes 10, 11, and Y are also on record, albeit just in abstracts or listed in large series, we remark that all chromosomes can undergo this distinct rearrangement, even if it is still to be described for pairs 12 and 19.

  1. Chromosomal rearrangements do not seem to affect the gene flow in hybrid zones between karyotypic races of the common shrew (Sorex araneus).

    PubMed

    Horn, Agnès; Basset, Patrick; Yannic, Glenn; Banaszek, Agata; Borodin, Pavel M; Bulatova, Nina S; Jadwiszczak, Katarzyna; Jones, Ross M; Polyakov, Andrei V; Ratkiewicz, Miroslaw; Searle, Jeremy B; Shchipanov, Nikolai A; Zima, Jan; Hausser, Jacques

    2012-03-01

    Chromosomal rearrangements are proposed to promote genetic differentiation between chromosomally differentiated taxa and therefore promote speciation. Due to their remarkable karyotypic polymorphism, the shrews of the Sorex araneus group were used to investigate the impact of chromosomal rearrangements on gene flow. Five intraspecific chromosomal hybrid zones characterized by different levels of karyotypic complexity were studied using 16 microsatellites markers. We observed low levels of genetic differentiation even in the hybrid zones with the highest karyotypic complexity. No evidence of restricted gene flow between differently rearranged chromosomes was observed. Contrary to what was observed at the interspecific level, the effect of chromosomal rearrangements on gene flow was undetectable within the S. araneus species.

  2. Chromosome-Specific Staining To Detect Genetic Rearrangements Associated With Chromosome 3 And/Or Chromosone 17

    DOEpatents

    Gray; Joe W.; Pinkel; Daniel; Kallioniemi; Olli-Pekka; Kallioniemi; Anne; Sakamoto; Masaru

    2002-02-05

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  3. Analysis of spontaneous chromosomal rearrangements in neuroblasts of genetically unstable mutant lines of Drosophila melanogaster

    SciTech Connect

    Derzhavets, E.M.; Kim, A.I.; Aslanyan, M.M.

    1988-11-01

    The spectrum and frequency of chromosomal aberrations in the somatic cells of III instar larvae of Drosophila melanogaster mutator line were studied using three of its derivatives (sbt, if, and w/sup a/) and line w as control. It has been demonstrated that the frequency of anaphases with bridges and acentric fragments increases in the neuroblast of flies of the mutator line as well as in the neuroblasts of the larvae of the lines sbt, if, and w/sup a/. The metaphase analysis revealed that the mutator line and its derivatives are characterized by higher frequencies of chromosomal aberrations as compared to the control. Chromatid breaks are predominant type of rearrangements. These results, suggest probably presence of the specific mutator factor or factors in the line studied, affecting chromosomal structure and, possibly, activating migration of the mobile genetic elements in the mutator line.

  4. High-frequency induction of chromosomal rearrangements in mouse germ cells by the chemotherapeutic agent chlorambucil.

    PubMed

    Rinchik, E M; Flaherty, L; Russell, L B

    1993-12-01

    Recent mutagenesis studies have demonstrated that the chemotherapeutic agent, chlorambucil (CHL), is highly mutagenic in male germ cells of the mouse. Post-meiotic germ cells, and especially early spermatids, are the most sensitive to the cytotoxic and mutagenic effects of this agent. Genetic, cytogenetic and molecular analyses of many induced mutations have shown that, in these germ-cell stages, CHL induces predominantly chromosomal rearrangements (deletions and translocations), and mutation-rate studies show that, in terms of tolerated doses, CHL is perhaps five to ten times more efficient in inducing rearrangements than is radiation exposure. Appropriate breeding protocols, along with knowledge of the advantages and limitations associated with the use of CHL, can be used to expand the current resource of chromosomal rearrangements in the mouse and to provide new phenotype-associated mutations amenable to positional-cloning techniques. The analysis of CHL-induced mutations has also contributed to understanding the factors that affect the yield and nature of chemically induced germline mutations in mammals.

  5. Abnormal meiotic recombination with complex chromosomal rearrangement in an azoospermic man.

    PubMed

    Wang, Liu; Iqbal, Furhan; Li, Guangyuan; Jiang, Xiaohua; Bukhari, Ihtisham; Jiang, Hanwei; Yang, Qingling; Zhong, Liangwen; Zhang, Yuanwei; Hua, Juan; Cooke, Howard J; Shi, Qinghua

    2015-06-01

    Spermatocyte spreading and immunostaining were applied to detect meiotic prophase I progression, homologous chromosome pairing, synapsis and recombination in an azoospermic reciprocal translocation 46, XY, t(5;7;9;13)(5q11;7p11;7p15;9q12;13p12) carrier. Histological examination of the haematoxylin and eosin stained testicular sections revealed reduced germ cells with no spermatids or sperm in the patient. TdT (terminal deoxynucleotidyl transferase)-mediated dUDP nick-end labelling assay showed apoptotic cells in testicular sections of translocation carrier. Immnunofluorescence analysis indicated the presence of an octavalent in all the pachytene spermatocytes analysed in the patient. Meiotic progression was disturbed, as an increase in zygotene (P < 0.001) and decrease in the pachytene spermatocytes (P < 0.001) were observed in the t(5;7;9;13) carrier compared with controls. It was further observed that 93% of octavalents were found partially asynapsed between homologous chromosomes. A significant decrease in the recombination frequency was observed on 5p, 5q, 7q, 9p and 13q in the translocation carrier compared with the reported controls. A significant reduction in XY recombination frequency was also found in the participants. Our results indicated that complex chromosomal rearrangements can impair synaptic integrity of translocated chromosomes, which may reduce chromosomal recombination on translocated as well as non-translocated chromosomes, a phenomenon commonly known as interchromosomal effect.

  6. Chromosomal Rearrangements in Post-Chernobyl Papillary Thyroid Carcinomas: Evaluation by Spectral Karyotyping and Automated Interphase FISH

    PubMed Central

    Hieber, Ludwig; Huber, Reinhard; Bauer, Verena; Schäffner, Quirin; Braselmann, Herbert; Thomas, Geraldine; Bogdanova, Tatjana; Zitzelsberger, Horst

    2011-01-01

    Structural genomic rearrangements are frequent findings in human cancers. Therefore, papillary thyroid carcinomas (PTCs) were investigated for chromosomal aberrations and rearrangements of the RET proto-oncogene. For this purpose, primary cultures from 23 PTC have been established and metaphase preparations were analysed by spectral karyotyping (SKY). In addition, interphase cell preparations of the same cases were investigated by fluorescence in situ hybridisation (FISH) for the presence of RET/PTC rearrangements using RET-specific DNA probes. SKY analysis of PTC revealed structural aberrations of chromosome 11 and several numerical aberrations with frequent loss of chromosomes 20, 21, and 22. FISH analysis for RET/PTC rearrangements showed prevalence of this rearrangement in 72% (16 out of 22) of cases. However, only subpopulations of tumour cells exhibited this rearrangement indicating genetic heterogeneity. The comparison of visual and automated scoring of FISH signals revealed concordant results in 19 out of 22 cases (87%) indicating reliable scoring results using the optimised scoring parameter for RET/PTC with the automated Metafer4 system. It can be concluded from this study that genomic rearrangements are frequent in PTC and therefore important events in thyroid carcinogenesis. PMID:21436994

  7. Induced mouse chromosomal rearrangements as tools for identifying critical developmental genes and pathways.

    PubMed

    Culiat, C T; Carver, E A; Walkowicz, M; Rinchik, E M; Cacheiro, N L; Russell, L B; Generoso, W M; Stubbs, L

    1997-01-01

    Due to the rapid advances that have been made in molecular and genetic technology during the past decade, the genes associated with a large number of human hereditary diseases have been isolated and analyzed in detail. These cloned genes provide new tools for research geared toward a better understanding of normal human development, and also of the many ways that basic, essential morphologic pathways can be disturbed. Chromosomal rearrangements, especially deletions and translocations, have been especially beneficial in the mapping and isolation of human disease genes because of their visibility on both the cytogenetic and molecular levels. However, these useful types of mutations occur with low frequency in the human population. Chromosomal rearrangements can be induced relatively easily in mice, and several large, independent collections of translocation and deletion mutants have been generated in the course of risk-assessment and mutagenesis studies over the past several decades. Combined with new molecular technologies, these collections of mutant animals provide a means of gaining ready access to genes associated with developmental defects including craniofacial abnormalities, hydrocephaly, skeletal deformities, and complex neurologic disorders. As an illustration of this approach, we briefly review our progress in the study of three mutations associated with defects in palate development, juvenile growth, fitness and sterility, and neurologic development in mice, respectively.

  8. “Islands of Divergence” in the Atlantic Cod Genome Represent Polymorphic Chromosomal Rearrangements

    PubMed Central

    Sodeland, Marte; Jorde, Per Erik; Lien, Sigbjørn; Jentoft, Sissel; Berg, Paul R.; Grove, Harald; Kent, Matthew P.; Arnyasi, Mariann; Olsen, Esben Moland; Knutsen, Halvor

    2016-01-01

    In several species genetic differentiation across environmental gradients or between geographically separate populations has been reported to center at “genomic islands of divergence,” resulting in heterogeneous differentiation patterns across genomes. Here, genomic regions of elevated divergence were observed on three chromosomes of the highly mobile fish Atlantic cod (Gadus morhua) within geographically fine-scaled coastal areas. The “genomic islands” extended at least 5, 9.5, and 13 megabases on linkage groups 2, 7, and 12, respectively, and coincided with large blocks of linkage disequilibrium. For each of these three chromosomes, pairs of segregating, highly divergent alleles were identified, with little or no gene exchange between them. These patterns of recombination and divergence mirror genomic signatures previously described for large polymorphic inversions, which have been shown to repress recombination across extensive chromosomal segments. The lack of genetic exchange permits divergence between noninverted and inverted chromosomes in spite of gene flow. For the rearrangements on linkage groups 2 and 12, allelic frequency shifts between coastal and oceanic environments suggest a role in ecological adaptation, in agreement with recently reported associations between molecular variation within these genomic regions and temperature, oxygen, and salinity levels. Elevated genetic differentiation in these genomic regions has previously been described on both sides of the Atlantic Ocean, and we therefore suggest that these polymorphisms are involved in adaptive divergence across the species distributional range. PMID:26983822

  9. Mechanisms of Origin, Phenotypic Effects and Diagnostic Implications of Complex Chromosome Rearrangements.

    PubMed

    Poot, Martin; Haaf, Thomas

    2015-09-01

    Complex chromosome rearrangements (CCRs) are currently defined as structural genome variations that involve more than 2 chromosome breaks and result in exchanges of chromosomal segments. They are thought to be extremely rare, but their detection rate is rising because of improvements in molecular cytogenetic technology. Their population frequency is also underestimated, since many CCRs may not elicit a phenotypic effect. CCRs may be the result of fork stalling and template switching, microhomology-mediated break-induced repair, breakage-fusion-bridge cycles, or chromothripsis. Patients with chromosomal instability syndromes show elevated rates of CCRs due to impaired DNA double-strand break responses during meiosis. Therefore, the putative functions of the proteins encoded by ATM, BLM, WRN, ATR, MRE11, NBS1, and RAD51 in preventing CCRs are discussed. CCRs may exert a pathogenic effect by either (1) gene dosage-dependent mechanisms, e.g. haploinsufficiency, (2) mechanisms based on disruption of the genomic architecture, such that genes, parts of genes or regulatory elements are truncated, fused or relocated and thus their interactions disturbed - these mechanisms will predominantly affect gene expression - or (3) mixed mutation mechanisms in which a CCR on one chromosome is combined with a different type of mutation on the other chromosome. Such inferred mechanisms of pathogenicity need corroboration by mRNA sequencing. Also, future studies with in vitro models, such as inducible pluripotent stem cells from patients with CCRs, and transgenic model organisms should substantiate current inferences regarding putative pathogenic effects of CCRs. The ramifications of the growing body of information on CCRs for clinical and experimental genetics and future treatment modalities are briefly illustrated with 2 cases, one of which suggests KDM4C (JMJD2C) as a novel candidate gene for mental retardation.

  10. Sequence divergence and chromosomal rearrangements during the evolution of human pseudoautosomal genes and their mouse homologs

    SciTech Connect

    Ellison, J.; Li, X.; Francke, U.

    1994-09-01

    The pseudoautosomal region (PAR) is an area of sequence identity between the X and Y chromosomes and is important for mediating X-Y pairing during male meiosis. Of the seven genes assigned to the human PAR, none of the mouse homologs have been isolated by a cross-hybridization strategy. Two of these homologs, Csfgmra and II3ra, have been isolated using a functional assay for the gene products. These genes are quite different in sequence from their human homologs, showing only 60-70% sequence similarity. The Csfgmra gene has been found to further differ from its human homolog in being isolated not on the sex chromosomes, but on a mouse autosome (chromosome 19). Using a mouse-hamster somatic cell hybrid mapping panel, we have mapped the II3ra gene to yet another mouse autosome, chromosome 14. Attempts to clone the mouse homolog of the ANT3 locus resulted in the isolation of two related genes, Ant1 and Ant2, but failed to yield the Ant3 gene. Southern blot analysis of the ANT/Ant genes showed the Ant1 and Ant2 sequences to be well-conserved among all of a dozen mammals tested. In contrast, the ANT3 gene only showed hybridization to non-rodent mammals, suggesting it is either greatly divergent or has been deleted in the rodent lineage. Similar experiments with other human pseudoautosomal probes likewise showed a lack of hybridization to rodent sequences. The results show a definite trend of extensive divergence of pseudoautosomal sequences in addition to chromosomal rearrangements involving X;autosome translocations and perhaps gene deletions. Such observations have interesting implications regarding the evolution of this important region of the sex chromosomes.

  11. Mechanisms of Origin, Phenotypic Effects and Diagnostic Implications of Complex Chromosome Rearrangements

    PubMed Central

    Poot, Martin; Haaf, Thomas

    2015-01-01

    Complex chromosome rearrangements (CCRs) are currently defined as structural genome variations that involve more than 2 chromosome breaks and result in exchanges of chromosomal segments. They are thought to be extremely rare, but their detection rate is rising because of improvements in molecular cytogenetic technology. Their population frequency is also underestimated, since many CCRs may not elicit a phenotypic effect. CCRs may be the result of fork stalling and template switching, microhomology-mediated break-induced repair, breakage-fusion-bridge cycles, or chromothripsis. Patients with chromosomal instability syndromes show elevated rates of CCRs due to impaired DNA double-strand break responses during meiosis. Therefore, the putative functions of the proteins encoded by ATM, BLM, WRN, ATR, MRE11, NBS1, and RAD51 in preventing CCRs are discussed. CCRs may exert a pathogenic effect by either (1) gene dosage-dependent mechanisms, e.g. haploinsufficiency, (2) mechanisms based on disruption of the genomic architecture, such that genes, parts of genes or regulatory elements are truncated, fused or relocated and thus their interactions disturbed - these mechanisms will predominantly affect gene expression - or (3) mixed mutation mechanisms in which a CCR on one chromosome is combined with a different type of mutation on the other chromosome. Such inferred mechanisms of pathogenicity need corroboration by mRNA sequencing. Also, future studies with in vitro models, such as inducible pluripotent stem cells from patients with CCRs, and transgenic model organisms should substantiate current inferences regarding putative pathogenic effects of CCRs. The ramifications of the growing body of information on CCRs for clinical and experimental genetics and future treatment modalities are briefly illustrated with 2 cases, one of which suggests KDM4C (JMJD2C) as a novel candidate gene for mental retardation. PMID:26732513

  12. Kinase Expression and Chromosomal Rearrangements in Papillary Thyroid Cancer Tissues: Investigations at the Molecular and Microscopic Levels

    SciTech Connect

    Weier, Heinz-Ulrich; Kwan, Johnson; Lu, Chun-Mei; Ito, Yuko; Wang, Mei; Baumgartner, Adolf; Hayward, Simon W.; Weier, Jingly F.; Zitzelsberger, Horst F.

    2009-07-07

    Structural chromosome aberrations are known hallmarks of many solid tumors. In the papillary form of thyroid cancer (PTC), for example, activation of the receptor tyrosine kinase (RTK) genes, ret or the neurotrophic tyrosine kinase receptor type I (NTRK1) by intra- or interchromosomal rearrangements have been suggested as a cause of the disease. The 1986 accident at the nuclear power plant in Chernobyl, USSR, led to the uncontrolled release of high levels of radioisotopes. Ten years later, the incidence of childhood papillary thyroid cancer (chPTC) near Chernobyl had risen by two orders of magnitude. Tumors removed from some of these patients showed aberrant expression of the ret RTK gene due to a ret/PTC1 or ret/PTC3 rearrangement involving chromosome 10. However, many cultured chPTC cells show a normal G-banded karyotype and no ret rearrangement. We hypothesize that the 'ret-negative' tumors inappropriately express a different oncogene or have lost function of a tumor suppressor as a result of chromosomal rearrangements, and decided to apply molecular and cytogenetic methods to search for potentially oncogenic chromosomal rearrangements in Chernobyl chPTC cases. Knowledge of the kind of genetic alterations may facilitate the early detection and staging of chPTC as well as provide guidance for therapeutic intervention.

  13. Evolutionary dynamics of autosomal-heterosomal rearrangements in a multiple-X chromosome system of tiger beetles (Cicindelidae)

    PubMed Central

    Galián, José; Proença, Sónia JR; Vogler, Alfried P

    2007-01-01

    Background Genetic systems involving multiple X chromosomes have arisen repeatedly in sexually reproducing animals. Tiger beetles (Cicindelidae) exhibit a phylogenetically ancient multiple-X system typically consisting of 2–4 X chromosomes and a single Y. Because recombination rates are suppressed in sex chromosomes, changes in their numbers and movement of genes between sex chromosomes and autosomes, could have important consequences for gene evolution and rates of speciation induced by these rearrangements. However, it remains unclear how frequent these rearrangements are and which genes are affected. Results Karyotype analyses were performed for a total of 26 North American species in the highly diverse genus Cicindela, tallying the number of X chromosomes and autosomes during mitosis and meiosis. The chromosomal location of the ribosomal rRNA gene cluster (rDNA) was used as an easily scored marker for genic turnover between sex chromosomes or autosomes. The findings were assessed in the light of a recent phylogenetic analysis of the group. While autosome numbers remained constant throughout the lineage, sex chromosome numbers varied. The predominant karyotype was n = 9+X1X2X3Y which was also inferred to be the ancestral state, with several changes to X1X2Y and X1X2X3X4Y confined to phylogenetically isolated species. The total (haploid) numbers of rDNA clusters varied between two, three, and six (in one exceptional case), and clusters were localized either on the autosomes, the sex chromosomes, or both. Transitions in rDNA localization and in numbers of rDNA clusters varied independently of each other, and also independently of changes in sex chromosome numbers. Conclusion Changes of X chromosome numbers and transposition of the rDNA locus (and presumably other genes) between autosomes and sex chromosomes in Cicindela occur frequently, and are likely to be the result of fusions or fissions between X chromosomes, rather than between sex chromosomes and

  14. The accumulation of stable cytogenetic rearrangements with age-determined by chromosome painting

    SciTech Connect

    Ramsey, M.J.; Lee, D.A.; Senft, J.R.; Briner, J.F.; Moore, D.H. II; Tucker, J.D.

    1994-12-31

    Chromosome painting is a rapid method of quantifying structural chromosomal rearrangements. The method is particularly useful for detecting stable aberrations which are difficult and expensive to quantify with classical methods. Translocations, being inherently stable, can be used as a biodosimeter for chronic and temporally-displaced exposure to radiation. Translocations may also be useful for quantifying chronic exposure to environmentally related agents which may result in an accumulation of cytogenetic damage with age. Because most chemical exposures are low and chronic, conventional cytogenetic methods are not expected to be informative. To understand the extent that age and lifestyle factors impact the frequency of stable aberrations, we used chromosome painting in healthy individuals who have not been occupationally or accidentally exposed to radiation or chemicals, and who have not received chemo- or radiotherapy. To date we have analyzed 15 umbilical cord bloods as well as peripheral blood samples from 83 adults aged up to 77 years. Because stable aberrations are rare in unexposed people, we have scored large numbers of cells from each subject. Thus far we have analyzed the equivalent of more than 78,000 metaphases from these 83 people, and have observed an average of 0.75% of cells with translocations or stable insertions. A significant curvilinear relationship with age is apparent (R{sup 2} = 0.69, p <0.00001). No effect with smoking was seen.

  15. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain.

    PubMed Central

    Greco, A; Mariani, C; Miranda, C; Lupas, A; Pagliardini, S; Pomati, M; Pierotti, M A

    1995-01-01

    Oncogenic rearrangements of the NTRK1 gene (also designated TRKA), encoding one of the receptors for the nerve growth factor, are frequently detected in thyroid carcinomas. Such rearrangements fuse the NTRK1 tyrosine kinase domain to 5'-end sequences belonging to different genes. In previously reported studies we have demonstrated that NTRK1 oncogenic activation involves two genes, TPM3 and TPR, both localized similarly to the receptor tyrosine kinase, on the q arm of chromosome 1. Here we report the characterization of a novel NTRK1-derived thyroid oncogene, named TRK-T3. A cDNA clone, capable of transforming activity, was isolated from a transformant cell line. Sequence analysis revealed that TRK-T3 contains 1,412 nucleotides of NTRK1 preceded by 598 nucleotides belonging to a novel gene that we have named TFG (TRK-fused gene). The TRK-T3 amino acid sequence displays, within the TFG region, a coiled-coil motif that could endow the oncoprotein with the capability to form complexes. The TRK-T3 oncogene encodes a 68-kDa cytoplasmic protein reacting with NTRK1-specific antibodies. By sedimentation gradient experiments the TRK-T3 oncoprotein was shown to form, in vivo, multimeric complexes, most likely trimers or tetramers. The TFG gene is ubiquitously expressed and is located on chromosome 3. The breakpoint producing the TRK-T3 oncogene occurs within exons of both the TFG gene and the NTRK1 gene and produces a chimeric exon that undergoes alternative splicing. Molecular analysis of the NTRK1 rearranged fragments indicated that the chromosomal rearrangement is reciprocal and balanced and involves loss of a few nucleotides of germ line sequences. PMID:7565764

  16. Human ETS2 gene on chromosome 21 is not rearranged in Alzheimer disease.

    PubMed Central

    Sacchi, N; Nalbantoglu, J; Sergovich, F R; Papas, T S

    1988-01-01

    The human ETS2 gene, a member of the ETS gene family, with sequence homology with the retroviral ets sequence of the avian erythroblastosis retrovirus E26 is located on chromosome 21. Molecular genetic analysis of Down syndrome (DS) patients with partial trisomy 21 allowed us to reinforce the supposition that ETS2 may be a gene of the minimal DS genetic region. It was originally proposed that a duplication of a portion of the DS region represents the genetic basis of Alzheimer disease, a condition associated also with DS. No evidence of either rearrangements or duplications of ETS2 could be detected in DNA from fibroblasts and brain tissue of Alzheimer disease patients with either the sporadic or the familiar form of the disease. Thus, an altered ETS2 gene dosage does not seem to be a genetic cause or component of Alzheimer disease. Images PMID:2902635

  17. Suppression of gross chromosomal rearrangements by a new alternative replication factor C complex

    SciTech Connect

    Banerjee, Soma; Sikdar, Nilabja; Myung, Kyungjae

    2007-10-26

    Defects in DNA replication fidelity lead to genomic instability. Gross chromosomal rearrangement (GCR), a type of genomic instability, is highly enhanced by various initial mutations affecting DNA replication. Frequent observations of GCRs in many cancers strongly argue the importance of maintaining high fidelity of DNA replication to suppress carcinogenesis. Recent genome wide screens in Saccharomyces cerevisiae identified a new GCR suppressor gene, ELG1, enhanced level of genome instability gene 1. Its physical interaction with proliferating cell nuclear antigen (PCNA) and complex formation with Rfc2-5p proteins suggest that Elg1 functions to load/unload PCNA onto DNA during a certain DNA metabolism. High level of DNA damage accumulation and enhanced phenotypes with mutations in genes involved in cell cycle checkpoints, homologous recombination (HR), or chromatin assembly in the elg1 strain suggest that Elg1p-Rfc2-5p functions in a fundamental DNA metabolism to suppress genomic instability.

  18. Human ETS2 gene on chromosome 21 is not rearranged in Alzheimer disease

    SciTech Connect

    Sacchi, N.; Nalbantoglu, J.; Sergovich, F.R.; Papas, T.S. )

    1988-10-01

    The human ETS2 gene, a member of the ETS gene family, with sequence homology with the retroviral ets sequence of the avian erythroblastosis retrovirus E26 is located on chromosome 21. Molecular genetic analysis of Down syndrome (DS) patients with partial trisomy 21 allowed us to reinforce the supposition that ETS2 may be a gene of the minimal DS genetic region. It was originally proposed that a duplication of a portion of the DS region represents the genetic basis of Alzheimer disease, a condition associated also with DS. No evidence of either rearrangements or duplications of ETS2 could be detected in DNA from fibroblasts and brain tissue of Alzheimer disease patients with either the sporadic or the familiar form of the disease. Thus, an altered ETS2 gene dosage does not seem to be a genetic cause or component of Alzheimer disease.

  19. A hypomorphic Artemis human disease allele causes aberrant chromosomal rearrangements and tumorigenesis

    PubMed Central

    Jacobs, Cheryl; Huang, Ying; Masud, Tehmina; Lu, William; Westfield, Gerwin; Giblin, William; Sekiguchi, JoAnn M.

    2011-01-01

    The Artemis gene encodes a DNA nuclease that plays important roles in non-homologous end-joining (NHEJ), a major double-strand break (DSB) repair pathway in mammalian cells. NHEJ factors repair general DSBs as well as programmed breaks generated during the lymphoid-specific DNA rearrangement, V(D)J recombination, which is required for lymphocyte development. Mutations that inactivate Artemis cause a human severe combined immunodeficiency syndrome associated with cellular radiosensitivity. In contrast, hypomorphic Artemis mutations result in combined immunodeficiency syndromes of varying severity, but, in addition, are hypothesized to predispose to lymphoid malignancy. To elucidate the distinct molecular defects caused by hypomorphic compared with inactivating Artemis mutations, we examined tumor predisposition in a mouse model harboring a targeted partial loss-of-function disease allele. We find that, in contrast to Artemis nullizygosity, the hypomorphic mutation leads to increased aberrant intra- and interchromosomal V(D)J joining events. We also observe that dysfunctional Artemis activity combined with p53 inactivation predominantly predisposes to thymic lymphomas harboring clonal translocations distinct from those observed in Artemis nullizygosity. Thus, the Artemis hypomorphic allele results in unique molecular defects, tumor spectrum and oncogenic chromosomal rearrangements. Our findings have significant implications for disease outcomes and treatment of patients with different Artemis mutations. PMID:21147755

  20. Complex chromosomal rearrangement and associated counseling issues in a family with Pelizaeus-Merzbacher disease.

    PubMed

    Woodward, Karen; Cundall, Maria; Palmer, Rodger; Surtees, Robert; Winter, Robin M; Malcolm, Sue

    2003-04-01

    We report cytogenetic and molecular findings in a family in which Pelizaeus-Merzbacher disease has arisen by a sub-microscopic duplication of the proteolipid protein (PLP1) gene involving the insertion of approximately 600 kb from Xq22 into Xq26.3. The duplication arose in an asymptomatic mother on a paternally derived X chromosome and was inherited by her son, the proband, who is affected with Pelizaeus-Merzbacher disease. The mother also carries a large interstitial deletion of approximately 70 Mb extending from Xq21.1 to Xq27.3, which is present in a mosaic form. In lymphocytes, the mother has no normal cells, having one population with three copies of the PLP1gene (one normal X and one duplication X chromosome) and the other population having only one copy of the PLP1 gene (one normal X and one deleted X chromosome). Her karyotype is 46,XX.ish dup (X) (Xpter --> Xq26.3::Xq22 --> Xq22::Xq26.3 --> Xqter)(PLP++)/46,X,del(X)(q21.1q27.3).ish del(X)(q21.1q27.3)(PLP-). Both ends of the deletion have been mapped by fluorescence in situ hybridization using selected DNA clones and neither involves the PLP1 gene or are in the vicinity of the duplication breakpoints. Prenatal diagnosis was carried out in a recent pregnancy and the complex counseling issues associated with these chromosomal rearrangements are discussed.

  1. A combination of sexual and ecological divergence contributes to the spread of a chromosomal rearrangement during initial stages of speciation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromosomal rearrangements between sympatric species often contain multiple loci contributing to assortative mating, local adaptation, and hybrid sterility. When and how these associations arise during the process of speciation remains a subject of debate. Here, we address the relative roles of loca...

  2. Comparative genome analyses of Arabidopsis spp.: Inferring chromosomal rearrangement events in the evolutionary history of A. thaliana

    PubMed Central

    Yogeeswaran, Krithika; Frary, Amy; York, Thomas L.; Amenta, Alison; Lesser, Andrew H.; Nasrallah, June B.; Tanksley, Steven D.; Nasrallah, Mikhail E.

    2005-01-01

    Comparative genome analysis is a powerful tool that can facilitate the reconstruction of the evolutionary history of the genomes of modern-day species. The model plant Arabidopsis thaliana with its n = 5 genome is thought to be derived from an ancestral n = 8 genome. Pairwise comparative genome analyses of A. thaliana with polyploid and diploid Brassicaceae species have suggested that rapid genome evolution, manifested by chromosomal rearrangements and duplications, characterizes the polyploid, but not the diploid, lineages of this family. In this study, we constructed a low-density genetic linkage map of Arabidopsis lyrata ssp. lyrata (A. l. lyrata; n = 8, diploid), the closest known relative of A. thaliana (MRCA ∼5 Mya), using A. thaliana-specific markers that resolve into the expected eight linkage groups. We then performed comparative Bayesian analyses using raw mapping data from this study and from a Capsella study to infer the number and nature of rearrangements that distinguish the n = 8 genomes of A. l. lyrata and Capsella from the n = 5 genome of A. thaliana. We conclude that there is strong statistical support in favor of the parsimony scenarios of 10 major chromosomal rearrangements separating these n = 8 genomes from A. thaliana. These chromosomal rearrangement events contribute to a rate of chromosomal evolution higher than previously reported in this lineage. We infer that at least seven of these events, common to both sets of data, are responsible for the change in karyotype and underlie genome reduction in A. thaliana. PMID:15805492

  3. 3Disease Browser: A Web server for integrating 3D genome and disease-associated chromosome rearrangement data

    PubMed Central

    Li, Ruifeng; Liu, Yifang; Li, Tingting; Li, Cheng

    2016-01-01

    Chromosomal rearrangement (CR) events have been implicated in many tumor and non-tumor human diseases. CR events lead to their associated diseases by disrupting gene and protein structures. Also, they can lead to diseases through changes in chromosomal 3D structure and gene expression. In this study, we search for CR-associated diseases potentially caused by chromosomal 3D structure alteration by integrating Hi-C and ChIP-seq data. Our algorithm rediscovers experimentally verified disease-associated CRs (polydactyly diseases) that alter gene expression by disrupting chromosome 3D structure. Interestingly, we find that intellectual disability may be a candidate disease caused by 3D chromosome structure alteration. We also develop a Web server (3Disease Browser, http://3dgb.cbi.pku.edu.cn/disease/) for integrating and visualizing disease-associated CR events and chromosomal 3D structure. PMID:27734896

  4. Balancing up and downregulation of the C. elegans X chromosomes

    PubMed Central

    Lau, Alyssa C.; Csankovszki, Györgyi

    2015-01-01

    In Caenorhabditis elegans, males have one X chromosome and hermaphrodites have two. Emerging evidence indicates that the male X is transcriptionally more active than autosomes to balance the single X to two sets of autosomes. Because upregulation is not limited to males, hermaphrodites need to strike back and downregulate expression from the two X chromosomes to balance gene expression in their genome. Hermaphrodite-specific downregulation involves binding of the dosage compensation complex to both Xs. Advances in recent years revealed that the action of the dosage compensation complex results in compaction of the X chromosomes, changes in the distribution of histone modifications, and ultimately limiting RNA Polymerase II loading to achieve chromosome-wide gene repression. PMID:25966908

  5. Structural rearrangements of chromosome 15 satellites resulting in Prader-Willi syndrome suggest a complex mechanism for uniparental disomy

    SciTech Connect

    Toth-Fijel, S.; Gunter, K.; Olson, S.

    1994-09-01

    We report two cases of PWS in which there was abnormal meiosis I segregation of chromosome 15 following a rare translocation event between the heteromorphic satellite regions of chromosomes 14 and 15 and an apparent meiotic recombination in the unstable region of 15q11.2. PWS and normal appearing chromosomes in case one prompted a chromosome 15 origin analysis. PCR analysis indicated maternal isodisomy for the long arm of chromosome. However, only one chromosome 15 had short arm heteromorphisms consistent with either paternal or maternal inheritance. VNTR DNA analysis and heteromorphism data suggest that a maternal de novo translocation between chromosome 14 and 15 occurred prior to meiosis I. This was followed by recombination between D15Z1 and D15S11 and subsequent meiosis I nondisjunction. Proband and maternal karyotype display a distamycin A-DAPI positive region on the chromosome 14 homolog involved in the translocation. Fluorescent in situ hybridization (FISH) analyses of ONCOR probes D15S11, SNRPN, D15S11 and GABRB 3 were normal, consistent with the molecular data. Case two received a Robertsonian translocation t(14;15)(p13;p13) of maternal origin. Chromosome analysis revealed a meiosis I error producing UPD. FISH analysis of the proband and parents showed normal hybridization of ONCOR probes D15Z1, D15S11, SNRPN, D15S10 and GABRB3. In both cases the PWS probands received a structurally altered chromosome 15 that had rearranged with chromosome 14 prior to meiosis. If proper meiotic segregation is dependent on the resolution of chiasmata and/or the binding to chromosome-specific spindle fibers, then it may be possible that rearrangements of pericentric or unstable regions of the genome disrupt normal disjunction and lead to uniparental disomy.

  6. Chromosome rearrangements, recombination suppression, and limited segregation distortion in hybrids between Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and rainbow trout (O. mykiss)

    USGS Publications Warehouse

    Ostberg, Carl O.; Hauser, Lorenz; Pritchard, Victoria L.; Garza, John C.; Naish, Kerry A.

    2013-01-01

    Chromosome rearrangements suppressed recombination in the hybrids. This result supports several previous findings demonstrating that recombination suppression restricts gene flow between chromosomes that differ by arrangement. Conservation of synteny and map order between the hybrid and rainbow trout maps and minimal segregation distortion in the hybrids suggest rainbow and Yellowstone cutthroat trout genomes freely introgress across chromosomes with similar arrangement. Taken together, these results suggest that rearrangements impede introgression. Recombination suppression across rearrangements could enable large portions of non-recombined chromosomes to persist within admixed populations.

  7. Spt2p defines a new transcription-dependent gross chromosomal rearrangement pathway.

    PubMed

    Sikdar, Nilabja; Banerjee, Soma; Zhang, Han; Smith, Stephanie; Myung, Kyungjae

    2008-12-01

    Large numbers of gross chromosomal rearrangements (GCRs) are frequently observed in many cancers. High mobility group 1 (HMG1) protein is a non-histone DNA-binding protein and is highly expressed in different types of tumors. The high expression of HMG1 could alter DNA structure resulting in GCRs. Spt2p is a non-histone DNA binding protein in Saccharomyces cerevisiae and shares homology with mammalian HMG1 protein. We found that Spt2p overexpression enhances GCRs dependent on proteins for transcription elongation and polyadenylation. Excess Spt2p increases the number of cells in S phase and the amount of single-stranded DNA (ssDNA) that might be susceptible to cause DNA damage and GCR. Consistently, RNase H expression, which reduces levels of ssDNA, decreased GCRs in cells expressing high level of Spt2p. Lastly, high transcription in the chromosome V, the location at which GCR is monitored, also enhanced GCR formation. We propose a new pathway for GCR where DNA intermediates formed during transcription can lead to genomic instability.

  8. Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast.

    PubMed Central

    Infante, Juan J; Dombek, Kenneth M; Rebordinos, Laureana; Cantoral, Jesús M; Young, Elton T

    2003-01-01

    The relative importance of gross chromosomal rearrangements to adaptive evolution has not been precisely defined. The Saccharomyces cerevisiae flor yeast strains offer significant advantages for the study of molecular evolution since they have recently evolved to a high degree of specialization in a very restrictive environment. Using DNA microarray technology, we have compared the genomes of two prominent variants of S. cerevisiae flor yeast strains. The strains differ from one another in the DNA copy number of 116 genomic regions that comprise 38% of the genome. In most cases, these regions are amplicons flanked by repeated sequences or other recombination hotspots previously described as regions where double-strand breaks occur. The presence of genes that confer specific characteristics to the flor yeast within the amplicons supports the role of chromosomal rearrangements as a major mechanism of adaptive evolution in S. cerevisiae. We propose that nonallelic interactions are enhanced by ethanol- and acetaldehyde-induced double-strand breaks in the chromosomal DNA, which are repaired by pathways that yield gross chromosomal rearrangements. This mechanism of chromosomal evolution could also account for the sexual isolation shown among the flor yeast. PMID:14704163

  9. Recurrence of Chromosome Rearrangements and Reuse of DNA Breakpoints in the Evolution of the Triticeae Genomes

    PubMed Central

    Li, Wanlong; Challa, Ghana S.; Zhu, Huilan; Wei, Wenjie

    2016-01-01

    Chromosomal rearrangements (CRs) play important roles in karyotype diversity and speciation. While many CR breakpoints have been characterized at the sequence level in yeast, insects, and primates, little is known about the structure of evolutionary CR breakpoints in plant genomes, which are much more dynamic in genome size and sequence organization. Here, we report identification of breakpoints of a translocation between chromosome arms 4L and 5L of Triticeae, which is fixed in several species, including diploid wheat and rye, by comparative mapping and analysis of the draft genome and chromosome survey sequences of the Triticeae species. The wheat translocation joined the ends of breakpoints downstream of a WD40 gene on 4AL and a gene of the PMEI family on 5AL. A basic helix-loop-helix transcription factor gene in 5AL junction was significantly restructured. Rye and wheat share the same position for the 4L breakpoint, but the 5L breakpoint positions are not identical, although very close in these two species, indicating the recurrence of 4L/5L translocations in the Triticeae. Although barley does not carry the translocation, collinearity across the breakpoints was violated by putative inversions and/or transpositions. Alignment with model grass genomes indicated that the translocation breakpoints coincided with ancient inversion junctions in the Triticeae ancestor. Our results show that the 4L/5L translocation breakpoints represent two CR hotspots reused during Triticeae evolution, and support breakpoint reuse as a widespread mechanism in all eukaryotes. The mechanisms of the recurrent translocation and its role in Triticeae evolution are also discussed. PMID:27729435

  10. Effects of chromosomal rearrangements on the zeste-white interaction in Drosophila melanogaster

    SciTech Connect

    Smolik-Utlaut, S.M.; Gelbart, W.M.

    1987-06-01

    Three gene systems have been shown to exhibit proximity-dependent phenotypes in Drosophila melanogaster; bithorax (BX-C), decapentaplegic (DPP-C) and white (w). In structurally homozygous genotypes, specific allelic combinations at these loci exhibit one phenotype, while in certain rearrangement heterozygotes the same allelic combinations exhibit dramatically different phenotypes. The genetic properties of the proximity-dependent allelic complementation (termed transvection effects) at the BX-C and DPP-C, are quite similar. As determined by cytogenetic analysis of transvection-disrupting rearrangements, the critical regions for the BX-C and DDP-C transvection effects extend proximally from these loci for several hundred polytene chromosome bands. The interaction between the zeste and white loci appears to depend upon the proximity of the two w/sup +/ alleles. By use of insertional duplications, displacement of w/sup +/ homologues has been shown to interfere with the zeste-white interaction. In this report, the authors investigate the basis for the difference in the size of the BX-C and DPP-C critical regions from that of white using a /sup 137/Cs-mutagenesis procedure. The authors test and eliminate the possibility that the difference is due to evidence strongly suggests that the zeste-white interaction is, at the phenotypic level, much less sensitive to displacement of the homologous genes than is transvection at either the BX-C or DPP-C. Given these results, they suggest that the zeste-white interaction and transvection are two different proximity-dependent phenomena.

  11. Modification of an existing chromosomal inversion to engineer a balancer for mouse chromosome 15.

    PubMed Central

    Chick, Wallace S H; Mentzer, Sarah E; Carpenter, Donald A; Rinchik, Eugene M; You, Yun

    2004-01-01

    Chromosomal inversions are valuable genetic tools for mutagenesis screens, where appropriately marked inversions can be used as balancer chromosomes to recover and maintain mutations in the corresponding chromosomal region. For any inversion to be effective as a balancer, it should exhibit both dominant and recessive visible traits; ideally the recessive trait should be a fully penetrant lethality in which inversion homozygotes die before birth. Unfortunately, most inversions recovered by classical radiation or chemical mutagenesis techniques do not have an overt phenotype in either the heterozygous or the homozygous state. However, they can be modified by relatively simple procedures to make them suitable as an appropriately marked balancer. We have used homologous recombination to modify, in embryonic stem cells, the recessive-lethal In(15)21Rk inversion to endow it with a dominant-visible phenotype. Several ES cell lines were derived from inversion heterozygotes, and a keratin-14 (K14) promoter-driven agouti minigene was introduced onto the inverted chromosome 15 in the ES cells by gene targeting. Mice derived from the targeted ES cells carry the inverted chromosome 15 and, at the same time, exhibit lighter coat color on their ears and tails, making this modified In(15)21Rk useful as a balancer for proximal mouse chromosome 15. PMID:15238537

  12. A de novo 8.8-Mb Deletion of 21q21.1-q21.3 in an Autistic Male with a Complex Rearrangement Involving Chromosomes 6, 10, and 21

    PubMed Central

    Haldeman-Englert, Chad R.; Chapman, Kimberly A.; Kruger, Hillary; Geiger, Elizabeth A.; McDonald-McGinn, Donna M.; Rappaport, Eric; Zackai, Elaine H.; Spinner, Nancy B.; Shaikh, Tamim H.

    2009-01-01

    We report here on a normal-appearing male with pervasive developmental disorder who was found to have a de novo, apparently balanced complex rearrangement involving chromosomes 6, 10, and 21: 46,XY,ins(21;10)(q11.2;p11.2p13)t(6;21)(p23;q11.2). Further analysis by high-density oligonucleotide microarray was performed, showing an 8.8-Mb heterozygous deletion at 21q21.1-q21.3. Interestingly, the deletion is distal to the translocation breakpoint on chromosome 21. The deletion involves 19 genes, including NCAM2 and GRIK1, both of which are associated with normal brain development and function, and have been considered as possible candidate genes in autism and other neurobehavioral disorders. This case underscores the utility of genomewide microarray analysis for the detection of copy number alterations in patients with apparently balanced complex rearrangements and abnormal phenotypes. PMID:20034085

  13. Eu-heterochromatic Rearrangements Induce Replication of Heterochromatic Sequences Normally Underreplicated in Polytene Chromosomes of Drosophila melanogaster

    PubMed Central

    Abramov, Yuri A.; Kogan, Galina L.; Tolchkov, Eugenii V.; Rasheva, Vanya I.; Lavrov, Sergei A.; Bonaccorsi, Silvia; Kramerova, Irina A.; Gvozdev, Vladimir A.

    2005-01-01

    In polytene chromosomes of D. melanogaster the heterochromatic pericentric regions are underreplicated (underrepresented). In this report, we analyze the effects of eu-heterochromatic rearrangements involving a cluster of the X-linked heterochromatic (Xh) Stellate repeats on the representation of these sequences in salivary gland polytene chromosomes. The discontinuous heterochromatic Stellate cluster contains specific restriction fragments that were mapped along the distal region of Xh. We found that transposition of a fragment of the Stellate cluster into euchromatin resulted in its replication in polytene chromosomes. Interestingly, only the Stellate repeats that remain within the pericentric Xh and are close to a new eu-heterochromatic boundary were replicated, strongly suggesting the existence of a spreading effect exerted by the adjacent euchromatin. Internal rearrangements of the distal Xh did not affect Stellate polytenization. We also demonstrated trans effects exerted by heterochromatic blocks on the replication of the rearranged heterochromatin; replication of transposed Stellate sequences was suppressed by a deletion of Xh and restored by addition of Y heterochromatin. This phenomenon is discussed in light of a possible role of heterochromatic proteins in the process of heterochromatin underrepresentation in polytene chromosomes. PMID:16020783

  14. Chromosomal distribution patterns of the (AC)10 microsatellite and other repetitive sequences, and their use in chromosome rearrangement analysis of species of the genus Avena.

    PubMed

    Fominaya, Araceli; Loarce, Yolanda; Montes, Alexander; Ferrer, Esther

    2017-03-01

    Fluorescence in situ hybridization (FISH) was used to determine the physical location of the (AC)10 microsatellite in metaphase chromosomes of six diploid species (AA or CC genomes), two tetraploid species (AACC genome), and five cultivars of two hexaploid species (AACCDD genome) of the genus Avena, a genus in which genomic relationships remain obscure. A preferential distribution of the (AC)10 microsatellite in the pericentromeric and interstitial regions was seen in both the A- and D-genome chromosomes, while in C-genome chromosomes the majority of signals were located in the pericentromeric heterochromatic regions. New large chromosome rearrangements were detected in two polyploid species: an intergenomic translocation involving chromosomes 17AL and 21DS in Avena sativa 'Araceli' and another involving chromosomes 4CL and 21DS in the analyzed cultivars of Avena byzantina. The latter 4CL-21DS intergenomic translocation differentiates clearly between A. sativa and A. byzantina. Searches for common hybridization patterns on the chromosomes of different species revealed chromosome 10A of Avena magna and 21D of hexaploid oats to be very similar in terms of the distribution of 45S and Am1 sequences. This suggests a common origin for these chromosomes and supports a CCDD rather than an AACC genomic designation for this species.

  15. Three chromosomal rearrangements promote genomic divergence between migratory and stationary ecotypes of Atlantic cod

    PubMed Central

    Berg, Paul R.; Star, Bastiaan; Pampoulie, Christophe; Sodeland, Marte; Barth, Julia M. I.; Knutsen, Halvor; Jakobsen, Kjetill S.; Jentoft, Sissel

    2016-01-01

    Identification of genome-wide patterns of divergence provides insight on how genomes are influenced by selection and can reveal the potential for local adaptation in spatially structured populations. In Atlantic cod – historically a major marine resource – Northeast-Arctic- and Norwegian coastal cod are recognized by fundamental differences in migratory and non-migratory behavior, respectively. However, the genomic architecture underlying such behavioral ecotypes is unclear. Here, we have analyzed more than 8.000 polymorphic SNPs distributed throughout all 23 linkage groups and show that loci putatively under selection are localized within three distinct genomic regions, each of several megabases long, covering approximately 4% of the Atlantic cod genome. These regions likely represent genomic inversions. The frequency of these distinct regions differ markedly between the ecotypes, spawning in the vicinity of each other, which contrasts with the low level of divergence in the rest of the genome. The observed patterns strongly suggest that these chromosomal rearrangements are instrumental in local adaptation and separation of Atlantic cod populations, leaving footprints of large genomic regions under selection. Our findings demonstrate the power of using genomic information in further understanding the population dynamics and defining management units in one of the world’s most economically important marine resources. PMID:26983361

  16. Analysis of chromosomal rearrangements induced by postmeiotic mutagenesis with ethylnitrosourea in zebrafish.

    PubMed Central

    Imai, Y; Feldman, B; Schier, A F; Talbot, W S

    2000-01-01

    Mutations identified in zebrafish genetic screens allow the dissection of a wide array of problems in vertebrate biology. Most screens have examined mutations induced by treatment of spermatogonial (premeiotic) cells with the chemical mutagen N-ethyl-N-nitrosourea (ENU). Treatment of postmeiotic gametes with ENU induces specific-locus mutations at a higher rate than premeiotic regimens, suggesting that postmeiotic mutagenesis protocols could be useful in some screening strategies. Whereas there is extensive evidence that ENU induces point mutations in premeiotic cells, the range of mutations induced in postmeiotic zebrafish germ cells has been less thoroughly characterized. Here we report the identification and analysis of five mutations induced by postmeiotic ENU treatment. One mutation, snh(st1), is a translocation involving linkage group (LG) 11 and LG 14. The other four mutations, oep(st2), kny(st3), Df(LG 13)(st4), and cyc(st5), are deletions, ranging in size from less than 3 cM to greater than 20 cM. These results show that germ cell stage is an important determinant of the type of mutations induced. The induction of chromosomal rearrangements may account for the elevated frequency of specific-locus mutations observed after treatment of postmeiotic gametes with ENU. PMID:10790400

  17. Three chromosomal rearrangements promote genomic divergence between migratory and stationary ecotypes of Atlantic cod.

    PubMed

    Berg, Paul R; Star, Bastiaan; Pampoulie, Christophe; Sodeland, Marte; Barth, Julia M I; Knutsen, Halvor; Jakobsen, Kjetill S; Jentoft, Sissel

    2016-03-17

    Identification of genome-wide patterns of divergence provides insight on how genomes are influenced by selection and can reveal the potential for local adaptation in spatially structured populations. In Atlantic cod - historically a major marine resource - Northeast-Arctic- and Norwegian coastal cod are recognized by fundamental differences in migratory and non-migratory behavior, respectively. However, the genomic architecture underlying such behavioral ecotypes is unclear. Here, we have analyzed more than 8.000 polymorphic SNPs distributed throughout all 23 linkage groups and show that loci putatively under selection are localized within three distinct genomic regions, each of several megabases long, covering approximately 4% of the Atlantic cod genome. These regions likely represent genomic inversions. The frequency of these distinct regions differ markedly between the ecotypes, spawning in the vicinity of each other, which contrasts with the low level of divergence in the rest of the genome. The observed patterns strongly suggest that these chromosomal rearrangements are instrumental in local adaptation and separation of Atlantic cod populations, leaving footprints of large genomic regions under selection. Our findings demonstrate the power of using genomic information in further understanding the population dynamics and defining management units in one of the world's most economically important marine resources.

  18. Branchio-otic syndrome caused by a genomic rearrangement: clinical findings and molecular cytogenetic studies in a patient with a pericentric inversion of chromosome 8.

    PubMed

    Schmidt, T; Bierhals, T; Kortüm, F; Bartels, I; Liehr, T; Burfeind, P; Shoukier, M; Frank, V; Bergmann, C; Kutsche, K

    2014-01-01

    Branchio-oto-renal (BOR) syndrome is an autosomal dominantly inherited developmental disorder, which is characterized by anomalies of the ears, the branchial arches and the kidneys. It is caused by mutations in the genes EYA1,SIX1 and SIX5. Genomic rearrangements of chromosome 8 affecting the EYA1 gene have also been described. Owing to this fact, methods for the identification of abnormal copy numbers such as multiplex ligation-dependent probe amplification (MLPA) have been introduced as routine laboratory techniques for molecular diagnostics of BOR syndrome. The advantages of these techniques are clear compared to standard cytogenetic and array approaches as well as Southern blot. MLPA detects deletions or duplications of a part or the entire gene of interest, but not balanced structural aberrations such as inversions and translocations. Consequently, disruption of a gene by a genomic rearrangement may escape detection by a molecular genetic analysis, although this gene interruption results in haploinsufficiency and, therefore, causes the disease. In a patient with clinical features of BOR syndrome, such as hearing loss, preauricular fistulas and facial dysmorphisms, but no renal anomalies, neither sequencing of the 3 genes linked to BOR syndrome nor array comparative genomic hybridization and MLPA were able to uncover a causative mutation. By routine cytogenetic analysis, we finally identified a pericentric inversion of chromosome 8 in the affected female. High-resolution multicolor banding confirmed the chromosome 8 inversion and narrowed down the karyotype to 46,XX,inv(8)(p22q13). By applying fluorescence in situ hybridization, we narrowed down both breakpoints on chromosome 8 and found the EYA1 gene in q13.3 to be directly disrupted. We conclude that standard karyotyping should not be neglected in the genetic diagnostics of BOR syndrome or other Mendelian disorders, particularly when molecular testing failed to detect any causative alteration in patients with

  19. Formation of Nup98-containing nuclear bodies in HeLa sublines is linked to genomic rearrangements affecting chromosome 11.

    PubMed

    Romana, Serge; Radford-Weiss, Isabelle; Lapierre, Jean-Michel; Doye, Valérie; Geoffroy, Marie-Claude

    2016-09-01

    Nup98 is an important component of the nuclear pore complex (NPC) and also a rare but recurrent target for chromosomal translocation in leukaemogenesis. Nup98 contains multiple cohesive Gly-Leu-Phe-Gly (GLFG) repeats that are critical notably for the formation of intranuclear GLFG bodies. Previous studies have reported the existence of GLFG bodies in cells overexpressing exogenous Nup98 or in a HeLa subline (HeLa-C) expressing an unusual elevated amount of endogenous Nup98. Here, we have analysed the presence of Nup98-containing bodies in several human cell lines. We found that HEp-2, another HeLa subline, contains GLFG bodies that are distinct from those identified in HeLa-C. Rapid amplification of cDNA ends (RACE) revealed that HEp-2 cells express additional truncated forms of Nup98 fused to a non-coding region of chromosome 11q22.1. Cytogenetic analyses using FISH and array-CGH further revealed chromosomal rearrangements that were distinct from those observed in leukaemic cells. Indeed, HEp-2 cells feature a massive amplification of juxtaposed NUP98 and 11q22.1 loci on a chromosome marker derived from chromosome 3. Unexpectedly, minor co-amplifications of NUP98 and 11q22.1 loci were also observed in other HeLa sublines, but on rearranged chromosomes 11. Altogether, this study reveals that distinct genomic rearrangements affecting NUP98 are associated with the formation of GLFG bodies in specific HeLa sublines.

  20. Polymorphisms, Chromosomal Rearrangements, and Mutator Phenotype Development during Experimental Evolution of Lactobacillus rhamnosus GG

    PubMed Central

    Douillard, François P.; Ribbera, Angela; Xiao, Kun; Ritari, Jarmo; Rasinkangas, Pia; Paulin, Lars; Palva, Airi; Hao, Yanling

    2016-01-01

    ABSTRACT Lactobacillus rhamnosus GG is a lactic acid bacterium widely marketed by the food industry. Its genomic analysis led to the identification of a gene cluster encoding mucus-binding SpaCBA pili, which is located in a genomic island enriched in insertion sequence (IS) elements. In the present study, we analyzed by genome-wide resequencing the genomic integrity of L. rhamnosus GG in four distinct evolutionary experiments conducted for approximately 1,000 generations under conditions of no stress or salt, bile, and repetitive-shearing stress. Under both stress-free and salt-induced stress conditions, the GG population (excluding the mutator lineage in the stress-free series [see below]) accumulated only a few single nucleotide polymorphisms (SNPs) and no frequent chromosomal rearrangements. In contrast, in the presence of bile salts or repetitive shearing stress, some IS elements were found to be activated, resulting in the deletion of large chromosomal segments that include the spaCBA-srtC1 pilus gene cluster. Remarkably, a high number of SNPs were found in three strains obtained after 900 generations of stress-free growth. Detailed analysis showed that these three strains derived from a founder mutant with an altered DNA polymerase subunit that resulted in a mutator phenotype. The present work confirms the stability of the pilus production phenotype in L. rhamnosus GG under stress-free conditions, highlights the possible evolutionary scenarios that may occur when this probiotic strain is extensively cultured, and identifies external factors that affect the chromosomal integrity of GG. The results provide mechanistic insights into the stability of GG in regard to its extensive use in probiotic and other functional food products. IMPORTANCE Lactobacillus rhamnosus GG is a widely marketed probiotic strain that has been used in numerous clinical studies to assess its health-promoting properties. Hence, the stability of the probiotic functions of L. rhamnosus GG

  1. Subtelomeric chromosomal rearrangements in a large cohort of unexplained intellectually disabled individuals in Indonesia: A clinical and molecular study

    PubMed Central

    Mundhofir, Farmaditya E. P.; Nillesen, Willy M.; Van Bon, Bregje W. M.; Smeets, Dominique; Pfundt, Rolph; van de Ven-Schobers, Gaby; Ruiterkamp-Versteeg, Martina; Winarni, Tri I.; Hamel, Ben C. J.; Yntema, Helger G.; Faradz, Sultana M. H.

    2013-01-01

    CONTEXT: Unbalanced subtelomeric chromosomal rearrangements are often associated with intellectual disability (ID) and malformation syndromes. The prevalence of such rearrangements has been reported to be 5-9% in ID populations. AIMS: To study the prevalence of subtelomeric rearrangements in the Indonesian ID population. MATERIALS AND METHODS: We tested 436 subjects with unexplained ID using multiplex ligation dependent probe amplification (MLPA) using the specific designed sets of probes to detect human subtelomeric chromosomal imbalances (SALSA P070 and P036D). If necessary, abnormal findings were confirmed by other MLPA probe kits, fluorescent in situ hybridization or Single Nucleotide Polymorphism array. RESULTS: A subtelomeric aberration was identified in 3.7% of patients (16/436). Details on subtelomeric aberrations and confirmation analyses are discussed. CONCLUSION: This is the first study describing the presence of subtelomeric rearrangements in individuals with ID in Indonesia. Furthermore, it shows that also in Indonesia such abnormalities are a prime cause of ID and that in developing countries with limited diagnostic services such as Indonesia, it is important and feasible to uncover the genetic etiology in a significant number of cases with ID. PMID:24019618

  2. Induced pluripotent stem cell generation from a man carrying a complex chromosomal rearrangement as a genetic model for infertility studies

    PubMed Central

    Mouka, Aurélie; Izard, Vincent; Tachdjian, Gérard; Brisset, Sophie; Yates, Frank; Mayeur, Anne; Drévillon, Loïc; Jarray, Rafika; Leboulch, Philippe; Maouche-Chrétien, Leila; Tosca, Lucie

    2017-01-01

    Despite progress in human reproductive biology, the cause of male infertility often remains unknown, due to the lack of appropriate and convenient in vitro models of meiosis. Induced pluripotent stem cells (iPSCs) derived from the cells of infertile patients could provide a gold standard model for generating primordial germ cells and studying their development and the process of spermatogenesis. We report the characterization of a complex chromosomal rearrangement (CCR) in an azoospermic patient, and the successful generation of specific-iPSCs from PBMC-derived erythroblasts. The CCR was characterized by karyotype, fluorescence in situ hybridization and oligonucleotide-based array-comparative genomic hybridization. The CCR included five breakpoints and was caused by the inverted insertion of a chromosome 12 segment into the short arm of one chromosome 7 and a pericentric inversion of the structurally rearranged chromosome 12. Gene mapping of the breakpoints led to the identification of a candidate gene, SYCP3. Erythroblasts from the patient were reprogrammed with Sendai virus vectors to generate iPSCs. We assessed iPSC pluripotency by RT-PCR, immunofluorescence staining and teratoma induction. The generation of specific-iPSCs from patients with a CCR provides a valuable in vitro genetic model for studying the mechanisms by which chromosomal abnormalities alter meiosis and germ cell development. PMID:28045072

  3. Localization of preferential sites of rearrangement within the BCR gene in Philadelphia chromosome-positive acute lymphoblastic leukemia

    SciTech Connect

    Denny, C.T.; Shah, N.P.; Ogden, S.; Willman, C.; McConnell, T.; Crist, W.; Carroll, A.; Witte, O.N. )

    1989-06-01

    The Philadelphia chromosome associated with acute lymphoblastic leukemia (ALL) has been linked to a hybrid BCR/ABL protein product that differs from that found in chronic myelogenous leukemia. This implies that the molecular structures of the two chromosomal translocations also differ. Localization of translocation breakpoints in Philadelphia chromosome-positive ALL has been impeded due to the only partial characterization of the BCR locus. The authors have isolated the entire 130-kilobase BCR genomic locus from a human cosmid library. They have demonstrated that these breakpoints are all located at the 3{prime} end of the intron around an unusual restriction fragment length polymorphism caused by deletion of a 1-kilobase fragment containing Alu family reiterated sequences. This clustering is unexpected in light of previous theories of rearrangement in Philadelphia chromosome-positive chronic myelogenous leukemia that would have predicted a random dispersion of breakpoints in the first intron in Philadelphia chromosome-positive ALL. The proximity of the translocation breakpoints to this constitutive deletion may indicate shared mechanisms of rearrangement or that such polymorphisms mark areas of the genome prone to recombination.

  4. Intrachromosomal rearrangements in two representatives of the genus Saltator (Thraupidae, Passeriformes) and the occurrence of heteromorphic Z chromosomes.

    PubMed

    dos Santos, Michelly da Silva; Kretschmer, Rafael; Silva, Fabio Augusto Oliveira; Ledesma, Mario Angel; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A; Del Valle Garnero, Analía; de Oliveira, Edivaldo Herculano Corrêa; Gunski, Ricardo José

    2015-10-01

    Saltator is a genus within family Thraupidae, the second largest family of Passeriformes, with more than 370 species found exclusively in the New World. Despite this, only a few species have had their karyotypes analyzed, most of them only with conventional staining. The diploid number is close to 80, and chromosome morphology is similar to the usual avian karyotype. Recent studies using cross-species chromosome painting have shown that, although the chromosomal morphology and number are similar to many species of birds, Passeriformes exhibit a complex pattern of paracentric and pericentric inversions in the chromosome homologous to GGA1q in two different suborders, Oscines and Suboscines. Hence, considering the importance and species richness of Thraupidae, this study aims to analyze two species of genus Saltator, the golden-billed saltator (S. aurantiirostris) and the green-winged saltator (S. similis) by means of classical cytogenetics and cross-species chromosome painting using Gallus gallus and Leucopternis albicollis probes, and also 5S and 18S rDNA and telomeric sequences. The results show that the karyotypes of these species are similar to other species of Passeriformes. Interestingly, the Z chromosome appears heteromorphic in S. similis, varying in morphology from acrocentric to metacentric. 5S and 18S probes hybridize to one pair of microchromosomes each, and telomeric sequences produce signals only in the terminal regions of chromosomes. FISH results are very similar to the Passeriformes already analyzed by means of molecular cytogenetics (Turdus species and Elaenia spectabilis). However, the paracentric and pericentric inversions observed in Saltator are different from those detected in these species, an observation that helps to explain the probable sequence of rearrangements. As these rearrangements are found in both suborders of Passeriformes (Oscines and Suboscines), we propose that the fission of GGA1 and inversions in GGA1q have occurred very

  5. Extensive chromosome rearrangements distinguish the karyotype of the hypovirulent species Candida dubliniensis from the virulent Candida albicans

    PubMed Central

    Magee, B B; Sanchez, Melissa D; Saunders, David; Harris, David; Berriman, M.; Magee, PT

    2008-01-01

    Candida dubliniensis and Candida albicans, the most common human fungal pathogen, have most of the same genes and high sequence similarity, but C. dubliniensis is less virulent. C. albicans causes both mucosal and hematogenously disseminated disease, C. dubliniensis mostly mucosal infections. Pulse-field electrophoresis, genomic restriction enzyme digests, Southern blotting, and the emerging sequence from the Wellcome Trust Sanger Institute were used to determine the karyotype of C. dubliniensis type strain CD36. Three chromosomes have two intact homologues. A translocation in the rDNA repeat on chromosome R exchanges telomere-proximal regions of R and chromosome 5. Translocations involving the remaining chromosomes occur at the Major Repeat Sequence. CD36 lacks an MRS on chromosome R but has one on 3. Of six other C. dubliniensis strains, no two had the same electrophoretic karyotype. Despite extensive chromosome rearrangements, karyotypic differences between C. dubliniensis and C. albicans are unlikely to affect gene expression. Karyotypic instability may account for the diminished pathogenicity of C. dubliniensis. PMID:17719250

  6. Rapid generation of region-specific probes by chromosome microdissection: Application to the identification of chromosomal rearrangements

    SciTech Connect

    Trent, J.M.; Guan, X.Y.; Zang, J.; Meltzer, P.S. )

    1993-01-01

    The authors present results using a novel strategy for chromosome microdissection and direct in vitro amplification of specific chromosomal regions, to identify cryptic chromosome alterations, and to rapidly generate region-specific genomic probes. First, banded chromosomes are microdissected and directly PCR amplified by a procedure which eliminates microchemistry (Meltzer, et al., Nature Genetics, 1:24, 1992). The resulting PCR product can be used for several applications including direct labeling for fluorescent in situ hybridization (FISH) to normal metaphase chromosomes. A second application of this procedure is the extremely rapid generation of chromosome region-specific probes. This approach has been successfully used to determine the derivation of chromosome segments unidentifiable by standard chromosome banding analysis. In selected instances these probes have also been used on interphase nuclei and provides the potential for assessing chromosome abnormalities in a variety of cell lineages. The microdissection probes (which can be generated in <24 hours) have also been utilized in direct library screening and provide the possibility of acquiring a significant number of region-specific probes for any chromosome band. This procedure extends the limits of conventional cytogenetic analysis by providing an extremely rapid source of numerous band-specific probes, and by enabling the direct analysis of essentially any unknown chromosome region.

  7. Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting.

    PubMed Central

    Jauch, A; Wienberg, J; Stanyon, R; Arnold, N; Tofanelli, S; Ishida, T; Cremer, T

    1992-01-01

    The homology between hylobatid chromosomes and other primates has long remained elusive. We used chromosomal in situ suppression hybridization of all human chromosome-specific DNA libraries to "paint" the chromosomes of primates and establish homologies between the human, great ape (chimpanzee, gorilla, and orangutan), and gibbon karyotypes (Hylobates lar species group, 2n = 44). The hybridization patterns unequivocally demonstrate the high degree of chromosomal homology and synteny of great ape and human chromosomes. Relative to human, no translocations were detected in great apes, except for the well-known fusion-origin of human chromosome 2 and a 5;17 translocation in the gorilla. In contrast, numerous translocations were detected that have led to the massive reorganization of the gibbon karyotype: the 22 autosomal human chromosomes have been divided into 51 elements to compose the 21 gibbon autosomes. Molecular cytogenetics promises to finally allow hylobatids to be integrated into the overall picture of chromosomal evolution in the primates. Images PMID:1528869

  8. A 14-year follow-up of a case detected prenatally of partial trisomy 13q21.32-qter and monosomy 18q22.3-qter as a result of a maternal complex chromosome rearrangement involving chromosomes 6, 13, and 18.

    PubMed

    Quadrelli, Roberto; Quadrelli, Andrea; Milunsky, Aubrey; Zou, Ying S; Huang, Xin-Li; Viera, Estela; Mechoso, Búrix; Bellini, Sylvia; Costabel, Mariana; Vaglio, Alicia

    2009-06-01

    A balanced complex chromosome rearrangement (CCR) involving three chromosomes is rare and may lead to different types of aneuploid germ cells. We report here a 14-year follow-up of a boy with a karyotype defined as 46,XY,der(18)t(6;13;18)(q21;q21.32;q22.3).ish der(18)(13qter+,18qter-) characterized by multiple congenital abnormalities, including distinctive minor facial anomalies, short neck, abnormalities of the extremities, anogenital abnormalities, flexion contractures, especially at extremities, and severe mental and growth retardation. Chromosome analysis in the mother showed a CCR involving chromosomes 6, 13, and 18. This CCR was the result of a three-break rearrangement, and the derivative chromosome 13 consisted of parts of chromosomes 18 and 13. The karyotype of the child was not balanced, and resulted in partial trisomy for 13q and partial monosomy for 18q detected prenatally by conventional and molecular cytogenetics. Although such a karyotype and its phenotype have not previously been reported, we have compared the clinical and cytogenetic data from our patient with previously described cases of partial trisomy 13q and monosomy 18q despite different break points. We are presenting a new CCR in a woman with normal phenotype with a history of four early abortions and a long follow-up of her malformed newborn with partial 13q trisomy and 18q monosomy.

  9. Complex chromosomal rearrangements by single catastrophic pathogenesis in NUT midline carcinoma

    PubMed Central

    Lee, J.-K.; Louzada, S.; An, Y.; Kim, S. Y.; Kim, S.; Youk, J.; Park, S.; Koo, S. H.; Keam, B.; Jeon, Y. K.; Ku, J.-L.; Yang, F.; Kim, T. M.

    2017-01-01

    Background Nuclear protein in testis (NUT) midline carcinoma (NMC) is a rare aggressive malignancy often occurring in the tissues of midline anatomical structures. Except for the pathognomonic BRD3/4–NUT rearrangement, the comprehensive landscape of genomic alterations in NMCs has been unexplored. Patients and methods We investigated three NMC cases, including two newly diagnosed NMC patients in Seoul National University Hospital, and a previously reported cell line (Ty-82). Whole-genome and transcriptome sequencing were carried out for these cases, and findings were validated by multiplex fluorescence in situ hybridization and using individual fluorescence probes. Results Here, we present the first integrative analysis of whole-genome sequencing, transcriptome sequencing and cytogenetic characterization of NUT midline carcinomas. By whole-genome sequencing, we identified a remarkably similar pattern of highly complex genomic rearrangements (previously denominated as chromoplexy) involving the BRD3/4–NUT oncogenic rearrangements in two newly diagnosed NMC cases. Transcriptome sequencing revealed that these complex rearrangements were transcribed as very simple BRD3/4–NUT fusion transcripts. In Ty-82 cells, we also identified a complex genomic rearrangement involving the BRD4–NUT rearrangement underlying the simple t(15;19) karyotype. Careful inspections of rearrangement breakpoints indicated that these rearrangements were likely attributable to single catastrophic events. Although the NMC genomes had >3000 somatic point mutations, canonical oncogenes or tumor suppressor genes were rarely affected, indicating that they were largely passenger events. Mutational signature analysis showed predominant molecular clock-like signatures in all three cases (accounting for 54%−75% of all base substitutions), suggesting that NMCs may arise from actively proliferating normal cells. Conclusion Taken together, our findings suggest that a single catastrophic event in

  10. Angelman Syndrome Caused by Chromosomal Rearrangements: A Case Report of 46,XX,+der(13)t(13;15)(q14.1;q12)mat,-15 with an Atypical Phenotype and Review of the Literature.

    PubMed

    Niida, Yo; Sato, Hitoshi; Ozaki, Mamoru; Itoh, Masatsune; Ikeno, Kanju; Takase, Etsuko

    2016-01-01

    Less than 1% of the cases with Angelman syndrome (AS) are caused by chromosomal rearrangements. This category of AS is not well defined and may manifest atypical phenotypes. Here, we report a girl with AS due to der(13)t(13;15)(q14.1;q12)mat. SNP array detected the precise deletion/duplication points and the parental origin of the 15q deletion. Multicolor FISH confirmed a balanced translocation t(13;15)(q14.1;q12) in her mother. Her facial appearance showed some features of dup(13)(pter→q14). Also, she lacked the most characteristic and unique behavioral symptoms of AS, i.e., frequent laughter, happy demeanor, and easy excitability. A review of the literature indicated that AS cases caused by chromosomal rearrangements can be classified into 2 major categories and 4 groups. The first category is paternal uniparental disomy 15, which is subdivided into isodisomy by de novo rob(15;15) and heterodisomy caused by paternal translocation. The second category is the deletion of the AS locus due to maternal reciprocal translocation, which is subdivided into 2 groups associated with partial monosomy by 3:1 segregation and partial trisomy by adjacent-2 segregation. Classification into these categories facilitates the understanding of the mechanisms of chromosomal rearrangements and helps in accurate diagnosis and genetic counseling of these rare forms of AS.

  11. BAC-FISH assays delineate complex chromosomal rearrangements in a case of post-Chernobyl childhood thyroid cancer.

    PubMed

    Kwan, Johnson; Baumgartner, Adolf; Lu, Chun-Mei; Wang, Mei; Weier, Jingly F; Zitzelsberger, Horst F; Weier, Heinz-Ulrich G

    2009-01-01

    Structural chromosome aberrations are known hallmarks of many solid tumors. In the papillary form of thyroid cancer (PTC), for example, activation of the receptor tyrosine kinase (RTK) genes, RET and neurotrophic tyrosine kinase receptor type I (NTRK1) by intra- and interchromosomal rearrangements has been suggested as a cause of the disease. However, many phenotypically similar tumors do not carry an activated RET or NTRK-1 gene or express abnormal ret or NTRK-1 transcripts. Thus, we hypothesize that other cellular RTK-type genes are aberrantly expressed in these tumors. Using fluorescence in situ hybridization-based methods, we are studying karyotype changes in a relatively rare subgroup of PTCs, i.e., tumors that arose in children following the 1986 nuclear accident in Chernobyl, Ukraine. Here, we report our technical developments and progress in deciphering complex chromosome aberrations in case S48TK, an aggressively growing PTC cell line, which shows an unusual high number of unbalanced translocations.

  12. BAC-FISH assays delineate complex chromosomal rearrangements in a case of post-Chernobyl childhood thyroid cancer

    SciTech Connect

    Kwan, Johnson; Baumgartner, Adolf; Lu, Chun-Mei; Wang, Mei; Weier, Jingly F.; Zitzelsberger, Horst F.; Weier, Heinz-Ulrich G.

    2009-03-09

    Structural chromosome aberrations are known hallmarks of many solid tumors. In the papillary form of thyroid cancer (PTC), for example, activation of the receptor tyrosine kinase (RTK) genes, RET and neurotrophic tyrosine kinase receptor type I (NTRK1) by intra- and interchromosomal rearrangements has been suggested as a cause of the disease. However, many phenotypically similar tumors do not carry an activated RET or NTRK-1 gene or express abnormal ret or NTRK-1 transcripts. Thus, we hypothesize that other cellular RTK-type genes are aberrantly expressed in these tumors. Using fluorescence in situ hybridization-based methods, we are studying karyotype changes in a relatively rare subgroup of PTCs, i.e., tumors that arose in children following the 1986 nuclear accident in Chernobyl, Ukraine. Here, we report our technical developments and progress in deciphering complex chromosome aberrations in case S48TK, an aggressively growing PTC cell line, which shows an unusual high number of unbalanced translocations.

  13. Miller-Dieker syndrome resulting from rearrangement of a familial chromosome 17 inversion detected by fluorescence in situ hybridisation.

    PubMed Central

    Kingston, H M; Ledbetter, D H; Tomlin, P I; Gaunt, K L

    1996-01-01

    We report a case of Miller-Dieker syndrome (MDS) owing to an unbalanced rearrangement of a familial pericentric inversion of chromosome 17 (inv(17) (p13.3q25.1)). In addition to lissencephaly and the facial features of MDS, the affected child had other congenital malformations consistent with distal 17q duplication. Initial cytogenetic analysis failed to show any abnormality and fluorescence in situ hybridisation (FISH) studies confirmed the 17p deletion in the proband and identified the chromosome 17 inversion in his mother. FISH studies were performed in other relatives and enabled first trimester prenatal diagnosis by chorionic villus sampling in a subsequent pregnancy of the proband's mother. These findings underline the value of FISH in the investigation of MDS families. Images PMID:8825053

  14. Complex chromosome 17p rearrangements associated with low-copy repeats in two patients with congenital anomalies

    PubMed Central

    Vissers, L. E. L. M.; Stankiewicz, P.; Yatsenko, S. A.; Crawford, E.; Creswick, H.; Proud, V. K.; de Vries, B. B. A.; Pfundt, R.; Marcelis, C. L. M.; Zackowski, J.; Bi, W.; van Kessel, A. Geurts; Lupski, J. R.

    2007-01-01

    Recent molecular cytogenetic data have shown that the constitution of complex chromosome rearrangements (CCRs) may be more complicated than previously thought. The complicated nature of these rearrangements challenges the accurate delineation of the chromosomal breakpoints and mechanisms involved. Here, we report a molecular cytogenetic analysis of two patients with congenital anomalies and unbalanced de novo CCRs involving chromosome 17p using high-resolution array-based comparative genomic hybridization (array CGH) and fluorescent in situ hybridization (FISH). In the first patient, a 4-month-old boy with developmental delay, hypotonia, growth retardation, coronal synostosis, mild hypertelorism, and bilateral club feet, we found a duplication of the Charcot-Marie–Tooth disease type 1A and Smith-Magenis syndrome (SMS) chromosome regions, inverted insertion of the Miller-Dieker lissencephaly syndrome region into the SMS region, and two microdeletions including a terminal deletion of 17p. The latter, together with a duplication of 21q22.3-qter detected by array CGH, are likely the unbalanced product of a translocation t(17;21)(p13.3;q22.3). In the second patient, an 8-year-old girl with mental retardation, short stature, microcephaly and mild dysmorphic features, we identified four submicroscopic interspersed 17p duplications. All 17 breakpoints were examined in detail by FISH analysis. We found that four of the breakpoints mapped within known low-copy repeats (LCRs), including LCR17pA, middle SMS-REP/LCR17pB block, and LCR17pC. Our findings suggest that the LCR burden in proximal 17p may have stimulated the formation of these CCRs and, thus, that genome architectural features such as LCRs may have been instrumental in the generation of these CCRs. PMID:17457615

  15. Chromosomal Rearrangements in Salmonella enterica Serotype Typhi Affecting Molecular Typing in Outbreak Investigations

    PubMed Central

    Echeita, M. A.; Usera, M. A.

    1998-01-01

    Salmonella enterica serotype Typhi strains belonging to eight different outbreaks of typhoid fever that occurred in Spain between 1989 and 1994 were analyzed by ribotyping and pulsed-field gel electrophoresis. For three outbreaks, two different patterns were detected for each outbreak. The partial digestion analysis by the intron-encoded endonuclease I-CeuI of the two different strains from each outbreak provided an excellent tool for examining the organization of the genomes of epidemiologically related strains. S. enterica serotype Typhi seems to be more susceptible than other serotypes to genetic rearrangements produced by homologous recombinations between rrn operons; these rearrangements do not substantially alter the stability or survival of the bacterium. We conclude that genetic rearrangements can occur during the emergence of an outbreak. PMID:9650981

  16. Tracking the complex flow of chromosome rearrangements from the Hominoidea Ancestor to extant Hylobates and Nomascus Gibbons by high-resolution synteny mapping.

    PubMed

    Misceo, Doriana; Capozzi, Oronzo; Roberto, Roberta; Dell'oglio, Maria P; Rocchi, Mariano; Stanyon, Roscoe; Archidiacono, Nicoletta

    2008-09-01

    In this study we characterized the extension, reciprocal arrangement, and orientation of syntenic chromosomal segments in the lar gibbon (Hylobates lar, HLA) by hybridization of a panel of approximately 1000 human BAC clones. Each lar gibbon rearrangement was defined by a splitting BAC clone or by two overlapping clones flanking the breakpoint. A reconstruction of the synteny arrangement of the last common ancestor of all living lesser apes was made by combining these data with previous results in Nomascus leucogenys, Hoolock hoolock, and Symphalangus syndactylus. The definition of the ancestral synteny organization facilitated tracking the cascade of chromosomal changes from the Hominoidea ancestor to the present day karyotype of Hylobates and Nomascus. Each chromosomal rearrangement could be placed within an approximate phylogenetic and temporal framework. We identified 12 lar-specific rearrangements and five previously undescribed rearrangements that occurred in the Hylobatidae ancestor. The majority of the chromosomal differences between lar gibbons and humans are due to rearrangements that occurred in the Hylobatidae ancestor (38 events), consistent with the hypothesis that the genus Hylobates is the most recently evolved lesser ape genus. The rates of rearrangements in gibbons are 10 to 20 times higher than the mammalian default rate. Segmental duplication may be a driving force in gibbon chromosome evolution, because a consistent number of rearrangements involves pericentromeric regions (10 events) and centromere inactivation (seven events). Both phenomena can be reasonably supposed to have strongly contributed to the euchromatic dispersal of segmental duplications typical of pericentromeric regions. This hypothesis can be more fully tested when the sequence of this gibbon species becomes available. The detailed synteny map provided here will, in turn, substantially facilitate sequence assembly efforts.

  17. A familial Cri-du-Chat/5p deletion syndrome resulted from rare maternal complex chromosomal rearrangements (CCRs) and/or possible chromosome 5p chromothripsis.

    PubMed

    Gu, Heng; Jiang, Jian-hui; Li, Jian-ying; Zhang, Ya-nan; Dong, Xing-sheng; Huang, Yang-yu; Son, Xin-ming; Lu, Xinyan; Chen, Zheng

    2013-01-01

    Cri-du-Chat syndrome (MIM 123450) is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs), diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5)(p13.3p15.33) spanning ≈ 26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5) (q23;p14.1p15.31),ins(21;5)(q21;p13.3p14.1),ins(21;5)(q21;p15.31p15.33),inv(7)(p22q32)dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5) identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5). Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family.

  18. A Familial Cri-du-Chat/5p Deletion Syndrome Resulted from Rare Maternal Complex Chromosomal Rearrangements (CCRs) and/or Possible Chromosome 5p Chromothripsis

    PubMed Central

    Zhang, Ya-nan; Dong, Xing-sheng; Huang, Yang-yu; Son, Xin-ming; Lu, Xinyan; Chen, Zheng

    2013-01-01

    Cri-du-Chat syndrome (MIM 123450) is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs), diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5)(p13.3p15.33) spanning ∼26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5) (q23;p14.1p15.31),ins(21;5)(q21;p13.3p14.1),ins(21;5)(q21;p15.31p15.33),inv(7)(p22q32)dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5) identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5). Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family. PMID:24143197

  19. Molecular analysis of chromosomal rearrangements using pulsed field gel electrophoresis and somatic cell hybrids

    SciTech Connect

    Davis, L.M. )

    1991-01-01

    Many human genetic diseases, including some cancers, are characterized by consistent chromosome abnormalities, such as deletions and translocations. Analyses of these mutations often prove crucial to the eventual cloning and characterization of the gene(s) responsible for the disease. Two methods for analyzing these chromosome abnormalities have been developed in recent years: somatic cell hybridization and pulsed field gel electrophoresis (PFGE). Somatic cell hybridization is a technique for segregating an aberrant chromosome from its normal homologue in a cell derived from an unrelated species, which is usually a rodent. Demonstrations of these analytic techniques are presented, using as an example chromosomal abnormalities involving human chromosome band 11p13, the locus for the Wilms' tumor, aniridia, genitourinary abnormality, and mental retardation (WAGR) syndrome.

  20. Robertsonian chromosomal rearrangements in the short-tailed shrew, Blarina carolinensis, in western Tennessee.

    PubMed

    Qumsiyeh, M B; Coate, J L; Peppers, J A; Kennedy, P K; Kennedy, M L

    1997-01-01

    We report significant heterozygosity for numerous Robertsonian translocations in the southern short-tailed shrew (Blarina carolinensis) in western Tennessee. Eight Robertsonian rearrangements were documented using G-banding techniques that explain the variability in diploid numbers from 46 throughout most of the range of the species to 34-40 in western Tennessee. These fusions resulted in the loss of telomere sequences and were not associated with nucleolar organizer regions. When heterozygocity is considered, the lowest diploid number possibly present would be 30. Four localities with distances of over 180 km apart were sampled, and 80-90% of the collected animals were heterozygous for at least one rearrangement. No putative parental type was found in western Tennessee. Heterozygosity for the same rearrangements was found in these different localities, and no monobrachial fusions were noted. Thus, this is a very wide hybrid zone with rare or absent parental types in the areas sampled or is an evolutionary stage preceding establishment of Robertsonian races. Selective forces, if any, were minimal, as evidenced by the wide area of polymorphism, significant heterozygosity, and the fact that the Robertsonian translocations were in Hardy-Weinberg equilibrium. The origin of such extensive polymorphism in western Tennessee is discussed, especially in light of putative effects of the New Madrid seismic activity. Similarities and differences are noted between the Blarina model and the well-documented variation in the European common shrew (Sorex araneus) and Mus musculus groups.

  1. Molecular characterization of the t(4;12)(q27~28;q14~15) chromosomal rearrangement in lipoma

    PubMed Central

    Agostini, Antonio; Gorunova, Ludmila; Bjerkehagen, Bodil; Lobmaier, Ingvild; Heim, Sverre; Panagopoulos, Ioannis

    2016-01-01

    Lipomas are common benign soft tissue tumors whose genetic and cytogenetic features are well characterized. The karyotype is usually near- or pseudodiploid with characteristic structural chromosomal aberrations. The most common rearrangements target the high mobility group AT-hook 2 (HMGA2) gene in 12q14.3, with breakpoints occurring within or outside of the gene locus leading to deregulation of HMGA2. The most common fusion partner for HMGA2 in lipoma is lipoma-preferred partner (3q27), but also other genes frequently recombine with HMGA2. Furthermore, truncated HMGA2 transcripts are recurrently observed in lipomas. The present study describes 5 lipomas carrying the translocation t(4;12)(q27~28;q14~15) as the sole chromosomal anomaly, as well as 1 lipoma in which the three-way translocation t(1;4;12)(q21;q27~28;q14~15) was identified. Molecular analyses performed on 4 of these cases detected 4 truncated forms of HMGA2. In 3 tumors, the HMGA2 truncated transcripts included sequences originating from the chromosomal sub-band 4q28.1. Notably, in 2 of these cases, the fourth exon of HMGA2 was fused to transposable elements located in 4q28.1. PMID:27588119

  2. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia.

    PubMed

    Li, Yilong; Schwab, Claire; Ryan, Sarra L; Papaemmanuil, Elli; Robinson, Hazel M; Jacobs, Patricia; Moorman, Anthony V; Dyer, Sara; Borrow, Julian; Griffiths, Mike; Heerema, Nyla A; Carroll, Andrew J; Talley, Polly; Bown, Nick; Telford, Nick; Ross, Fiona M; Gaunt, Lorraine; McNally, Richard J Q; Young, Bryan D; Sinclair, Paul; Rand, Vikki; Teixeira, Manuel R; Joseph, Olivia; Robinson, Ben; Maddison, Mark; Dastugue, Nicole; Vandenberghe, Peter; Haferlach, Claudia; Stephens, Philip J; Cheng, Jiqiu; Van Loo, Peter; Stratton, Michael R; Campbell, Peter J; Harrison, Christine J

    2014-04-03

    Changes in gene dosage are a major driver of cancer, known to be caused by a finite, but increasingly well annotated, repertoire of mutational mechanisms. This can potentially generate correlated copy-number alterations across hundreds of linked genes, as exemplified by the 2% of childhood acute lymphoblastic leukaemia (ALL) with recurrent amplification of megabase regions of chromosome 21 (iAMP21). We used genomic, cytogenetic and transcriptional analysis, coupled with novel bioinformatic approaches, to reconstruct the evolution of iAMP21 ALL. Here we show that individuals born with the rare constitutional Robertsonian translocation between chromosomes 15 and 21, rob(15;21)(q10;q10)c, have approximately 2,700-fold increased risk of developing iAMP21 ALL compared to the general population. In such cases, amplification is initiated by a chromothripsis event involving both sister chromatids of the Robertsonian chromosome, a novel mechanism for cancer predisposition. In sporadic iAMP21, breakage-fusion-bridge cycles are typically the initiating event, often followed by chromothripsis. In both sporadic and rob(15;21)c-associated iAMP21, the final stages frequently involve duplications of the entire abnormal chromosome. The end-product is a derivative of chromosome 21 or the rob(15;21)c chromosome with gene dosage optimized for leukaemic potential, showing constrained copy-number levels over multiple linked genes. Thus, dicentric chromosomes may be an important precipitant of chromothripsis, as we show rob(15;21)c to be constitutionally dicentric and breakage-fusion-bridge cycles generate dicentric chromosomes somatically. Furthermore, our data illustrate that several cancer-specific mutational processes, applied sequentially, can coordinate to fashion copy-number profiles over large genomic scales, incrementally refining the fitness benefits of aggregated gene dosage changes.

  3. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with I-131 radiation dose and other characteristics

    PubMed Central

    Leeman-Neill, Rebecca J.; Brenner, Alina V.; Little, Mark P.; Bogdanova, Tetiana I.; Hatch, Maureen; Zurnadzy, Liudmyla Y.; Mabuchi, Kiyohiko; Tronko, Mykola D.; Nikiforov, Yuri E.

    2012-01-01

    Background Childhood exposure to I-131 from the 1986 Chernobyl accident led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Methods We performed mutational analysis of 62 PTCs diagnosed in a Ukrainian cohort of patients who were <18 y.o. in 1986 and received 0.008-8.6 Gy of I-131 to the thyroid and explored associations between mutation types and I-131 dose and other characteristics. Results RET/PTC rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ rearrangement were identified. We found a significant negative association with I-131 dose for BRAF and RAS point mutations and a significant concave association with I-131 dose, with an inflection point at 1.6 Gy and odds ratio 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared to point mutations, rearrangements were associated with residence in the relatively iodine deficient Zhytomyr region, younger age at exposure or surgery, and male gender. Conclusions Our results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with I-131 dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and I-131 exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. PMID:23436219

  4. Familial complex chromosomal rearrangement resulting in duplication/deletion of 6q14 to 6q16.

    PubMed

    Roland, B; Lowry, R B; Cox, D M; Ferreira, P; Lin, C C

    1993-03-01

    A familial complex chromosomal rearrangement (CCR) was ascertained through a mentally retarded, dysmorphic individual. Carriers of the CCR have the karyotype 46,XX or XY, t(6;15)(q16;q21), ins(3;6)(q12;q14q16), and malsegregation of the CCR resulted in loss of the segment 6q14 to 6q16 in the proband, and in an additional copy of the same segment in three members of the extended family. The proband has features similar to other reported cases with deletion of 6q1. The individuals with duplication of 6q14 to 6q16 have moderate mental retardation, short stature, obesity, microcephaly, brachycephaly, a short smooth philtrum, central hair whorl, simian creases, 5th finger brachydactyly and skeletal disproportion. In the 4-generation family, CCR carriers have a 20% empiric risk of phenotypically abnormal livebirths.

  5. Chromosome painting shows that skunks (Mephitidae, Carnivora) have highly rearranged karyotypes.

    PubMed

    Perelman, P L; Graphodatsky, A S; Dragoo, J W; Serdyukova, N A; Stone, G; Cavagna, P; Menotti, A; Nie, W; O'Brien, P C M; Wang, J; Burkett, S; Yuki, K; Roelke, M E; O'Brien, S J; Yang, F; Stanyon, R

    2008-01-01

    The karyotypic relationships of skunks (Mephitidae) with other major clades of carnivores are not yet established. Here, multi-directional chromosome painting was used to reveal the karyological relationships among skunks and between Mephitidae (skunks) and Procyonidae (raccoons). Representative species from three genera of Mephitidae (Mephitis mephitis, 2n = 50; Mephitis macroura, 2n = 50; Conepatus leuconotus, 2n = 46; Spilogale gracilis, 2n = 60) and one species of Procyonidae (Procyon lotor, 2n = 38) were studied. Chromosomal homology was mapped by hybridization of five sets of whole-chromosome paints derived from stone marten (Martes foina, 2n = 38), cat, skunks (M. mephitis; M. macroura) and human. The karyotype of the raccoon is highly conserved and identical to the hypothetical ancestral musteloid karyotype, suggesting that procyonids have a particular importance for establishing the karyological evolution within the caniforms. Ten fission events and five fusion events are necessary to generate the ancestral skunk karyotype from the ancestral carnivore karyotype. Our results show that Mephitidae joins Canidae and Ursidae as the third family of carnivores that are characterized by a high rate of karyotype evolution. Shared derived chromosomal fusion of stone marten chromosomes 6 and 14 phylogenetically links the American hog-nosed skunk and eastern spotted skunk.

  6. Role of Recbc Function in Formation of Chromosomal Rearrangements: A Two-Step Model for Recombination

    PubMed Central

    Mahan, M. J.; Roth, J. R.

    1989-01-01

    The role of recBC functions has been tested for three types of chromosomal recombination events: (1) recombination between direct repeats to generate a deletion, (2) recombination between a small circular fragment and the chromosome, and (3) recombination between inversely oriented repeats to form an inversion. Deletion formation by recombination between direct repeats, which does not require a fully reciprocal exchange, is independent of recBC function. Circle integration and inversion formation are both stimulated by the recBC function; these events require full reciprocality. The results suggest that half-reciprocal exchanges can occur without recBC, but recBC functions greatly stimulate completion of a fully reciprocal exchange. We propose that chromosomal recombination is a two-step process, and recBC functions are primarily required for the second step. PMID:2714635

  7. 3q26.2/EVI1 rearrangement is associated with poor prognosis in classical Philadelphia chromosome-negative myeloproliferative neoplasms.

    PubMed

    Hu, Zhihong; Medeiros, L Jeffrey; Wang, Wei; Chen, Zi; Tang, Guilin; Hodjat, Parsa; Yang, Su; Fang, Lianghua; Li, Yan; Verstovsek, Srdan; Hu, Shimin

    2017-03-24

    Classical Philadelphia chromosome-negative myeloproliferative neoplasms are a group of closely related myeloid disorders with different histologic features and clinical presentations at an early stage, but all later develop into a similar fibrotic stage with variable risk of acute transformation. The significance of 3q26.2/EVI1 rearrangement has been well recognized in acute myeloid leukemia, myelodysplastic syndrome, and chronic myeloid leukemia. However, the clinical importance of 3q26.2/EVI1 rearrangement in classical Philadelphia chromosome-negative myeloproliferative neoplasms is unknown. Here we reported 15 patients with classical Philadelphia chromosome-negative myeloproliferative neoplasms showing 3q26.2 rearrangement, including inv(3)(q21q26.2) (n=6), t(3;21)(q26.2;q22)(n=4), t(3;3)(q21;q26.2)(n=3), inv(3)(q13.3q26.2)(n=1), and t(3;12)(q26.2;p13)(n=1). In addition to 3q26.2 rearrangement, 9 of 15 cases had other concurrent karyotypical abnormalities, including -7/7q- and -5/5q-. There were 8 men and 7 women with a median age of 59 years (range, 35-79 years) at initial diagnosis of myeloproliferative neoplasms: 8 patients had primary myelofibrosis, 4 had polycythemia vera, and 3 had essential thrombocythemia. JAK2 V617F mutation was detected in 8/14 patients, including 4/4 with polycythemia vera. The median interval from the initial diagnosis of myeloproliferative neoplasms to the detection of 3q26.2 rearrangement was 44 months (range, 1-219 months). At time of emergence of 3q26.2 rearrangement, 11 patients were in blast phase and 2 patients had increased blasts (6-19%). Dyspoiesis, predominantly in megakaryocytes, were detected in all patients with adequate specimens at time of 3q26.2 rearrangement. Following 3q26.2 rearrangement, 12 patients received chemotherapy, but none of them achieved complete remission. Of 14 patients with follow-up information, all died with a median overall survival time of only 3 months (range 0-14 months) after the emergence of

  8. Epilepsy and chromosomal rearrangements in Smith-Magenis Syndrome [del(17)(p11.2p11.2)].

    PubMed

    Goldman, Alica M; Potocki, Lorraine; Walz, Katherina; Lynch, Jennifer K; Glaze, Daniel G; Lupski, James R; Noebels, Jeffrey L

    2006-02-01

    Smith-Magenis syndrome is a multiple congenital anomalies/mental retardation syndrome associated with a heterozygous deletion of chromosome 17p11.2. Seizures have not been formally studied in this population. Our objectives were to estimate the prevalence of seizures and electroencephalographic (EEG) epileptiform abnormalities in patients with Smith-Magenis syndrome with defined chromosomal rearrangements and to describe the spectrum of abnormal EEG patterns. Prolonged video-EEGs were obtained in 60 patients. Eighteen percent of patients reported a seizure history; however, abnormal EEGs were identified in 31 of the 60 subjects and 27 of 31 were epileptiform. Generalized epileptiform patterns were the most common (73%). Most patients with either small or large deletions had an abnormal EEG (83%; 75%) in contrast to those with a common deletion (49%). Our results indicate that epileptiform EEG abnormalities are frequent in patients with Smith-Magenis syndrome. Considering that close to one third of individuals with Smith-Magenis syndrome with epileptiform abnormalities also had a history of clinical seizures, cortical hyperexcitability and epilepsy should be considered an important component of the Smith-Magenis syndrome clinical phenotype.

  9. Did sex chromosome turnover promote divergence of the major mammal groups?: De novo sex chromosomes and drastic rearrangements may have posed reproductive barriers between monotremes, marsupials and placental mammals.

    PubMed

    Graves, Jennifer A M

    2016-08-01

    Comparative mapping and sequencing show that turnover of sex determining genes and chromosomes, and sex chromosome rearrangements, accompany speciation in many vertebrates. Here I review the evidence and propose that the evolution of therian mammals was precipitated by evolution of the male-determining SRY gene, defining a novel XY sex chromosome pair, and interposing a reproductive barrier with the ancestral population of synapsid reptiles 190 million years ago (MYA). Divergence was reinforced by multiple translocations in monotreme sex chromosomes, the first of which supplied a novel sex determining gene. A sex chromosome-autosome fusion may have separated eutherians (placental mammals) from marsupials 160 MYA. Another burst of sex chromosome change and speciation is occurring in rodents, precipitated by the degradation of the Y. And although primates have a more stable Y chromosome, it may be just a matter of time before the same fate overtakes our own lineage. Also watch the video abstract.

  10. Chromosomal rearrangements and protein globularity changes in Mycobacterium tuberculosis isolates from cerebrospinal fluid

    PubMed Central

    Chan, Xin Yue

    2016-01-01

    Background Meningitis is a major cause of mortality in tuberculosis (TB). It is not clear what factors promote central nervous system invasion and pathology but it has been reported that certain strains of Mycobacterium tuberculosis (Mtb) might have genetic traits associated with neurotropism. Methods In this study, we generated whole genome sequences of eight clinical strains of Mtb that were isolated from the cerebrospinal fluid (CSF) of patients presenting with tuberculous meningitis (TBM) in Malaysia, and compared them to the genomes of H37Rv and other respiratory Mtb genomes either downloaded from public databases or extracted from local sputum isolates. We aimed to find genomic features that might be distinctly different between CSF-derived and respiratory Mtb. Results Genome-wide comparisons revealed rearrangements (translocations, inversions, insertions and deletions) and non-synonymous SNPs in our CSF-derived strains that were not observed in the respiratory Mtb genomes used for comparison. These rearranged segments were rich in genes for PE (proline-glutamate)/PPE (proline-proline-glutamate), transcriptional and membrane proteins. Similarly, most of the ns SNPs common in CSF strains were noted in genes encoding PE/PPE proteins. Protein globularity differences were observed among mycobacteria from CSF and respiratory sources and in proteins previously reported to be associated with TB meningitis. Transcription factors and other transcription regulators featured prominently in these proteins. Homologs of proteins associated with Streptococcus pneumoniae meningitis and Neisseria meningitidis virulence were identified in neuropathogenic as well as respiratory mycobacterial spp. examined in this study. Discussion The occurrence of in silico genetic differences in CSF-derived but not respiratory Mtb suggests their possible involvement in the pathogenesis of TBM. However, overall findings in this comparative analysis support the postulation that TB meningeal

  11. Failed gene conversion leads to extensive end processing and chromosomal rearrangements in fission yeast

    PubMed Central

    Tinline-Purvis, Helen; Savory, Andrew P; Cullen, Jason K; Davé, Anoushka; Moss, Jennifer; Bridge, Wendy L; Marguerat, Samuel; Bähler, Jürg; Ragoussis, Jiannis; Mott, Richard; A Walker, Carol; Humphrey, Timothy C

    2009-01-01

    Loss of heterozygosity (LOH), a causal event in cancer and human genetic diseases, frequently encompasses multiple genetic loci and whole chromosome arms. However, the mechanisms by which such extensive LOH arises, and how it is suppressed in normal cells is poorly understood. We have developed a genetic system to investigate the mechanisms of DNA double-strand break (DSB)-induced extensive LOH, and its suppression, using a non-essential minichromosome, Ch16, in fission yeast. We find extensive LOH to arise from a new break-induced mechanism of isochromosome formation. Our data support a model in which Rqh1 and Exo1-dependent end processing from an unrepaired DSB leads to removal of the broken chromosome arm and to break-induced replication of the intact arm from the centromere, a considerable distance from the initial lesion. This process also promotes genome-wide copy number variation. A genetic screen revealed Rhp51, Rhp55, Rhp57 and the MRN complex to suppress both isochromosome formation and chromosome loss, in accordance with these events resulting from extensive end processing associated with failed homologous recombination repair. PMID:19798055

  12. Rearrangements in human chromosome 1 visualized by arm-specific probes in the progeny of blood lymphocytes exposed to iron ions

    NASA Astrophysics Data System (ADS)

    Manti, L.; Bertucci, A.; Gialanella, G.; Grossi, G.; Pignalosa, D.; Pugliese, M.; Scampoli, P.; Durante, M.

    The objective of this study was to measure differences in the chromosomal rearrangements found in the progeny of cells exposed to the same dose of X-rays or energetic iron ions, with emphasis on intra-chromosomal exchanges. We hybridized metaphase cells with human DNA probes specific for the p and q arms of the chromosome 1. The arm-specific probes allow a fast and reliable detection of both symmetrical and asymmetrical inter-chromosomal exchanges and inter-arm intra-changes (pericentric inversions) in the painted chromosome pair. We used this method to score aberrations in human peripheral blood lymphocytes exposed to 1 Gy of either 250 kVp X-rays or 1 GeV/n Fe-ions and harvested following 120 h in culture, including 2 h in colcemid for metaphase-block. Although iron ions are much more effective than X-rays in the induction of chromosomal aberrations formed during the first post-exposure cell cycle, we found that the effectiveness drops when daughter cells are scored at a late harvest time. In fact, no significant difference in the yield of simple interchanges or intra-changes was found for the two radiation qualities. On the other hand, complex-type exchanges, including rearrangements involving both intra- and inter-chromosomal exchanges, were much more frequent in the progeny of the population exposed to Fe-nuclei than to photons.

  13. Comprehensive meiotic segregation analysis of a 4-breakpoint t(1;3;6) complex chromosome rearrangement using single sperm array comparative genomic hybridization and FISH.

    PubMed

    Hornak, Miroslav; Vozdova, Miluse; Musilova, Petra; Prinosilova, Petra; Oracova, Eva; Linkova, Vlasta; Vesela, Katerina; Rubes, Jiri

    2014-10-01

    Complex chromosomal rearrangements (CCR) represent rare structural chromosome abnormalities frequently associated with infertility. In this study, meiotic segregation in spermatozoa of an infertile normospermic carrier of a 4-breakpoint t(1;3;6) CCR was analysed. A newly developed array comparative genomic hybridization protocol was used, and all chromosomes in 50 single sperm cells were simultaneously examined. Three-colour FISH was used to analyse chromosome segregation in 1557 other single sperm cells. It was also used to measure an interchromosomal effect; sperm chromatin structure assay was used to measure chromatin integrity. A high-frequency of unbalanced spermatozoa (84%) was observed, mostly arising from the 3:3 symmetrical segregation mode. Array comparative genomic hybridization was used to detect additional aneuploidies in two out of 50 spermatozoa (4%) in chromosomes not involved in the complex chromosome rearrangement. Significantly increased rates of diploidy and XY disomy were found in the CCR carrier compared with the control group (P < 0.001). Defective condensation of sperm chromatin was also found in 22.7% of spermatozoa by sperm chromatin structure assay. The results indicate that the infertility in the man with CCR and normal spermatozoa was caused by a production of chromosomally unbalanced, XY disomic and diploid spermatozoa and spermatozoa with defective chromatin condensation.

  14. A balanced t(5;17) (p15;q22-23) in chondroblastoma: frequency of the re-arrangement and analysis of the candidate genes

    PubMed Central

    2009-01-01

    Background Chondroblastoma is a benign cartilaginous tumour of bone that predominantly affects the epiphysis of long bones in young males. No recurrent chromosomal re-arrangements have so far been observed. Methods: We identified an index case with a balanced translocation by Combined Binary Ratio-Fluorescent in situ Hybridisation (COBRA-FISH) karyotyping followed by breakpoint FISH mapping and array-Comparative Genomic Hybridisation (aCGH). Candidate region re-arrangement and candidate gene expression were subsequently investigated by interphase FISH and immunohistochemistry in another 14 cases. Results A balanced t(5;17)(p15;q22-23) was identified. In the index case, interphase FISH showed that the translocation was present only in mononucleated cells and was absent in the characteristic multinucleated giant cells. The t(5;17) translocation was not observed in the other cases studied. The breakpoint in 5p15 occurred close to the steroid reductase 5α1 (SRD5A1) gene. Expression of the protein was found in all cases tested. Similar expression was found for the sex steroid signalling-related molecules oestrogen receptor alpha and aromatase, while androgen receptors were only found in isolated cells in a few cases. The breakpoint in 17q22-23 was upstream of the carbonic anhydrase × (CA10) gene region and possibly involved gene-regulatory elements, which was indicated by the lack of CA10 protein expression in the index case. All other cases showed variable levels of CA10 expression, with low expression in three cases. Conclusion We report a novel t(5;17)(p15;q22-23) translocation in chondroblastoma without involvement of any of the two chromosomal regions in other cases studied. Our results indicate that the characteristic multinucleated giant cells in chondroblastoma do not have the same clonal origin as the mononuclear population, as they do not harbour the same translocation. We therefore hypothesise that they might be either reactive or originate from a distinct

  15. Asplenia syndrome in a child with a balanced reciprocal translocation of chromosomes 11 and 20 [46,XX,t(11;20)(q13.1;q13.13)

    SciTech Connect

    Freeman, S.B.; May, K.M.; Blackston, R.D.; Muralidharan, K.

    1996-02-02

    We present a 6-year-old girl with a balanced 11;20 translocation [46,XX,t(11;20)(q13.1;q13.13)pat], asplenia, pulmonic stenosis, Hirschsprung disease, minor anomalies, and mental retardation. This case represents the second report of an individual with situs abnormalities and a balanced chromosome rearrangement involving a breakpoint at 11q13. Segregation analysis of markers in the 11q13 region in the proposita and her phenotypically normal carrier sibs did not show a unique combination of maternal and paternal alleles in the patient. We discuss several possible explanations for the simultaneous occurrence of situs abnormalities and a balanced 11;20 translocation. These include (1) chance, (2) a further chromosome rearrangement in the patient, (3) gene disruption and random situs determination, and (4) gene disruption plus transmission of a recessive or imprinted allele from the mother. 30 refs., 1 fig., 2 tabs.

  16. Interclonal variations in the molecular karyotype of Trypanosoma cruzi: chromosome rearrangements in a single cell-derived clone of the G strain.

    PubMed

    Lima, Fabio Mitsuo; Souza, Renata Torres; Santori, Fábio Rinaldo; Santos, Michele Fernandes; Cortez, Danielle Rodrigues; Barros, Roberto Moraes; Cano, Maria Isabel; Valadares, Helder Magno Silva; Macedo, Andréa Mara; Mortara, Renato Arruda; da Silveira, José Franco

    2013-01-01

    Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure.

  17. Rare recombination events generate sequence diversity among balancer chromosomes in Drosophila melanogaster.

    PubMed

    Miller, Danny E; Cook, Kevin R; Yeganeh Kazemi, Nazanin; Smith, Clarissa B; Cockrell, Alexandria J; Hawley, R Scott; Bergman, Casey M

    2016-03-08

    Multiply inverted balancer chromosomes that suppress exchange with their homologs are an essential part of the Drosophila melanogaster genetic toolkit. Despite their widespread use, the organization of balancer chromosomes has not been characterized at the molecular level, and the degree of sequence variation among copies of balancer chromosomes is unknown. To map inversion breakpoints and study potential diversity in descendants of a structurally identical balancer chromosome, we sequenced a panel of laboratory stocks containing the most widely used X chromosome balancer, First Multiple 7 (FM7). We mapped the locations of FM7 breakpoints to precise euchromatic coordinates and identified the flanking sequence of breakpoints in heterochromatic regions. Analysis of SNP variation revealed megabase-scale blocks of sequence divergence among currently used FM7 stocks. We present evidence that this divergence arose through rare double-crossover events that replaced a female-sterile allele of the singed gene (sn(X2)) on FM7c with a sequence from balanced chromosomes. We propose that although double-crossover events are rare in individual crosses, many FM7c chromosomes in the Bloomington Drosophila Stock Center have lost sn(X2) by this mechanism on a historical timescale. Finally, we characterize the original allele of the Bar gene (B(1)) that is carried on FM7, and validate the hypothesis that the origin and subsequent reversion of the B(1) duplication are mediated by unequal exchange. Our results reject a simple nonrecombining, clonal mode for the laboratory evolution of balancer chromosomes and have implications for how balancer chromosomes should be used in the design and interpretation of genetic experiments in Drosophila.

  18. Rare recombination events generate sequence diversity among balancer chromosomes in Drosophila melanogaster

    PubMed Central

    Miller, Danny E.; Cook, Kevin R.; Yeganeh Kazemi, Nazanin; Smith, Clarissa B.; Cockrell, Alexandria J.; Hawley, R. Scott; Bergman, Casey M.

    2016-01-01

    Multiply inverted balancer chromosomes that suppress exchange with their homologs are an essential part of the Drosophila melanogaster genetic toolkit. Despite their widespread use, the organization of balancer chromosomes has not been characterized at the molecular level, and the degree of sequence variation among copies of balancer chromosomes is unknown. To map inversion breakpoints and study potential diversity in descendants of a structurally identical balancer chromosome, we sequenced a panel of laboratory stocks containing the most widely used X chromosome balancer, First Multiple 7 (FM7). We mapped the locations of FM7 breakpoints to precise euchromatic coordinates and identified the flanking sequence of breakpoints in heterochromatic regions. Analysis of SNP variation revealed megabase-scale blocks of sequence divergence among currently used FM7 stocks. We present evidence that this divergence arose through rare double-crossover events that replaced a female-sterile allele of the singed gene (snX2) on FM7c with a sequence from balanced chromosomes. We propose that although double-crossover events are rare in individual crosses, many FM7c chromosomes in the Bloomington Drosophila Stock Center have lost snX2 by this mechanism on a historical timescale. Finally, we characterize the original allele of the Bar gene (B1) that is carried on FM7, and validate the hypothesis that the origin and subsequent reversion of the B1 duplication are mediated by unequal exchange. Our results reject a simple nonrecombining, clonal mode for the laboratory evolution of balancer chromosomes and have implications for how balancer chromosomes should be used in the design and interpretation of genetic experiments in Drosophila. PMID:26903656

  19. Chromosome rearrangements, recombination suppression, and limited segregation distortion in hybrids between Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and rainbow trout (O. mykiss)

    PubMed Central

    2013-01-01

    Background Introgressive hybridization is an important evolutionary process that can lead to the creation of novel genome structures and thus potentially new genetic variation for selection to act upon. On the other hand, hybridization with introduced species can threaten native species, such as cutthroat trout (Oncorhynchus clarkii) following the introduction of rainbow trout (O. mykiss). Neither the evolutionary consequences nor conservation implications of rainbow trout introgression in cutthroat trout is well understood. Therefore, we generated a genetic linkage map for rainbow-Yellowstone cutthroat trout (O. clarkii bouvieri) hybrids to evaluate genome processes that may help explain how introgression affects hybrid genome evolution. Results The hybrid map closely aligned with the rainbow trout map (a cutthroat trout map does not exist), sharing all but one linkage group. This linkage group (RYHyb20) represented a fusion between an acrocentric (Omy28) and a metacentric chromosome (Omy20) in rainbow trout. Additional mapping in Yellowstone cutthroat trout indicated the two rainbow trout homologues were fused in the Yellowstone genome. Variation in the number of hybrid linkage groups (28 or 29) likely depended on a Robertsonian rearrangement polymorphism within the rainbow trout stock. Comparison between the female-merged F1 map and a female consensus rainbow trout map revealed that introgression suppressed recombination across large genomic regions in 5 hybrid linkage groups. Two of these linkage groups (RYHyb20 and RYHyb25_29) contained confirmed chromosome rearrangements between rainbow and Yellowstone cutthroat trout indicating that rearrangements may suppress recombination. The frequency of allelic and genotypic segregation distortion varied among parents and families, suggesting few incompatibilities exist between rainbow and Yellowstone cutthroat trout genomes. Conclusions Chromosome rearrangements suppressed recombination in the hybrids. This result

  20. Mapping Breakpoints of Complex Chromosome Rearrangements Involving a Partial Trisomy 15q23.1-q26.2 Revealed by Next Generation Sequencing and Conventional Techniques

    PubMed Central

    Han, Liangrong; Jing, Xin; Liu, Hailiang; Yang, Chuanchun; Zhang, Fengting; Hu, Yue; Yue, Hongni; Ning, Ying

    2016-01-01

    Complex chromosome rearrangements (CCRs), which are rather rare in the whole population, may be associated with aberrant phenotypes. Next-generation sequencing (NGS) and conventional techniques, could be used to reveal specific CCRs for better genetic counseling. We report the CCRs of a girl and her mother, which were identified using a combination of NGS and conventional techniques including G-banding, fluorescence in situ hybridization (FISH) and PCR. The girl demonstrated CCRs involving chromosomes 3 and 8, while the CCRs of her mother involved chromosomes 3, 5, 8, 11 and 15. HumanCytoSNP-12 Chip analysis identified a 35.4 Mb duplication on chromosome 15q21.3-q26.2 in the proband and a 1.6 Mb microdeletion at chromosome 15q21.3 in her mother. The proband inherited the rearranged chromosomes 3 and 8 from her mother, and the duplicated region on chromosome 15 of the proband was inherited from the mother. Approximately one hundred genes were identified in the 15q21.3-q26.2 duplicated region of the proband. In particular, TPM1, SMAD6, SMAD3, and HCN4 may be associated with her heart defects, and HEXA, KIF7, and IDH2 are responsible for her developmental and mental retardation. In addition, we suggest that a microdeletion on the 15q21.3 region of the mother, which involved TCF2, TCF12, ADMA10 and AQP9, might be associated with mental retardation. We delineate the precise structures of the derivative chromosomes, chromosome duplication origin and possible molecular mechanisms for aberrant phenotypes by combining NGS data with conventional techniques. PMID:27218255

  1. A mouse chromosome 4 balancer ENU-mutagenesis screen isolates eleven lethal lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ENU-mutagenesis is a powerful technique to identify genes regulating mammalian development. To functionally annotate the distal region of mouse chromosome 4, we performed an ENU-mutagenesis screen using a balancer chromosome targeted to this region of the genome. We isolated 11 lethal lines that map...

  2. Characterization of a de novo complex chromosomal rearrangement in a patient with cri-du-chat and trisomy 5p syndromes.

    PubMed

    Vera-Carbonell, Ascensión; Bafalliu, Juan Antonio; Guillén-Navarro, Encarna; Escalona, Ariadna; Ballesta-Martínez, María J; Fuster, Carme; Fernández, Asunción; López-Expósito, Isabel

    2009-11-01

    Two syndromes with abnormalities of the short arm of chromosome 5 have been described: cri-du-chat (resulting from 5p deletion) and trisomy 5p. We report for the first time a patient with both syndromes, resulting from a complex chromosomal rearrangement with an inverted duplication of 5p13.1-p14.2, a deletion of 5p14.2-pter, and a duplication of 5p12, characterized by array-CGH and BAC clones. The patient showed phenotypic characteristics of both syndromes and died at 3 months of age as a result of cardiorespiratory failure, probably associated with the clinical severity of the trisomy 5p syndrome. We propose a potential causative mechanism for this rearrangement.

  3. Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes.

    PubMed

    Kinoshita, Kazuhisa; Kobayashi, Tetsuya J; Hirano, Tatsuya

    2015-04-06

    Condensin I is a five-subunit protein complex that plays a central role in mitotic chromosome assembly and segregation in eukaryotes. To dissect its mechanism of action, we reconstituted wild-type and mutant complexes from recombinant subunits and tested their abilities to assemble chromosomes in Xenopus egg cell-free extracts depleted of endogenous condensins. We find that ATP binding and hydrolysis by SMC subunits have distinct contributions to the action of condensin I and that continuous ATP hydrolysis is required for structural maintenance of chromosomes. Mutant complexes lacking either one of two HEAT subunits produce abnormal chromosomes with highly characteristic defects and have contrasting structural effects on chromosome axes preassembled with the wild-type complex. We propose that balancing acts of the two HEAT subunits support dynamic assembly of chromosome axes under the control of the SMC ATPase cycle, thereby governing construction of rod-shaped chromosomes in eukaryotic cells.

  4. Molecular and genetic characterization of a radiation-induced structural rearrangement in mouse chromosome 2 causing mutations at the limb deformity and agouti loci.

    PubMed

    Woychik, R P; Generoso, W M; Russell, L B; Cain, K T; Cacheiro, N L; Bultman, S J; Selby, P B; Dickinson, M E; Hogan, B L; Rutledge, J C

    1990-04-01

    Molecular characterization of mutations in the mouse, particularly those involving agent-induced major structural alterations, is proving to be useful for correlating the structure and expression of individual genes with their function in the whole organism. Here we present the characterization of a radiation-induced mutation that simultaneously generated distinct alleles of both the limb deformity (ld) and agouti (a) loci, two developmentally important regions of chromosome 2 normally separated by 20 centimorgans. Cytogenetic analysis revealed that an interstitial segment of chromosome 17 (17B- 17C; or, possibly, 17A2-17B) had been translocated into the distal end of chromosome 2, resulting in a smaller-than-normal chromosome 17 (designated 17del) and a larger form of chromosome 2 (designated 2(17). Additionally, a large interstitial segment of the 2(17) chromosome, immediately adjacent and proximal to the insertion site, did not match bands 2E4-2H1 at corresponding positions on a normal chromosome 2. Molecular analysis detected a DNA rearrangement in which a portion of the ld locus was joined to sequences normally tightly linked to the a locus. This result, along with the genetic and cytogenetic data, suggests that the alleles of ld and a in this radiation-induced mutation, designated ldIn2 and ajIn2, were associated with DNA breaks caused by an inversion of an interstitial segment in the 2(17) chromosome.

  5. Genetic mapping in a natural population of collared flycatchers (Ficedula albicollis): conserved synteny but gene order rearrangements on the avian Z chromosome.

    PubMed

    Backström, Niclas; Brandström, Mikael; Gustafsson, Lars; Qvarnström, Anna; Cheng, Hans; Ellegren, Hans

    2006-09-01

    Data from completely sequenced genomes are likely to open the way for novel studies of the genetics of nonmodel organisms, in particular when it comes to the identification and analysis of genes responsible for traits that are under selection in natural populations. Here we use the draft sequence of the chicken genome as a starting point for linkage mapping in a wild bird species, the collared flycatcher - one of the most well-studied avian species in ecological and evolutionary research. A pedigree of 365 flycatchers was established and genotyped for single nucleotide polymorphisms in 23 genes selected from (and spread over most of) the chicken Z chromosome. All genes were also found to be located on the Z chromosome in the collared flycatcher, confirming conserved synteny at the level of gene content across distantly related avian lineages. This high degree of conservation mimics the situation seen for the mammalian X chromosome and may thus be a general feature in sex chromosome evolution, irrespective of whether there is male or female heterogamety. Alternatively, such unprecedented chromosomal conservation may be characteristic of most chromosomes in avian genome evolution. However, several internal rearrangements were observed, meaning that the transfer of map information from chicken to nonmodel bird species cannot always assume conserved gene orders. Interestingly, the rate of recombination on the Z chromosome of collared flycatchers was only approximately 50% that of chicken, challenging the widely held view that birds generally have high recombination rates.

  6. A Dense Brown Trout (Salmo trutta) Linkage Map Reveals Recent Chromosomal Rearrangements in the Salmo Genus and the Impact of Selection on Linked Neutral Diversity

    PubMed Central

    Leitwein, Maeva; Guinand, Bruno; Pouzadoux, Juliette; Desmarais, Erick; Berrebi, Patrick; Gagnaire, Pierre-Alexandre

    2017-01-01

    High-density linkage maps are valuable tools for conservation and eco-evolutionary issues. In salmonids, a complex rediploidization process consecutive to an ancient whole genome duplication event makes linkage maps of prime importance for investigating the evolutionary history of chromosome rearrangements. Here, we developed a high-density consensus linkage map for the brown trout (Salmo trutta), a socioeconomically important species heavily impacted by human activities. A total of 3977 ddRAD markers were mapped and ordered in 40 linkage groups using sex- and lineage-averaged recombination distances obtained from two family crosses. Performing map comparison between S. trutta and its sister species, S. salar, revealed extensive chromosomal rearrangements. Strikingly, all of the fusion and fission events that occurred after the S. salar/S. trutta speciation happened in the Atlantic salmon branch, whereas the brown trout remained closer to the ancestral chromosome structure. Using the strongly conserved synteny within chromosome arms, we aligned the brown trout linkage map to the Atlantic salmon genome sequence to estimate the local recombination rate in S. trutta at 3721 loci. A significant positive correlation between recombination rate and within-population nucleotide diversity (π) was found, indicating that selection constrains variation at linked neutral sites in brown trout. This new high-density linkage map provides a useful genomic resource for future aquaculture, conservation, and eco-evolutionary studies in brown trout. PMID:28235829

  7. A workflow to increase verification rate of chromosomal structural rearrangements using high-throughput next-generation sequencing.

    PubMed

    Quek, Kelly; Nones, Katia; Patch, Ann-Marie; Fink, J Lynn; Newell, Felicity; Cloonan, Nicole; Miller, David; Fadlullah, Muhammad Z H; Kassahn, Karin; Christ, Angelika N; Bruxner, Timothy J C; Manning, Suzanne; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Steptoe, Anita; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Wilson, Peter; Biankin, Andrew V; Pearson, John V; Waddell, Nic; Grimmond, Sean M

    2014-07-01

    Somatic rearrangements, which are commonly found in human cancer genomes, contribute to the progression and maintenance of cancers. Conventionally, the verification of somatic rearrangements comprises many manual steps and Sanger sequencing. This is labor intensive when verifying a large number of rearrangements in a large cohort. To increase the verification throughput, we devised a high-throughput workflow that utilizes benchtop next-generation sequencing and in-house bioinformatics tools to link the laboratory processes. In the proposed workflow, primers are automatically designed. PCR and an optional gel electrophoresis step to confirm the somatic nature of the rearrangements are performed. PCR products of somatic events are pooled for Ion Torrent PGM and/or Illumina MiSeq sequencing, the resulting sequence reads are assembled into consensus contigs by a consensus assembler, and an automated BLAT is used to resolve the breakpoints to base level. We compared sequences and breakpoints of verified somatic rearrangements between the conventional and high-throughput workflow. The results showed that next-generation sequencing methods are comparable to conventional Sanger sequencing. The identified breakpoints obtained from next-generation sequencing methods were highly accurate and reproducible. Furthermore, the proposed workflow allows hundreds of events to be processed in a shorter time frame compared with the conventional workflow.

  8. A complex rearrangement on chromosome 22 affecting both homologues; haplo-insufficiency of the Cat eye syndrome region may have no clinical relevance.

    PubMed

    Kriek, Marjolein; Szuhai, Karoly; Kant, Sarina G; White, Stefan J; Dauwerse, Hans; Fiegler, Heike; Carter, Nigel P; Knijnenburg, Jeroen; den Dunnen, Johan T; Tanke, Hans J; Breuning, Martijn H; Rosenberg, Carla

    2006-08-01

    The presence of highly homologous sequences, known as low copy repeats, predisposes for unequal recombination within the 22q11 region. This can lead to genomic imbalances associated with several known genetic disorders. We report here a developmentally delayed patient carrying different rearrangements on both chromosome 22 homologues, including a previously unreported rearrangement within the 22q11 region. One homologue carries a deletion of the proximal part of chromosome band 22q11. To our knowledge, a 'pure' deletion of this region has not been described previously. Four copies of this 22q11 region, however, are associated with Cat eye syndrome (CES). While the phenotypic impact of this deletion is unclear, familial investigation revealed five normal relatives carrying this deletion, suggesting that haplo-insufficiency of the CES region has little clinical relevance. The other chromosome 22 homologue carries a duplication of the Velocardiofacial/DiGeorge syndrome (VCFS/DGS) region. In addition, a previously undescribed deletion of 22q12.1, located in a relatively gene-poor region, was identified. As the clinical features of patients suffering from a duplication of the VCFS/DGS region have proven to be extremely variable, it is impossible to postulate as to the contribution of the 22q12.1 deletion to the phenotype of the patient. Additional patients with a deletion within this region are needed to establish the consequences of this copy number alteration. This study highlights the value of using different genomic approaches to unravel chromosomal alterations in order to study their phenotypic impact.

  9. Rearrangements in human chromosome 1 visualized by arm-specific probes in the progeny of blood lymphocytes exposed to iron ions

    NASA Astrophysics Data System (ADS)

    Manti, L.; Bertucci, A.; Gialanella, G.; Grossi, G.; Pugliese, M.; Scampoli, P.; Durante, M.

    It is well known that heavy ions are more effective than sparsely ionizing radiation in the induction of chromosomal aberrations in heavy ions However most of the complex rearrangements induced by densely ionizing radiation ultimately lead to cell death For risk assessment it is more important to measure the residual cytotgenetic damage in cells surviving the exposure and able to proliferate This analyses will be strongly influenced by the technique used to visualize the chromosomes and consequently on the aberrations scored For instance symmetrical exchanges have higher transmission probability than asymmetrical exchanges Multi-fuor FISH including mBAND mFISH or RxFISH allows the detection of many different aberrations with high resolution but it is slow and expensive thus affecting the statistical power of the study In this study we hybridized metaphase cells with human DNA probes specific for the p and q arms of the chromosome 1 The arm-specific probes allow a fast and reliable detection of both symmetrical and asymmetrical inter-chromosomal exchanges and inter-arm intra-changes in the painted chromosome pair We used this method to score aberrations in human lymphocytes exposed to 1 Gy of either 250 kVp X-rays or 1 GeV n Fe-ions LET 145 keV mu m and harvested following 120 h in culture including 2 h in colcemid for metaphase-block Although iron ions are much more effective than X-rays in the induction of chromosomal aberrations formed during the first post-exposure cell-cycle we found that the effectiveness drops when

  10. Cascade of chromosomal rearrangements caused by a heterogeneous T-DNA integration supports the double-strand break repair model for T-DNA integration.

    PubMed

    Hu, Yufei; Chen, Zhiyu; Zhuang, Chuxiong; Huang, Jilei

    2017-02-28

    Transferred DNA (T-DNA) from Agrobacterium tumefaciens can be integrated into the plant genome. The double-strand break repair (DSBR) pathway is a major model for T-DNA integration. From this model, we expect that two ends of a T-DNA molecule would invade into a single DNA double-strand break (DSB) or independent DSBs in the plant genome. We call the later phenomenon a heterogeneous T-DNA integration which has never been observed. In this work, we demonstrated it in an Arabidopsis T-DNA insertion mutant seb19. To resolve the chromosomal structural changes caused by T-DNA integration at both the nucleotide and chromosome levels, we performed inverse PCR, genome resequencing, fluorescence in situ hybridization and linkage analysis. We found, in seb19, a single T-DNA connected two different chromosomal loci and caused complex chromosomal rearrangements. The specific break-junction pattern in seb19 is consistent with the result of heterogeneous T-DNA integration but not of recombination between two T-DNA insertions. We demonstrated that, in seb19, heterogeneous T-DNA integration evoked a cascade of incorrect repair of seven DSBs on chromosome 4 and 5, and then produced translocation, inversion, duplication and deletion. Heterogeneous T-DNA integration supports the DSBR model and suggests that two ends of a T-DNA molecule could be integrated into the plant genome independently. Our results also show a new origin of chromosomal abnormalities. This article is protected by copyright. All rights reserved.

  11. Abnormal dicentric chromosome with co-amplification of sequences from chromosomes 11 and 19: a novel rearrangement in a patient with myelodysplastic syndrome transforming to acute myeloid leukemia.

    PubMed

    Smith, A; Heaps, L S; Sharma, P; Jarvis, A; Forsyth, C

    2001-10-01

    A 66-year-old man with a myelodysplastic syndrome transforming to acute myeloid leukemia showed a complex abnormal karyotype on bone marrow aspirate. An unbalanced dicentric translocation with a very long der(11) long arm-dic(11;19)(q25;p13.4)-was present. Fluorescence in situ hybridization studies utilised paints for chromosomes 11 and 19 as well as the locus specific probe MLL, localised to 11q23. The abnormal chromosome 11q contained 6 copies of intact MLL and 6 copies of chromosome 19 (unidentified) sequences. To our knowledge, gene co-amplification of chromosomes 11 and 19 sequences has not been reported before.

  12. Assignment of Chinook salmon (Oncorhynchus tshawytscha) linkage groups to specific chromosomes reveals a karyotype with multiple rearrangements of the chromosome arms of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Phillips, Ruth B; Park, Linda K; Naish, Kerry A

    2013-12-09

    The Chinook salmon genetic linkage groups have been assigned to specific chromosomes using fluorescence in situ hybridization with bacterial artificial chromosome probes containing genetic markers mapped to each linkage group in Chinook salmon and rainbow trout. Comparison of the Chinook salmon chromosome map with that of rainbow trout provides strong evidence for conservation of large syntenic blocks in these species, corresponding to entire chromosome arms in the rainbow trout as expected. In almost every case, the markers were found at approximately the same location on the chromosome arm in each species, suggesting conservation of marker order on the chromosome arms of the two species in most cases. Although theoretically a few centric fissions could convert the karyotype of rainbow trout (2N = 58-64) into that of Chinook salmon (2N = 68) or vice versa, our data suggest that chromosome arms underwent multiple centric fissions and subsequent new centric fusions to form the current karyotypes. The morphology of only approximately one-third of the chromosome pairs have been conserved between the two species.

  13. MRD detection in B-cell non-Hodgkin lymphomas using Ig gene rearrangements and chromosomal translocations as targets for real-time quantitative PCR.

    PubMed

    Pott, Christiane; Brüggemann, Monika; Ritgen, Matthias; van der Velden, Vincent H J; van Dongen, Jacques J M; Kneba, Michael

    2013-01-01

    Minimal residual disease (MRD) diagnostics is of high clinical relevance in patients with indolent B-cell Non-Hodgkin lymphomas (B-NHL) and serves as a surrogate parameter to evaluate treatment effectiveness and long-term prognosis. MRD diagnostics performed by real-time quantitative PCR (RQ-PCR) is the gold-standard and currently the most sensitive and the most broadly applied method in follicular lymphoma (FL) and mantle cell lymphoma (MCL). RQ-PCR analysis of the junctional regions of the rearranged immunoglobulin heavy-chain gene (IgH) serves as the most broadly applicable MRD target in B-NHL (∼80%). Chromosomal translocations as t(14;18) translocation in FL and t(11;14) translocation in MCL can be used in selected lymphoma subtypes. In patients with B-cell chronic lymphocytic leukemia, both flow-cytometry as well as RQ-PCR are equally suitable for MRD assessment as long as a sensitivity of ≤10(-4) shall be achieved.MRD diagnostics targeting the IgH gene is complex and requires extensive knowledge and experience because the junctional regions of each lymphoma have to be identified before the patient-specific RQ-PCR assays can be designed for MRD monitoring. Furthermore, somatic mutations of the IgH region occurring during B-cell development of germinal center and post-germinal center lymphomas may hamper appropriate primer binding leading to false negative results. The translocations mentioned above have the advantage that consensus forward primers and probes, both placed in the breakpoint regions of chromosome 18 in FL and chromosome 11 in MCL, can be used in combination with a reverse primer placed in the IgH joining region of chromosome 14. RQ-PCR-based methods can reach a good sensitivity (≤10(-4)). This chapter provides all relevant background information and technical aspects for the complete laboratory process from detection of the clonal IgH gene rearrangement and the chromosomal translocations at diagnosis to the actual MRD measurements in

  14. Chromosomal rearrangements, phenotypic variation and modularity: a case study from a contact zone between house mouse Robertsonian races in Central Italy.

    PubMed

    Franchini, Paolo; Colangelo, Paolo; Meyer, Axel; Fruciano, Carmelo

    2016-03-01

    The Western European house mouse, Mus musculus domesticus, is well-known for the high frequency of Robertsonian fusions that have rapidly produced more than 50 karyotipic races, making it an ideal model for studying the mechanisms of chromosomal speciation. The mouse mandible is one of the traits studied most intensively to investigate the effect of Robertsonian fusions on phenotypic variation within and between populations. This complex bone structure has also been widely used to study the level of integration between different morphogenetic units. Here, with the aim of testing the effect of different karyotypic assets on the morphology of the mouse mandible and on its level of modularity, we performed morphometric analyses of mice from a contact area between two highly metacentric races in Central Italy. We found no difference in size, while the mandible shape was found to be different between the two Robertsonian races, even after accounting for the genetic relationships among individuals and geographic proximity. Our results support the existence of two modules that indicate a certain degree of evolutionary independence, but no difference in the strength of modularity between chromosomal races. Moreover, the ascending ramus showed more pronounced interpopulation/race phenotypic differences than the alveolar region, an effect that could be associated to their different polygenic architecture. This study suggests that chromosomal rearrangements play a role in the house mouse phenotypic divergence, and that the two modules of the mouse mandible are differentially affected by environmental factors and genetic makeup.

  15. Is the Karyotype of Neotropical Boid Snakes Really Conserved? Cytotaxonomy, Chromosomal Rearrangements and Karyotype Organization in the Boidae Family

    PubMed Central

    Viana, Patrik F.; Ribeiro, Leila B.; Souza, George Myller; Chalkidis, Hipócrates de Menezes; Gross, Maria Claudia; Feldberg, Eliana

    2016-01-01

    Boids are primitive snakes from a basal lineage that is widely distributed in Neotropical region. Many of these species are both morphologically and biogeographically divergent, and the relationship among some species remains uncertain even with evolutionary and phylogenetic studies being proposed for the group. For a better understanding of the evolutionary relationship between these snakes, we cytogenetically analysed 7 species and 3 subspecies of Neotropical snakes from the Boidae family using different chromosomal markers. The karyotypes of Boa constrictor occidentalis, Corallus hortulanus, Eunectes notaeus, Epicrates cenchria and Epicrates assisi are presented here for the first time with the redescriptions of the karyotypes of Boa constrictor constrictor, B. c. amarali, Eunectes murinus and Epicrates crassus. The three subspecies of Boa, two species of Eunectes and three species of Epicrates exhibit 2n = 36 chromosomes. In contrast, C. hortulanus presented a totally different karyotype composition for the Boidae family, showing 2n = 40 chromosomes with a greater number of macrochromosomes. Furthermore, chromosomal mapping of telomeric sequences revealed the presence of interstitial telomeric sites (ITSs) on many chromosomes in addition to the terminal markings on all chromosomes of all taxa analysed, with the exception of E. notaeus. Thus, we demonstrate that the karyotypes of these snakes are not as highly conserved as previously thought. Moreover, we provide an overview of the current cytotaxonomy of the group. PMID:27494409

  16. Identification and characterization of marker chromosomes, de novo rearrangements and microdeletions in 100 cases with fluorescence in situ hybridization (FISH)

    SciTech Connect

    Anderson, S.M.; Liu, Y.; Papenhausen, P.R.

    1994-09-01

    Results of molecular cytogenetic analysis are presented for 100 cases in which fluorescence in situ hybridization (FISH) was used as an adjunct to standard cytogenetics. Commercially available centromeric, telomeric, chromosome painting and unique sequence probes were used. Cases were from a 12-month period (June 1993-May 1994) and included examples of sex chromosome abnormalities (8), duplications (5), de novo translocations (6), satellited (12) and non-satellited (7) markers, and microdeletion syndromes (62). Satellited marker chromosomes were evaluated using a combination of DAPI/Distamycin A staining, hybridization with a classical satellite probe for chromosome 15 and hybridization with alpha-satellite probes for chromosomes 13, 14, 21 and 22. Markers positive for the chromosome 15 probe were further evaluated using unique sequence probes for the Prader-Willi/Angelman region. Microdeletion analysis was performed for Prader-Willi/Angelman (49) and DiGeorge/VCF (13) syndromes. Seven cases evaluated for Prader-Willi/Angelman syndrome demonstrated evidence of a deletion within this region. Uniparental disomy analysis was available in cases where a deletion was not detected by FISH, yet follow-up was clinically indicated. Two cases evaluated for DiGeorge/VCF syndrome demonstrated molecular evidence of a deletion. Included in our analysis is an example of familial DiGeorge syndrome.

  17. Is the Karyotype of Neotropical Boid Snakes Really Conserved? Cytotaxonomy, Chromosomal Rearrangements and Karyotype Organization in the Boidae Family.

    PubMed

    Viana, Patrik F; Ribeiro, Leila B; Souza, George Myller; Chalkidis, Hipócrates de Menezes; Gross, Maria Claudia; Feldberg, Eliana

    2016-01-01

    Boids are primitive snakes from a basal lineage that is widely distributed in Neotropical region. Many of these species are both morphologically and biogeographically divergent, and the relationship among some species remains uncertain even with evolutionary and phylogenetic studies being proposed for the group. For a better understanding of the evolutionary relationship between these snakes, we cytogenetically analysed 7 species and 3 subspecies of Neotropical snakes from the Boidae family using different chromosomal markers. The karyotypes of Boa constrictor occidentalis, Corallus hortulanus, Eunectes notaeus, Epicrates cenchria and Epicrates assisi are presented here for the first time with the redescriptions of the karyotypes of Boa constrictor constrictor, B. c. amarali, Eunectes murinus and Epicrates crassus. The three subspecies of Boa, two species of Eunectes and three species of Epicrates exhibit 2n = 36 chromosomes. In contrast, C. hortulanus presented a totally different karyotype composition for the Boidae family, showing 2n = 40 chromosomes with a greater number of macrochromosomes. Furthermore, chromosomal mapping of telomeric sequences revealed the presence of interstitial telomeric sites (ITSs) on many chromosomes in addition to the terminal markings on all chromosomes of all taxa analysed, with the exception of E. notaeus. Thus, we demonstrate that the karyotypes of these snakes are not as highly conserved as previously thought. Moreover, we provide an overview of the current cytotaxonomy of the group.

  18. Third Chromosome Balancer Inversions Disrupt Protein-Coding Genes and Influence Distal Recombination Events in Drosophila melanogaster

    PubMed Central

    Miller, Danny E.; Cook, Kevin R.; Arvanitakis, Alexandra V.; Hawley, R. Scott

    2016-01-01

    Balancer chromosomes are multiply inverted chromosomes that suppress meiotic crossing over and prevent the recovery of crossover products. Balancers are commonly used in Drosophila melanogaster to maintain deleterious alleles and in stock construction. They exist for all three major chromosomes, yet the molecular location of the breakpoints and the exact nature of many of the mutations carried by the second and third chromosome balancers has not been available. Here, we precisely locate eight of 10 of the breakpoints on the third chromosome balancer TM3, six of eight on TM6, and nine of 11 breakpoints on TM6B. We find that one of the inversion breakpoints on TM3 bisects the highly conserved tumor suppressor gene p53—a finding that may have important consequences for a wide range of studies in Drosophila. We also identify evidence of single and double crossovers between several TM3 and TM6B balancers and their normal-sequence homologs that have created genetic diversity among these chromosomes. Overall, this work demonstrates the practical importance of precisely identifying the position of inversion breakpoints of balancer chromosomes and characterizing the mutant alleles carried by them. PMID:27172211

  19. Incorporation of 5-ethynyl-2'-deoxyuridine (EdU) as a novel strategy for identification of the skewed X inactivation pattern in balanced and unbalanced X-rearrangements.

    PubMed

    Sisdelli, Luiza; Vidi, Angela Cristina; Moysés-Oliveira, Mariana; Di Battista, Adriana; Bortolai, Adriana; Moretti-Ferreira, Danilo; da Silva, Magnus R Dias; Melaragno, Maria Isabel; Carvalheira, Gianna

    2016-02-01

    X-chromosome inactivation occurs randomly in normal female cells. However, the inactivation can be skewed in patients with alterations in X-chromosome. In balanced X-autosome translocations, normal X is preferentially inactivated, while in unbalanced X alterations, the aberrant X is usually inactivated. Here, we present a novel strategy to verify the skewed X inactivation pattern through the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into cells, in 11 patients: five carriers of balanced X-autosome translocations and six of unbalanced X-chromosome alterations. Since EdU is a labeled nucleoside analog of thymidine, its incorporation during DNA synthesis can reveal late replication regions and the inactive X-chromosome. All EdU findings were validated by the human androgen receptor gene (HUMARA) assay. The late replication regions were easily and quickly visualized in all cells, where inactive Xs are marked with strong green fluorescence. It was observed that the normal X-chromosome was preferentially inactivated in patients with balanced X-autosome translocations; while the aberrant X-chromosome was inactivated in most cells from patients with unbalanced alterations. By performing the fluorescence-based EdU assay, the differences between the active and inactive X-chromosomes are more easily recognizable than by classic cytogenetic methods. Furthermore, EdU incorporation allows the observation of the late replication regions in autosomal segments present in X derivatives from X-autosome translocations. Therefore, EdU assay permits an accurate and efficient cytogenetic evaluation of the X inactivation pattern with a low-cost, easy to perform and highly reproducible technique.

  20. Dynamics of genome rearrangement in bacterial populations.

    PubMed

    Darling, Aaron E; Miklós, István; Ragan, Mark A

    2008-07-18

    Genome structure variation has profound impacts on phenotype in organisms ranging from microbes to humans, yet little is known about how natural selection acts on genome arrangement. Pathogenic bacteria such as Yersinia pestis, which causes bubonic and pneumonic plague, often exhibit a high degree of genomic rearrangement. The recent availability of several Yersinia genomes offers an unprecedented opportunity to study the evolution of genome structure and arrangement. We introduce a set of statistical methods to study patterns of rearrangement in circular chromosomes and apply them to the Yersinia. We constructed a multiple alignment of eight Yersinia genomes using Mauve software to identify 78 conserved segments that are internally free from genome rearrangement. Based on the alignment, we applied Bayesian statistical methods to infer the phylogenetic inversion history of Yersinia. The sampling of genome arrangement reconstructions contains seven parsimonious tree topologies, each having different histories of 79 inversions. Topologies with a greater number of inversions also exist, but were sampled less frequently. The inversion phylogenies agree with results suggested by SNP patterns. We then analyzed reconstructed inversion histories to identify patterns of rearrangement. We confirm an over-representation of "symmetric inversions"-inversions with endpoints that are equally distant from the origin of chromosomal replication. Ancestral genome arrangements demonstrate moderate preference for replichore balance in Yersinia. We found that all inversions are shorter than expected under a neutral model, whereas inversions acting within a single replichore are much shorter than expected. We also found evidence for a canonical configuration of the origin and terminus of replication. Finally, breakpoint reuse analysis reveals that inversions with endpoints proximal to the origin of DNA replication are nearly three times more frequent. Our findings represent the first

  1. Complex chromosomal rearrangement in a girl with psychomotor-retardation and a de novo inversion: inv(2)(p15;q24.2).

    PubMed

    Granot-Hershkovitz, Einat; Raas-Rothschild, Annick; Frumkin, Ayala; Granot, David; Silverstein, Shira; Abeliovich, Dvorah

    2011-08-01

    Cytogenetic analysis of DNA from a girl with severe psychomotor retardation revealed a de novo pericentric inversion of chromosome 2: 46,XX,inv(2)(p15q24.2). In order to elucidate the possible role of the inversion in the girl's abnormal phenotype, we analyzed the inversion breakpoints. FISH analysis revealed BAC clones spanning the breakpoints at 2p and 2q of the inversion. Southern blot hybridization with DNA probes from the BAC regions was used to refine the localization of the breakpoints, followed by inverse-PCR which enabled us to sequence the inversion breakpoints. We found a complex chromosomal rearrangement, including five breakpoints, four at 2q and one at 2p joined with minor insertions/deletions of a few bases. The breakpoint at 2p was within the NRXN1 gene that has previously been associated with autism, intellectual disabilities, and psychiatric disorders. In 2q, the breakpoints disrupted two genes, TANC1 and RBMS1; the phenotypic effect of these genes is not currently known.

  2. Association of a Chromosomal Rearrangement Event with Mouse Posterior Polymorphous Corneal Dystrophy and Alterations in Csrp2bp, Dzank1, and Ovol2 Gene Expression

    PubMed Central

    Shen, Anna L.; Moran, Susan A.; Glover, Edward A.; Drinkwater, Norman R.; Swearingen, Rebecca E.; Teixeira, Leandro B.; Bradfield, Christopher A.

    2016-01-01

    We have previously described a mouse model of human posterior polymorphous corneal dystrophy (PPCD) and localized the causative mutation to a 6.2 Mbp region of chromosome 2, termed Ppcd1. We now show that the gene rearrangement linked to mouse Ppcd1 is a 3.9 Mbp chromosomal inversion flanked by 81 Kbp and 542 bp deletions. This recombination event leads to deletion of Csrp2bp Exons 8 through 11, Dzank1 Exons 20 and 21, and the pseudogene Znf133. In addition, we identified translocation of novel downstream sequences to positions adjacent to Csrp2bp Exon 7 and Dzank1 Exon 20. Twelve novel fusion transcripts involving Csrp2bp or Dzank1 linked to downstream sequences have been identified. Eight are expressed at detectable levels in PPCD1 but not wildtype eyes. Upregulation of two Csrp2bp fusion transcripts, as well as upregulation of the adjacent gene, Ovol2, was observed. Absence of the PPCD1 phenotype in animals haploinsufficient for Csrp2bp or both Csrp2bp and Dzank1 rules out haploinsufficiency of these genes as a cause of mouse PPCD1. Complementation experiments confirm that PPCD1 embryonic lethality is due to disruption of Csrp2bp expression. The ocular expression pattern of Csrp2bp is consistent with a role for this protein in corneal development and pathogenesis of PPCD1. PMID:27310661

  3. Complex rearranged small supernumerary marker chromosomes (sSMC), three new cases; evidence for an underestimated entity?

    PubMed Central

    Trifonov, Vladimir; Fluri, Simon; Binkert, Franz; Nandini, Adayapalam; Anderson, Jasen; Rodriguez, Laura; Gross, Madeleine; Kosyakova, Nadezda; Mkrtchyan, Hasmik; Ewers, Elisabeth; Reich, Daniela; Weise, Anja; Liehr, Thomas

    2008-01-01

    Background Small supernumerary marker chromosomes (sSMC) are present ~2.6 × 106 human worldwide. sSMC are a heterogeneous group of derivative chromosomes concerning their clinical consequences as well as their chromosomal origin and shape. Besides the sSMC present in Emanuel syndrome, i.e. der(22)t(11;22)(q23;q11), only few so-called complex sSMC are reported. Results Here we report three new cases of unique complex sSMC. One was a de novo case with a dic(13 or 21;22) and two were maternally derived: a der(18)t(8;18) and a der(13 or 21)t(13 or 21;18). Thus, in summary, now 22 cases of unique complex sSMC are available in the literature. However, this special kind of sSMC might be under-diagnosed among sSMC-carriers. Conclusion More comprehensive characterization of sSMC and approaches like reverse fluorescence in situ hybridization (FISH) or array based comparative genomic hybridization (array-CGH) might identify them to be more frequent than only ~0.9% among all sSMC. PMID:18471318

  4. Gain of chromosome 2p in chronic lymphocytic leukemia: significant heterogeneity and a new recurrent dicentric rearrangement.

    PubMed

    Jarosova, Marie; Urbankova, Helena; Plachy, Radek; Papajik, Tomas; Holzerova, Milena; Balcarkova, Jana; Pikalova, Zuzana; Divoky, Vladimir; Indrak, Karel

    2010-02-01

    Array-based comparative genomic hybridization (arrayCGH) studies in chronic lymphocytic leukemia (CLL) have revealed novel recurrent chromosomal imbalances, such as a gain of chromosome 2p. However, a detailed cytogenetic analysis of the 2p gain region has not been elucidated. Here, we present cytogenetic and molecular cytogenetic analysis of 16 such cases selected from a group of 200 patients with CLL based on CGH and/or arrayCGH data. We revealed significant heterogeneity of the region of gain on 2p in CLL, including a new recurrent aberration: the dicentric chromosome, dic(2;18). In our cases, the region of gain involved three genes (MYCN, REL, and ALK) and was associated with an unmutated IgVH status in 14 out of 16 cases. We consider this aberration clinically important in CLL and suggest that an examination of the gene(s) located in region of gain should be included in the routine fluorescence in situ hybridization screening method used for patients with CLL.

  5. The role of chromosomal rearrangements and geographical barriers in the divergence of lineages in a South American subterranean rodent (Rodentia: Ctenomyidae: Ctenomys minutus).

    PubMed

    Lopes, C M; Ximenes, S S F; Gava, A; de Freitas, T R O

    2013-10-01

    Identifying factors and the extent of their roles in the differentiation of populations is of great importance for understanding the evolutionary process in which a species is involved. Ctenomys minutus is a highly karyotype-polymorphic subterranean rodent, with diploid numbers ranging from 42 to 50 and autosomal arm numbers (ANs) ranging from 68 to 80, comprising a total of 45 karyotypes described so far. This species inhabits the southern Brazilian coastal plain, which has a complex geological history, with several potential geographical barriers acting on different time scales. We assessed the geographical genetic structure of C. minutus, examining 340 individuals over the entire distributional range and using information from chromosomal rearrangements, mitochondrial DNA (mtDNA) sequences and 14 microsatellite loci. The mtDNA results revealed seven main haplogroups, with the most recent common ancestors dating from the Pleistocene, whereas clustering methods defined 12 populations. Some boundaries of mtDNA haplogroups and population clusters can be associated with potential geographical barriers to gene flow. The isolation-by-distance pattern also has an important role in fine-scale genetic differentiation, which is strengthened by the narrowness of the coastal plain and by common features of subterranean rodents (that is, small fragmented populations and low dispersal rates), which limit gene flow among populations. A step-by-step mechanism of chromosomal evolution can be suggested for this species, mainly associated with the metapopulation structure, genetic drift and the geographical features of the southern Brazilian coastal plain. However, chromosomal variations have no or very little role in the diversification of C. minutus populations.

  6. The role of chromosomal rearrangements and geographical barriers in the divergence of lineages in a South American subterranean rodent (Rodentia: Ctenomyidae: Ctenomys minutus)

    PubMed Central

    Lopes, C M; Ximenes, S S F; Gava, A; de Freitas, T R O

    2013-01-01

    Identifying factors and the extent of their roles in the differentiation of populations is of great importance for understanding the evolutionary process in which a species is involved. Ctenomys minutus is a highly karyotype–polymorphic subterranean rodent, with diploid numbers ranging from 42 to 50 and autosomal arm numbers (ANs) ranging from 68 to 80, comprising a total of 45 karyotypes described so far. This species inhabits the southern Brazilian coastal plain, which has a complex geological history, with several potential geographical barriers acting on different time scales. We assessed the geographical genetic structure of C. minutus, examining 340 individuals over the entire distributional range and using information from chromosomal rearrangements, mitochondrial DNA (mtDNA) sequences and 14 microsatellite loci. The mtDNA results revealed seven main haplogroups, with the most recent common ancestors dating from the Pleistocene, whereas clustering methods defined 12 populations. Some boundaries of mtDNA haplogroups and population clusters can be associated with potential geographical barriers to gene flow. The isolation-by-distance pattern also has an important role in fine-scale genetic differentiation, which is strengthened by the narrowness of the coastal plain and by common features of subterranean rodents (that is, small fragmented populations and low dispersal rates), which limit gene flow among populations. A step-by-step mechanism of chromosomal evolution can be suggested for this species, mainly associated with the metapopulation structure, genetic drift and the geographical features of the southern Brazilian coastal plain. However, chromosomal variations have no or very little role in the diversification of C. minutus populations. PMID:23759727

  7. Role of Fanconi Anemia FANCG in Preventing Double-Strand Breakage and Chromosomal Rearrangement during DNA Replication

    SciTech Connect

    Tebbs, R S; Hinz, J M; Yamada, N A; Wilson, J B; Jones, N J; Salazar, E P; Thomas, C B; Jones, I M; Thompson, L H

    2003-10-04

    The Fanconi anemia (FA) proteins overlap with those of homologous recombination through FANCD1/BRCA2, but the biochemical functions of other FA proteins are unknown. By constructing and characterizing a null fancg mutant of hamster CHO cells, we present several new insights for FA. The fancg cells show a broad sensitivity to genotoxic agents, not supporting the conventional concept of sensitivity to only DNA crosslinking agents. The aprt mutation rate is normal, but hprt mutations are reduced, which we ascribe to the lethality of large deletions. CAD and dhfr gene amplification rates are increased, implying excess chromosomal breakage during DNA replication, and suggesting amplification as a contributing factor to cancer-proneness in FA patients. In S-phase cells, both spontaneous and mutagen-induced Rad51 nuclear foci are elevated. These results support a model in which FancG protein helps to prevent collapse of replication forks by allowing translesion synthesis or lesion bypass through homologous recombination.

  8. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine.

    PubMed

    Chang, Sungyul; Thurber, Carrie S; Brown, Patrick J; Hartman, Glen L; Lambert, Kris N; Domier, Leslie L

    2014-01-01

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib.) de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP) markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L.) chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean production.

  9. The cytogenetics of mammalian autosomal rearrangements

    SciTech Connect

    Daniel, A. )

    1988-01-01

    This book is covered under the following topics: Ascertainment and risks of recombinant progeny; Infertility, gametic selection, and fetal loss; origin of chromosome rearrangements; and Some implications of chromosome breakpoints.

  10. Expanding the Spectrum of Rearrangements Involving Chromosome 19: A Mild Phenotype Associated with a 19p13.12–p13.13 Deletion

    PubMed Central

    Marangi, Giuseppe; Orteschi, Daniela; Vigevano, Federico; Felie, Jillian; Walsh, Christopher A; Manzini, M Chiara; Neri, Giovanni

    2012-01-01

    We report on a patient with a 1.2 Mb 19p13.12–p13.13 deletion. Compared to previously reported individuals with partially overlapping deletions, the propositus presented with a less severe phenotype, consisting of mild intellectual disability and behavior anomalies, with episodes of simple febrile seizures and without significant physical anomalies or major malformations. The deleted region includes 29 coding genes, some of which have already been demonstrated to be involved in cognitive processes. Mutations in two of them, CC2D1A and TECR, were recently reported to be responsible for non-syndromal, autosomal recessive intellectual disability. The residual alleles of all of these genes were submitted to sequence analysis. No sequence variants were found that could be considered pathogenic. This patient constitutes a further example of the wide phenotypic variability associated with chromosomal rearrangements, likely due to the different size of deleted/duplicated segments. © 2012 Wiley Periodicals, Inc. PMID:22419660

  11. Balanced Gene Losses, Duplications and Intensive Rearrangements Led to an Unusual Regularly Sized Genome in Arbutus unedo Chloroplasts

    PubMed Central

    Martínez-Alberola, Fernando; del Campo, Eva M.; Lázaro-Gimeno, David; Mezquita-Claramonte, Sergio; Molins, Arantxa; Mateu-Andrés, Isabel; Pedrola-Monfort, Joan; Casano, Leonardo M.; Barreno, Eva

    2013-01-01

    Completely sequenced plastomes provide a valuable source of information about the duplication, loss, and transfer events of chloroplast genes and phylogenetic data for resolving relationships among major groups of plants. Moreover, they can also be useful for exploiting chloroplast genetic engineering technology. Ericales account for approximately six per cent of eudicot diversity with 11,545 species from which only three complete plastome sequences are currently available. With the aim of increasing the number of ericalean complete plastome sequences, and to open new perspectives in understanding Mediterranean plant adaptations, a genomic study on the basis of the complete chloroplast genome sequencing of Arbutus unedo and an updated phylogenomic analysis of Asteridae was implemented. The chloroplast genome of A. unedo shows extensive rearrangements but a medium size (150,897 nt) in comparison to most of angiosperms. A number of remarkable distinct features characterize the plastome of A. unedo: five-fold dismissing of the SSC region in relation to most angiosperms; complete loss or pseudogenization of a number of essential genes; duplication of the ndhH-D operon and its location within the two IRs; presence of large tandem repeats located near highly re-arranged regions and pseudogenes. All these features outline the primary evolutionary split between Ericaceae and other ericalean families. The newly sequenced plastome of A. unedo with the available asterid sequences allowed the resolution of some uncertainties in previous phylogenies of Asteridae. PMID:24260278

  12. Chromosome

    MedlinePlus

    Chromosomes are structures found in the center (nucleus) of cells that carry long pieces of DNA. DNA ... is the building block of the human body. Chromosomes also contain proteins that help DNA exist in ...

  13. Chromosomal study of couples with the history of recurrent spontaneous abortions with diagnosed blightded ovum.

    PubMed

    Shekoohi, Sahar; Mojarrad, Majid; Raoofian, Reza; Ahmadzadeh, Shahab; Mirzaie, Salmah; Hassanzadeh-Nazarabadi, Mohammad

    2013-01-01

    Spontaneous abortion (SAb) is the most common complication of early pregnancy. Numerous risk factors are associated with an increased risk of pregnancy loss such as: Blighted ovum. The aim of this study was to determine the frequency of balanced chromosomal translocations in couples with a history of recurrent spontaneous abortions and ultrasound diagnosed blighted ovum. Sixty Eight couples with the history of spontaneous abortion (diagnosed blighted ovum) were selected and introduced into this survey during 2007-2012 at Medical Genetics department of Mashhad University of Medical Sciences. Giemsa banding technique was used to search for chromosomal balanced translocations. Demographic assessment has not shown any age difference between blighted ovum suffering couples and general population. Consanguineous marriages in blighted ovum suffering couples was significantly higher (P value <0.001) than non-consanguineous marriages (68.5% versus 31.5%), while in general population 62% of were non-consanguineous. The incidences of balanced chromosomal rearrangements as well as the rate of chromosome 9 inversion were 8.3 percent each, in non-consanguineous Blighted ovum suffering couples and the remaining (83.4%) showed normal karyotypes. There was no chromosome 9 inversion in consanguineous blighted ovum suffering couples and the incidence of balanced chromosomal rearrangements was 2.3%. With regard to relatively low incidence of balanced chromosomal rearrangements in consanguineous couples with blighted ovum, it would be reasonable to suggest that single gene determinants may play an important role in such pregnancy complications rather than chromosomal disorders.

  14. Diverse mutational mechanisms cause pathogenic subtelomeric rearrangements

    PubMed Central

    Luo, Yue; Hermetz, Karen E.; Jackson, Jodi M.; Mulle, Jennifer G.; Dodd, Anne; Tsuchiya, Karen D.; Ballif, Blake C.; Shaffer, Lisa G.; Cody, Jannine D.; Ledbetter, David H.; Martin, Christa L.; Rudd, M. Katharine

    2011-01-01

    Chromosome rearrangements are a significant cause of intellectual disability and birth defects. Subtelomeric rearrangements, including deletions, duplications and translocations of chromosome ends, were first discovered over 40 years ago and are now recognized as being responsible for several genetic syndromes. Unlike the deletions and duplications that cause some genomic disorders, subtelomeric rearrangements do not typically have recurrent breakpoints and involve many different chromosome ends. To capture the molecular mechanisms responsible for this heterogeneous class of chromosome abnormality, we coupled high-resolution array CGH with breakpoint junction sequencing of a diverse collection of subtelomeric rearrangements. We analyzed 102 breakpoints corresponding to 78 rearrangements involving 28 chromosome ends. Sequencing 21 breakpoint junctions revealed signatures of non-homologous end-joining, non-allelic homologous recombination between interspersed repeats and DNA replication processes. Thus, subtelomeric rearrangements arise from diverse mutational mechanisms. In addition, we find hotspots of subtelomeric breakage at the end of chromosomes 9q and 22q; these sites may correspond to genomic regions that are particularly susceptible to double-strand breaks. Finally, fine-mapping the smallest subtelomeric rearrangements has narrowed the critical regions for some chromosomal disorders. PMID:21729882

  15. Mechanisms for Complex Chromosomal Insertions

    PubMed Central

    Szafranski, Przemyslaw; Akdemir, Zeynep Coban; Yuan, Bo; Cooper, Mitchell L.; Magriñá, Maria A.; Bacino, Carlos A.; Lalani, Seema R.; Patel, Ankita; Song, Rodger H.; Bi, Weimin; Cheung, Sau Wai; Carvalho, Claudia M. B.; Lupski, James R.

    2016-01-01

    Chromosomal insertions are genomic rearrangements with a chromosome segment inserted into a non-homologous chromosome or a non-adjacent locus on the same chromosome or the other homologue, constituting ~2% of nonrecurrent copy-number gains. Little is known about the molecular mechanisms of their formation. We identified 16 individuals with complex insertions among 56,000 individuals tested at Baylor Genetics using clinical array comparative genomic hybridization (aCGH) and fluorescence in situ hybridization (FISH). Custom high-density aCGH was performed on 10 individuals with available DNA, and breakpoint junctions were fine-mapped at nucleotide resolution by long-range PCR and DNA sequencing in 6 individuals to glean insights into potential mechanisms of formation. We observed microhomologies and templated insertions at the breakpoint junctions, resembling the breakpoint junction signatures found in complex genomic rearrangements generated by replication-based mechanism(s) with iterative template switches. In addition, we analyzed 5 families with apparently balanced insertion in one parent detected by FISH analysis and found that 3 parents had additional small copy-number variants (CNVs) at one or both sides of the inserting fragments as well as at the inserted sites. We propose that replicative repair can result in interchromosomal complex insertions generated through chromothripsis-like chromoanasynthesis involving two or three chromosomes, and cause a significant fraction of apparently balanced insertions harboring small flanking CNVs. PMID:27880765

  16. High frequency of subtelomeric rearrangements in a cohort of 92 patients with severe mental retardation and dysmorphism.

    PubMed

    Novelli, A; Ceccarini, C; Bernardini, L; Zuccarello, D; Caputo, V; Digilio, M C; Mingarelli, R; Dallapiccola, B

    2004-07-01

    About 5-10% of patients with dysmorphisms, severe mental retardation, and normal standard karyotype are affected by subtelomeric chromosome rearrangements. Sequence homology between different chromosomes and variability between homologs make these regions more susceptible to breakage and reunion. We analyzed the telomeric regions of 92 of these patients, selected with strict clinical criteria. Fifteen individuals (16.3%) had subtelomeric rearrangements. Nine had a unique anomaly, which in one case had been inherited from a balanced parent. Six subjects had double segmental imbalances, including three de novo imbalances. This study provides further evidence for the plasticity of subtelomeric regions, which often results in cryptic rearrangements, and recommends stringent criteria for selecting patient candidates to telomere analysis.

  17. Estimating Diversity of Black Flies in the Simulium ignescens and Simulium tunja Complexes in Colombia: Chromosomal Rearrangements as the Core of Integrative Taxonomy.

    PubMed

    Colorado-Garzón, Fredy A; Adler, Peter H; García, Luis F; Muñoz de Hoyos, Paulina; Bueno, Marta L; Matta, Nubia E

    2017-01-01

    Black flies (Diptera: Simuliidae) are distributed throughout the world, with more than 2200 formally described species. The family is renowned for its high frequency of cryptic species, offering an opportunity for integrative taxonomy, based on morphological, chromosomal, and molecular approaches. The biodiversity within Simulium (Psilopelmia) ignescens and S. (Psilopelmia) tunja in Colombia was estimated from the larval stage; 10 morphoforms were recognized based on 7 structural characters. This remarkable morphological variation was evaluated through 23 markers on the polytene chromosomes. We established 1 new cytoform in each nominal species. The congruence of the morphological and chromosomal assignments was evaluated using the mitochondrial marker Cytochrome Oxidase subunit I (COI) for each morphoform. The molecular data supported the chromosomal recognition of cytoforms (i.e., cryptic species). We also established the suitability of the COI marker for linking the pupal stage with each cytoform. Our results reveal the presence of hidden biodiversity in S. ignescens and S. tunja and demonstrate the power of polytene chromosomes as a tool for evaluating simuliid diversity, while illustrating the importance of integrated analyses in modern taxonomy.

  18. Micro RNAs and DNA methylation are regulatory players in human cells with altered X chromosome to autosome balance

    PubMed Central

    Rajpathak, Shriram N.; Deobagkar, Deepti D.

    2017-01-01

    The gene balance hypothesis predicts that an imbalance in the dosage sensitive genes affects the cascade of gene networks that may influence the fitness of individuals. The phenotypes associated with chromosomal aneuploidies demonstrate the importance of gene dosage balance. We have employed untransformed human fibroblast cells with different number of X chromosomes to assess the expression of miRNAs and autosomal genes in addition to the DNA methylation status. High throughput NGS analysis using illumina Next seq500 has detected several autosomal as well as X linked miRNAs as differentially expressed in X monosomy and trisomy cells. Two of these miRNAs (hsa-miR-125a-5p and 335-5p) are likely to be involved in regulation of the autosomal gene expression. Additionally, our data demonstrates altered expression and DNA methylation signatures of autosomal genes in X monosomy and trisomy cells. In addition to miRNAs, expression of DNMT1 which is an important epigenetic player involved in many processes including cancer, is seen to be altered. Overall, present study provides a proof for regulatory roles of micro RNAs and DNA methylation in human X aneuploidy cells opening up possible new ways for designing therapeutic strategies. PMID:28233878

  19. Shugoshin-1 balances Aurora B kinase activity via PP2A to promote chromosome bi-orientation.

    PubMed

    Meppelink, Amanda; Kabeche, Lilian; Vromans, Martijn J M; Compton, Duane A; Lens, Susanne M A

    2015-04-28

    Correction of faulty kinetochore-microtubule attachments is essential for faithful chromosome segregation and dictated by the opposing activities of Aurora B kinase and PP1 and PP2A phosphatases. How kinase and phosphatase activities are appropriately balanced is less clear. Here, we show that a centromeric pool of PP2A-B56 counteracts Aurora B T-loop phosphorylation and is recruited to centromeres through Shugoshin-1 (Sgo1). In non-transformed RPE-1 cells, Aurora B, Sgo1, and PP2A-B56 are enriched on centromeres and levels diminish as chromosomes establish bi-oriented attachments. Elevating Sgo1 levels at centromeres recruits excess PP2A-B56, and this counteracts Aurora B kinase activity, undermining efficient correction of kinetochore-microtubule attachment errors. Conversely, Sgo1-depleted cells display reduced centromeric localization of Aurora B, whereas the remaining kinase is hyperactive due to concomitant reduction of centromeric PP2A-B56. Our data suggest that Sgo1 can tune the stability of kinetochore-microtubule attachments through recruitment of PP2A-B56 that balances Aurora B activity at the centromere.

  20. A rearrangement of the Z chromosome topology influences the sex-linked gene display in the European corn borer, Ostrinia nubilalis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sex determination system of Lepidoptera is comprised of heterogametic females (ZW) and homogametic males (ZZ), where voltinism (Volt) and the male pheromone response traits (Resp) are controlled by genes housed on the Z-chromosome. Volt and Resp determine traits that lead to ecotype differentia...

  1. Pfeiffer-type cardiocranial syndrome: a patient with features of this condition and with an unbalanced subtelomeric rearrangement involving chromosomes 1p and 17q.

    PubMed

    McCann, Emma; Sweeney, Elizabeth; Sills, John; May, Paul; Smith, Sarah

    2006-04-01

    Pfeiffer-type cardiocranial syndrome (MIM 218450) was first delineated in 1987; several further patients have been reported confirming this as a distinct nosological entity. The aetiology of this condition remains unknown although an autosomal recessive pattern of inheritance has been suggested following the description of sib pairs. A patient is described with features of this condition including sagittal suture synostosis, growth retardation, learning difficulties, hypertelorism, low-set ears, micrognathia, congenital heart defects and genital anomalies. Telomere studies on blood and skin samples identified a de novo unbalanced rearrangement resulting in partial monosomy for 1p36.1 to pter and partial trisomy for 17q25.1 to qter. This case provides the first insight into the possible aetiology of this condition.

  2. BALANCE

    DOEpatents

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  3. Polymorphism, duplication, and IS1-mediated rearrangement in the chromosomal his-rfb-gnd region of Escherichia coli strains with group IA and capsular K antigens.

    PubMed

    Drummelsmith, J; Amor, P A; Whitfield, C

    1997-05-01

    Individual Escherichia coli strains produce several cell surface polysaccharides. In E. coli E69, the his region of the chromosome contains the rfb (serotype O9 lipopolysaccharide O-antigen biosynthesis) and cps (serotype K30 group IA capsular polysaccharide biosynthesis) loci. Polymorphisms in this region of the Escherichia coli chromosome reflect extensive antigenic diversity in the species. Previously, we reported a duplication of the manC-manB genes, encoding enzymes involved in GDP-mannose formation, upstream of rfb in strain E69 (P. Jayaratne et al., J. Bacteriol. 176:3126-3139, 1994). Here we show that one of the manC-manB copies is flanked by IS1 elements, providing a potential mechanism for the gene duplication. Adjacent to manB1 on the IS1-flanked segment is a further open reading frame (ugd), encoding uridine-5'-diphosphoglucose dehydrogenase. The Ugd enzyme is responsible for the production of UDP-glucuronic acid, a precursor required for K30 antigen synthesis. Construction of a chromosomal ugd::Gm(r) insertion mutation demonstrated the essential role for Ugd in the biosynthesis of the K30 antigen and confirmed that there is no additional functional ugd copy in strain E69. PCR amplification and Southern hybridization were used to examine the distribution of IS1 elements and ugd genes in the vicinity of rfb in other E. coli strains, producing different group IA K antigens. The relative order of genes and, where present, IS1 elements was established in these strains. The regions adjacent to rfb in these strains are highly variable in both size and gene order, but in all cases where a ugd homolog was present, it was found near rfb. The presence of IS1 elements in the rfb regions of several of these strains provides a potential mechanism for recombination and deletion events which could contribute to the antigenic diversity seen in surface polysaccharides.

  4. Intracytoplasmic sperm injection allows fertilization and development of a chromosomally balanced embryo from a binovular zona pellucida.

    PubMed

    Safran, A; Reubinoff, B E; Porat-Katz, A; Werner, M; Friedler, S; Lewin, A

    1998-09-01

    A binovular zona pellucida was found in two in-vitro fertilization (IVF) treatment cycles. In both cases, two oocytes of slightly unequal size were enclosed within a single zona pellucida, the larger oocyte appearing as a metaphase II oocyte while the smaller one as an immature oocyte with a germinal vesicle. Intracytoplasmic sperm injection performed in the mature oocyte of each pair led to normal fertilization and embryonic development in both cases. Results of genetic analysis performed by fluorescence in-situ hybridization in one of the two treatment cycles were consistent with a diploid chromosomal status of both the non-injected immature oocyte as well as the embryo which developed following the microinjection. These results indicate that, in this case, the binovular zona pellucida was most probably created when granulosa cells failed to separate two distinct oocytes during follicular formation. It may also imply that selective fertilization of a single mature oocyte in a binovular zona pellucida by intracytoplasmic sperm injection can lead to the development of a chromosomally balanced embryo and can prevent the undesired consequences that may result if the two oocytes are fertilized in the course of standard IVF.

  5. Complex chromosome rearrangement 46,XY, der(9)t(Y;9)(q12;p23) in a girl with sex reversal and mental retardation.

    PubMed

    Lee, I-Wen; Chou, Yen-Yin; Hsu, Keng-Fu; Chou, Pei-Yi; Chen, Ming; Kuo, Pao-Lin; Lin, Shio-Jean

    2011-05-01

    Monosomy 9p syndrome, also known as Alfi syndrome, has been described as a contiguous syndrome characterized by mental retardation, developmental delay, and facial dysmorphisms. Males with monosomy 9p often express variable degrees of feminization, although the genitalia of females will be normal. In the present report, we describe a case of ambiguous genitalia and intra-abdominal testicular development, with a derivative chromosome 9 arising from a translocation between 9p23 and Yq heterochromatin. Pathologic examination of the testes showed germ cell hypoplasia of the seminiferous tubules. fluorescence in situ hybridization, spectral karyotyping, and array comparative genomic hybridization were used to characterize the genetic changes.

  6. Genetic markers on chromosome 7.

    PubMed Central

    Tsui, L C

    1988-01-01

    Chromosome 7 is frequently associated with chromosome aberrations, rearrangements, and deletions. It also contains many important genes, gene families, and disease loci. This brief review attempts to summarise these and other interesting aspects of chromosome 7. With the rapid accumulation of cloned genes and polymorphic DNA fragments, this chromosome has become an excellent substrate for molecular genetic studies. PMID:3290488

  7. Different TP53 mutations are associated with specific chromosomal rearrangements, telomere length changes, and remodeling of the nuclear architecture of telomeres.

    PubMed

    Samassekou, Oumar; Bastien, Nathalie; Lichtensztejn, Daniel; Yan, Ju; Mai, Sabine; Drouin, Régen

    2014-11-01

    TP53 mutations are the most common mutations in human cancers, and TP53-R175H and TP53-R273H are the most frequent. The impact of these mutations on genomic instability after tumor initiation is still uncovered. To gain insight into this, we studied the effects of three specific TP53 mutants (TP53-V143A, TP53-R175H, and TP53-R273H) on genomic instability using four isogenic lines of LoVo cells. Multicolor fluorescence in situ hybridization (FISH), three-dimensional (3D) quantitative FISH (Q-FISH) on interphase and Q-FISH on metaphases were used to investigate genomic instability. We found that LoVo cells expressing mutant TP53-R175H displayed the highest level of chromosomal instability among the LoVo cell lines. Furthermore, we observed that mutant TP53-R175H and TP53-V143A showed more alterations in their 3D nuclear architecture of telomeres than the mutant TP53-R273H and the wild type. Moreover, we noted an association between some chromosomal abnormalities and telomere elongation in the mutant TP53-R175H. Taken together, our results indicate that the mutation TP53-R175H is more likely to cause higher levels of genomic instability than the other TP53 mutations. We proposed that the type of TP53 mutations and the genetic background of a cancer cell are major determinants of the TP53-dependent genomic instability.

  8. Cloning a balanced t(9;11)(p24;q23.1) chromosomal translocation breakpoint segregating with bipolar affective disorder in a small pedigree

    SciTech Connect

    Duggan, D.J.; Baysal, B.E.; Gollin, S.M.

    1994-09-01

    A small multigenerational pedigree was previously identified in which a balanced 9;11 chromosomal translocation was cosegregating with bipolar affective disorder. We hypothesize that genes or gene regulatory sequences disrupted by the translocation are contributing to bipolar affective disorder in a dominant fashion. The general strategy involves (1) using somatic cell hybrids containing the derivative 9 or 11 chromosomes to identify the closest chromosome 9 and 11 flanking markers, (2) using the nearest markers as PCR and hybridization probes to isolate both normal DNA (YAC) and patient DNA (cosmid) adjacent to and incorporating the translocation breakpoint, and (3) identifying expressed sequences in the genomic DNA that may be disrupted by the translocation. From a fusion of the translocation patient cell line and a recipient hamster cell line, somatic cell hybrids were isolated which contain either the human derivative 9 or derivative 11 chromosome. Using PCR-based STS assays with these hybrids, the location of the translocation breakpoint was localized to an estimated 500 kb region at chromosome 11 band q23.1 and a 1 cM region in 9 band p24 (more telomeric than originally reported). From a large set of CEPH and Roswell Park yeast artificial chromosomes (YACs), six chromosome 11 YACs spanning the 11q23.1 breakpoint have now been identified. A combination of pulsed field gel eletrophoresis and YAC mapping has narrowed the chromosome 11 region to less than 430 kb. Current efforts are focused on generating new chromosome 11 probes within the flanking markers, mapping these probes back to the der(9) and der(11) containing hybrids and the chromosome 11 YAC mapping panel. As the region is physically narrowed, we will identify candidate genes whose expression may be altered by this t(9:11) translocation.

  9. New BAC probe set to narrow down chromosomal breakpoints in small and large derivative chromosomes, especially suited for mosaic conditions.

    PubMed

    Hamid, Ahmed B; Fan, Xiaobo; Kosyakova, Nadezda; Radhakrishnan, Gopakumar; Liehr, Thomas; Karamysheva, Tatyana

    2015-01-01

    Fluorescence in situ hybridization (FISH) and/or array-comparative genomic hybridization (aCGH) performed after initial banding cytogenetics is still the gold standard for detection of chromosomal rearrangements. Although aCGH provides a higher resolution, FISH has two main advantages over the array-based approaches: (1) it can be applied to characterize balanced as well as unbalanced rearrangements, whereas aCGH is restricted to unbalanced ones, and (2) chromosomal aberrations present in low level or complex mosaics can be characterized by FISH without any problems, while aCGH requires presence of over 50 % of aberrant cells in the sample for detection. Recently, a new FISH-based probe set was presented: the so-called pericentric-ladder-FISH (PCL-FISH) that enables characterization of chromosomal breakpoints especially in mosaic small supernumerary marker chromosomes (sSMC). It can also be applied on large inborn or acquired derivative chromosomes. The main feature of this set is that the probes are applied in a chromosome-specific manner and they align along the chromosome in average intervals of ten megabasepairs. Hence PCL-FISH provides denser coverage and a more precise anchorage on the human DNA-sequence than most other FISH-banding approaches.

  10. Balanced reciprocal translocation at amniocentesis: cytogenetic detection and implications for genetic counseling.

    PubMed

    Zhang, H G; Zhang, X Y; Zhang, H Y; Tian, T; Xu, S B; Liu, R Z

    2016-08-19

    Balanced translocation is a common structural chromosomal rearrangement in humans. Carriers can be phenotypically normal but have an increased risk of pregnancy loss, fetal death, and the transmission of chromosomal abnormalities to their offspring. Existing prenatal screening technologies and diagnostic procedures fail to detect balanced translocation, so genetic counseling for carriers remains a challenge. Here, we report the characteristics of chromosomal reciprocal translocation in 3807 amniocentesis cases. Of the 16 detected cases of fetal reciprocal translocation, 8 cases (50%) showed positive biochemical marker screening; 3 cases (18.75%) were the parental carriers of a chromosomal abnormality; 2 (12.5%) were of advanced maternal age, 2 (12.5%) had a previous history of children with genetic disorders, and 1 case (6.25%) was associated with positive soft markers in obstetric ultrasound. Chromosomes 5 and 19 were the most commonly involved chromosomes in balanced translocations. Of the 13 cases with fetal balanced translocations, 8 (61.5%) were inherited from a paternal chromosome, 3 (23.1%) from a maternal chromosome, and 2 (15.4%) cases were de novo. The incidence of balanced translocation at amniocentesis was 0.42%. Male carriers of reciprocal chromosome translocation appear to have a higher chance of becoming a parent of a child born by normal childbirth than female carriers.

  11. Balancing

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    At many occasions we are asked to achieve a “balance” in our lives: when it comes, for example, to work and food. Balancing is crucial in game design as well as many have pointed out. In games with a meaningful purpose, however, balancing is remarkably different. It involves the balancing of three different worlds, the worlds of Reality, Meaning, and Play. From the experience of designing Levee Patroller, I observed that different types of tensions can come into existence that require balancing. It is possible to conceive of within-worlds dilemmas, between-worlds dilemmas, and trilemmas. The first, the within-world dilemmas, only take place within one of the worlds. We can think, for example, of a user interface problem which just relates to the world of Play. The second, the between-worlds dilemmas, have to do with a tension in which two worlds are predominantly involved. Choosing between a cartoon or a realistic style concerns, for instance, a tension between Reality and Play. Finally, the trilemmas are those in which all three worlds play an important role. For each of the types of tensions, I will give in this level a concrete example from the development of Levee Patroller. Although these examples come from just one game, I think the examples can be exemplary for other game development projects as they may represent stereotypical tensions. Therefore, to achieve harmony in any of these forthcoming games, it is worthwhile to study the struggles we had to deal with.

  12. Chromosomal abnormalities in couples with repeated fetal loss: An Indian retrospective study

    PubMed Central

    Sheth, Frenny J; Liehr, Thomas; Kumari, Pritti; Akinde, Ralph; Sheth, Harsh J; Sheth, Jayesh J

    2013-01-01

    BACKGROUND: Recurrent pregnancy loss is a common occurrence and a matter of concern for couples planning the pregnancy. Chromosomal abnormalities, mainly balanced rearrangements, are common in couples with repeated miscarriages. PURPOSE: The purpose of this study is to evaluate the contribution of chromosomal anomalies causing repeated spontaneous miscarriages and provide detailed characterization of a few structurally altered chromosomes. MATERIALS AND METHODS: A retrospective cytogenetic study was carried out on 4859 individuals having a history of recurrent miscarriages. The cases were analyzed using G-banding and fluorescence in situ hybridization wherever necessary. RESULTS: Chromosomal rearrangements were found in 170 individuals (3.5%). Translocations were seen in 72 (42.35%) cases. Of these, reciprocal translocations constituted 42 (24.70%) cases while Robertsonian translocations were detected in 30 (17.64%) cases. 7 (4.11%) cases were mosaic, 8 (4.70%) had small supernumerary marker chromosomes and 1 (0.6%) had an interstitial microdeletion. Nearly, 78 (1.61%) cases with heteromorphic variants were seen of which inversion of Y chromosome (57.70%) and chromosome 9 pericentromeric variants (32.05%) were predominantly involved. CONCLUSIONS: Chromosomal analysis is an important etiological investigation in couples with repeated miscarriages. Characterization of variants/marker chromosome enable calculation of a more precise recurrent risk in a subsequent pregnancy thereby facilitating genetic counseling and deciding further reproductive options. PMID:24497706

  13. Analysis of plant meiotic chromosomes by chromosome painting.

    PubMed

    Lysak, Martin A; Mandáková, Terezie

    2013-01-01

    Chromosome painting (CP) refers to visualization of large chromosome regions, entire chromosome arms, or entire chromosomes via fluorescence in situ hybridization (FISH). For CP in plants, contigs of chromosome-specific bacterial artificial chromosomes (BAC) from the target species or from a closely related species (comparative chromosome painting, CCP) are typically applied as painting probes. Extended pachytene chromosomes provide the highest resolution of CP in plants. CP enables identification and tracing of particular chromosome regions and/or entire chromosomes throughout all meiotic stages as well as corresponding chromosome territories in premeiotic interphase nuclei. Meiotic pairing and structural chromosome rearrangements (typically inversions and translocations) can be identified by CP. Here, we describe step-by-step protocols of CP and CCP in plant species including chromosome preparation, BAC DNA labeling, and multicolor FISH.

  14. Effects of a Balanced Translocation between Chromosomes 1 and 11 Disrupting the DISC1 Locus on White Matter Integrity

    PubMed Central

    Whalley, Heather C.; Dimitrova, Rali; Sprooten, Emma; Dauvermann, Maria R.; Romaniuk, Liana; Duff, Barbara; Watson, Andrew R.; Moorhead, Bill; Bastin, Mark; Semple, Scott I.; Giles, Stephen; Hall, Jeremy; Thomson, Pippa; Roberts, Neil; Hughes, Zoe A.; Brandon, Nick J.; Dunlop, John; Whitcher, Brandon; Blackwood, Douglas H. R.; McIntosh, Andrew M.; Lawrie, Stephen M.

    2015-01-01

    Objective Individuals carrying rare, but biologically informative genetic variants provide a unique opportunity to model major mental illness and inform understanding of disease mechanisms. The rarity of such variations means that their study involves small group numbers, however they are amongst the strongest known genetic risk factors for major mental illness and are likely to have large neural effects. DISC1 (Disrupted in Schizophrenia 1) is a gene containing one such risk variant, identified in a single Scottish family through its disruption by a balanced translocation of chromosomes 1 and 11; t(1;11) (q42.1;q14.3). Method Within the original pedigree, we examined the effects of the t(1;11) translocation on white matter integrity, measured by fractional anisotropy (FA). This included family members with (n = 7) and without (n = 13) the translocation, along with a clinical control sample of patients with psychosis (n = 34), and a group of healthy controls (n = 33). Results We report decreased white matter integrity in five clusters in the genu of the corpus callosum, the right inferior fronto-occipital fasciculus, acoustic radiation and fornix. Analysis of the mixed psychosis group also demonstrated decreased white matter integrity in the above regions. FA values within the corpus callosum correlated significantly with positive psychotic symptom severity. Conclusions We demonstrate that the t(1;11) translocation is associated with reduced white matter integrity in frontal commissural and association fibre tracts. These findings overlap with those shown in affected patients with psychosis and in DISC1 animal models and highlight the value of rare but biologically informative mutations in modeling psychosis. PMID:26102360

  15. A new marker, black, a useful recombination suppressor, In(2)2, and a balanced lethal for chromosome 2 of the mosquito Anopheles gambiae.

    PubMed

    Benedict, M Q; McNitt, L M; Cornel, A J; Collins, F H

    1999-10-01

    A new marker for the second chromosome of Anopheles gambiae, black, was isolated from progeny of 60Co-irradiated mosquitoes. The black mutation increases melanization of larval setae and portions of the cuticle that are heavily sclerotized such as the saddle and head capsule. Adults have a sooty color that almost completely eliminates white banding on wings, tarsi, and palps. Fertility and general vigor of black individuals is reduced relative to wild-type; however, this does not prevent routine use for genetic crossing. The black marker was mapped to an interval on chromosome 2 between collarless and Dieldrin resistance 22 centiMorgans (cM) from collarless and 39 cM from Dieldrin resistance. We also isolated from 60Co-irradiated mosquitoes a pericentric inversion, In(2)2, that was marked with dominant alleles of the independently assorting genes collarless and Dieldrin resistance. This inversion is in coupling with the pericentric inversion 2Rd and covers approximately two-thirds of chromosome 2 from divisions 9 to 22. While inbreeding In(2)2 heterozygotes, we isolated a stock in which the inversion was in repulsion to a chromosome marked with c b DlS and an unidentified recessive lethal. This arrangement produced a useful and stable chromosome 2 balancer system that has remained intact for 26 generations without selection. These genetic tools will reduce the effort requires to isolate, among other things, the genetic factors affecting malaria parasite interactions with the mosquito host.

  16. Stimulation of Chromosomal Rearrangements by Ribonucleotides.

    PubMed

    Conover, Hailey N; Lujan, Scott A; Chapman, Mary J; Cornelio, Deborah A; Sharif, Rabab; Williams, Jessica S; Clark, Alan B; Camilo, Francheska; Kunkel, Thomas A; Argueso, Juan Lucas

    2015-11-01

    We show by whole genome sequence analysis that loss of RNase H2 activity increases loss of heterozygosity (LOH) in Saccharomyces cerevisiae diploid strains harboring the pol2-M644G allele encoding a mutant version of DNA polymerase ε that increases ribonucleotide incorporation. This led us to analyze the effects of loss of RNase H2 on LOH and on nonallelic homologous recombination (NAHR) in mutant diploid strains with deletions of genes encoding RNase H2 subunits (rnh201Δ, rnh202Δ, and rnh203Δ), topoisomerase 1 (TOP1Δ), and/or carrying mutant alleles of DNA polymerases ε, α, and δ. We observed an ∼7-fold elevation of the LOH rate in RNase H2 mutants encoding wild-type DNA polymerases. Strains carrying the pol2-M644G allele displayed a 7-fold elevation in the LOH rate, and synergistic 23-fold elevation in combination with rnh201Δ. In comparison, strains carrying the pol2-M644L mutation that decreases ribonucleotide incorporation displayed lower LOH rates. The LOH rate was not elevated in strains carrying the pol1-L868M or pol3-L612M alleles that result in increased incorporation of ribonucleotides during DNA synthesis by polymerases α and δ, respectively. A similar trend was observed in an NAHR assay, albeit with smaller phenotypic differentials. The ribonucleotide-mediated increases in the LOH and NAHR rates were strongly dependent on TOP1. These data add to recent reports on the asymmetric mutagenicity of ribonucleotides caused by topoisomerase 1 processing of ribonucleotides incorporated during DNA replication.

  17. Balanced Autosomal Translocations in Two Women Reporting Recurrent Miscarriage

    PubMed Central

    Arumugam, Brindha; Samuel, Chandra R

    2016-01-01

    Spontaneous abortion or loss of fetus prior to 20 weeks of gestation is observed in 15-20% of clinically recognized pregnancies. Recurrent Miscarriage (RM) is defined as three or more consecutive pregnancy losses and it affects 1-2% of women. Parental chromosomal rearrangements account for 2-5% of RM. This report describes two couples with a clinical history of RM who were subjected to conventional cytogenetic analysis to ascertain the chromosomal aetiology. Analysis of GTG-banded metaphases obtained from cultured lymphocytes at approximately 500-band resolution revealed balanced translocation in the female spouses as 46,XX,t(8;11)(p11.2;q23.3) in BR27W and 46,XX,t(5;7)(p15.1;q32) pat in BR49W. Both the male partners exhibited 46,XY karyotype. Fluorescent In Situ Hybridization (FISH) analysis was subsequently carried out to confirm the balanced translocation using suitable whole chromosome paint probes. These balanced chromosomal abnormalities in the parents could be responsible for the repeated fetal losses. Hence, karyotype analysis should be a mandatory etiological investigation for couples with RM towards genetic counselling. Disruption of critical genes through these rearrangements could also underlie the pregnancy outcome. PMID:28208880

  18. Nucleotide resolution analysis of TMPRSS2 and ERG rearrangements in prostate cancer

    PubMed Central

    Weier, Christopher; Haffner, Michael C.; Mosbruger, Timothy; Esopi, David M.; Hicks, Jessica; Zheng, Qizhi; Fedor, Helen; Isaacs, William B.; De Marzo, Angelo M.; Nelson, William G.; Yegnasubramanian, Srinivasan

    2013-01-01

    TMPRSS2-ERG rearrangements occur in approximately 50% of prostate cancers and therefore represent one of the most frequently observed structural rearrangements in all cancers. However, little is known about the genomic architecture of such rearrangements. We therefore designed and optimized a pipeline involving target-capture of TMPRSS2 and ERG genomic sequences coupled with paired-end next generation sequencing to resolve genomic rearrangement breakpoints in TMPRSS2 and ERG at nucleotide resolution in a large series of primary prostate cancer specimens (n = 83). This strategy showed >90% sensitivity and specificity in identifying TMPRSS2-ERG rearrangements, and allowed identification of intra- and inter-chromosomal rearrangements involving TMPRSS2 and ERG with known and novel fusion partners. Our results indicate that rearrangement breakpoints show strong clustering in specific intronic regions of TMPRSS2 and ERG. The observed TMPRSS2-ERG rearrangements often exhibited complex chromosomal architecture associated with several intra- and inter-chromosomal rearrangements. Nucleotide resolution analysis of breakpoint junctions revealed that the majority of TMPRSS2 and ERG rearrangements (~88%) occurred at or near regions of microhomology or involved insertions of one or more base pairs. This architecture implicates nonhomologous end joining (NHEJ) and microhomology mediated end joining (MMEJ) pathways in the generation of such rearrangements. These analyses have provided important insights into the molecular mechanisms involved in generating prostate cancer-specific recurrent rearrangements. PMID:23447416

  19. Degradations and Rearrangement Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  20. Genomic rearrangements at rrn operons in Salmonella.

    PubMed

    Helm, R Allen; Lee, Alison G; Christman, Harry D; Maloy, Stanley

    2003-11-01

    Most Salmonella serovars are general pathogens that infect a variety of hosts. These "generalist" serovars cause disease in many animals from reptiles to mammals. In contrast, a few serovars cause disease only in a specific host. Host-specific serovars can cause a systemic, often fatal disease in one species yet remain avirulent in other species. Host-specific Salmonella frequently have large genomic rearrangements due to recombination at the ribosomal RNA (rrn) operons while the generalists consistently have a conserved chromosomal arrangement. To determine whether this is the result of an intrinsic difference in recombination frequency or a consequence of lifestyle difference between generalist and host-specific Salmonella, we determined the frequency of rearrangements in vitro. Using lacZ genes as portable regions of homology for inversion analysis, we found that both generalist and host-specific serovars of Salmonella have similar tolerances to chromosomal rearrangements in vitro. Using PCR and genetic selection, we found that generalist and host-specific serovars also undergo rearrangements at rrn operons at similar frequencies in vitro. These observations indicate that the observed difference in genomic stability between generalist and host-specific serovars is a consequence of their distinct lifestyles, not intrinsic differences in recombination frequencies.

  1. Molecular Cytogenetic Analysis of Telomere Rearrangements

    PubMed Central

    Martin, Christa Lese; Ledbetter, David H.

    2015-01-01

    Genomic imbalances involving the telomeric regions of human chromosomes, which contain the highest gene concentration in the genome, are proposed to have severe phenotypic consequences. For this reason, it is important to identify telomere rearrangements and assess their contribution to human pathology. This unit describes the structure and function of human telomeres and outlines several FISH-based methodologies that can be employed to study these unique regions of human chromosomes. It is a revision of the original version of the unit published in 2000, now including an introductory section describing advances in the discipline that have taken place since the original publication. PMID:25599669

  2. Chromosomal Microarray versus Karyotyping for Prenatal Diagnosis

    PubMed Central

    Wapner, Ronald J.; Martin, Christa Lese; Levy, Brynn; Ballif, Blake C.; Eng, Christine M.; Zachary, Julia M.; Savage, Melissa; Platt, Lawrence D.; Saltzman, Daniel; Grobman, William A.; Klugman, Susan; Scholl, Thomas; Simpson, Joe Leigh; McCall, Kimberly; Aggarwal, Vimla S.; Bunke, Brian; Nahum, Odelia; Patel, Ankita; Lamb, Allen N.; Thom, Elizabeth A.; Beaudet, Arthur L.; Ledbetter, David H.; Shaffer, Lisa G.; Jackson, Laird

    2013-01-01

    Background Chromosomal microarray analysis has emerged as a primary diagnostic tool for the evaluation of developmental delay and structural malformations in children. We aimed to evaluate the accuracy, efficacy, and incremental yield of chromosomal microarray analysis as compared with karyotyping for routine prenatal diagnosis. Methods Samples from women undergoing prenatal diagnosis at 29 centers were sent to a central karyotyping laboratory. Each sample was split in two; standard karyotyping was performed on one portion and the other was sent to one of four laboratories for chromosomal microarray. Results We enrolled a total of 4406 women. Indications for prenatal diagnosis were advanced maternal age (46.6%), abnormal result on Down’s syndrome screening (18.8%), structural anomalies on ultrasonography (25.2%), and other indications (9.4%). In 4340 (98.8%) of the fetal samples, microarray analysis was successful; 87.9% of samples could be used without tissue culture. Microarray analysis of the 4282 nonmosaic samples identified all the aneuploidies and unbalanced rearrangements identified on karyotyping but did not identify balanced translocations and fetal triploidy. In samples with a normal karyotype, microarray analysis revealed clinically relevant deletions or duplications in 6.0% with a structural anomaly and in 1.7% of those whose indications were advanced maternal age or positive screening results. Conclusions In the context of prenatal diagnostic testing, chromosomal microarray analysis identified additional, clinically significant cytogenetic information as compared with karyotyping and was equally efficacious in identifying aneuploidies and unbalanced rearrangements but did not identify balanced translocations and triploidies. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT01279733.) PMID:23215555

  3. Chromosome Aberrations and Fertility Disorders in Domestic Animals.

    PubMed

    Raudsepp, Terje; Chowdhary, Bhanu P

    2016-01-01

    The association between chromosomal abnormalities and reduced fertility in domestic animals is well recorded and has been studied for decades. Chromosome aberrations directly affect meiosis, gametogenesis, and the viability of zygotes and embryos. In some instances, balanced structural rearrangements can be transmitted, causing fertility problems in subsequent generations. Here, we aim to give a comprehensive overview of the current status and future prospects of clinical cytogenetics of animal reproduction by focusing on the advances in molecular cytogenetics during the genomics era. We describe how advancing knowledge about animal genomes has improved our understanding of connections between gross structural or molecular chromosome variations and reproductive disorders. Further, we expand on a key area of reproduction genetics: cytogenetics of animal gametes and embryos. Finally, we describe how traditional cytogenetics is interfacing with advanced genomics approaches, such as array technologies and next-generation sequencing, and speculate about the future prospects.

  4. Genetic Background Specific Hypoxia Resistance in Rat is Correlated with Balanced Activation of a Cross-Chromosomal Genetic Network Centering on Physiological Homeostasis.

    PubMed

    Mao, Lei

    2012-01-01

    Genetic background of an individual can drastically influence an organism's response upon environmental stress and pathological stimulus. Previous studies in inbred rats showed that compared to Brown Norway (BN), Dahl salt-sensitive (SS) rat exerts strong hypoxia susceptibility. However, despite extensive narrow-down approaches via the chromosome substitution methodology, this genome-based physiological predisposition could not be traced back to distinct quantitative trait loci. Upon the completion and public data availability of PhysGen SS-BN consomic (CS) rat platform, I employed systems biology approach attempting to further our understanding of the molecular basis of genetic background effect in light of hypoxia response. I analyzed the physiological screening data of 22 CS rat strains under normoxia and 2-weeks of hypoxia, and cross-compared them to the parental strains. The analyses showed that SS-9(BN) and SS-18(BN) represent the most hypoxia-resistant CS strains with phenotype similar to BN, whereas SS-6(BN) and SS-Y(BN) segregated to the direction of SS. A meta-analysis on the transcriptomic profiles of these CS rat strains under hypoxia treatment showed that although polymorphisms on the substituted BN chromosomes could be directly involved in hypoxia resistance, this seems to be embedded in a more complex trans-chromosomal genetic regulatory network. Via information theory based modeling approach, this hypoxia relevant core genetic network was reverse engineered. Network analyses showed that the protective effects of BN chromosome 9 and 18 were reflected by a balanced activation of this core network centering on physiological homeostasis. Presumably, it is the system robustness constituted on such differential network activation that acts as hypoxia response modifier. Understanding of the intrinsic link between the individual genetic background and the network robustness will set a basis in the current scientific efforts toward personalized medicine.

  5. {open_quotes}Balanced{close_quotes} karyotypes in six abnormal offspring of balanced reciprocal translocation normal carrier parents

    SciTech Connect

    Wenger, S.L.; Steele, M.W.; Boone, L.Y.

    1995-01-02

    Among 6800 consecutive blood samples studies for clinical cytogenetic diagnosis, we identified 30 families in which one parent of the proband had a balanced reciprocal autosomal translocation (excluding Robertsonian rearrangements). Twenty-eight of the 30 families had a malformed and/or mentally retarded proband: 19 with an unbalanced derived chromosome, 3 with abnormalities involving chromosomes other than those in the translocation, 5 with a {open_quotes}balanced{close_quotes} reciprocal translocation, and 1 with a normal karyotype. We hypothesize that a latter 6 affected probands with {open_quotes}balanced{close_quotes} karyotypes could be abnormal due to submicroscopic deletions and duplications as was originally suggested by Jacobs. Particularly in these 6 families, 83% of translocation breakpoints were associated with fragile sites, more than expected by chance (P < 0.025). This supports the report of an association between fragile sites and constitutional chromosome breakpoints by Hecht and Hecht. To explain these findings, we propose that autosomal fragile sites are unstable areas which predispose to breaks and unequal crossing over near the fragile site breakpoints creating minute duplications and deletions. Consequently, newborn infants inheriting a seemingly {open_quotes}balanced{close_quotes} karyotype from a normal parent with a balanced reciprocal translocation may still be at an increased risk of being malformed and/or developmentally delayed because of submicroscopic chromosomal imbalances. 19 refs., 6 figs., 2 tabs.

  6. Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus

    PubMed Central

    Vakirlis, Nikolaos; Sarilar, Véronique; Drillon, Guénola; Fleiss, Aubin; Agier, Nicolas; Meyniel, Jean-Philippe; Blanpain, Lou; Carbone, Alessandra; Devillers, Hugo; Dubois, Kenny; Gillet-Markowska, Alexandre; Graziani, Stéphane; Huu-Vang, Nguyen; Poirel, Marion; Reisser, Cyrielle; Schott, Jonathan; Schacherer, Joseph; Lafontaine, Ingrid; Llorente, Bertrand; Neuvéglise, Cécile; Fischer, Gilles

    2016-01-01

    Reconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species. Our approach integrated the generation of a high-quality genome data set; the development of AnChro, a new algorithm for reconstructing ancestral genome architecture; and a comprehensive analysis of gene repertoire evolution. We found that the ancestral genome of the genus Lachancea contained eight chromosomes and about 5173 protein-coding genes. Moreover, we characterized 24 horizontal gene transfers and 159 putative gene creation events that punctuated species diversification. We retraced all chromosomal rearrangements, including gene losses, gene duplications, chromosomal inversions and translocations at single gene resolution. Gene duplications outnumbered losses and balanced rearrangements with 1503, 929, and 423 events, respectively. Gene content variations between extant species are mainly driven by differential gene losses, while gene duplications remained globally constant in all lineages. Remarkably, we discovered that balanced chromosomal rearrangements could be responsible for up to 14% of all gene losses by disrupting genes at their breakpoints. Finally, we found that nonsynonymous substitutions reached fixation at a coordinated pace with chromosomal inversions, translocations, and duplications, but not deletions. Overall, we provide a granular view of genome evolution within an entire eukaryotic genus, linking gene content, chromosome rearrangements, and protein divergence into a single evolutionary framework. PMID:27247244

  7. Chromosomal control of pig populations in France: 2002-2006 survey.

    PubMed

    Ducos, Alain; Berland, Hélène-Marie; Bonnet, Nathalie; Calgaro, Anne; Billoux, Sébastien; Mary, Nicolas; Garnier-Bonnet, Amélie; Darré, Roland; Pinton, Alain

    2007-01-01

    The chromosomal control of pig populations has been widely developed in France over the last ten years. By December 31st, 2006, 13,765 individuals had been karyotyped in our laboratory, 62% of these since 2002. Ninety percent were young purebred boars controlled before service in artificial insemination centres, and 3% were hypoprolific boars. So far, 102 constitutional structural chromosomal rearrangements (67 since 2002) have been described. Fifty-six were reciprocal translocations and 8 peri- or paracentric inversions. For the first time since the beginning of the programme and after more than 11,000 pigs had been karyotyped, one Robertsonian translocation was identified in 2005 and two others in 2006. The estimated prevalence of balanced structural chromosomal rearrangements in a sample of more than 7,700 young boars controlled before service was 0.47%. Twenty-one of the 67 rearrangements described since 2002 were identified in hypoprolific boars. All were reciprocal translocations. Twelve mosaics (XX/XY in 11 individuals, XY/XXY in one individual) were also diagnosed. Two corresponded to hypoprolific boars, and three to intersexed animals. The results presented in this communication would justify an intensification of the chromosomal control of French and, on a broader scale, European and North-American pig populations.

  8. The cubyl cation rearrangements.

    PubMed

    Jalife, Said; Mondal, Sukanta; Cabellos, Jose Luis; Martinez-Guajardo, Gerardo; Fernandez-Herrera, Maria A; Merino, Gabriel

    2016-02-25

    Born-Oppenheimer molecular dynamics simulations and high-level ab initio computations predict that the cage-opening rearrangement of the cubyl cation to the 7H(+)-pentalenyl cation is feasible in the gas phase. The rate-determining step is the formation of the cuneyl cation with an activation barrier of 25.3 kcal mol(-1) at the CCSD(T)/def2-TZVP//MP2/def2-TZVP level. Thus, the cubyl cation is kinetically stable enough to be formed and trapped at moderate temperatures, but it may be rearranged at higher temperatures.

  9. B-chromosome evolution.

    PubMed Central

    Camacho, J P; Sharbel, T F; Beukeboom, L W

    2000-01-01

    B chromosomes are extra chromosomes to the standard complement that occur in many organisms. They can originate in a number of ways including derivation from autosomes and sex chromosomes in intra- and interspecies crosses. Their subsequent molecular evolution resembles that of univalent sex chromosomes, which involves gene silencing, heterochromatinization and the accumulation of repetitive DNA and transposons. B-chromosome frequencies in populations result from a balance between their transmission rates and their effects on host fitness. Their long-term evolution is considered to be the outcome of selection on the host genome to eliminate B chromosomes or suppress their effects and on the B chromosome's ability to escape through the generation of new variants. Because B chromosomes interact with the standard chromosomes, they can play an important role in genome evolution and may be useful for studying molecular evolutionary processes. PMID:10724453

  10. Recurrent DNA inversion rearrangements in the human genome.

    PubMed

    Flores, Margarita; Morales, Lucía; Gonzaga-Jauregui, Claudia; Domínguez-Vidaña, Rocío; Zepeda, Cinthya; Yañez, Omar; Gutiérrez, María; Lemus, Tzitziki; Valle, David; Avila, Ma Carmen; Blanco, Daniel; Medina-Ruiz, Sofía; Meza, Karla; Ayala, Erandi; García, Delfino; Bustos, Patricia; González, Víctor; Girard, Lourdes; Tusie-Luna, Teresa; Dávila, Guillermo; Palacios, Rafael

    2007-04-10

    Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome. In particular, we have identified intrachromosomal identical repeats that are located in reverse orientation, which may lead to chromosomal inversions. A bioinformatic workflow pathway to select appropriate regions for analysis was developed. Three such regions overlapping with known human genes, located on chromosomes 3, 15, and 19, were analyzed. The relative proportion of wild-type to rearranged structures was determined in DNA samples from blood obtained from different, unrelated individuals. The results obtained indicate that recurrent genomic rearrangements occur at relatively high frequency in somatic cells. Interestingly, the rearrangements studied were significantly more abundant in adults than in newborn individuals, suggesting that such DNA rearrangements might start to appear during embryogenesis or fetal life and continue to accumulate after birth. The relevance of our results in regard to human genomic variation is discussed.

  11. Concomitant T-cell receptor alpha and delta gene rearrangements in individual T-cell precursors.

    PubMed Central

    Thompson, S D; Pelkonen, J; Hurwitz, J L

    1990-01-01

    A debate has recently surfaced concerning the degree of precommitment attained by alpha beta and gamma delta T-cell precursors prior to T-cell receptor (TCR) gene rearrangement. It has been suggested that precursors may be precommitted to rearrange either alpha or delta genes, but not both, thus giving rise to alpha beta- and gamma delta-producing T cells, respectively. Alternatively, the precursors may be flexible with regard to potential TCR gene rearrangements. To address this controversy, the gene rearrangements among a group of T-cell hybridomas from fetal, newborn, and early postnatal mouse thymi were examined. Six probes spanning the delta and alpha loci were used in Southern blot analyses to characterize the rearrangements which occurred on homologous chromosomes in each cell. Although homologous chromosomes often rearranged in synchrony within the alpha locus, a number of hybridomas were found which had retained a delta rearrangement on one chromosome and an alpha rearrangement on the second. Results show that a precommitment by T cells to rearrange delta or alpha genes in a mutually exclusive manner is not an absolute feature of mouse thymocyte development. Images PMID:2164690

  12. Phosphonate–Phosphinate Rearrangement

    PubMed Central

    2014-01-01

    LiTMP metalated dimethyl N-Boc-phosphoramidates derived from 1-phenylethylamine and 1,2,3,4-tetrahydronaphthalen-1-ylamine highly selectively at the CH3O group to generate short-lived oxymethyllithiums. These isomerized to diastereomeric hydroxymethylphosphonamidates (phosphate–phosphonate rearrangement). However, s-BuLi converted the dimethyl N-Boc-phosphoramidate derived from 1-phenylethylamine to the N-Boc α-aminophosphonate preferentially. Only s-BuLi deprotonated dimethyl hydroxymethylphosphonamidates at the benzylic position and dimethyl N-Boc α-aminophosphonates at the CH3O group to induce phosphonate–phosphinate rearrangements. In the former case, the migration of the phosphorus substituent from the nitrogen to the carbon atom followed a retentive course with some racemization because of the involvement of a benzyllithium as an intermediate. PMID:25525945

  13. Blepharophimosis-ptosis-epicanthus inversus syndrome in a girl with chromosome translocation t(2;3)(q33;q23).

    PubMed

    Tzschach, Andreas; Kelbova, Christina; Weidensee, Sabine; Peters, Hartmut; Ropers, Hans-Hilger; Ullmann, Reinhard; Erdogan, Fikret; Jurkatis, Jan; Menzel, Corinna; Kalscheuer, Vera; Demuth, Stephanie

    2008-03-01

    We report on a young female patient with the clinical features of blepharophimosis-ptosis-epicanthus inversus syndrome (BPES, OMIM 110100) and a balanced chromosome translocation 46, XX, t(2;3)(q33;q23)dn.BPES is a rare autosomal dominant congenital disorder characterized by the eponymous oculo-facial features that are, in female patients, associated either with (type 1 BPES) or without (type 2 BPES) premature ovarian failure. Both types of BPES are caused by heterozygous mutations in the FOXL2 gene, which is located in chromosome band 3q23. Chromosome aberrations such as balanced rearrangements have only rarely been observed in BPES patients but can provide valuable information about regulatory regions of FOXL2. The translocation in this patient broadens our knowledge of pathogenic mechanisms in BPES and highlights the importance of conventional cytogenetic investigations in patients with negative results of FOXL2 mutation screening as a prerequisite for optimal management and genetic counseling.

  14. Genetic analysis of a chromosomal hybrid zone in the Australian morabine grasshoppers (Vandiemenella, viatica species group).

    PubMed

    Kawakami, Takeshi; Butlin, Roger K; Adams, Mark; Paull, David J; Cooper, Steven J B

    2009-01-01

    Whether chromosomal rearrangements promote speciation by providing barriers to gene exchange between populations is one of the long-standing debates in evolutionary biology. This question can be addressed by studying patterns of gene flow and selection in hybrid zones between chromosomally diverse taxa. Here we present results of the first study of the genetic structure of a hybrid zone between chromosomal races of morabine grasshoppers Vandiemenella viatica, P24(XY) and viatica17, on Kangaroo Island, Australia. Chromosomal and 11 nuclear markers revealed a narrow hybrid zone with strong linkage disequilibrium and heterozygote deficits, most likely maintained by a balance between dispersal and selection. Widths and positions of clines for these markers are concordant and coincident, suggesting that selection is unlikely to be concentrated on a few chromosomes. In contrast, a mitochondrial marker showed a significantly wider cline with centre offset toward the P24(XY) side. We argue that the discordance between the mitochondrial and nuclear/chromosomal clines and overall asymmetry of the clines suggest a secondary origin of the contact zone and potential movement of the zone after contact. Genome-wide scans using many genetic markers and chromosomal mapping of these markers are needed to investigate whether chromosomal differences directly reduce gene flow after secondary contact.

  15. Combined Use of Cytogenetic and Molecular Methods in Prenatal Diagnostics of Chromosomal Abnormalities

    PubMed Central

    Stomornjak-Vukadin, Meliha; Kurtovic-Basic, Ilvana; Mehinovic, Lejla; Konjhodzic, Rijad

    2015-01-01

    Aim: The aim of prenatal diagnostics is to provide information of the genetic abnormalities of the fetus early enough for the termination of pregnancy to be possible. Chromosomal abnormalities can be detected in an unborn child through the use of cytogenetic, molecular- cytogenetic and molecular methods. In between them, central spot is still occupied by cytogenetic methods. In cases where use of such methods is not informative enough, one or more molecular cytogenetic methods can be used for further clarification. Combined use of the mentioned methods improves the quality of the final findings in the diagnostics of chromosomal abnormalities, with classical cytogenetic methods still occupying the central spot. Material and methods: Conducted research represent retrospective-prospective study of a four year period, from 2008 through 2011. In the period stated, 1319 karyotyping from amniotic fluid were conducted, along with 146 FISH analysis. Results: Karyotyping had detected 20 numerical and 18 structural aberrations in that period. Most common observed numerical aberration were Down syndrome (75%), Klinefelter syndrome (10%), Edwards syndrome, double Y syndrome and triploidy (5% each). Within observed structural aberrations more common were balanced chromosomal aberrations then non balanced ones. Most common balanced structural aberrations were as follows: reciprocal translocations (60%), Robertson translocations (13.3%), chromosomal inversions, duplications and balanced de novo chromosomal rearrangements (6.6% each). Conclusion: With non- balanced aberrations observed in the samples of amniotic fluid, non- balanced translocations, deletions and derived chromosomes were equally represented. Number of detected aneuploidies with FISH, prior to obtaining results with karyotyping, were 6. PMID:26005269

  16. B Chromosomes - A Matter of Chromosome Drive.

    PubMed

    Houben, Andreas

    2017-01-01

    B chromosomes are supernumerary chromosomes which are often preferentially inherited, deviating from usual Mendelian segregation. The balance between the so-called chromosome drive and the negative effects that the presence of Bs applies on the fitness of their host determines the frequency of Bs in a particular population. Drive is the key for understanding most B chromosomes. Drive occurs in many ways at pre-meiotic, meiotic or post-meiotic divisions, but the molecular mechanism remains unclear. The cellular mechanism of drive is reviewed based on the findings obtained for the B chromosomes of rye, maize and other species. How novel analytical tools will expand our ability to uncover the biology of B chromosome drive is discussed.

  17. Gene expression homeostasis and chromosome architecture

    PubMed Central

    Seshasayee, Aswin Sai Narain

    2014-01-01

    In rapidly growing populations of bacterial cells, including those of the model organism Escherichia coli, genes essential for growth - such as those involved in protein synthesis - are expressed at high levels; this is in contrast to many horizontally-acquired genes, which are maintained at low transcriptional levels.1 This balance in gene expression states between 2 distinct classes of genes is established by a galaxy of transcriptional regulators, including the so-called nucleoid associated proteins (NAP) that contribute to shaping the chromosome.2 Besides these active players in gene regulation, it is not too far-fetched to anticipate that genome organization in terms of how genes are arranged on the chromosome,3 which is the result of long-drawn transactions among genome rearrangement processes and selection, and the manner in which it is structured inside the cell, plays a role in establishing this balance. A recent study from our group has contributed to the literature investigating the interplay between global transcriptional regulators and genome organization in establishing gene expression homeostasis.4 In particular, we address a triangle of functional interactions among genome organization, gene expression homeostasis and horizontal gene transfer. PMID:25997086

  18. Chromosome in situ suppression hybridisation in clinical cytogenetics.

    PubMed Central

    Hulten, M A; Gould, C P; Goldman, A S; Waters, J J

    1991-01-01

    The use of chromosome in situ suppression hybridisation with whole chromosome libraries has previously been reported by various research laboratories to be an effective method of identifying specific human chromosomal material. As a clinical cytogenetic service laboratory we have used the technique as a complement to diagnosis by classical chromosome banding. In three examples of structural rearrangements the potential use of the 'chromosome painting' method is assessed for its ability to enhance the routine cytogenetic service currently available. Images PMID:1956055

  19. Unlocking Holocentric Chromosomes: New Perspectives from Comparative and Functional Genomics?

    PubMed Central

    Mandrioli, Mauro; Manicardi, Gian Carlo

    2012-01-01

    The presence of chromosomes with diffuse centromeres (holocentric chromosomes) has been reported in several taxa since more than fifty years, but a full understanding of their origin is still lacking. Comparative and functional genomics are nowadays furnishing new data to better understand holocentric chromosome evolution thus opening new perspectives to analyse karyotype rearrangements in species with holocentric chromosomes in particular evidencing unusual common features, such as the uniform GC content and gene distribution along chromosomes. PMID:23372420

  20. Organization of the bacterial chromosome.

    PubMed Central

    Krawiec, S; Riley, M

    1990-01-01

    Recent progress in studies on the bacterial chromosome is summarized. Although the greatest amount of information comes from studies on Escherichia coli, reports on studies of many other bacteria are also included. A compilation of the sizes of chromosomal DNAs as determined by pulsed-field electrophoresis is given, as well as a discussion of factors that affect gene dosage, including redundancy of chromosomes on the one hand and inactivation of chromosomes on the other hand. The distinction between a large plasmid and a second chromosome is discussed. Recent information on repeated sequences and chromosomal rearrangements is presented. The growing understanding of limitations on the rearrangements that can be tolerated by bacteria and those that cannot is summarized, and the sensitive region flanking the terminator loci is described. Sources and types of genetic variation in bacteria are listed, from simple single nucleotide mutations to intragenic and intergenic recombinations. A model depicting the dynamics of the evolution and genetic activity of the bacterial chromosome is described which entails acquisition by recombination of clonal segments within the chromosome. The model is consistent with the existence of only a few genetic types of E. coli worldwide. Finally, there is a summary of recent reports on lateral genetic exchange across great taxonomic distances, yet another source of genetic variation and innovation. PMID:2087223

  1. Chromosomal polymorphism in mammals: an evolutionary perspective.

    PubMed

    Dobigny, Gauthier; Britton-Davidian, Janice; Robinson, Terence J

    2017-02-01

    Although chromosome rearrangements (CRs) are central to studies of genome evolution, our understanding of the evolutionary consequences of the early stages of karyotypic differentiation (i.e. polymorphism), especially the non-meiotic impacts, is surprisingly limited. We review the available data on chromosomal polymorphisms in mammals so as to identify taxa that hold promise for developing a more comprehensive understanding of chromosomal change. In doing so, we address several key questions: (i) to what extent are mammalian karyotypes polymorphic, and what types of rearrangements are principally involved? (ii) Are some mammalian lineages more prone to chromosomal polymorphism than others? More specifically, do (karyotypically) polymorphic mammalian species belong to lineages that are also characterized by past, extensive karyotype repatterning? (iii) How long can chromosomal polymorphisms persist in mammals? We discuss the evolutionary implications of these questions and propose several research avenues that may shed light on the role of chromosome change in the diversification of mammalian populations and species.

  2. Chromosome size in diploid eukaryotic species centers on the average length with a conserved boundary

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding genome and chromosome evolution is important for understanding genetic inheritance and evolution. Universal events comprising DNA replication, transcription, repair, mobile genetic element transposition, chromosome rearrangements, mitosis, and meiosis underlie inheritance and variation...

  3. Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies

    PubMed Central

    Miller, David T.; Adam, Margaret P.; Aradhya, Swaroop; Biesecker, Leslie G.; Brothman, Arthur R.; Carter, Nigel P.; Church, Deanna M.; Crolla, John A.; Eichler, Evan E.; Epstein, Charles J.; Faucett, W. Andrew; Feuk, Lars; Friedman, Jan M.; Hamosh, Ada; Jackson, Laird; Kaminsky, Erin B.; Kok, Klaas; Krantz, Ian D.; Kuhn, Robert M.; Lee, Charles; Ostell, James M.; Rosenberg, Carla; Scherer, Stephen W.; Spinner, Nancy B.; Stavropoulos, Dimitri J.; Tepperberg, James H.; Thorland, Erik C.; Vermeesch, Joris R.; Waggoner, Darrel J.; Watson, Michael S.; Martin, Christa Lese; Ledbetter, David H.

    2010-01-01

    Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%–20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype (∼3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages. PMID:20466091

  4. Genomic Rearrangements in Prostate Cancer

    PubMed Central

    Barbieri, Christopher E.; Rubin, Mark A.

    2014-01-01

    Purpose of review Genomic instability is a fundamental feature of human cancer, leading to the activation of oncogenes and inactivation of tumor suppressors. In prostate cancer, structural genomic rearrangements, resulting in gene fusions, amplifications and deletions, are a critical mechanism effecting these alterations. Here we review recent literature regarding the importance of genomic rearrangements in the pathogenesis of prostate cancer and the potential impact on patient care. Recent findings Next generation sequencing has revealed a striking abundance, complexity, and heterogeneity of genomic rearrangements in prostate cancer. These recent studies have nominated a number of processes in predisposing prostate cancer to genomic rearrangements, including androgen-induced transcription. Summary Structural rearrangements are the critical mechanism resulting in the characteristic genomic changes associated with prostate cancer pathogenesis and progression. Future studies will determine if the impact of these events on tumor phenotypes can be translated to clinical utility for patient prognosis and choices of management strategies. PMID:25393273

  5. [Chromosome analysis and genetic testing].

    PubMed

    Isobe, Yasushi; Miura, Ikuo

    2014-03-01

    Chromosomal and genetic tests are essential to establish correct diagnoses of the lymphoma. When the tissue examination is planned, these should be done simultaneously with the morphological and immunophenotypic evaluations. Chromosome analyses can identify the genomic alterations of tumor cells. Some chromosome abnormalities define disease subtypes. For example, recurrent 14q32 translocations involving the immunoglobulin heavy chain locus support the diagnosis of B-cell lymphoma, and their translocation partners identify the types. In contrast, genetic testings are performed to confirm the presence of certain abnormalities including gene rearrangements, mutations, amplifications and deletions in each case. These results provide us detailed information for diagnosis, prognosis, and choice of therapy.

  6. The Chromosomes of Birds during Meiosis.

    PubMed

    Pigozzi, María I

    2016-01-01

    The cytological analysis of meiotic chromosomes is an exceptional tool to approach complex processes such as synapsis and recombination during the division. Chromosome studies of meiosis have been especially valuable in birds, where naturally occurring mutants or experimental knock-out animals are not available to fully investigate the basic mechanisms of major meiotic events. This review highlights the main contributions of synaptonemal complex and lampbrush chromosome research to the current knowledge of avian meiosis, with special emphasis on the organization of chromosomes during prophase I, the impact of chromosome rearrangements during meiosis, and distinctive features of the ZW pair.

  7. Molecular refinement of gibbon genome rearrangements.

    PubMed

    Roberto, Roberta; Capozzi, Oronzo; Wilson, Richard K; Mardis, Elaine R; Lomiento, Mariana; Tuzun, Eray; Cheng, Ze; Mootnick, Alan R; Archidiacono, Nicoletta; Rocchi, Mariano; Eichler, Evan E

    2007-02-01

    The gibbon karyotype is known to be extensively rearranged when compared to the human and to the ancestral primate karyotype. By combining a bioinformatics (paired-end sequence analysis) approach and a molecular cytogenetics approach, we have refined the synteny block arrangement of the white-cheeked gibbon (Nomascus leucogenys, NLE) with respect to the human genome. We provide the first detailed clone framework map of the gibbon genome and refine the location of 86 evolutionary breakpoints to <1 Mb resolution. An additional 12 breakpoints, mapping primarily to centromeric and telomeric regions, were mapped to approximately 5 Mb resolution. Our combined FISH and BES analysis indicates that we have effectively subcloned 49 of these breakpoints within NLE gibbon BAC clones, mapped to a median resolution of 79.7 kb. Interestingly, many of the intervals associated with translocations were gene-rich, including some genes associated with normal skeletal development. Comparisons of NLE breakpoints with those of other gibbon species reveal variability in the position, suggesting that chromosomal rearrangement has been a longstanding property of this particular ape lineage. Our data emphasize the synergistic effect of combining computational genomics and cytogenetics and provide a framework for ultimate sequence and assembly of the gibbon genome.

  8. Massive genomic rearrangement acquired in a single catastrophic event during cancer development.

    PubMed

    Stephens, Philip J; Greenman, Chris D; Fu, Beiyuan; Yang, Fengtang; Bignell, Graham R; Mudie, Laura J; Pleasance, Erin D; Lau, King Wai; Beare, David; Stebbings, Lucy A; McLaren, Stuart; Lin, Meng-Lay; McBride, David J; Varela, Ignacio; Nik-Zainal, Serena; Leroy, Catherine; Jia, Mingming; Menzies, Andrew; Butler, Adam P; Teague, Jon W; Quail, Michael A; Burton, John; Swerdlow, Harold; Carter, Nigel P; Morsberger, Laura A; Iacobuzio-Donahue, Christine; Follows, George A; Green, Anthony R; Flanagan, Adrienne M; Stratton, Michael R; Futreal, P Andrew; Campbell, Peter J

    2011-01-07

    Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%-3% of all cancers, across many subtypes, and is present in ∼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.

  9. High chromosome conservation detected by comparative chromosome painting in chicken, pigeon and passerine birds.

    PubMed

    Derjusheva, Svetlana; Kurganova, Anna; Habermann, Felix; Gaginskaya, Elena

    2004-01-01

    Chicken chromosome paints for macrochromosomes 1-10, Z, and the nine largest microchromosomes (Griffin et al. 1999) were used to analyze chromosome homologies between chicken (Gallus gallus domesticus: Galliformes), domestic pigeon (Columba livia: Columbiformes), chaffinch (Fringilla coelebs Passeriformes), and redwing (Turdus iliacus: Passeriformes). High conservation of syntenies was revealed. In general, both macro- and microchromosomes in these birds showed very low levels of interchromosomal rearrangements. Only two cases of rearrangements were found. Chicken chromosome 1 corresponds to chromosome 1 in pigeon, but to chromosomes 3 and 4 in chaffinch and chromosomes 2 and 5 in redwing. Chicken chromosome 4 was shown to be homologous to two pairs of chromosomes in the karyotypes of pigeon and both passerine species. Comparative analysis of chromosome painting data and the results of FISH with (TTAGGG)n probe did not reveal any correlation between the distribution of interstitial telomere sites (ITSs) and chromosome rearrangements in pigeon, chaffinch and redwing. In chaffinch, ITSs were found to co-localize with a tandem repeat GS (Liangouzov et al. 2002), monomers of which contain an internal TTAGGG motif.

  10. Claisen thermally rearranged (CTR) polymers

    PubMed Central

    Tena, Alberto; Rangou, Sofia; Shishatskiy, Sergey; Filiz, Volkan; Abetz, Volker

    2016-01-01

    Thermally rearranged (TR) polymers, which are considered the next-generation of membrane materials because of their excellent transport properties and high thermal and chemical stability, are proven to have significant drawbacks because of the high temperature required for the rearrangement and low degree of conversion during this process. We demonstrate that using a [3,3]-sigmatropic rearrangement, the temperature required for the rearrangement of a solid glassy polymer was reduced by 200°C. Conversions of functionalized polyimide to polybenzoxazole of more than 97% were achieved. These highly mechanically stable polymers were almost five times more permeable and had more than two times higher degrees of conversion than the reference polymer treated under the same conditions. Properties of these second-generation TR polymers provide the possibility of preparing efficient polymer membranes in a form of, for example, thin-film composite membranes for various gas and liquid membrane separation applications. PMID:27482538

  11. Meiotic pairing of B chromosomes, multiple sexual system, and Robertsonian fusion in the red brocket deer Mazama americana (Mammalia, Cervidae).

    PubMed

    Aquino, C I; Abril, V V; Duarte, J M B

    2013-09-13

    Deer species of the genus Mazama show significant inter- and intraspecific chromosomal variation due to the occurrence of rearrangements and B chromosomes. Given that carriers of aneuploidies and structural rearrangements often show anomalous chromosome pairings, we here performed a synaptonemal complex analysis to study chromosome pairing behavior in a red brocket deer (Mazama americana) individual that is heterozygous for a Robertsonian translocation, is a B chromosome carrier, and has a multiple sex chromosome system (XY₁Y₂). The synaptonemal complex in spermatocytes showed normal chromosome pairings for all chromosomes, including the autosomal and sex trivalents. The electromicrographs showed homology among B chromosomes since they formed bivalents, but they also appeared as univalents, indicating their anomalous behavior and non-Mendelian segregation. Thus, synaptonemal complex analysis is a useful tool to evaluate the role of B chromosomes and rearrangements during meiosis on the intraspecific chromosomal variation that is observed in the majority of Mazama species.

  12. Chromosome Replicating Timing Combined with Fluorescent In situ Hybridization

    PubMed Central

    Smith, Leslie; Thayer, Mathew

    2012-01-01

    Mammalian DNA replication initiates at multiple sites along chromosomes at different times during S phase, following a temporal replication program. The specification of replication timing is thought to be a dynamic process regulated by tissue-specific and developmental cues that are responsive to epigenetic modifications. However, the mechanisms regulating where and when DNA replication initiates along chromosomes remains poorly understood. Homologous chromosomes usually replicate synchronously, however there are notable exceptions to this rule. For example, in female mammalian cells one of the two X chromosomes becomes late replicating through a process known as X inactivation1. Along with this delay in replication timing, estimated to be 2-3 hr, the majority of genes become transcriptionally silenced on one X chromosome. In addition, a discrete cis-acting locus, known as the X inactivation center, regulates this X inactivation process, including the induction of delayed replication timing on the entire inactive X chromosome. In addition, certain chromosome rearrangements found in cancer cells and in cells exposed to ionizing radiation display a significant delay in replication timing of >3 hours that affects the entire chromosome2,3. Recent work from our lab indicates that disruption of discrete cis-acting autosomal loci result in an extremely late replicating phenotype that affects the entire chromosome4. Additional 'chromosome engineering' studies indicate that certain chromosome rearrangements affecting many different chromosomes result in this abnormal replication-timing phenotype, suggesting that all mammalian chromosomes contain discrete cis-acting loci that control proper replication timing of individual chromosomes5. Here, we present a method for the quantitative analysis of chromosome replication timing combined with fluorescent in situ hybridization. This method allows for a direct comparison of replication timing between homologous chromosomes within

  13. Lives in the Balance.

    ERIC Educational Resources Information Center

    Our Children, 1997

    1997-01-01

    Changes in the workplace that would provide flexibility for working parents are slowly developing and receiving government, business, and societal attention. A sidebar, "Mother, Professional, Volunteer: One Woman's Balancing Act," presents an account of how one woman rearranged her professional life to enable her to do full-time…

  14. Immunoglobulin λ Gene Rearrangement Can Precede κ Gene Rearrangement

    DOE PAGES

    Berg, Jörg; Mcdowell, Mindy; Jäck, Hans-Martin; ...

    1990-01-01

    Imore » mmunoglobulin genes are generated during differentiation of B lymphocytes by joining gene segments. A mouse pre-B cell contains a functional immunoglobulin heavy-chain gene, but no light-chain gene. Although there is only one heavy-chain locus, there are two lightchain loci: κ and λ .It has been reported that κ loci in the germ-line configuration are never (in man) or very rarely (in the mouse) present in cells with functionally rearranged λ -chain genes. Two explanations have been proposed to explain this: (a) the ordered rearrangement theory, which postulates that light-chain gene rearrangement in the pre-B cell is first attempted at the κ locus, and that only upon failure to produce a functional κ chain is there an attempt to rearrange the λ locus; and (b) the stochastic theory, which postulates that rearrangement at the λ locus proceeds at a rate that is intrinsically much slower than that at the κ locus. We show here that λ -chain genes are generated whether or not the κ locus has lost its germ-line arrangement, a result that is compatible only with the stochastic theory.« less

  15. [Dicentric Y chromosome].

    PubMed

    Abdelmoula, N Bouayed; Amouri, A

    2005-01-01

    Dicentric Y chromosomes are the most common Y structural abnormalities and their influence on gonadal and somatic development is extremely variable. Here, we report the third comprehensive review of the literature concerning dicentric Y chromosomes reported since 1994. We find 78 new cases for which molecular studies (PCR or FISH) have been widely applied to investigate SRY (68% of cases), GBY, ZFY, RFS4Y, GCY and different genes at AZF region. For dic(Yq), all cases (n = 20) were mosaic for 45,X and 4 of them were also mosaic for a 46,XY cell line. When breakpoints were available (15/20 cases), they were in Yp11. 50% of cases were phenotypic female and 20% phenotypic male while 20% of cases were reported with gonadal dysgenesis. Gonadal histology was defined in 8 cases but only in one case, gonadal tissu was genetically investigated because of gonadoblastoma. For dic(Yp) (n = 55), mosaicism concerned only 45,X cell line and was found in 50 cases while the remainder five cases were homogeneous. When breakpoints were available, it was at Yq11 in 50 cases and at Yq12 in two cases. 54% of cases were phenotypic female, 26% were phenotypic male and 18% were associated with genitalia ambiguous. SRY was analyzed in 33 cases, sequenced in 9 cases and was muted in only one case. Gonads were histologically explored in 34 cases and genetically investigated in 8 cases. Gonadoblastoma was found in only two cases. Through this review, it seems that phenotype-genotype correlations are still not possible and that homogeneous studies of dic(Y) in more patients using molecular tools for structural characterization of the rearranged Y chromosome and assessment of mosaicism in many organs are necessary to clarify the basis of the phenotypic heterogeneity of dicentric Y chromosomes and then to help phenotypic prediction of such chromosome rearrangement.

  16. Chromosomal Conditions

    MedlinePlus

    ... 150 babies is born with a chromosomal condition. Down syndrome is an example of a chromosomal condition. Because ... all pregnant women be offered prenatal tests for Down syndrome and other chromosomal conditions. A screening test is ...

  17. Telomerase activation by genomic rearrangements in high-risk neuroblastoma.

    PubMed

    Peifer, Martin; Hertwig, Falk; Roels, Frederik; Dreidax, Daniel; Gartlgruber, Moritz; Menon, Roopika; Krämer, Andrea; Roncaioli, Justin L; Sand, Frederik; Heuckmann, Johannes M; Ikram, Fakhera; Schmidt, Rene; Ackermann, Sandra; Engesser, Anne; Kahlert, Yvonne; Vogel, Wenzel; Altmüller, Janine; Nürnberg, Peter; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Mariappan, Aruljothi; Heynck, Stefanie; Mariotti, Erika; Henrich, Kai-Oliver; Gloeckner, Christian; Bosco, Graziella; Leuschner, Ivo; Schweiger, Michal R; Savelyeva, Larissa; Watkins, Simon C; Shao, Chunxuan; Bell, Emma; Höfer, Thomas; Achter, Viktor; Lang, Ulrich; Theissen, Jessica; Volland, Ruth; Saadati, Maral; Eggert, Angelika; de Wilde, Bram; Berthold, Frank; Peng, Zhiyu; Zhao, Chen; Shi, Leming; Ortmann, Monika; Büttner, Reinhard; Perner, Sven; Hero, Barbara; Schramm, Alexander; Schulte, Johannes H; Herrmann, Carl; O'Sullivan, Roderick J; Westermann, Frank; Thomas, Roman K; Fischer, Matthias

    2015-10-29

    Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours.

  18. Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplification in response to stress.

    PubMed

    James, Tharappel C; Usher, Jane; Campbell, Susan; Bond, Ursula

    2008-03-01

    A long-term goal of the brewing industry is to identify yeast strains with increased tolerance to the stresses experienced during the brewing process. We have characterised the genomes of a number of stress-tolerant mutants, derived from the lager yeast strain CMBS-33, that were selected for tolerance to high temperatures and to growth in high specific gravity wort. Our results indicate that the heat-tolerant strains have undergone a number of gross chromosomal rearrangements when compared to the parental strain. To determine if such rearrangements can spontaneously arise in response to exposure to stress conditions experienced during the brewing process, we examined the chromosome integrity of both the stress-tolerant strains and their parent during a single round of fermentation under a variety of environmental stresses. Our results show that the lager yeast genome shows tremendous plasticity during fermentation, especially when fermentations are carried out in high specific gravity wort and at higher than normal temperatures. Many localised regions of gene amplification were observed especially at the telomeres and at the rRNA gene locus on chromosome XII, and general chromosomal instability was evident. However, gross chromosomal rearrangements were not detected, indicating that continued selection in the stress conditions are required to obtain clonal isolates with stable rearrangements. Taken together, the data suggest that lager yeasts display a high degree of genomic plasticity and undergo genomic changes in response to environmental stress.

  19. Loss-of-function mutations and global rearrangements in GPC3 in patients with Simpson–Golabi–Behmel syndrome

    PubMed Central

    Shimojima, Keiko; Ondo, Yumiko; Nishi, Eriko; Mizuno, Seiji; Ito, Miharu; Ioi, Aya; Shimizu, Mariko; Sato, Maho; Inoue, Masami; Okamoto, Nobuhiko; Yamamoto, Toshiyuki

    2016-01-01

    Simpson–Golabi–Behmel syndrome is a congenital malformation syndrome associated with mutations in GPC3, which is located in the Xq26 region. Three new loss-of-function mutations and a global X-chromosome rearrangement involving GPC3 were identified. A female sibling of the patient, who presented with a cleft palate and hepatoblastoma, carries the same chromosomal rearrangement and a paradoxical pattern of X-chromosome inactivation. These findings support variable GPC3 alterations, with a possible mechanism in female patients. PMID:27790374

  20. Molecular Cytogenetic Characterization of Multiple Intrachromosomal Rearrangements in Two Representatives of the Genus Turdus (Turdidae, Passeriformes)

    PubMed Central

    Kretschmer, Rafael; Gunski, Ricardo José; Garnero, Analía Del Valle; Furo, Ivanete de Oliveira; O'Brien, Patricia C. M.; Ferguson-Smith, Malcolm A.; de Oliveira, Edivaldo Herculano Corrêa

    2014-01-01

    Turdus rufiventris and Turdus albicollis, two songbirds belonging to the family Turdidae (Aves, Passeriformes) were studied by C-banding, 18S rDNA, as well as the use of whole chromosome probes derived from Gallus gallus (GGA) and Leucopternis albicollis (LAL). They showed very similar karyotypes, with 2n = 78 and the same pattern of distribution of heterochromatic blocks and hybridization patterns. However, the analysis of 18/28S rDNA has shown differences in the number of NOR-bearing chromosomes and ribosomal clusters. The hybridization pattern of GGA macrochromosomes was similar to the one found in songbirds studied by Fluorescent in situ hybridization, with fission of GGA 1 and GGA 4 chromosomes. In contrast, LAL chromosome paintings revealed a complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) on chromosome 2, which corresponds to GGA1q. The first inversion changed the chromosomal morphology and the second and third inversions changed the order of chromosome segments. Karyotype analysis in Turdus revealed that this genus has derived characteristics in relation to the putative avian ancestral karyotype, highlighting the importance of using new tools for analysis of chromosomal evolution in birds, such as the probes derived from L. albicollis, which make it possible to identify intrachromosomal rearrangements not visible with the use of GGA chromosome painting solely. PMID:25058578

  1. Distance between homologous chromosomes results from chromosome positioning constraints.

    PubMed

    Heride, Claire; Ricoul, Michelle; Kiêu, Kien; von Hase, Johann; Guillemot, Vincent; Cremer, Christoph; Dubrana, Karine; Sabatier, Laure

    2010-12-01

    The organization of chromosomes is important for various biological processes and is involved in the formation of rearrangements often observed in cancer. In mammals, chromosomes are organized in territories that are radially positioned in the nucleus. However, it remains unclear whether chromosomes are organized relative to each other. Here, we examine the nuclear arrangement of 10 chromosomes in human epithelial cancer cells by three-dimensional FISH analysis. We show that their radial position correlates with the ratio of their gene density to chromosome size. We also observe that inter-homologue distances are generally larger than inter-heterologue distances. Using numerical simulations taking radial position constraints into account, we demonstrate that, for some chromosomes, radial position is enough to justify the inter-homologue distance, whereas for others additional constraints are involved. Among these constraints, we propose that nucleolar organizer regions participate in the internal positioning of the acrocentric chromosome HSA21, possibly through interactions with nucleoli. Maintaining distance between homologous chromosomes in human cells could participate in regulating genome stability and gene expression, both mechanisms that are key players in tumorigenesis.

  2. Asplenia syndrome in a child with a reciprocal translocation of chromosomes 11 and 20 [46,XX,t(11;20)(q13.1;q13.13)

    SciTech Connect

    Freeman, S.B.; Muraldharan, K.; Pettay, D.

    1994-09-01

    Failure to establish the left-right embryonic axis results in abnormalities of laterality; situs solitus is replaced by situs inversus totalis or various degrees of heterotaxy involving the heart, great vessels, lungs, liver, spleen, and/or bowel. Laterality syndromes are likely to be genetically heterogeneous although specific human genes have not been identified. Families with dominant, recessive, and X-linked laterality syndromes have been reported as well as individuals with situs abnormalities and chromosome rearrangements. The latter offer the possibility of narrowing the gene search to specific chromosome regions. A recent report described an infant with polysplenia syndrome and a paracentric inversion of chromosome 11 [46,XX,inv(11)(q13q25)pat]. We report the second case of a child with laterality abnormalities and a chromosome rearrangement involving a similar breakpoint on chromosome 11. The proband is a 6 y/o female with mental retardation, dysmorphic features, pulmonic stenosis, asplenia, Hirschsprung disease, and a balanced, reciprocal translocation involving chromosomes 11 and 20 [46,XX,t(11;20)(q13,1;q13.13)pat]. Using DNA probes we have excluded uniparental disomy for chromosomes 11 and 20. If a gene for determination of laterality lies in the 11q13 region, the proband`s abnormalities could be the result of her receiving an allele disrupted by the paternal translocation as well as a mutant allele from her mother. To investigate this possibility, we are studying the segregation of maternal chromosome 11 markers in the proband and her balanced carrier and non-carrier siblings.

  3. RNA-Mediated Epigenetic Programming of Genome Rearrangements

    PubMed Central

    Nowacki, Mariusz; Shetty, Keerthi; Landweber, Laura F.

    2012-01-01

    RNA, normally thought of as a conduit in gene expression, has a novel mode of action in ciliated protozoa. Maternal RNA templates provide both an organizing guide for DNA rearrangements and a template that can transport somatic mutations to the next generation. This opportunity for RNA-mediated genome rearrangement and DNA repair is profound in the ciliate Oxytricha, which deletes 95% of its germline genome during development in a process that severely fragments its chromosomes and then sorts and reorders the hundreds of thousands of pieces remaining. Oxytricha’s somatic nuclear genome is therefore an epigenome formed through RNA templates and signals arising from the previous generation. Furthermore, this mechanism of RNA-mediated epigenetic inheritance can function across multiple generations, and the discovery of maternal template RNA molecules has revealed new biological roles for RNA and has hinted at the power of RNA molecules to sculpt genomic information in cells. PMID:21801022

  4. Low rate of interchromosomal rearrangements during old radiation of gekkotan lizards (Squamata: Gekkota).

    PubMed

    Johnson Pokorná, Martina; Trifonov, Vladimir A; Rens, Willem; Ferguson-Smith, Malcolm A; Kratochvíl, Lukáš

    2015-06-01

    Gekkotan lizards are a highly specious (∼1600 described species) clade of squamate lizards with nearly cosmopolitan distribution in warmer areas. The clade is primarily nocturnal and forms an ecologically dominant part of the world nocturnal herpetofauna. However, molecular cytogenetic methods to study the evolution of karyotypes have not been widely applied in geckos. Our aim here was to uncover the extent of chromosomal rearrangements across the whole group Gekkota and to search for putative synapomorphies supporting the newly proposed phylogenetic relationships within this clade. We applied cross-species chromosome painting with the recently derived whole-chromosomal probes from the gekkonid species Gekko japonicus to members of the major gekkotan lineages. We included members of the families Diplodactylidae, Carphodactylidae, Pygopodidae, Eublepharidae, Phyllodactylidae and Gekkonidae. Our study demonstrates relatively high chromosome conservatism across the ancient group of gekkotan lizards. We documented that many changes in chromosomal shape across geckos can be attributed to intrachromosomal rearrangements. The documented rearrangements are not totally in agreement with the recently newly erected family Phyllodactylidae. The results also pointed to homoplasy, particularly in the reuse of chromosome breakpoints, in the evolution of gecko karyotypes.

  5. Marker chromosomes.

    PubMed

    Rao, Kiran Prabhaker; Belogolovkin, Victoria

    2013-04-01

    Marker chromosomes are a morphologically heterogeneous group of structurally abnormal chromosomes that pose a significant challenge in prenatal diagnosis. Phenotypes associated with marker chromosomes are highly variable and range from normal to severely abnormal. Clinical outcomes are very difficult to predict when marker chromosomes are detected prenatally. In this review, we outline the classification, etiology, cytogenetic characterization, and clinical consequences of marker chromosomes, as well as practical approaches to prenatal diagnosis and genetic counseling.

  6. Comparative chromosome painting in Carnivora and Pholidota.

    PubMed

    Perelman, P L; Beklemisheva, V R; Yudkin, D V; Petrina, T N; Rozhnov, V V; Nie, W; Graphodatsky, A S

    2012-01-01

    The order of Carnivora has been very well characterized with over 50 species analyzed by chromosome painting and with painting probe sets made for 9 Carnivora species. Representatives of almost all families have been studied with few exceptions (Otariidae, Odobenidae, Nandiniidae, Prionodontidae). The patterns of chromosome evolution in Carnivora are discussed here. Overall, many Carnivora species retained karyotypes that only slightly differ from the ancestral carnivore karyotype. However, there are at least 3 families in which the ancestral carnivore karyotype has been severely rearranged - Canidae, Ursidae and Mephitidae. Here we report chromosome painting of yet another Carnivora species with a highly rearranged karyotype, Genetta pardina. Recurrent rearrangements make it difficult to define the ancestral chromosomal arrangement in several instances. Only 2 species of pangolins (Pholidota), a sister order of Carnivora, have been studied by chromosome painting. Future use of whole-genome sequencing data is discussed in the context of solving the questions that are beyond resolution of conventional banding techniques and chromosome painting.

  7. Cytogenetic characterization of cat eye syndrome marker chromosome.

    PubMed

    Wenger, S L; Surti, U; Nwokoro, N A; Steele, M W

    1994-01-01

    Cat eye syndrome is associated with a partial tetrasomy 22q and can be inherited. The authors have evaluated the marker chromosome in a proband and his mother by cytogenetic banding techniques to verify the dicentric chromosomal rearrangement and by fluorescence in situ hybridization to confirm the involvement of 22. The mother also had an affected offspring with an unrelated aneuploidy, trisomy 21.

  8. Identification of disrupted AUTS2 and EPHA6 genes by array painting in a patient carrying a de novo balanced translocation t(3;7) with intellectual disability and neurodevelopment disorder.

    PubMed

    Schneider, Anouck; Puechberty, Jacques; Ng, Bee Ling; Coubes, Christine; Gatinois, Vincent; Tournaire, Magali; Girard, Manon; Dumont, Bruno; Bouret, Pauline; Magnetto, Julia; Baghdadli, Amaria; Pellestor, Franck; Geneviève, David

    2015-12-01

    Intellectual disability (ID) is a frequent feature but is highly clinically and genetically heterogeneous. The establishment of the precise diagnosis in patients with ID is challenging due to this heterogeneity but crucial for genetic counseling and appropriate care for the patients. Among the etiologies of patients with ID, apparently balanced de novo rearrangements represent 0.6%. Several mechanisms explain the ID in patients with apparently balanced de novo rearrangement. Among them, disruption of a disease gene at the breakpoint, is frequently evoked. In this context, technologies recently developed are used to characterize precisely such chromosomal rearrangements. Here, we report the case of a boy with ID, facial features and autistic behavior who is carrying a de novo balanced reciprocal translocation t(3;7)(q11.2;q11.22)dn. Using microarray analysis, array painting (AP) technology combined with molecular study, we have identified the interruption of the autism susceptibility candidate 2 gene (AUTS2) and EPH receptor A6 gene (EPHA6). We consider that the disruption of AUTS2 explains the phenotype of the patient; the exact role of EPHA6 in human pathology is not well defined. Based on the observation of recurrent germinal and somatic translocations involving AUTS2 and the molecular environment content, we put forward the hypothesis that the likely chromosomal mechanism responsible for the translocation could be due either to replicative stress or to recombination-based mechanisms.

  9. Chromosomal microarray analysis in a girl with mental retardation and spina bifida.

    PubMed

    Ben Abdallah, Inesse; Hannachi, Hanene; Soyah, Najla; Saad, Ali; Elghezal, Hatem

    2011-01-01

    Chromosomal imbalances comprise a major cause of mental retardation, particularly in association with congenital malformations and dysmorphic features. Chromosomal analysis using banded karyotyping is limited by the low resolution of this technique, and cryptic chromosomal rearrangements cannot be detected. We describe a 6-year-old girl with mental retardation, mild growth, congenital malformation, and facial anomalies. Chromosomal analysis with karyotyping produced normal results. Because the phenotype suggested chromosomal abnormality, microarray comparative genomic hybridization was used to search for a possible cryptic anomaly. A subtelomeric chromosomal imbalance, consisting of partial trisomy 2q35 and partial monosomy 3p26, was detected and confirmed using fluorescence in situ hybridization. This rearrangement was inherited from an equilibrated maternal t(2;3) reciprocal translocation. Comparative genomic hybridization array in similar situations is useful in detecting cryptic chromosomal rearrangements, identifying genes contained in deleted or duplicated regions, establishing a precise phenotype-genotype correlation, and offering unambiguous genetic counseling.

  10. Precise excision and self-integration of a composite transposon as a model for spontaneous large-scale chromosome inversion/deletion of the Staphylococcus haemolyticus clinical strain JCSC1435.

    PubMed

    Watanabe, Shinya; Ito, Teruyo; Morimoto, Yuh; Takeuchi, Fumihiko; Hiramatsu, Keiichi

    2007-04-01

    Large-scale chromosomal inversions (455 to 535 kbp) or deletions (266 to 320 kbp) were found to accompany spontaneous loss of beta-lactam resistance during drug-free passage of the multiresistant Staphylococcus haemolyticus clinical strain JCSC1435. Identification and sequencing of the rearranged chromosomal loci revealed that ISSha1 of S. haemolyticus is responsible for the chromosome rearrangements.

  11. Reference-assisted chromosome assembly.

    PubMed

    Kim, Jaebum; Larkin, Denis M; Cai, Qingle; Asan; Zhang, Yongfen; Ge, Ri-Li; Auvil, Loretta; Capitanu, Boris; Zhang, Guojie; Lewin, Harris A; Ma, Jian

    2013-01-29

    One of the most difficult problems in modern genomics is the assembly of full-length chromosomes using next generation sequencing (NGS) data. To address this problem, we developed "reference-assisted chromosome assembly" (RACA), an algorithm to reliably order and orient sequence scaffolds generated by NGS and assemblers into longer chromosomal fragments using comparative genome information and paired-end reads. Evaluation of results using simulated and real genome assemblies indicates that our approach can substantially improve genomes generated by a wide variety of de novo assemblers if a good reference assembly of a closely related species and outgroup genomes are available. We used RACA to reconstruct 60 Tibetan antelope (Pantholops hodgsonii) chromosome fragments from 1,434 SOAPdenovo sequence scaffolds, of which 16 chromosome fragments were homologous to complete cattle chromosomes. Experimental validation by PCR showed that predictions made by RACA are highly accurate. Our results indicate that RACA will significantly facilitate the study of chromosome evolution and genome rearrangements for the large number of genomes being sequenced by NGS that do not have a genetic or physical map.

  12. Recurrent Rearrangement during Adaptive Evolution in an Interspecific Yeast Hybrid Suggests a Model for Rapid Introgression

    PubMed Central

    Dunn, Barbara; Paulish, Terry; Stanbery, Alison; Piotrowski, Jeff; Koniges, Gregory; Kroll, Evgueny; Louis, Edward J.; Liti, Gianni; Sherlock, Gavin; Rosenzweig, Frank

    2013-01-01

    Genome rearrangements are associated with eukaryotic evolutionary processes ranging from tumorigenesis to speciation. Rearrangements are especially common following interspecific hybridization, and some of these could be expected to have strong selective value. To test this expectation we created de novo interspecific yeast hybrids between two diverged but largely syntenic Saccharomyces species, S. cerevisiae and S. uvarum, then experimentally evolved them under continuous ammonium limitation. We discovered that a characteristic interspecific genome rearrangement arose multiple times in independently evolved populations. We uncovered nine different breakpoints, all occurring in a narrow ∼1-kb region of chromosome 14, and all producing an “interspecific fusion junction” within the MEP2 gene coding sequence, such that the 5′ portion derives from S. cerevisiae and the 3′ portion derives from S. uvarum. In most cases the rearrangements altered both chromosomes, resulting in what can be considered to be an introgression of a several-kb region of S. uvarum into an otherwise intact S. cerevisiae chromosome 14, while the homeologous S. uvarum chromosome 14 experienced an interspecific reciprocal translocation at the same breakpoint within MEP2, yielding a chimaeric chromosome; these events result in the presence in the cell of two MEP2 fusion genes having identical breakpoints. Given that MEP2 encodes for a high-affinity ammonium permease, that MEP2 fusion genes arise repeatedly under ammonium-limitation, and that three independent evolved isolates carrying MEP2 fusion genes are each more fit than their common ancestor, the novel MEP2 fusion genes are very likely adaptive under ammonium limitation. Our results suggest that, when homoploid hybrids form, the admixture of two genomes enables swift and otherwise unavailable evolutionary innovations. Furthermore, the architecture of the MEP2 rearrangement suggests a model for rapid introgression, a phenomenon seen in

  13. 3D organization of synthetic and scrambled chromosomes.

    PubMed

    Mercy, Guillaume; Mozziconacci, Julien; Scolari, Vittore F; Yang, Kun; Zhao, Guanghou; Thierry, Agnès; Luo, Yisha; Mitchell, Leslie A; Shen, Michael; Shen, Yue; Walker, Roy; Zhang, Weimin; Wu, Yi; Xie, Ze-Xiong; Luo, Zhouqing; Cai, Yizhi; Dai, Junbiao; Yang, Huanming; Yuan, Ying-Jin; Boeke, Jef D; Bader, Joel S; Muller, Héloïse; Koszul, Romain

    2017-03-10

    Although the design of the synthetic yeast genome Sc2.0 is highly conservative with respect to gene content, the deletion of several classes of repeated sequences and the introduction of thousands of designer changes may affect genome organization and potentially alter cellular functions. We report here the Hi-C-determined three-dimensional (3D) conformations of Sc2.0 chromosomes. The absence of repeats leads to a smoother contact pattern and more precisely tractable chromosome conformations, and the large-scale genomic organization is globally unaffected by the presence of synthetic chromosome(s). Two exceptions are synIII, which lacks the silent mating-type cassettes, and synXII, specifically when the ribosomal DNA is moved to another chromosome. We also exploit the contact maps to detect rearrangements induced in SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution) strains.

  14. A 45 X male patient with 7q distal deletion and rearrangement with SRY gene translocation: a case report.

    PubMed

    Bilen, S; Okten, A; Karaguzel, G; Ikbal, M; Aslan, Y

    2013-01-01

    Here we present a male newborn with multiple congenital anomalies who also has an extremely rare form of testicular disorder of sex development (DSD). His karyotype was 45X, without any mosaicism. SRY gene was positive by polymerase chain reaction (PCR), and rearranged on distal part of the 7th chromosome by fluorescence in situ hybridization (FISH) analysis. SRY, normally located on the Y chromosome, is the most important gene that plays a role in the development of male sex. SRY gen may be translocated onto another chromosome, mostly X chromosome in the XX testicular DSD. On the other hand very few cases of 45 X testicular DSD were published to date. Other clinical manifestations of our patient were compatible with distal 7 q deletion syndrome. To the best of our knowledge this is the first case of 45 X testicular DSD with SRY gene rearranged on the 7th autosomal chromosome.

  15. B Chromosomes – A Matter of Chromosome Drive

    PubMed Central

    Houben, Andreas

    2017-01-01

    B chromosomes are supernumerary chromosomes which are often preferentially inherited, deviating from usual Mendelian segregation. The balance between the so-called chromosome drive and the negative effects that the presence of Bs applies on the fitness of their host determines the frequency of Bs in a particular population. Drive is the key for understanding most B chromosomes. Drive occurs in many ways at pre-meiotic, meiotic or post-meiotic divisions, but the molecular mechanism remains unclear. The cellular mechanism of drive is reviewed based on the findings obtained for the B chromosomes of rye, maize and other species. How novel analytical tools will expand our ability to uncover the biology of B chromosome drive is discussed. PMID:28261259

  16. Chromosome heteromorphism quantified by high-resolution bivariate flow karyotyping.

    PubMed Central

    Trask, B; van den Engh, G; Mayall, B; Gray, J W

    1989-01-01

    Maternal and paternal homologues of many chromosome types can be differentiated on the basis of their peak position in Hoechst 33258 versus chromomycin A3 bivariate flow karyotypes. We demonstrate here the magnitude of DNA content differences among normal chromosomes of the same type. Significant peak-position differences between homologues were observed for an average of four chromosome types in each of the karyotypes of 98 different individuals. The frequency of individuals with differences in homologue peak positions varied among chromosome types: e.g., chromosome 15, 61%; chromosome 3, 4%. Flow karyotypes of 33 unrelated individuals were compared to determine the range of peak position among normal chromosomes. Chromosomes Y, 21, 22, 15, 16, 13, 14, and 19 were most heteromorphic, and chromosomes 2-8 and X were least heteromorphic. The largest chromosome 21 was 45% larger than the smallest 21 chromosome observed. The base composition of the variable regions differed among chromosome types. DNA contents of chromosome variants determined from flow karyotypes were closely correlated to measurements of DNA content made of gallocyanin chrome alum-stained metaphase chromosomes on slides. Fluorescence in situ hybridization with chromosome-specific repetitive sequences indicated that variability in their copy number is partly responsible for peak-position variability in some chromosomes. Heteromorphic chromosomes are identified for which parental flow karyotype information will be essential if de novo rearrangements resulting in small DNA content changes are to be detected with flow karyotyping. Images Figure 5 PMID:2479266

  17. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome.

    PubMed

    Hamilton, Eileen P; Kapusta, Aurélie; Huvos, Piroska E; Bidwell, Shelby L; Zafar, Nikhat; Tang, Haibao; Hadjithomas, Michalis; Krishnakumar, Vivek; Badger, Jonathan H; Caler, Elisabet V; Russ, Carsten; Zeng, Qiandong; Fan, Lin; Levin, Joshua Z; Shea, Terrance; Young, Sarah K; Hegarty, Ryan; Daza, Riza; Gujja, Sharvari; Wortman, Jennifer R; Birren, Bruce W; Nusbaum, Chad; Thomas, Jainy; Carey, Clayton M; Pritham, Ellen J; Feschotte, Cédric; Noto, Tomoko; Mochizuki, Kazufumi; Papazyan, Romeo; Taverna, Sean D; Dear, Paul H; Cassidy-Hanley, Donna M; Xiong, Jie; Miao, Wei; Orias, Eduardo; Coyne, Robert S

    2016-11-28

    The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena's germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum.

  18. An apparently de novo translocation in a neonate involving chromosomes 3 and 19 [t(3:19)(p21;q13.1)

    SciTech Connect

    Shah, H.O.; Buttice, L.S.; Chester, M.

    1994-09-01

    A 7 1/2-week-old infant female was referred for cytogenetic evaluation after she developed a left inguinal hernia containing a gonadal mass. She had been born to a 25-year-old mother after approximately 31 weeks gestation. This was the couple`s first pregnancy. She was small for gestational age. Her weight was 835 g, length was 32 cm, head circumference was 26 cm at birth. She developed hypothyroidism requiring synthroid. There were no other obvious dysmorphisms. The cytogenetic findings with G-banding revealed an apparently-balanced translocation involving chromosomes 3 and 19. The patient`s karyotype revealed 46,XX,t(3;19)(q21;q13.1). Parental chromosomes were found to be normal. Because of the increased risk for developmental and other congenital problems in an individual with a {open_quotes}de novo translocation{close_quotes} (even when the rearrangement appears balanced), this infant is being followed regularly. Evaluation at 5 months of age revealed a small but thriving female infant who is alert and developmentally appropriate. She is still receiving synthroid. We are in the process of analyzing this case further using chromosome paint probes for chromosomes 3 and 19 to identify the break points more precisely. This would allow us to assess with greater accuracy if this is a {open_quotes}balanced{close_quotes} translocation.

  19. Chromosome-specific segmentation revealed by structural analysis of individually isolated chromosomes.

    PubMed

    Kitada, Kunio; Taima, Akira; Ogasawara, Kiyomoto; Metsugi, Shouichi; Aikawa, Satoko

    2011-04-01

    Analysis of structural rearrangements at the individual chromosomal level is still technologically challenging. Here we optimized a chromosome isolation method using fluorescent marker-assisted laser-capture and laser-beam microdissection and applied it to structural analysis of two aberrant chromosomes found in a lung cancer cell line. A high-density array-comparative genomic hybridization (array-CGH) analysis of DNA samples prepared from each of the chromosomes revealed that these two chromosomes contained 296 and 263 segments, respectively, ranging from 1.5 kb to 784.3 kb in size, derived from different portions of chromosome 8. Among these segments, 242 were common in both aberrant chromosomes, but 75 were found to be chromosome-specific. Sequences of 263 junction sites connecting the ends of segments were determined using a PCR/Sanger-sequencing procedure. Overlapping microhomologies were found at 169 junction sites. Junction partners came from various portions of chromosome 8 and no biased pattern in the positional distribution of junction partners was detected. These structural characteristics suggested the occurrence of random fragmentation of the entire chromosome 8 followed by random rejoining of these fragments. Based on that, we proposed a model to explain how these aberrant chromosomes are formed. Through these structural analyses, it was demonstrated that the optimized chromosome isolation method described here can provide high-quality chromosomal DNA for high resolution array-CGH analysis and probably for massively parallel sequencing analysis.

  20. Rapid generation of whole chromosome painting probes (WCPs) by chromosome microdissection

    SciTech Connect

    Guan, X.Y.; Meltzer, P.S.; Trent, J.M.

    1994-07-01

    A strategy for rapid construction of whole chromosome painting probes (WCPs) by chromosome microdissection has recently been developed. WCPs were prepared from 20 copies of each target chromosome microdissected from normal human metaphase chromosomes and then directly amplified by PCR using a universal primer. Fifteen WCPs, including chromosomes 1, 3, 6, 7, 9, 12, 13, 14, 15, 17, 19, 20, 21, 22, and X, have been generated using this strategy. The probe complexity and hybridization specificity of these WCPs have been characterized by gel electrophoresis and fluorescence in situ hybridization. Analysis of WCPs constructed by chromosome microdissection indicated that microdissected WCPs invariably provide strong and uniform signal intensity with no cytologically apparent cross-hybridization. To demonstrate the application of WCPs generated from microdissection, the authors have used these probes to detect complex chromosome rearrangements in a melanoma cell line, UM93-007. Two different translocations involving three chromosomes [t(1;3;13) and t(1;7;13)] have been identified, both of which were undetectable by conventional banding analysis. Further application of these WCPs (including generation of WCPs from mouse and other species) should greatly facilitate the cytogenetic analysis of complex chromosome rearrangements. 35 refs., 4 figs.

  1. A contiguous clone map over 3 Mb on the long arm of chromosome 11 across a balanced translocation associated with schizophrenia

    SciTech Connect

    Evans, K.L.; Shibasaki, Yoshiro; Devon, R.S.; He, Lin

    1995-08-10

    Forty-nine clones derived by microdissection of a schizophrenia-associated t(1;11)(q42.1;q14.3) breakpoint region have been assigned by somatic cell hybrid mapping to seven discrete intervals on the long arm of human chromosome 11. Eleven of the clones were shown to map to a small region immediately distal to the translocation breakpoint on 11q. A 3-Mb contiguous clone map of this region was established by isolation of corresponding YAC recombinants. The contig was oriented and shown to traverse the translocation breakpoint by FISH and microsatellite marker analysis. This contig will facilitate the isolation of candidate sequences whose expression may be affected by the translocation. 28 refs., 4 figs., 3 tabs.

  2. [Evolution and mutation of human Y chromosome and their relationship with male infertility].

    PubMed

    Li, Zheng; Chen, Xiang-Feng; Sha, Yan-Wei

    2009-04-01

    The Y chromosome evolves from euchromosome and accumulates a variety of male-specific genes, including SRY and many others that are related with spermatogenesis. The Y chromosome is distinguished from euchromosome by its characteristics of multiple copies of gene, multiple DNA sequences and high polymorphism. A lot of gene rearrangements occur during its evolution due to the specific gene structure in the Y chromosome. It has been discovered that one subset of such gene rearrangements induces Y-chromosome microdeletions that are involved in male infertility. Spermatogenesis is actually controlled by a network of genes, which may be located on the Y chromosome, euchromosomes or even the X chromosome. Further studies on the genomics and genes in the Y chromosome between sex chromosomes and/or between sex chromosome and euchromosomes will helps us to gain deeper insights into the molecular mechanism of male infertility.

  3. Chromosome aberrations of clonal origin are present in astronauts' blood lymphocytes

    NASA Technical Reports Server (NTRS)

    George, K.; Durante, M.; Willingham, V.; Cucinotta, F. A.

    2004-01-01

    Radiation-induced chromosome translocations remain in peripheral blood cells over many years, and can potentially be used to measure retrospective doses or prolonged low-dose rate exposures. However, several recent studies have indicated that some individuals possess clones of cells with balanced chromosome abnormalities, which can result in an overestimation of damage and, therefore, influence the accuracy of dose calculations. We carefully examined the patterns of chromosome damage found in the blood lymphocytes of twelve astronauts, and also applied statistical methods to screen for the presence of potential clones. Cells with clonal aberrations were identified in three of the twelve individuals. These clonal cells were present in samples collected both before and after space flight, and yields are higher than previously reported for healthy individuals in this age range (40-52 years of age). The frequency of clonal damage appears to be even greater in chromosomes prematurely condensed in interphase, when compared with equivalent analysis in metaphase cells. The individuals with clonal aberrations were followed-up over several months and the yields of all clones decreased during this period. Since clonal aberrations may be associated with increased risk of tumorigenesis, it is important to accurately identify cells containing clonal rearrangements for risk assessment as well as biodosimetry. Copyright 2003 S. Karger AG, Basel.

  4. [FREQUENCIES OF FETAL CHROMOSOMAL ABERRATIONS DETECTED BY AMNIOCENTESIS: OUR 15-YEARS EXPERIENCE].

    PubMed

    Stoyanova, V; Ivanov, H; Linev, A; Vachev, T

    2015-01-01

    Amniocentesis is the most common and reliable prenatal diagnostic method for chromosomopathies. The purpose of the present study is to retrospectively evaluate our 15-year experience with prenatal cytogenetic diagnosis by amniocentesis, focusing on the indications and rates of chromosome abnormalities. The current study involve prenatal cytogenetic analysis from 564 amniocentesis performed at the Department of Medical Genetics, St. George University Hospital, Plovdiv between January 2000 and December 2014. Among clinical indications, abnormal maternal serum screening results (54.96%; 310/564) have been the most common indication for amniocentesis. Chromosomal abnormalities were detected in 5.5% (31/546) of cases. Structural rearrangements were the most common abnormality found (16/3 1;51,61%) with prevalence of balanced aberrations--11 cases. The highest detection rate of chromosome aberrations was in cases undergoing amniocentesis due to known family history of chromosomal abnormality (15.1%), followed by abnormal fetal ultrasound finding group (7.69%), increasing-risk maternal prenatal screening results (4.52%), and advanced maternal age (3.28%). This study provides important information for prenatal genetic counseling of families at risk with aim of prenatal care and prevention during pregnancies.

  5. Chromosomal elements evolve at different rates in the Drosophila genome.

    PubMed Central

    González, Josefa; Ranz, José María; Ruiz, Alfredo

    2002-01-01

    Recent results indicate that the rate of chromosomal rearrangement in the genus Drosophila is the highest found so far in any eukaryote. This conclusion is based chiefly on the comparative mapping analysis of a single chromosomal element (Muller's element E) in two species, D. melanogaster and D. repleta, representing the two farthest lineages within the genus (the Sophophora and Drosophila subgenera, respectively). We have extended the analysis to two other chromosomal elements (Muller's elements A and D) and tested for differences in rate of evolution among chromosomes. With this purpose, detailed physical maps of chromosomes X and 4 of D. repleta were constructed by in situ hybridization of 145 DNA probes (gene clones, cosmids, and P1 phages) and their gene arrangements compared with those of the homologous chromosomes X and 3L of D. melanogaster. Both chromosomal elements have been extensively reshuffled over their entire length. The number of paracentric inversions fixed has been estimated as 118 +/- 17 for element A and 56 +/- 8 for element D. Comparison with previous data for elements E and B shows that there are fourfold differences in evolution rate among chromosomal elements, with chromosome X exhibiting the highest rate of rearrangement. Combining all results, we estimated that 393 paracentric inversions have been fixed in the whole genome since the divergence between D. repleta and D. melanogaster. This amounts to an average rate of 0.053 disruptions/Mb/myr, corroborating the high rate of rearrangement in the genus Drosophila. PMID:12136017

  6. Cloning of BWS-associated chromosomal breakpoints

    SciTech Connect

    Mannens, M.; Hoovers, J.; Redeker, E.

    1994-09-01

    The Beckwith-Wiedemann syndrome (BWS) is characterized by numerous growth abnormalities and is thought to be subject to {open_quotes}parental imprinting{close_quotes}. There is a striking increased incidence of different types of childhood tumors found in BWS patients of 7.5%. The syndrome is localized to chromosome region 11p15.3-p15.5. A contiguous map of this region of over 10 Mb was constructed and all 25 known genes from this region were localized to this map, including known imprinted genes like IGF2 and H19, or candidate tumor suppressor genes like WEE1, ST5 and rhombotin. In addition, we were able to place the breakpoints of 8 different balanced chromosomal rearrangements, associated with the Beckwith-Wiedemann syndrome, onto this map in two distinct regions that are now known to contain childhood tumor suppressor genes. In one of these BWS clusters (BWSCR1) 5/5 translocation breakpoints could be identified with overlapping cosmids for each breakpoint. A 6.7 kb transcript in all adult tissues tested was identified by several of these cosmids. This transcript was less abundant in fetal tissue. Preliminary results suggest the presence of zinc-finger protein motifs in this gene. This, however, has to be confirmed by sequence analysis. Two breakpoints in the more proximal BWS region (BWSCR2) were associated with clinically distinct BWS phenotypes, of which hemihypertrophy and Wilms` tumor are the most pronounced clinical findings. These breakpoints were found to be overlapped by the same cosmid. In this region, zinc-finger motifs flanking the breakpoints were identified by genomic sequence analysis.

  7. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  8. Compositions and methods for detecting gene rearrangements and translocations

    DOEpatents

    Rowley, Janet D.; Diaz, Manuel O.

    2000-01-01

    Disclosed is a series of nucleic acid probes for use in diagnosing and monitoring certain types of leukemia using, e.g., Southern and Northern blot analyses and fluorescence in situ hybridization (FISH). These probes detect rearrangements, such as translocations involving chromosome band 11q23 with other chromosomes bands, including 4q21, 6q27, 9p22, 19p13.3, in both dividing leukemic cells and interphase nuclei. The breakpoints in all such translocations are clustered within an 8.3 kb BamHI genomic region of the MLL gene. A novel 0.7 kb BamH1 cDNA fragment derived from this gene detects rearrangements on Southern blot analysis with a single BamHI restriction digest in all patients with the common 11q23 translocations and in patients with other 11q23 anomalies. Northern blot analyses are presented demonstrating that the MLL gene has multiple transcripts and that transcript size differentiates leukemic cells from normal cells. Also disclosed are MLL fusion proteins, MLL protein domains and anti-MLL antibodies.

  9. Distribution of X-ray-induced chromosome breakpoints in Down syndrome lymphocytes

    SciTech Connect

    Shafik, H.M.; Au, W.W.; Whorton, E.B. Jr.; Legator, M.S. )

    1990-01-01

    Down syndrome (DS) individuals are known to be predisposed to develop leukemia and their lymphocytes are highly sensitive to the induction of chromosome aberrations by X-rays. A study was conducted to identify the chromosome breakpoints and to evaluate whether site specificity for chromosome breakage and rearrangement may exist which may explain the predisposition phenomenon. DS lymphocytes at the G1 phase of the cell cycle were irradiated with 300, 450, and 600 rad of X-rays. Cells were harvested after 3 days in culture and 193 G-banded karyotypes were analyzed to identify the induced chromosome abnormalities. Out of 273 breakpoints identified, 122 were involved in the formation of stable chromosome rearrangements and 151 in the formation of unstable abnormalities. The Poisson analysis of these breakpoints demonstrated that 16 chromosome bands located in chromosomes 1, 3, 7, 12, 17, 19 and X were preferentially involved in breakage and rearrangement (P less than 0.05). These 16 bands are also found to be locations of cancer breakpoints, oncogenes, or fragile sites. Many abnormal cells were observed to carry stable chromosome rearrangements only. Therefore, these cells are presumed to be compatible with survival and to be initiated in the transformation process. We propose that similar stable and site-specific chromosome rearrangements may exist in proliferating cells in DS individuals after exposure to clastogens and that this abnormality predisposes them to develop leukemia.

  10. Intergenomic rearrangements after polyploidization of Kengyilia thoroldiana (Poaceae: Triticeae) affected by environmental factors.

    PubMed

    Wang, Qiuxia; Liu, Huitao; Gao, Ainong; Yang, Xinming; Liu, Weihua; Li, Xiuquan; Li, Lihui

    2012-01-01

    Polyploidization is a major evolutionary process. Approximately 70-75% species of Triticeae (Poaceae) are polyploids, involving 23 genomes. To investigate intergenomic rearrangements after polyploidization of Triticeae species and to determine the effects of environmental factors on them, nine populations of a typical polyploid Triticeae species, Kengyilia thoroldiana (Keng) J.L.Yang et al. (2n = 6x = 42, StStPPYY), collected from different environments, were studied using genome in situ hybridization (GISH). We found that intergenomic rearrangements occurred between the relatively large P genome and the small genomes, St (8.15%) and Y (22.22%), in polyploid species via various types of translocations compared to their diploid progenitors. However, no translocation was found between the relatively small St and Y chromosomes. Environmental factors may affect rearrangements among the three genomes. Chromosome translocations were significantly more frequent in populations from cold alpine and grassland environments than in populations from valley and lake-basin habitats (P<0.05). The relationship between types of chromosome translocations and altitude was significant (r = 0.809, P<0.01). Intergenomic rearrangements associated with environmental factors and genetic differentiation of a single basic genome should be considered as equally important genetic processes during species' ecotype evolution.

  11. Intergenomic Rearrangements after Polyploidization of Kengyilia thoroldiana (Poaceae: Triticeae) Affected by Environmental Factors

    PubMed Central

    Wang, Qiuxia; Liu, Huitao; Gao, Ainong; Yang, Xinming; Liu, Weihua; Li, Xiuquan; Li, Lihui

    2012-01-01

    Polyploidization is a major evolutionary process. Approximately 70–75% species of Triticeae (Poaceae) are polyploids, involving 23 genomes. To investigate intergenomic rearrangements after polyploidization of Triticeae species and to determine the effects of environmental factors on them, nine populations of a typical polyploid Triticeae species, Kengyilia thoroldiana (Keng) J.L.Yang et al. (2n = 6x = 42, StStPPYY), collected from different environments, were studied using genome in situ hybridization (GISH). We found that intergenomic rearrangements occurred between the relatively large P genome and the small genomes, St (8.15%) and Y (22.22%), in polyploid species via various types of translocations compared to their diploid progenitors. However, no translocation was found between the relatively small St and Y chromosomes. Environmental factors may affect rearrangements among the three genomes. Chromosome translocations were significantly more frequent in populations from cold alpine and grassland environments than in populations from valley and lake-basin habitats (P<0.05). The relationship between types of chromosome translocations and altitude was significant (r = 0.809, P<0.01). Intergenomic rearrangements associated with environmental factors and genetic differentiation of a single basic genome should be considered as equally important genetic processes during species' ecotype evolution. PMID:22363542

  12. Extensive gross genomic rearrangements between chicken and Old World vultures (Falconiformes: Accipitridae).

    PubMed

    Nanda, I; Karl, E; Volobouev, V; Griffin, D K; Schartl, M; Schmid, M

    2006-01-01

    The karyotypes of most birds consist of a small number of macrochromosomes and numerous microchromosomes. Intriguingly, most accipitrids which include hawks, eagles, kites, and Old World vultures (Falconiformes) show a sharp contrast to this basic avian karyotype. They exhibit strikingly few microchromosomes and appear to have been drastically restructured during evolution. Chromosome paints specific to the chicken (GGA) macrochromosomes 1-10 were hybridized to metaphase spreads of three species of Old World vultures (Gyps rueppelli, Gyps fulvus, Gypaetus barbatus). Paints of GGA chromosomes 6-10 hybridize only to single chromosomes or large chromosome segments, illustrating the existence of high chromosome homology. In contrast, paints of the large macrochromosomes 1-5 show split hybridization signals on the chromosomes of the accipitrids, disclosing excessive chromosome rearrangements which is in clear contrast to the high degree of chromosome conservation substantiated from comparative chromosome painting in other birds. Furthermore, the GGA chromosome paint hybridization patterns reveal remarkable interchromosomal conservation among the two species of the genus Gyps.

  13. DNA Rearrangements through Spatial Graphs

    NASA Astrophysics Data System (ADS)

    Jonoska, Nataša; Saito, Masahico

    The paper is a short overview of a recent model of homologous DNA recombination events guided by RNA templates that have been observed in certain species of ciliates. This model uses spatial graphs to describe DNA rearrangements and show how gene recombination can be modeled as topological braiding of the DNA. We show that a graph structure, which we refer to as an assembly graph, containing only 1- and 4-valent rigid vertices can provide a physical representation of the DNA at the time of recombination. With this representation, 4-valent vertices correspond to the alignment of the recombination sites, and we model the actual recombination event as smoothing of these vertices.

  14. Identification of BPESC1, a novel gene disrupted by a balanced chromosomal translocation, t(3;4)(q23;p15.2), in a patient with BPES.

    PubMed

    De Baere, E; Fukushima, Y; Small, K; Udar, N; Van Camp, G; Verhoeven, K; Palotie, A; De Paepe, A; Messiaen, L

    2000-09-15

    The blepharophimosis syndrome (BPES) is a rare genetic disorder characterized by blepharophimosis, ptosis, epicanthus inversus, and telecanthus. In type I, BPES is associated with female infertility, while in type II, the eyelid defect occurs by itself. The BPES syndrome has been mapped to 3q23. Previously, we constructed a YAC-, PAC-, and cosmid-based physical map surrounding the 3q23 translocation breakpoint of a t(3;4)(q23;p15.2) BPES patient, containing a 110-kb PAC (169-C 10) and a 43-kb cosmid (11-L 10) spanning the breakpoint. In this report, we present the identification of BPESC1 (BPES candidate 1), a novel candidate gene that is disrupted by the translocation on chromosome 3. Cloning of the cDNA has been performed starting from a testis-specific EST, AI032396, found in cosmid 11-L 10. The cDNA sequence of BPESC1 is 3518 bp in size and contains an open reading frame of 351 bp. No significant similarities with known proteins have been found in the sequence databases. BPESC1 contains three exons and spans a genomic fragment of 17.5 kb. Expression of BPESC1 was observed in adult testis tissue. We performed mutation analysis in 28 unrelated familial and sporadic BPES patients, but, apart from the disruption by the translocation, found no other disease-causing mutations. These data make it unlikely that BPESC1 plays a major role in the pathogenesis of BPES.

  15. Conservation of chromosomes syntenic with avian autosomes in squamate reptiles revealed by comparative chromosome painting.

    PubMed

    Pokorná, Martina; Giovannotti, Massimo; Kratochvíl, Lukáš; Caputo, Vincenzo; Olmo, Ettore; Ferguson-Smith, Malcolm A; Rens, Willem

    2012-08-01

    In contrast to mammals, birds exhibit a slow rate of chromosomal evolution. It is not clear whether high chromosome conservation is an evolutionary novelty of birds or was inherited from an earlier avian ancestor. The evolutionary conservatism of macrochromosomes between birds and turtles supports the latter possibility; however, the rate of chromosomal evolution is largely unknown in other sauropsids. In squamates, we previously reported strong conservatism of the chromosomes syntenic with the avian Z, which could reflect a peculiarity of this part of the genome. The chromosome 1 of iguanians and snakes is largely syntenic with chromosomes 3, 5 and 7 of the avian ancestral karyotype. In this project, we used comparative chromosome painting to determine how widely this synteny is conserved across nine families covering most of the main lineages of Squamata. The results suggest that the association of the avian ancestral chromosomes 3, 5 and 7 can be dated back to at least the early Jurassic and could be an ancestral characteristic for Unidentata (Serpentes, Iguania, Anguimorpha, Laterata and Scinciformata). In Squamata chromosome conservatism therefore also holds for the parts of the genome which are homologous to bird autosomes, and following on from this, a slow rate of chromosomal evolution could be a common characteristic of all sauropsids. The large evolutionary stasis in chromosome organization in birds therefore seems to be inherited from their ancestors, and it is particularly striking in comparison with mammals, probably the only major tetrapod lineage with an increased rate of chromosomal rearrangements as a whole.

  16. Direct chromosome-length haplotyping by single-cell sequencing.

    PubMed

    Porubský, David; Sanders, Ashley D; van Wietmarschen, Niek; Falconer, Ester; Hills, Mark; Spierings, Diana C J; Bevova, Marianna R; Guryev, Victor; Lansdorp, Peter M

    2016-11-01

    Haplotypes are fundamental to fully characterize the diploid genome of an individual, yet methods to directly chart the unique genetic makeup of each parental chromosome are lacking. Here we introduce single-cell DNA template strand sequencing (Strand-seq) as a novel approach to phasing diploid genomes along the entire length of all chromosomes. We demonstrate this by building a complete haplotype for a HapMap individual (NA12878) at high accuracy (concordance 99.3%), without using generational information or statistical inference. By use of this approach, we mapped all meiotic recombination events in a family trio with high resolution (median range ∼14 kb) and phased larger structural variants like deletions, indels, and balanced rearrangements like inversions. Lastly, the single-cell resolution of Strand-seq allowed us to observe loss of heterozygosity regions in a small number of cells, a significant advantage for studies of heterogeneous cell populations, such as cancer cells. We conclude that Strand-seq is a unique and powerful approach to completely phase individual genomes and map inheritance patterns in families, while preserving haplotype differences between single cells.

  17. Partial Trisomy of Chromosome 11: A Case Report

    ERIC Educational Resources Information Center

    Falk Rena E.; And Others

    1973-01-01

    A case of partial trisomy of the short arms of chromosome number 11 resulting in profound retardation and multiple physical defects was confirmed by means of fluorescent karyotyping of the chromosomally balanced carrier father. (Author)

  18. Advances in understanding paternally transmitted Chromosomal Abnormalities

    SciTech Connect

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate the types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.

  19. A Consensus Map in Cultivated Hexaploid Oat Reveals Conserved Grass Synteny with Substantial Subgenome Rearrangement.

    PubMed

    Chaffin, Ashley S; Huang, Yung-Fen; Smith, Scott; Bekele, Wubishet A; Babiker, Ebrahiem; Gnanesh, Belaghihalli N; Foresman, Bradley J; Blanchard, Steven G; Jay, Jeremy J; Reid, Robert W; Wight, Charlene P; Chao, Shiaoman; Oliver, Rebekah; Islamovic, Emir; Kolb, Frederic L; McCartney, Curt; Mitchell Fetch, Jennifer W; Beattie, Aaron D; Bjørnstad, Åsmund; Bonman, J Michael; Langdon, Tim; Howarth, Catherine J; Brouwer, Cory R; Jellen, Eric N; Klos, Kathy Esvelt; Poland, Jesse A; Hsieh, Tzung-Fu; Brown, Ryan; Jackson, Eric; Schlueter, Jessica A; Tinker, Nicholas A

    2016-07-01

    Hexaploid oat ( L., 2 = 6 = 42) is a member of the Poaceae family and has a large genome (∼12.5 Gb) containing 21 chromosome pairs from three ancestral genomes. Physical rearrangements among parental genomes have hindered the development of linkage maps in this species. The objective of this work was to develop a single high-density consensus linkage map that is representative of the majority of commonly grown oat varieties. Data from a cDNA-derived single-nucleotide polymorphism (SNP) array and genotyping-by-sequencing (GBS) were collected from the progeny of 12 biparental recombinant inbred line populations derived from 19 parents representing oat germplasm cultivated primarily in North America. Linkage groups from all mapping populations were compared to identify 21 clusters of conserved collinearity. Linkage groups within each cluster were then merged into 21 consensus chromosomes, generating a framework consensus map of 7202 markers spanning 2843 cM. An additional 9678 markers were placed on this map with a lower degree of certainty. Assignment to physical chromosomes with high confidence was made for nine chromosomes. Comparison of homeologous regions among oat chromosomes and matches to orthologous regions of rice ( L.) reveal that the hexaploid oat genome has been highly rearranged relative to its ancestral diploid genomes as a result of frequent translocations among chromosomes. Heterogeneous chromosome rearrangements among populations were also evident, probably accounting for the failure of some linkage groups to match the consensus. This work contributes to a further understanding of the organization and evolution of hexaploid grass genomes.

  20. Optimal Arrangement of Components Via Pairwise Rearrangements.

    DTIC Science & Technology

    1987-10-01

    reliability function under component pairwise rearrangement. They use this property to find the optimal component arrangement. Worked examples illustrate the methods proposed. Keywords: Optimization; Permutations; Nodes.

  1. Cytogenetic analysis of the third chromosome heterochromatin of Drosophila melanogaster.

    PubMed Central

    Koryakov, Dmitry E; Zhimulev, Igor F; Dimitri, Patrizio

    2002-01-01

    Previous cytological analysis of heterochromatic rearrangements has yielded significant insight into the location and genetic organization of genes mapping to the heterochromatin of chromosomes X, Y, and 2 of Drosophila melanogaster. These studies have greatly facilitated our understanding of the genetic organization of heterochromatic genes. In contrast, the 12 essential genes known to exist within the mitotic heterochromatin of chromosome 3 have remained only imprecisely mapped. As a further step toward establishing a complete map of the heterochomatic genetic functions in Drosophila, we have characterized several rearrangements of chromosome 3 by using banding techniques at the level of mitotic chromosome. Most of the rearrangement breakpoints were located in the dull fluorescent regions h49, h51, and h58, suggesting that these regions correspond to heterochromatic hotspots for rearrangements. We were able to construct a detailed cytogenetic map of chromosome 3 heterochromatin that includes all of the known vital genes. At least 7 genes of the left arm (from l(3)80Fd to l(3)80Fj) map to segment h49-h51, while the most distal genes (from l(3)80Fa to l(3)80Fc) lie within the h47-h49 portion. The two right arm essential genes, l(3)81Fa and l(3)81Fb, are both located within the distal h58 segment. Intriguingly, a major part of chromosome 3 heterochromatin was found to be "empty," in that it did not contain either known genes or known satellite DNAs. PMID:11861557

  2. Rearrangements of highly polymorphic regions near telomeres of Saccharomyces cerevisiae.

    PubMed Central

    Horowitz, H; Thorburn, P; Haber, J E

    1984-01-01

    We have examined the mitotic and meiotic properties of telomeric regions in various laboratory strains of yeast. Using a sequence (Y probe) derived from a cloned yeast telomere (J. Szostak and E. Blackburn, Cell 29:245-255, 1982), we found that various strains of Saccharomyces cerevisiae show extensive polymorphisms of restriction endonuclease fragment length. Some of the variation in the lengths of telomeric fragments appears to be under the control of a small number of genes. When DNA from various strains was digested with endonuclease KpnI, nearly all of the fragments homologous to the Y probe were found to be of different size. The pattern of fragments in different strains was extremely variable, with a greater degree of polymorphism than that observed for fragments containing the mobile TY1 element. Tetrad analysis of haploid meiotic segregants from diploids heterozygous for many different Y-homologous KpnI fragments revealed that most of them exhibited Mendelian (2:0) segregation. However, only a small proportion of these fragments displayed the obligate 2:2 parental segregation expected of simple allelic variants at the same chromosome end. From the segregations of these fragments, we concluded that some yeast telomeres lack a Y-homologous sequence and that the chromosome arms containing a Y-homologous sequence are different among various yeast strains. Regions near yeast telomeres frequently undergo rearrangement. Among eight tetrads from three different diploids, we have found three novel Y-homologous restriction fragments that appear to have arisen during meiosis. In all three cases, the appearance of a new fragment was accompanied by the loss of another band. In one of these cases, the rearrangement leading to a novel fragment arose in an isogenic diploid, in which both homologous chromosomes should have been identical. Among these same tetrads we also found examples of apparent mitotic gene conversions and mitotic recombination involving telemetric

  3. X-linked intellectual disability related genes disrupted by balanced X-autosome translocations.

    PubMed

    Moysés-Oliveira, Mariana; Guilherme, Roberta Santos; Meloni, Vera Ayres; Di Battista, Adriana; de Mello, Claudia Berlim; Bragagnolo, Silvia; Moretti-Ferreira, Danilo; Kosyakova, Nadezda; Liehr, Thomas; Carvalheira, Gianna Maria; Melaragno, Maria Isabel

    2015-12-01

    Detailed molecular characterization of chromosomal rearrangements involving X-chromosome has been a key strategy in identifying X-linked intellectual disability-causing genes. We fine-mapped the breakpoints in four women with balanced X-autosome translocations and variable phenotypes, in order to investigate the corresponding genetic contribution to intellectual disability. We addressed the impact of the gene interruptions in transcription and discussed the consequences of their functional impairment in neurodevelopment. Three patients presented with cognitive impairment, reinforcing the association between the disrupted genes (TSPAN7-MRX58, KIAA2022-MRX98, and IL1RAPL1-MRX21/34) and intellectual disability. While gene expression analysis showed absence of TSPAN7 and KIAA2022 expression in the patients, the unexpected expression of IL1RAPL1 suggested a fusion transcript ZNF611-IL1RAPL1 under the control of the ZNF611 promoter, gene disrupted at the autosomal breakpoint. The X-chromosomal breakpoint definition in the fourth patient, a woman with normal intellectual abilities, revealed disruption of the ZDHHC15 gene (MRX91). The expression assays did not detect ZDHHC15 gene expression in the patient, thus questioning its involvement in intellectual disability. Revealing the disruption of an X-linked intellectual disability-related gene in patients with balanced X-autosome translocation is a useful tool for a better characterization of critical genes in neurodevelopment. © 2015 Wiley Periodicals, Inc.

  4. Origin of the chromosomal radiation of Madeiran house mice: a microsatellite analysis of metacentric chromosomes.

    PubMed

    Förster, D W; Mathias, M L; Britton-Davidian, J; Searle, J B

    2013-04-01

    Chromosome races of Mus musculus domesticus are characterised by particular sets of metacentric chromosomes formed by Robertsonian fusions and whole-arm reciprocal translocations. The Atlantic island of Madeira is inhabited by six chromosome races of house mice with 6-9 pairs of metacentric chromosomes. Three of these races are characterised by the metacentric 3.8 also found elsewhere in the distribution of M. m. domesticus, including Denmark and Spain. We investigated the possibility that metacentric 3.8 was introduced to Madeira during the initial colonisation, as this could have 'seeded' the cascade of chromosomal mutation that is the basis of the extraordinary chromosomal radiation observed on the island. Variation at 24 microsatellite loci mapping to three different chromosomal regions (proximal, interstitial and distal) of mouse chromosomes 3 and 8 was investigated in 179 mice from Madeira, Denmark, Portugal, Spain, Italy and Scotland. Analyses of microsatellite loci closely linked to the centromeres of these chromosomes ('proximal loci') do not support a common evolutionary origin of metacentric 3.8 among Madeiran, Danish and Spanish mouse populations. Our results suggest that Madeiran mice are genetically more similar to standard karyotype mice from Portugal than to metacentric mice from elsewhere. There is expected to be an interruption to gene flow between hybridising metacentric races on Madeira, particularly in the chromosomal regions close to the rearrangement breakpoints. Consistent with this, relating to differentiation involving chromosomes 3 and 8 on Madeira, we found greater genetic structure among races for proximal than interstitial or distal loci.

  5. Paracentric inversion of chromosome 2 associated with cryptic duplication of 2q14 and deletion of 2q37 in a patient with autism.

    PubMed

    Devillard, Françoise; Guinchat, Vincent; Moreno-De-Luca, Daniel; Tabet, Anne-Claude; Gruchy, Nicolas; Guillem, Pascale; Nguyen Morel, Marie-Ange; Leporrier, Nathalie; Leboyer, Marion; Jouk, Pierre-Simon; Lespinasse, James; Betancur, Catalina

    2010-09-01

    We describe a patient with autism and a paracentric inversion of chromosome 2q14.2q37.3, with a concurrent duplication of the proximal breakpoint at 2q14.1q14.2 and a deletion of the distal breakpoint at 2q37.3. The abnormality was derived from his mother with a balanced paracentric inversion. The inversion in the child appeared to be cytogenetically balanced but subtelomere FISH revealed a cryptic deletion at the 2q37.3 breakpoint. High-resolution single nucleotide polymorphism array confirmed the presence of a 3.5 Mb deletion that extended to the telomere, and showed a 4.2 Mb duplication at 2q14.1q14.2. FISH studies using a 2q14.2 probe showed that the duplicated segment was located at the telomeric end of chromosome 2q. This recombinant probably resulted from breakage of a dicentric chromosome. The child had autism, mental retardation, speech and language delay, hyperactivity, growth retardation with growth hormone deficiency, insulin-dependent diabetes, and mild facial dysmorphism. Most of these features have been previously described in individuals with simple terminal deletion of 2q37. Pure duplications of the proximal chromosome 2q are rare and no specific syndrome has been defined yet, so the contribution of the 2q14.1q14.2 duplication to the phenotype of the patient is unknown. These findings underscore the need to explore apparently balanced chromosomal rearrangements inherited from a phenotypically normal parent in subjects with autism and/or developmental delay. In addition, they provide further evidence indicating that chromosome 2q terminal deletions are among the most frequently reported cytogenetic abnormalities in individuals with autism.

  6. Chromosomal Flexibility

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 2005

    2005-01-01

    Scientists have shown that a genetic element on one chromosome may direct gene activity on another. Howard Hughes Medical Institute (HHMI) researchers report that a multitasking master-control region appears to over-see both a set of its own genes and a related gene on a nearby chromosome. The findings reinforce the growing importance of location…

  7. Modeling Chromosomes

    ERIC Educational Resources Information Center

    Robertson, Carol

    2016-01-01

    Learning about chromosomes is standard fare in biology classrooms today. However, students may find it difficult to understand the relationships among the "genome", "chromosomes", "genes", a "gene locus", and "alleles". In the simple activity described in this article, which follows the 5E approach…

  8. Integrin activation and structural rearrangement.

    PubMed

    Takagi, Junichi; Springer, Timothy A

    2002-08-01

    Among adhesion receptor families, integrins are particularly important in biological processes that require rapid modulation of adhesion and de-adhesion. Activation on a timescale of < 1 s of beta2 integrins on leukocytes and beta3 integrins on platelets enables deposition of these cells at sites of inflammation or vessel wall injury. Recent crystal, nuclear magnetic resonance (NMR), and electron microscope (EM) structures of integrins and their domains lead to a unifying mechanism of activation for both integrins that contain and those that lack an inserted (I) domain. The I domain adopts two alternative conformations, termed open and closed. In striking similarity to signaling G-proteins, rearrangement of a Mg2+-binding site is linked to large conformational movements in distant backbone regions. Mutations that stabilize a particular conformation show that the open conformation has high affinity for ligand, whereas the closed conformation has low affinity. Movement of the C-terminal alpha-helix 10 A down the side of the domain in the open conformation is sufficient to increase affinity at the distal ligand-binding site 9,000-fold. This C-terminal "bell-rope" provides a mechanism for linkage to conformational movements in other domains. Recent structures and functional studies reveal interactions between beta-propeller, I, and I-like domains in the integrin headpiece, and a critical role for integrin epidermal growth factor (EGF) domains in the stalk region. The headpiece of the integrin faces down towards the membrane in the inactive conformation, and extends upward in a "switchblade"-like opening upon activation. These long-range structural rearrangements of the entire integrin molecule involving interdomain contacts appear closely linked to conformational changes within the I and I-like domains, which result in increased affinity and competence for ligand binding.

  9. The Evolutionary Chromosome Translocation 4;19 in Gorilla gorilla is Associated with Microduplication of the Chromosome Fragment Syntenic to Sequences Surrounding the Human Proximal CMT1A-REP

    PubMed Central

    Stankiewicz, Pawel; Park, Sung-Sup; Inoue, Ken; Lupski, James R.

    2001-01-01

    Many genomic disorders occur as a result of chromosome rearrangements involving low-copy repeats (LCRs). To better understand the molecular basis of chromosome rearrangements, including translocations, we have investigated the mechanism of evolutionary rearrangements. In contrast to several intrachromosomal rearrangements, only two evolutionary translocations have been identified by cytogenetic analyses of humans and greater apes. Human chromosome 2 arose as a result of a telomeric fusion between acrocentric chromosomes, whereas chromosomes 4 and 19 in Gorilla gorilla are the products of a reciprocal translocation between ancestral chromosomes, syntenic to human chromosomes 5 and 17, respectively. Fluorescence in situ hybridization (FISH) was used to characterize the breakpoints of the latter translocation at the molecular level. We identified three BAC clones that span translocation breakpoints. One breakpoint occurred in the region syntenic to human chromosome 5q13.3, between the HMG-CoA reductase gene (HMGCR) and RAS p21 protein activator 1 gene (RASA1). The second breakpoint was in a region syntenic to human chromosome 17p12 containing the 24 kb region-specific low-copy repeat-proximal CMT1A-REP. Moreover, we found that the t(4;19) is associated with a submicroscopic chromosome duplication involving a 19p chromosome fragment homologous to the human chromosome region surrounding the proximal CMT1A-REP. These observations further indicate that higher order genomic architecture involving low-copy repeats resulting from genomic duplication plays a significant role in karyotypic evolution. PMID:11435402

  10. Microwave accelerated aza-Claisen rearrangement.

    PubMed

    Gajdosíková, Eva; Martinková, Miroslava; Gonda, Jozef; Conka, Patrik

    2008-11-14

    A study of microwave-induced and standard thermal Overman rearrangement of selected allylic trichloroacetimidates 1a-1f, 6-8 to the corresponding acetamides 2a-2f, 9-11 is reported. The microwave-assisted rearrangement of trifluoroacetimidate 13 is also described. Using this methodology, an efficient access to versatile allylic trihaloacetamides building synthons was established.

  11. Homozygous inv(11)(q21q23) and MLL gene rearrangement in two patients with myeloid neoplasms

    PubMed Central

    Tang, Guilin; Lu, Xinyan; Wang, Sa A; Roney, Erin K; Zhang, Liping; Hu, Shimin; Lu, Gary; Medeiros, L Jeffrey; Patel, Ankita

    2014-01-01

    Rearrangements of the MLL gene located at chromosome 11q23 are common chromosomal abnormalities associated with acute leukemias. In vast majority of cases with MLL gene rearrangements, only one chromosome 11 or a single MLL allele got involved. We report two very unusual cases of myeloid neoplasms with homozygous inv(11)(q21q23) and biallelic MLL rearrangement. Both patients, a 12-year old boy and a 29-year old woman, presented initially with T lymphoblastic leukemia/lymphoma (T-ALL), achieved complete remission with intensive chemotherapy, then recurred as acute myeloid leukemia in one patient and therapy-related myelodysplastic syndromes in the other patient, 24 and 15 months after initial T-ALL diagnosis, respectively. In both cases, biallelic MLL gene rearrangements were confirmed by fluorescence in situ hybridization. Mastermind like 2 gene was identified as MLL partner gene in one case. To our knowledge, homozygous inv(11)(q21q23) with two MLL genes rearrangement are extremely rare; it is likely a result of acquired uniparental disomy. PMID:25031740

  12. Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange.

    PubMed

    Lambert, Sarah; Mizuno, Ken'ichi; Blaisonneau, Joël; Martineau, Sylvain; Chanet, Roland; Fréon, Karine; Murray, Johanne M; Carr, Antony M; Baldacci, Giuseppe

    2010-08-13

    Template switching induced by stalled replication forks has recently been proposed to underlie complex genomic rearrangements. However, the resulting models are not supported by robust physical evidence. Here, we analyzed replication and recombination intermediates in a well-defined fission yeast system that blocks replication forks. We show that, in response to fork arrest, chromosomal rearrangements result from Rad52-dependent nascent strand template exchange occurring during fork restart. This template exchange occurs by both Rad51-dependent and -independent mechanisms. We demonstrate that Rqh1, the BLM homolog, limits Rad51-dependent template exchange without affecting fork restart. In contrast, we report that the Srs2 helicase promotes both fork restart and template exchange. Our data demonstrate that template exchange occurs during recombination-dependent fork restart at the expense of genome rearrangements.

  13. Constitutional ring chromosomes and tumour suppressor genes.

    PubMed Central

    Tommerup, N; Lothe, R

    1992-01-01

    The types of malignancy reported in carriers of constitutional ring chromosomes r(11), r(13), and r(22) are concordant with the chromosomal assignment of tumour suppressor loci associated with Wilms' tumour, retinoblastoma, and meningioma. It is suggested that the somatic instability of ring chromosomes may play a role in this association and that constitutional ring chromosomes may be a source for mapping of tumour suppressor loci with the potential for covering most or all of the human genome. The hypothesis predicts the presence of a locus on chromosome 10 associated with follicular carcinoma of the thyroid, in line with previous cytogenetic findings of rearrangements involving chromosome 10 in thyroid tumours, and a locus on chromosome 22 associated with testicular cancer. Development of neurofibromatoses (NF) that do not fulfil the clinical criteria of neurofibromatosis type 2 (NF2) in carriers with r(22) suggests either the presence of an additional NF locus on chromosome 22 or that ring chromosome mediated predisposition to somatic mutation of a specific tumour suppressor may be associated with atypical development of features usually associated with germline mutations. PMID:1336057

  14. Prenatal diagnosis of a de novo inversion of chromosome (2)(p21q11).

    PubMed

    Hengstschläger, M; Mittermayer, C; Prusa, A R; Drahonsky, R; Repa, C; Deutinger, J; Bernaschek, G

    2003-08-01

    Prenatal diagnosis of "apparently balanced" chromosomal rearrangements, if not inherited from a parent, are problematic for genetic counsellors and families. Although the parents need to be informed about the increased risk of multiple congenital anomalies, the anomalies that the fetus is at risk can not be discussed unless a similar breakpoint and accompanying phenotype have been reported in the literature. In the reported case prenatal ultrasound examination revealed a massive hydrocephalus internus and IUGR. The karyotype of the fetus was inv(2)(p21q11) de novo. Postmortem examination revealed short palpebral fissures, hypertelorism, atypical nasiolabial configuration, microgenia, extended position of the fingers, atypical proximal inserted first toe, hydrocephalus internus, hypoplasia of the cerebellum and bulbi olfactorii, bilateral hypoplastic lungs, atrial septal defect II, small right ventricle, dysplasia of the pulmonary valve, hypoplastic pulmonary artery, right proximal ureterostenosis, hypoplastic gall bladder. This is the first description of a de novo inversion (2)(p21q11) in a fetus with multiple malformations.

  15. Rearrangements of organic peroxides and related processes

    PubMed Central

    Yaremenko, Ivan A; Vil’, Vera A; Demchuk, Dmitry V

    2016-01-01

    Summary This review is the first to collate and summarize main data on named and unnamed rearrangement reactions of peroxides. It should be noted, that in the chemistry of peroxides two types of processes are considered under the term rearrangements. These are conventional rearrangements occurring with the retention of the molecular weight and transformations of one of the peroxide moieties after O–O-bond cleavage. Detailed information about the Baeyer−Villiger, Criegee, Hock, Kornblum−DeLaMare, Dakin, Elbs, Schenck, Smith, Wieland, and Story reactions is given. Unnamed rearrangements of organic peroxides and related processes are also analyzed. The rearrangements and related processes of important natural and synthetic peroxides are discussed separately. PMID:27559418

  16. Rearrangements of organic peroxides and related processes.

    PubMed

    Yaremenko, Ivan A; Vil', Vera A; Demchuk, Dmitry V; Terent'ev, Alexander O

    2016-01-01

    This review is the first to collate and summarize main data on named and unnamed rearrangement reactions of peroxides. It should be noted, that in the chemistry of peroxides two types of processes are considered under the term rearrangements. These are conventional rearrangements occurring with the retention of the molecular weight and transformations of one of the peroxide moieties after O-O-bond cleavage. Detailed information about the Baeyer-Villiger, Criegee, Hock, Kornblum-DeLaMare, Dakin, Elbs, Schenck, Smith, Wieland, and Story reactions is given. Unnamed rearrangements of organic peroxides and related processes are also analyzed. The rearrangements and related processes of important natural and synthetic peroxides are discussed separately.

  17. Molecular screening of pituitary adenomas for gene mutations and rearrangements

    SciTech Connect

    Herman, V.; Drazin, N.Z.; Gonskey, R.; Melmed, S. )

    1993-07-01

    Although pituitary tumors arise as benign monoclonal neoplasms, genetic alterations have not readily been identified in these adenomas. The authors studied restriction fragment abnormalities involving the GH gene locus, and mutations in the p53 and H-, K-, and N-ras genes in 22 human GH cell adenomas. Twenty two nonsecretory adenomas were also examined for p53 and ras gene mutations. Seven prolactinoma DNA samples were tested for deletions in the multiple endocrine neoplasia-1 (MEN-1) locus, as well as for rearrangements in the hst gene, a member of the fibroblast growth factor family. In DNA from GH-cell adenomas, identical GH restriction patterns were detected in both pituitary and lymphocyte DNA in all patients and in one patient with a mixed GH-TSH cell adenoma. Using polymerase chain reaction (PCR)-single stranded conformation polymorphism analysis, no mutations were detected in exons 5, 6, 7 and 8 of the p53 gene in GH cell adenomas nor in 22 nonsecretory adenomas. Codons 12/13 and 61 of H-ras, K-ras, and N-ras genes were also intact on GH cell adenomas and in nonsecretory adenomas. Site-specific probes for chromosome 11q13 including, PYGM, D11S146, and INT2 were used in 7 sporadic PRL-secreting adenomas to detect deletions of the MEN-1 locus on chromosome 11. One patient was identified with a loss of 11p, and the remaining 6 patients did not demonstrate loss of heterozygosity in the pituitary 11q13 locus, compared to lymphocyte DNA. None of these patients demonstrated hst gene rearrangements which also maps to this locus. These results show that p53 and ras gene mutations are not common events in the pathogenesis of acromegaly and nonsecretory tumors. Although hst gene rearrangements and deletions of 11q13 are not associated with sporadic PRl-cell adenoma formation, a single patient was detected with a partial loss of chromosome 11, including the putative MEN-1 site. 31 refs., 5 figs., 2 tabs.

  18. The mutagenic potential of a single DNA double-strand break in a mammalian chromosome is not influenced by transcription.

    PubMed

    Allen, Chris; Miller, Cheryl A; Nickoloff, Jac A

    2003-10-07

    In eukaryotes, DNA double-strand breaks (DSBs) are repaired by competing HR and non-homologous end-joining (NHEJ) pathways. DSB repair by HR is highly accurate, while NHEJ can result in deletions and insertions. Transcription enhances certain DNA repair pathways and spontaneous homologous recombination (HR). As a means to promote accurate repair in active genes, we thought it possible that the balance between HR and NHEJ would be shifted toward HR in highly transcribed regions. We tested this idea by examining products of DSB repair in integrated neo-direct repeats under conditions of low-level constitutive, or high-level induced transcription regulated by the dexamethasone (Dex)-responsive mouse mammary tumor virus (MMTV) promoter. DSBs were introduced into one copy of neo by expressing I-SceI nuclease, and DSB repair products were isolated and characterized with an efficient, non-selective assay. We found that transcription does not significantly change the relative frequencies of HR and NHEJ, the relative frequencies of sequence capture and gross chromosomal rearrangement, nor the average size of deletions. About one-third of DSB repair products showed large-scale rearrangements, indicating that a single DSB in a mammalian chromosome has significant mutagenic potential.

  19. A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial sub-genome rearrangement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hexaploid oat (Avena sativa, 2n = 6x = 42) is a member of the Poaceae family with a very large genome (~13 Gb) containing 21 chromosome pairs: seven from each of two similar ancestral diploids (A and D) and seven from a more diverged ancestral diploid (C). Physical rearrangements among ancestral oat...

  20. Competition between Different Variegating Rearrangements for Limited Heterochromatic Factors in Drosophila Melanogaster

    PubMed Central

    Lloyd, V. K.; Sinclair, D. A.; Grigliatti, T. A.

    1997-01-01

    Position effect variegation (PEV) results from the juxtaposition of a euchromatic gene to heterochromatin. In its new position the gene is inactivated in some cells and not in others. This mosaic expression is consistent with variability in the spread of heterochromatin from cell to cell. As many components of heterochromatin are likely to be produced in limited amounts, the spread of heterochromatin into a normally euchromatic region should be accompanied by a concomitant loss or redistribution of the protein components from other heterochromatic regions. We have shown that this is the case by simultaneously monitoring variegation of a euchromatic and a heterochromatic gene associated with a single chromosome rearrangement. Secondly, if several heterochromatic regions of the genome share limited components of heterochromatin, then some variegating rearrangements should compete for these components. We have examined this hypothesis by testing flies with combinations of two or more different variegating rearrangements. Of the nine combinations of pairs of variegating rearrangements we studied, seven showed nonreciprocal interactions. These results imply that many components of heterochromatin are both shared and present in limited amounts and that they can transfer between chromosomal sites. Consequently, even nonvariegation portions of the genome will be disrupted by re-allocation of heterochromatic proteins associated with PEV. These results have implications for models of PEV. PMID:9093849

  1. Comparative mapping identifies the fusion point of an ancient mammalian X-autosomal rearrangement

    SciTech Connect

    Wilcox, S.A.; Watson, J.M.; Spencer, J.A.

    1996-07-01

    Previous comparisons of gene location in the three major groups of mammals (eutherians, marsupials, and monotremes) have suggested that the long arm of the human X represents the ancestral mammalian X chromosome, whereas the short arm represents an autosomal region(s) recently added to the eutherian X chromosome. To identify the fusion point of this ancient X-autosome rearrangement, we have mapped four genes, three of which map near the centromere of the human Xp, in marsupials and in a monotreme. We found that ARAF1, and GATA1 are located on the X chromosome in marsupials, and ALA2 and GATA1 are also located on the X in the platypus. This implies that the proximal short arm of the human X chromosome, including the centromere, was part of the ancestral mammalian X chromosome. The fusion point between the conserved region and the recently added regions therefore maps to human Xp11.23, although gene order on the human X indicates that there has been some rearrangement of this region. 26 refs., 3 figs., 1 tab.

  2. Chromosome identification for the carnivorous plant Genlisea margaretae.

    PubMed

    Tran, Trung D; Šimková, Hana; Schmidt, Renate; Doležel, Jaroslav; Schubert, Ingo; Fuchs, Jörg

    2016-05-07

    Genlisea margaretae, subgenus Genlisea, section Recurvatae (184 Mbp/1C), belongs to a plant genus with a 25-fold genome size difference and an extreme genome plasticity. Its 19 chromosome pairs could be distinguished individually by an approach combining optimized probe pooling and consecutive rounds of multicolor fluorescence in situ hybridization (mcFISH) with bacterial artificial chromosomes (BACs) selected for repeat-free inserts. Fifty-one BACs were assigned to 18 chromosome pairs. They provide a tool for future assignment of genomic sequence contigs to distinct chromosomes as well as for identification of homeologous chromosome regions in other species of the carnivorous Lentibulariaceae family, and potentially of chromosome rearrangements, in cases where more than one BAC per chromosome pair was identified.

  3. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera.

    PubMed

    Ahola, Virpi; Lehtonen, Rainer; Somervuo, Panu; Salmela, Leena; Koskinen, Patrik; Rastas, Pasi; Välimäki, Niko; Paulin, Lars; Kvist, Jouni; Wahlberg, Niklas; Tanskanen, Jaakko; Hornett, Emily A; Ferguson, Laura C; Luo, Shiqi; Cao, Zijuan; de Jong, Maaike A; Duplouy, Anne; Smolander, Olli-Pekka; Vogel, Heiko; McCoy, Rajiv C; Qian, Kui; Chong, Wong Swee; Zhang, Qin; Ahmad, Freed; Haukka, Jani K; Joshi, Aruj; Salojärvi, Jarkko; Wheat, Christopher W; Grosse-Wilde, Ewald; Hughes, Daniel; Katainen, Riku; Pitkänen, Esa; Ylinen, Johannes; Waterhouse, Robert M; Turunen, Mikko; Vähärautio, Anna; Ojanen, Sami P; Schulman, Alan H; Taipale, Minna; Lawson, Daniel; Ukkonen, Esko; Mäkinen, Veli; Goldsmith, Marian R; Holm, Liisa; Auvinen, Petri; Frilander, Mikko J; Hanski, Ilkka

    2014-09-05

    Previous studies have reported that chromosome synteny in Lepidoptera has been well conserved, yet the number of haploid chromosomes varies widely from 5 to 223. Here we report the genome (393 Mb) of the Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae), a widely recognized model species in metapopulation biology and eco-evolutionary research, which has the putative ancestral karyotype of n=31. Using a phylogenetic analyses of Nymphalidae and of other Lepidoptera, combined with orthologue-level comparisons of chromosomes, we conclude that the ancestral lepidopteran karyotype has been n=31 for at least 140 My. We show that fusion chromosomes have retained the ancestral chromosome segments and very few rearrangements have occurred across the fusion sites. The same, shortest ancestral chromosomes have independently participated in fusion events in species with smaller karyotypes. The short chromosomes have higher rearrangement rate than long ones. These characteristics highlight distinctive features of the evolutionary dynamics of butterflies and moths.

  4. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera

    PubMed Central

    Ahola, Virpi; Lehtonen, Rainer; Somervuo, Panu; Salmela, Leena; Koskinen, Patrik; Rastas, Pasi; Välimäki, Niko; Paulin, Lars; Kvist, Jouni; Wahlberg, Niklas; Tanskanen, Jaakko; Hornett, Emily A.; Ferguson, Laura C.; Luo, Shiqi; Cao, Zijuan; de Jong, Maaike A.; Duplouy, Anne; Smolander, Olli-Pekka; Vogel, Heiko; McCoy, Rajiv C.; Qian, Kui; Chong, Wong Swee; Zhang, Qin; Ahmad, Freed; Haukka, Jani K.; Joshi, Aruj; Salojärvi, Jarkko; Wheat, Christopher W.; Grosse-Wilde, Ewald; Hughes, Daniel; Katainen, Riku; Pitkänen, Esa; Ylinen, Johannes; Waterhouse, Robert M.; Turunen, Mikko; Vähärautio, Anna; Ojanen, Sami P.; Schulman, Alan H.; Taipale, Minna; Lawson, Daniel; Ukkonen, Esko; Mäkinen, Veli; Goldsmith, Marian R.; Holm, Liisa; Auvinen, Petri; Frilander, Mikko J.; Hanski, Ilkka

    2014-01-01

    Previous studies have reported that chromosome synteny in Lepidoptera has been well conserved, yet the number of haploid chromosomes varies widely from 5 to 223. Here we report the genome (393 Mb) of the Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae), a widely recognized model species in metapopulation biology and eco-evolutionary research, which has the putative ancestral karyotype of n=31. Using a phylogenetic analyses of Nymphalidae and of other Lepidoptera, combined with orthologue-level comparisons of chromosomes, we conclude that the ancestral lepidopteran karyotype has been n=31 for at least 140 My. We show that fusion chromosomes have retained the ancestral chromosome segments and very few rearrangements have occurred across the fusion sites. The same, shortest ancestral chromosomes have independently participated in fusion events in species with smaller karyotypes. The short chromosomes have higher rearrangement rate than long ones. These characteristics highlight distinctive features of the evolutionary dynamics of butterflies and moths. PMID:25189940

  5. Reversibility of cell surface label rearrangement

    PubMed Central

    1976-01-01

    Cell surface labeling can cause rearrangements of randomly distributed membrane components. Removal of the label bound to the cell surface allows the membrane components to return to their original random distribution, demonstrating that label is necessary to maintain as well as to induce rearrangements. With scanning electron microscopy, the rearrangement of concanavalin A (con A) and ricin binding sites on LA-9 cells has been followed by means of hemocyanin, a visual label. The removal of con A from its binding sites at the cell surface with alpha- methyl mannoside, and the return of these sites to their original distribution are also followed in this manner. There are labeling differences with con A and ricin. Under some conditions, however, the same rearrangements are seen with both lectins. The disappearance of labeled sites from areas of ruffling activity is a major feature of the rearrangements seen. Both this ruffling activity and the rearrangement of label are sensitive to cytochalasin B, and ruffling activity, perhaps along with other cytochalasin-sensitive structure, may play a role in the rearrangements of labeled sites. PMID:1025154

  6. Sex-Linked Chromosome Heterozygosity in Males of Tityus confluens (Buthidae): A Clue about the Presence of Sex Chromosomes in Scorpions.

    PubMed

    Adilardi, Renzo Sebastián; Ojanguren-Affilastro, Andrés Alejandro; Mola, Liliana María

    2016-01-01

    Scorpions of the genus Tityus show holokinetic chromosomes, achiasmatic male meiosis and an absence of heteromorphic sex chromosomes, like all Buthidae. In this work, we analysed the meiotic behaviour and chromosome rearrangements of a population of the scorpion Tityus confluens, characterising the cytotypes of males, females and embryos with different cytogenetic techniques. This revealed that all the females were structural homozygotes, while all the males were structural heterozygotes for different chromosome rearrangements. Four different cytotypes were described in males, which differed in chromosome number (2n = 5 and 2n = 6) and meiotic multivalent configurations (chains of four, five and six chromosomes). Based on a detailed mitotic and meiotic analysis, we propose a sequence of chromosome rearrangements that could give rise to each cytotype and in which fusions have played a major role. Based on the comparison of males, females and a brood of embryos, we also propose that the presence of multivalents in males and homologous pairs in females could be associated with the presence of cryptic sex chromosomes, with the male being the heterogametic sex. We propose that the ancestral karyotype of this species could have had homomorphic XY/XX (male/female) sex chromosomes and a fusion could have occurred between the Y chromosome and an autosome.

  7. Sex-Linked Chromosome Heterozygosity in Males of Tityus confluens (Buthidae): A Clue about the Presence of Sex Chromosomes in Scorpions

    PubMed Central

    Adilardi, Renzo Sebastián; Ojanguren-Affilastro, Andrés Alejandro; Mola, Liliana María

    2016-01-01

    Scorpions of the genus Tityus show holokinetic chromosomes, achiasmatic male meiosis and an absence of heteromorphic sex chromosomes, like all Buthidae. In this work, we analysed the meiotic behaviour and chromosome rearrangements of a population of the scorpion Tityus confluens, characterising the cytotypes of males, females and embryos with different cytogenetic techniques. This revealed that all the females were structural homozygotes, while all the males were structural heterozygotes for different chromosome rearrangements. Four different cytotypes were described in males, which differed in chromosome number (2n = 5 and 2n = 6) and meiotic multivalent configurations (chains of four, five and six chromosomes). Based on a detailed mitotic and meiotic analysis, we propose a sequence of chromosome rearrangements that could give rise to each cytotype and in which fusions have played a major role. Based on the comparison of males, females and a brood of embryos, we also propose that the presence of multivalents in males and homologous pairs in females could be associated with the presence of cryptic sex chromosomes, with the male being the heterogametic sex. We propose that the ancestral karyotype of this species could have had homomorphic XY/XX (male/female) sex chromosomes and a fusion could have occurred between the Y chromosome and an autosome. PMID:27783630

  8. Concurrent V(D)J recombination and DNA end instability increase interchromosomal trans-rearrangements in ATM-deficient thymocytes.

    PubMed

    Bowen, Steven; Wangsa, Darawalee; Ried, Thomas; Livak, Ferenc; Hodes, Richard J

    2013-04-01

    During the CD4(-)CD8(-) (DN) stage of T-cell development, RAG-dependent DNA breaks and V(D)J recombination occur at three T-cell receptor (TCR) loci: TCRβ, TCRγ and TCRδ. During this stage, abnormal trans-rearrangements also take place between TCR loci, occurring at increased frequency in absence of the DNA damage response mediator ataxia telangiectasia mutated (ATM). Here, we use this model of physiologic trans-rearrangement to study factors that predispose to rearrangement and the role of ATM in preventing chromosomal translocations. The frequency of DN thymocytes with DNA damage foci at multiple TCR loci simultaneously is increased 2- to 3-fold in the absence of ATM. However, trans-rearrangement is increased 10 000- to 100 000-fold, indicating that ATM function extends beyond timely resolution of DNA breaks. RAG-mediated synaptic complex formation occurs between recombination signal sequences with unequal 12 and 23 base spacer sequences (12/23 rule). TCR trans-rearrangements violate this rule, as we observed similar frequencies of 12/23 and aberrant 12/12 or 23/23 recombination products. This suggests that trans-rearrangements are not the result of trans-synaptic complex formation, but they are instead because of unstable cis synaptic complexes that form simultaneously at distinct TCR loci. Thus, ATM suppresses trans-rearrangement primarily through stabilization of DNA breaks at TCR loci.

  9. Further delineation of nonhomologous-based recombination and evidence for subtelomeric segmental duplications in 1p36 rearrangements.

    PubMed

    D'Angelo, Carla S; Gajecka, Marzena; Kim, Chong A; Gentles, Andrew J; Glotzbach, Caron D; Shaffer, Lisa G; Koiffmann, Célia P

    2009-06-01

    The mechanisms involved in the formation of subtelomeric rearrangements are now beginning to be elucidated. Breakpoint sequencing analysis of 1p36 rearrangements has made important contributions to this line of inquiry. Despite the unique architecture of segmental duplications inherent to human subtelomeres, no common mechanism has been identified thus far and different nonexclusive recombination-repair mechanisms seem to predominate. In order to gain further insights into the mechanisms of chromosome breakage, repair, and stabilization mediating subtelomeric rearrangements in humans, we investigated the constitutional rearrangements of 1p36. Cloning of the breakpoint junctions in a complex rearrangement and three non-reciprocal translocations revealed similarities at the junctions, such as microhomology of up to three nucleotides, along with no significant sequence identity in close proximity to the breakpoint regions. All the breakpoints appeared to be unique and their occurrence was limited to non-repetitive, unique DNA sequences. Several recombination- or cleavage-associated motifs that may promote non-homologous recombination were observed in close proximity to the junctions. We conclude that NHEJ is likely the mechanism of DNA repair that generates these rearrangements. Additionally, two apparently pure terminal deletions were also investigated, and the refinement of the breakpoint regions identified two distinct genomic intervals ~25-kb apart, each containing a series of 1p36 specific segmental duplications with 90-98% identity. Segmental duplications can serve as substrates for ectopic homologous recombination or stimulate genomic rearrangements.

  10. A familial complex chromosome translocation resulting in duplication of 6p25.

    PubMed

    Vermeesch, J R; Thoelen, R; Fryns, Jean Pierre

    2004-01-01

    We report on a girl with psychomotor retardation, severe speech developmental delay and mild dysmorphic features. Molecular cytogenetic analysis showed that the patient was carrier of an insertion (6)(p22.5-->22.4) in chromosome 12. Analysis of the chromosomes of the mother revealed the presence of a complex chromosomal rearrangement. In addition to the insertion (6)(p22.5-->22.4) in chromosome 12 and a pericentric inversion in chromosome 12, the 6p subtelomeric region was absent in the mother. This is, to our knowledge, the smallest pure duplication of chromosome 6p as well as the smallest cryptic subtelomeric 6pter deletion thus far reported.

  11. Rearrangement of mitochondrial tRNA genes in flat bugs (Hemiptera: Aradidae)

    PubMed Central

    Song, Fan; Li, Hu; Shao, Renfu; Shi, Aimin; Bai, Xiaoshuan; Zheng, Xiaorong; Heiss, Ernst; Cai, Wanzhi

    2016-01-01

    The typical insect mitochondrial (mt) genome organization, which contains a single chromosome with 37 genes, was found in the infraorder Pentatomomorpha (suborder Heteroptera). The arrangement of mt genes in these true bugs is usually the same as the ancestral mt gene arrangement of insects. Rearrangement of transfer RNA (tRNA) genes, however, has been found in two subfamilies of flat bugs (Mezirinae and Calisiinae, family Aradidae). In this study, we sequenced the complete mt genomes of four species from three other subfamilies (Aradinae, Carventinae and Aneurinae). We found tRNA gene rearrangement in all of these four species. All of the rearranged tRNA genes are located between the mitochondrial control region and cox1, indicating this region as a hotspot for gene rearrangement in flat bugs; the rearrangement is likely caused by events of tandem duplication and random deletion of genes. Furthermore, our phylogenetic and dating analyses indicated that the swap of positions between trnQ and trnI occurred ~162 million years ago (MYA) in the most recent common ancestor of the five subfamilies of flat bugs investigated to date, whereas the swap of positions between trnC and trnW occurred later in the lineage leading to Calisiinae, and the translocation of trnC and trnY occurred later than 134 MYA in the lineage leading to Aradinae. PMID:27180804

  12. Sequencing human-gibbon breakpoints of synteny reveals mosaic new insertions at rearrangement sites.

    PubMed

    Girirajan, Santhosh; Chen, Lin; Graves, Tina; Marques-Bonet, Tomas; Ventura, Mario; Fronick, Catrina; Fulton, Lucinda; Rocchi, Mariano; Fulton, Robert S; Wilson, Richard K; Mardis, Elaine R; Eichler, Evan E

    2009-02-01

    The gibbon genome exhibits extensive karyotypic diversity with an increased rate of chromosomal rearrangements during evolution. In an effort to understand the mechanistic origin and implications of these rearrangement events, we sequenced 24 synteny breakpoint regions in the white-cheeked gibbon (Nomascus leucogenys, NLE) in the form of high-quality BAC insert sequences (4.2 Mbp). While there is a significant deficit of breakpoints in genes, we identified seven human gene structures involved in signaling pathways (DEPDC4, GNG10), phospholipid metabolism (ENPP5, PLSCR2), beta-oxidation (ECH1), cellular structure and transport (HEATR4), and transcription (ZNF461), that have been disrupted in the NLE gibbon lineage. Notably, only three of these genes show the expected evolutionary signatures of pseudogenization. Sequence analysis of the breakpoints suggested both nonclassical nonhomologous end-joining (NHEJ) and replication-based mechanisms of rearrangement. A substantial number (11/24) of human-NLE gibbon breakpoints showed new insertions of gibbon-specific repeats and mosaic structures formed from disparate sequences including segmental duplications, LINE, SINE, and LTR elements. Analysis of these sites provides a model for a replication-dependent repair mechanism for double-strand breaks (DSBs) at rearrangement sites and insights into the structure and formation of primate segmental duplications at sites of genomic rearrangements during evolution.

  13. Rearrangement of mitochondrial tRNA genes in flat bugs (Hemiptera: Aradidae).

    PubMed

    Song, Fan; Li, Hu; Shao, Renfu; Shi, Aimin; Bai, Xiaoshuan; Zheng, Xiaorong; Heiss, Ernst; Cai, Wanzhi

    2016-05-16

    The typical insect mitochondrial (mt) genome organization, which contains a single chromosome with 37 genes, was found in the infraorder Pentatomomorpha (suborder Heteroptera). The arrangement of mt genes in these true bugs is usually the same as the ancestral mt gene arrangement of insects. Rearrangement of transfer RNA (tRNA) genes, however, has been found in two subfamilies of flat bugs (Mezirinae and Calisiinae, family Aradidae). In this study, we sequenced the complete mt genomes of four species from three other subfamilies (Aradinae, Carventinae and Aneurinae). We found tRNA gene rearrangement in all of these four species. All of the rearranged tRNA genes are located between the mitochondrial control region and cox1, indicating this region as a hotspot for gene rearrangement in flat bugs; the rearrangement is likely caused by events of tandem duplication and random deletion of genes. Furthermore, our phylogenetic and dating analyses indicated that the swap of positions between trnQ and trnI occurred ~162 million years ago (MYA) in the most recent common ancestor of the five subfamilies of flat bugs investigated to date, whereas the swap of positions between trnC and trnW occurred later in the lineage leading to Calisiinae, and the translocation of trnC and trnY occurred later than 134 MYA in the lineage leading to Aradinae.

  14. Lateral gene transfer, rearrangement, reconciliation

    PubMed Central

    2013-01-01

    Background Models of ancestral gene order reconstruction have progressively integrated different evolutionary patterns and processes such as unequal gene content, gene duplications, and implicitly sequence evolution via reconciled gene trees. These models have so far ignored lateral gene transfer, even though in unicellular organisms it can have an important confounding effect, and can be a rich source of information on the function of genes through the detection of transfers of clusters of genes. Result We report an algorithm together with its implementation, DeCoLT, that reconstructs ancestral genome organization based on reconciled gene trees which summarize information on sequence evolution, gene origination, duplication, loss, and lateral transfer. DeCoLT optimizes in polynomial time on the number of rearrangements, computed as the number of gains and breakages of adjacencies between pairs of genes. We apply DeCoLT to 1099 gene families from 36 cyanobacteria genomes. Conclusion DeCoLT is able to reconstruct adjacencies in 35 ancestral bacterial genomes with a thousand gene families in a few hours, and detects clusters of co-transferred genes. DeCoLT may also be used with any relationship between genes instead of adjacencies, to reconstruct ancestral interactions, functions or complexes. Availability http://pbil.univ-lyon1.fr/software/DeCoLT/ PMID:24564205

  15. An autosomal locus that controls chromosome-wide replication timing and mono-allelic expression.

    PubMed

    Stoffregen, Eric P; Donley, Nathan; Stauffer, Daniel; Smith, Leslie; Thayer, Mathew J

    2011-06-15

    Mammalian DNA replication initiates at multiple sites along chromosomes at different times, following a temporal replication program. Homologous alleles typically replicate synchronously; however, mono-allelically expressed genes such as imprinted genes, allelically excluded genes and genes on the female X chromosome replicate asynchronously. We have used a chromosome engineering strategy to identify a human autosomal locus that controls this replication timing program in cis. We show that Cre/loxP-mediated rearrangements at a discrete locus at 6q16.1 result in delayed replication of the entire chromosome. This locus displays asynchronous replication timing that is coordinated with other mono-allelically expressed genes on chromosome 6. Characterization of this locus revealed mono-allelic expression of a large intergenic non-coding RNA, which we have named asynchronous replication and autosomal RNA on chromosome 6, ASAR6. Finally, disruption of this locus results in the activation of the previously silent alleles of linked mono-allelically expressed genes. We previously found that chromosome rearrangements involving eight different autosomes display delayed replication timing, and that cells containing chromosomes with delayed replication timing have a 30-80-fold increase in the rate at which new gross chromosomal rearrangements occurred. Taken together, these observations indicate that human autosomes contain discrete cis-acting loci that control chromosome-wide replication timing, mono-allelic expression and the stability of entire chromosomes.

  16. An autosomal locus that controls chromosome-wide replication timing and mono-allelic expression

    PubMed Central

    Stoffregen, Eric P.; Donley, Nathan; Stauffer, Daniel; Smith, Leslie; Thayer, Mathew J.

    2011-01-01

    Mammalian DNA replication initiates at multiple sites along chromosomes at different times, following a temporal replication program. Homologous alleles typically replicate synchronously; however, mono-allelically expressed genes such as imprinted genes, allelically excluded genes and genes on the female X chromosome replicate asynchronously. We have used a chromosome engineering strategy to identify a human autosomal locus that controls this replication timing program in cis. We show that Cre/loxP-mediated rearrangements at a discrete locus at 6q16.1 result in delayed replication of the entire chromosome. This locus displays asynchronous replication timing that is coordinated with other mono-allelically expressed genes on chromosome 6. Characterization of this locus revealed mono-allelic expression of a large intergenic non-coding RNA, which we have named asynchronous replication and autosomal RNA on chromosome 6, ASAR6. Finally, disruption of this locus results in the activation of the previously silent alleles of linked mono-allelically expressed genes. We previously found that chromosome rearrangements involving eight different autosomes display delayed replication timing, and that cells containing chromosomes with delayed replication timing have a 30–80-fold increase in the rate at which new gross chromosomal rearrangements occurred. Taken together, these observations indicate that human autosomes contain discrete cis-acting loci that control chromosome-wide replication timing, mono-allelic expression and the stability of entire chromosomes. PMID:21459774

  17. Analysis of a familial three way translocation involving chromosomes 3q, 6q, and 15q by high resolution banding and fluorescent in situ hybridisation (FISH) shows two different unbalanced karyotypes in sibs.

    PubMed Central

    Wieczorek, D; Engels, H; Viersbach, R; Henke, B; Schwanitz, G; Passarge, E

    1998-01-01

    We report on a familial three way translocation involving chromosomes 3, 6, and 15 identified by prometaphase banding and fluorescence in situ hybridisation (FISH). Two mentally retarded sibs with different phenotypic abnormalities, their phenotypically normal sister and mother, and two fetuses of the phenotypically normal sister were analysed. The terminal regions of chromosomes 3q, 6q, and 15q were involved in a reciprocal translocation, in addition to a paracentric inversion of the derivative chromosome 15. Conventional cytogenetic studies with high resolution GTG banding did not resolve this rearrangement. FISH using whole chromosome paints (WCPs) identified the chromosomal regions involved, except the aberrant region of 3q, which was undetectable with these probes. Investigation of this region with the subtelomeric FISH probe D3S1445/D3S1446 showed a balanced karyotype, 46,XX,t(3;15;6) (q29;q26.1;q26), inv der(15) (q15.1q26.1) in two adult females and one fetus. It was unbalanced in two sibs, showing two different types of unbalanced translocation resulting in partial trisomy 3q in combination with partial monosomy 6q in one patient and partial trisomy 15q with partial monosomy 6q in the other patient and one fetus. These represent apparently new chromosomal phenotypes. Images PMID:9678698

  18. Systematic Identification of Balanced Transposition Polymorphisms in Saccharomyces cerevisiae

    PubMed Central

    Faddah, Dina A.; Ganko, Eric W.; McCoach, Caroline; Pickrell, Joseph K.; Hanlon, Sean E.; Mann, Frederick G.; Mieczkowska, Joanna O.; Jones, Corbin D.; Lieb, Jason D.; Vision, Todd J.

    2009-01-01

    High-throughput techniques for detecting DNA polymorphisms generally do not identify changes in which the genomic position of a sequence, but not its copy number, varies among individuals. To explore such balanced structural polymorphisms, we used array-based Comparative Genomic Hybridization (aCGH) to conduct a genome-wide screen for single-copy genomic segments that occupy different genomic positions in the standard laboratory strain of Saccharomyces cerevisiae (S90) and a polymorphic wild isolate (Y101) through analysis of six tetrads from a cross of these two strains. Paired-end high-throughput sequencing of Y101 validated four of the predicted rearrangements. The transposed segments contained one to four annotated genes each, yet crosses between S90 and Y101 yielded mostly viable tetrads. The longest segment comprised 13.5 kb near the telomere of chromosome XV in the S288C reference strain and Southern blotting confirmed its predicted location on chromosome IX in Y101. Interestingly, inter-locus crossover events between copies of this segment occurred at a detectable rate. The presence of low-copy repetitive sequences at the junctions of this segment suggests that it may have arisen through ectopic recombination. Our methodology and findings provide a starting point for exploring the origins, phenotypic consequences, and evolutionary fate of this largely unexplored form of genomic polymorphism. PMID:19503594

  19. Mechanisms of Chromosome Congression during Mitosis.

    PubMed

    Maiato, Helder; Gomes, Ana Margarida; Sousa, Filipe; Barisic, Marin

    2017-02-17

    Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called "direct congression" pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call "peripheral congression", is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule diversity by

  20. Mechanisms of Chromosome Congression during Mitosis

    PubMed Central

    Maiato, Helder; Gomes, Ana Margarida; Sousa, Filipe; Barisic, Marin

    2017-01-01

    Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called “direct congression” pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call “peripheral congression”, is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule

  1. Glycolytic regulation of cell rearrangement in angiogenesis

    PubMed Central

    Cruys, Bert; Wong, Brian W.; Kuchnio, Anna; Verdegem, Dries; Cantelmo, Anna Rita; Conradi, Lena-Christin; Vandekeere, Saar; Bouché, Ann; Cornelissen, Ivo; Vinckier, Stefan; Merks, Roeland M. H.; Dejana, Elisabetta; Gerhardt, Holger; Dewerchin, Mieke; Bentley, Katie; Carmeliet, Peter

    2016-01-01

    During vessel sprouting, endothelial cells (ECs) dynamically rearrange positions in the sprout to compete for the tip position. We recently identified a key role for the glycolytic activator PFKFB3 in vessel sprouting by regulating cytoskeleton remodelling, migration and tip cell competitiveness. It is, however, unknown how glycolysis regulates EC rearrangement during vessel sprouting. Here we report that computational simulations, validated by experimentation, predict that glycolytic production of ATP drives EC rearrangement by promoting filopodia formation and reducing intercellular adhesion. Notably, the simulations correctly predicted that blocking PFKFB3 normalizes the disturbed EC rearrangement in high VEGF conditions, as occurs during pathological angiogenesis. This interdisciplinary study integrates EC metabolism in vessel sprouting, yielding mechanistic insight in the control of vessel sprouting by glycolysis, and suggesting anti-glycolytic therapy for vessel normalization in cancer and non-malignant diseases. PMID:27436424

  2. Double trisomy 8 and 21 in acute myelocytic leukemias, one with rearrangement of the RUNX1 gene.

    PubMed

    Berger, Roland; Coniat, Maryvonne Busson-Le

    2003-04-15

    Fluorescence in situ hybridization analysis was carried out in five patients with acute myeloblastic leukemia of various French-American-British subtypes and with double trisomy of chromosomes 8 and 21. PML-RARA fusion was detected with appropriate molecular probes in one patient with acute promyelocytic leukemia without t(15;17). Two PAC probes covering the 5' and 3' part of the RUNX1 gene were used in the four other patients. While three copies were present in three patients, as expected from conventional karyotype analysis, only two hybridization signals were present in the fifth patient. This was due to the apparent loss of the 3' part of RUNX1. Since chromosome number abnormalities may be associated with submicroscopic gene rearrangements, it should be important to search for them for a better understanding of mechanisms of leukemogenesis, and to understand the prognostic heterogeneity in leukemic patients with aneusomies without apparent chromosome structure rearrangements.

  3. Balance Problems

    MedlinePlus

    ... version of this page please turn Javascript on. Balance Problems About Balance Problems Have you ever felt dizzy, lightheaded, or ... dizziness problem during the past year. Why Good Balance is Important Having good balance means being able ...

  4. Nuclear dynamics and genetic rearrangement in heterokaryotic colonies of Fusarium oxysporum.

    PubMed

    Shahi, Shermineh; Beerens, Bas; Bosch, Martin; Linmans, Jasper; Rep, Martijn

    2016-06-01

    Recent studies have shown horizontal transfer of chromosomes to be a potential key contributor to genome plasticity in asexual fungal pathogens. However, the mechanisms behind horizontal chromosome transfer in eukaryotes are not well understood. Here we investigated the role of conidial anastomosis in heterokaryon formation between incompatible strains of Fusarium oxysporum and determined the importance of heterokaryons for horizontal chromosome transfer. Using live-cell imaging we demonstrate that conidial pairing of incompatible strains under carbon starvation can result in the formation of viable heterokaryotic hyphae in F. oxysporum. Nuclei of the parental lines presumably fuse at some stage as conidia with a single nucleus harboring both marker histones (GFP- and RFP-tagged) are produced. Upon colony formation, this hybrid offspring is subject to progressive and gradual genome rearrangement. The parental genomes appear to become spatially separated and RFP-tagged histones, deriving from one of the strains, Fol4287, are eventually lost. With a PCR-based method we showed that markers for most of the chromosomes of this strain are lost, indicating a lack of Fol4287 chromosomes. This leaves offspring with the genomic background of the other strain (Fo47), but in some cases together with one or two chromosomes from Fol4287, including the chromosome that confers pathogenicity towards tomato.

  5. Synthetic chromosomes.

    PubMed

    Schindler, Daniel; Waldminghaus, Torsten

    2015-11-01

    What a living organism looks like and how it works and what are its components-all this is encoded on DNA, the genetic blueprint. Consequently, the way to change an organism is to change its genetic information. Since the first pieces of recombinant DNA have been used to transform cells in the 1970s, this approach has been enormously extended. Bigger and bigger parts of the genetic information have been exchanged or added over the years. Now we are at a point where the construction of entire chromosomes becomes a reachable goal and first examples appear. This development leads to fundamental new questions, for example, about what is possible and desirable to build or what construction rules one needs to follow when building synthetic chromosomes. Here we review the recent progress in the field, discuss current challenges and speculate on the appearance of future synthetic chromosomes.

  6. Comparative chromosome painting in mammals: Human and the Indian muntjac (Muntiacus muntjak vaginalis)

    SciTech Connect

    Yang, Fengtang; Mueller, S.; Ferguson-Smith, M.A.

    1997-02-01

    We have used human chromosome-specific painting probes for in situ hybridization on Indian muntjac (Muntiacus muntjak vaginalis, 2n = 6, 7) metaphase chromosomes to identify the homologous chromosome regions of the entire human chromosome set. Chromosome rearrangements that have been involved in the karyotype evolution of these two species belonging to different mammalian orders were reconstructed based on hybridization patterns. Although, compared to human chromosomes, the karyotype of the Indian muntjac seems to be highly rearranged, we could identify a limited number of highly conserved homologous chromosome regions for each of the human chromosome-specific probes. We identified 48 homologous autosomal chromosome segments, which is in the range of the numbers found in other artiodactyls and carnivores recently analyzed by chromosome painting. The results demonstrate that the reshuffling of the muntjac karyotype is mostly due to fusions of huge blocks of entire chromosomes. This is in accordance with previous chromosome painting analyses between various Muntjac species and contrasts the findings for some other mammals (e.g., gibbons, mice) that show exceptional chromosome reshuffling due to multiple reciprocal translocation events. 21 refs., 3 figs.

  7. Centromere destiny in dicentric chromosomes: New insights from the evolution of human chromosome 2 ancestral centromeric region.

    PubMed

    Chiatante, Giorgia; Giannuzzi, Giuliana; Calabrese, Francesco Maria; Eichler, Evan E; Ventura, Mario

    2017-03-15

    Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process.

  8. Gene targeting for chromosome engineering applications in eukaryotic cells.

    PubMed

    Lyznik, Leszek A; Dress, Virginia

    2008-01-01

    As biotechnology advances, there is an increasing need to develop new technologies that may assist in more precise genetic engineering manipulations. Whether a placement of single genes in the proper chromosomal context, stacking a number of genes in the same chromosomal locus, rearrangement of existing chromosomal elements, or a global reconfiguration of the chromosomal structures is contemplated, the new genetic tools being developed provide technical capabilities to achieve goals that were only theoretical not long ago. We use examples of recent patent literature (issued patents and published patent applications) to illustrate trends in this fast advancing area of genetic technology. If one wants to engage in the development and utilization of such technologies, the complexity of genetic manipulations requires a careful evaluation and navigation across the legal/patent landscape of chromosomal modification/remodeling. While this review is mostly focused on the basic laboratory tools of chromosomal manipulations, their specific applications for biomedical, pharmaceutical, or agricultural purposes may deserve an additional compilation.

  9. Chromosome in situ suppression hybridisation in human male meiosis.

    PubMed Central

    Goldman, A S; Hultén, M A

    1992-01-01

    Chromosome in situ suppression hybridisation with biotinylated whole chromosome libraries permits the unequivocable identification of specific human somatic chromosomes in numerous situations. We have now used this so called 'chromosome painting' technique in meiotically dividing cells, isolated from human testicular biopsy. It is shown that the method allows identification of target homologues, bivalents, and sister chromatids throughout the relevant stages of meiosis. Thus, a more accurate study of meiosis per se is now available to increase our understanding of such processes as first meiotic synapsis of homologues and chiasma formation/meiotic crossing over, which are still outstanding biological enigmas. The new technology also makes it possible, for the first time, (1) to obtain direct numerical data in first meiotic non-disjunction for individual chromosomes, and (2) to quantify segregation in male carriers of structural rearrangements. We exemplify the use of the chromosome painting technique for a first meiotic segregation analysis of an insertional translocation carrier. Images PMID:1613773

  10. Correlation of physical and genetic maps of human chromosome 16

    SciTech Connect

    Sutherland, G.R.

    1991-01-01

    This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentially 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.

  11. A new momenclature for structural aberrations detected by chromosome painting

    SciTech Connect

    Tucker, J.D.; Morgan, W.F.; Awa, A.A.; Bauchinger, M.; Blakey, D.; Cornforth, N.N.; Littlefield, L.G.; Natarajan, A.T.; Shasserre, C.

    1994-12-31

    The advent of chromosome painting has brought the realization that structural aberrations can be far more complex than previously imagined. Different laboratories have devised their own nomenclature systems to deal with this complexity, with the result that the terminology has become inconsistent and confusing. Recently, an international group of cytogeneticists experienced with chromosome painting convened to address this issue. The result is a systematic nomenclature capable of describing chromosome aberrations occurring between painted and unpainted chromosomes, as well as aberrations involving only painted chromosomes. The nomenclature is flexible enough to describe accurately even the most extensively rearranged chromosomes. As a consequence of this flexibility, the scheme upon which the nomenclature is based differs substantially from other systems of aberration classification. We call this system the Protocol for Aberration Identification and Nomenclature Terminology (PAINT).

  12. Primary amenorrhoea in a patient with mosaicism for monosomy X and a derivative X-chromosome.

    PubMed

    Gersak, K; Writzl, K; Veble, A; Liehr, T

    2010-01-01

    Primary amenorrhoea is defined as the absence of menstruation in phenotypic women aged 16 years or older, if secondary sexual characteristics are present. X chromosome abnormalities probably comprise about one half of all cases, including Turner syndrome and X chromosome rearrangements. Conventional banding cytogenetic methods might miss the accurate detection of structural chromosome abnormalities. The fluorescence in situ hybridization (FISH) and multicolor FISH techniques are required to interpret specific chromosomal rearrangement. As far as we know, we report the first case with chromosome mosaicism for monosomy X and terminal deletion of Xq26 with duplication of Xp11-->pter. In spite of the fact that a 45,X karyotype was detected in 46% of lymphocytes, she was tall and her secondary sexual characteristics were moderately developed, including breast, pubic and axillary hair stages. Cytogenetic and FISH analyses should be considered for patients presenting primary amenorrhoea even if there are no other clinical features suggestive of chromosome abnormality.

  13. Paternal uniparental isodisomy for human chromosome 20 and absence of external ears

    SciTech Connect

    Spinner, N.B.; Rand, E.; McDonald-McGinn, D.M.

    1994-09-01

    Uniparental disomy can cause disease if the involved chromosomal region contains imprinted genes. Uniparental disomy for portions of human chromosomes 6, 7, 9, 11, 14 and 15 have been associated with abnormal phenotypes. We studied a patient with multiple abnormalities including an absent left ear with a small right ear remnant, microcephaly, congenital heart disease and Hirschprung`s disease. Cytogenetics revealed a 45,XY,-20,-20,+ter rea(20;20)(p13;p13) in 10/10 cells from bone marrow and 20/20 cells from peripheral blood. Analysis of a skin culture revealed a second cell line with trisomy 20 resulting from an apparently normal chromosome 20 in addition to the terminally rearranged chromosome, in 8/100 cells studied. The unusual phenotype of our patient was not consistent with previously reported cases of deletions of 20p or mosaic trisomy 20. We hypothesized that the patient`s phenotype could either result from deletion of both copies of a gene near the p arm terminus of chromosome 20 or from uniparental disomy of chromosome 20. There were no alterations or rearrangements of PTP-alpha (which maps to distal 20p) by Southern or Northern blot analysis. A chromosome 20 sub-telomeric probe was found to be present on the rearranged 20 by FISH suggesting that subtelomeric sequences have not been lost as a consequece of this rearrangement. To determine the parental origin of the 2 chromosome 20`s in the terminal rearrangement, we studied the genotypes of the proband and his parents in lymphoblastoid cell lines at 8 polymorphic loci. Genotypes at D20S115, D20S186, and D20S119 indicated that there was paternal isodisomy. Other loci were uninformative. This is the first example of uniparental disomy for chromosome 20. Further studies are warranted to correlate phenotype with uniparental inheritance of this chromosome.

  14. Durable Clinical Response to Entrectinib in NTRK1-Rearranged Non-Small Cell Lung Cancer

    PubMed Central

    Le, Long P.; Zheng, Zongli; Muzikansky, Alona; Drilon, Alexander; Patel, Manish; Bauer, Todd M.; Liu, Stephen V.; Ou, Sai-Hong I.; Jackman, David; Costa, Daniel B.; Multani, Pratik S.; Li, Gary G.; Hornby, Zachary; Chow-Maneval, Edna; Luo, David; Lim, Jonathan E.; Iafrate, Anthony J.; Shaw, Alice T.

    2015-01-01

    Introduction: Chromosomal rearrangements involving neurotrophic tyrosine kinase 1 (NTRK1) occur in a subset of non-small cell lung cancers (NSCLCs) and other solid tumor malignancies, leading to expression of an oncogenic TrkA fusion protein. Entrectinib (RXDX-101) is an orally available tyrosine kinase inhibitor, including TrkA. We sought to determine the frequency of NTRK1 rearrangements in NSCLC and to assess the clinical activity of entrectinib. Methods: We screened 1378 cases of NSCLC using anchored multiplex polymerase chain reaction (AMP). A patient with an NTRK1 gene rearrangement was enrolled onto a Phase 1 dose escalation study of entrectinib in adult patients with locally advanced or metastatic tumors (NCT02097810). We assessed safety and response to treatment. Results: We identified NTRK1 gene rearrangements at a frequency of 0.1% in this cohort. A patient with stage IV lung adenocrcinoma with an SQSTM1-NTRK1 fusion transcript expression was treated with entrectinib. Entrectinib was well tolerated, with no grade 3–4 adverse events. Within three weeks of starting on treatment, the patient reported resolution of prior dyspnea and pain. Restaging CT scans demonstrated a RECIST partial response (PR) and complete resolution of all brain metastases. This patient has continued on treatment for over 6 months with an ongoing PR. Conclusions: Entrectinib demonstrated significant anti-tumor activity in a patient with NSCLC harboring an SQSTM1-NTRK1 gene rearrangement, indicating that entrectinib may be an effective therapy for tumors with NTRK gene rearrangements, including those with central nervous system metastases. PMID:26565381

  15. Chromosome differentiation patterns during cichlid fish evolution

    PubMed Central

    2010-01-01

    Background Cichlid fishes have been the subject of increasing scientific interest because of their rapid adaptive radiation which has led to an extensive ecological diversity and their enormous importance to tropical and subtropical aquaculture. To increase our understanding of chromosome evolution among cichlid species, karyotypes of one Asian, 22 African, and 30 South American cichlid species were investigated, and chromosomal data of the family was reviewed. Results Although there is extensive variation in the karyotypes of cichlid fishes (from 2n = 32 to 2n = 60 chromosomes), the modal chromosome number for South American species was 2n = 48 and the modal number for the African ones was 2n = 44. The only Asian species analyzed, Etroplus maculatus, was observed to have 46 chromosomes. The presence of one or two macro B chromosomes was detected in two African species. The cytogenetic mapping of 18S ribosomal RNA (18S rRNA) gene revealed a variable number of clusters among species varying from two to six. Conclusions The karyotype diversification of cichlids seems to have occurred through several chromosomal rearrangements involving fissions, fusions and inversions. It was possible to identify karyotype markers for the subfamilies Pseudocrenilabrinae (African) and Cichlinae (American). The karyotype analyses did not clarify the phylogenetic relationship among the Cichlinae tribes. On the other hand, the two major groups of Pseudocrenilabrinae (tilapiine and haplochromine) were clearly discriminated based on the characteristics of their karyotypes. The cytogenetic mapping of 18S ribosomal RNA (18S rRNA) gene did not follow the chromosome diversification in the family. The dynamic evolution of the repeated units of rRNA genes generates patterns of chromosomal distribution that do not help follows the phylogenetic relationships among taxa. The presence of B chromosomes in cichlids is of particular interest because they may not be represented in the reference genome

  16. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies.

    PubMed

    Redin, Claire; Brand, Harrison; Collins, Ryan L; Kammin, Tammy; Mitchell, Elyse; Hodge, Jennelle C; Hanscom, Carrie; Pillalamarri, Vamsee; Seabra, Catarina M; Abbott, Mary-Alice; Abdul-Rahman, Omar A; Aberg, Erika; Adley, Rhett; Alcaraz-Estrada, Sofia L; Alkuraya, Fowzan S; An, Yu; Anderson, Mary-Anne; Antolik, Caroline; Anyane-Yeboa, Kwame; Atkin, Joan F; Bartell, Tina; Bernstein, Jonathan A; Beyer, Elizabeth; Blumenthal, Ian; Bongers, Ernie M H F; Brilstra, Eva H; Brown, Chester W; Brüggenwirth, Hennie T; Callewaert, Bert; Chiang, Colby; Corning, Ken; Cox, Helen; Cuppen, Edwin; Currall, Benjamin B; Cushing, Tom; David, Dezso; Deardorff, Matthew A; Dheedene, Annelies; D'Hooghe, Marc; de Vries, Bert B A; Earl, Dawn L; Ferguson, Heather L; Fisher, Heather; FitzPatrick, David R; Gerrol, Pamela; Giachino, Daniela; Glessner, Joseph T; Gliem, Troy; Grady, Margo; Graham, Brett H; Griffis, Cristin; Gripp, Karen W; Gropman, Andrea L; Hanson-Kahn, Andrea; Harris, David J; Hayden, Mark A; Hill, Rosamund; Hochstenbach, Ron; Hoffman, Jodi D; Hopkin, Robert J; Hubshman, Monika W; Innes, A Micheil; Irons, Mira; Irving, Melita; Jacobsen, Jessie C; Janssens, Sandra; Jewett, Tamison; Johnson, John P; Jongmans, Marjolijn C; Kahler, Stephen G; Koolen, David A; Korzelius, Jerome; Kroisel, Peter M; Lacassie, Yves; Lawless, William; Lemyre, Emmanuelle; Leppig, Kathleen; Levin, Alex V; Li, Haibo; Li, Hong; Liao, Eric C; Lim, Cynthia; Lose, Edward J; Lucente, Diane; Macera, Michael J; Manavalan, Poornima; Mandrile, Giorgia; Marcelis, Carlo L; Margolin, Lauren; Mason, Tamara; Masser-Frye, Diane; McClellan, Michael W; Mendoza, Cinthya J Zepeda; Menten, Björn; Middelkamp, Sjors; Mikami, Liya R; Moe, Emily; Mohammed, Shehla; Mononen, Tarja; Mortenson, Megan E; Moya, Graciela; Nieuwint, Aggie W; Ordulu, Zehra; Parkash, Sandhya; Pauker, Susan P; Pereira, Shahrin; Perrin, Danielle; Phelan, Katy; Aguilar, Raul E Piña; Poddighe, Pino J; Pregno, Giulia; Raskin, Salmo; Reis, Linda; Rhead, William; Rita, Debra; Renkens, Ivo; Roelens, Filip; Ruliera, Jayla; Rump, Patrick; Schilit, Samantha L P; Shaheen, Ranad; Sparkes, Rebecca; Spiegel, Erica; Stevens, Blair; Stone, Matthew R; Tagoe, Julia; Thakuria, Joseph V; van Bon, Bregje W; van de Kamp, Jiddeke; van Der Burgt, Ineke; van Essen, Ton; van Ravenswaaij-Arts, Conny M; van Roosmalen, Markus J; Vergult, Sarah; Volker-Touw, Catharina M L; Warburton, Dorothy P; Waterman, Matthew J; Wiley, Susan; Wilson, Anna; Yerena-de Vega, Maria de la Concepcion A; Zori, Roberto T; Levy, Brynn; Brunner, Han G; de Leeuw, Nicole; Kloosterman, Wigard P; Thorland, Erik C; Morton, Cynthia C; Gusella, James F; Talkowski, Michael E

    2017-01-01

    Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology.

  17. Geographic distribution of chromosome and microsatellite DNA polymorphisms in Oncorhynchus mykiss native to western Washington

    USGS Publications Warehouse

    Ostberg, C.O.; Thorgaard, G.H.

    1999-01-01

    Chromosome studies of native populations of Oncorhynchus mykiss (steelhead and rainbow trout) in western Washington and southern British Columbia revealed the presence of two evolutionarily distinct chromosome lineages. Populations between, and including, the Elwha River, Washington, and Chilliwack River, British Columbia, contained 2n = 60 chromosomes. Populations on the central Washington coast contained 2n = 58 chromosomes. The north Washington coast and western Strait of Juan de Fuca contained individuals with 58, 59, or 60 chromosomes, suggesting this is a transition zone between 58 and 60 chromosome groups. The differences in chromosomal structure between 2n = 58 and 2n = 60 groups are presumably a Robertsonian rearrangement and an inversion. Allelic variation at three microsatellite loci (One ??6, One ??11 and Omy 77) also was examined, and no significant variation was detected among the 58 and 60 chromosome races. A hypothesis is presented concerning the origin of the 60 chromosome lineage.

  18. Chromosomal evolution of the Canidae. II. Divergence from the primitive carnivore karyotype.

    PubMed

    Wayne, R K; Nash, W G; O'Brien, S J

    1987-01-01

    The Giemsa-banding patterns of chromosomes from the arctic fox (Alopex lagopus), the red fox (Vulpes vulpes), the kit fox (Vulpes macrotis), and the raccoon dog (Nyctereutes procyonoides) are compared. Despite their traditional placement in different genera, the arctic fox and the kit fox have an identical chromosome morphology and G-banding pattern. The red fox has extensive chromosome arm homoeology with these two species, but has only two entire chromosomes in common. All three species share some chromosomes with the raccoon dog, as does the high diploid-numbered grey wolf (Canis lupus, 2n = 78). Moreover, some chromosomes of the raccoon dog show partial or complete homoeology with metacentric feline chromosomes which suggests that these are primitive canid chromosomes. We present the history of chromosomal rearrangements within the Canidae family based on the assumption that a metacentric-dominated karyotype is primitive for the group.

  19. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution.

    PubMed

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F Alex; Lemke, Cornelia; Tong, Eric J; Chen, Cuixia; Wai, Ching Man; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-08-21

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Y(h)). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Y(h) chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution.

  20. Molecular cytogenetic characterization of a non-robertsonian dicentric chromosome 14;19 identified in a girl with short stature and amenorrhea.

    PubMed

    Dutta, Usha R; Pidugu, Vijaya Kumar; Dalal, Ashwin

    2012-01-01

    We report a 16-year-old girl who presented with short stature and amenorrhea. Initially the cytogenetic analysis showed the presence of a mosaic non-Robertsonian dicentric chromosome involving chromosomes 14 and 19. Subsequent molecular cytogenetic analysis by fluorescence in situ hybridization (FISH) using whole chromosome paints, centromeric probes, as well as gene specific probes confirmed the dicentric nature of the derivative chromosome and indicated that the rearrangement involved the short arms of both of these chromosomes. Furthermore, we also determined that the chromosome 19p13.3 breakpoint occurred within the terminal 1 Mb region. This is the first report of a mosaic non-Robertsonian dicentric chromosome involving chromosomes 14 and 19 with the karyotype determined as 45,XX,dic(14;19)(p11.2;p13.3)[35]/46,XX[15], and we suggest that the chromosome rearrangement could be the cause of clinical phenotype.

  1. Fusion of platelet-derived growth receptor {beta} to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation

    SciTech Connect

    Golub, T.; Barker, G.; Gilliland, D.G.

    1994-09-01

    Chronic myelomonocytic leukemia (CMML) is a myelodysplastic syndrome characterized by abnormal clonal myeloid proliferation, and by progression to acute myelogenous leukemia (AML). A recently recognized subgroup of CMML has a t(5;12) (q33;p13) balanced translocation. Fluorescence in situ hybridization (FISH) localized the translocation breakpoint near the CSF1 receptor (CSF1R) locus on chromosome 5q. Pulsed-field gel electrophoresis confirmed rearrangements near CSF1R, but involvement of CSF1R itself was excluded. Southern blotting showed a rearrangement within the closely linked PDGF receptor {beta} (PDGFR{beta}) gene. Ribonuclease protection assays localized the translocation breakpoint to nucleotide 1766 in PDGFR{beta} RNA. Anchored PCR was used to identify the chromosome 12 fusion partner, a novel ets-like protein, tel. Tel contains a highly conserved carboxy terminal ets-like DNA-binding domain, and an amino terminal domain with a predicted helix-loop-helix (HLH) secondary structure. The consequence of the t(5;12) translocation is fusion of the tel HLH domain to the PDGFR{beta} transmembrane and tyrosine kinase domains. The tel HLH domain may contribute a dimerization motif which serves to constitutively activate PDGFR{beta} tyrosine kinase activity. The tel-PDGFR{beta} fusion demonstrates the oncogenic potential of PDGFR{beta}, and may provide a paradigm for early events in the pathogenesis of AML.

  2. Chromosomal variants in klinefelter syndrome.

    PubMed

    Frühmesser, A; Kotzot, D

    2011-01-01

    Klinefelter syndrome (KS) describes the phenotype of the most common sex chromosome abnormality in humans and occurs in one of every 600 newborn males. The typical symptoms are a tall stature, narrow shoulders, broad hips, sparse body hair, gynecomastia, small testes, absent spermatogenesis, normal to moderately reduced Leydig cell function, increased secretion of follicle-stimulating hormone, androgen deficiency, and normal to slightly decreased verbal intelligence. Apart from that, amongst others, osteoporosis, varicose veins, thromboembolic disease, or diabetes mellitus are observed. Some of the typical features can be very weakly pronounced so that the affected men often receive the diagnosis only at the adulthood by their infertility. With a frequency of 4%, KS is described to be the most common genetic reason for male infertility. The most widespread karyotype in affected patients is 47,XXY. Apart from that, various other karyotypes have been described, including 46,XX in males, 47,XXY in females, 47,XX,der(Y), 47,X,der(X),Y, or other numeric sex chromosome abnormalities (48,XXXY, 48,XXYY, and 49,XXXXY). The focus of this review was to abstract the different phenotypes, which come about by the various karyotypes and to compare them to those with a 'normal' KS karyotype. For that the patients have been divided into 6 different groups: Klinefelter patients with an additional isochromosome Xq, with additional rearrangements on 1 of the 2 X chromosomes or accordingly on the Y chromosome, as well as XX males and true hermaphrodites, 47,XXY females and Klinefelter patients with other numeric sex chromosome abnormalities. In the latter, an almost linear increase in height and developmental delay was observed. Men with an additional isochromosome Xq show infertility and other minor features of 'normal' KS but not an increased height. Aside from the infertility, in male patients with other der(X) as well as der(Y) rearrangements and in XXY women no specific phenotype

  3. Cortical microtubule rearrangements and cell wall patterning

    PubMed Central

    Oda, Yoshihisa

    2015-01-01

    Plant cortical microtubules, which form a highly ordered array beneath the plasma membrane, play essential roles in determining cell shape and function by directing the arrangement of cellulosic and non-cellulosic compounds on the cell surface. Interphase transverse arrays of cortical microtubules self-organize through their dynamic instability and inter-microtubule interactions, and by branch-form microtubule nucleation and severing. Recent studies revealed that distinct spatial signals including ROP GTPase, cellular geometry, and mechanical stress regulate the behavior of cortical microtubules at the subcellular and supercellular levels, giving rise to dramatic rearrangements in the cortical microtubule array in response to internal and external cues. Increasing evidence indicates that negative regulators of microtubules also contribute to the rearrangement of the cortical microtubule array. In this review, I summarize recent insights into how the rearrangement of the cortical microtubule array leads to proper, flexible cell wall patterning. PMID:25904930

  4. Evolution of multiple sex chromosomes in the spider genus Malthonica (Araneae: Agelenidae) indicates unique structure of the spider sex chromosome systems.

    PubMed

    Král, Jirí

    2007-01-01

    Most spiders exhibit a multiple sex chromosome system, X(1)X(2)0, whose origin has not been satisfactorily explained. Examination of the sex chromosome systems in the spider genus Malthonica (Agelenidae) revealed considerable diversity in sex chromosome constitution within this group. Besides modes X(1)X(2)0 (M. silvestris) and X(1)X(2)X(3)0 (M. campestris), a neo-X(1)X(2)X(3)X(4)X(5)Y system in M. ferruginea was found. Ultrastructural analysis of spread pachytene spermatocytes revealed that the X(1)X(2)0 and X(1)X(2)X(3)0 systems include a pair of homomorphic sex chromosomes. Multiple X chromosomes and the pair exhibit an end-to-end pairing, being connected by attachment plaques. The X(1)X(2)X(3)X(4)X(5)Y system of M. ferruginea arose by rearrangement between the homomorphic sex chromosome pair and an autosome. Multiple X chromosomes and the sex chromosome pair do not differ from autosomes in a pattern of constitutive heterochromatin. Ultrastructural data on sex chromosome pairing in other spiders indicate that the homomorphic sex chromosome pair forms an integral part of the spider sex chromosome systems. It is suggested that this pair represents ancestral sex chromosomes of spiders, which generated multiple X chromosomes by non-disjunctions. Structural differentiation of newly formed X chromosomes has been facilitated by heterochromatinization of sex chromosome bivalents observed in prophase I of spider females.

  5. Chromosomal abnormalities in a psychiatric population

    SciTech Connect

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W.

    1995-02-27

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  6. X and Y chromosome behavior in brain tumors: Pieces in a puzzle

    SciTech Connect

    Hecht, B.K.; Chatel, M; Gioanni, J.

    1994-09-01

    Sex chromosome behavior in selected somatic cells is baffling. We serendipitously encountered this sex chromosome shuffle while studying malignant gliomas. Tumor specimens from 3/10 (30%) females and 15/27 (56%) males had sex chromosome abnormalities. Specimens from females showed X loss in 2 cases and possible X gain in 1 case. In 2 cases with autosomal abnormalities, only XX cells were found, suggesting that sex chromosome changes are independent of autosomal changes. Specimens from males showed Y rearrangements in 3 cases, Y loss in 15 cases, XX in 3 cases and autosomal abnormalities in 9 cases. The Y rearrangements may provide a route to Y loss whereas the advent of XX clones in male tumors bespeaks X isodisomy, a mechanism for adding an extra active X. The autosomal changes were rearrangements against a pseudo-diploid background in 5 cases and near-triploidy/tetraploidy in 4 cases. The cases with autosomal changes tended not to have sex chromosome abnormalities (p<0.01) and, the converse, cases with sex chromosome anomalies were without autosomal abnormalities (p<0.05). The process of sex chromosome changes appears independent of the process of autosomal changes. The conventional interpretation: the sex chromosome changes in brain tumors are in non-malignant cells. An unconventional interpretation: sex chromosome changes represent an alternative avenue to malignancy.

  7. Mammalian chromosomes contain cis-acting elements that control replication timing, mitotic condensation, and stability of entire chromosomes.

    PubMed

    Thayer, Mathew J

    2012-09-01

    Recent studies indicate that mammalian chromosomes contain discrete cis-acting loci that control replication timing, mitotic condensation, and stability of entire chromosomes. Disruption of the large non-coding RNA gene ASAR6 results in late replication, an under-condensed appearance during mitosis, and structural instability of human chromosome 6. Similarly, disruption of the mouse Xist gene in adult somatic cells results in a late replication and instability phenotype on the X chromosome. ASAR6 shares many characteristics with Xist, including random mono-allelic expression and asynchronous replication timing. Additional "chromosome engineering" studies indicate that certain chromosome rearrangements affecting many different chromosomes display this abnormal replication and instability phenotype. These observations suggest that all mammalian chromosomes contain "inactivation/stability centers" that control proper replication, condensation, and stability of individual chromosomes. Therefore, mammalian chromosomes contain four types of cis-acting elements, origins, telomeres, centromeres, and "inactivation/stability centers", all functioning to ensure proper replication, condensation, segregation, and stability of individual chromosomes.

  8. Novel Insights into Chromosome Evolution in Birds, Archosaurs, and Reptiles

    PubMed Central

    Farré, Marta; Narayan, Jitendra; Slavov, Gancho T.; Damas, Joana; Auvil, Loretta; Li, Cai; Jarvis, Erich D.; Burt, David W.; Griffin, Darren K.; Larkin, Denis M.

    2016-01-01

    Homologous synteny blocks (HSBs) and evolutionary breakpoint regions (EBRs) in mammalian chromosomes are enriched for distinct DNA features, contributing to distinct phenotypes. To reveal HSB and EBR roles in avian evolution, we performed a sequence-based comparison of 21 avian and 5 outgroup species using recently sequenced genomes across the avian family tree and a newly-developed algorithm. We identified EBRs and HSBs in ancestral bird, archosaurian (bird, crocodile, and dinosaur), and reptile chromosomes. Genes involved in the regulation of gene expression and biosynthetic processes were preferably located in HSBs, including for example, avian-specific HSBs enriched for genes involved in limb development. Within birds, some lineage-specific EBRs rearranged genes were related to distinct phenotypes, such as forebrain development in parrots. Our findings provide novel evolutionary insights into genome evolution in birds, particularly on how chromosome rearrangements likely contributed to the formation of novel phenotypes. PMID:27401172

  9. Chromosome Microarray.

    PubMed

    Anderson, Sharon

    2016-01-01

    Over the last half century, knowledge about genetics, genetic testing, and its complexity has flourished. Completion of the Human Genome Project provided a foundation upon which the accuracy of genetics, genomics, and integration of bioinformatics knowledge and testing has grown exponentially. What is lagging, however, are efforts to reach and engage nurses about this rapidly changing field. The purpose of this article is to familiarize nurses with several frequently ordered genetic tests including chromosomes and fluorescence in situ hybridization followed by a comprehensive review of chromosome microarray. It shares the complexity of microarray including how testing is performed and results analyzed. A case report demonstrates how this technology is applied in clinical practice and reveals benefits and limitations of this scientific and bioinformatics genetic technology. Clinical implications for maternal-child nurses across practice levels are discussed.

  10. New anticancer antibiotic acts through diradical rearrangement

    SciTech Connect

    Stinson, S. )

    1990-05-28

    This paper reports that chemists have found and characterized an anticancer antibiotic, dynemicin A, that may be the fouth of a series of antibiotics that act by metabolic rearrangement to a diradical. If true, diradical precursors may represent an antibiotic strategy that evolved widely in nature. And, there may be many more anticancer antibiotics awaiting discovery. Also, the unique internal trigger that seems to set off the dynemicin rearrangement gives chemists a new understanding of how these compounds work. If, indeed, the anthraquinone nucleus in dynemicin A binds by intercalation between strands of DNA as is now thought, chemists will learn more about how to deliver drugs to specific sites.

  11. Facile Oxidative Rearrangements Using Hypervalent Iodine Reagents

    PubMed Central

    Singh, Fateh V; Rehbein, Julia; Wirth, Thomas

    2012-01-01

    Aromatic substituents migrate in a novel oxidative cyclization mediated by iodine(III) reagents. 4-Arylbut-3-enoic acids are cyclized and rearranged to 4-arylfuran-2(5H)-ones by hypervalent iodine compounds in good to excellent yields under mild reaction conditions. Other ring sizes are also accessible. The mechanism of the reaction is described in detail, and calculations highlight the cationic nature of the intermediates in the rearrangement. The fast access to heavily substituted furanones is used for the synthesis of biologically active derivatives. PMID:24551514

  12. Chromosome Analysis

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Perceptive Scientific Instruments, Inc., provides the foundation for the Powergene line of chromosome analysis and molecular genetic instrumentation. This product employs image processing technology from NASA's Jet Propulsion Laboratory and image enhancement techniques from Johnson Space Center. Originally developed to send pictures back to earth from space probes, digital imaging techniques have been developed and refined for use in a variety of medical applications, including diagnosis of disease.

  13. In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes.

    PubMed

    Grützner, Frank; Rens, Willem; Tsend-Ayush, Enkhjargal; El-Mogharbel, Nisrine; O'Brien, Patricia C M; Jones, Russell C; Ferguson-Smith, Malcolm A; Marshall Graves, Jennifer A

    2004-12-16

    Two centuries after the duck-billed platypus was discovered, monotreme chromosome systems remain deeply puzzling. Karyotypes of males, or of both sexes, were claimed to contain several unpaired chromosomes (including the X chromosome) that form a multi-chromosomal chain at meiosis. Such meiotic chains exist in plants and insects but are rare in vertebrates. How the platypus chromosome system works to determine sex and produce balanced gametes has been controversial for decades. Here we demonstrate that platypus have five male-specific chromosomes (Y chromosomes) and five chromosomes present in one copy in males and two copies in females (X chromosomes). These ten chromosomes form a multivalent chain at male meiosis, adopting an alternating pattern to segregate into XXXXX-bearing and YYYYY-bearing sperm. Which, if any, of these sex chromosomes bears one or more sex-determining genes remains unknown. The largest X chromosome, with homology to the human X chromosome, lies at one end of the chain, and a chromosome with homology to the bird Z chromosome lies near the other end. This suggests an evolutionary link between mammal and bird sex chromosome systems, which were previously thought to have evolved independently.

  14. Balance Problems

    MedlinePlus

    ... often, it could be a sign of a balance problem. Balance problems can make you feel unsteady or as ... fall-related injuries, such as hip fracture. Some balance problems are due to problems in the inner ...

  15. Chromosome 1 in relation to human disease.

    PubMed Central

    Povey, S; Parrington, J M

    1986-01-01

    Chromosome 1 is thought to represent about 6% of the total human genome and the 85 loci so far identified may constitute about 1% of the genes present on this chromosome. The existence of at least 22 loci sufficiently polymorphic in Europeans to be useful as genetic markers has allowed the construction of an elementary genetic map. This permits comparisons with physical and chiasma maps and has demonstrated striking homologies between different regions of chromosome 1 and mouse chromosomes 1, 3, and 4. The existence of a map should be of great help in developing a more systematic approach to further mapping studies. A wide range of disease can be attributed to allelic variation on chromosome 1 and the homologies with the mouse may be useful in predicting the position of other genes involved in human disease. Rearrangements of this chromosome are a common finding in many different types of malignancy. Loss of material from the short arm and activation of one or more of the four oncogenes in this region may play an important role in the later stages of tumour development. Polymorphic markers of all kinds will be useful in the future for investigating the somatic events which have occurred during the malignant process. PMID:3519970

  16. Detection of {open_quotes}cryptic{close_quotes}karyotypic rearrangements in closely related primate species by fluorescence in situ hybridization (FISH) using human subtelomeric DNA probes

    SciTech Connect

    Youngblom, J.J.; Trask, B.J.; Friedman, C.

    1994-09-01

    Specific human subtelomeric DNA probes were used to reveal cryptic chromosomal rearrangements that cannot be detected by conventional high resolution cytogenetic techniques, or by chromosomal in situ suppression hybridization using whole chromosome paint analysis. Two cosmids containing different subtelomeric DNA sequences were derived from human chromosome 19 and designated as 7501 and 16432. Cosmid 7501 was hybridized to chromosomes from humans, chimpanzee, gorilla and orangutan. In humans, 7501 consistently labeled chromosomes 3q, 15q, and 19p. Additional chromosomes were labeled in different individuals, indicating a polymorphic distribution of this sequence in the human genome. In contrast, 7501 consistently and strongly labeled only the q arm terminus of chromosome 3 in both chimp and gorilla. The identification of the chromosome was made by two-color FISH analysis using human chromosome 4-specific paint and homologous to human chromosome 4. None of the human subjects showed labeling of chromosome 4 with 7501. This finding suggests that in the course of human evolution, subsequent to the divergence of humans and African apes, a cryptic translocation occurred between the ancestral human chromosome 4 and one or more of the other human chromosomes that now contain this DNA segment. In orangutan, 7501 labeled a single acrocentric chromosome pair, a distinctly different chromosome than that labeled in chimp and gorilla. Comparison of chromosome sites labeled with cosmid 16432 showed the distribution of signals on chromosome 1q arm is the same for humans and chimp, but different in the gorilla. Humans and chimps show distinct labeling on sites 1q terminus and 1q41-42. In gorilla, there is instead a large cluster of intense signal near the terminus of 1q that clearly does not extend all the way to the terminus. A paracentric inversion or an unequal cross-over event may account for the observed difference between these species.

  17. NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis.

    PubMed

    Struski, S; Lagarde, S; Bories, P; Puiseux, C; Prade, N; Cuccuini, W; Pages, M-P; Bidet, A; Gervais, C; Lafage-Pochitaloff, M; Roche-Lestienne, C; Barin, C; Penther, D; Nadal, N; Radford-Weiss, I; Collonge-Rame, M-A; Gaillard, B; Mugneret, F; Lefebvre, C; Bart-Delabesse, E; Petit, A; Leverger, G; Broccardo, C; Luquet, I; Pasquet, M; Delabesse, E

    2017-03-01

    Pediatric acute myeloid leukemia (AML) is a rare disease whose prognosis is highly variable according to factors such as chromosomal abnormalities. Recurrent genomic rearrangements are detected in half of pediatric AML by karyotype. NUcleoPorin 98 (NUP98) gene is rearranged with 31 different fusion partner genes. These rearrangements are frequently undetected by conventional cytogenetics, as the NUP98 gene is located at the end of the chromosome 11 short arm (11p15). By screening a series of 574 pediatric AML, we detected a NUP98 rearrangement in 22 cases (3.8%), a frequency similar to CBFB-MYH11 fusion gene (4.0%). The most frequent NUP98 fusion gene partner is NSD1. These cases are homogeneous regarding their biological and clinical characteristics, and associated with bad prognosis only improved by bone marrow transplantation. We detailed the biological characteristics of these AML by exome sequencing which demonstrated few recurrent mutations (FLT3 ITD, WT1, CEBPA, NBPF14, BCR and ODF1). The analysis of the clonal structure in these cases suggests that the mutation order in the NUP98-rearranged pediatric AML begins with the NUP98 rearrangement leading to epigenetic dysregulations then followed by mutations of critical hematopoietic transcription factors and finally, activation of the FLT3 signaling pathway.

  18. Facility rearrangement scoping study: Draft letter report

    SciTech Connect

    Not Available

    1987-04-17

    We assessed the feasibility of designing the salt repository layouts so that shafts, surface structures and facilities would be totally within the north-east (NE) and center-east (CE) (one square mile) sections of the 9 square mile Deaf Smith site. With the latest version of the SCP-Conceptual Design as the basis, rearrangement analyses were conducted for the surface and subsurface layouts. For the rearranged layouts that were workable, impact assessments, relative to the SCP-Conceptual Design, were performed. This study concluded that, on a qualitative basis, the salt repository surface facilities can be relocated to within the north-east and center-east sections of the site. A suitable subsurface layout can be designed to accommodate this rearrangement. The resultant surface rearrangement is depicted. The two study sections (NE and CE) are emphasized on this figure. For reference, the location of the surface facilities in the SCP-Conceptual Design is also shown. 11 refs., 1 tab.

  19. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome

    PubMed Central

    Hamilton, Eileen P; Kapusta, Aurélie; Huvos, Piroska E; Bidwell, Shelby L; Zafar, Nikhat; Tang, Haibao; Hadjithomas, Michalis; Krishnakumar, Vivek; Badger, Jonathan H; Caler, Elisabet V; Russ, Carsten; Zeng, Qiandong; Fan, Lin; Levin, Joshua Z; Shea, Terrance; Young, Sarah K; Hegarty, Ryan; Daza, Riza; Gujja, Sharvari; Wortman, Jennifer R; Birren, Bruce W; Nusbaum, Chad; Thomas, Jainy; Carey, Clayton M; Pritham, Ellen J; Feschotte, Cédric; Noto, Tomoko; Mochizuki, Kazufumi; Papazyan, Romeo; Taverna, Sean D; Dear, Paul H; Cassidy-Hanley, Donna M; Xiong, Jie; Miao, Wei; Orias, Eduardo; Coyne, Robert S

    2016-01-01

    The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena’s germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum. DOI: http://dx.doi.org/10.7554/eLife.19090.001 PMID:27892853

  20. Light chain replacement: a new model for antibody gene rearrangement

    PubMed Central

    1995-01-01

    A functional B cell antigen receptor is thought to regulate antibody gene rearrangement either by stopping further rearrangement (exclusion) or by promoting additional rearrangement (editing). We have developed a new model to study the regulation of antibody gene rearrangement. In this model, we used gene targeting to replace the J kappa region with a functional V kappa-J kappa light chain gene. Two different strains of mice were created; one, V kappa 4R, has a V kappa 4-J kappa 4 rearrangement followed by a downstream J kappa 5 segment, while the other, V kappa 8R, has a V kappa 8-J kappa 5 light chain. Here, we analyze the influence of these functional light chains on light chain rearrangement. We show that some V kappa 4R and V kappa 8R B cells only have the V kappa R light chain rearrangement, whereas others undergo additional rearrangements. Additional rearrangement can occur not only at the other kappa allele or isotype (lambda), but also at the targeted locus in both V kappa 4R and V kappa 8R. Rearrangement to the downstream J kappa 5 segment is observed in V kappa 4R, as is deletion of the targeted locus in both V kappa 4R and V kappa 8R. The V kappa R models illustrate that a productively rearranged light chain can either terminate further rearrangement or allow further rearrangement. We attribute the latter to editing of autoantibodies and to corrections of dysfunctional receptors. PMID:7629511

  1. 2D and 3D Chromosome Painting in Malaria Mosquitoes

    PubMed Central

    George, Phillip; Sharma, Atashi; Sharakhov, Igor V

    2014-01-01

    Fluorescent in situ hybridization (FISH) of whole arm chromosome probes is a robust technique for mapping genomic regions of interest, detecting chromosomal rearrangements, and studying three-dimensional (3D) organization of chromosomes in the cell nucleus. The advent of laser capture microdissection (LCM) and whole genome amplification (WGA) allows obtaining large quantities of DNA from single cells. The increased sensitivity of WGA kits prompted us to develop chromosome paints and to use them for exploring chromosome organization and evolution in non-model organisms. Here, we present a simple method for isolating and amplifying the euchromatic segments of single polytene chromosome arms from ovarian nurse cells of the African malaria mosquito Anopheles gambiae. This procedure provides an efficient platform for obtaining chromosome paints, while reducing the overall risk of introducing foreign DNA to the sample. The use of WGA allows for several rounds of re-amplification, resulting in high quantities of DNA that can be utilized for multiple experiments, including 2D and 3D FISH. We demonstrated that the developed chromosome paints can be successfully used to establish the correspondence between euchromatic portions of polytene and mitotic chromosome arms in An. gambiae. Overall, the union of LCM and single-chromosome WGA provides an efficient tool for creating significant amounts of target DNA for future cytogenetic and genomic studies. PMID:24429496

  2. The nucleus is the target for radiation-induced chromosomal instability

    NASA Technical Reports Server (NTRS)

    Kaplan, M. I.; Morgan, W. F.

    1998-01-01

    We have previously described chromosomal instability in cells of a human-hamster hybrid cell line after exposure to X rays. Chromosomal instability in these cells is characterized by the appearance of novel chromosomal rearrangements multiple generations after exposure to ionizing radiation. To identify the cellular target(s) for radiation-induced chromosomal instability, cells were treated with 125I-labeled compounds and frozen. Radioactive decays from 125I cause damage to the cell primarily at the site of their decay, and freezing the cells allows damage to accumulate in the absence of other cellular processes. We found that the decay of 125I-iododeoxyuridine, which is incorporated into the DNA, caused chromosomal instability. While cell killing and first-division chromosomal rearrangements increased with increasing numbers of 125I decays, the frequency of chromosomal instability was independent of dose. Chromosomal instability could also be induced from incorporation of 125I-iododeoxyuridine without freezing the cells for accumulation of decays. This indicates that DNA double-strand breaks in frozen cells resulting from 125I decays failed to lead to instability. Incorporation of an 125I-labeled protein (125I-succinyl-concanavalin A), which was internalized into the cell and/or bound to the plasma membrane, neither caused chromosomal instability nor potentiated chromosomal instability induced by 125I-iododeoxyuridine. These results show that the target for radiation-induced chromosomal instability in these cells is the nucleus.

  3. Deep cytoplasmic rearrangements in ventralized Xenopus embryos

    NASA Technical Reports Server (NTRS)

    Brown, E. E.; Denegre, J. M.; Danilchik, M. V.

    1993-01-01

    Following fertilization in Xenopus, dramatic rearrangements of the egg cytoplasm relocalize maternally synthesized egg components. During the first cell cycle the vegetal yolk mass rotates relative to the egg surface, toward the sperm entry point (SEP) (J. P. Vincent, G. F. Oster, and J. C. Gerhart, 1986, Dev. Biol. 113, 484-500), while concomitant deep cytoplasmic rearrangements occur in the animal hemisphere (M. V. Danilchik and J. M. Denegre, 1991, Development 111, 845-856). In this paper we examine the role of vegetal yolk mass rotation in producing the animal cytoplasmic rearrangements. We inhibited rotation by uv-irradiating embryos during the first cell cycle, a treatment that yields an extremely ventralized phenotype. Both uv-irradiated embryos and unirradiated control embryos show cytoplasmic rearrangements in the animal hemisphere during the first cell cycle. Cytoplasmic rearrangements on the SEP side of the embryo associated with the path of the sperm pronucleus, plus a swirl on the anti-SEP (dorsal) side, are seen, whether or not yolk mass rotation has occurred. This result suggests a role for the expanding sperm aster in directing animal hemisphere cytoplasmic movements. In unirradiated control embryos the anti-SEP (dorsal) swirl is larger than that in uv-irradiated embryos and often extends into the vegetal hemisphere, consistent with the animal cytoplasm having been pulled dorsally and vegetally by the sliding vegetal yolk mass. Thus the yolk mass rotation may normally enhance the dorsalward cytoplasmic movement, begun by the sperm aster, enough to induce normal axis formation. We extended our observations of unirradiated control and uv-irradiated embryos through early cleavages. The vegetal extent of the anti-SEP (dorsal) swirl pattern seen in control embryos persists through the early cleavage period, such that labeled animal cytoplasm extends deep into dorsal third-tier blastomeres at the 32-cell stage. Significantly, in uv-irradiated embryos

  4. A new region of conservation is defined between human and mouse X chromosomes

    SciTech Connect

    Dinulos, M.B.; Disteche, C.M.; Bassi, M.T.

    1996-07-01

    Comparative mapping of the X chromosome in eutherian mammals have revealed distinct regions of conservation as well as evolutionary rearrangements between human and mouse. Recently, we and others mapped the murine homologue of CLCN4 (Chloride channel 4) to band F4 of the X chromosome in Mus spretus but to chromosome 7 in laboratory strains. We now report the mapping of the murine homologues of APXL (Apical protein Xenopus laevis-like) and OA1 (Ocular albinism type I), two genes that are located on the human X chromosome at band p22.3 and in close proximity to CLCN4. Interestingly, Oa1 and Apxl map to bands F2-F3 in both M. spretus and the laboratory strain C57BL/6J, defining a new rearrangement between human and mouse X chromosomes. 17 refs., 2 figs., 1 tab.

  5. Noninvolvement of the X chromosome in radiation-induced chromosome translocations in the human lymphoblastoid cell line TK6

    SciTech Connect

    Jordan, R.; Schwartz, J.L. )

    1994-03-01

    Fluorescence in situ hybridization procedures were used to examine the influence of chromosome locus on the frequency and type of chromosome aberrations induced by [sup 60]Co [gamma] rays in the human lymphoblastoid cell line TK6. Aberrations involving the X chromosome were compared to those involving the similarly sized autosome chromosome 7. When corrected for DNA content, acentric fragments were induced with equal frequency in the X and 7 chromosomes. Dose-dependent increases in chromosomal interchanges involving chromosome 7 were noted, and the frequencies of balanced translocations and dicentrics produced were approximately equal. Chromosome interchanges involving the X chromosome were rare and showed no apparent dose dependence. Thus, while chromosomes 7 and X are equally sensitive to the induction of chromosome breaks, the X chromosome is much less likely to interact with autosomes than chromosome 7. The noninvolvement of the X chromosome in translocations with autosomes may reflect a more peripheral and separate location for the X chromosome in the mammalian nucleus. 20 refs., 2 figs., 1 tab.

  6. Chromosome transplantation as a novel approach for correcting complex genomic disorders

    PubMed Central

    Paulis, Marianna; Castelli, Alessandra; Susani, Lucia; Lizier, Michela; Lagutina, Irina; Focarelli, Maria Luisa; Recordati, Camilla; Uva, Paolo; Faggioli, Francesca; Neri, Tui; Scanziani, Eugenio; Galli, Cesare; Lucchini, Franco; Villa, Anna; Vezzoni, Paolo

    2015-01-01

    Genomic disorders resulting from large rearrangements of the genome remain an important unsolved issue in gene therapy. Chromosome transplantation, defined as the perfect replacement of an endogenous chromosome with a homologous one, has the potential of curing this kind of disorders. Here we report the first successful case of chromosome transplantation by replacement of an endogenous X chromosome carrying a mutation in the Hprt gene with a normal one in mouse embryonic stem cells (ESCs), correcting the genetic defect. The defect was also corrected by replacing the Y chromosome with an X chromosome. Chromosome transplanted clones maintained in vitro and in vivo features of stemness and contributed to chimera formation. Genome integrity was confirmed by cytogenetic and molecular genome analysis. The approach here proposed, with some modifications, might be used to cure various disorders due to other X chromosome aberrations in induced pluripotent stem (iPS) cells derived from affected patients. PMID:26485770

  7. Vietnam, a Hotspot for Chromosomal Diversity and Cryptic Species in Black Flies (Diptera: Simuliidae).

    PubMed

    Adler, Peter H; Takaoka, Hiroyuki; Sofian-Azirun, Mohd; Low, Van Lun; Ya'cob, Zubaidah; Chen, Chee Dhang; Lau, Koon Weng; Pham, Xuan Da

    2016-01-01

    The increasing attention on Vietnam as a biodiversity hotspot prompted an investigation of the potential for cryptic diversity in black flies, a group well known elsewhere for its high frequency of isomorphic species. We analyzed the banding structure of the larval polytene chromosomes in the Simulium tuberosum species group to probe for diversity beyond the morphological level. Among 272 larvae, 88 different chromosomal rearrangements, primarily paracentric inversions, were discovered in addition to 25 already known in the basic sequences of the group in Asia. Chromosomal diversity in Vietnam far exceeds that known for the group in Thailand, with only about 5% of the rearrangements shared between the two countries. Fifteen cytoforms and nine morphoforms were revealed among six nominal species in Vietnam. Chromosomal evidence, combined with available molecular and morphological evidence, conservatively suggests that at least five of the cytoforms are valid species, two of which require formal names. The total chromosomal rearrangements and species (15) now known from the group in Vietnam far exceed those of any other area of comparable size in the world, supporting the country's status as a biodiversity hotspot. Phylogenetic inference based on uniquely shared, derived chromosomal rearrangements supports the clustering of cytoforms into two primary lineages, the Simulium tani complex and the Southeast Asian Simulium tuberosum subgroup. Some of these taxa could be threatened by habitat destruction, given their restricted geographical distributions and the expanding human population of Vietnam.

  8. Vietnam, a Hotspot for Chromosomal Diversity and Cryptic Species in Black Flies (Diptera: Simuliidae)

    PubMed Central

    Takaoka, Hiroyuki; Sofian-Azirun, Mohd; Low, Van Lun; Ya’cob, Zubaidah; Chen, Chee Dhang; Lau, Koon Weng; Pham, Xuan Da

    2016-01-01

    The increasing attention on Vietnam as a biodiversity hotspot prompted an investigation of the potential for cryptic diversity in black flies, a group well known elsewhere for its high frequency of isomorphic species. We analyzed the banding structure of the larval polytene chromosomes in the Simulium tuberosum species group to probe for diversity beyond the morphological level. Among 272 larvae, 88 different chromosomal rearrangements, primarily paracentric inversions, were discovered in addition to 25 already known in the basic sequences of the group in Asia. Chromosomal diversity in Vietnam far exceeds that known for the group in Thailand, with only about 5% of the rearrangements shared between the two countries. Fifteen cytoforms and nine morphoforms were revealed among six nominal species in Vietnam. Chromosomal evidence, combined with available molecular and morphological evidence, conservatively suggests that at least five of the cytoforms are valid species, two of which require formal names. The total chromosomal rearrangements and species (15) now known from the group in Vietnam far exceed those of any other area of comparable size in the world, supporting the country’s status as a biodiversity hotspot. Phylogenetic inference based on uniquely shared, derived chromosomal rearrangements supports the clustering of cytoforms into two primary lineages, the Simulium tani complex and the Southeast Asian Simulium tuberosum subgroup. Some of these taxa could be threatened by habitat destruction, given their restricted geographical distributions and the expanding human population of Vietnam. PMID:27695048

  9. Afrobatrachian mitochondrial genomes: genome reorganization, gene rearrangement mechanisms, and evolutionary trends of duplicated and rearranged genes

    PubMed Central

    2013-01-01

    Background Mitochondrial genomic (mitogenomic) reorganizations are rarely found in closely-related animals, yet drastic reorganizations have been found in the Ranoides frogs. The phylogenetic relationships of the three major ranoid taxa (Natatanura, Microhylidae, and Afrobatrachia) have been problematic, and mitogenomic information for afrobatrachians has not been available. Several molecular models for mitochondrial (mt) gene rearrangements have been proposed, but observational evidence has been insufficient to evaluate them. Furthermore, evolutionary trends in rearranged mt genes have not been well understood. To gain molecular and phylogenetic insights into these issues, we analyzed the mt genomes of four afrobatrachian species (Breviceps adspersus, Hemisus marmoratus, Hyperolius marmoratus, and Trichobatrachus robustus) and performed molecular phylogenetic analyses. Furthermore we searched for two evolutionary patterns expected in the rearranged mt genes of ranoids. Results Extensively reorganized mt genomes having many duplicated and rearranged genes were found in three of the four afrobatrachians analyzed. In fact, Breviceps has the largest known mt genome among vertebrates. Although the kinds of duplicated and rearranged genes differed among these species, a remarkable gene rearrangement pattern of non-tandemly copied genes situated within tandemly-copied regions was commonly found. Furthermore, the existence of concerted evolution was observed between non-neighboring copies of triplicated 12S and 16S ribosomal RNA regions. Conclusions Phylogenetic analyses based on mitogenomic data support a close relationship between Afrobatrachia and Microhylidae, with their estimated divergence 100 million years ago consistent with present-day endemism of afrobatrachians on the African continent. The afrobatrachian mt data supported the first tandem and second non-tandem duplication model for mt gene rearrangements and the recombination-based model for concerted

  10. X microchromosome with additional chromosome anomalies found in Ullrich-Turner syndrome

    SciTech Connect

    Wydner, K.L.; Sciorra, L.J.; Singer-Granick, C.

    1995-03-27

    Using standard cytogenetic methods coupled with molecular techniques, the following karyotype mos 45,X/46,XXq+/46,X-mar(X)/47,XXq+, +mar(X), was identified in a patient with Ullrich-Turner syndrome (UTS). High-resolution banding (n = 650) of the metaphase chromosomes yielded a breakpoint at q28 on the Xq+ rearranged chromosome. FISH was used to determine the presence of Y-containing DNA in the Xq+ and the mar(X) chromosomes. The following molecular probes were used: DYZ1, DYZ3, and spectrum orange WCP Y. The lack of specific hybridization of these probes was interpreted as a low risk of gonadoblastoma in this patient. Using X-chromosome- and centromere-specific probes, FISH demonstrated the presence of hybridizing material on both rearranged chromosomes, the Xq+ and mar(X). Finally, we determined that the mar(X) and Xq+ chromosomes contained telomeres in the absence of any interstitial telomeric hybridizing material. A micro-X chromosome is present in this UTS patient. Delineation of events leading toward the mechanisms responsible for the multiple DNA rearrangements required to generate the micro-X and Xq+ chromosomes awaits future studies. 25 refs., 6 figs., 1 tab.

  11. Analysis of ATP6 sequence diversity in the Triticum-Aegilops group of species reveals the crucial role of rearrangement in mitochondrial genome evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutation and chromosomal rearrangements are the two main forces of increasing genetic diversity for natural selection to act upon, and ultimately drive the evolutionary process. Although genome evolution is a function of both forces, simultaneously, the ratio of each can be varied among different ge...

  12. Cloning a balanced translocation associated with DiGeorge syndrome and identification of a disrupted candidate gene.

    PubMed

    Budarf, M L; Collins, J; Gong, W; Roe, B; Wang, Z; Bailey, L C; Sellinger, B; Michaud, D; Driscoll, D A; Emanuel, B S

    1995-07-01

    DiGeorge syndrome (DGS), a developmental defect, is characterized by cardiac defects and aplasia or hypoplasia of the thymus and parathyroid glands. DGS has been associated with visible chromosomal abnormalities and microdeletions of 22q11, but only one balanced translocation--ADU/VDU t(2;22)(q14;q11.21). We now report the cloning of this translocation, the identification of a gene disrupted by the rearrangement and the analysis of other transcripts in its vicinity. Transcripts were identified by direct screening of cDNA libraries, exon amplification, cDNA selection and genomic sequence analysis using GRAIL. Disruption of a gene in 22q11.2 by the breakpoint and haploinsufficiency of this locus in deleted DGS patients make it a strong candidate for the major features associated with this disorder.

  13. Cytogenetic, FISH and molecular characterization of 3q27/BCL-6 rearrangements in NHL

    SciTech Connect

    Wiodarska, I.; Styl, M.; Mecucci, C.

    1994-09-01

    Reciprocal translocations involving the chromosomal region 3q27 and one of the immunoglobulin loci at 14q32, 2p12 or 22q11 have been identified as the third most common type of chromosomal abnormality in Non Hodgkin`s lymphomas (NHLs), in addition to t(14;18) and t(8;14). These abnormalities appeared to be strongly associated with a diffuse, large cell subtype of B-cell NHL. Recently, a t(3;14) and t(3;22) have been cloned and a new transcriptional unit at 3q27, designated BCL-5, BCL-6 or LAZ3, has been identified. The gene appears to encode a new zinc finger protein with the putative function of a transcription factor. Rearrangements of the BCL-6 gene have been detected not only in cases with a typical t(3;14), t(2;3) and t(3;22), but also in a few NHL cases carrying 3q27 translocations not involving Ig genes. We report on nine B-NHL cases with a 3q27/BCL-6 rearrangement demonstrated by cytogenetic, FISH, and Southern analysis. Cytogenetic analysis complemented by FISH studies showed the presence of a classical t(3;14) or a t(3;22) in three cases and a variety of chromosomal aberrations involving the 3q27 locus in the remaining cases. Some of these translocations were not previously identified by conventional banding analysis. In three patients chromosome painting demonstrated involvement of both chromosome at the 3q24 band. We conclude: 3q27/BCL-6 rearrangements seem not to be restricted to diffuse large cell lymphoma. We here documented 3q27/BCL-6 abnormalities in Richter syndrome and follicular lymphomas. The variety of 3q27 aberrations at cytogenetic level suggests that, in addition to immunoglobulin genes, a number of other genes spreading over the human genome may deregulate BCL-6 in lymphomas. Chromosome painting is a powerful tool to demonstrate 3q27 abnormalities, not identified by conventional banding analysis.

  14. Chromosomal position effects reveal different cis-acting requirements for rDNA transcription and sex chromosome pairing in Drosophila melanogaster.

    PubMed Central

    Briscoe, A; Tomkiel, J E

    2000-01-01

    In Drosophila melanogaster, the rDNA loci function in ribosome biogenesis and nucleolar formation and also as sex chromosome pairing sites in male meiosis. These activities are not dependent on the heterochromatic location of the rDNA, because euchromatic transgenes are competent to form nucleoli and restore pairing to rDNA-deficient X chromosomes. These transgene studies, however, do not address requirements for the function of the endogenous rDNA loci within the heterochromatin. Here we describe two chromosome rearrangements that disrupt rDNA functions. Both rearrangements are translocations that cause an extreme bobbed visible phenotype and XY nondisjunction and meiotic drive in males. However, neither rearrangement interacts with a specific Y chromosome, Ymal(+), that induces male sterility in combination with rDNA deletions. Molecular studies show that the translocations are not associated with gross rearrangements of the rDNA repeat arrays. Rather, suppression of the bobbed phenotypes by Y heterochromatin suggests that decreased rDNA function is caused by a chromosomal position effect. While both translocations affect rDNA transcription, only one disrupts meiotic XY pairing, indicating that there are different cis-acting requirements for rDNA transcription and rDNA-mediated meiotic pairing. PMID:10880481

  15. Screening for Subtelomeric Rearrangements in Thai Patients with Intellectual Disabilities Using FISH and Review of Literature on Subtelomeric FISH in 15,591 Cases with Intellectual Disabilities

    PubMed Central

    Khayman, Jariya; Praphanphoj, Verayuth

    2016-01-01

    We utilized fluorescence in situ hybridization (FISH) to screen for subtelomeric rearrangements in 82 Thai patients with unexplained intellectual disability (ID) and detected subtelomeric rearrangements in 5 patients. Here, we reported on a patient with der(20)t(X;20)(p22.3;q13.3) and a patient with der(3)t(X;3)(p22.3;p26.3). These rearrangements have never been described elsewhere. We also reported on a patient with der(10)t(7;10)(p22.3;q26.3), of which the same rearrangement had been reported in one literature. Well-recognized syndromes were detected in two separated patients, including 4p deletion syndrome and 1p36 deletion syndrome. All patients with subtelomeric rearrangements had both ID and multiple congenital anomalies (MCA) and/or dysmorphic features (DF), except the one with der(20)t(X;20), who had ID alone. By using FISH, the detection rate of subtelomeric rearrangements in patients with both ID and MCA/DF was 8.5%, compared to 2.9% of patients with only ID. Literature review found 28 studies on the detection of subtelomeric rearrangements by FISH in patients with ID. Combining data from these studies and our study, 15,591 patients were examined and 473 patients with subtelomeric rearrangements were determined. The frequency of subtelomeric rearrangements detected by FISH in patients with ID was 3%. Terminal deletions were found in 47.7%, while unbalanced derivative chromosomes were found in 47.9% of the rearrangements. PMID:27822388

  16. Dean flow fractionation of chromosomes

    NASA Astrophysics Data System (ADS)

    Hockin, Matt; Sant, Himanshu J.; Capecchi, Mario; Gale, Bruce K.

    2016-03-01

    Efforts to transfer intact mammalian chromosomes between cells have been attempted for more than 50 years with the consistent result being transfer of sub unit length pieces regardless of method. Inertial microfluidics is a new field that has shown much promise in addressing the fractionation of particles in the 2-20 μm size range (with unknown limits) and separations are based upon particles being carried by curving confined flows (within a spiral shaped, often rectangular flow chamber) and migrating to stable "equilibrium" positions of varying distance from a chamber wall depending on the balance of dean and lift forces. We fabricated spiral channels for inertial microfluidic separations using a standard soft lithography process. The concentration of chromosomes, small contaminant DNA and large cell debris in each outlets were evaluated using microscope (60X) and a flow cytometer. Using Dean Flow Fractionation, we were able to focus 4.5 times more chromosomes in outlet 2 compared to outlet 4 where most of the large debris is found. We recover 16% of the chromosomes in outlet #1- 50% in 2, 23% in 3 and 11% in 4. It should be noted that these estimates of recovery do not capture one piece of information- it actually may be that the chromosomes at each outlet are physically different and work needs to be done to verify this potential.

  17. Stability of multiple antigen receptor gene rearrangements and immunophenotype in Hodgkin's disease-derived cell line L428 and variant subline L428KSA.

    PubMed

    Athan, E S; Paietta, E; Papenhausen, P R; Augenlicht, L; Wiernik, P H; Gallagher, R E

    1989-07-01

    The Hodgkin's disease (HD) derived cell line L428 and a phorbol ester-selected subline L428KSA, which have been independently passaged in tissue culture for several years, were studied for possible antigen receptor gene and immunophenotypic differences. Multiple but identical alterations of these genes were found, including: the deletion of one and rearrangement of the other immunoglobulin (Ig) heavy chain allele; the rearrangement of one kappa and one lambda light chain allele; and the rearrangement of one T cell receptor (TCR) beta allele. Restriction mapping of the Ig heavy chain locus indicated that rearrangement of the retained allele produced a JH-C gamma 4 fusion product by an isotype switch mechanism. The 14q+ chromosome [t(14q32;?)] present in both cell cultures derived either from translocation 5' (telomeric) to the rearranged JH allele or 3' (centromeric) to the deleted Ig heavy chain allele and did not involve detectable rearrangement of the c-myc, bcl 1, or bcl 2 oncogenes. No differences in the immunophenotype were found between the L428 and L428KSA cells: both expressed leukocyte activation antigens and some determinants associated with myelomonocytic cells but no lymphoid markers. It is postulated that these phenotypic characteristics derived from secondary genetic events/differentiative reprogramming which produced extinction of primary lymphoid characters, including terminal deoxynucleotidyl transferase (TdT) essential to generation of the Ig and TCR gene rearrangements, and expression of an incomplete set of myelomonocytic markers.

  18. Development of a multiplex quantitative fluorescent PCR assay for identification of rearrangements in the AZFb and AZFc regions.

    PubMed

    Zhang, Jun; Li, Pei-qiong; Yu, Qi-hong; Chen, Hua-yun; Li, Juan; He, Yun-shao

    2008-06-01

    The azoospermia factor b (AZFb) and azoospermia factor c (AZFc) regions in the human Y chromosome consist of five palindromes constructed from six distinct families of amplicons and are prone to rearrangement. Partial deletion and duplication in the region can cause azoospermia or oligozoospermia and male infertility. The aim of the study was to establish a quantitative fluorescent PCR (QF-PCR) assay to classify AZFb and AZFc rearrangements. A single pair of fluorescent primers was designed to amplify simultaneously the amplicon in AZFc and the length-variant homologous sequences outside of the region as control. Since the copy number of the control sequences is fixed in the human genome, dosage of the target could be easily obtained through comparing the height of the fluorescent peaks between the target and the control after amplification with limited PCR cycles. Most types of rearrangements in AZFb and AZFc regions could be classified with QF-PCR containing four such primer pairs. Eleven types of rearrangement in AZFb and AZFc regions were well discriminated with QF-PCR. In conclusion, QF-PCR is a simple and reliable method to detect rearrangements in AZFb and AZFc.

  19. Mechanisms for nonrecurrent genomic rearrangements associated with CMT1A or HNPP: rare CNVs as a cause for missing heritability.

    PubMed

    Zhang, Feng; Seeman, Pavel; Liu, Pengfei; Weterman, Marian A J; Gonzaga-Jauregui, Claudia; Towne, Charles F; Batish, Sat Dev; De Vriendt, Els; De Jonghe, Peter; Rautenstrauss, Bernd; Krause, Klaus-Henning; Khajavi, Mehrdad; Posadka, Jan; Vandenberghe, Antoon; Palau, Francesc; Van Maldergem, Lionel; Baas, Frank; Timmerman, Vincent; Lupski, James R

    2010-06-11

    Genomic rearrangements involving the peripheral myelin protein gene (PMP22) in human chromosome 17p12 are associated with neuropathy: duplications cause Charcot-Marie-Tooth disease type 1A (CMT1A), whereas deletions lead to hereditary neuropathy with liability to pressure palsies (HNPP). Our previous studies showed that >99% of these rearrangements are recurrent and mediated by nonallelic homologous recombination (NAHR). Rare copy number variations (CNVs) generated by nonrecurrent rearrangements also exist in 17p12, but their underlying mechanisms are not well understood. We investigated 21 subjects with rare CNVs associated with CMT1A or HNPP by oligonucleotide-based comparative genomic hybridization microarrays and breakpoint sequence analyses, and we identified 17 unique CNVs, including two genomic deletions, ten genomic duplications, two complex rearrangements, and three small exonic deletions. Each of these CNVs includes either the entire PMP22 gene, or exon(s) only, or ultraconserved potential regulatory sequences upstream of PMP22, further supporting the contention that PMP22 is the critical gene mediating the neuropathy phenotypes associated with 17p12 rearrangements. Breakpoint sequence analysis reveals that, different from the predominant NAHR mechanism in recurrent rearrangement, various molecular mechanisms, including nonhomologous end joining, Alu-Alu-mediated recombination, and replication-based mechanisms (e.g., FoSTeS and/or MMBIR), can generate nonrecurrent 17p12 rearrangements associated with neuropathy. We document a multitude of ways in which gene function can be altered by CNVs. Given the characteristics, including small size, structural complexity, and location outside of coding regions, of selected rare CNVs, their identification remains a challenge for genome analysis. Rare CNVs may potentially represent an important portion of "missing heritability" for human diseases.

  20. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose.

    PubMed

    Hamatani, Kiyohiro; Eguchi, Hidetaka; Ito, Reiko; Mukai, Mayumi; Takahashi, Keiko; Taga, Masataka; Imai, Kazue; Cologne, John; Soda, Midori; Arihiro, Koji; Fujihara, Megumu; Abe, Kuniko; Hayashi, Tomayoshi; Nakashima, Masahiro; Sekine, Ichiro; Yasui, Wataru; Hayashi, Yuzo; Nakachi, Kei

    2008-09-01

    A major early event in papillary thyroid carcinogenesis is constitutive activation of the mitogen-activated protein kinase signaling pathway caused by alterations of a single gene, typically rearrangements of the RET and NTRK1 genes or point mutations in the BRAF and RAS genes. In childhood papillary thyroid cancer, regardless of history of radiation exposure, RET/PTC rearrangements are a major event. Conversely, in adult-onset papillary thyroid cancer among the general population, the most common molecular event is BRAF(V600E) point mutation, not RET/PTC rearrangements. To clarify which gene alteration, chromosome aberration, or point mutation preferentially occurs in radiation-associated adult-onset papillary thyroid cancer, we have performed molecular analyses on RET/PTC rearrangements and BRAF(V600E) mutation in 71 papillary thyroid cancer cases among atomic bomb survivors (including 21 cases not exposed to atomic bomb radiation), in relation to radiation dose as well as time elapsed since atomic bomb radiation exposure. RET/PTC rearrangements showed significantly increased frequency with increased radiation dose (P(trend) = 0.002). In contrast, BRAF(V600E) mutation was less frequent in cases exposed to higher radiation dose (P(trend) < 0.001). Papillary thyroid cancer subjects harboring RET/PTC rearrangements developed this cancer earlier than did cases with BRAF(V600E) mutation (P = 0.03). These findings were confirmed by multivariate logistic regression analysis. These results suggest that RET/PTC rearrangements play an important role in radiation-associated thyroid carcinogenesis.

  1. Consistent breakage between consensus recombinase heptamers of chromosome 9 DNA in a recurrent chromosomal translocation of human T cell leukemia

    PubMed Central

    1989-01-01

    Chromosomal translocations in lymphoid tumors frequently result from recombination between a normally rearranging antigen receptor gene and a normally non-rearranging second locus. The possibility that the lymphocyte recombinase apparatus plays a role in determining the position of breakage at the second locus has been a matter of controversy because of the inconsistent presence of heptamer-like recognition sequences adjoining breakpoints at this site. To further investigate this issue, sites of DNA recombination were analyzed in both the der(9) and der(7) products of t(7;9)(q34;q32), a recurrent translocation of human acute lymphoblastic leukemias (T-ALL). In each of three separate cases, the translocation has divided the TCR-beta locus, juxtaposing chromosome 9 DNA 5' to a J-region in the der(9) product and 3' to a D-region in the der(7) product, with variably sized N-insertions and small deletions detectable at the junctions. All three cases contain breakpoints in chromosome 9 DNA tightly clustered between two closely spaced, and oppositely oriented heptamer sequences, CAC(A/T)GTG, which perfectly match the consensus heptamer sequence recognized by the lymphocyte recombinase apparatus in normal antigen receptor gene rearrangement. In no case was there evidence of directly duplicated sequences in the two reciprocal products, as is often associated with recombination involving random staggered breakage of DNA. Taken together, these results support a mechanism for this particular translocation proceeding by recombinase-mediated breakage of both participating chromosomes. PMID:2536065

  2. Catalytic synthesis of amides via aldoximes rearrangement.

    PubMed

    Crochet, Pascale; Cadierno, Victorio

    2015-02-14

    Amide bond formation reactions are among the most important transformations in organic chemistry because of the widespread occurrence of amides in pharmaceuticals, natural products and biologically active compounds. The Beckmann rearrangement is a well-known method to generate secondary amides from ketoximes. However, under the acidic conditions commonly employed, aldoximes RHC=NOH rarely rearrange into the corresponding primary amides RC(=O)NH2. In recent years, it was demonstrated that this atom-economical transformation can be carried out efficiently and selectively with the help of metal catalysts. Several homogeneous and heterogenous systems have been described. In addition, protocols offering the option to generate the aldoximes in situ from the corresponding aldehydes and hydroxylamine, or even from alcohols, have also been developed, as well as a series of tandem processes allowing the access to N-substituted amide products. In this Feature article a comprehensive overview of the advances achieved in this particular research area is presented.

  3. Quantitative analysis of chromosome condensation in fission yeast.

    PubMed

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota; Haering, Christian H

    2013-03-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote.

  4. Chromosome number evolves independently of genome size in a clade with nonlocalized centromeres (Carex: Cyperaceae).

    PubMed

    Chung, Kyong-Sook; Hipp, Andrew L; Roalson, Eric H

    2012-09-01

    The effects of chromosome rearrangement on genome size are poorly understood. While chromosome duplications and deletions have predictable effects on genome size, chromosome fusion, fission, and translocation do not. In this study, we investigate genome size and chromosome number evolution in 87 species of Carex, one of the most species-rich genera of flowering plants and one that has undergone an exceptionally high rate of chromosome rearrangement. Using phylogenetic generalized least-squares regression, we find that the correlation between chromosome number and genome size in the genus grades from flat or weakly positive at fine phylogenetic scales to weakly negative at deeper phylogenetic scales. The rate of chromosome evolution exhibits a significant increase within a species-rich clade that arose approximately 5 million years ago. Genome size evolution, however, demonstrates a nearly constant rate across the entire tree. We hypothesize that this decoupling of genome size from chromosome number helps explain the high lability of chromosome number in the genus, as it reduces indirect selection on chromosome number.

  5. Polyyne synthesis using carbene/carbenoid rearrangements.

    PubMed

    Chalifoux, Wesley A; Tykwinski, Rik R

    2006-01-01

    Rearrangement of a carbene/carbenoid intermediate to form an acetylene moiety, known as the Fritsch-Buttenberg-Wiechell (FBW) rearrangement, was developed for the formation of polyynes and polyyne frameworks within highly conjugated organic materials. Necessary precursors can be prepared through formation of an alkynyl ketone, followed by dibromoolefination under Corey-Fuchs conditions. The carbenoid rearrangement is brought about by treatment of the dibromoolefin with BuLi under mild conditions. The success of these FBW reactions is quite solvent-dependent, and nonpolar hydrocarbon solvents (e.g., hexanes, toluene, benzene) work quite well, while use of ethereal solvents such as diethyl ether and tetrahydrofuran (THF) does not provide the desired polyyne product. This protocol was successfully applied to the formation of silyl, alkyl, alkenyl, and aryl polyynes, including di-, tri-, and tetrayne products, as well as the construction of two-dimensional carbon-rich molecules. A one-pot variant of this procedure is being developed and is particularly applicable toward the synthesis of polyyne natural products. Formation of a series of triisopropylsilyl end-capped polyynes, from the triyne to decayne, was achieved. Third-order nonlinear optical properties of these polyynes were evaluated. This study shows that the molecular second hyperpolarizabilities for the polyynes as a function of length increase at a rate that is higher than all other nonaromatic organic oligomers.

  6. Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes.

    PubMed

    Mandáková, Terezie; Schranz, M Eric; Sharbel, Timothy F; de Jong, Hans; Lysak, Martin A

    2015-06-01

    Chromosome rearrangements may result in both decrease and increase of chromosome numbers. Here we have used comparative chromosome painting (CCP) to reconstruct the pathways of descending and ascending dysploidy in the genus Boechera (tribe Boechereae, Brassicaceae). We describe the origin and structure of three Boechera genomes and establish the origin of the previously described aberrant Het and Del chromosomes found in Boechera apomicts with euploid (2n = 14) and aneuploid (2n = 15) chromosome number. CCP analysis allowed us to reconstruct the origin of seven chromosomes in sexual B. stricta and apomictic B. divaricarpa from the ancestral karyotype (n = 8) of Brassicaceae lineage I. Whereas three chromosomes (BS4, BS6, and BS7) retained their ancestral structure, five chromosomes were reshuffled by reciprocal translocations to form chromosomes BS1-BS3 and BS5. The reduction of the chromosome number (from x = 8 to x = 7) was accomplished through the inactivation of a paleocentromere on chromosome BS5. In apomictic 2n = 14 plants, CCP identifies the largely heterochromatic chromosome (Het) being one of the BS1 homologues with the expansion of pericentromeric heterochromatin. In apomictic B. polyantha (2n = 15), the Het has undergone a centric fission resulting in two smaller chromosomes - the submetacentric Het' and telocentric Del. Here we show that new chromosomes can be formed by a centric fission and can be fixed in populations due to the apomictic mode of reproduction.

  7. Global analysis of X-chromosome dosage compensation

    PubMed Central

    Gupta, Vaijayanti; Parisi, Michael; Sturgill, David; Nuttall, Rachel; Doctolero, Michael; Dudko, Olga K; Malley, James D; Eastman, P Scott; Oliver, Brian

    2006-01-01

    Background Drosophila melanogaster females have two X chromosomes and two autosome sets (XX;AA), while males have a single X chromosome and two autosome sets (X;AA). Drosophila male somatic cells compensate for a single copy of the X chromosome by deploying male-specific-lethal (MSL) complexes that increase transcription from the X chromosome. Male germ cells lack MSL complexes, indicating that either germline X-chromosome dosage compensation is MSL-independent, or that germ cells do not carry out dosage compensation. Results To investigate whether dosage compensation occurs in germ cells, we directly assayed X-chromosome transcripts using DNA microarrays and show equivalent expression in XX;AA and X;AA germline tissues. In X;AA germ cells, expression from the single X chromosome is about twice that of a single autosome. This mechanism ensures balanced X-chromosome expression between the sexes and, more importantly, it ensures balanced expression between the single X chromosome and the autosome set. Oddly, the inactivation of an X chromosome in mammalian females reduces the effective X-chromosome dose and means that females face the same X-chromosome transcript deficiency as males. Contrary to most current dosage-compensation models, we also show increased X-chromosome expression in X;AA and XX;AA somatic cells of Caenorhabditis elegans and mice. Conclusion Drosophila germ cells compensate for X-chromosome dose. This occurs by equilibrating X-chromosome and autosome expression in X;AA cells. Increased expression of the X chromosome in X;AA individuals appears to be phylogenetically conserved. PMID:16507155

  8. An alignment-free method to find and visualise rearrangements between pairs of DNA sequences

    PubMed Central

    Pratas, Diogo; Silva, Raquel M.; Pinho, Armando J.; Ferreira, Paulo J.S.G.

    2015-01-01

    Species evolution is indirectly registered in their genomic structure. The emergence and advances in sequencing technology provided a way to access genome information, namely to identify and study evolutionary macro-events, as well as chromosome alterations for clinical purposes. This paper describes a completely alignment-free computational method, based on a blind unsupervised approach, to detect large-scale and small-scale genomic rearrangements between pairs of DNA sequences. To illustrate the power and usefulness of the method we give complete chromosomal information maps for the pairs human-chimpanzee and human-orangutan. The tool by means of which these results were obtained has been made publicly available and is described in detail. PMID:25984837

  9. Distinct and shared three‐dimensional chromosome organization patterns in lymphocytes, monoclonal gammopathy of undetermined significance and multiple myeloma

    PubMed Central

    Sathitruangsak, Chirawadee; Righolt, Christiaan H.; Klewes, Ludger; Tung Chang, Doris; Kotb, Rami

    2016-01-01

    The consistent appearance of specific chromosomal translocations in multiple myeloma has suggested that the positioning of chromosomes in the interphase nucleus might play a role in the occurrence of particular chromosomal rearrangements associated with malignant transformation. Using fluorescence in situ hybridization, we have determined the positions of selected chromosome pairs (18 and 19, 9 and 22, 4 and 14, 14 and 16, 11 and 14) in interphase nuclei of myeloma cells compared to normal lymphocytes of treatment‐naïve patients. All chromosome pairs were arranged in a nonrandom pattern. Chromosomes commonly involved in myeloma‐associated translocations (4 and 14, 14 and 16, 11 and 14) were found in close spatial proximity, and this is correlated with the occurrence of overlapping chromosome territories. The spatial distribution of chromosomes may increase the possibility of chromosomal translocations in multiple myeloma. PMID:27711972

  10. Relationships between chromosome structure and chromosomal aberrations

    NASA Astrophysics Data System (ADS)

    Eidelman, Yuri; Andreev, Sergey

    An interphase nucleus of human lymphocyte was simulated by the novel Monte Carlo tech-nique. The main features of interphase chromosome structure and packaging were taken into account: different levels of chromatin organisation; nonrandom localisation of chromosomes within a nucleus; chromosome loci dynamics. All chromosomes in a nucleus were modelled as polymer globules. A dynamic pattern of intra/interchromosomal contacts was simulated. The detailed information about chromosomal contacts, such as distribution of intrachromoso-mal contacts over the length of each chromosome and dependence of contact probability on genomic separation between chromosome loci, were calculated and compared to the new exper-imental data obtained by the Hi-C technique. Types and frequencies of simple and complex radiation-induced chromosomal exchange aberrations (CA) induced by X-rays were predicted with taking formation and decay of chromosomal contacts into account. Distance dependence of exchange formation probability was calculated directly. mFISH data for human lymphocytes were analysed. The calculated frequencies of simple CA agreed with the experimental data. Complex CA were underestimated despite the dense packaging of chromosome territories within a nucleus. Possible influence of chromosome-nucleus structural organisation on the frequency and spectrum of radiation-induced chromosome aberrations is discussed.

  11. A method for determination of the in situ distribution of chromosomal proteins.

    PubMed

    Silver, L M; Elgin, S C

    1976-02-01

    A technique has been developed for "staining" cytological preparations by indirect immunofluorescent methods that permits determination of the in situ distribution of chromosomal proteins. The method is particularly oriented to the use of polytene chromosome squashes from Drosophila salivary glands. Control experiments indicate that the fixation methods used allow little or no extraction or rearrangement of the chromosomal proteins. The results obtained demonstrate the specific in vivo chromosomal locations of nonhistone proteins purified from isolated chromatin. The technique is apparently capable of resolution at the level of the chromomere or band, the unit of genetic organization in Drosophila.

  12. Sex chromosome mosaicism in males carrying Y chromosome long arm deletions.

    PubMed

    Siffroi, J P; Le Bourhis, C; Krausz, C; Barbaux, S; Quintana-Murci, L; Kanafani, S; Rouba, H; Bujan, L; Bourrouillou, G; Seifer, I; Boucher, D; Fellous, M; McElreavey, K; Dadoune, J P

    2000-12-01

    Microdeletions of the long arm of the Y chromosome (Yq) are a common cause of male infertility. Since large structural rearrangements of the Y chromosome are commonly associated with a 45,XO/46,XY chromosomal mosaicism, we studied whether submicroscopic Yq deletions could also be associated with the development of 45,XO cell lines. We studied blood samples from 14 infertile men carrying a Yq microdeletion as revealed by polymerase chain reaction (PCR). Patients were divided into two groups: group 1 (n = 6), in which karyotype analysis demonstrated a 45,X/46,XY mosaicism, and group 2 (n = 8) with apparently a normal 46,XY karyotype. 45,XO cells were identified by fluorescence in-situ hybridization (FISH) using X and Y centromeric probes. Lymphocytes from 11 fertile men were studied as controls. In addition, sperm cells were studied in three oligozoospermic patients in group 2. Our results showed that large and submicroscopic Yq deletions were associated with significantly increased percentages of 45,XO cells in lymphocytes and of sperm cells nullisomic for gonosomes, especially for the Y chromosome. Moreover, two isodicentric Y chromosomes, classified as normal by cytogenetic methods, were detected. Therefore, Yq microdeletions may be associated with Y chromosomal instability leading to the formation of 45,XO cell lines.

  13. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes.

    PubMed

    Voss, Stephen R; Kump, D Kevin; Putta, Srikrishna; Pauly, Nathan; Reynolds, Anna; Henry, Rema J; Basa, Saritha; Walker, John A; Smith, Jeramiah J

    2011-08-01

    Amphibian genomes differ greatly in DNA content and chromosome size, morphology, and number. Investigations of this diversity are needed to identify mechanisms that have shaped the evolution of vertebrate genomes. We used comparative mapping to investigate the organization of genes in the Mexican axolotl (Ambystoma mexicanum), a species that presents relatively few chromosomes (n = 14) and a gigantic genome (>20 pg/N). We show extensive conservation of synteny between Ambystoma, chicken, and human, and a positive correlation between the length of conserved segments and genome size. Ambystoma segments are estimated to be four to 51 times longer than homologous human and chicken segments. Strikingly, genes demarking the structures of 28 chicken chromosomes are ordered among linkage groups defining the Ambystoma genome, and we show that these same chromosomal segments are also conserved in a distantly related anuran amphibian (Xenopus tropicalis). Using linkage relationships from the amphibian maps, we predict that three chicken chromosomes originated by fusion, nine to 14 originated by fission, and 12-17 evolved directly from ancestral tetrapod chromosomes. We further show that some ancestral segments were fused prior to the divergence of salamanders and anurans, while others fused independently and randomly as chromosome numbers were reduced in lineages leading to Ambystoma and Xenopus. The maintenance of gene order relationships between chromosomal segments that have greatly expanded and contracted in salamander and chicken genomes, respectively, suggests selection to maintain synteny relationships and/or extremely low rates of chromosomal rearrangement. Overall, the results demonstrate the value of data from diverse, amphibian genomes in studies of vertebrate genome evolution.

  14. Ontogeny of Unstable Chromosomes Generated by Telomere Error in Budding Yeast.

    PubMed

    Beyer, Tracey; Weinert, Ted

    2016-10-01

    DNA replication errors at certain sites in the genome initiate chromosome instability that ultimately leads to stable genomic rearrangements. Where instability begins is often unclear. And, early instability may form unstable chromosome intermediates whose transient nature also hinders mechanistic understanding. We report here a budding yeast model that reveals the genetic ontogeny of genome rearrangements, from initial replication error to unstable chromosome formation to their resolution. Remarkably, the initial error often arises in or near the telomere, and frequently forms unstable chromosomes. Early unstable chromosomes may then resolve to an internal "collection site" where a dicentric forms and resolves to an isochromosome (other outcomes are possible at each step). The initial telomere-proximal unstable chromosome is increased in mutants in telomerase subunits, Tel1, and even Rad9, with no known telomere-specific function. Defects in Tel1 and in Rrm3, a checkpoint protein kinase with a role in telomere maintenance and a DNA helicase, respectively, synergize dramatically to generate unstable chromosomes, further illustrating the consequence of replication error in the telomere. Collectively, our results suggest telomeric replication errors may be a common cause of seemingly unrelated genomic rearrangements located hundreds of kilobases away.

  15. Ontogeny of Unstable Chromosomes Generated by Telomere Error in Budding Yeast

    PubMed Central

    Weinert, Ted

    2016-01-01

    DNA replication errors at certain sites in the genome initiate chromosome instability that ultimately leads to stable genomic rearrangements. Where instability begins is often unclear. And, early instability may form unstable chromosome intermediates whose transient nature also hinders mechanistic understanding. We report here a budding yeast model that reveals the genetic ontogeny of genome rearrangements, from initial replication error to unstable chromosome formation to their resolution. Remarkably, the initial error often arises in or near the telomere, and frequently forms unstable chromosomes. Early unstable chromosomes may then resolve to an internal "collection site" where a dicentric forms and resolves to an isochromosome (other outcomes are possible at each step). The initial telomere-proximal unstable chromosome is increased in mutants in telomerase subunits, Tel1, and even Rad9, with no known telomere-specific function. Defects in Tel1 and in Rrm3, a checkpoint protein kinase with a role in telomere maintenance and a DNA helicase, respectively, synergize dramatically to generate unstable chromosomes, further illustrating the consequence of replication error in the telomere. Collectively, our results suggest telomeric replication errors may be a common cause of seemingly unrelated genomic rearrangements located hundreds of kilobases away. PMID:27716774

  16. Molecular cytogenetic identification of a rearrangement involving 10q23 in a patient with ALL

    SciTech Connect

    Rosemblum-Vos, L.S.; Frantz, C.N.; Punzalan, C.M.

    1994-09-01

    A patient with pre-B cell acute lymphocytic leukemia (ALL) demonstrated a novel complex karyotype, elucidated by fluorescence in situ hybridization (FISH), which involved the region of a rare heritable fragile site at 10q23-q24. An asymptomatic two-year-old white female presented with anemia; her physical examination was normal. WBC was 6,200 with 8% blasts, and 35% atypical lymphocytes. Her bone marrow showed 50% lymphoblasts, expressing CD9, CD10, CD19, CD22, CD24, CD45, and HLA-DR, consistent with B-cell lineage. Cytogenetic examination of a bone marrow biopsy yielded GTG-banded chromosomes of sub-optimal morphology. The karyotype was initially interpreted as mosaic 46,X,-X,+4,-10,+13,der(19)/46,XX with 40% abnormal cells. Subsequent FISH studies revealed the der(19) to be an unbalanced form of the 1;19 translocation frequently found in pre-B cell ALL. Using FISH, we also identified a complex rearrangement in which an X chromosome segment was inserted interstitially into 10q at the q23.3/q24 junction, the location of a rare heritable fragile site. The karyotype has been reinterpreted as 46,X,del(X)(:p11.2{r_arrow}qter), ins(10;X)(q23.3;p11.2p22.3),der(19)t(1;19)(q23p13)/46,XX. To our knowledge, this is only the second reported case involving this breakpoint in ALL-L1, the other being a patient with biphenotypic pre-B/myeloid acute leukemia. Our patient is currently being investigated for this fragile site. The complete elucidation of the chromosomes involved in this complex rearrangement and the possible implications of the chromosome 10 breakpoint would have gone undetected without the application of FISH.

  17. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). II. The genome homology of two mole voles (genus Ellobius), the field vole and golden hamster revealed by comparative chromosome painting.

    PubMed

    Romanenko, Svetlana A; Sitnikova, Natalia A; Serdukova, Natalya A; Perelman, Polina L; Rubtsova, Nadezhda V; Bakloushinskaya, Irina Yu; Lyapunova, Elena A; Just, Walter; Ferguson-Smith, Malcolm A; Yang, Fengtang; Graphodatsky, Alexander S

    2007-01-01

    Using cross-species chromosome painting, we have carried out a comprehensive comparison of the karyotypes of two Ellobius species with unusual sex determination systems: the Transcaucasian mole vole, Ellobius lutescens (2n = 17, X in both sexes), and the northern mole vole, Ellobius talpinus (2n = 54, XX in both sexes). Both Ellobius species have highly rearranged karyotypes. The chromosomal paints from the field vole (Microtus agrestis) detected, in total, 34 and 32 homologous autosomal regions in E. lutescens and E. talpinus karyotypes, respectively. No difference in hybridization pattern of the X paint (as well as Y paint) probes on male and female chromosomes was discovered. The set of golden hamster (Mesocricetus auratus) chromosomal painting probes revealed 44 and 43 homologous autosomal regions in E. lutescens and E. talpinus karyotypes, respectively. A comparative chromosome map was established based on the results of cross-species chromosome painting and a hypothetical ancestral Ellobius karyotype was reconstructed. A considerable number of rearrangements were detected; 31 and 7 fusion/fission rearrangements differentiated the karyotypes of E. lutescens and E. talpinus from the ancestral Ellobius karyotype. It seems that inversions have played a minor role in the genome evolution of these Ellobius species.

  18. [Cri-du-chat syndrome and two other deformed children in a family carrying a pericentric inversion or insertion of chromosome 5].

    PubMed

    Delozier-Blanchet, C D; Pitmon, D; Schorderet, D; Engel, E

    1985-12-01

    Chromosomal syndromes may result from extremely small cytogenetic alterations, involving as little as one chromosomal sub-band. An example is the cri-du-chat (cat cry) syndrome, in which the critical deletion appears to involve the sub-bands 5p15.1-3. Aside from a sporadic deletion of 5p, the loss of material may result from an interstitial deletion, caused by the malsegregation of a balanced parental translocation, or, in exceptional cases, as the consequence of a sporadic or familial chromosomal inversion which has been modified by unequal crossing-over (recombination aneuploidy). In addition, in certain children with the clinical syndrome (11 of 331 in a recent review) the deletion cannot be proven cytogenetically and is presumed to be submicroscopic. In the case described here, an intrachromosomal rearrangement of chromosome 5--an invper(5)(p15q14 or 15) or an ins(5) (p15q12q12)--is segregating in the maternal family. Three of the four children born to the couple were abnormal. The first boy, affected with cleft lip, pyloric stenosis and inguinal hernias, died at 4 months of age. The second died at 3 weeks with microcephaly and agenesis of the corpus callosum, cleft palate, heart malformation, and sexual ambiguity. A third boy, now 14 years old, is phenotypically normal and has a normal karyotype. The female proband, seen by us at 9 years of age, showed the clinical features of the cri-du-chat syndrome, with severe psychomotor and staturoponderal retardation, facial dysmorphism, congenital heart defect, and the peculiar voice for which she had received the nickname of "kitten". Her karyotype shows the same variation of chromosome 5 present in her mother and grandmother, characterized on G bands by an additional dark band on 5p15. As there is no evidence for a reciprocal translocation in the mother, the most probable explanation is that of a familial inversion or insertion within chromosome 5. This rearrangement, subject to meiotic modifications, could have been

  19. Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen.

    PubMed

    Croll, Daniel; Zala, Marcello; McDonald, Bruce A

    2013-06-01

    Chromosomal rearrangements are a major driver of eukaryotic genome evolution, affecting speciation, pathogenicity and cancer progression. Changes in chromosome structure are often initiated by mis-repair of double-strand breaks in the DNA. Mis-repair is particularly likely when telomeres are lost or when dispersed repeats misalign during crossing-over. Fungi carry highly polymorphic chromosomal complements showing substantial variation in chromosome length and number. The mechanisms driving chromosome polymorphism in fungi are poorly understood. We aimed to identify mechanisms of chromosomal rearrangements in the fungal wheat pathogen Zymoseptoria tritici. We combined population genomic resequencing and chromosomal segment PCR assays with electrophoretic karyotyping and resequencing of parents and offspring from experimental crosses to show that this pathogen harbors a highly diverse complement of accessory chromosomes that exhibits strong global geographic differentiation in numbers and lengths of chromosomes. Homologous chromosomes carried highly differentiated gene contents due to numerous insertions and deletions. The largest accessory chromosome recently doubled in length through insertions totaling 380 kb. Based on comparative genomics, we identified the precise breakpoint locations of these insertions. Nondisjunction during meiosis led to chromosome losses in progeny of three different crosses. We showed that a new accessory chromosome emerged in two viable offspring through a fusion between sister chromatids. Such chromosome fusion is likely to initiate a breakage-fusion-bridge (BFB) cycle that can rapidly degenerate chromosomal structure. We suggest that the accessory chromosomes of Z. tritici originated mainly from ancient core chromosomes through a degeneration process that included BFB cycles, nondisjunction and mutational decay of duplicated sequences. The rapidly evolving accessory chromosome complement may serve as a cradle for adaptive evolution in

  20. Rare CBFB-MYH11 fusion transcripts in AML with inv(16)/t(16;16) are associated with therapy-related AML M4eo, atypical cytomorphology, atypical immunophenotype, atypical additional chromosomal rearrangements and low white blood cell count: a study on 162 patients.

    PubMed

    Schnittger, S; Bacher, U; Haferlach, C; Kern, W; Haferlach, T

    2007-04-01

    The spectrum of CBFB-MYH11 fusion transcripts in acute myeloid leukemia (AML) M4eo with inv(16)/t(16;16) is heterogeneous. Approximately 85% show type A CBFB-MYH11 fusion transcripts. In addition, more than 10 different fusion transcripts have been reported. The prognostic impact and biological background of rare fusion transcripts remain open. In this study, a molecular characterization of CBFB-MYH11 transcripts in 162 patients with CBFB-MYH11 positive AML at diagnosis was performed. In total, 128 patients (79.0%) showed the fusion transcript type A, whereas nine different rare CBFB-MYH11 fusion genes were detected in 34 cases (21.0%). Rare fusion transcripts were found more frequently in therapy-related AML (P=0.0106). Numerical gains of the chromosomes 8, 21 and 22 were more frequently associated with type A (28.3%) than with rare fusions (12.9%) (P=0.012). Median white blood cell (WBC) count was higher in type A (35.4 G/l; range=1.1-279 G/l) than in cases with rare types (7.8 G/l; range=0.8-148.0 G/l) (P<0.0001). Rare fusion transcripts were correlated with an atypical cytomorphology not primarily suggestive for the FAB subtype M4eo (P=0.0203). Immunophenotype revealed lower CD2, CD13, CD33 and CD90 levels than in type A fusion cases (P=0.036, 0.002, 0.029 and 0.045, respectively). However, the type of fusion was not an independent prognostic parameter.

  1. MLL-Rearranged Leukemias—An Update on Science and Clinical Approaches

    PubMed Central

    Winters, Amanda C.; Bernt, Kathrin M.

    2017-01-01

    The mixed-lineage leukemia 1 (MLL1) gene (now renamed Lysine [K]-specific MethylTransferase 2A or KMT2A) on chromosome 11q23 is disrupted in a unique group of acute leukemias. More than 80 different partner genes in these fusions have been described, although the majority of leukemias result from MLL1 fusions with one of about six common partner genes. Approximately 10% of all leukemias harbor MLL1 translocations. Of these, two patient populations comprise the majority of cases: patients younger than 1 year of age at diagnosis (primarily acute lymphoblastic leukemias) and young- to-middle-aged adults (primarily acute myeloid leukemias). A much rarer subgroup of patients with MLL1 rearrangements develop leukemia that is attributable to prior treatment with certain chemotherapeutic agents—so-called therapy-related leukemias. In general, outcomes for all of these patients remain poor when compared to patients with non-MLL1 rearranged leukemias. In this review, we will discuss the normal biological roles of MLL1 and its fusion partners, how these roles are hypothesized to be dysregulated in the context of MLL1 rearrangements, and the clinical manifestations of this group of leukemias. We will go on to discuss the progress in clinical management and promising new avenues of research, which may lead to more effective targeted therapies for affected patients. PMID:28232907

  2. Analyzing Somatic Genome Rearrangements in Human Cancers by Using Whole-Exome Sequencing

    PubMed Central

    Yang, Lixing; Lee, Mi-Sook; Lu, Hengyu; Oh, Doo-Yi; Kim, Yeon Jeong; Park, Donghyun; Park, Gahee; Ren, Xiaojia; Bristow, Christopher A.; Haseley, Psalm S.; Lee, Soohyun; Pantazi, Angeliki; Kucherlapati, Raju; Park, Woong-Yang; Scott, Kenneth L.; Choi, Yoon-La; Park, Peter J.

    2016-01-01

    Although exome sequencing data are generated primarily to detect single-nucleotide variants and indels, they can also be used to identify a subset of genomic rearrangements whose breakpoints are located in or near exons. Using >4,600 tumor and normal pairs across 15 cancer types, we identified over 9,000 high confidence somatic rearrangements, including a large number of gene fusions. We find that the 5′ fusion partners of functional fusions are often housekeeping genes, whereas the 3′ fusion partners are enriched in tyrosine kinases. We establish the oncogenic potential of ROR1-DNAJC6 and CEP85L-ROS1 fusions by showing that they can promote cell proliferation in vitro and tumor formation in vivo. Furthermore, we found that ∼4% of the samples have massively rearranged chromosomes, many of which are associated with upregulation of oncogenes such as ERBB2 and TERT. Although the sensitivity of detecting structural alterations from exomes is considerably lower than that from whole genomes, this approach will be fruitful for the multitude of exomes that have been and will be generated, both in cancer and in other diseases. PMID:27153396

  3. MLL-Rearranged Leukemias-An Update on Science and Clinical Approaches.

    PubMed

    Winters, Amanda C; Bernt, Kathrin M

    2017-01-01

    The mixed-lineage leukemia 1 (MLL1) gene (now renamed Lysine [K]-specific MethylTransferase 2A or KMT2A) on chromosome 11q23 is disrupted in a unique group of acute leukemias. More than 80 different partner genes in these fusions have been described, although the majority of leukemias result from MLL1 fusions with one of about six common partner genes. Approximately 10% of all leukemias harbor MLL1 translocations. Of these, two patient populations comprise the majority of cases: patients younger than 1 year of age at diagnosis (primarily acute lymphoblastic leukemias) and young- to-middle-aged adults (primarily acute myeloid leukemias). A much rarer subgroup of patients with MLL1 rearrangements develop leukemia that is attributable to prior treatment with certain chemotherapeutic agents-so-called therapy-related leukemias. In general, outcomes for all of these patients remain poor when compared to patients with non-MLL1 rearranged leukemias. In this review, we will discuss the normal biological roles of MLL1 and its fusion partners, how these roles are hypothesized to be dysregulated in the context of MLL1 rearrangements, and the clinical manifestations of this group of leukemias. We will go on to discuss the progress in clinical management and promising new avenues of research, which may lead to more effective targeted therapies for affected patients.

  4. Dissecting the structure and mechanism of a complex duplication-triplication rearrangement in the DMD gene.

    PubMed

    Ishmukhametova, Aliya; Chen, Jian-Min; Bernard, Rafaëlle; de Massy, Bernard; Baudat, Frédéric; Boyer, Amandine; Méchin, Déborah; Thorel, Delphine; Chabrol, Brigitte; Vincent, Marie-Claire; Khau Van Kien, Philippe; Claustres, Mireille; Tuffery-Giraud, Sylvie

    2013-08-01

    Pathogenic complex genomic rearrangements are being increasingly characterized at the nucleotide level, providing unprecedented opportunities to evaluate the complexities of mutational mechanisms. Here, we report the molecular characterization of a complex duplication-triplication rearrangement involving exons 45-60 of the DMD gene. Inverted repeats facilitated this complex rearrangement, which shares common genomic organization with the recently described duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) events; specifically, a 690-kb region comprising DMD exons from 45 to 60 was duplicated in tandem, and another 46-kb segment containing exon 51 was inserted inversely in between them. Taking into consideration (1) the presence of a predicted PRDM9 binding site in the near vicinity of the junction involving two inverted L1 elements and (2) the inherent properties of X-Y chromosome recombination during male meiosis, we proposed an alternative two-step model for the generation of this X-linked DMD DUP-TRP/INV-DUP event.

  5. Characterization of a 5.8-Mb interstitial deletion of chromosome 3p in a girl with 46,XX,inv(7)dn karyotype and phenotypic abnormalities.

    PubMed

    Morales, C; Mademont-Soler, I; Armengol, L; Milà, M; Badenas, C; Andrés, S; Soler, A; Sánchez, A

    2009-01-01

    Interstitial deletions of the short arm of chromosome 3 are rare, and a specific clinical phenotype has not been defined. We report the first isolated cryptic proximal interstitial 3p deletion, del(3)(p12.3p13), assessed by array-based comparative genomic hybridization in a girl with an inversion of chromosome 7, whose phenotype includes neurodevelopmental delay, growth retardation, dysmorphic facial features, hypophysis hypoplasia, gastroesophageal reflux, clinodactyly, preauricular appendix, and myopia. Her features are similar to those observed in the previously reported cases of proximal 3p deletions overlapping with our imbalance, indicating that her clinical manifestations are likely to be due to the deletion. As our patient's imbalance is the first non-cytogenetically visible proximal interstitial 3p deletion uncomplicated by other imbalances, its characterization has allowed us to narrow the minimal deletion interval associated with growth retardation and neurodevelopmental delay to the 3p12.3-p13 region. Among the genes found in this region, ROBO1, ROBO2, PDZRN3 and CNTN3 might play a role in the neurodevelopmental delay of the patient. This study provides additional evidence that cryptic imbalances anywhere along the genome can be found in patients with phenotypic abnormalities and a balanced chromosome rearrangement.

  6. "Perfect" designer chromosome V and behavior of a ring derivative.

    PubMed

    Xie, Ze-Xiong; Li, Bing-Zhi; Mitchell, Leslie A; Wu, Yi; Qi, Xin; Jin, Zhu; Jia, Bin; Wang, Xia; Zeng, Bo-Xuan; Liu, Hui-Min; Wu, Xiao-Le; Feng, Qi; Zhang, Wen-Zheng; Liu, Wei; Ding, Ming-Zhu; Li, Xia; Zhao, Guang-Rong; Qiao, Jian-Jun; Cheng, Jing-Sheng; Zhao, Meng; Kuang, Zheng; Wang, Xuya; Martin, J Andrew; Stracquadanio, Giovanni; Yang, Kun; Bai, Xue; Zhao, Juan; Hu, Meng-Long; Lin, Qiu-Hui; Zhang, Wen-Qian; Shen, Ming-Hua; Chen, Si; Su, Wan; Wang, En-Xu; Guo, Rui; Zhai, Fang; Guo, Xue-Jiao; Du, Hao-Xing; Zhu, Jia-Qing; Song, Tian-Qing; Dai, Jun-Jun; Li, Fei-Fei; Jiang, Guo-Zhen; Han, Shi-Lei; Liu, Shi-Yang; Yu, Zhi-Chao; Yang, Xiao-Na; Chen, Ken; Hu, Cheng; Li, Da-Shuai; Jia, Nan; Liu, Yue; Wang, Lin-Ting; Wang, Su; Wei, Xiao-Tong; Fu, Mei-Qing; Qu, Lan-Meng; Xin, Si-Yu; Liu, Ting; Tian, Kai-Ren; Li, Xue-Nan; Zhang, Jin-Hua; Song, Li-Xiang; Liu, Jin-Gui; Lv, Jia-Fei; Xu, Hang; Tao, Ran; Wang, Yan; Zhang, Ting-Ting; Deng, Ye-Xuan; Wang, Yi-Ran; Li, Ting; Ye, Guang-Xin; Xu, Xiao-Ran; Xia, Zheng-Bao; Zhang, Wei; Yang, Shi-Lan; Liu, Yi-Lin; Ding, Wen-Qi; Liu, Zhen-Ning; Zhu, Jun-Qi; Liu, Ning-Zhi; Walker, Roy; Luo, Yisha; Wang, Yun; Shen, Yue; Yang, Huanming; Cai, Yizhi; Ma, Ping-Sheng; Zhang, Chun-Ting; Bader, Joel S; Boeke, Jef D; Yuan, Ying-Jin

    2017-03-10

    Perfect matching of an assembled physical sequence to a specified designed sequence is crucial to verify design principles in genome synthesis. We designed and de novo synthesized 536,024-base pair chromosome synV in the "Build-A-Genome China" course. We corrected an initial isolate of synV to perfectly match the designed sequence using integrative cotransformation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated editing in 22 steps; synV strains exhibit high fitness under a variety of culture conditions, compared with that of wild-type V strains. A ring synV derivative was constructed, which is fully functional in Saccharomyces cerevisiae under all conditions tested and exhibits lower spore viability during meiosis. Ring synV chromosome can extends Sc2.0 design principles and provides a model with which to study genomic rearrangement, ring chromosome evolution, and human ring chromosome disorders.

  7. The finished DNA sequence of human chromosome 12.

    PubMed

    Scherer, Steven E; Muzny, Donna M; Buhay, Christian J; Chen, Rui; Cree, Andrew; Ding, Yan; Dugan-Rocha, Shannon; Gill, Rachel; Gunaratne, Preethi; Harris, R Alan; Hawes, Alicia C; Hernandez, Judith; Hodgson, Anne V; Hume, Jennifer; Jackson, Andrew; Khan, Ziad Mohid; Kovar-Smith, Christie; Lewis, Lora R; Lozado, Ryan J; Metzker, Michael L; Milosavljevic, Aleksandar; Miner, George R; Montgomery, Kate T; Morgan, Margaret B; Nazareth, Lynne V; Scott, Graham; Sodergren, Erica; Song, Xing-Zhi; Steffen, David; Lovering, Ruth C; Wheeler, David A; Worley, Kim C; Yuan, Yi; Zhang, Zhengdong; Adams, Charles Q; Ansari-Lari, M Ali; Ayele, Mulu; Brown, Mary J; Chen, Guan; Chen, Zhijian; Clerc-Blankenburg, Kerstin P; Davis, Clay; Delgado, Oliver; Dinh, Huyen H; Draper, Heather; Gonzalez-Garay, Manuel L; Havlak, Paul; Jackson, Laronda R; Jacob, Leni S; Kelly, Susan H; Li, Li; Li, Zhangwan; Liu, Jing; Liu, Wen; Lu, Jing; Maheshwari, Manjula; Nguyen, Bao-Viet; Okwuonu, Geoffrey O; Pasternak, Shiran; Perez, Lesette M; Plopper, Farah J H; Santibanez, Jireh; Shen, Hua; Tabor, Paul E; Verduzco, Daniel; Waldron, Lenee; Wang, Qiaoyan; Williams, Gabrielle A; Zhang, Jingkun; Zhou, Jianling; Allen, Carlana C; Amin, Anita G; Anyalebechi, Vivian; Bailey, Michael; Barbaria, Joseph A; Bimage, Kesha E; Bryant, Nathaniel P; Burch, Paula E; Burkett, Carrie E; Burrell, Kevin L; Calderon, Eliana; Cardenas, Veronica; Carter, Kelvin; Casias, Kristal; Cavazos, Iracema; Cavazos, Sandra R; Ceasar, Heather; Chacko, Joseph; Chan, Sheryl N; Chavez, Dean; Christopoulos, Constantine; Chu, Joseph; Cockrell, Raynard; Cox, Caroline D; Dang, Michelle; Dathorne, Stephanie R; David, Robert; Davis, Candi Mon'Et; Davy-Carroll, Latarsha; Deshazo, Denise R; Donlin, Jeremy E; D'Souza, Lisa; Eaves, Kristy A; Egan, Amy; Emery-Cohen, Alexandra J; Escotto, Michael; Flagg, Nicole; Forbes, Lisa D; Gabisi, Abdul M; Garza, Melissa; Hamilton, Cerissa; Henderson, Nicholas; Hernandez, Omar; Hines, Sandra; Hogues, Marilyn E; Huang, Mei; Idlebird, DeVincent G; Johnson, Rudy; Jolivet, Angela; Jones, Sally; Kagan, Ryan; King, Laquisha M; Leal, Belita; Lebow, Heather; Lee, Sandra; LeVan, Jaclyn M; Lewis, Lakeshia C; London, Pamela; Lorensuhewa, Lorna M; Loulseged, Hermela; Lovett, Demetria A; Lucier, Alice; Lucier, Raymond L; Ma, Jie; Madu, Renita C; Mapua, Patricia; Martindale, Ashley D; Martinez, Evangelina; Massey, Elizabeth; Mawhiney, Samantha; Meador, Michael G; Mendez, Sylvia; Mercado, Christian; Mercado, Iracema C; Merritt, Christina E; Miner, Zachary L; Minja, Emmanuel; Mitchell, Teresa; Mohabbat, Farida; Mohabbat, Khatera; Montgomery, Baize; Moore, Niki; Morris, Sidney; Munidasa, Mala; Ngo, Robin N; Nguyen, Ngoc B; Nickerson, Elizabeth; Nwaokelemeh, Ogechi O; Nwokenkwo, Stanley; Obregon, Melissa; Oguh, Maryann; Oragunye, Njideka; Oviedo, Rodolfo J; Parish, Bridgette J; Parker, David N; Parrish, Julia; Parks, Kenya L; Paul, Heidie A; Payton, Brett A; Perez, Agapito; Perrin, William; Pickens, Adam; Primus, Eltrick L; Pu, Ling-Ling; Puazo, Maria; Quiles, Miyo M; Quiroz, Juana B; Rabata, Dina; Reeves, Kacy; Ruiz, San Juana; Shao, Hongmei; Sisson, Ida; Sonaike, Titilola; Sorelle, Richard P; Sutton, Angelica E; Svatek, Amanda F; Svetz, Leah Anne; Tamerisa, Kavitha S; Taylor, Tineace R; Teague, Brian; Thomas, Nicole; Thorn, Rachel D; Trejos, Zulma Y; Trevino, Brenda K; Ukegbu, Ogechi N; Urban, Jeremy B; Vasquez, Lydia I; Vera, Virginia A; Villasana, Donna M; Wang, Ling; Ward-Moore, Stephanie; Warren, James T; Wei, Xuehong; White, Flower; Williamson, Angela L; Wleczyk, Regina; Wooden, Hailey S; Wooden, Steven H; Yen, Jennifer; Yoon, Lillienne; Yoon, Vivienne; Zorrilla, Sara E; Nelson, David; Kucherlapati, Raju; Weinstock, George; Gibbs, Richard A

    2006-03-16

    Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing approximately 4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents.

  8. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos

    PubMed Central

    Vázquez-Diez, Cayetana; Yamagata, Kazuo; Trivedi, Shardul; Haverfield, Jenna; FitzHarris, Greg

    2016-01-01

    Chromosome segregation defects in cancer cells lead to encapsulation of chromosomes in micronuclei (MN), small nucleus-like structures within which dangerous DNA rearrangements termed chromothripsis can occur. Here we uncover a strikingly different consequence of MN formation in preimplantation development. We find that chromosomes from within MN become damaged and fail to support a functional kinetochore. MN are therefore not segregated, but are instead inherited by one of the two daughter cells. We find that the same MN can be inherited several times without rejoining the principal nucleus and without altering the kinetics of cell divisions. MN motion is passive, resulting in an even distribution of MN across the first two cell lineages. We propose that perpetual unilateral MN inheritance constitutes an unexpected mode of chromosome missegregation, which could contribute to the high frequency of aneuploid cells in mammalian embryos, but simultaneously may serve to insulate the early embryonic genome from chromothripsis. PMID:26729872

  9. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos.

    PubMed

    Vázquez-Diez, Cayetana; Yamagata, Kazuo; Trivedi, Shardul; Haverfield, Jenna; FitzHarris, Greg

    2016-01-19

    Chromosome segregation defects in cancer cells lead to encapsulation of chromosomes in micronuclei (MN), small nucleus-like structures within which dangerous DNA rearrangements termed chromothripsis can occur. Here we uncover a strikingly different consequence of MN formation in preimplantation development. We find that chromosomes from within MN become damaged and fail to support a functional kinetochore. MN are therefore not segregated, but are instead inherited by one of the two daughter cells. We find that the same MN can be inherited several times without rejoining the principal nucleus and without altering the kinetics of cell divisions. MN motion is passive, resulting in an even distribution of MN across the first two cell lineages. We propose that perpetual unilateral MN inheritance constitutes an unexpected mode of chromosome missegregation, which could contribute to the high frequency of aneuploid cells in mammalian embryos, but simultaneously may serve to insulate the early embryonic genome from chromothripsis.

  10. Human chromosome 8.

    PubMed Central

    Wood, S

    1988-01-01

    The role of human chromosome 8 in genetic disease together with the current status of the genetic linkage map for this chromosome is reviewed. Both hereditary genetic disease attributed to mutant alleles at gene loci on chromosome 8 and neoplastic disease owing to somatic mutation, particularly chromosomal translocations, are discussed. PMID:3070042

  11. Whole Genome Analyses of a Well-Differentiated Liposarcoma Reveals Novel SYT1 and DDR2 Rearrangements

    PubMed Central

    Egan, Jan B.; Barrett, Michael T.; Champion, Mia D.; Middha, Sumit; Lenkiewicz, Elizabeth; Evers, Lisa; Francis, Princy; Schmidt, Jessica; Shi, Chang-Xin; Van Wier, Scott; Badar, Sandra; Ahmann, Gregory; Kortuem, K. Martin; Boczek, Nicole J.; Fonseca, Rafael; Craig, David W.; Carpten, John D.; Borad, Mitesh J.; Stewart, A. Keith

    2014-01-01

    Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing. This work revealed massive highly focal amplifications throughout the aneuploid tumor genome including MDM2, a gene that has previously been found to be amplified in well-differentiated liposarcoma. Structural analysis revealed massive rearrangement of chromosome 12 and 11 gene fusions, some of which may be part of double minute chromosomes commonly present in well-differentiated liposarcoma. We identified a hotspot of genomic instability localized to a region of chromosome 12 that includes a highly conserved, putative L1 retrotransposon element, LOC100507498 which resides within a gene cluster (NAV3, SYT1, PAWR) where 6 of the 11 fusion events occurred. Interestingly, a potential gene fusion was also identified in amplified DDR2, which is a potential therapeutic target of kinase inhibitors such as dastinib, that are not routinely used in the treatment of patients with liposarcoma. Furthermore, 7 somatic, damaging single nucleotide variants have also been identified, including D125N in the PTPRQ protein. In conclusion, this work is the first to report the entire genome of a well-differentiated liposarcoma with novel chromosomal rearrangements associated with amplification of therapeutically targetable genes such as MDM2 and DDR2. PMID:24505276

  12. Whole genome analyses of a well-differentiated liposarcoma reveals novel SYT1 and DDR2 rearrangements.

    PubMed

    Egan, Jan B; Barrett, Michael T; Champion, Mia D; Middha, Sumit; Lenkiewicz, Elizabeth; Evers, Lisa; Francis, Princy; Schmidt, Jessica; Shi, Chang-Xin; Van Wier, Scott; Badar, Sandra; Ahmann, Gregory; Kortuem, K Martin; Boczek, Nicole J; Fonseca, Rafael; Craig, David W; Carpten, John D; Borad, Mitesh J; Stewart, A Keith

    2014-01-01

    Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing. This work revealed massive highly focal amplifications throughout the aneuploid tumor genome including MDM2, a gene that has previously been found to be amplified in well-differentiated liposarcoma. Structural analysis revealed massive rearrangement of chromosome 12 and 11 gene fusions, some of which may be part of double minute chromosomes commonly present in well-differentiated liposarcoma. We identified a hotspot of genomic instability localized to a region of chromosome 12 that includes a highly conserved, putative L1 retrotransposon element, LOC100507498 which resides within a gene cluster (NAV3, SYT1, PAWR) where 6 of the 11 fusion events occurred. Interestingly, a potential gene fusion was also identified in amplified DDR2, which is a potential therapeutic target of kinase inhibitors such as dastinib, that are not routinely used in the treatment of patients with liposarcoma. Furthermore, 7 somatic, damaging single nucleotide variants have also been identified, including D125N in the PTPRQ protein. In conclusion, this work is the first to report the entire genome of a well-differentiated liposarcoma with novel chromosomal rearrangements associated with amplification of therapeutically targetable genes such as MDM2 and DDR2.

  13. The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2.

    PubMed

    Nazaryan, Lusine; Stefanou, Eunice G; Hansen, Claus; Kosyakova, Nadezda; Bak, Mads; Sharkey, Freddie H; Mantziou, Theodora; Papanastasiou, Anastasios D; Velissariou, Voula; Liehr, Thomas; Syrrou, Maria; Tommerup, Niels

    2014-03-01

    Next-generation mate-pair sequencing (MPS) has revealed that many constitutional complex chromosomal rearrangements (CCRs) are associated with local shattering of chromosomal regions (chromothripsis). Although MPS promises to identify the molecular basis of the abnormal phenotypes associated with many CCRs, none of the reported mate-pair sequenced complex rearrangements have been simultaneously studied with state-of-the art molecular cytogenetic techniques. Here, we studied chromothripsis-associated CCR involving chromosomes 2, 5 and 7, associated with global developmental and psychomotor delay and severe speech disorder. We identified three truncated genes: CDH12, DGKB and FOXP2, confirming the role of FOXP2 in severe speech disorder, and suggestive roles of CDH12 and/or DGKB for the global developmental and psychomotor delay. Our study confirmes the power of MPS for detecting breakpoints and truncated genes at near nucleotide resolution in chromothripsis. However, only by combining MPS data with conventional G-banding and extensive fluorescence in situ hybridizations could we delineate the precise structure of the derivative chromosomes.

  14. High chromosome variability and the presence of multivalent associations in buthid scorpions.

    PubMed

    Mattos, Viviane Fagundes; Cella, Doralice Maria; Carvalho, Leonardo Sousa; Candido, Denise Maria; Schneider, Marielle Cristina

    2013-04-01

    In this study, we investigated the mitotic and meiotic chromosomes of 11 Buthidae scorpion species, belonging to three genera (Ananteris, Rhopalurus and Tityus), to obtain detailed knowledge regarding the mechanisms underlying the intraspecific and/or interspecific diversity of chromosome number and the origin of the complex chromosome associations observed during meiosis. The chromosomes of all species did not exhibit a localised centromere region and presented synaptic and achiasmatic behaviour during meiosis I. Spermatogonial and/or oogonial metaphase cells of these buthids showed diploid numbers range from 2n = 6 to 2n = 28. In most species, multivalent chromosome associations were observed in pachytene and postpachytene nuclei. Moreover, intraspecific variability associated with the presence or absence of chromosome chains and the number of chromosomes in the complex meiotic configurations was observed in some species of these three genera. Silver-impregnated cells revealed that the number and location of nucleolar organiser regions (NORs) remained unchanged despite extensive chromosome variation; notably, two NORs located on the terminal or subterminal chromosome regions were commonly observed for all species. C-banded and fluorochrome-stained cells showed that species with conspicuous blocks of heterochromatin exhibited the lowest rate of chromosomal rearrangement. Based on the investigation of mitotic and meiotic cells, we determined that the intraspecific variability occurred as a consequence of fission/fusion-type chromosomal rearrangements in Ananteris and Tityus species and reciprocal translocation in Rhopalurus species. Furthermore, we verified that individuals presenting the same diploid number differ in structural chromosome organisation, giving rise to intraspecific differences of chromosome association in meiotic cells (bivalent-like elements or chromosome chains).

  15. Structural analysis of a carcinogen-induced genomic rearrangement event

    SciTech Connect

    Barr, F.G.; Davis, R.J.; Eichenfield, L.; Emanuel, B.S. Univ. of Pennsylvania, Philadelphia )

    1992-02-01

    The authors have explored the mechanism of genomic rearrangement in a hamster fibroblast cell culture system in which rearrangements are induced 5{prime} to the endogenous thymidine kinase gene by chemical carcinogen treatment. The wild-type region around one rearrangement breakpoint was cloned and sequenced. With this sequence information, the carcinogen-induced rearrangement was cloned from the corresponding rearranged cell line by the inverse polymerase chain reaction. After the breakpoint fragment was sequenced, the wild-type rearrangement partner (RP15) was isolated by a second inverse polymerase chain reaction of unrearranged DNA. Comparison of the sequence of the rearrangement breakpoint with the wild-type RP15 and 5{prime} thymidine kinase gene regions revealed short repeats directly at the breakpoint, as well as nearby A+T-rich regions in rearrangement partner. Therefore, these studies reveal interesting sequence and chromatin features near the rearrangement breakpoints and suggest a role for nuclear organization in the mechanism of carcinogen-induced genomic rearrangement.

  16. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting.

    PubMed

    Sitnikova, Natalia A; Romanenko, Svetlana A; O'Brien, Patricia C M; Perelman, Polina L; Fu, Beiyuan; Rubtsova, Nadezhda V; Serdukova, Natalya A; Golenishchev, Feodor N; Trifonov, Vladimir A; Ferguson-Smith, Malcolm A; Yang, Fengtang; Graphodatsky, Alexander S

    2007-01-01

    Cross-species chromosome painting has become the mainstay of comparative cytogenetic and chromosome evolution studies. Here we have made a set of chromosomal painting probes for the field vole (Microtus agrestis) by DOP-PCR amplification of flow-sorted chromosomes. Together with painting probes of golden hamster (Mesocricetus auratus) and mouse (Mus musculus), the field vole probes have been hybridized onto the metaphases of the tundra vole (Microtus oeconomus). A comparative chromosome map between these two voles, golden hamster and mouse has been established based on the results of cross-species chromosome painting and G-banding comparisons. The sets of paints from the field vole, golden hamster and mouse identified a total of 27, 40 and 47 homologous autosomal regions, respectively, in the genome of tundra vole; 16, 41 and 51 fusion/fission rearrangements differentiate the karyotype of the tundra vole from the karyotypes of the field vole, golden hamster and mouse, respectively.

  17. Mitotic chromosome structure

    SciTech Connect

    Heermann, Dieter W.

    2012-07-15

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  18. Differential clustering of sperm subpopulations in infertile males with clinical varicocele and carriers of rearranged genomes.

    PubMed

    García-Peiró, Agustín; Oliver-Bonet, María; Navarro, Joaquima; Abad, Carlos; Amengual, María José; López-Fernández, Carmen; Gosálvez, Jaime; Benet, Jordi

    2012-01-01

    Some methods for determining sperm DNA fragmentation, such as the sperm chromatin structure assay (SCSA) and the sperm chromatin dispersion test (SCD), provide additional information about particular subgroups of spermatozoa with specific irregularities. Thus, SCSA recognizes a specific sperm subpopulation, the high-DNA stainability sperm subpopulation (HDS), and SCD recognizes the so-called DNA-degraded sperm (DDS) subpopulation. Although some studies associate the presence of these subpopulations with specific aspects related to infertility, the relationship between both sperm subpopulations and their preponderance in specific clinical groups of infertile males has not been extensively investigated. In this study, HDS and DDS subpopulations were determined in a total of 37 human males: 8 males with proven fertility, 9 infertile males with asthenoteratozoospermia, 10 carriers of chromosomal reorganizations, and 10 infertile males with clinical varicocele. Results showed a significant increase of the DDS subpopulation (P < .001) in both the varicocele patient (16.85 ± 7.24) and carrier of rearranged genome (11.6 ± 5.23) groups, but not in patients with asthenoteratozoospermia (3.88 ± 1.55) or fertile donors (2.62 ± 1.68). No statistical differences were detected for the HDS subpopulation (P = .542), but the highest values were found in the varicocele and rearranged-genome groups. However, no correlation between the HDS and DDS subpopulations were found (r = 0.196; P = .244), suggesting that both represent a different class of sperm subpopulation in the ejaculate. A significant increase in HDS, and especially DDS, can be associated with the presence of varicocele or the rearrangement of chromosomes. Specific diagnostic tests to confirm the diagnosis must be performed in patients with increased DDS and HDS values.

  19. Nonclassical 21-Homododecahedryl Cation Rearrangement Revisited.

    PubMed

    Jalife, Said; Mondal, Sukanta; Osorio, Edison; Cabellos, José Luis; Martínez-Guajardo, Gerardo; Fernández-Herrera, María A; Merino, Gabriel

    2016-03-04

    The degenerate rearrangement in the 21-homododecahedryl cation (1) has been studied via density functional theory computations and Born-Oppenheimer Molecular Dynamics simulations. Compound 1 can be described as a highly fluxional hyperconjugated carbocation. Complete scrambling of 1 can be achieved by the combination of two unveiled barrierless processes. The first one is a "rotation" of one of the six-membered rings via a 0.8 kcal·mol(-1) barrier, and the second one is a slower interconvertion between two hyperconjomers via an out-of-plane methine bending (ΔG(⧧) = 4.0 kcal·mol(-1)).

  20. Rearranged Anaplastic Lymphoma Kinase (ALK) Gene in Adult-Onset Papillary Thyroid Cancer Amongst Atomic Bomb Survivors

    PubMed Central

    Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro

    2012-01-01

    Background We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAFV600E) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. Methods The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription–polymerase chain reaction and 5′ rapid amplification of cDNA ends (5′ RACE). Results We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK

  1. Angelman syndrome associated with an inversion of chromosome 15q11.2q24.3.

    PubMed Central

    Greger, V; Knoll, J H; Wagstaff, J; Woolf, E; Lieske, P; Glatt, H; Benn, P A; Rosengren, S S; Lalande, M

    1997-01-01

    Angelman syndrome (AS) most frequently results from large (> or = 5 Mb) de novo deletions of chromosome 15q11-q13. The deletions are exclusively of maternal origin, and a few cases of paternal uniparental disomy of chromosome 15 have been reported. The latter finding indicates that AS is caused by the absence of a maternal contribution to the imprinted 15q11-q13 region. Failure to inherit a paternal 15q11-q13 contribution results in the clinically distinct disorder of Prader-Willi syndrome. Cases of AS resulting from translocations or pericentric inversions have been observed to be associated with deletions, and there have been no confirmed reports of balanced rearrangements in AS. We report the first such case involving a paracentric inversion with a breakpoint located approximately 25 kb proximal to the reference marker D15S10. This inversion has been inherited from a phenotypically normal mother. No deletion is evident by molecular analysis in this case, by use of cloned fragments mapped to within approximately 1 kb of the inversion breakpoint. Several hypotheses are discussed to explain the relationship between the inversion and the AS phenotype. Images Figure 2 Figure 3 PMID:9042916

  2. Angelman syndrome associated with an inversion of chromosome 15q11.2q24.3

    SciTech Connect

    Greger, V.; Knoll, J.H.M.; Wagstaff, J.; Lalande, M.

    1997-03-01

    Angelman syndrome (AS) most frequently results from large ({ge}5 Mb) de novo deletions of chromosome 15q11-q13. The deletions are exclusively of maternal origin, and a few cases of paternal uniparental disomy of chromosome 15 have been reported. The latter finding indicates that AS is caused by the absence of a maternal contribution to the imprinted 15q11-q13 region. Failure to inherit a paternal 15q11-q13 contribution results in the clinically distinct disorder of Prader-Willi syndrome. Cases of AS resulting from translocations or pericentric inversions have been observed to be associated with deletions, and there have been no confirmed reports of balanced rearrangements in AS. We report the first such case involving a paracentric inversion with a breakpoint located {approximately}25 kb proximal to the reference marker D15S10. This inversion has been inherited from a phenotypically normal mother. No deletion is evident by molecular analysis in this case, by use of cloned fragments mapped to within {approximately}1 kb of the inversion breakpoint. Several hypotheses are discussed to explain the relationship between the inversion and the AS phenotype. 47 refs., 3 figs.

  3. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms

    PubMed Central

    Malhotra, Ankit; Lindberg, Michael; Faust, Gregory G.; Leibowitz, Mitchell L.; Clark, Royden A.; Layer, Ryan M.; Quinlan, Aaron R.; Hall, Ira M.

    2013-01-01

    Tumor genomes are generally thought to evolve through a gradual accumulation of mutations, but the observation that extraordinarily complex rearrangements can arise through single mutational events suggests that evolution may be accelerated by punctuated changes in genome architecture. To assess the prevalence and origins of complex genomic rearrangements (CGRs), we mapped 6179 somatic structural variation breakpoints in 64 cancer genomes from seven tumor types and screened for clusters of three or more interconnected breakpoints. We find that complex breakpoint clusters are extremely common: 154 clusters comprise 25% of all somatic breakpoints, and 75% of tumors exhibit at least one complex cluster. Based on copy number state profiling, 63% of breakpoint clusters are consistent with being CGRs that arose through a single mutational event. CGRs have diverse architectures including focal breakpoint clusters, large-scale rearrangements joining clusters from one or more chromosomes, and staggeringly complex chromothripsis events. Notably, chromothripsis has a significantly higher incidence in glioblastoma samples (39%) relative to other tumor types (9%). Chromothripsis breakpoints also show significantly elevated intra-tumor allele frequencies relative to simple SVs, which indicates that they arise early during tumorigenesis or confer selective advantage. Finally, assembly and analysis of 4002 somatic and 6982 germline breakpoint sequences reveal that somatic breakpoints show significantly less microhomology and fewer templated insertions than germline breakpoints, and this effect is stronger at CGRs than at simple variants. These results are inconsistent with replication-based models of CGR genesis and strongly argue that nonhomologous repair of concurrently arising DNA double-strand breaks is the predominant mechanism underlying complex cancer genome rearrangements. PMID:23410887

  4. Genome-Wide Signatures of ‘Rearrangement Hotspots’ within Segmental Duplications in Humans

    PubMed Central

    Uddin, Mohammed; Sturge, Mitch; Peddle, Lynette; O'Rielly, Darren D.; Rahman, Proton

    2011-01-01

    The primary objective of this study was to create a genome-wide high resolution map (i.e., >100 bp) of ‘rearrangement hotspots’ which can facilitate the identification of regions capable of mediating de novo deletions or duplications in humans. A hierarchical method was employed to fragment segmental duplications (SDs) into multiple smaller SD units. Combining an end space free pairwise alignment algorithm with a ‘seed and extend’ approach, we have exhaustively searched 409 million alignments t