Science.gov

Sample records for balancing offshore wind

  1. Offshore Wind Balance-of-System Cost Modeling

    SciTech Connect

    Maness, Michael; Stehly, Tyler; Maples, Ben; Mone, Christopher

    2015-09-29

    Offshore wind balance-of-system (BOS) costs contribute up to 70% of installed capital costs. Thus, it is imperative to understand the impact of these costs on project economics as well as potential cost trends for new offshore wind technology developments. As a result, the National Renewable Energy Laboratory (NREL) developed and recently updated a BOS techno-economic model using project cost estimates created from wind energy industry sources.

  2. Session: Offshore wind

    SciTech Connect

    Gaarde, Jette; Ram, Bonnie

    2004-09-01

    This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

  3. Offshore Wind Energy

    SciTech Connect

    Strach-Sonsalla, Mareike; Stammler, Matthias; Wenske, Jan; Jonkman, Jason; Vorpahl, Fabian

    2016-07-27

    In 1991, the Vindeby Offshore Wind Farm, the first offshore wind farm in the world, started feeding electricity to the grid off the coast of Lolland, Denmark. Since then, offshore wind energy has developed from this early experiment to a multibillion dollar market and an important pillar of worldwide renewable energy production. Unit sizes grew from 450 kW at Vindeby to the 7.5 MW-class offshore wind turbines (OWT ) that are currently (by October 2014) in the prototyping phase. This chapter gives an overview of the state of the art in offshore wind turbine (OWT) technology and introduces the principles of modeling and simulating an OWT. The OWT components -- including the rotor, nacelle, support structure, control system, and power electronics -- are introduced, and current technological challenges are presented. The OWT system dynamics and the environment (wind and ocean waves) are described from the perspective of OWT modelers and designers. Finally, an outlook on future technology is provided. The descriptions in this chapter are focused on a single OWT -- more precisely, a horizontal-axis wind turbine -- as a dynamic system. Offshore wind farms and wind farm effects are not described in detail in this chapter, but an introduction and further references are given.

  4. Offshore wind farm layout optimization

    NASA Astrophysics Data System (ADS)

    Elkinton, Christopher Neil

    Offshore wind energy technology is maturing in Europe and is poised to make a significant contribution to the U.S. energy production portfolio. Building on the knowledge the wind industry has gained to date, this dissertation investigates the influences of different site conditions on offshore wind farm micrositing---the layout of individual turbines within the boundaries of a wind farm. For offshore wind farms, these conditions include, among others, the wind and wave climates, water depths, and soil conditions at the site. An analysis tool has been developed that is capable of estimating the cost of energy (COE) from offshore wind farms. For this analysis, the COE has been divided into several modeled components: major costs (e.g. turbines, electrical interconnection, maintenance, etc.), energy production, and energy losses. By treating these component models as functions of site-dependent parameters, the analysis tool can investigate the influence of these parameters on the COE. Some parameters result in simultaneous increases of both energy and cost. In these cases, the analysis tool was used to determine the value of the parameter that yielded the lowest COE and, thus, the best balance of cost and energy. The models have been validated and generally compare favorably with existing offshore wind farm data. The analysis technique was then paired with optimization algorithms to form a tool with which to design offshore wind farm layouts for which the COE was minimized. Greedy heuristic and genetic optimization algorithms have been tuned and implemented. The use of these two algorithms in series has been shown to produce the best, most consistent solutions. The influences of site conditions on the COE have been studied further by applying the analysis and optimization tools to the initial design of a small offshore wind farm near the town of Hull, Massachusetts. The results of an initial full-site analysis and optimization were used to constrain the boundaries of

  5. Wind Energy: Offshore Permitting

    DTIC Science & Technology

    2008-05-01

    Technological advancements and tax incentives have driven a global expansion in the development of renewable energy resources. Wind energy , in...particular, is now often cited as the fastest growing commercial energy source in the world. Currently, all U.S. wind energy facilities are based on land...authority to permit and regulate offshore wind energy development within the zones of the oceans under its jurisdiction. The federal government and coastal

  6. NREL Offshore Balance-of-System Model

    SciTech Connect

    Maness, Michael; Maples, Benjamin; Smith, Aaron

    2017-01-01

    The U.S. Department of Energy (DOE) has investigated the potential for 20% of nationwide electricity demand to be generated from wind by 2030 and, more recently, 35% by 2050. Achieving this level of wind power generation may require the development and deployment of offshore wind technologies. DOE (2008) has indicated that reaching these 2030 and 2050 scenarios could result in approximately 10% and 20%, respectively, of wind energy generation to come from offshore resources. By the end of 2013, 6.5 gigawatts of offshore wind were installed globally. The first U.S. project, the Block Island Wind Farm off the coast of Rhode Island, has recently begun operations. One of the major reasons that offshore wind development in the United States is lagging behind global trends is the high capital expenditures required. An understanding of the costs and associated drivers of building a commercial-scale offshore wind plant in the United States will inform future research and help U.S. investors feel more confident in offshore wind development. In an effort to explain these costs, the National Renewable Energy Laboratory has developed the Offshore Balance-of-System model.

  7. Offshore Wind Research (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

  8. The Limits of Offshore Balancing

    DTIC Science & Technology

    2015-09-01

    UNITED STATES ARMY WAR COLLEGE PRESS Carlisle Barracks, PA ST R ENGTH-’W I SDOM THE LIMITS OF OFFSHORE BALANCING Hal Brands U.S. ARMY WAR...Offshore Balancing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...Strategic Studies Institute and U.S. Army War College Press THE LIMITS OF OFFSHORE BALANCING Hal Brands September 2015

  9. Energy from Offshore Wind: Preprint

    SciTech Connect

    Musial, W.; Butterfield, S.; Ram, B.

    2006-02-01

    This paper provides an overview of the nascent offshore wind energy industry including a status of the commercial offshore industry and the technologies that will be needed for full market development.

  10. WIND Toolkit Offshore Summary Dataset

    DOE Data Explorer

    Draxl, Caroline; Musial, Walt; Scott, George; Phillips, Caleb

    2017-08-18

    This dataset contains summary statistics for offshore wind resources for the continental United States derived from the Wind Integration National Datatset (WIND) Toolkit. These data are available in two formats: GDB - Compressed geodatabases containing statistical summaries aligned with lease blocks (aliquots) stored in a GIS format. These data are partitioned into Pacific, Atlantic, and Gulf resource regions. HDF5 - Statistical summaries of all points in the offshore Pacific, Atlantic, and Gulf offshore regions. These data are located on the original WIND Toolkit grid and have not been reassigned or downsampled to lease blocks. These data were developed under contract by NREL for the Bureau of Oceanic Energy Management (BOEM).

  11. Foundations for offshore wind turbines.

    PubMed

    Byrne, B W; Houlsby, G T

    2003-12-15

    An important engineering challenge of today, and a vital one for the future, is to develop and harvest alternative sources of energy. This is a firm priority in the UK, with the government setting a target of 10% of electricity from renewable sources by 2010. A component central to this commitment will be to harvest electrical power from the vast energy reserves offshore, through wind turbines or current or wave power generators. The most mature of these technologies is that of wind, as much technology transfer can be gained from onshore experience. Onshore wind farms, although supplying 'green energy', tend to provoke some objections on aesthetic grounds. These objections can be countered by locating the turbines offshore, where it will also be possible to install larger capacity turbines, thus maximizing the potential of each wind farm location. This paper explores some civil-engineering problems encountered for offshore wind turbines. A critical component is the connection of the structure to the ground, and in particular how the load applied to the structure is transferred safely to the surrounding soil. We review previous work on the design of offshore foundations, and then present some simple design calculations for sizing foundations and structures appropriate to the wind-turbine problem. We examine the deficiencies in the current design approaches, and the research currently under way to overcome these deficiencies. Designs must be improved so that these alternative energy sources can compete economically with traditional energy suppliers.

  12. Offshore Wind Energy Market Overview (Presentation)

    SciTech Connect

    Baring-Gould, I.

    2013-07-01

    This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

  13. Offshore Wind Energy Systems

    ERIC Educational Resources Information Center

    Musgrove, P.

    1978-01-01

    Explores the possibility of installing offshore windmills to provide electricity and to save fuel for the United Kingdom. Favors their deployment in clusters to facilitate supervision and minimize cost. Discusses the power output and the cost involved and urges their quick development. (GA)

  14. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Greg; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  15. A wind chart to characterize potential offshore wind energy sites

    NASA Astrophysics Data System (ADS)

    del Jesus, F.; Menéndez, M.; Guanche, R.; Losada, I. J.

    2014-10-01

    Offshore wind industry needs to improve wind assessment in order to decrease the uncertainty associated to wind resource and its influence on financial requirements. Here, several features related to offshore wind resource assessment are discussed, such as input wind data, estimation of long-term and extreme wind statistics, the wind profile and climate variations. This work proposes an analytical method to characterize wind resource. Final product is a wind chart containing useful wind information that can be applied to any offshore sites. Using long-term time series of meteorological variables (e.g. wind speed and direction at different heights), the methodology is applied to five pilot sites in different countries along European Atlantic corridor and it is used to describe and compare offshore wind behavior.

  16. Wind Tunnel Balances

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Norton, F H

    1920-01-01

    Report embodies a description of the balance designed and constructed for the use of the National Advisory Committee for Aeronautics at Langley Field, and also deals with the theory of sensitivity of balances and with the errors to which wind tunnel balances of various types are subject.

  17. Offshore Wind Market and Economic Analysis

    SciTech Connect

    Hamilton, Bruce Duncan

    2014-08-27

    This report is the third annual assessment of the U.S. offshore wind market. It includes the following major sections: Section 1: key data on developments in the offshore wind technology sector and the global development of offshore wind projects, with a particular focus on progress in the United States; Section 2: analysis of policy developments at the federal and state levels that have been effective in advancing offshore wind deployment in the United States; Section 3: analysis of actual and projected economic impact, including regional development and job creation; Section 4: analysis of developments in relevant sectors of the economy with the potential to affect offshore wind deployment in the United States

  18. Offshore Wind Energy Systems Engineering Curriculum Development

    SciTech Connect

    McGowan, Jon G.; Manwell, James F.; Lackner, Matthew A.

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This course was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.

  19. U.S. Offshore Wind Port Readiness

    SciTech Connect

    C. Elkinton, A. Blatiak, H. Ameen

    2013-10-13

    This study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations.

  20. Engineering Challenges for Floating Offshore Wind Turbines

    SciTech Connect

    Butterfield, S.; Musial, W.; Jonkman, J.; Sclavounos, P.

    2007-09-01

    The major objective of this paper is to survey the technical challenges that must be overcome to develop deepwater offshore wind energy technologies and to provide a framework from which the first-order economics can be assessed.

  1. New perspectives in offshore wind energy.

    PubMed

    Failla, Giuseppe; Arena, Felice

    2015-02-28

    The design of offshore wind turbines is one of the most fascinating challenges in renewable energy. Meeting the objective of increasing power production with reduced installation and maintenance costs requires a multi-disciplinary approach, bringing together expertise in different fields of engineering. The purpose of this theme issue is to offer a broad perspective on some crucial aspects of offshore wind turbines design, discussing the state of the art and presenting recent theoretical and experimental studies.

  2. New perspectives in offshore wind energy

    PubMed Central

    Failla, Giuseppe; Arena, Felice

    2015-01-01

    The design of offshore wind turbines is one of the most fascinating challenges in renewable energy. Meeting the objective of increasing power production with reduced installation and maintenance costs requires a multi-disciplinary approach, bringing together expertise in different fields of engineering. The purpose of this theme issue is to offer a broad perspective on some crucial aspects of offshore wind turbines design, discussing the state of the art and presenting recent theoretical and experimental studies. PMID:25583869

  3. 2014 Offshore Wind Market and Economic Analysis

    SciTech Connect

    Hamilton, Bruce

    2014-08-25

    The objective of this report is to provide a comprehensive annual assessment of the U.S. offshore wind market.This 3rd annual report focuses on new developments that have occurred in 2014. The report provides stakeholders with a reliable and consistent data source addressing entry barriers and U.S. competitiveness in the offshore wind market. Available for download are both the full report and the report's underlying data.

  4. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect

    Boezaart, Arnold; Edmonson, James; Standridge, Charles; Pervez, Nahid; Desai, Neel; Williams, Bruce; Clark, Aaron; Zeitler, David; Kendall, Scott; Biddanda, Bopi; Steinman, Alan; Klatt, Brian; Gehring, J. L.; Walter, K.; Nordman, Erik E.

    2014-06-30

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the

  5. Mid-Atlantic Offshore Wind Interconnection and Transmission (MAOWIT)

    SciTech Connect

    Kempton, Willett

    2016-04-05

    This project has carried out a detailed analysis to evaluate the pros and cons of offshore transmission, a possible method to decrease balance-of-system costs and permitting time identified in the DOE Office Wind Strategic Plan (DOE, 2011). It also addresses questions regarding the adequacy of existing transmission infrastructure and the ability of existing generating resources to provide the necessary Ancillary Services (A/S) support (spinning and contingency reserves) in the ISO territory. This project has completed the tasks identified in the proposal: 1. Evaluation of the offshore wind resource off PJM, then examination of offshore wind penetrations consistent with U.S. Department of Energy’s (DOE) targets and with their assumed resource size (DOE, 2011). 2. Comparison of piecemeal radial connections to the Independent System Operator (ISO) with connections via a high-voltage direct current (HVDC) offshore network similar to a team partner. 3. High-resolution examination of power fluctuations at each node due to wind energy variability 4. Analysis of wind power production profiles over the Eastern offshore region of the regional ISO to assess the effectiveness of long-distance, North- South transmission for leveling offshore wind energy output 5. Analysis of how the third and fourth items affect the need for ISO grid upgrades, congestion management, and demand for Ancillary Services (A/S) 6. Analysis of actual historic 36-hr and 24-hr forecasts to solve the unit commitment problem and determine the optimal mix of generators given the need to respond to both wind variability and wind forecasting uncertainties.

  6. Strengthening America's Energy Security with Offshore Wind (Fact Sheet)

    SciTech Connect

    Not Available

    2012-02-01

    This fact sheet describes the current state of the offshore wind industry in the United States and the offshore wind research and development activities conducted the U.S. Department of Energy Wind and Water Power Program.

  7. Investigation of Wind Turbine Rotor Concepts for Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Ceyhan, Özlem; Grasso, Francesco

    2014-06-01

    Current plans in offshore wind energy developments call for further reduction of cost of energy. In order to contribute to this goal, several wind turbine rotor concepts have been investigated. Assuming the future offshore wind turbines will operate only in the offshore wind farms, the rotor concepts are not only evaluated for their stand-alone performances and their potential in reducing the loads, but also for their performance in an offshore wind farm. In order to do that, the 10MW reference wind turbine designed in Innwind.EU project is chosen as baseline. Several rotor parameters have been modified and their influences are investigated for offshore wind turbine design purposes. This investigation is carried out as a conceptual parametrical study. All concepts are evaluated numerically with BOT (Blade optimisation tool) software in wind turbine level and with Farmflow software in wind farm level for two wind farm layouts. At the end, all these concepts are compared with each other in terms of their advantages and disadvantages.

  8. United States Offshore Wind Resource Assessment

    NASA Astrophysics Data System (ADS)

    Schwartz, M.; Haymes, S.; Heimiller, D.

    2008-12-01

    The utilization of the offshore wind resource will be necessary if the United States is to meet the goal of having 20% of its electricity generated by wind power because many of the electrical load centers in the country are located along the coastlines. The United States Department of Energy, through its National Renewable Energy Laboratory (NREL), has supported an ongoing project to assess the wind resource for the offshore regions of the contiguous United States including the Great Lakes. Final offshore maps with a horizontal resolution of 200 meters (m) have been completed for Texas, Louisiana, Georgia, northern New England, and the Great Lakes. The ocean wind resource maps extend from the coastline to 50 nautical miles (nm) offshore. The Great Lake maps show the resource for all of the individual lakes. These maps depict the wind resource at 50 m above the water as classes of wind power density. Class 1 represents the lowest available wind resource, while Class 7 is the highest resource. Areas with Class 5 and higher wind resource can be economical for offshore project development. As offshore wind turbine technology improves, areas with Class 4 and higher resource should become economically viable. The wind resource maps are generated using output from a modified numerical weather prediction model combined with a wind flow model. The preliminary modeling is performed by AWS Truewind under subcontract to NREL. The preliminary model estimates are sent to NREL to be validated. NREL validates the preliminary estimates by comparing 50 m model data to available measurements that are extrapolated to 50 m. The validation results are used to modify the preliminary map and produce the final resource map. The sources of offshore wind measurement data include buoys, automated stations, lighthouses, and satellite- derived ocean wind speed data. The wind electric potential is represented as Megawatts (MW) of potential installed capacity and is based on the square

  9. Wind height distribution influence on offshore wind farm feasibility study

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Della Morte, Renata; Matarazzo, Antonio; Cozzolino, Luca

    2015-04-01

    The economic feasibility of offshore wind power utilization depends on the favourable wind conditions offshore as compared to sites on land. The higher wind speeds have to compensate the additional cost of offshore developments. However, not only the mean wind speed is different, but the whole flow regime, as can be seen in the vertical wind speed profile. The commonly used models to describe this profile have been developed mainly for land sites, so they have to be verified on the basis of field data. Monin-Obukhov theory is often used for the description of the wind speed profile at a different height with respect to a measurement height. Starting from the former, , the profile is predicted using two parameters, Obukhov length and sea surface roughness. For situations with near-neutral and stable atmospheric stratification and long (>30km) fetch, the wind speed increase with height is larger than what is predicted from Monin-Obukhov theory. It is also found that this deviation occurs at wind speeds important for wind power utilization, mainly at 5-9 ms-1. In the present study the influence of these aspects on the potential site productivity of an offshore wind farm were investigated, namely the deviation from the theory of Monin-Obukhov due to atmospheric stability and the influence of the fetch length on the Charnock model. Both these physical effects were discussed and examined in view of a feasibility study of a site for offshore wind farm in Southern Italy. Available data consisted of time histories of wind speeds and directions collected by National Tidegauge Network (Rete Mareografica Nazionale) at the height of 10m a.s.l. in ports. The theory of Monin-Obukhov was used to extrapolate the data to the height of the wind blades, while the Charnock model was used to extend the wind speed on the sea surface from the friction velocity on the ground. The models described were used to perform calculations for a feasibility study of an offshore wind farm in Southern

  10. Prospects for generating electricity by large onshore and offshore wind farms

    NASA Astrophysics Data System (ADS)

    Volker, Patrick J. H.; Hahmann, Andrea N.; Badger, Jake; Jørgensen, Hans E.

    2017-03-01

    The decarbonisation of energy sources requires additional investments in renewable technologies, including the installation of onshore and offshore wind farms. For wind energy to remain competitive, wind farms must continue to provide low-cost power even when covering larger areas. Inside very large wind farms, winds can decrease considerably from their free-stream values to a point where an equilibrium wind speed is reached. The magnitude of this equilibrium wind speed is primarily dependent on the balance between turbine drag force and the downward momentum influx from above the wind farm. We have simulated for neutral atmospheric conditions, the wind speed field inside different wind farms that range from small (25 km2) to very large (105 km2) in three regions with distinct wind speed and roughness conditions. Our results show that the power density of very large wind farms depends on the local free-stream wind speed, the surface characteristics, and the turbine density. In onshore regions with moderate winds the power density of very large wind farms reaches 1 W m‑2, whereas in offshore regions with very strong winds it exceeds 3 W m‑2. Despite a relatively low power density, onshore regions with moderate winds offer potential locations for very large wind farms. In offshore regions, clusters of smaller wind farms are generally preferable; under very strong winds also very large offshore wind farms become efficient.

  11. National Offshore Wind Energy Grid Interconnection Study Full Report

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  12. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    SciTech Connect

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  13. Offshore winds using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Peña, Alfredo; Bay Hasager, Charlotte; Gryning, Sven-Erik; Courtney, Michael; Antoniou, Ioannis; Mikkelsen, Torben; Sørensen, Paul

    2007-07-01

    Ground-based remote sensing instruments can observe winds at different levels in the atmosphere where the wind characteristics change with height: the range of heights where modern turbine rotors are operating. A six-month wind assessment campaign has been made with a LiDAR (Light Detection And Ranging) and a SoDAR (Sound Detection and Ranging) on the transformer/platform of the world's largest offshore wind farm located at the West coast of Denmark to evaluate their ability to observe offshore winds. The high homogeneity and low turbulence levels registered allow the comparison of LiDAR and SoDAR with measurements from cups on masts surrounding the wind farm showing good agreement for both the mean wind speed and the longitudinal component of turbulence. An extension of mean wind speed profiles from cup measurements on masts with LiDAR observations results in a good match for the free sectors at different wind speeds. The log-linear profile is fitted to the extended profiles (averaged over all stabilities and roughness lengths) and the deviations are small. Extended profiles of turbulence intensity are also shown for different wind speeds up to 161 m. Friction velocities and roughness lengths calculated from the fitted log-linear profile are compared with the Charnock model which seems to overestimate the sea roughness for the free sectors.

  14. Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development

    SciTech Connect

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2010-11-23

    Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.

  15. Operational Impacts of Large Deployments of Offshore Wind (Poster)

    SciTech Connect

    Ibanez, E.; Heaney, M.

    2014-10-01

    The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

  16. Innovative Offshore Wind Plant Design Study

    SciTech Connect

    Hurley, William L.; Nordstrom, Charles J.; Morrison, Brent J.

    2013-12-18

    Technological advancements in the Glosten PelaStar floating wind turbine system have led to projected cost of energy (COE) reductions from today’s best-in-class offshore wind systems. The PelaStar system is projected to deliver a COE that is 35% lower than that delivered by the current offshore wind plants. Several technology developments have been achieved that directly target significant cost of energy reductions. These include: Application of state-of-the-art steel construction materials and methods, including fatigue-resistant welding techniques and technologies, to reduce hull steel weight; Advancements in synthetic fiber tendon design for the mooring system, which are made possible by laboratory analysis of full-scale sub-rope specimens; Investigations into selected anchor technologies to improve anchor installation methods; Refinement of the installation method, specifically through development of the PelaStar Support Barge design. Together, these technology developments drive down the capital cost and operating cost of offshore wind plants and enable access to superb wind resources in deep water locations. These technology developments also reduce the uncertainty of the PelaStar system costs, which increases confidence in the projected COE reductions.

  17. Offshore Wind Power Integration in severely fluctuating Wind Conditions

    NASA Astrophysics Data System (ADS)

    von Bremen, L.

    2010-09-01

    Strong power fluctuations from offshore wind farms that are induced by wind speed fluctuations pose a severe problem to the save integration of offshore wind power into the power supply system. Experience at the first large-scale offshore wind farm Horns Rev showed that spatial smoothing of power fluctuations within a single wind farm is significantly smaller than onshore results suggest when distributed wind farms of 160 MW altogether are connected to a single point of common-coupling. Wind power gradients larger than 10% of the rated capacity within 5 minutes require large amount of regulation power that is very expensive for the grid operator. It must be noted that a wind speed change of only 0.5m/s result in a wind power change of 10% (within the range of 9-11 m/s where the wind power curve is steepest). Hence, it is very important for the grid operator to know if strong fluctuations are likely or not. Observed weather conditions at the German wind energy research platform FINO1 in the German bight are used to quantify wind fluctuations. With a standard power curve these wind fluctuations are transfered to wind power. The aim is to predict the probability of exceedence of certain wind power gradients that occur in a time interval of e.g. 12 hours. During 2006 and 2009 the distribution of wind power fluctuations looks very similar giving hope that distinct atmospheric processes can be determined that act as a trigger. Most often high wind power fluctuations occur in a range of wind speeds between 9-12 m/s as can be expected from the shape of the wind power curve. A cluster analysis of the 500 hPa geopotential height to detect predominant weather regimes shows that high fluctuations are more likely in north-western flow. It is shown that most often high fluctuations occur in non-stable atmospheric stratification. The description of stratification by means of the vertical gradient of the virtual potential temperature is chosen to be indicative for convection, i

  18. IEA Wind Task 26: Offshore Wind Farm Baseline Documentation

    SciTech Connect

    Smart, Gavin; Smith, Aaron; Warner, Ethan; Sperstad, Iver Bakken; Prinsen, Bob; Lacal-Arantegui, Roberto

    2016-06-02

    This document has been produced to provide the definition and rationale for the Baseline Offshore Wind Farm established within IEA Wind Task 26--Cost of Wind Energy. The Baseline has been developed to provide a common starting point for country comparisons and sensitivity analysis on key offshore wind cost and value drivers. The baseline project reflects an approximate average of the characteristics of projects installed between 2012 and 2014, with the project life assumed to be 20 years. The baseline wind farm is located 40 kilometres (km) from construction and operations and maintenance (O&M) ports and from export cable landfall. The wind farm consists of 100 4-megawatt (MW) wind turbines mounted on monopile foundations in an average water depth of 25 metres (m), connected by 33-kilovolt (kV) inter-array cables. The arrays are connected to a single offshore substation (33kV/220kV) mounted on a jacket foundation, with the substation connected via a single 220kV export cable to an onshore substation, 10km from landfall. The wind farm employs a port-based O&M strategy using crew-transfer vessels.

  19. Offshore wind resource estimation from satellite SAR wind field maps

    NASA Astrophysics Data System (ADS)

    Hasager, C. B.; Nielsen, M.; Astrup, P.; Barthelmie, R.; Dellwik, E.; Jensen, N. O.; Jørgensen, B. H.; Pryor, S. C.; Rathmann, O.; Furevik, B. R.

    2005-10-01

    A wind resource estimation study based on a series of 62 satellite wind field maps is presented. The maps were retrieved from imaging synthetic aperture radar (SAR) data. The wind field maps were used as input to the software RWT, which calculates the offshore wind resource based on spatial averaging (footprint modelling) of the wind statistic in each satellite image. The calculated statistics can then be input to the program WAsP and used in lieu of in-situ observations by meteorological instruments. A regional wind climate map based on satellite SAR images delineates significant spatial wind speed variations. The site of investigation was Horns Rev in the North Sea, where a meteorological time series is used for comparison. The advantages and limitations of these new techniques, which seem particularly useful for mapping of the regional wind climate, are discussed. Copyright

  20. National Offshore Wind Strategy: Facilitating the Development of the Offshore Wind Industry in the United States

    SciTech Connect

    Patrick Gilman; Maurer, Ben; Feinberg, Luke; Duerr, Alana; Peterson, Lauren; Musial, Walt; Beiter, Phillipp; Golladay, Jennifer; Stromberg, Jessica; Johnson, Isis; Boren, Doug; Moore, Annette

    2016-09-01

    The U.S. Department of Energy, through its Wind Energy Technologies Office, and U.S. Department of the Interior, through its Bureau of Ocean Energy Management, have jointly produced this updated national strategy to facilitate the responsible development of offshore wind energy in the United States.

  1. Mapping Seabird Sensitivity to Offshore Wind Farms

    PubMed Central

    Bradbury, Gareth; Trinder, Mark; Furness, Bob; Banks, Alex N.; Caldow, Richard W. G.; Hume, Duncan

    2014-01-01

    We present a Geographic Information System (GIS) tool, SeaMaST (Seabird Mapping and Sensitivity Tool), to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979–2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species’ ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented. PMID:25210739

  2. Mapping seabird sensitivity to offshore wind farms.

    PubMed

    Bradbury, Gareth; Trinder, Mark; Furness, Bob; Banks, Alex N; Caldow, Richard W G; Hume, Duncan

    2014-01-01

    We present a Geographic Information System (GIS) tool, SeaMaST (Seabird Mapping and Sensitivity Tool), to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979-2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species' ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented.

  3. “Open Hatch” Tour of Offshore Wind Buoy

    SciTech Connect

    Zayas, Jose

    2015-09-18

    Wind and Water Power Technologies Office Director, Jose Zayas gives a behind the scenes tour of the AXYS WindSentinel research buoy, which uses high-tech instruments to measure conditions for potential offshore wind energy development.

  4. Optimization of monopiles for offshore wind turbines.

    PubMed

    Kallehave, Dan; Byrne, Byron W; LeBlanc Thilsted, Christian; Mikkelsen, Kristian Kousgaard

    2015-02-28

    The offshore wind industry currently relies on subsidy schemes to be competitive with fossil-fuel-based energy sources. For the wind industry to survive, it is vital that costs are significantly reduced for future projects. This can be partly achieved by introducing new technologies and partly through optimization of existing technologies and design methods. One of the areas where costs can be reduced is in the support structure, where better designs, cheaper fabrication and quicker installation might all be possible. The prevailing support structure design is the monopile structure, where the simple design is well suited to mass-fabrication, and the installation approach, based on conventional impact driving, is relatively low-risk and robust for most soil conditions. The range of application of the monopile for future wind farms can be extended by using more accurate engineering design methods, specifically tailored to offshore wind industry design. This paper describes how state-of-the-art optimization approaches are applied to the design of current wind farms and monopile support structures and identifies the main drivers where more accurate engineering methods could impact on a next generation of highly optimized monopiles.

  5. 2016 Offshore Wind Energy Resource Assessment for the United States

    SciTech Connect

    Musial, Walt; Heimiller, Donna; Beiter, Philipp; Scott, George; Draxl, Caroline

    2016-09-01

    This report, the 2016 Offshore Wind Energy Resource Assessment for the United States, was developed by the National Renewable Energy Laboratory, and updates a previous national resource assessment study, and refines and reaffirms that the available wind resource is sufficient for offshore wind to be a large-scale contributor to the nation's electric energy supply.

  6. International Collaboration on Offshore Wind Energy Under IEA Annex XXIII

    SciTech Connect

    Musial, W.; Butterfield, S.; Lemming, J.

    2005-11-01

    This paper defines the purpose of IEA Annex XXIII, the International Collaboration on Offshore Wind Energy. This international collaboration through the International Energy Agency (IEA) is an efficient forum from which to advance the technical and environmental experiences collected from existing offshore wind energy projects, as well as the research necessary to advance future technology for deep-water wind energy technology.

  7. On the Effect of Offshore Wind Parks on Ocean Dynamics

    NASA Astrophysics Data System (ADS)

    Ludewig, E.; Pohlmann, T.

    2012-12-01

    Nowadays renewable energy resources play a key role in the energy supply discussion and especially an increasingly interest in wind energy induces intensified installations of wind parks. At this offshore wind energy gains in popularity in the course of higher and more consistent energy availability than over land. For example Germany's government adopted a national interurban offshore wind energy program comprising the construction of hundreds of wind turbines within Germany's Exclusive Economic Zone to ensure up to 50% of Germany's renewable energy supply. The large number of installation in coastal regions asks for analyzing the impact of offshore wind parks (OWPs) on the atmosphere and the ocean. As known from literature such wind parks excite also-called wake-effect and such an influence on the wind field in turn affects ocean circulation. To cover OWP's impact on ocean dynamics we evaluate model simulations using the Hamburg Shelf-Ocean-Model (HAMSOM). All simulations were driven with a wind forcing produced by the Mesoscale Atmosphere Model of the Hamburg University (METRAS) which has implemented wind turbines. Wind forcing data were generated in collaboration with and by courtesy of the Meteorological Institute of the University of Hamburg, Department Technical Meteorology, Numeric Modeling-METRAS. To evaluate dynamical changes forced by the OWP's wind wake-effect we did a sensitivity study with a theoretical setup of a virtual ocean of 60m depth with a flat bottom and a temperature and salinity stratification according to common North Sea's conditions. Here our results show that already a small OWP of 12 wind turbines, placed in an area of 4 km^2, lead to a complex change in ocean dynamics. Due to the wake-effect zones of upwelling and downwelling are formed within a minute after turning-on wind turbines. The evolving vertical cells have a size of around 15x15 kilometers with a vertical velocity in order of 10^-2 mm/sec influencing the dynamic of an area

  8. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment

    SciTech Connect

    Jonkman, J.; Musial, W.

    2010-12-01

    This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

  9. Floating axis wind turbines for offshore power generation—a conceptual study

    NASA Astrophysics Data System (ADS)

    Akimoto, Hiromichi; Tanaka, Kenji; Uzawa, Kiyoshi

    2011-10-01

    The cost of energy produced by offshore wind turbines is considered to be higher than land based ones because of the difficulties in construction, operation and maintenance on offshore sites. To solve the problem, we propose a concept of a wind turbine that is specially designed for an offshore environment. In the proposed concept, a floater of revolutionary shape supports the load of the wind turbine axis. The floater rotates with the turbine and the turbine axis tilts to balance the turbine thrust, buoyancy and gravity. The tilt angle is passively adjustable to wind force. The angle is 30° at rated power. The simplicity of the system leads to further cost reduction of offshore power generation.

  10. R & D on Offshore Wind Power Generation System in Japan

    NASA Astrophysics Data System (ADS)

    Oishi, Kazuhito; Fukumoto, Yukinari

    Offshore wind energy has been widely exploited in Europe. Having a long coastline, the offshore wind energy will be the one of the important solutions for the increase of renewable energy in Japan. However, due to the difference in wind and marine condition between Japan and Europe, the safety, the environmental impact and the economical feasibility of the offshore wind power generation system have to be investigated in Japan. According to the data observed offshore, the wind speed is enough higher than that on land and the wind energy is economically feasible. In order to utilize the energy, the design method of the foundation against very high waves in typhoon storm should be established. For shallow offshore coastal area, gravity foundation type has been improved by hydraulic experiment. Additionally, for deeper ocean, floating types such as semi-submersible float and spar-buoy have been researched.

  11. NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)

    SciTech Connect

    Not Available

    2013-10-01

    NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

  12. Offshore wind farm electrical cable layout optimization

    NASA Astrophysics Data System (ADS)

    Pillai, A. C.; Chick, J.; Johanning, L.; Khorasanchi, M.; de Laleu, V.

    2015-12-01

    This article explores an automated approach for the efficient placement of substations and the design of an inter-array electrical collection network for an offshore wind farm through the minimization of the cost. To accomplish this, the problem is represented as a number of sub-problems that are solved in series using a combination of heuristic algorithms. The overall problem is first solved by clustering the turbines to generate valid substation positions. From this, a navigational mesh pathfinding algorithm based on Delaunay triangulation is applied to identify valid cable paths, which are then used in a mixed-integer linear programming problem to solve for a constrained capacitated minimum spanning tree considering all realistic constraints. The final tree that is produced represents the solution to the inter-array cable problem. This method is applied to a planned wind farm to illustrate the suitability of the approach and the resulting layout that is generated.

  13. Quantifying the hurricane catastrophe risk to offshore wind power.

    PubMed

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Apt, Jay

    2013-12-01

    The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be required for the United States to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been signed for offshore sites. These planned projects are in areas that are sometimes struck by hurricanes. We present a method to estimate the catastrophe risk to offshore wind power using simulated hurricanes. Using this method, we estimate the fraction of offshore wind power simultaneously offline and the cumulative damage in a region. In Texas, the most vulnerable region we studied, 10% of offshore wind power could be offline simultaneously because of hurricane damage with a 100-year return period and 6% could be destroyed in any 10-year period. We also estimate the risks to single wind farms in four representative locations; we find the risks are significant but lower than those estimated in previously published results. Much of the hurricane risk to offshore wind turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and building in areas with lower risk. © 2013 Society for Risk Analysis.

  14. 2014-2015 Offshore Wind Technologies Market Report

    SciTech Connect

    Smith, Aaron

    2015-11-18

    This presentation provides an overview of progress toward offshore wind cost reduction in Europe and implications for the U.S. market. The presentation covers an overview of offshore wind developments, economic and performance trends, empirical evidence of LCOE reduction, and challenges and opportunities in the U.S. market.

  15. Wind Resource Mapping for United States Offshore Areas: Preprint

    SciTech Connect

    Elliott, D.; Schwartz, M.

    2006-06-01

    The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is producing validated wind resource maps for priority offshore regions of the United States. This report describes the methodology used to validate the maps and to build a Geographic Information Systems (GIS) database to classify the offshore wind resource by state, water depth, distance from shore, and administrative unit.

  16. Future for Offshore Wind Energy in the United States: Preprint

    SciTech Connect

    Musial, W.; Butterfield, S.

    2004-06-01

    Until recently, the offshore wind energy potential in the United States was ignored because vast onshore wind resources have the potential to fulfill the electrical energy needs for the entire country. However, the challenge of transmitting the electricity to the large load centers may limit wind grid penetration for land-based turbines. Offshore wind turbines can generate power much closer to higher value coastal load centers. Reduced transmission constraints, steadier and more energetic winds, and recent European success, have made offshore wind energy more attractive for the United States. However, U.S. waters are generally deeper than those on the European coast, and will require new technology. This paper presents an overview of U.S. coastal resources, explores promising deepwater wind technology, and predicts long-term cost-of-energy (COE) trends. COE estimates are based on generic 5-MW wind turbines in a hypothetical 500-MW wind power plant. Technology improvements and volume production are expected to lower costs to meet the U.S. Department of Energy target range of $0.06/kWh for deployment of deepwater offshore wind turbines by 2015, and $0.05/kWh by 2012 for shallow water. Offshore wind systems can diversify the U.S. electric energy supply and provide a new market for wind energy that is complementary to onshore development.

  17. Wind tunnel balance

    NASA Technical Reports Server (NTRS)

    Horne, Warren L. (Inventor); Kunz, Nans (Inventor); Luna, Phillip M. (Inventor); Roberts, Andrew C. (Inventor); Smith, Kenneth M. (Inventor); Smith, Ronald C. (Inventor)

    1989-01-01

    A flow-through balance is provided which includes a non-metric portion and a metric portion which form a fluid-conducting passage in fluid communication with an internal bore in the sting. The non-metric and metric portions of the balance are integrally connected together by a plurality of flexure beams such that the non-metric portion, the metric portion and the flexure beams form a one-piece construction which eliminates mechanical hysteresis between the non-metric and the metric portion. The system includes structures for preventing the effects of temperature, pressure and pressurized fluid from producing asymmetric loads on the flexure beams. A temperature sensor and a pressure sensor are located within the fluid-conducting passage of the balance. The system includes a longitudinal bellows member connected at two ends to one of the non-metric portion and the metric portion and at an intermediate portion thereof to the other of (1) and (2). A plurality of strain gages are mounted on the flexure beams to measure strain forces on the flexure beams. The flexure beams are disposed so as to enable symmetric forces on the flexure beams to cancel out so that only asymmetric forces are measured as deviations by the strain gages.

  18. Assessment of Offshore Wind System Design, Safety, and Operation Standards

    SciTech Connect

    Sirnivas, S.; Musial, W.; Bailey, B.; Filippelli, M.

    2014-01-01

    This report is a deliverable for a project sponsored by the U.S. Department of Energy (DOE) entitled National Offshore Wind Energy Resource and Design Data Campaign -- Analysis and Collaboration (contract number DE-EE0005372; prime contractor -- AWS Truepower). The project objective is to supplement, facilitate, and enhance ongoing multiagency efforts to develop an integrated national offshore wind energy data network. The results of this initiative are intended to 1) produce a comprehensive definition of relevant met-ocean resource assets and needs and design standards, and 2) provide a basis for recommendations for meeting offshore wind energy industry data and design certification requirements.

  19. Finding Balance in the Winds.

    ERIC Educational Resources Information Center

    Wilbur, Michael

    1999-01-01

    Describes the author's experience of and reflections concerning a group workshop facilitated by Michael Tlanusta Garrett of the Eastern Band of Cherokee. Provides information about the Native American teachings and traditions of the four winds, balance, and harmony, and discusses the use of self by group leaders as a powerful therapeutic and…

  20. Exploring the wakes of large offshore wind farms

    NASA Astrophysics Data System (ADS)

    Emeis, S.; Siedersleben, S.; Lampert, A.; Platis, A.; Bange, J.; Djath, B.; Schulz-Stellenfleth, J.; Neumann, T.

    2016-09-01

    Offshore meteorological characteristics set specific conditions for the operation of offshore wind farms. One specific feature is low turbulence intensity which on the one hand reduces loads on turbines but on the other hand is the reason for much longer turbine and farm wakes than over land. The German Government is presently funding a research project called WIPAFF (Wind PArk Far Field) which heads for the analysis of properties and impacts of offshore wind park far fields. The focus is on the analysis of wind farm wakes, their interaction among each other and their regional climate impact. This is done by in-situ, extensive aircraft and satellite measurements and by operating meso-scale wind field models and an analytical wind farm model.

  1. 2014–2015 Offshore Wind Technologies Market Report

    SciTech Connect

    Smith, Aaron; Stehly, Tyler; Musial, Walter

    2015-09-30

    This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers, financiers, and supply chain participants, to identify barriers and opportunities.

  2. Quantifying the hurricane risk to offshore wind turbines

    PubMed Central

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J.; Grossmann, Iris; Apt, Jay

    2012-01-01

    The U.S. Department of Energy has estimated that if the United States is to generate 20% of its electricity from wind, over 50 GW will be required from shallow offshore turbines. Hurricanes are a potential risk to these turbines. Turbine tower buckling has been observed in typhoons, but no offshore wind turbines have yet been built in the United States. We present a probabilistic model to estimate the number of turbines that would be destroyed by hurricanes in an offshore wind farm. We apply this model to estimate the risk to offshore wind farms in four representative locations in the Atlantic and Gulf Coastal waters of the United States. In the most vulnerable areas now being actively considered by developers, nearly half the turbines in a farm are likely to be destroyed in a 20-y period. Reasonable mitigation measures—increasing the design reference wind load, ensuring that the nacelle can be turned into rapidly changing winds, and building most wind plants in the areas with lower risk—can greatly enhance the probability that offshore wind can help to meet the United States’ electricity needs. PMID:22331894

  3. Quantifying the hurricane risk to offshore wind turbines.

    PubMed

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Grossmann, Iris; Apt, Jay

    2012-02-28

    The U.S. Department of Energy has estimated that if the United States is to generate 20% of its electricity from wind, over 50 GW will be required from shallow offshore turbines. Hurricanes are a potential risk to these turbines. Turbine tower buckling has been observed in typhoons, but no offshore wind turbines have yet been built in the United States. We present a probabilistic model to estimate the number of turbines that would be destroyed by hurricanes in an offshore wind farm. We apply this model to estimate the risk to offshore wind farms in four representative locations in the Atlantic and Gulf Coastal waters of the United States. In the most vulnerable areas now being actively considered by developers, nearly half the turbines in a farm are likely to be destroyed in a 20-y period. Reasonable mitigation measures--increasing the design reference wind load, ensuring that the nacelle can be turned into rapidly changing winds, and building most wind plants in the areas with lower risk--can greatly enhance the probability that offshore wind can help to meet the United States' electricity needs.

  4. Conceptual Model of Offshore Wind Environmental Risk Evaluation System

    SciTech Connect

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.; Unwin, Stephen D.; Hamilton, Erin L.

    2010-06-01

    In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of offshore wind energy generation projects. The development of ERES for offshore wind is closely allied to a concurrent process undertaken to examine environmental effects of marine and hydrokinetic (MHK) energy generation, although specific risk-relevant attributes will differ between the MHK and offshore wind domains. During FY10, a conceptual design of ERES for offshore wind will be developed. The offshore wind ERES mockup described in this report will provide a preview of the functionality of a fully developed risk evaluation system that will use risk assessment techniques to determine priority stressors on aquatic organisms and environments from specific technology aspects, identify key uncertainties underlying high-risk issues, compile a wide-range of data types in an innovative and flexible data organizing scheme, and inform planning and decision processes with a transparent and technically robust decision-support tool. A fully functional version of ERES for offshore wind will be developed in a subsequent phase of the project.

  5. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  6. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect

    Hamilton, Bruce Duncan

    2013-02-22

    The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: » Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. » Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nation’s land-based wind market. » Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . » Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development

  7. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future

    PubMed Central

    2014-01-01

    Offshore wind power provides a valuable source of renewable energy that can help reduce carbon emissions. Technological advances are allowing higher capacity turbines to be installed and in deeper water, but there is still much that is unknown about the effects on the environment. Here we describe the lessons learned based on the recent literature and our experience with assessing impacts of offshore wind developments on marine mammals and seabirds, and make recommendations for future monitoring and assessment as interest in offshore wind energy grows around the world. The four key lessons learned that we discuss are: 1) Identifying the area over which biological effects may occur to inform baseline data collection and determining the connectivity between key populations and proposed wind energy sites, 2) The need to put impacts into a population level context to determine whether they are biologically significant, 3) Measuring responses to wind farm construction and operation to determine disturbance effects and avoidance responses, and 4) Learn from other industries to inform risk assessments and the effectiveness of mitigation measures. As the number and size of offshore wind developments increases, there will be a growing need to consider the population level consequences and cumulative impacts of these activities on marine species. Strategically targeted data collection and modeling aimed at answering questions for the consenting process will also allow regulators to make decisions based on the best available information, and achieve a balance between climate change targets and environmental legislation. PMID:25250175

  8. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future.

    PubMed

    Bailey, Helen; Brookes, Kate L; Thompson, Paul M

    2014-01-01

    Offshore wind power provides a valuable source of renewable energy that can help reduce carbon emissions. Technological advances are allowing higher capacity turbines to be installed and in deeper water, but there is still much that is unknown about the effects on the environment. Here we describe the lessons learned based on the recent literature and our experience with assessing impacts of offshore wind developments on marine mammals and seabirds, and make recommendations for future monitoring and assessment as interest in offshore wind energy grows around the world. The four key lessons learned that we discuss are: 1) Identifying the area over which biological effects may occur to inform baseline data collection and determining the connectivity between key populations and proposed wind energy sites, 2) The need to put impacts into a population level context to determine whether they are biologically significant, 3) Measuring responses to wind farm construction and operation to determine disturbance effects and avoidance responses, and 4) Learn from other industries to inform risk assessments and the effectiveness of mitigation measures. As the number and size of offshore wind developments increases, there will be a growing need to consider the population level consequences and cumulative impacts of these activities on marine species. Strategically targeted data collection and modeling aimed at answering questions for the consenting process will also allow regulators to make decisions based on the best available information, and achieve a balance between climate change targets and environmental legislation.

  9. Terminology Guideline for Classifying Offshore Wind Energy Resources

    SciTech Connect

    Beiter, Philipp; Musial, Walt

    2016-09-01

    The purpose of this guideline is to establish a clear and consistent vocabulary for conveying offshore wind resource potential and to interpret this vocabulary in terms that are familiar to the oil and gas (O&G) industry. This involves clarifying and refining existing definitions of offshore wind energy resource classes. The terminology developed in this guideline represents one of several possible sets of vocabulary that may differ with respect to their purpose, data availability, and comprehensiveness. It was customized to correspond with established offshore wind practices and existing renewable energy industry terminology (e.g. DOE 2013, Brown et al. 2015) while conforming to established fossil resource classification as best as possible. The developers of the guideline recognize the fundamental differences that exist between fossil and renewable energy resources with respect to availability, accessibility, lifetime, and quality. Any quantitative comparison between fossil and renewable energy resources, including offshore wind, is therefore limited. For instance, O&G resources are finite and there may be significant uncertainty associated with the amount of the resource. In contrast, aboveground renewable resources, such as offshore wind, do not generally deplete over time but can vary significantly subhourly, daily, seasonally, and annually. The intent of this guideline is to make these differences transparent and develop an offshore wind resource classification that conforms to established fossil resource classifications where possible. This guideline also provides methods to quantitatively compare certain offshore wind energy resources to O&G resource classes for specific applications. Finally, this guideline identifies areas where analogies to established O&G terminology may be inappropriate or subject to misinterpretation.

  10. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect

    Hamilton, Bruce

    2013-02-22

    This report seeks to provide an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential component-level supply chain needs under three demand scenarios; and identifying key supply chain challenges and opportunities facing the future U.S. market and current suppliers of the nation’s landbased wind market.

  11. Virginia Offshore Wind Cost Reduction Through Innovation Study (VOWCRIS) (Poster)

    SciTech Connect

    Maples, B.; Campbell, J.; Arora, D.

    2014-10-01

    The VOWCRIS project is an integrated systems approach to the feasibility-level design, performance, and cost-of-energy estimate for a notional 600-megawatt offshore wind project using site characteristics that apply to the Wind Energy Areas of Virginia, Maryland and North Carolina.

  12. Challenges in simulating coastal effects on an offshore wind farm

    NASA Astrophysics Data System (ADS)

    van der Laan, M. P.; Peña, A.; Volker, P.; Hansen, K. S.; Sørensen, N. N.; Ott, S.; Hasager, C. B.

    2017-05-01

    The effect of a coastline on an offshore wind farm is investigated with a Reynolds-averaged Navier-Stokes (RANS) model. The trends of the RANS model compare relatively well with results from a mesoscale model and measurements of wind turbine power. In addition, challenges of modeling a large domain in RANS are discussed.

  13. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  14. Classifying Vertical Wind Speed Profiles for Offshore Wind Resource and Available Power Assessment

    NASA Astrophysics Data System (ADS)

    St Pe, A.; Tippet, S.; Rabenhorst, S. D.; Delgado, R.

    2016-12-01

    Prior to offshore wind farm construction, an accurate estimate of preconstruction energy yield is required to optimize wind farm layout and justify the project's economic viability. Unfortunately, uncertainties exist during this stage due in-part to limited measurements to characterize the offshore wind resource and related uncertainties predicting a turbine's available power. To better understand these preconstruction energy yield uncertainties, Doppler wind lidar and other met-ocean measurements were collected offshore within Maryland's Wind Energy Area from July-August 2013. Given the diversity of vertical wind speed profile (VWP) observations, VWPs are classified based on the goodness-of-fit to several mathematical expressions. Results demonstrate on average VWP typevariability is related to the magnitude of hub-height (100m) wind speed and wind direction (i.e. offshore fetch), as power law, logarithmic-like, VWPs occur during slightly weaker, northeasterly flow, while more unexpected VWPs are associated with stronger, southwesterly flow, from land to sea. In addition, compared to power-law VWP classes, unexpected VWPs types demonstrate slightly warmer air and SSTs, as well as stable surface conditions. Classifying VWPs also provides a useful tool for relating preconstruction offshore wind resource and turbine available power uncertainties. Using an NREL 5MW offshore reference turbine's power curve, buoy extrapolated surface wind to hub-height (100m), lidar measured hub-height, and several Rotor Equivalent Wind (REW) available power estimates are compared. On average, traditional hub-height wind speed power yields the highest available power estimate, approximately 9-70 percent greater than other techniques. Further, unexpected VWPs demonstrate the greatest variability in critical superimposed meteorological controls known to impact turbine performance, thus yield greatest deviation from hub-height power and uncertainty between available power estimates

  15. Effects of Offshore Wind Turbines on Ocean Waves

    NASA Astrophysics Data System (ADS)

    Wimer, Nicholas; Churchfield, Matthew; Hamlington, Peter

    2014-11-01

    Wakes from horizontal axis wind turbines create large downstream velocity deficits, thus reducing the available energy for downstream turbines while simultaneously increasing turbulent loading. Along with this deficit, however, comes a local increase in the velocity around the turbine rotor, resulting in increased surface wind speeds. For offshore turbines, these increased speeds can result in changes to the properties of wind-induced waves at the ocean surface. In this study, the characteristics and implications of such waves are explored by coupling a wave simulation code to the Simulator for Offshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. The wave simulator and SOWFA are bi-directionally coupled using the surface wind field produced by an offshore wind farm to drive an ocean wave field, which is used to calculate a wave-dependent surface roughness that is fed back into SOWFA. The details of this combined framework are outlined. The potential for using the wave field created at offshore wind farms as an additional energy resource through the installation of on-site wave converters is discussed. Potential negative impacts of the turbine-induced wave field are also discussed, including increased oscillation of floating turbines.

  16. Improving Maryland's Offshore Wind Energy Resource Estimate Using Doppler Wind Lidar Technology to Assess Microtmeteorology Controls

    NASA Astrophysics Data System (ADS)

    St. Pé, Alexandra; Wesloh, Daniel; Antoszewski, Graham; Daham, Farrah; Goudarzi, Navid; Rabenhorst, Scott; Delgado, Ruben

    2016-06-01

    There is enormous potential to harness the kinetic energy of offshore wind and produce power. However significant uncertainties are introduced in the offshore wind resource assessment process, due in part to limited observational networks and a poor understanding of the marine atmosphere's complexity. Given the cubic relationship between a turbine's power output and wind speed, a relatively small error in the wind speed estimate translates to a significant error in expected power production. The University of Maryland Baltimore County (UMBC) collected in-situ measurements offshore, within Maryland's Wind Energy Area (WEA) from July-August 2013. This research demonstrates the ability of Doppler wind lidar technology to reduce uncertainty in estimating an offshore wind resource, compared to traditional resource assessment techniques, by providing a more accurate representation of the wind profile and associated hub-height wind speed variability. The second objective of this research is to elucidate the impact of offshore micrometeorology controls (stability, wind shear, turbulence) on a turbine's ability to produce power. Compared to lidar measurements, power law extrapolation estimates and operational National Weather Service models underestimated hub-height wind speeds in the WEA. In addition, lidar observations suggest the frequent development of a low-level wind maximum (LLWM), with high turbinelayer wind shear and low turbulence intensity within a turbine's rotor layer (40m-160m). Results elucidate the advantages of using Doppler wind lidar technology to improve offshore wind resource estimates and its ability to monitor under-sampled offshore meteorological controls impact on a potential turbine's ability to produce power.

  17. Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  18. Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  19. Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-μm wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  20. Quantifying the Benefits of Combining Offshore Wind and Wave Energy

    NASA Astrophysics Data System (ADS)

    Stoutenburg, E.; Jacobson, M. Z.

    2009-12-01

    For many locations the offshore wind resource and the wave energy resource are collocated, which suggests a natural synergy if both technologies are combined into one offshore marine renewable energy plant. Initial meteorological assessments of the western coast of the United States suggest only a weak correlation in power levels of wind and wave energy at any given hour associated with the large ocean basin wave dynamics and storm systems of the North Pacific. This finding indicates that combining the two power sources could reduce the variability in electric power output from a combined wind and wave offshore plant. A combined plant is modeled with offshore wind turbines and Pelamis wave energy converters with wind and wave data from meteorological buoys operated by the US National Buoy Data Center off the coast of California, Oregon, and Washington. This study will present results of quantifying the benefits of combining wind and wave energy for the electrical power system to facilitate increased renewable energy penetration to support reductions in greenhouse gas emissions, and air and water pollution associated with conventional fossil fuel power plants.

  1. On the Offshore Advection of Boundary-Layer Structures and the Influence on Offshore Wind Conditions

    NASA Astrophysics Data System (ADS)

    Dörenkämper, Martin; Optis, Michael; Monahan, Adam; Steinfeld, Gerald

    2015-06-01

    The coastal discontinuity imposes strong signals to the atmospheric conditions over the sea that are important for wind-energy potential. Here, we provide a comprehensive investigation of the influence of the land-sea transition on wind conditions in the Baltic Sea using data from an offshore meteorological tower, data from a wind farm, and mesoscale model simulations. Results show a strong induced stable stratification when warm inland air flows over a colder sea. This stratification demonstrates a strong diurnal pattern and is most pronounced in spring when the land-sea temperature difference is greatest. The strength of the induced stratification is proportional to this parameter and inversely proportional to fetch. Extended periods of stable stratification lead to increased influence of inertial oscillations and increased frequency of low-level jets. Furthermore, heterogeneity in land-surface roughness along the coastline is found to produce pronounced horizontal streaks of reduced wind speeds that under stable stratification are advected several tens of kilometres over the sea. The intensity and length of the streaks dampen as atmospheric stability decreases. Increasing sea surface roughness leads to a deformation of these streaks with increasing fetch. Slight changes in wind direction shift the path of these advective streaks, which when passing through an offshore wind farm are found to produce large fluctuations in wind power. Implications of these coastline effects on the accurate modelling and forecasting of offshore wind conditions, as well as damage risk to the turbine, are discussed.

  2. The Crucial Records Number to Retrieve Offshore Directional Wind Distribution

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Li, Z.; Yang, X.

    2017-02-01

    The wind energy production estimates are very important to a wind power project. And, the remote sensing technique has been widely used to obtain the offshore wind speed and direction which could be used to calculate the wind energy of potential wind farm. However, the directional wind energy distributions are rarely studied, which also play important roles in analysis of wind farms’ potential power. In this article, the minimum number of records to obtain offshore directional wind distribution is stated by simulation experiment on In-situ dataset. The NDBC buoy dataset is randomly and multiply sampled to build new dataset under different numbers of observation records, which vary from 21 to 800. The resample under the same number of observation is repeated for 100 times to build dataset group. The directional wind distribution of new dataset is compared with the one of original buoy dataset, and errors made by dataset with fewer records are calculated. Besides, the 10th largest error in the sampled dataset group, which have the same number of observation records, is regarded as the error bound for those dataset. The change rule of the error bound is shown by fitted curves. Based on the fitted curves, minimum number of records is calculated. By this simulation experiment, the minimum number of records to represent wind direction frequency is 350, and 800 for annual direction distributions of wind energy density. To reduce the number of records needed in retrieval, some methods are discussed and tested.

  3. Fatigue reassessment for lifetime extension of offshore wind monopile substructures

    NASA Astrophysics Data System (ADS)

    Ziegler, Lisa; Muskulus, Michael

    2016-09-01

    Fatigue reassessment is required to decide about lifetime extension of aging offshore wind farms. This paper presents a methodology to identify important parameters to monitor during the operational phase of offshore wind turbines. An elementary effects method is applied to analyze the global sensitivity of residual fatigue lifetimes to environmental, structural and operational parameters. Therefore, renewed lifetime simulations are performed for a case study which consists of a 5 MW turbine with monopile substructure in 20 m water depth. Results show that corrosion, turbine availability, and turbulence intensity are the most influential parameters. This can vary strongly for other settings (water depth, turbine size, etc.) making case-specific assessments necessary.

  4. 2014-2015 Offshore Wind Technologies Market Report

    SciTech Connect

    Smith, Aaron; Stehly, Tyler; Musial, Walter

    2015-09-01

    This report provides data and analysis to assess the status of the U.S. offshore wind industry through June 30, 2015. It builds on the foundation laid by the Navigant Consortium, which produced three market reports between 2012 and 2014. The report summarizes domestic and global market developments, technology trends, and economic data to help U.S. offshore wind industry stakeholders, including policymakers, regulators, developers, financiers, and supply chain participants, to identify barriers and opportunities. Title page contains link to associated data tables posted at http://www.nrel.gov/docs/fy15osti/64283_data_tables.xlsx.

  5. Quantifying offshore wind resources from satellite wind maps: study area the North Sea

    NASA Astrophysics Data System (ADS)

    Hasager, C. B.; Barthelmie, R. J.; Christiansen, M. B.; Nielsen, M.; Pryor, S. C.

    2006-01-01

    Offshore wind resources are quantified from satellite synthetic aperture radar (SAR) and satellite scatterometer observations at local and regional scale respectively at the Horns Rev site in Denmark. The method for wind resource estimation from satellite observations interfaces with the wind atlas analysis and application program (WAsP). An estimate of the wind resource at the new project site at Horns Rev is given based on satellite SAR observations. The comparison of offshore satellite scatterometer winds, global model data and in situ data shows good agreement. Furthermore, the wake effect of the Horns Rev wind farm is quantified from satellite SAR images and compared with state-of-the-art wake model results with good agreement. It is a unique method using satellite observations to quantify the spatial extent of the wake behind large offshore wind farms. Copyright

  6. Development of Offshore Wind Recommended Practice for U.S. Waters: Preprint

    SciTech Connect

    Musial, W. D.; Sheppard, R. E.; Dolan, D.; Naughton, B.

    2013-04-01

    This paper discusses how the American Petroleum Institute oil and gas standards were interfaced with International Electrotechnical Commission and other wind turbine and offshore industry standards to provide guidance for reliable engineering design practices for offshore wind energy systems.

  7. Large-Scale Offshore Wind Power in the United States: Executive Summary

    SciTech Connect

    Musial, W.; Ram, B.

    2010-09-01

    This document provides a summary of a 236-page NREL report that provides a broad understanding of today's offshore wind industry, the offshore wind resource, and the associated technology challenges, economics, permitting procedures, and potential risks and benefits.

  8. The Six-Component Wind Balance

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1923-01-01

    Dr. Zahm's report is a description of the six-component wind-tunnel balance in use at the Aerodynamic Laboratory, Washington Navy Yard. The description of the balance gives the mechanical details and the method of operation, and is accompanied by line drawings showing the construction of the balance. The balance is of particular interest, as it allows the model to be set up quickly and accurately in roll, pitch, and yaw, without stopping the wind. It is possible to measure automatically, directly, and independently the drag, cross-wind force, and lift; also the rolling, pitching, and yawing moments. It is also possible to make the balance self-recording.

  9. Assessment of Offshore Wind Energy Potential in the United States (Poster)

    SciTech Connect

    Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Musial, W.

    2011-05-01

    The development of an offshore wind resource database is one of the first steps necessary to understand the magnitude of the resource and to plan the distribution and development of future offshore wind power facilities. The U.S. Department of Energy supported the production of offshore wind resource maps and potential estimates for much of the United States. This presentation discusses NREL's 2010 offshore wind resources report; current U.S., regional, and state offshore maps; methodology for the wind mapping and validation; wind potential estimates; the Geographic Information Systems database; and future work and conclusions.

  10. Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios (Presentation)

    SciTech Connect

    Tegen, S.

    2014-11-01

    NREL's Jobs and Economic Development Impact (JEDI) Model for Offshore Wind, is a computer tool for studying the economic impacts of fixed-bottom offshore wind projects in the United States. This presentation provides the results of an analysis of four offshore wind development scenarios in the Southeast Atlantic, Great Lakes, Mid-Atlantic, and Gulf of Mexico regions.

  11. Where the wind blows: navigating offshore wind development, domestically and abroad

    SciTech Connect

    Colander, Brandi

    2010-04-15

    2010 is a defining year for offshore wind power globally. Many are watching with bated breath to see how the Department of Interior will handle the future of the industry in the United States. (author)

  12. Numerical study of ocean wave effect on offshore wind farm

    NASA Astrophysics Data System (ADS)

    Shen, Lian; Yang, Di; Meneveau, Charles

    2013-11-01

    Wind power at sea has become increasingly important in renewable energy study. For energy harvesting, winds over oceans have many advantages over winds on land, for example, larger and open surface area, faster wind speed, and more wind resource close to high population regions. On the other hand, the presence of ocean waves introduces complexities to wind turbines. There is a critical need to study the dynamical interactions among marine atmospheric boundary layer, ocean wave field, and floating turbines. In this research, we study offshore wind farm by performing large-eddy simulations for winds coupled with potential-flow-theory based simulations for broadband irregular waves, with the wind turbines represented by an actuator disk model. Our results show that windseas at different development stages result in different sea-surface roughness and have an appreciable effect on wind profile and the energy extraction rate of the turbines. If swells are present, swell-to-wind momentum and energy transfer further changes the wind field to introduce oscillations in as well as modify the mean of the wind power. DY and LS acknowledge the support of NSF-CBET-1341062. CM acknowledges the support of NSF-AGS-1045189 and NSF-OISE-1243482.

  13. Quantifying the Hurricane Risk to Offshore Wind Power (Invited)

    NASA Astrophysics Data System (ADS)

    Apt, J.; Rose, S.; Jaramillo, P.; Small, M.

    2013-12-01

    The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be required for the United States to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been signed for offshore sites. These planned projects are in areas that are sometimes struck by hurricanes. Whether that risk will grow as a result of climate change is uncertain. Recent years have seen an increase in hurricane activity in the Atlantic basin (1) and, all else being equal, warmer sea surface temperatures can be expected to lead to increased storm intensity. We have developed a method to estimate the catastrophe risk to offshore wind power using simulated hurricanes (2). In Texas, the most vulnerable region we studied, 10% of offshore wind power could be offline simultaneously due to hurricane damage with a 100-year return period and 6% could be destroyed in any 10-year period. Much of the hurricane risk to offshore wind turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and building in areas with lower risk. 1. Iris Grossmann and M. Granger Morgan, "Tropical Cyclones, Climate Change, and Scientific Uncertainty: What do we know, what does it mean, and what should be done?," Climatic Change, 108, pp 543-579, 2011. 2. Carnegie Mellon Electricity Industry Center Working Paper CEIC-13-07, http://wpweb2.tepper.cmu.edu/electricity/papers/ceic-13-07.asp This work was supported in part by the EPA STAR fellowship program, a grant from the Alfred P. Sloan Foundation and EPRI to the Carnegie Mellon Electricity Industry Center, and by the Doris Duke Charitable Foundation, the R.K. Mellon Foundation and the Heinz Endowments for support of the RenewElec program at Carnegie Mellon University. This research was also supported in part by the Climate and

  14. Advanced Offshore Wind Energy - Atlantic Consortium

    SciTech Connect

    Kempton, Willett

    2015-11-04

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing a course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.

  15. Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint

    SciTech Connect

    Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

    2014-02-01

    Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

  16. Superconducting light generator for large offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Sanz, S.; Arlaban, T.; Manzanas, R.; Tropeano, M.; Funke, R.; Kováč, P.; Yang, Y.; Neumann, H.; Mondesert, B.

    2014-05-01

    Offshore wind market demands higher power rate and reliable turbines in order to optimize capital and operational cost. These requests are difficult to overcome with conventional generator technologies due to a significant weight and cost increase with the scaling up. Thus superconducting materials appears as a prominent solution for wind generators, based on their capacity to held high current densities with very small losses, which permits to efficiently replace copper conductors mainly in the rotor field coils. However the state-of-the-art superconducting generator concepts still seem to be expensive and technically challenging for the marine environment. This paper describes a 10 MW class novel direct drive superconducting generator, based on MgB2 wires and a modular cryogen free cooling system, which has been specifically designed for the offshore wind industry needs.

  17. Landmark Report Analyzes Current State of U.S. Offshore Wind Industry (Fact Sheet)

    SciTech Connect

    Not Available

    2011-09-01

    New report assesses offshore wind industry, offshore wind resource, technology challenges, economics, permitting procedures, and potential risks and benefits. The National Renewable Energy Laboratory (NREL) recently published a new report that analyzes the current state of the offshore wind energy industry, Large-Scale Offshore Wind Power in the United States. It provides a broad understanding of the offshore wind resource, and details the associated technology challenges, economics, permitting procedures, and potential risks and benefits of developing this clean, domestic, renewable resource. The United States possesses large and accessible offshore wind energy resources. The availability of these strong offshore winds close to major U.S. coastal cities significantly reduces power transmission issues. The report estimates that U.S. offshore winds have a gross potential generating capacity four times greater than the nation's present electric capacity. According to the report, developing the offshore wind resource along U.S. coastlines and in the Great Lakes would help the nation: (1) Achieve 20% of its electricity from wind by 2030 - Offshore wind could supply 54 gigawatts of wind capacity to the nation's electrical grid, increasing energy security, reducing air and water pollution, and stimulating the domestic economy. (2) Provide clean power to its coastal demand centers - Wind power emits no carbon dioxide (CO2) and there are plentiful winds off the coasts of 26 states. (3) Revitalize its manufacturing sector - Building 54 GW of offshore wind energy facilities would generate an estimated $200 billion in new economic activity, and create more than 43,000 permanent, well-paid technical jobs in manufacturing, construction, engineering, operations and maintenance. NREL's report concludes that the development of the nation's offshore wind resources can provide many potential benefits, and with effective research, policies, and commitment, offshore wind energy can

  18. Four essays on offshore wind power potential, development, regulatory framework, and integration

    NASA Astrophysics Data System (ADS)

    Dhanju, Amardeep

    . It outlines a regulatory framework touching on key elements such as the leasing system, length of tenure, and financial terms for allocating property rights. In addition, the framework also provides recommendations on environmental assessment that would be required prior to lease issuance. The fourth essay analyzes offshore wind power integration using electric thermal storage in housing units. It presents a model of wind generation, heating load and wind driven thermal storage to assess the potential of storage to buffer wind intermittency. The analysis suggests that thermal load matches the seasonal excess of offshore wind during winter months, and that electric thermal storage could provide significant temporal, spatial, and cost advantages for balancing output from offshore wind generation, while also converting a major residential load (space heating) now met by fossil fuels to low carbon energy resources. Together, the four essays provide new analyses of policy, regulatory, and system integration issues that could impede resource development, and also analyze and recommend strategies to manage these issues.

  19. A CFD framework for offshore and onshore wind farm simulation

    NASA Astrophysics Data System (ADS)

    Avila, Matias; Gargallo-Peiró, Abel; Folch, Arnau

    2017-05-01

    We present a wind simulation framework for offshore and onshore wind farms. The simulation framework involves an automatic hybrid high-quality mesh generation process, a pre-processing to impose initial and boundary conditions, and a solver for the Reynolds Averaged Navier-Stokes (RANS) equations with two different turbulence models, a modified standard k-ɛ model and a realizable k-ɛ model in which we included the Coriolis effects. Wind turbines are modeled as actuator discs. The wind farm simulation framework has been implemented in Alya, an in-house High Performance Computing (HPC) multi-physics finite element parallel solver. An application example is shown for an onshore wind farm composed of 165 turbines.

  20. Assessing vulnerability of marine bird populations to offshore wind farms.

    PubMed

    Furness, Robert W; Wade, Helen M; Masden, Elizabeth A

    2013-04-15

    Offshore wind farms may affect bird populations through collision mortality and displacement. Given the pressures to develop offshore wind farms, there is an urgent need to assess population-level impacts on protected marine birds. Here we refine an approach to assess aspects of their ecology that influence population vulnerability to wind farm impacts, also taking into account the conservation importance of each species. Flight height appears to be a key factor influencing collision mortality risk but improved data on flight heights of marine birds are needed. Collision index calculations identify populations of gulls, white-tailed eagles, northern gannets and skuas as of particularly high concern in Scottish waters. Displacement index calculations identify populations of divers and common scoters as most vulnerable to population-level impacts of displacement, but these are likely to be less evident than impacts of collision mortality. The collision and displacement indices developed here for Scottish marine bird populations could be applied to populations elsewhere, and this approach will help in identifying likely impacts of future offshore wind farms on marine birds and prioritising monitoring programmes, at least until data on macro-avoidance rates become available.

  1. Airfoil family design for large offshore wind turbine blades

    NASA Astrophysics Data System (ADS)

    Méndez, B.; Munduate, X.; San Miguel, U.

    2014-06-01

    Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design

  2. Climate Change, Offshore Wind Power, and the Coastal Zone Management Act

    DTIC Science & Technology

    2008-09-01

    units, in large -scale farms , offshore . Despite being approximately 40% more expensive, offshore wind power projects have at least one benefit over many...have begun to plan and develop coastal and offshore wind energy farms ,9 the largest and best-known being Cape Wind Associates’ proposal for a 130...efficient turbines, some with a peak capacity of 5 MWe, and individual turbines were interconnected to form large -scale wind farms . Although there was much

  3. “Open Hatch” Tour of Offshore Wind Buoy

    ScienceCinema

    Zayas, Jose

    2016-07-12

    Wind and Water Power Technologies Office Director, Jose Zayas gives a behind the scenes tour of the AXYS WindSentinel research buoy, which uses high-tech instruments to measure conditions for potential offshore wind energy development.

  4. Quantifying the Available Offshore Wind Resource in North Carolina

    NASA Astrophysics Data System (ADS)

    Schutt, M.; Seim, H.

    2016-02-01

    We present a study of wind profile measurements for improvement upon the wind resource estimation of coastal North Carolina. The site of measurement, near Cape Hatteras, is interesting because of its proximity to an open sound condition to the north and west, as well as its oceanic boundary to the south and east, including the thermally dynamic influence of the Gulf Stream. Such an environment has been found to complicate wind speed estimation at wind turbine hub height. Early exploration of the profiles collected during 2012-2014 from the surface to 200 m revealed distinct characteristics unique to winds coming from Pamlico Sound, as compared to those coming from the Atlantic. In order to quantify the effect of atmospheric stability on the wind profiles, an aggregation of ancillary data was collected, including surface sea and air temperature, and surface humidity to calculate a Monin-Obukhov Similarity scaling parameter. The ancillary data, in combination with knowledge of upwind conditions, topography, and ocean thermal structure, is being used to test the ability of simple theory to reproduce the structure of wind profiles from the two environments assuming nested internal boundary layers. This work will provide a more refined method of estimating the available wind resource for use in offshore wind energy development in this particular coastal region.

  5. Assessment of Offshore Wind Energy Resources for the United States

    SciTech Connect

    Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W.

    2010-06-01

    This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that further updates to the current assessment will be made in future reports.

  6. Guided waves in a monopile of an offshore wind turbine.

    PubMed

    Zernov, V; Fradkin, L; Mudge, P

    2011-01-01

    We study the guided waves in a structure which consists of two overlapping steel plates, with the overlapping section grouted. This geometry is often encountered in support structures of large industrial offshore constructions, such as wind turbine monopiles. It has been recognized for some time that the guided wave technology offers distinctive advantages for the ultrasonic inspections and health monitoring of structures of this extent. It is demonstrated that there exist advantageous operational regimes of ultrasonic transducers guaranteeing a good inspection range, even when the structures are totally submerged in water, which is a consideration when the wind turbines are deployed off shore.

  7. Using Synthetic Aperture Radar Wind Measurements to support Offshore Wind Parks

    NASA Astrophysics Data System (ADS)

    Schneiderhan, T.; Lehner, S.; Horstmann, J.; Koch, W.; Schulz-Stellenfleth, J.

    2003-04-01

    In all countries with shallow coastal waters and a strong mean wind speed offshore wind parks are planned and built. The fast development of wind energy production in Europe led to an installation of more than 18 000 MW by the end of the year 2001. The installed offshore power up to date is about 100 MW. In the near future many projects for wind farms with an output of more than 5000 MW are planned. Some of these projects are already under construction. Offshore wind parks are showing a big potential for future energy production and solving ecological problems in reducing the CO^2 output. The construction and maintenance of offshore wind parks has to face the tough environmental conditions of the open sea resulting extensive maintenance and money. Therefore reliable forecast in particular of the wind and the ocean wave fields is essential. Space borne SAR data as acquired by the ERS satellites or the new ENVISAT satellite, launched in March 2002, provide two dimensional wind fields with a sub-kilometre resolution and a coverage of up to 500 by 500 km in the wide swath mode. They are thus ideally suited to investigate the spatial fine structure like e.g. turbulence in the wake of wind parks, which is an important factor in the optimal siting of wind farms. Due to their high coverage and resolution SAR data can provide information on the impact of the single turbines on the wind field experienced by the neighbouring turbines as well as the effect of the whole wind park on the local climate. This study shows the potential of two dimensional high resolution wind fields measured with space borne synthetic aperture radar to support the construction and operation of wind farms. The data can be used to minimize fatigue loading due to wind gusts as well as to provide short term power forecasts in order to optimise the power output. Examples of wind fields around the already existing offshore wind parks Utgrunden (South of Sweden) and Horns Rev (West of Denmark) and the

  8. Fouling assemblages on offshore wind power plants and adjacent substrata

    NASA Astrophysics Data System (ADS)

    Wilhelmsson, Dan; Malm, Torleif

    2008-09-01

    A significant expansion of offshore wind power is expected in the near future, with thousands of turbines in coastal waters, and various aspects of how this may influence the coastal ecology including disturbance effects from noise, shadows, electromagnetic fields, and changed hydrological conditions are accordingly of concern. Further, wind power plants constitute habitats for a number of organisms, and may locally alter assemblage composition and biomass of invertebrates, algae and fish. In this study, fouling assemblages on offshore wind turbines were compared to adjacent hard substrate. Influences of the structures on the seabed were also investigated. The turbines differed significantly from adjacent boulders in terms of assemblage composition of epibiota and motile invertebrates. Species number and Shannon-Wiener diversity were, also, significantly lower on the wind power plants. It was also indicated that the turbines might have affected assemblages of invertebrates and algae on adjacent boulders. Off shore wind power plant offer atypical substrates for fouling assemblages in terms of orientation, depth range, structure, and surface texture. Some potential ecological implications of the addition of these non-natural habitats for coastal ecology are discussed.

  9. Regional Offshore Wind Farm Optimization Using Wind Climatology and the Weather Research and Forecasting Model

    NASA Astrophysics Data System (ADS)

    Veron, D. E.; Brodie, J. F.; Archer, C. L.; Veron, F.

    2014-12-01

    The impact of turbulent wakes on the power production of wind farms is a very active area of research as society continues to increase its commitment to renewable energy. The areas offshore of the mid-Atlantic and northeast states are highly favorable to the development of offshore wind farms, and determining the optimal layout for these wind farms is key to their success. We utilize the Weather Research and Forecasting (WRF) model to study the influence of wake effects from different wind farm array geometries on the power production of each farm. Using an idealized version of WRF, we are able to use the wind climatology from a NOAA observational buoy near the Delaware Wind Energy Area (WEA) to evaluate the potential wind farm performance during a climatological average year. We then extend these techniques on a regional scale, evaluating performance of farms located in different offshore WEAs. Finally, by using WRF to model the entire region, we evaluate the wind farms' interactions with one another under various meteorological scenarios in order to account for seasonal wind variability and load requirements.

  10. Offshore Wind Initiatives at the U.S. Department of Energy

    SciTech Connect

    None, None

    2016-10-01

    Coastal and Great Lakes states account for nearly 80% of U.S. electricity demand, and the winds off the shores of these coastal load centers have a technical resource potential twice as large as the nation’s current electricity use. With the costs of offshore wind energy falling globally and the first U.S. offshore wind farm installed off the coast of Block Island, Rhode Island in 2016, offshore wind has the potential to contribute significantly to a clean, affordable, and secure national energy mix. To support the development of a world-class offshore wind industry, the U.S. Department of Energy has been supporting a broad portfolio of offshore wind research, development, and demonstration projects since 2011 and released a new National Offshore Wind Strategy jointly with the U.S. Department of the Interior in 2016.

  11. Offshore wind farms and their impact on North Sea stratification

    NASA Astrophysics Data System (ADS)

    Carpenter, J. R.; Clark, S.; Merckelbach, L.; Callies, U.; Gaslikova, L.; Baschek, B.

    2016-02-01

    In expanding wind energy generation to offshore regions, wind farms are now being operated and constructed in coastal seas that form a seasonal stratification. This stratification develops as increased solar radiation and heating warm the upper ocean in summer. It has a dominant influence on numerous ocean processes such as the growth and distribution of phytoplankton, as well as on the distribution of suspended sediment concentrations. The formation of stratification is opposed by turbulent mixing processes such as bottom boundary layer friction, and wave breaking in the surface mixed layer. However, as more wind farms are built in coastal areas that exhibit strong tidal currents, the turbulence generated as the currents interact with the wind farm foundation structures is expected to contribute to an enhanced mixing of the water column. This is especially true in the North Sea, where proposed wind farm developments comprise thousands of wind mills occupying a significant fraction of the offshore area. With these proposed developments in mind, we examine whether it is possible for the turbulence and mixing generated by these structures to have an impact on the formation of stratification. This is done by combining a series of idealized mixing models with both in-situ observations and numerical modeling of the North Sea. The results show that it is possible for the wind farms to have an influence on the large-scale stratification of the North Sea, but only when the development is particularly dense and widespread. Most important, we find that the amount of mixing is sensitive to both the type and placement of the wind farm foundation structures, as well as on the evolution of the stratification - both of which are currently not well known.

  12. Trajectories of concentrating photovoltaics (CPV) in market space based on comparisons with offshore wind power

    NASA Astrophysics Data System (ADS)

    Leutz, Ralf

    2012-10-01

    Concentrating photovoltaics (CPV) are for solar photovoltaics what offshore wind power is for wind power; this is the hypothesis of this work. In analogy to offshore wind cumulative global CPV installations of approximately 3-7 GW are predicted for the year 2020. Scenarios are based on paths for CPV following offshore wind in shape, but with a delay of ten years which is approximately the time lag the first larger offshore wind farms were built earlier than the first large CPV plants of 2011.

  13. Evolution and Reduction of Scour around Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    McGovern, David; Ilic, Suzana

    2010-05-01

    Evolution and Reduction of Scour around Offshore Wind Turbines In response to growing socio-economic and environmental demands, electricity generation through offshore wind turbine farms is a fast growing sector of the renewable energy market. Considerable numbers of offshore wind farms exist in the shallow continental shelf seas of the North-West Europe, with many more in the planning stages. Wind energy is harnessed by large rotating blades that drive an electricity generating turbine placed on top of a long cylindrical monopile that are driven into the sea-bed, well into the bed rock below the sediment. Offshore wind turbines are popular due to consistently higher wind speeds and lower visual impact than their onshore counter parts, but their construction and maintenance is not without its difficulties. The alteration of flow by the presence of the wind turbine monopile results in changes in sedimentary processes and morphology at its base. The increase in flow velocity and turbulence causes an amplification of bed shear stress and this can result in the creation of a large scour hole at the monopile base. Such a scour hole can adversely affect the structural integrity and hence longevity of the monopile. Changes to the sea bed caused by this may also locally affect the benthic habitat. We conducted an extensive series of rigid and mobile bed experiments to examine the process of scour under tidal currents. We also test the effectiveness of a flow-altering collared monopile in reducing scour. Firstly, we used Particle Image Velocimetry (PIV) and Acoustic Doppler Velocimetry (ADV) to visualise and analyse the flow and turbulence properties in the local flow around the monopile and collared monopile over a smooth rigid bed under tidal flow. The measured flow, turbulence and shear stress properties are related to mobile bed tests where a Seatek 5 MHz Ultrasonic Ranging system is used to identify the evolution of scour under reversing tidal currents. The tidal

  14. High resolution wind measurements for offshore wind energy development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son Van (Inventor); Neumann, Gregory (Inventor)

    2013-01-01

    A method, apparatus, system, article of manufacture, and computer readable storage medium provide the ability to measure wind. Data at a first resolution (i.e., low resolution data) is collected by a satellite scatterometer. Thin slices of the data are determined. A collocation of the data slices are determined at each grid cell center to obtain ensembles of collocated data slices. Each ensemble of collocated data slices is decomposed into a mean part and a fluctuating part. The data is reconstructed at a second resolution from the mean part and a residue of the fluctuating part. A wind measurement is determined from the data at the second resolution using a wind model function. A description of the wind measurement is output.

  15. 75 FR 57271 - Creating an Offshore Wind Industry in the United States: A National Vision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... of Energy Efficiency and Renewable Energy Creating an Offshore Wind Industry in the United States: A... Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Power Program, is planning a series of public events to exchange information on the development of offshore wind energy...

  16. 78 FR 4167 - Commercial Wind Lease Issuance on the Atlantic Outer Continental Shelf Offshore Delaware

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... Offshore Delaware. SUMMARY: BOEM has issued a commercial wind energy lease to Bluewater Wind Delaware LLC... Bureau of Ocean Energy Management Commercial Wind Lease Issuance on the Atlantic Outer Continental Shelf Offshore Delaware AGENCY: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Notice...

  17. Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)

    SciTech Connect

    Guo, Y.; Damiani, R.; Musial, W.

    2014-04-01

    Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbine response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.

  18. Summertime coastal current reversal opposing offshore forcing and local wind near the middle east coast of Korea: Observation and dynamics

    NASA Astrophysics Data System (ADS)

    Park, Jae-Hyoung; Chang, Kyung-Il; Nam, SungHyun

    2016-07-01

    A 6 year long current measurement at a buoy station off the middle east coast of Korea reveals an equatorward reversal of coastal current in summer opposing poleward local wind stress and offshore boundary current. The current reversal extends about 40 km offshore from the coast and is concurrent with warming and freshening of water column. Estimates of the depth-averaged alongshore momentum balance suggest a major balance between the alongshore pressure gradient and the lateral friction. Sources of the pressure gradient for the summertime current reversal are identified as the alongshore buoyancy gradient driven by the wind curl gradient and the prevalence of warmer and lower salinity water in the north. Alongshore pressure gradient and velocity induced by the wind curl gradient are quantified, which yields the observed seasonal current reversal.

  19. Magnetospheric balance of solar wind dynamic pressure

    NASA Astrophysics Data System (ADS)

    Lopez, Ramon E.; Gonzalez, Walter D.

    2017-04-01

    The magnetopause is the boundary established by pressure balance between the solar wind flow in the magnetosheath and the magnetosphere. Generally, this pressure balance is represented to be between the solar wind, the dynamic pressure, and the magnetic pressure of Earth's dipole field. The plasma actually in contact with the magnetosphere is the slowed, compressed, and heated solar wind downstream of the shock. The force exerted on the magnetosheath plasma is the J × B force produced by the Chapman-Ferraro current that flows on the magnetopause. Under typical solar wind conditions of relatively high magnetosonic Mach number flow (>6), this simple picture is a reasonable description of the situation. However, under conditions of low solar wind magnetosonic Mach number flow ( 2) the force on the solar wind plasma is not exerted at the magnetopause and must be exerted at the bow shock by currents that connect to the Region 1 currents. In this paper we present observations from two magnetopause crossings observed by the Time History of Events and Macroscale Interactions during Substorms spacecraft to compare and contrast the force balance with the solar wind for two situations with very different solar wind magnetosonic Mach numbers.

  20. Structural health and prognostics management for offshore wind turbines :

    SciTech Connect

    Myrent, Noah J.; Kusnick, Joshua F.; Barrett, Natalie C.; Adams, Douglas E.; Griffith, Daniel

    2013-04-01

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

  1. Avian collision risk at an offshore wind farm

    PubMed Central

    Desholm, Mark; Kahlert, Johnny

    2005-01-01

    We have been the first to investigate whether long-lived geese and ducks can detect and avoid a large offshore wind farm by tracking their diurnal migration patterns with radar. We found that the percentage of flocks entering the wind farm area decreased significantly (by a factor 4.5) from pre-construction to initial operation. At night, migrating flocks were more prone to enter the wind farm but counteracted the higher risk of collision in the dark by increasing their distance from individual turbines and flying in the corridors between turbines. Overall, less than 1% of the ducks and geese migrated close enough to the turbines to be at any risk of collision. PMID:17148191

  2. Avian collision risk at an offshore wind farm.

    PubMed

    Desholm, Mark; Kahlert, Johnny

    2005-09-22

    We have been the first to investigate whether long-lived geese and ducks can detect and avoid a large offshore wind farm by tracking their diurnal migration patterns with radar. We found that the percentage of flocks entering the wind farm area decreased significantly (by a factor 4.5) from pre-construction to initial operation. At night, migrating flocks were more prone to enter the wind farm but counteracted the higher risk of collision in the dark by increasing their distance from individual turbines and flying in the corridors between turbines. Overall, less than 1% of the ducks and geese migrated close enough to the turbines to be at any risk of collision.

  3. Stability analysis of offshore wind farm and marine current farm

    NASA Astrophysics Data System (ADS)

    Shawon, Mohammad Hasanuzzaman

    Renewable energy has been playing an important role to meet power demand and 'Green Energy' market is getting bigger platform all over the world in the last few years. Due to massive increase in the prices of fossil fuels along with global warming issues, energy harvesting from renewable energy sources has received considerable interest, nowadays, where extensive researches are going on to ensure optimum use of renewable sources. In order to meet the increasing demand of electricity and power, integration of renewable energy is getting highest priorities around the world. Wind is one of the most top growing renewable energy resources and wind power market penetration is expected to reach 3.35 percent by 2013 from its present market of about 240 GW. A wind energy system is the most environmental friendly, cost effective and safe among all renewable energy resources available. Another promising form of renewable energy is ocean energy which covers 70 % of the earth. Ocean energy can be tapped from waves, tides and thermal elements. Offshore Wind farm (OWF) has already become very popular for large scale wind power integration with the onshore grid. Recently, marine current farm (MCF) is also showing good potential to become mainstream energy sources and already successfully commissioned in United Kingdom. However, squirrel cage induction generator (SCIG) has the stability problem similar to synchronous generator especially during fault location to restore the electromagnetic torque. Series dynamic braking resistor (SDBR) has been known as a useful mean to stabilize fixed speed wind generator system. On the other hand, doubly fed induction generator (DFIG) has the capability of coupling the control of active and reactive power and to provide necessary reactive power demand during grid fault conditions. Series dynamic braking resistor (SDBR) can also be employed with DFIG to limit the rotor over current. An integration of wind and tidal energy represents a new

  4. ENDOW (efficient development of offshore wind farms): modelling wake and boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Barthelmie, Rebecca; Larsen, Gunner; Pryor, Sara; Jørgensen, Hans; Bergström, Hans; Schlez, Wolfgang; Rados, Kostas; Lange, Bernhard; Vølund, Per; Neckelmann, Søren; Mogensen, Søren; Schepers, Gerard; Hegberg, Terry; Folkerts, Luuk; Magnusson, Mikael

    2004-07-01

    While experience gained through the offshore wind energy projects currently operating is valuable, a major uncertainty in estimating power production lies in the prediction of the dynamic links between the atmosphere and wind turbines in offshore regimes. The objective of the ENDOW project was to evaluate, enhance and interface wake and boundary layer models for utilization offshore. The project resulted in a significant advance in the state of the art in both wake and marine boundary layer models, leading to improved prediction of wind speed and turbulence profiles within large offshore wind farms. Use of new databases from existing offshore wind farms and detailed wake profiles collected using sodar provided a unique opportunity to undertake the first comprehensive evaluation of wake models in the offshore environment. The results of wake model performance in different wind speed, stability and roughness conditions relative to observations provided criteria for their improvement. Mesoscale model simulations were used to evaluate the impact of thermal flows, roughness and topography on offshore wind speeds. The model hierarchy developed under ENDOW forms the basis of design tools for use by wind energy developers and turbine manufacturers to optimize power output from offshore wind farms through minimized wake effects and optimal grid connections. The design tools are being built onto existing regional-scale models and wind farm design software which was developed with EU funding and is in use currently by wind energy developers. Copyright

  5. Department of Energy Awards $43 Million to Spur Offshore Wind Energy, Wind Program Newsletter, September 2011 Edition (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    EERE Wind Program Quarterly Newsletter - September 2011. In September, the U.S. Department of Energy announced that it will award $43 million over the next five years to 41 projects across 20 states to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. The projects will advance wind turbine design tools and hardware, improve information about U.S. offshore wind resources, and accelerate the deployment of offshore wind by reducing market barriers such as supply chain development, transmission and infrastructure. The projects announced in September focus on approaches to advancing offshore technology and removing market barriers to responsible offshore wind energy deployment. Funding is subject to Congressional appropriations.

  6. Evolution of the central Walvis Basin / offshore NW Namibia - balancing onshore erosion and offshore sedimentation

    NASA Astrophysics Data System (ADS)

    Henk, A.; Kukulus, M.; Junker, R.

    2003-04-01

    Rifting and break-up of Gondwana in the Late Jurassic / Early Cretaceous led to formation of the South Atlantic. One of the associated passive margins, the Walvis Basin in NW Namibia, is used as a case study to investigate the mass and process balances which link uplift and erosion onshore to contemporaneous subsidence and sedimentation offshore. One of the main objectives of the project is to gain quantitative insights into the feedback mechanisms between surface processes and lithospheric processes during passive margin evolution. Modeling concentrates on a traverse across the central Walvis Basin and adjacent onshore areas. Mass balancing requires a reconstruction of the denudation history and the volumes eroded onshore as well as a quantification of the contemporaneous sedimentary record preserved offshore. In the offshore parts of the study area, seismic sections and well data are available to constrain the post-rift evolution of the Walvis basin. However, as none of the exploration wells has yet reached syn-rift deposits, the early margin evolution has to remain speculative. In the onshore part of the traverse, field evidence and published apatite fission track data are used to reconstruct the erosion history. Comparison of the eroded and deposited volumes and masses, respectively, reveals a misfit of about 50 %, i.e. only half of the sediments observed offshore can be attributed to nearby source areas onshore. This result is supported by provenance analysis on cuttings from an offshore well which indicate that a substantial part of the detritus was derived from sources to the south and transported to the central Walvis Basin by coast-parallel currents. Sediment supply rates derived from reconstruction of the onshore erosion history and subsidence rates based on lithospheric cooling models together with global sea level changes are then used to model quantitatively deposition and stratigraphic architectures of the post-rift succession in the central Walvis

  7. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios

    SciTech Connect

    Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

    2012-10-01

    This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

  8. Structural health and prognostics management for offshore wind turbines :

    SciTech Connect

    Griffith, Daniel; Resor, Brian Ray; White, Jonathan Randall; Paquette, Joshua A.; Yoder, Nathanael C.

    2012-12-01

    Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blades torsional stiffness due to the disbond, which also resulted in changes in the blades local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

  9. High-Resolution Wind Measurements for Offshore Wind Energy Development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  10. Grid connection of large offshore wind farms using HVDC

    NASA Astrophysics Data System (ADS)

    Xu, Lie; Andersen, Bjarne R.

    2006-07-01

    This article describes the use of high-voltage DC (HVDC) transmission systems for connection of large offshore wind farms using doubly fed induction generators (DFIGs) to the main grid. HVDC systems based on voltage source converters (VSC transmission) and on line-commutated converters (LCC HVDC) are discussed. The article describes proposed system configurations, operating principles and controls for the two technologies. PSCAD/EMTDC simulations are presented to demonstrate the robust performance of the proposed systems during variation of generation and onshore AC fault conditions. Copyright

  11. Dependence of offshore wind turbine fatigue loads on atmospheric stratification

    NASA Astrophysics Data System (ADS)

    Hansen, K. S.; Larsen, G. C.; Ott, S.

    2014-06-01

    The stratification of the atmospheric boundary layer (ABL) is classified in terms of the M-O length and subsequently used to determine the relationship between ABL stability and the fatigue loads of a wind turbine located inside an offshore wind farm. Recorded equivalent fatigue loads, representing blade-bending and tower bottom bending, are combined with the operational statistics from the instrumented wind turbine as well as with meteorological statistics defining the inflow conditions. Only a part of all possible inflow conditions are covered through the approximately 8200 hours of combined measurements. The fatigue polar has been determined for an (almost) complete 360° inflow sector for both load sensors, representing mean wind speeds below and above rated wind speed, respectively, with the inflow conditions classified into three different stratification regimes: unstable, neutral and stable conditions. In general, impact of ABL stratification is clearly seen on wake affected inflow cases for both blade and tower fatigue loads. However, the character of this dependence varies significantly with the type of inflow conditions - e.g. single wake inflow or multiple wake inflow.

  12. Forecasting offshore wind speeds above the North Sea

    NASA Astrophysics Data System (ADS)

    Tambke, Jens; Lange, Matthias; Focken, Ulrich; Wolff, Jörg-Olaf; Bye, John A. T.

    2005-01-01

    We investigate the expected performance of short-term wind power prediction systems for offshore sites in the German Bight and at Horns Rev. Despite the special meteorological situation over the North Sea, it is found that the accuracy of wind speed predictions provided by the numerical prediction model of the German weather service is comparable to that of onshore predictions. However, although relative forecast errors look promising, the absolute errors are fairly large, with a root mean square error up to 3 m s-1 for the 48 h forecast. Moreover, vertical wind profiles which are typically needed to calculate the wind speed at hub height are considered at Horns Rev. In all thermal conditions the measured profiles show significant deviations from the expected shapes. The reason for this has to be clarified. Assuming that the deviations are due to the physical processes in the marine boundary layer, we present an alternative approach to derive wind profiles over the ocean which involves the inertial coupling of the Ekman layers of atmosphere and sea via a wave boundary layer with constant shear stress. Profiles calculated by this method are compared with measured profiles, showing rather good agreement. Copyright

  13. Definition of a 5-MW Reference Wind Turbine for Offshore System Development

    SciTech Connect

    Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G.

    2009-02-01

    This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

  14. Fault Diagnostics for Electrically Operated Pitch Systems in Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Teja Kandukuri, Surya; Khang Huynh, Van; Karimi, Hamid Reza; Robbersmyr, Kjell Gunnar

    2016-09-01

    This paper investigates the electrically operated pitch systems of offshore wind turbines for online condition monitoring and health assessment. The current signature based fault diagnostics is developed for electrically operated pitch systems using model-based approach. The electrical motor faults are firstly modelled based on modified winding function theory and then, current signature analysis is performed to detect the faults. Further, in order to verify the fault diagnostics capabilities in realistic conditions, the operating profiles are obtained from FAST simulation of offshore wind turbines in various wind conditions. In this way, the applicability of current signature analysis for fault diagnostics in offshore wind turbine pitch systems is demonstrated.

  15. Offshore wind speed and wind power characteristics for ten locations in Aegean and Ionian Seas

    NASA Astrophysics Data System (ADS)

    Bagiorgas, Haralambos S.; Mihalakakou, Giouli; Rehman, Shafiqur; Al-Hadhrami, Luai M.

    2012-08-01

    This paper utilizes wind speed data measured at 3 and 10 m above water surface level using buoys at 10 stations in Ionian and Aegean Seas to understand the behaviour of wind and thereafter energy yield at these stations using 5 MW rated power offshore wind turbine. With wind power densities of 971 and 693 W/m2 at 50 m above water surface level, Mykonos and Lesvos were found to be superb and outstanding windy sites with wind class of 7 and 6, respectively. Other locations like Athos, Santorini and Skyros with wind power density of more than 530 W/m2 and wind class of 5 were found to be the excellent sites. Around 15-16% higher winds were observed at 10 m compared to that at 3 m. Lower values of wind speed were found during summer months and higher during winter time in most of the cases reported in the present work. Slightly decreasing (~2% per year) linear trends were observed in annual mean wind speed at Lesvos and Santorini. These trends need to be verified with more data from buoys or from nearby onshore meteorological stations. At Athos and Mykonos, increasing linear trends were estimated. At all the stations the chosen wind turbine could produce energy for more than 70% of the time. The wind speed distribution was found to be well represented by Weibull parameters obtained using Maximum likelihood method compared to WAsP and Method of Moments.

  16. Field Test of Wake Steering at an Offshore Wind Farm

    DOE PAGES

    Fleming, Paul; Annoni, Jennifer; Shah, Jigar J.; ...

    2017-02-06

    In this paper, a field test of wake steering control is presented. The field test is the result of a collaboration between the National Renewable Energy Laboratory (NREL) and Envision Energy, a smart energy management company and turbine manufacturer. In the campaign, an array of turbines within an operating commercial offshore wind farm in China have the normal yaw controller modified to implement wake steering according to a yaw control strategy. The strategy was designed using NREL wind farm models, including a computational fluid dynamics model, SOWFA, for understanding wake dynamics and an engineering model, FLORIS, for yaw control optimization.more » Results indicate that, within the certainty afforded by the data, the wake-steering controller was successful in increasing power capture, by amounts similar to those predicted from the models.« less

  17. Time-series analysis of offshore-wind-wave groupiness

    SciTech Connect

    Liang, H.B.

    1988-01-01

    This research is to applies basic time-series-analysis techniques on the complex envelope function where the study of the offshore-wind-wave groupiness is a relevant interest. In constructing the complex envelope function, a phase-unwrapping technique is integrated into the algorithm for estimating the carrier frequency and preserving the phase information for further studies. The Gaussian random wave model forms the basis of the wave-group statistics by the envelope-amplitude crossings. Good agreement between the theory and the analysis of field records is found. Other linear models, such as the individual-waves approach and the energy approach, are compared to the envelope approach by analyzing the same set of records. It is found that the character of the filter used in each approach dominates the wave-group statistics. Analyses indicate that the deep offshore wind waves are weakly nonlinear and the Gaussian random assumption remains appropriate for describing the sea state. Wave groups statistics derived from the Gaussian random wave model thus become applicable.

  18. New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) developed a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology.

  19. OC3 -- Benchmark Exercise of Aero-Elastic Offshore Wind Turbine Codes: Preprint

    SciTech Connect

    Passon, P.; Kuhn, M.; Butterfield, S.; Jonkman, J.; Camp, T.; Larsen, T. J.

    2007-08-01

    This paper introduces the work content and status of the first international investigation and verification of aero-elastic codes for offshore wind turbines as performed by the "Offshore Code Comparison Collaboration" (OC3) within the "IEA Wind Annex XXIII -- Subtask 2".

  20. Airborne sound propagation over sea during offshore wind farm piling.

    PubMed

    Van Renterghem, T; Botteldooren, D; Dekoninck, L

    2014-02-01

    Offshore piling for wind farm construction has attracted a lot of attention in recent years due to the extremely high noise emission levels associated with such operations. While underwater noise levels were shown to be harmful for the marine biology, the propagation of airborne piling noise over sea has not been studied in detail before. In this study, detailed numerical calculations have been performed with the Green's Function Parabolic Equation (GFPE) method to estimate noise levels up to a distance of 10 km. Measured noise emission levels during piling of pinpiles for a jacket-foundation wind turbine were assessed and used together with combinations of the sea surface state and idealized vertical sound speed profiles (downwind sound propagation). Effective impedances were found and used to represent non-flat sea surfaces at low-wind sea states 2, 3, and 4. Calculations show that scattering by a rough sea surface, which decreases sound pressure levels, exceeds refractive effects, which increase sound pressure levels under downwind conditions. This suggests that the presence of wind, even when blowing downwind to potential receivers, is beneficial to increase the attenuation of piling sound over the sea. A fully flat sea surface therefore represents a worst-case scenario.

  1. Taming hurricanes with arrays of offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.; Archer, Cristina L.; Kempton, Willett

    2014-03-01

    Hurricanes are causing increasing damage to many coastal regions worldwide. Offshore wind turbines can provide substantial clean electricity year-round, but can they also mitigate hurricane damage while avoiding damage to themselves? This study uses an advanced climate-weather computer model that correctly treats the energy extraction of wind turbines to examine this question. It finds that large turbine arrays (300+ GW installed capacity) may diminish peak near-surface hurricane wind speeds by 25-41 m s-1 (56-92 mph) and storm surge by 6-79%. Benefits occur whether turbine arrays are placed immediately upstream of a city or along an expanse of coastline. The reduction in wind speed due to large arrays increases the probability of survival of even present turbine designs. The net cost of turbine arrays (capital plus operation cost less cost reduction from electricity generation and from health, climate, and hurricane damage avoidance) is estimated to be less than today’s fossil fuel electricity generation net cost in these regions and less than the net cost of sea walls used solely to avoid storm surge damage.

  2. Planners to the rescue: spatial planning facilitating the development of offshore wind energy.

    PubMed

    Jay, Stephen

    2010-04-01

    The development of offshore wind energy has started to take place surprisingly quickly, especially in North European waters. This has taken the wind energy industry out of the territory of planning systems that usually govern the siting of wind farms on land, and into the world of departmental, sectoral regulation of marine activities. Although this has favoured the expansion of offshore wind energy in some respects, evidence suggests that the practice and principles of spatial planning can make an important contribution to the proper consideration of proposals for offshore wind arrays. This is especially so when a strategic planning process is put in place for marine areas, in which offshore wind is treated as part of the overall configuration of marine interests, so that adjustments can be made in the interests of wind energy. The current process of marine planning in the Netherlands is described as an illustration of this.

  3. On the Effect of Offshore Wind Parks on Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Ludewig, E.; Pohlmann, T.

    2012-04-01

    The interest of renewable energy sources grew during the last years and especially the increasing interest in wind energy induced a strong demounting of wind parks. Due to a less reduced wind speed over ocean which leads to a higher energy production than over land companies started to invest in offshore wind parks (OWPs). For example it is planned to built for Germany's energy supply around 8700 MW in North Sea and Baltic Sea (source:IWR) which is in accordance with more than 20 OWPs composed of 80 turbines. As known in literature such wind parks excite the so-called wake-effect which impacts the atmospheric turbulence; disturbed wind fields again affects the ocean circulation. To analyze the influence of OWPs on the ocean circulation we evaluate model simulations using the Hamburg Shelf-Ocean-Model (HAMSOM). The simulations are driven with a wind forcing produced by the Mesoscale Atmosphere Model of the Hamburg University (METRAS) which has implemented wind turbines (courtesy of the Meteorological Institute of the University Hamburg, department Technical Meteorology, Numeric Modelling). In a sensitivity study we defined a virtual ocean of 60m depth with a flat bottom and a warmer and fresher surface layer according to North Sea's conditions. Main results show that already a small OWP of 12 turbines with a rotor diameter of 80 m, arrangement of turbines is based on wind park Alpha Ventus, lead to a complex change in the ocean circulation. Due to the wake-effect zones of upwelling and downwelling are formed already shortly after turning-on rotators. The dimension of these cells sizes around 30x30 kilometers with a vertical velocity in the order of 1μm/sec influencing the dynamic of an area being 160 times bigger than the wind park itself. The emerged vertical structure results in a change of sea level of some millimeters. This disturbance of the upper layer show a dipole structure across the main wind direction. Additional the upwelling and downwelling patterns

  4. Floating Offshore Wind in Hawaii: Potential for Jobs and Economic Impacts from Three Future Scenarios

    SciTech Connect

    Jimenez, Tony; Keyser, David; Tegen, Suzanne

    2016-04-18

    Construction of the first offshore wind power plant in the United States began in 2015, off the coast of Rhode Island, using fixed platform structures that are appropriate for shallow seafloors, like those located off the East Coast and mid-Atlantic. However, floating platforms, which have yet to be deployed commercially, will likely need to be anchored to the deeper seafloor if deployed in Hawaiian waters. To analyze the employment and economic potential for floating offshore wind off Hawaii's coasts, the Bureau of Ocean Energy Management commissioned the National Renewable Energy Laboratory (NREL) to analyze two hypothetical deployment scenarios for Hawaii: 400 MW of offshore wind by 2050 and 800 MW of offshore wind by 2050. The results of this analysis can be used to better understand the general scale of economic opportunities that could result from offshore wind development.

  5. Modeling and Simulation of Offshore Wind Power Platform for 5 MW Baseline NREL Turbine

    PubMed Central

    Roni Sahroni, Taufik

    2015-01-01

    This paper presents the modeling and simulation of offshore wind power platform for oil and gas companies. Wind energy has become the fastest growing renewable energy in the world and major gains in terms of energy generation are achievable when turbines are moved offshore. The objective of this project is to propose new design of an offshore wind power platform. Offshore wind turbine (OWT) is composed of three main structures comprising the rotor/blades, the tower nacelle, and the supporting structure. The modeling analysis was focused on the nacelle and supporting structure. The completed final design was analyzed using finite element modeling tool ANSYS to obtain the structure's response towards loading conditions and to ensure it complies with guidelines laid out by classification authority Det Norske Veritas. As a result, a new model of the offshore wind power platform for 5 MW Baseline NREL turbine was proposed. PMID:26550605

  6. Modeling and Simulation of Offshore Wind Power Platform for 5 MW Baseline NREL Turbine.

    PubMed

    Roni Sahroni, Taufik

    2015-01-01

    This paper presents the modeling and simulation of offshore wind power platform for oil and gas companies. Wind energy has become the fastest growing renewable energy in the world and major gains in terms of energy generation are achievable when turbines are moved offshore. The objective of this project is to propose new design of an offshore wind power platform. Offshore wind turbine (OWT) is composed of three main structures comprising the rotor/blades, the tower nacelle, and the supporting structure. The modeling analysis was focused on the nacelle and supporting structure. The completed final design was analyzed using finite element modeling tool ANSYS to obtain the structure's response towards loading conditions and to ensure it complies with guidelines laid out by classification authority Det Norske Veritas. As a result, a new model of the offshore wind power platform for 5 MW Baseline NREL turbine was proposed.

  7. Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-01-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  8. Offshore wind measurements using Doppler aerosol wind lidar (DAWN) at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-06-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  9. Review of Potential Wind Tunnel Balance Technologies

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Williams, Quincy L.; Phillips, Ben D.; Commo, Sean A.; Ponder, Jonathon D.

    2016-01-01

    This manuscript reviews design, manufacture, materials, sensors, and data acquisition technologies that may benefit wind tunnel balances for the aerospace research community. Current state-of-the-art practices are used as the benchmark to consider advancements driven by researcher and facility needs. Additive manufacturing is highlighted as a promising alternative technology to conventional fabrication and has the potential to reduce both the cost and time required to manufacture force balances. Material alternatives to maraging steels are reviewed. Sensor technologies including piezoresistive, piezoelectric, surface acoustic wave, and fiber optic are compared to traditional foil based gages to highlight unique opportunities and shared challenges for implementation in wind tunnel environments. Finally, data acquisition systems that could be integrated into force balances are highlighted as a way to simplify the user experience and improve data quality. In summary, a rank ordering is provided to support strategic investment in exploring the technologies reviewed in this manuscript.

  10. Structural Integrity of a Wind Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Karkehabadi, R.; Rhew, R. D.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has been designing strain-gage balances for utilization in wind tunnels since its inception. The utilization of balances span over a wide variety of aerodynamic tests. A force balance is an inherently critically stressed component due to the requirements of measurement sensitivity. Research and analyses are done in order to investigate the structural integrity of the balances as well as developing an understanding of their performance in order to enhance their capability. Maximum loading occurs when all 6 components of the loads are applied simultaneously with their maximum value allowed (limit load). This circumstance normally does not occur in the wind tunnel. However, if it occurs, is the balance capable of handling the loads with an acceptable factor of safety? LaRC Balance 1621 was modeled and meshed in PATRAN for analysis in NASTRAN. For a complete analysis, it is necessary to consider all the load cases as well as use dense mesh near all the edges. Because of computer limitations, it is not possible to have one model with the dense mesh near all edges. In the present study, a dense mesh is limited to the surface corners where the cage and axial sections meet. Four different load combinations are used for the current analysis. Linear analysis is performed for each load case. In the case where the stress value is above linear elastic region, it is necessary to perform nonlinear analysis. It is also important to investigate the variables limiting the structural integrity of the balances. In order to investigate the possibility of modifying the existing balances to enhance the structural integrity, some modifications are done on this balance. The structural integrity of the balance after modification is investigated.

  11. First comparison of LES of an offshore wind turbine wake with dual-Doppler lidar measurement in the offshore wind farm "alpha ventus"

    NASA Astrophysics Data System (ADS)

    Vollmer, L.; Trabucchi, D.; Witha, B.; van Dooren, M.; Trujillo, J. J.; Schneemann, J.; Kühn, M.

    2014-12-01

    The planning of offshore wind farms is still tainted with high risks due to unknown power losses and a higher level of fatigue loads due to wake effects. Recently, Large Eddy Simulations (LES) are more and more used for simulating offshore wind turbine wakes as they resolve the atmospheric turbulence as well as the wake turbulence.However, for an application of LES wind fields to assess offshore wind farm flow a proper validation with measured data is necessary.Several methods have been investigated at the University of Oldenburg to compare LES wind fields and lidar measurements. In this study we apply one of these methods to validate wake simulations of a single wake of a 5MW wind turbine in the German offshore wind farm "alpha ventus" with processed dual-Doppler lidar measurements in the same wind farm.The simulations are performed with the LES model PALM, which has been enhanced by two different approaches of actuator models to simulate the wake of single wind turbines and the interaction of wakes in wind farms. Effects of tower and nacelle are regarded as well as simple turbine control mechanisms. The simulations are initialized with comparable atmospheric conditions as during the time of lidar operation by using measurements from the adjacent meteorological mast FINO 1.Plan Position Indicator (PPI) measurements have been performed with two long-range wind lidars installed at different opposing platforms at the border of the wind farm. A Cartesian grid was overlapped to the scanned region and a dual-Doppler algorithm was applied in order to estimate the horizontal stationary wind field on the grid nodes. To our knowledge, the presented study is one of the first validations of LES wake simulations with lidar measurements and first which validates offshore LES wake simulations with 2D lidar data.

  12. Offshore wind turbine foundation monitoring, extrapolating fatigue measurements from fleet leaders to the entire wind farm

    NASA Astrophysics Data System (ADS)

    Weijtens, Wout; Noppe, Nymfa; Verbelen, Tim; Iliopoulos, Alexandros; Devriendt, Christof

    2016-09-01

    The present contribution is part of the ongoing development of a fatigue assessment strategy driven purely on in-situ measurements on operational wind turbines. The primary objective is to estimate the remaining life time of existing wind farms and individual turbines by instrumenting part of the farm with a load monitoring setup. This load monitoring setup allows to measure interface loads and local stress histories. This contribution will briefly discuss how these load measurements can be translated into fatigue assessment of the instrumented turbine. However, due to different conditions at the wind farm, such as turbulence, differences in water depth and foundation design this turbine will not be fully representable for all turbines in the farm. In this paper we will use the load measurements on two offshore wind turbines in the Northwind offshore wind farm to discuss fatigue progression in an operational wind farm. By calculating the damage equivalent loads on the two turbines the fatigue progression is quantified for every 10 minute interval and can be analyzed against turbulence and site conditions. In future work these results will be used to predict the fatigue life progression in the entire farm.

  13. 77 FR 5552 - Commercial Leasing for Wind Power on the Outer Continental Shelf Offshore Maryland-Call for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... incentivize offshore wind energy development. While a state may promote such development through activities... evaluate and determine areas of the OCS that may be suitable for offshore wind energy development. This... to consider when moving forward with its offshore wind energy leasing process. Since 2009, the...

  14. Scenario Analysis for Techno-Economic Model Development of U.S. Offshore Wind Support Structures

    SciTech Connect

    Damiani, Rick; Ning, Andrew; Maples, Ben; Smith, Aaron; Dykes, Katherine

    2016-09-22

    Challenging bathymetry and soil conditions of future US offshore wind power plants might promote the use of multimember, fixed-bottom structures (or 'jackets') in place of monopiles. Support structures affect costs associated with the balance of system and operation and maintenance. Understanding the link between these costs and the main environmental design drivers is crucial in the quest for a lower levelized cost of energy, and it is the main rationale for this work. Actual cost and engineering data are still scarce; hence, we evaluated a simplified engineering approach to tie key site and turbine parameters (e.g. water depth, wave height, tower-head mass, hub height and generator rating) to the overall support weight. A jacket-and-tower sizing tool, part of the National Renewable Energy Laboratory's system engineering software suite, was utilized to achieve mass-optimized support structures for 81 different configurations. This tool set provides preliminary sizing of all jacket components. Results showed reasonable agreement with the available industry data, and that the jacket mass is mainly driven by water depth, but hub height and tower-head mass become more influential at greater turbine ratings. A larger sensitivity of the structural mass to wave height and target eigenfrequency was observed for the deepest water conditions (>40 m). Thus, techno-economic analyses using this model should be based on accurate estimates of actual metocean conditions and turbine parameters especially for deep waters. The relationships derived from this study will inform National Renewable Energy Laboratory's offshore balance of system cost model, and they will be used to evaluate the impact of changes in technology on offshore wind lower levelized cost of energy.

  15. Scenario analysis for techno-economic model development of U.S. offshore wind support structures

    DOE PAGES

    Damiani, Rick; Ning, Andrew; Maples, Ben; ...

    2016-09-22

    Challenging bathymetry and soil conditions of future US offshore wind power plants might promote the use of multimember, fixed-bottom structures (or 'jackets') in place of monopiles. Support structures affect costs associated with the balance of system and operation and maintenance. Understanding the link between these costs and the main environmental design drivers is crucial in the quest for a lower levelized cost of energy, and it is the main rationale for this work. Actual cost and engineering data are still scarce; hence, we evaluated a simplified engineering approach to tie key site and turbine parameters (e.g. water depth, wave height,more » tower-head mass, hub height and generator rating) to the overall support weight. A jacket-and-tower sizing tool, part of the National Renewable Energy Laboratory's system engineering software suite, was utilized to achieve mass-optimized support structures for 81 different configurations. This tool set provides preliminary sizing of all jacket components. Results showed reasonable agreement with the available industry data, and that the jacket mass is mainly driven by water depth, but hub height and tower-head mass become more influential at greater turbine ratings. A larger sensitivity of the structural mass to wave height and target eigenfrequency was observed for the deepest water conditions (>40 m). Thus, techno-economic analyses using this model should be based on accurate estimates of actual metocean conditions and turbine parameters especially for deep waters. Finally, the relationships derived from this study will inform National Renewable Energy Laboratory's offshore balance of system cost model, and they will be used to evaluate the impact of changes in technology on offshore wind lower levelized cost of energy.« less

  16. Scenario analysis for techno-economic model development of U.S. offshore wind support structures

    SciTech Connect

    Damiani, Rick; Ning, Andrew; Maples, Ben; Smith, Aaron; Dykes, Katherine

    2016-09-22

    Challenging bathymetry and soil conditions of future US offshore wind power plants might promote the use of multimember, fixed-bottom structures (or 'jackets') in place of monopiles. Support structures affect costs associated with the balance of system and operation and maintenance. Understanding the link between these costs and the main environmental design drivers is crucial in the quest for a lower levelized cost of energy, and it is the main rationale for this work. Actual cost and engineering data are still scarce; hence, we evaluated a simplified engineering approach to tie key site and turbine parameters (e.g. water depth, wave height, tower-head mass, hub height and generator rating) to the overall support weight. A jacket-and-tower sizing tool, part of the National Renewable Energy Laboratory's system engineering software suite, was utilized to achieve mass-optimized support structures for 81 different configurations. This tool set provides preliminary sizing of all jacket components. Results showed reasonable agreement with the available industry data, and that the jacket mass is mainly driven by water depth, but hub height and tower-head mass become more influential at greater turbine ratings. A larger sensitivity of the structural mass to wave height and target eigenfrequency was observed for the deepest water conditions (>40 m). Thus, techno-economic analyses using this model should be based on accurate estimates of actual metocean conditions and turbine parameters especially for deep waters. Finally, the relationships derived from this study will inform National Renewable Energy Laboratory's offshore balance of system cost model, and they will be used to evaluate the impact of changes in technology on offshore wind lower levelized cost of energy.

  17. Offshore Wind Energy Permitting: A Survey of U.S. Project Developers

    SciTech Connect

    Van Cleve, Frances B.; Copping, Andrea E.

    2010-11-30

    The U.S. Department of Energy (DOE) has adopted a goal to generate 20% of the nation’s electricity from wind power by 2030. Achieving this “20% Wind Scenario” in 2030 requires acceleration of the current rate of wind project development. Offshore wind resources contribute substantially to the nation’s wind resource, yet to date no offshore wind turbines have been installed in the U.S. Progress developing offshore wind projects has been slowed by technological challenges, uncertainties about impacts to the marine environment, siting and permitting challenges, and viewshed concerns. To address challenges associated with siting and permitting, Pacific Northwest National Laboratory (PNNL) surveyed offshore wind project developers about siting and project development processes, their experience with the environmental permitting process, and the role of coastal and marine spatial planning (CMSP) in development of the offshore wind industry. Based on the responses to survey questions, we identify several priority recommendations to support offshore wind development. Recommendations also include considerations for developing supporting industries in the U.S. and how to use Coastal and Marine Spatial Planning (CMSP) to appropriately consider ocean energy among existing ocean uses. In this report, we summarize findings, discuss the implications, and suggest actions to improve the permitting and siting process.

  18. Optimization of rotating equipment in offshore wind farm

    NASA Astrophysics Data System (ADS)

    Okunade, O. A.

    2014-07-01

    The paper considered the improvement of rotating equipment in a wind farm, and how these could maximise the farm power capacity. It aimed to increase capacity of electricity generation through a renewable source in UK and contribute to 15 per cent energy- consumption target, set by EU on electricity through renewable sources by 2020. With reference to a case study in UK offshore wind farm, the paper analysed the critique of the farm, as a design basis for its optimization. It considered power production as design situation, load cases and constraints, in order to reflect characteristics and behaviour of a standard design. The scope, which considered parts that were directly involved in power generation, covered rotor blades and the impacts of gearbox and generator to power generation. The scope did not however cover support structures like tower design. The approaches of detail data analysis of the blade at typical wind load conditions, were supported by data from acceptable design standards, relevant authorities and professional bodies. The findings in proposed model design showed at least over 3 per cent improvement on the existing electricity generation. It also indicated overall effects on climate change.

  19. Atmospheric stability assessment for the characterization of offshore wind conditions

    NASA Astrophysics Data System (ADS)

    Sanz Rodrigo, J.; Cantero, E.; García, B.; Borbón, F.; Irigoyen, U.; Lozano, S.; Fernande, P. M.; Chávez, R. A.

    2015-06-01

    Based on the Fino-1 offshore met mast database, different instrument set-ups and methodologies for stability characterization have been tested using non-dimensional numbers like the gradient and bulk Richardson number, and their equivalences with the Obukhov parameter ζ = z/L, which can be measured locally with the use of a sonic anemometer. These equivalences depend to a large extent on the suitability of empirical stability functions obtained in horizontally-homogeneous conditions. The bulk Richardson number method, based on Grachev and Fairall (1997) empirical function, is the least demanding measurement method for stability characterization offering a more practical approach to wind farm designers than using the sonic method. Alternatively, the AMOK method, used by FUGA wake model and also based on the bulk Richardson number, assumes surface-layer theory and avoids using stability functions, which results in a more robust formulation. A 9-class stability classification based on Sorbjan and Grachev (2010) is used to generalize the categorization of wind conditions. Based on flux-profile analysis it was concluded that unfortunately the local ζ is not sufficient to describe the scaling behaviour of the stable boundary layer. Indeed, larger wind shear than predicted by classical onshore stability functions is found, probably as a result of lower boundary layer depths.

  20. A numerical study of wind turbine-boundary layer interactions in a large offshore wind farm

    NASA Astrophysics Data System (ADS)

    Gupta, Tanvi; Baidya Roy, Somnath

    2017-04-01

    Large offshore wind farm installations are rapidly increasing all over the world driven by the availability of strong, consistent winds and the unavailability of appropriate land sites. This study quantitatively explores the interaction between wind turbines and the marine atmospheric boundary layer and its impacts on power generation in a hypothetical large offshore wind farm off the western coast of India in the Arabian Sea. The simulations are conducted using the mesoscale model WRF equipped with a wind turbine parameterization, which approximates a wind turbine as a sink of resolved kinetic energy and a source of turbulent kinetic energy. In this study, the WRF parameterization is modified to include the effects of density variations. The simulations are conducted over a 300 km x 300 km domain discretised with an 1 km grid with 10000 turbines placed in the centre. Wind turbines extract atmospheric kinetic energy and convert it into electricity. The extraction of kinetic energy from the atmospheric flow leads to two major phenomena: (1) momentum deficit in the wakes that reduce energy availability for downwind turbines and (2) enhanced vertical convergence to partly replenish the momentum deficit. Results show a 200% increase in vertical momentum convergence, with 95% of that coming from sub-grid turbulent eddies. However, the enhanced momentum convergence offsets only a small part of the momentum deficit. Consequently, there is a net reduction of almost 60% in power production for turbines in the interior of the farm compared to the turbines at the leading edge. These results suggest that a numerical model like WRF that accounts for both the momentum deficit and enhanced momentum convergence effects may provide better estimates of wind power generation than traditional wind speed density or wake model approaches.

  1. Analyzing the Deployment of Large Amounts of Offshore Wind to Design an Offshore Transmission Grid in the United States: Preprint

    SciTech Connect

    Ibanez, E.; Mai, T.; Coles, L.

    2012-09-01

    This paper revisits the results from the U.S. Department of Energy's '20% Wind Energy By 2030' study, which envisioned that 54 GW of offshore wind would be installed by said year. The analysis is conducted using the Regional Energy Deployment System (ReEDS), a capacity expansion model developed by the National Renewable Energy Laboratory. The model is used to optimize the deployment of the 54 GW of wind capacity along the coasts and lakes of the United States. The graphical representation of the results through maps will be used to provide a qualitative description for planning and designing an offshore grid. ReEDS takes into account many factors in the process of siting offshore wind capacity, such as the quality of the resource, capital and O&M costs, interconnection costs, or variability metrics (wind capacity value, forecast error, expected curtailment). The effect of these metrics in the deployment of offshore wind will be analyzed through examples in the results.

  2. Wind Speed Estimation and Wake model Re-calibration for Downregulated Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Göçmen Bozkurt, Tuhfe; Giebel, Gregor; Kjølstad Poulsen, Niels; Réthoré, Pierre-Elouan; Mirzaei, Mahmood

    2014-05-01

    In recent years, the wind farm sizes have increased tremendously and with increasing installed capacity, the wind farms are requested to downregulate from their maximum possible power more frequently, especially in the offshore environment. Determination of the possible (or available) power is crucial not only because the reserve power has considerable market value but also for wind farm developers to be properly compensated for the loss during downregulation. While the available power calculation is straightforward for a single turbine, it gets rather complicated for the whole wind farm due to the change in the wake characteristics. In fact, the wake losses generated by the upstream turbine(s) decrease during downregulation and the downstream turbines therefore see more wind compared to the normal operation case. Currently, the Transmission System Operators (TSOs) have no real way to determine exactly the available power of a whole wind farm which is downregulated. Therefore, the PossPOW project aims to develop a verified and internationally accepted way to determine the possible power of a down-regulated offshore wind farm. The first phase of the project is to estimate the rotor effective wind speed. Since the nacelle anemometers are not readily available and are known to have reliability issues, the proposed method is to use power, pitch angle and rotational speed as inputs and combine it with a generic Cp model to estimate the wind speed. The performance of the model has been evaluated for both normal operation and downregulation periods using two different case studies: Horns Rev-I wind farm and NREL 5MW single turbine. During downregulation, the wake losses are not as severe and the velocity deficits at the downstream turbines are smaller as if also the wake is "downregulated". On the other hand, in order to calculate the available power, the wakes that would have been produced normally (if the turbines were not curtailed) are of importance, not the

  3. Estimating the Economic Potential of Offshore Wind in the United States

    SciTech Connect

    Beiter, P.; Musial, W.; Smith, A.; Lantz, E.; Kilcher, L.; Damiani, R.; Maness, M.; Sirnivas, S.; Stehly, T.; Gevorgian, V.; Mooney, M.; Scott, G.

    2016-05-23

    The potential for cost reduction and market deployment for offshore wind varies considerably within the United States. This analysis estimates the future economic viability of offshore wind at more than 7,000 sites under a variety of electric sector and cost reduction scenarios. Identifying the economic potential of offshore wind at a high geospatial resolution can capture the significant variation in local offshore resource quality, costs, and revenue potential. In estimating economic potential, this article applies a method initially developed in Brown et al. (2015) to offshore wind and estimates the sensitivity of results under a variety of most likely electric sector scenarios. For the purposes of this analysis, a theoretical framework is developed introducing a novel offshore resource classification system that is analogous to established resource classifications from the oil and gas sector. Analyzing economic potential within this framework can help establish a refined understanding across industries of the technology and site-specific risks and opportunities associated with future offshore wind development. The results of this analysis are intended to inform the development of the U.S. Department of Energy's offshore wind strategy.

  4. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area

    SciTech Connect

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-06-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

  5. Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios

    SciTech Connect

    Tegen, S.; Keyser, D.; Flores-Espino, F.; Miles, J.; Zammit, D.; Loomis, D.

    2015-02-01

    This report uses the offshore wind Jobs and Economic Development Impacts (JEDI) model and provides four case studies of potential offshore deployment scenarios in different regions of the United States: the Southeast, the Great Lakes, the Gulf Coast, and the Mid-Atlantic. Researchers worked with developers and industry representatives in each region to create potential offshore wind deployment and supply chain growth scenarios, specific to their locations. These scenarios were used as inputs into the offshore JEDI model to estimate jobs and other gross economic impacts in each region.

  6. Effects of an Offshore Wind Farm (OWF) on the Common Shore Crab Carcinus maenas: Tagging Pilot Experiments in the Lillgrund Offshore Wind Farm (Sweden)

    PubMed Central

    Langhamer, Olivia; Holand, Håkon; Rosenqvist, Gunilla

    2016-01-01

    Worldwide growth of offshore renewable energy production will provide marine organisms with new hard substrate for colonization in terms of artificial reefs. The artificial reef effect is important when planning offshore installations since it can create habitat enhancement. Wind power is the most advanced technology within offshore renewable energy sources and there is an urgent need to study its impacts on the marine environment. To test the hypothesis that offshore wind power increases the abundance of reef species relative to a reference area, we conduct an experiment on the model species common shore crab (Carcinus maenas).Overall, 3962 crabs were captured, observed, marked and released in 2011 and 1995 crabs in 2012. Additionally, carapace size, sex distribution, color morphs and body condition was recorded from captured crabs. We observed very low recapture rates at all sites during both years which made evaluating differences in population sizes very difficult. However, we were able to estimate population densities from the capture record for all three sites. There was no obvious artificial reef effect in the Lillgrund wind farm, but a spill-over effect to nearby habitats cannot be excluded. We could not find any effect of the wind farm on either, morphs, sex distribution or condition of the common shore crab. Our study found no evidence that Lillgrund wind farm has a negative effect on populations of the common shore crab. This study provides the first quantitative and experimental data on the common shore crab in relation to offshore wind farms. PMID:27780212

  7. Effects of an Offshore Wind Farm (OWF) on the Common Shore Crab Carcinus maenas: Tagging Pilot Experiments in the Lillgrund Offshore Wind Farm (Sweden).

    PubMed

    Langhamer, Olivia; Holand, Håkon; Rosenqvist, Gunilla

    2016-01-01

    Worldwide growth of offshore renewable energy production will provide marine organisms with new hard substrate for colonization in terms of artificial reefs. The artificial reef effect is important when planning offshore installations since it can create habitat enhancement. Wind power is the most advanced technology within offshore renewable energy sources and there is an urgent need to study its impacts on the marine environment. To test the hypothesis that offshore wind power increases the abundance of reef species relative to a reference area, we conduct an experiment on the model species common shore crab (Carcinus maenas).Overall, 3962 crabs were captured, observed, marked and released in 2011 and 1995 crabs in 2012. Additionally, carapace size, sex distribution, color morphs and body condition was recorded from captured crabs. We observed very low recapture rates at all sites during both years which made evaluating differences in population sizes very difficult. However, we were able to estimate population densities from the capture record for all three sites. There was no obvious artificial reef effect in the Lillgrund wind farm, but a spill-over effect to nearby habitats cannot be excluded. We could not find any effect of the wind farm on either, morphs, sex distribution or condition of the common shore crab. Our study found no evidence that Lillgrund wind farm has a negative effect on populations of the common shore crab. This study provides the first quantitative and experimental data on the common shore crab in relation to offshore wind farms.

  8. Offshore wind farm siting procedures applied offshore of Block Island, Rhode Island

    NASA Astrophysics Data System (ADS)

    O'Reilly, Christopher M.

    Since 2008, the Rhode Island Coastal Resources Management Council (CRMC) has been leading a Rhode Island Ocean Area Management Plan (RIOSAMP) in partnership with the University of Rhode Island, resulting in an extensive multidisciplinary analysis of the Rhode Island offshore environment and its suitability for siting an offshore wind farm. As part of the RIOSAMP project, a standard siting optimization approach was first developed based on a siting index defined as the ratio of costs associated with the wind farm deployment to the available wind resource. This index, combined within a marine spatial planning approach to address ecological and societal constraints, provided an initial macro-siting tool (Spaulding et al., 2010). The multiple GIS layers required in this approach and the absence of theoretical support to optimize the resulting zoning, led to an extension of the initial optimization approach into a more comprehensive macro-siting optimization tool, integrating societal and ecological constraints into the siting tool, the Wind Farm Siting Index (WIFSI) (Grilli et al, 2012). The projects led to the definition of several favorable development areas including a Renewable Energy Zone (REZ) off of Block Island, in State Waters. Deep Water Wind Inc. (DWW) plans to install and commission five 6 MW direct drive Siemens lattice jacket turbines in the REZ area, by 2014. In this thesis two major steps are accomplished to refine and expand the RIOSAMP macro-siting tool. First the macro-siting tool is expanded to include a model simulating the exclusionary zones defined by the Federal Aviation Administration (FAA) regulations. Second a micro-siting model is developed, optimizing the relative position of each turbine within a wind farm area. The micro-siting objective is to minimize, (1) the loss in power due to the loss of wind resource in the wake of the turbines (wake "effect"), and (2) the cable costs that inter-connect the turbines and connecting the farm to the

  9. Potential for Jobs and Economic Development from Offshore Wind in California

    SciTech Connect

    Tegen, Suzanne

    2016-11-02

    In California's future scenarios, energy demand increases with population growth and productivity. Decision-makers will have to make choices about which energy resources to utilize, and offshore wind offers one option for carbon-free electricity with the potential for increased local jobs. This presentation discusses results from an NREL report, Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from Two Future Scenarios. Presenter Suzanne Tegen describes the Jobs and Economic Development Impact (JEDI) model and its results for two offshore wind scenarios in California. She discusses different assumptions and how they affect the scenarios.

  10. Potential Economic Impacts from Offshore Wind in the Mid-Atlantic Region (Fact Sheet)

    SciTech Connect

    Keyser, D.; Tegen, S.; Flores, F.; Zammit, D.; Kraemer, M.; Miles, J.

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts for the Mid-Atlantic region.

  11. Potential Economic Impacts from Offshore Wind in the Gulf of Mexico Region (Fact Sheet)

    SciTech Connect

    Flores, F.; Keyser, D.; Tegen, S.

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts for the Gulf of Mexico region.

  12. Potential Economic Impacts from Offshore Wind in the Great Lakes Region (Fact Sheet)

    SciTech Connect

    Tegen, S.; Keyser, D.

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by DOE's National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts identified by the study for the Great Lakes region.

  13. Comparison of API & IEC Standards for Offshore Wind Turbine Applications in the U.S. Atlantic Ocean: Phase II; March 9, 2009 - September 9, 2009

    SciTech Connect

    Jha, A.; Dolan, D.; Gur, T.; Soyoz, S.; Alpdogan, C.

    2013-01-01

    This report compares two design guidelines for offshore wind turbines: Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platform Structures and the International Electrotechnical Commission 61400-3 Design Requirements for Offshore Wind Turbines.

  14. Do Offshore Wind Farms Influence Marine Primary Production?

    NASA Astrophysics Data System (ADS)

    Tweddle, J. F.; Murray, R. B. O.; Gubbins, M.; Scott, B. E.

    2016-02-01

    Primary producers (phytoplankton) form the basis of marine food-webs, supporting production of higher trophic levels, and act as a sink of CO2. We considered the impact of proposed large scale offshore wind farms in moderately deep waters (> 45 m) off the east coast of Scotland on rates of primary production. A 2 stage modelling process was used, employing state-of-the-art 3-D hydrographic models with the ability to capture flow at the spatial resolution of 10 m combined with 1-D vertical modelling using 7 years of local forcing data. Through influencing the strength of stratification via changes in current flow, large (100 m) modelled wind turbine foundations had a significant effect on primary producers, consistently reducing total annual primary production, although within the range of natural interannual variability. The percentage reduction was largest over submarine banks less than 54 m in depth, and was outside the range of natural interannual variability. Smaller (10 m) turbine foundations had no discernible effect on total annual primary production. The results indicate that smaller foundations should be favored as a mitigation measure, in terms of effects on primary production, and this type of analysis should be considered within sectoral planning and licensing processes for future renewable energy developments.

  15. Quantifying wind resource assessment and grid integration challenges for Delaware offshore wind power utilizing mesoscale modeling techniques

    NASA Astrophysics Data System (ADS)

    Brodie, Joseph F.

    Offshore wind in the United States continues to be a focused area of research as our society grapples with the Earth's changing climate and our ongoing and increasing demand for electricity. While the first offshore wind project in the U.S. is expected to be operational soon, much still remains to be done to help improve viability of offshore wind in additional locations. This dissertation discusses three studies conducted to improve the understanding of and expectations from developing wind energy in the Delaware Wind Energy Area off the Delaware coast. The first study examines the capabilities of the Weather Research and Forecasting (WRF) model to account for variations in wind farm array geometries in an idealized set-up of the model, and determines features of those array geometries that can positively influence the energy production of an offshore farm. The second study investigates the impacts that the misprediction of wind ramp events would have on the interaction of an offshore wind farm with the electricity grid, quantifying some of these impacts and discussing factors which contribute to grid instability. The third study combines the knowledge gained in the first two studies to evaluate potential wind farm array geometries in a regional study of the Delaware Wind Energy Area using WRF along with a selection of case study dates selected to examine the impacts of the synoptic variability of the region throughout the year. These studies demonstrate that careful consideration of the meteorology and climatology of a region when determining the layout of an offshore wind array can improve the power production of the farm, thereby improving wind farm viability. It is shown that using a mesoscale model that incorporates a wind farm parameterization can improve resource assessment by allowing the assessment to evaluate the wind farm's interactions with the weather and climate in the Delaware Wind Energy Area. Furthermore, it is shown that while certain synoptic

  16. The offshore wind resources assessment application of floating LiDAR in the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Hsuan, Chung-Yao; Wu, Yu-Ting; Lin, Ta-Hui

    2015-04-01

    Wind and wave measurements of a Floating LiDAR (Light Detection And Ranging) Device (FLD) are performed on the site of Fuhai Offshore Wind Farm in the Taiwan Strait. The location of the deployment is situated 10 kilometers off-coast of Changhua County, and the anchored water depth is 25 meters. It is the very first time in Asia Pacific Region to use such device for tasks of offshore wind and wave measurement. Six range gate heights were set at 55m, 71m, 90m, 110m, 150m and 200m from the FLD sensor lens. Wind speeds and wind directions were measured by a remote sensing technology. Wave heights and periods were also measured by the buoy wave sensor. A validation campaign of NCKU WindSentinel has performed by a portable LiDAR (WINDCUBE v2) at Hsing-Da Harbor in the south of Taiwan from October 16th to 26th, 2013. The results showed good agreements with 10 minute averaged data of the wind speed and wind direction measured by the two LiDARs. NCKU WindSentinel data are planning comparisons with Fuhai's offshore fixed mast data when the meteorological mast is completed. The goal is to convince the wind energy community that FLD are a reliable and cost effective way of obtaining data for resource assessment. Until this moment, The FLD are observing and measuring the offshore wind farm's meteorological and oceanographic data. In September of 2014, a mild typhoon (Fung-Wong) passed through from east of Taiwan. NCKU WindSentinel continuously measured during typhoon period in the sea. The present preliminary measurements campaign presented the convenient and more cost effective option of the FLD, which may be a key tool for assessment of offshore wind resources in the near-future offshore wind farm developments.

  17. The dynamic and structure wind waves during strong offshore wind from remote sensing data

    NASA Astrophysics Data System (ADS)

    Titov, Victor; Repina, Irina; Artamonov, Arseniy; Luchinin, Alexsander

    2014-05-01

    For the analysis, field measurements of turbulence characteristics in the layer 1 - 21 m above the sea surface and wind waves at the fetch of about 1 km were used under the wind from the shore having mountain terrain. In the case of the offshore breeze air flow is similar to a jet stream of stably stratified cold air over a warm sea with a maximum speed at a height of about 6 m. The resulting estimates of the height of internal boundary layer are of more than an order of magnitude smaller than traditional ones based only on the change in surface roughness between land and sea. The investigations of near surface wind fields features in internal reservoirs and various regions of seas during last years were conducted by optical complex. The structure of near surface wind fields, eddies, wind fronts, katabatic wind flows for ranges from hundreds meters to some tens kilometers were recorded and analyzed. Derived data of optical monitoring of water surface may serve for future investigations of near surface wind features.

  18. Effect of Second-Order Hydrodynamics on Floating Offshore Wind Turbines: Preprint

    SciTech Connect

    Roald, L.; Jonkman, J.; Robertson, A,; Chokani, N.

    2013-07-01

    Offshore winds are generally stronger and more consistent than winds on land, making the offshore environment attractive for wind energy development. A large part of the offshore wind resource is however located in deep water, where floating turbines are the only economical way of harvesting the energy. The design of offshore floating wind turbines relies on the use of modeling tools that can simulate the entire coupled system behavior. At present, most of these tools include only first-order hydrodynamic theory. However, observations of supposed second-order hydrodynamic responses in wave-tank tests performed by the DeepCwind consortium suggest that second-order effects might be critical. In this paper, the methodology used by the oil and gas industry has been modified to apply to the analysis of floating wind turbines, and is used to assess the effect of second-order hydrodynamics on floating offshore wind turbines. The method relies on combined use of the frequency-domain tool WAMIT and the time-domain tool FAST. The proposed assessment method has been applied to two different floating wind concepts, a spar and a tension-leg-platform (TLP), both supporting the NREL 5-MW baseline wind turbine. Results showing the hydrodynamic forces and motion response for these systems are presented and analysed, and compared to aerodynamic effects.

  19. 76 FR 14681 - Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore Massachusetts...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... address: Bureau of Ocean Energy Management, Regulation and Enforcement, Office of Offshore Alternative... Energy Management, Regulation and Enforcement, Office of Offshore Alternative Energy Programs, 381 Elden... Bureau of Ocean Energy Management, Regulation and Enforcement Commercial Leasing for Wind Power on the...

  20. Monitoring and Mitigation Alternatives for Protection of North Atlantic Right Whales during Offshore Wind Farm Installation

    SciTech Connect

    Carlson, Thomas J.; Halvorsen, Michele B.; Matzner, Shari; Copping, Andrea E.; Stavole, Jessica

    2012-09-01

    Progress report on defining and determining monitoring and mitigation measures for protecting North Atlantic Right Whales from the effects of pile driving and other activities associated with installation of offshore wind farms.

  1. Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation: Preprint

    SciTech Connect

    Jonkman, J. M.; Buhl, M. L., Jr.

    2007-06-01

    This paper presents the use of fully coupled aero-hydro-servo-elastic simulation tools to perform a loads analysis of a 5-MW offshore wind turbine supported by a barge with moorings, one of many promising floating platform concepts.

  2. Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase II Results Regarding Monopile Foundation Modeling

    SciTech Connect

    Jonkman, J.; Butterfield, S.; Passon, P.; Larsen, T.; Camp, T.; Nichols, J.; Azcona, J.; Martinez, A.

    2008-01-01

    This paper presents an overview and describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Annex XXIII.

  3. Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines

    SciTech Connect

    Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.

    2011-10-01

    This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.

  4. An Experimental Investigation on the Interferences among Multiple Turbines in Onshore and Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Ozbay, Ahmet; Hu, Hui

    2013-11-01

    We report an experimental study to investigate the wake interferences among multiple wind turbines on onshore and offshore wind farms. The experimental studies are conducted in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel with an array of scaled three-blade Horizontal Axial Wind Turbine (HAWT) models placed in atmospheric boundary layer winds with different mean and turbulence characteristics to simulate the situations in onshore and offshore wind farms. In addition to measuring dynamic wind loads (both forces and moments) and the power outputs of the scaled turbine models, a Particle Image Velocity (PIV) system is used to conduct detailed flow field measurements to quantify the turbulent wake vortex flows and the wake interferences among the wind turbines sited over onshore and offshore wind farms with non-homogenous surface winds. The detailed flow field measurements are correlated with the dynamic wind loads and power output measurements to elucidate underlying physics in order to gain further insight into the characteristics of the dynamic wind loads and wake interferences among multiple wind turbines for higher total power yield and better durability of the wind turbines. The research work is funded by NSF and IAWIND.

  5. Jobs and Economic Development Impact (JEDI) Model: Offshore Wind User Reference Guide

    SciTech Connect

    Lantz, E.; Goldberg, M.; Keyser, D.

    2013-06-01

    The Offshore Wind Jobs and Economic Development Impact (JEDI) model, developed by NREL and MRG & Associates, is a spreadsheet based input-output tool. JEDI is meant to be a user friendly and transparent tool to estimate potential economic impacts supported by the development and operation of offshore wind projects. This guide describes how to use the model as well as technical information such as methodology, limitations, and data sources.

  6. An advocacy coalition framework analysis of the development of offshore wind energy in South Carolina

    NASA Astrophysics Data System (ADS)

    Bishop, Marines

    Offshore winds blow considerably harder and more uniformly than on land, and can thus produce higher amounts of electricity. Design, installation, and distribution of an offshore wind farm is more difficult and expensive, but is nevertheless a compelling energy source. With its relatively shallow offshore waters South Carolina has the potential to offer one of the first offshore wind farms in the United States, arguably ideal for wind-farm construction and presenting outstanding potential for the state's growth and innovation. This study analyzes the policy process involved in the establishment of an offshore wind industry in South Carolina through the use of Advocacy Coalition Framework (ACF) concepts. The ACF studies policy process by analyzing policy subsystems, understanding that stakeholders motivated by belief systems influence policy subsystem affairs, and recognizing the assembly of these stakeholders into coalitions as the best way to simplify the analysis. The study interviewed and analyzed responses from stakeholders involved to different but significant degrees with South Carolina offshore wind industry development, allowing for their categorization into coalitions. Responses and discussion analysis through the implementation of ACF concepts revealed, among other observations, direct relationships of opinions to stakeholder's belief systems. Most stakeholders agreed that a potential for positive outputs is real and substantial, but differed in opinion when discussing challenges for offshore wind development in South Carolina. The study importantly considers policy subsystem implications at national and regional levels, underlining the importance of learning from other offshore wind markets and policy arenas worldwide. In this sense, this study's discussions and conclusions are a step towards the right direction.

  7. High-resolution computational algorithms for simulating offshore wind turbines and farms: Model development and validation

    SciTech Connect

    Calderer, Antoni; Yang, Xiaolei; Angelidis, Dionysios; Feist, Chris; Guala, Michele; Ruehl, Kelley; Guo, Xin; Boomsma, Aaron; Shen, Lian; Sotiropoulos, Fotis

    2015-10-30

    The present project involves the development of modeling and analysis design tools for assessing offshore wind turbine technologies. The computational tools developed herein are able to resolve the effects of the coupled interaction of atmospheric turbulence and ocean waves on aerodynamic performance and structural stability and reliability of offshore wind turbines and farms. Laboratory scale experiments have been carried out to derive data sets for validating the computational models.

  8. Floating Offshore Wind in Oregon: Potential for Jobs and Economic Impacts from Two Future Scenarios

    SciTech Connect

    Jimenez, Tony; Keyser, David; Tegen, Suzanne; Speer, Bethany

    2016-05-01

    Construction of the first offshore wind power plant in the United States began in 2015, off the coast of Rhode Island, using fixed platform structures that are appropriate for shallow seafloors, like those located off of the East Coast and mid-Atlantic. However, floating platforms, which have yet to be deployed commercially, will likely need to anchor to the deeper seafloor if deployed off of the West Coast. To analyze the employment and economic potential for floating offshore wind along the West Coast, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to analyze two hypothetical, large-scale deployment scenarios for Oregon: 5,500 megawatts (MW) of offshore wind deployment in Oregon by 2050 (Scenario A), and 2,900 MW of offshore wind by 2050 (Scenario B). These levels of deployment could power approximately 1,600,000 homes (Scenario A) or 870,000 homes (Scenario B). Offshore wind would contribute to economic development in Oregon in the near future, and more substantially in the long term, especially if equipment and labor are sourced from within the state. According to the analysis, over the 2020-2050 period, Oregon floating offshore wind facilities could support 65,000-97,000 job-years and add $6.8 billion-$9.9 billion to the state GDP (Scenario A).

  9. Effects of Second-Order Hydrodynamic Forces on Floating Offshore Wind Turbines

    SciTech Connect

    Duarte, T.; Sarmento, A. J. N. A.; Jonkman, J.

    2014-04-01

    Relative to first-order, second-order wave-excitation loads are known to cause significant motions and additional loads in offshore oil and gas platforms. The design of floating offshore wind turbines was partially inherited from the offshore oil and gas industry. Floating offshore wind concepts have been studied with powerful aero-hydro-servo-elastic tools; however, most of the existing work on floating offshore wind turbines has neglected the contribution of second-order wave-excitation loads. As a result, this paper presents a computationally efficient methodology to consider these loads within FAST, a wind turbine computer-aided engineering tool developed by the National Renewable Energy Laboratory. The method implemented was verified against the commercial OrcaFlex tool, with good agreement, and low computational time. A reference floating offshore wind turbine was studied under several wind and wave load conditions, including the effects of second-order slow-drift and sum-frequency loads. Preliminary results revealed that these loads excite the turbine's natural frequencies, namely the surge and pitch natural frequencies.

  10. Potential Impacts of Offshore Wind Farms on North Sea Stratification.

    PubMed

    Carpenter, Jeffrey R; Merckelbach, Lucas; Callies, Ulrich; Clark, Suzanna; Gaslikova, Lidia; Baschek, Burkard

    2016-01-01

    Advances in offshore wind farm (OWF) technology have recently led to their construction in coastal waters that are deep enough to be seasonally stratified. As tidal currents move past the OWF foundation structures they generate a turbulent wake that will contribute to a mixing of the stratified water column. In this study we show that the mixing generated in this way may have a significant impact on the large-scale stratification of the German Bight region of the North Sea. This region is chosen as the focus of this study since the planning of OWFs is particularly widespread. Using a combination of idealised modelling and in situ measurements, we provide order-of-magnitude estimates of two important time scales that are key to understanding the impacts of OWFs: (i) a mixing time scale, describing how long a complete mixing of the stratification takes, and (ii) an advective time scale, quantifying for how long a water parcel is expected to undergo enhanced wind farm mixing. The results are especially sensitive to both the drag coefficient and type of foundation structure, as well as the evolution of the pycnocline under enhanced mixing conditions-both of which are not well known. With these limitations in mind, the results show that OWFs could impact the large-scale stratification, but only when they occupy extensive shelf regions. They are expected to have very little impact on large-scale stratification at the current capacity in the North Sea, but the impact could be significant in future large-scale development scenarios.

  11. Potential Impacts of Offshore Wind Farms on North Sea Stratification

    PubMed Central

    Carpenter, Jeffrey R.; Merckelbach, Lucas; Callies, Ulrich; Clark, Suzanna; Gaslikova, Lidia; Baschek, Burkard

    2016-01-01

    Advances in offshore wind farm (OWF) technology have recently led to their construction in coastal waters that are deep enough to be seasonally stratified. As tidal currents move past the OWF foundation structures they generate a turbulent wake that will contribute to a mixing of the stratified water column. In this study we show that the mixing generated in this way may have a significant impact on the large-scale stratification of the German Bight region of the North Sea. This region is chosen as the focus of this study since the planning of OWFs is particularly widespread. Using a combination of idealised modelling and in situ measurements, we provide order-of-magnitude estimates of two important time scales that are key to understanding the impacts of OWFs: (i) a mixing time scale, describing how long a complete mixing of the stratification takes, and (ii) an advective time scale, quantifying for how long a water parcel is expected to undergo enhanced wind farm mixing. The results are especially sensitive to both the drag coefficient and type of foundation structure, as well as the evolution of the pycnocline under enhanced mixing conditions—both of which are not well known. With these limitations in mind, the results show that OWFs could impact the large-scale stratification, but only when they occupy extensive shelf regions. They are expected to have very little impact on large-scale stratification at the current capacity in the North Sea, but the impact could be significant in future large-scale development scenarios. PMID:27513754

  12. Active motion and load control of floating offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Jalili, Kaveh

    The research in this thesis is focused on stabilization and load reduction of floating offshore wind turbine (FOWT) structures for both the fore-aft (pitch) and side-to-side (roll) directions. Based on the Tuned Mass Damper (TMD) and Active Vane concepts recently proposed, two composite actuation schemes are investigated. The first scheme is to apply the horizontal vane and vertical vane to platform pitch and roll, respectively, resulting in the so-called Double Vane Actuation (DVA) scheme. The second scheme is the combination of the TMD based pitch control and active vertical vane based roll control, resulting in the so-called Hybrid Actuation (HA) scheme. Simulation results of DVA show great reductions of motions and loads in the fore-aft and side-to-side directions. Performance of HA is investigated by extensive simulations based on the IEC61400-3 standard and results show significant and consistent motions and loads reductions in both FA and SS directions.

  13. Proposal of a methodology for the design of offshore wind farms

    NASA Astrophysics Data System (ADS)

    Esteban, Dolores; Diez, J. Javier; Santos Lopez, J.; Negro, Vicente

    2010-05-01

    In fact, the wind power installed in the sea is still very scarce, with only 1,500 megawatts in operation in the middle of 2009. Although the first offshore wind farm experiment took place in 1990, the facilities built up to now have been mainly pilot projects. These previous statements confirm the incipient state of offshore wind power, Anyway, in this moment this technology is being strongly pushed, especially by the governments of some countries - like the United Kingdom, Germany, etc. - which is due above all to the general commitments made to reduce the emission of greenhouses gases. All of these factors lead to predict a promising future for offshore wind power. Nevertheless, it has not been still established a general methodology for the design and the management of this kind of installations. This paper includes some of the results of a research project, which consists on the elaboration of a methodology to enable the optimization of the global process of the operations leading to the implantation of offshore wind facilities. The proposed methodology allows the planning of offshore wind projects according to an integral management policy, enabling not only technical and financial feasibility of the offshore wind project to be achieved, but also respect for the environment. For that, it has been necessary to take into account multiple factors, including the territory, the terrain, the physical-chemical properties of the contact area between the atmosphere and the ocean, the dynamics resulting in both as a consequence of the Earth's behaviour as a heat machine, external geodynamics, internal geodynamics, planetary dynamics, biokenosis, the legislative and financial framework, human activities, wind turbines, met masts, electric substations and lines, foundations, logistics and the project's financial profitability. For its validation, this methodology has been applied to different offshore wind farms in operation.

  14. Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase III Results Regarding Tripod Support Structure Modeling

    SciTech Connect

    Nichols, J.; Camp, T.; Jonkman, J.; Butterfield, S.; Larsen, T.; Hansen, A.; Azcona, J.; Martinez, A.; Munduate, X.; Vorpahl, F.; Kleinhansl, S.; Kohlmeier, M.; Kossel, T.; Boker, C.; Kaufer, D.

    2009-01-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes. This paper describes the findings of code-to-code verification activities of the IEA Offshore Code Comparison Collaboration.

  15. Preliminary test of the prototype modular cryostat for a 10 MW offshore superconducting wind turbine

    NASA Astrophysics Data System (ADS)

    Sun, Jiuce; Ramalingam, R.; Sanz, Santiago; Neumann, Holger

    2017-02-01

    The SUPerconducting Reliable lightweight And more POWERful offshore wind turbine (SUPRAPOWER), an EU FP7 funded research project, are under development for an innovative superconducting 10 MW class offshore wind turbine. Due to the requirements of handling, maintenance, reliability of long term and offshore operation, the cryostats are divided in two major parts: the modular cryostat able to accommodate a single coil and a thermal collector that links all the modules. The prototype modular cryostat was designed, manufactured and assembled in Karlsruhe Institute of Technology (KIT). The paper reports preliminary test results of proto-type modular cryostat with a two-stage Gifford-McMahon (GM) cryocooler.

  16. Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine

    SciTech Connect

    Roald, L.; Jonkman, J.; Robertson, A.

    2014-05-01

    The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.

  17. A proposed national wind power R and D program. [offshore wind power system for electric energy supplies

    NASA Technical Reports Server (NTRS)

    Heronemus, W.

    1973-01-01

    An offshore wind power system is described that consists of wind driven electrical dc generators mounted on floating towers in offshore waters. The output from the generators supplies underwater electrolyzer stations in which water is converted into hydrogen and oxygen. The hydrogen is piped to shore for conversion to electricity in fuel cell stations. It is estimated that this system can produce 159 x 10 to the ninth power kilowatt-hours per year. It is concluded that solar energy - and that includes wind energy - is the only way out of the US energy dilemma in the not too distant future.

  18. Potential Offshore Wind Energy Areas in California: An Assessment of Locations, Technology, and Costs

    SciTech Connect

    Musial, Walter; Beiter, Philipp; Tegen, Suzanne; Smith, Aaron

    2016-12-01

    This report summarizes a study of possible offshore wind energy locations, technologies, and levelized cost of energy in the state of California between 2015 and 2030. The study was funded by the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), the federal agency responsible for regulating renewable energy development on the Outer Continental Shelf. It is based on reference wind energy areas where representative technology and performance characteristics were evaluated. These reference areas were identified as sites that were suitable to represent offshore wind cost and technology based on physical site conditions, wind resource quality, known existing site use, and proximity to necessary infrastructure. The purpose of this study is to assist energy policy decision-making by state utilities, independent system operators, state government officials and policymakers, BOEM, and its key stakeholders. The report is not intended to serve as a prescreening exercise for possible future offshore wind development.

  19. Assessing Fatigue and Ultimate Load Uncertainty in Floating Offshore Wind Turbines Due to Varying Simulation Length

    SciTech Connect

    Stewart, G.; Lackner, M.; Haid, L.; Matha, D.; Jonkman, J.; Robertson, A.

    2013-07-01

    With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation length on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.

  20. Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area

    SciTech Connect

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-10-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  1. Combining Wind and Wave Energy in Offshore Power Plants to Reduce Variability in Electrical Generation

    NASA Astrophysics Data System (ADS)

    Stoutenburg, E.

    2008-12-01

    While wave energy is primarily a wind driven phenomenon, at a particular location and time the energy levels in the wind and waves may be different. The correlation between wind and wave energy is sufficiently weak that combining the two energy sources in a collocated offshore power plant reduces the variability in electrical generation. A preliminary examination of offshore locations along the west coast of the U.S. using buoy data shows two advantages of combining the two energy sources: 1) the number of hours of no power generation in a given year is significantly decreased, which reduces the intermittency of the power plant; 2) a decrease in the variability of the generation curve, which reduces the drops and surges of voltage at the grid interconnection point. The power generation curves for the hypothetical combined wind and wave offshore power plants use atmospheric conditions, wind speed, and wave statistics collected by NOAA buoys, and a common commercial offshore wind turbine model paired with a wave energy convertor in early commercial development in a reasonable array configuration. The hypothetical offshore power plants are located in areas with both a quality wind and wave resource near existing or feasible transmission corridors. Multiple locations along the west coast of the U.S. are used to demonstrate this reduction in power variability and intermittency.

  2. Challenges and solutions of remote sensing at offshore wind energy developments.

    PubMed

    Kelly, T A; West, T E; Davenport, J K

    2009-11-01

    Radar is becoming an important tool used to gather data on bird and bat activity at proposed and existing land-based wind energy sites. Radar will likely play an even more important role at the increasing development of wind energy offshore, given both the lack of knowledge about bird and bat activity offshore and the increased difficulty in obtaining offshore information. Most radar studies to date have used off-the-shelf or modified marine radars. However, there are several issues that continue to hinder the potential usefulness of radar at wind energy sites, with offshore sites providing a particular suite of challenges. We identify these challenges along with current or developing solutions.

  3. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    NASA Astrophysics Data System (ADS)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the

  4. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.

    PubMed

    Xu, B F; Wang, T G; Yuan, Y; Cao, J F

    2015-02-28

    A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip.

  5. Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions

    PubMed Central

    Xu, B. F.; Wang, T. G.; Yuan, Y.; Cao, J. F.

    2015-01-01

    A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. PMID:25583859

  6. Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area

    SciTech Connect

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

    2013-04-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

  7. [Medical Emergency Preparedness in offshore wind farms : New challenges in the german north and baltic seas].

    PubMed

    Stuhr, M; Dethleff, D; Weinrich, N; Nielsen, M; Hory, D; Kowald, B; Seide, K; Kerner, T; Nau, C; Jürgens, C

    2016-05-01

    Offshore windfarms are constructed in the German North and Baltic Seas. The off-coast remoteness of the windfarms, particular environmental conditions, limitations in offshore structure access, working in heights and depths, and the vast extent of the offshore windfarms cause significant challenges for offshore rescue. Emergency response systems comparable to onshore procedures are not fully established yet. Further, rescue from offshore windfarms is not part of the duty of the German Maritime Search and Rescue Organization or SAR-Services due to statute and mandate reasons. Scientific recommendations or guidelines for rescue from offshore windfarms are not available yet. The present article reflects the current state of medical care and rescue from German offshore windfarms and related questions. The extended therapy-free interval until arrival of the rescue helicopter requires advanced first-aid measures as well as improved first-aider qualification. Rescue helicopters need to be equipped with a winch system in order to dispose rescue personnel on the wind turbines, and to hoist-up patients. For redundancy reasons and for conducting rendezvous procedures, adequate sea-bound rescue units need to be provided. In the light of experiences from the offshore oil and gas industry and first offshore wind analyses, the availability of professional medical personnel in offshore windfarms seems advisible. Operational air medical rescue services and specific offshore emergency reaction teams have established a powerful rescue chain. Besides the present development of medical standards, more studies are necessary in order to place the rescue chain on a long-term, evidence-based groundwork. A central medical offshore registry may help to make a significant contribution at this point.

  8. Assessment of Ports for Offshore Wind Development in the United States

    SciTech Connect

    Elkinton, Chris; Blatiak, Alicia; Ameen, Hafsa

    2014-03-21

    As offshore wind energy develops in the United States, port facilities will become strategic hubs in the offshore wind farm supply chain because all plant and transport logistics must transit through these facilities. Therefore, these facilities must provide suitable infrastructure to meet the specific requirements of the offshore wind industry. As a result, it is crucial that federal and state policy-makers and port authorities take effective action to position ports in the offshore wind value chain to take best advantage of their economic potential. The U.S. Department of Energy tasked the independent consultancy GL Garrad Hassan (GL GH) with carrying out a review of the current capability of U.S. ports to support offshore wind project development and an assessment of the challenges and opportunities related to upgrading this capability to support the growth of as many as 54 gigawatts of offshore wind installed in U.S. waters by 2030. The GL GH report and the open-access web-based Ports Assessment Tool resulting from this study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations. The offshore wind industry in the United States is still in its infancy and this study finds that additional port facilities capable of supporting offshore wind projects are needed to meet the anticipated project build-out by 2030; however, no significant barriers exist to prevent the development of such facilities. Furthermore, significant port capabilities are in place today with purpose-build port infrastructure currently being built. While there are currently no offshore wind farms operating in the United States, much of the infrastructure critical to the success of such projects does exist, albeit in the service of other industries. This conclusion is based

  9. Potential climatic impacts and reliability of large-scale offshore wind farms

    NASA Astrophysics Data System (ADS)

    Wang, Chien; Prinn, Ronald G.

    2011-04-01

    The vast availability of wind power has fueled substantial interest in this renewable energy source as a potential near-zero greenhouse gas emission technology for meeting future world energy needs while addressing the climate change issue. However, in order to provide even a fraction of the estimated future energy needs, a large-scale deployment of wind turbines (several million) is required. The consequent environmental impacts, and the inherent reliability of such a large-scale usage of intermittent wind power would have to be carefully assessed, in addition to the need to lower the high current unit wind power costs. Our previous study (Wang and Prinn 2010 Atmos. Chem. Phys. 10 2053) using a three-dimensional climate model suggested that a large deployment of wind turbines over land to meet about 10% of predicted world energy needs in 2100 could lead to a significant temperature increase in the lower atmosphere over the installed regions. A global-scale perturbation to the general circulation patterns as well as to the cloud and precipitation distribution was also predicted. In the later study reported here, we conducted a set of six additional model simulations using an improved climate model to further address the potential environmental and intermittency issues of large-scale deployment of offshore wind turbines for differing installation areas and spatial densities. In contrast to the previous land installation results, the offshore wind turbine installations are found to cause a surface cooling over the installed offshore regions. This cooling is due principally to the enhanced latent heat flux from the sea surface to lower atmosphere, driven by an increase in turbulent mixing caused by the wind turbines which was not entirely offset by the concurrent reduction of mean wind kinetic energy. We found that the perturbation of the large-scale deployment of offshore wind turbines to the global climate is relatively small compared to the case of land

  10. The impact of wakes on power output at large offshore wind farms

    NASA Astrophysics Data System (ADS)

    Barthelmie, R. J.; Frandsen, S.; Hansen, K.; Schepers, G.; Rados, K.; Schlez, W.; Cabezon, D.; Jensen, L.; Neckelmann, S.

    2010-12-01

    The size of planned offshore wind farms is in the range 100 MW to 1 GW requiring tens to hundreds of wind turbines typically arranged in a large array. As wind farms offshore increase in size, one of the research challenges is to model interactions between the individual turbines, the atmosphere and neighbouring turbines to accurately predict power output before wind farm construction in addition to evaluation during the operation phase. The aim of the research described (part of the UpWind project) is to improve wind farm modelling and address the issue of providing more accurate power output predictions accounting for wind turbine wakes. DONG Energy and Vattenfall have allowed data from a number of cases studies to be used in this project. Detailed case studies of power losses due to wakes at the large wind farms at Nysted and Horns Rev have been analysed and are presented. A focus of the data analysis has been to understand the importance of turbulence and atmospheric stability at these offshore sites. It is evident that the magnitude of wake losses is primarily driven by wind speed but that signals from turbine spacing, turbulence and atmospheric stability can be determined. The case studies are simulated with a range of wind farm and computational fluid dynamics (CFD) models. The UpWind project presents a unique platform for model evaluation because the co-operation of a number of groups means that more models can be evaluated on standardised cases. Results shown indicate power losses due to wakes can be modelled, provided that the standard models are subject to some modifications. We also present some of the first full simulations of large offshore wind farms using CFD. Despite this progress, wake modelling of large wind farms is still subject to an unacceptably high degree of uncertainty requiring further work to understand the physical flow processes within and downwind of large wind farms.

  11. Simplified formulae for the estimation of offshore wind turbines clutter on marine radars.

    PubMed

    Grande, Olatz; Cañizo, Josune; Angulo, Itziar; Jenn, David; Danoon, Laith R; Guerra, David; de la Vega, David

    2014-01-01

    The potential impact that offshore wind farms may cause on nearby marine radars should be considered before the wind farm is installed. Strong radar echoes from the turbines may degrade radars' detection capability in the area around the wind farm. Although conventional computational methods provide accurate results of scattering by wind turbines, they are not directly implementable in software tools that can be used to conduct the impact studies. This paper proposes a simple model to assess the clutter that wind turbines may generate on marine radars. This method can be easily implemented in the system modeling software tools for the impact analysis of a wind farm in a real scenario.

  12. Simplified Formulae for the Estimation of Offshore Wind Turbines Clutter on Marine Radars

    PubMed Central

    Grande, Olatz; Cañizo, Josune; Jenn, David; Danoon, Laith R.; Guerra, David

    2014-01-01

    The potential impact that offshore wind farms may cause on nearby marine radars should be considered before the wind farm is installed. Strong radar echoes from the turbines may degrade radars' detection capability in the area around the wind farm. Although conventional computational methods provide accurate results of scattering by wind turbines, they are not directly implementable in software tools that can be used to conduct the impact studies. This paper proposes a simple model to assess the clutter that wind turbines may generate on marine radars. This method can be easily implemented in the system modeling software tools for the impact analysis of a wind farm in a real scenario. PMID:24782682

  13. Key challenges of offshore wind power: Three essays addressing public acceptance, stakeholder conflict, and wildlife impacts

    NASA Astrophysics Data System (ADS)

    Bates, Alison Waterbury

    Society is facing a pressing need to reduce greenhouse gas emissions to limit anthropogenic climate change, which has far reaching implications for humans and the environment. Transforming the energy infrastructure to carbon-free sources is one solution to curb greenhouse gas emissions, but this transformation has been slow to materialize in many places, such as the United States (U.S.). Offshore wind energy is one of the most promising renewable energy sources available, which can be deployed in large-scale developments in many parts of the world. Yet, offshore wind has faced many challenges, which are more social and regulatory than technical. This dissertation addresses social and regulatory issues surrounding offshore wind development through three stand-alone essays, which, in combination, address a decision-making framework of where to locate offshore wind turbines, by minimizing effects on people and wildlife. The challenges to offshore wind that are addressed by this dissertation include (1) understanding underlying factors that drive support for or opposition to offshore wind energy; (2) conflict with existing ocean uses and users; and (3) public concern and regulatory processes related to wildlife impacts. The first paper identifies unique factors that drive public opinion of proposed offshore wind projects in nearby coastal communities. Wind energy development on land has faced local opposition for reasons such as effects on cultural landscapes and wildlife, which can be instrumental in whether or not and the speed with which a project moves ahead toward completion. Factors leading to support for, or opposition to, offshore wind energy are not well known, particularly for developments that are near-shore and in-view of coastal communities. Results are presented from a survey of 699 residents (35.5% response rate) completed in 2013 in greater Atlantic City, New Jersey and coastal Delaware, United States, where near-shore wind demonstration projects had

  14. A vector auto-regressive model for onshore and offshore wind synthesis incorporating meteorological model information

    NASA Astrophysics Data System (ADS)

    Hill, D.; Bell, K. R. W.; McMillan, D.; Infield, D.

    2014-05-01

    The growth of wind power production in the electricity portfolio is striving to meet ambitious targets set, for example by the EU, to reduce greenhouse gas emissions by 20% by 2020. Huge investments are now being made in new offshore wind farms around UK coastal waters that will have a major impact on the GB electrical supply. Representations of the UK wind field in syntheses which capture the inherent structure and correlations between different locations including offshore sites are required. Here, Vector Auto-Regressive (VAR) models are presented and extended in a novel way to incorporate offshore time series from a pan-European meteorological model called COSMO, with onshore wind speeds from the MIDAS dataset provided by the British Atmospheric Data Centre. Forecasting ability onshore is shown to be improved with the inclusion of the offshore sites with improvements of up to 25% in RMS error at 6 h ahead. In addition, the VAR model is used to synthesise time series of wind at each offshore site, which are then used to estimate wind farm capacity factors at the sites in question. These are then compared with estimates of capacity factors derived from the work of Hawkins et al. (2011). A good degree of agreement is established indicating that this synthesis tool should be useful in power system impact studies.

  15. Offshore Code Comparison Collaboration, Continuation: Phase II Results of a Floating Semisubmersible Wind System: Preprint

    SciTech Connect

    Robertson, A.; Jonkman, J.; Musial, W.; Vorpahl, F.; Popko, W.

    2013-11-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. The Offshore Code Comparison Collaboration (OC3), which operated under the International Energy Agency (IEA) Wind Task 23, was established to verify the accuracy of these simulation tools [1]. This work was then extended under the Offshore Code Comparison Collaboration, Continuation (OC4) project under IEA Wind Task 30 [2]. Both of these projects sought to verify the accuracy of offshore wind turbine dynamics simulation tools (or codes) through code-to-code comparison of simulated responses of various offshore structures. This paper describes the latest findings from Phase II of the OC4 project, which involved the analysis of a 5-MW turbine supported by a floating semisubmersible. Twenty-two different organizations from 11 different countries submitted results using 24 different simulation tools. The variety of organizations contributing to the project brought together expertise from both the offshore structure and wind energy communities. Twenty-one different load cases were examined, encompassing varying levels of model complexity and a variety of metocean conditions. Differences in the results demonstrate the importance and accuracy of the various modeling approaches used. Significant findings include the importance of mooring dynamics to the mooring loads, the role nonlinear hydrodynamic terms play in calculating drift forces for the platform motions, and the difference between global (at the platform level) and local (at the member level) modeling of viscous drag. The results from this project will help guide development and improvement efforts for these tools to ensure that they are providing the accurate information needed to support the design and

  16. The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A.

    2014-06-01

    The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of a floating system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the Maritime Research Institute Netherlands (MARIN) offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method was applied to the Offshore Code Comparison Collaboration Continuation OC4-DeepCwind semisubmersible platform, supporting the National Renewable Energy Laboratory's 5-MW baseline wind turbine. In this paper, the loads and response of the system caused by the second-order hydrodynamics are analysed and compared to the first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads

  17. Environmental Risk Evaluation System (ERES) for Offshore Wind - Mock-Up of ERES, Fiscal Year 2010 Progress Report

    SciTech Connect

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

    2010-11-01

    The Environmental Risk Evaluation System (ERES) has been created to set priorities among the environmental risks from offshore wind development. This report follows the conceptual design for ERES and shows what the system would look like, using a web interface created as part of a Knowledge Management System (KMS) for offshore wind. The KMS, called Zephyrus, and ERES for offshore wind, will be populated and made operational in a later phase of the project.

  18. Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy

    SciTech Connect

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Carroll, Michael

    2014-04-09

    The Coastal Ohio Wind Project was created to establish the viability of wind turbines on the coastal and offshore regions of Northern Ohio. The project’s main goal was to improve operational unit strategies used for environmental impact assessment of offshore turbines on lake wildlife by optimizing and fusing data from the multi-instrument surveillance system and providing an engineering analysis of potential design/operational alternatives for offshore wind turbines. The project also developed a general economic model for offshore WTG deployment to quantify potential revenue losses due to wind turbine shutdown related to ice and avian issues. In a previous phase of this project (Award Number: DE-FG36-06GO86096), we developed a surveillance system that was used to collect different parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species, movements of birds and bats, and bird calls for assessing patterns and peak passage rates during migration. To derive such parameters we used thermal IR imaging cameras, acoustic recorders, and marine radar Furuno (XANK250), which was coupled with a XIR3000B digitizing card from Russell Technologies and open source radR processing software. The integration yielded a development of different computational techniques and methods, which we further developed and optimized as a combined surveillance system. To accomplish this task we implemented marine radar calibration, optimization of processing parameters, and fusion of the multi-sensor data in order to make inferences about the potential avian targets. The main goal of the data fusion from the multi-sensor environment was aimed at reduction of uncertainties while providing acceptable confidence levels with detailed information about the migration patterns. Another component comprised of an assessment of wind resources in a near lake environment and an investigation of the effectiveness of ice coating materials to

  19. Risk analysis for U.S. offshore wind farms: the need for an integrated approach.

    PubMed

    Staid, Andrea; Guikema, Seth D

    2015-04-01

    Wind power is becoming an increasingly important part of the global energy portfolio, and there is growing interest in developing offshore wind farms in the United States to better utilize this resource. Wind farms have certain environmental benefits, notably near-zero emissions of greenhouse gases, particulates, and other contaminants of concern. However, there are significant challenges ahead in achieving large-scale integration of wind power in the United States, particularly offshore wind. Environmental impacts from wind farms are a concern, and these are subject to a number of on-going studies focused on risks to the environment. However, once a wind farm is built, the farm itself will face a number of risks from a variety of hazards, and managing these risks is critical to the ultimate achievement of long-term reductions in pollutant emissions from clean energy sources such as wind. No integrated framework currently exists for assessing risks to offshore wind farms in the United States, which poses a challenge for wind farm risk management. In this "Perspective", we provide an overview of the risks faced by an offshore wind farm, argue that an integrated framework is needed, and give a preliminary starting point for such a framework to illustrate what it might look like. This is not a final framework; substantial work remains. Our intention here is to highlight the research need in this area in the hope of spurring additional research about the risks to wind farms to complement the substantial amount of on-going research on the risks from wind farms. © 2015 Society for Risk Analysis.

  20. Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint

    SciTech Connect

    Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

    2010-04-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

  1. Offshore Code Comparison Collaboration, Continuation within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System: Preprint

    SciTech Connect

    Robertson, A.; Jonkman, J.; Vorpahl, F.; Popko, W.; Qvist, J.; Froyd, L.; Chen, X.; Azcona, J.; Uzungoglu, E.; Guedes Soares, C.; Luan, C.; Yutong, H.; Pengcheng, F.; Yde, A.; Larsen, T.; Nichols, J.; Buils, R.; Lei, L.; Anders Nygard, T.; et al.

    2014-03-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, Continuation (OC4) project, which operates under the International Energy Agency (IEA) Wind Task 30. In the latest phase of the project, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants? codes, thus improving the standard of offshore wind turbine modeling.

  2. Feasible application of offshore wind turbines in Labuan Island, Sabah for energy complementary

    NASA Astrophysics Data System (ADS)

    Salleh, Nur Farahin; Chew, Boon Cheong; Hamid, Syaiful Rizal

    2017-03-01

    Nowadays, the world energy requirements are increasing at an alarming rate and the power demand is running ahead of supply. It is widely recognized that the fossil fuels such as coal, petroleum and natural gas are presently being used for electricity generation. Therefore, in future it may not be sufficient to keep pace with ever increasing demand of the electrical energy of the world. The renewable energy can provide clean sources of energy which is reliable and secure to society. This paper analyzed renewable energy adoption, focusing on offshore wind turbines. In this case study, Labuan, Sabah has been selected and suggested as the location to install the offshore wind turbines because of geographical advantage of the South China Sea. The technology is expected to provide great power energy with least environment impact and high sustainability as it is located within the windy area with no terrain features, buildings or other obstruction. This study used qualitative methods for both data collection and data analysis. This study proved the feasible application of offshore wind turbines in the South China Sea, Sabah produced the complementary energy to fossil fuels. Hence, the offshore wind turbines might become one of main energy sources in Sabah. The application of the offshore wind turbines to Sabah residential area develops a lot of benefit and support Malaysian government goal which is to be more competitive in renewable energy generation while sustaining national economic growth.

  3. Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from Two Future Scenarios

    SciTech Connect

    Speer, Bethany; Keyser, David; Tegen, Suzanne

    2016-04-18

    Construction of the first offshore wind farm in the United States began in 2015, using fixed platform structures that are appropriate for shallow seafloors, like those located off of the East Coast and mid-Atlantic. However, floating platforms, which have yet to be deployed commercially, will likely need to anchor to the deeper seafloor if deployed off of the West Coast. To analyze the employment and economic potential for floating offshore wind along the West Coast, the Bureau of Ocean Energy Management (BOEM) has commissioned the National Renewable Energy Laboratory (NREL) to analyze two hypothetical, large-scale deployment scenarios for California: 16 GW of offshore wind by 2050 (Scenario A) and 10 GW of offshore wind by 2050 (Scenario B). The results of this analysis can be used to better understand the general scales of economic opportunities that could result from offshore wind development. Results show total state gross domestic product (GDP) impacts of $16.2 billion in Scenario B or $39.7 billion in Scenario A for construction; and $3.5 billion in Scenario B or $7.9 billion in Scenario A for the operations phases.

  4. ENVISAT ASAR satellite offshore wind resource statistics in Iceland compared to NORA10 model results

    NASA Astrophysics Data System (ADS)

    Bay Hasager, Charlotte; Badger, Merete; Rugaard Furevik, Birgitte; Nawri, Nikolai; Nína Petersen, Guðrún; Björnsson, Halldór; Ferhat Bingol, Ferhat; Clausen, Niels-Erik

    2014-05-01

    In Iceland the offshore regions have been investigated from satellite images from the Envisat Advanced Synthetic Aperture Radar (SAR) from the European Space Agency. The data have been retrieved from 2002 to 2012. Each satellite image has been calibrated and thereafter the CMOD5.N geophysical model function has been used to calculate the wind speed. Each resulting pixel is 1 km by 1 km. The wind direction is taken from the US Navy Operational Global Atmospheric Prediction System (NOGAPS) model. It has much lower spatial resolution and therefore the model wind directions are interpolated in space and time before performing the SAR-based wind retrieval. In total 2,500 images have been processed. This results in average 300 overlapping images. More data were available in the northern part of Iceland; therefore the number of overlapping samples is around 400 here and only 200 at the southern coast. The wind resource statistics of mean wind speed, Weibull scale and shape parameters and energy density have been calculated using the Satellite-WAsP (S-WAsP) program. The coastline of Iceland is complex. The individual wind maps from SAR reveal a multitude of atmospheric phenomena including lee effects and gap flows in the fjords. The wind resource statistics shows the mean wind speed to range from 5 to 8 m/s at 10 m height above the sea level. Selected case study areas are being defined for further investigation. SAR-derived wind maps have the advantage of covering the coastal zone. Further offshore the SAR-derived winds will be compared to the NORA10 atmospheric model results and scatterometer winds. In Iceland the wind resources on land are promising for wind energy application but it is not yet exploited. The study on the offshore wind resource is useful as pre-feasibility in case this clean energy resource is to be exploited at a later stage. The work is part of the Nordic Icewind project.

  5. Review of Methodologies for Offshore Wind Resource Assessment in European Seas

    NASA Astrophysics Data System (ADS)

    Sempreviva, A. M.; Barthelmie, R. J.; Pryor, S. C.

    2008-12-01

    The wind resource offshore is generally larger than at geographically nearby onshore sites, which can offset the higher installation, operation and maintenance costs associated with offshore wind parks. Successful offshore wind energy development relies to some extent on accurate prediction of wind resources, but since installing and operating a meteorological mast in situ is expensive, prospective sites must be carefully evaluated. Accordingly, one can conceptualize the wind resource assessment process as a two-phase activity: ( i) an evaluation of wind resources at the regional scale to locate promising wind farm sites and ( ii) a site specific evaluation of wind climatology and vertical profiles of wind and atmospheric turbulence, in addition to an assessment of historical and possibly future changes due to climate non-stationarity. Phase ( i) of the process can involve use of in situ observations of opportunity derived from ships, lighthouses and buoys in conjunction with model tools and remote sensing products. The reliability of such data sources has been extensively investigated in different national and European projects especially in Northern Europe, and the results are summarized herein. Phase ( ii) of the project often still requires in situ observations (which may or may not be supplemented with ground-based remote sensing technologies) and application of tools to provide a climatological context for the resulting measurements. Current methodologies for undertaking these aspects of the resource assessment are reviewed.

  6. Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint

    SciTech Connect

    Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A.

    2014-07-01

    The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.

  7. Potential Offshore Wind Energy Applications for Enhanced Resolution Scatterometer Products (Invited)

    NASA Astrophysics Data System (ADS)

    Plagge, A. M.; Epps, B.

    2013-12-01

    The multi-decadal record of ocean surface vector winds provided by scatterometer measurements is a valuable resource that has been underutilized by the wind energy sector. Previously, these data were not considered applicable for offshore wind energy analysis; chiefly, the sensors' low resolution limited their desirability. Now, however, enhanced products provide high quality wind vectors at resolutions between 3 and 5km. Potential energy applications currently under investigation include (1) validation of existing commercial wind resource assessment models, (2) investigations of interactions between large existing wind farms and the atmospheric boundary layer including attempts to identify wakes, and (3) an extension of previous studies comparing SAR and scatterometer wind fields with regard to specific wind energy concerns, including wind spectra and Weibull parameters.

  8. Vertical Structure of the Wind Speed Profile at the North Sea Offshore Measurement Platform FINO1

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.

    2013-12-01

    The vertical wind speed profile in the lowest 100m of the marine atmospheric boundary layer has been characterized from data collected at the FINO1 offshore research platform in the German North Sea sector for 2005. Located in 30m of water, the platform has a dense vertical array of meteorological instrumentation to measure wind speed, air temperature, relative humidity, and atmospheric turbulence characteristics. Along measurements of the ocean temperature and surface waves, the platform is well-equipped to characterize wind properties in the near-surface boundary layer. Preliminary analysis reveals a high incidence of vertical wind speed profiles that deviate significantly from Monin-Obukhov similarity theory with wind speed inflections that suggest decoupled layers near the surface. The presentation shows how the properties of the vertical wind speed profile change mainly depending on the wind speed, wind direction, and time of year. The results are significant because there are few reports of inflections in the vertical wind speed profile over the ocean and there is an a priori assumption that the vertical wind speed profile varies smoothly according to similarity theory. There are possible consequences for the wind energy development in terms of understanding the forces acting on offshore wind turbines whose rotors sweep across heights 150-200m above the sea surface.

  9. Development of a 5 MW reference gearbox for offshore wind turbines: 5 MW reference gearbox

    SciTech Connect

    Nejad, Amir Rasekhi; Guo, Yi; Gao, Zhen; Moan, Torgeir

    2015-07-27

    This paper presents detailed descriptions, modeling parameters and technical data of a 5MW high-speed gearbox developed for the National Renewable Energy Laboratory offshore 5MW baseline wind turbine. The main aim of this paper is to support the concept studies and research for large offshore wind turbines by providing a baseline gearbox model with detailed modeling parameters. This baseline gearbox follows the most conventional design types of those used in wind turbines. It is based on the four-point supports: two main bearings and two torque arms. The gearbox consists of three stages: two planetary and one parallel stage gears. The gear ratios among the stages are calculated in a way to obtain the minimum gearbox weight. The gearbox components are designed and selected based on the offshore wind turbine design codes and validated by comparison to the data available from large offshore wind turbine prototypes. All parameters required to establish the dynamic model of the gearbox are then provided. Moreover, a maintenance map indicating components with high to low probability of failure is shown. The 5 MW reference gearbox can be used as a baseline for research on wind turbine gearboxes and comparison studies. It can also be employed in global analysis tools to represent a more realistic model of a gearbox in a coupled analysis.

  10. Potential Economic Impacts from Offshore Wind in the Southeast Region (Fact Sheet)

    SciTech Connect

    Not Available

    2013-07-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts identified by the study for the Southeast (defined here as Georgia, South Carolina, North Carolina, and Virginia).

  11. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint

    SciTech Connect

    Jonkman, J. M.; Sclavounos, P. D.

    2006-01-01

    Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

  12. Grid Simulator for Testing a Wind Turbine on Offshore Floating Platform

    SciTech Connect

    Gevorgian, V.

    2012-02-01

    An important aspect of such offshore testing of a wind turbine floating platform is electrical loading of the wind turbine generator. An option of interconnecting the floating wind turbine with the onshore grid via submarine power cable is limited by many factors such as costs and associated environmental aspects (i.e., an expensive and lengthy sea floor study is needed for cable routing, burial, etc). It appears to be a more cost effective solution to implement a standalone grid simulator on a floating platform itself for electrical loading of the test wind turbine. Such a grid simulator must create a stable fault-resilient voltage and frequency bus (a micro grid) for continuous operation of the test wind turbine. In this report, several electrical topologies for an offshore grid simulator were analyzed and modeled.

  13. Atmospheric Impacts on Power Curves of Multi-Megawatt Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Dörenkämper, M.; Tambke, J.; Steinfeld, G.; Heinemann, D.; Kühn, M.

    2014-12-01

    Power curves for offshore wind turbines within the German offshore wind farm alpha ventus were derived based on the IEC standard. Binning in groups of shear and turbulence intensity as measures of atmospheric stability were performed. The derived power curves show a strong dependency on these two parameters. Differences of up to 15% in power output between unstable and stable stratification in the non-wake case occur. For wind turbines within the wake of others the effects are even more pronounced. Here, the differences in power production between the stability classes approach 20%. This dependency of the power curves on stability can cause significant miscalculations of instantaneous power production, long-term energy yield and loads. Parameters other than the hub height wind speed are often not taken into account in state-of-the-art wind power forecasts. This can lead to substantial over- or underestimation of the resulting power.

  14. Motion performance and mooring system of a floating offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Zhang, Liang; Wu, Haitao

    2012-09-01

    The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.

  15. A comparison of winds from the STRATAN data assimilation system to balanced wind estimates

    NASA Technical Reports Server (NTRS)

    Coy, Lawrence; Rood, Richard B.; Newman, Paul A.

    1994-01-01

    Winds derived from a stratospheric and tropospheric data assimilation system (STRATAN) are compared with balance winds derived from National Meteorological Center/Climate Analysis Center (NMC/CAC) heights. At middle latitudes in the lower stratosphere, the results show that STRATAN winds are comparable to the balance winds. In addition STRATAN winds provide useful horizontal divergence analyses, and hence, vertical velocity fields. More generally, the STRATAN winds are useful in a more extended domain than the balanced winds. In particular, they are useful in the Tropics and the upper stratosphere where the balanced winds fail. The assimilation also captures the quasi-biennial oscillation, but does not do a good job of representing tropical waves.

  16. A comparison of winds from the STRATAN data assimilation system to balanced wind estimates

    NASA Technical Reports Server (NTRS)

    Coy, Lawrence; Rood, Richard B.; Newman, Paul A.

    1994-01-01

    Winds derived from a stratospheric and tropospheric data assimilation system (STRATAN) are compared with balance winds derived from National Meteorological Center/Climate Analysis Center (NMC/CAC) heights. At middle latitudes in the lower stratosphere, the results show that STRATAN winds are comparable to the balance winds. In addition STRATAN winds provide useful horizontal divergence analyses, and hence, vertical velocity fields. More generally, the STRATAN winds are useful in a more extended domain than the balanced winds. In particular, they are useful in the Tropics and the upper stratosphere where the balanced winds fail. The assimilation also captures the quasi-biennial oscillation, but does not do a good job of representing tropical waves.

  17. Effects of Offshore Wind Farms on the Early Life Stages of Dicentrarchus labrax.

    PubMed

    Debusschere, Elisabeth; De Coensel, Bert; Vandendriessche, Sofie; Botteldooren, Dick; Hostens, Kris; Vincx, Magda; Degraer, Steven

    2016-01-01

    Anthropogenically generated underwater noise in the marine environment is ubiquitous, comprising both intense impulse and continuous noise. The installation of offshore wind farms across the North Sea has triggered a range of ecological questions regarding the impact of anthropogenically produced underwater noise on marine wildlife. Our interest is on the impact on the "passive drifters," i.e., the early life stages of fish that form the basis of fish populations and are an important prey for pelagic predators. This study deals with the impact of pile driving and operational noise generated at offshore wind farms on Dicentrarchus labrax (sea bass) larvae.

  18. Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy

    SciTech Connect

    Maples, B.; Saur, G.; Hand, M.; van de Pietermen, R.; Obdam, T.

    2013-07-01

    Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

  19. Offshore wind power systems - A review of developments and comparison of national studies

    NASA Astrophysics Data System (ADS)

    Dixon, J. C.; Swift, R. H.

    A comprehensive assessment of British, American, Swedish and Dutch offshore wind energy resource availability and utilization studies notes that there is general agreement on the feasibility of these resources' exploitation on the basis of currently available technology. The proposed wind turbine designs are, however, often very different, especially with respect to substructures. Attention is given to the problems posed by rigid tower dynamics in offshore environments. Although costs are judged to be encouraging, they are not yet directly competitive with existing sources of electricity.

  20. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area

    SciTech Connect

    Musial, W.; Parker, Z.; Fields, M.; Scott, G.; Elliott, D.; Draxl, C.

    2013-12-01

    The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  1. Generation of a wind and stability atlas for the optimized utilization of offshore wind resources in the North Sea Region

    NASA Astrophysics Data System (ADS)

    Drüke, Sonja; Steinfeld, Gerald; Heinemann, Detlev; Günther, Robert

    2014-05-01

    The European Wind Energy Association expects 150 GW of installed wind capacity offshore in Europe by the year 2030. However, detailed knowledge on the atmospheric conditions offshore is still lacking. Satellite-based instruments can provide at spatial information on sea surface temperature and near-surface winds only at a low temporal resolution. Continuous in-situ observations providing vertical information on the marine boundary-layer have only been available from a handful of offshore met masts since roughly ten years, a time period too short to determine the long-term (climatological) wind resource. The lack of spatially distributed, long-term measurements in offshore regions has led to the application of mesoscale models for the derivation of information on atmospheric conditions offshore. The technique of dynamical downscaling is used in order to derive information on the meso-gamma scale from reanalysis data on the meso-beta scale. The downscaled atmospheric data gives hints which sites might be especially interesting for wind energy. The attractiveness of a site cannot be determined from the mean wind speed alone. Other criteria such as the distribution of the wind speed or the atmospheric stability should be taken into account as well. Recent analysis of data from several offshore wind farms has shown the dependency of wind farm power outputs from atmospheric stability. In the framework of the EU-funded research project ClusterDesign (www.cluster-design.eu) a wind and stability atlas (WASA) for the North Sea region based on dynamical downscaling of 21 years (1992-2012) of CFSR data with the mesoscale model WRF has been derived. Surface boundary conditions for offshore sites have been derived from the OSTIA SST data set. The WASA presented here has a spatial resolution of 2 km and is based on 10 minutes data. The WASA is a NetCDF-file that provides information on how often a combination of a certain wind speed, wind direction, air density, stability

  2. Statistical Evaluation of the Identified Structural Parameters of an idling Offshore Wind Turbine

    NASA Astrophysics Data System (ADS)

    Kramers, Hendrik C.; van der Valk, Paul L. C.; van Wingerden, Jan-Willem

    2016-09-01

    With the increased need for renewable energy, new offshore wind farms are being developed at an unprecedented scale. However, as the costs of offshore wind energy are still too high, design optimization and new innovations are required for lowering its cost. The design of modern day offshore wind turbines relies on numerical models for estimating ultimate and fatigue loads of the turbines. The dynamic behavior and the resulting structural loading of the turbines is determined for a large part by its structural properties, such as the natural frequencies and damping ratios. Hence, it is important to obtain accurate estimates of these modal properties. For this purpose stochastic subspace identification (SSI), in combination with clustering and statistical evaluation methods, is used to obtain the variance of the identified modal properties of an installed 3.6MW offshore wind turbine in idling conditions. It is found that one is able to obtain confidence intervals for the means of eigenfrequencies and damping ratios of the fore-aft and side-side modes of the wind turbine.

  3. Offshore based WARP{trademark} Power Spar buoys for multi-megawatt wind power plants

    SciTech Connect

    Weisbrich, A.L.; Rhodes, A.F.

    1998-12-31

    Since the earliest use of wind as a stationary power source, major consideration and effort has gone into the selection of a location with relatively high wind speed as well as proximity to the place of energy demand. As wind speed increases, collectible energy from the wind increases by the third power. That is, in a location with 20% higher wind speed, it is possible to generate 73% more power. If 50% higher wind velocity is available, 300% more power and energy can be generated. In the ideal, an offshore wind power plant should be easily and relatively inexpensively constructed, and economically sited in any depth water. In addition to these characteristics, if the typically excellent offshore winds could be amplified by as much as 50% to 80% and captured by low cost, highly reliable aircraft propeller sized wind turbines, substantial cost effectiveness and practicality would result. ENECO`s Wind amplified Rotor Platform (WARP{trademark}) Power Spar buoy system design appears to have the features needed to achieve these objectives and is proposed for test and commercialization.

  4. Connecting wind-driven upwelling and offshore stratification to nearshore internal bores and oxygen variability

    NASA Astrophysics Data System (ADS)

    Walter, Ryan K.; Woodson, C. Brock; Leary, Paul R.; Monismith, Stephen G.

    2014-06-01

    This study utilizes field observations in southern Monterey Bay, CA, to examine how regional-scale upwelling and changing offshore (shelf) conditions influence nearshore internal bores. We show that the low-frequency wind forcing (e.g., upwelling/relaxation time scales) modifies the offshore stratification and thermocline depth. This in turn alters the strength and structure of observed internal bores in the nearshore. An internal bore strength index is defined using the high-pass filtered potential energy density anomaly in the nearshore. During weak upwelling favorable conditions and wind relaxations, the offshore thermocline deepens. In this case, both the amplitude of the offshore internal tide and the strength of the nearshore internal bores increase. In contrast, during strong upwelling conditions, the offshore thermocline shoals toward the surface, resulting in a decrease in the offshore internal tide amplitude. As a result, cold water accumulates in the nearshore (nearshore pooling), and the internal bore strength index decreases. Empirical orthogonal functions are utilized to support the claim that the bore events contribute to the majority of the variance in cross-shelf exchange and transport in the nearshore. Observed individual bores can drive shock-like drops in dissolved oxygen (DO) with rapid onset times, while extended upwelling periods with reduced bore activity produce longer duration, low DO events.

  5. Metocean Data Needs Assessment for U.S. Offshore Wind Energy

    SciTech Connect

    Bailey, Bruce H.; Filippelli, Matthew; Baker, Matthew

    2015-01-01

    A potential barrier to developing offshore wind energy in the United States is the general lack of accurate information in most offshore areas about the wind resource characteristics and external metocean design conditions at the heights and depths relevant to wind turbines and their associated structures and components. Knowledge of these conditions enables specification of the appropriate design basis for wind turbine structures and components so they can withstand the loads expected over a project’s lifetime. Human safety, vessel navigation, and project construction and maintenance activities are equally tied to the metocean environment. Currently, metocean data is sparse in potential development areas and even when available, does not include the detail or quality required to make informed decisions.

  6. Method to Reduce the Computational Intensity of Offshore Wind Energy Resource Assessments Using Cokriging

    NASA Astrophysics Data System (ADS)

    Dvorak, M. J.; Boucher, A.; Jacobson, M. Z.

    2009-12-01

    Wind energy represents the fastest growing renewable energy resource, sustaining double digit growth for the past 10 years with approximately 94,000 MW installed by the end of 2007. Although winds over the ocean are generally stronger and often located closer to large urban electric load centers, offshore wind turbines represent about 1% of installed capacity. In order to evaluate the economic potential of an offshore wind resource, wind resource assessments typically involve running large mesoscale model simulations, validated with sparse in-situ meteorological station data. These simulations are computationally expensive limiting their temporal coverage. Although a wealth of other wind data does exist (e.g. QuickSCAT satellite, SAR satellite, radar/SODAR wind profiler, and radiosounde) these data are often ignored or interpolated trivially because of the widely varying spatial and temporal resolution. A spatio-temporal cokriging approach with non-parametric covariances was developed to interpolate these empirical data and compare it with previously validated surface winds output by the PSU/NCAR MM5 for coastal California. The spatio-temporal covariance model is assumed to be the product of a spatial and a temporal covariance component. The temporal covariance is derived from in-situ wind speed measurements at 10 minutes intervals measured by offshore buoys and variograms are calculated non-parametrically using a FFT. Spatial covariance tables are created using MM5 or QuikSCAT data with a similar 2D FFT method. The cokriging system was initially validated by predicting “missing” hours of PSU/NCAR MM5 data and has displayed reasonable skill. QuikSCAT satellite winds were also substituted for MM5 data when calculating the spatial covariance, with the goal of reducing the computer time needed to accurately predict a wind energy resource.

  7. Evaluating potentials for future generation off-shore wind-power outside Norway

    NASA Astrophysics Data System (ADS)

    Benestad, R. E.; Haugen, J.; Haakenstad, H.

    2012-12-01

    With todays critical need of renewable energy sources, it is naturally to look towards wind power. With the long coast of Norway, there is a large potential for wind farms offshore Norway. Although there are more challenges with offshore wind energy installations compared to wind farms on land, the offshore wind is generally higher, and there is also higher persistence of wind speed values in the power generating classes. I planning offshore wind farms, there is a need of evaluation of the wind resources, the wind climatology and possible future changes. In this aspect, we use data from regional climate model runs performed in the European ENSEMBLE-project (van der Linden and J.F.B. Mitchell, 2009). In spite of increased reliability in RCMs in the recent years, the simulations still suffer from systematic model errors, therefore the data has to be corrected before using them in wind resource analyses. In correcting the wind speeds from the RCMs, we will use wind speeds from a Norwegian high resolution wind- and wave- archive, NORA10 (Reistad et al 2010), to do quantile mapping (Themeβl et. al. 2012). The quantile mapping is performed individually for each regional simulation driven by ERA40-reanalysis from the ENSEMBLE-project corrected against NORA10. The same calibration is then used to the belonging regional climate scenario. The calibration is done for each grid cell in the domain and for each day of the year centered in a +/-15 day window to make an empirical cumulative density function for each day of the year. The quantile mapping of the scenarios provide us with a new wind speed data set for the future, more correct compared to the raw ENSEMBLE scenarios. References: Reistad M., Ø. Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik and J-R Bidlo, 2010, A high-resolution hindcast of wind and waves for The North Sea, The Norwegian Sea and The Barents Sea. J. Geophys. Res., 116. doi:10.1029/2010JC006402. Themessl M. J., A. Gobiet and A. Leuprecht, 2012

  8. Impacts of an offshore wind farm on the lower marine atmosphere

    NASA Astrophysics Data System (ADS)

    Volker, P. J.; Huang, H.; Capps, S. B.; Badger, J.; Hahmann, A. N.; Hall, A. D.

    2013-12-01

    Due to a continuing increase in energy demand and heightened environmental consciousness, the State of California is seeking out more environmentally-friendly energy resources. Strong and persistent winds along California's coast can be harnessed effectively by current wind turbine technology, providing a promising source of alternative energy. Using an advanced wind farm parameterization implemented in the Weather Research & Forecast model, we investigate the potential impacts of a large offshore wind farm on the lower marine atmosphere. Located offshore of the Sonoma Coast in northern California, this theoretical wind farm includes 200-7 megawatt, 125 m hub height wind turbines which are able to provide a total of 1.4 TW of power for use in neighboring cities. The wind turbine model (i.e., the Explicit Wake Parameterization originally developed at the Danish Technical University) acts as a source of drag where the sub-grid scale velocity deficit expansion is explicitly described. A swath consisting of hub-height velocity deficits and temperature and moisture anomalies extends more than 100 km downstream of the wind farm location. The presence of the large modern wind farm also creates flow distortion upstream in conjunction with an enhanced vertical momentum and scalar transport.

  9. Assessing the responses of coastal cetaceans to the construction of offshore wind turbines.

    PubMed

    Thompson, Paul M; Lusseau, David; Barton, Tim; Simmons, Dave; Rusin, Jan; Bailey, Helen

    2010-08-01

    The expansion of offshore renewables has raised concerns over potential disturbance to coastal cetaceans. In this study, we used passive acoustic monitoring to assess whether cetaceans responded to pile-driving noise during the installation of two 5MW offshore wind turbines off NE Scotland in 2006. Monitoring was carried out at both the turbine site and a control site in 2005, 2006 and 2007. Harbour porpoises occurred regularly around the turbine site in all years, but there was some evidence that porpoises did respond to disturbance from installation activities. We use these findings to highlight how uncertainty over cetacean distribution and the scale of disturbance effects constrains opportunities for B-A-C-I studies. We explore alternative approaches to assessing the impact of offshore wind farm upon cetaceans, and make recommendations for the research and monitoring that will be required to underpin future developments.

  10. Development of short-term forecast quality for new offshore wind farms

    NASA Astrophysics Data System (ADS)

    Kurt, M.; Lange, B.

    2014-06-01

    As the rapid wind power build-out continues, a large number of new wind farms will come online but forecasters and forecasting algorithms have little experience with them. This is a problem for statistical short term forecasts, which must be trained on a long record of historical power production - exactly what is missing for a new farm. Focus of the study was to analyse development of the offshore wind power forecast (WPF) quality from beginning of operation up to one year of operational experience. This paper represents a case study using data of the first German offshore wind farm "alpha ventus" and first German commercial offshore wind farm "Baltic1". The work was carried out with measured data from meteorological measurement mast FINO1, measured power from wind farms and numerical weather prediction (NWP) from the German Weather Service (DWD). This study facilitates to decide the length of needed time series and selection of forecast method to get a reliable WPF on a weekly time axis. Weekly development of WPF quality for day-ahead WPF via different models is presented. The models are physical model; physical model extended with a statistical correction (MOS) and artificial neural network (ANN) as a pure statistical model. Selforganizing map (SOM) is investigated for a better understanding of uncertainties of forecast error.

  11. Simulation-Length Requirements in the Loads Analysis of Offshore Floating Wind Turbines: Preprint

    SciTech Connect

    Haid, L.; Stewart, G.; Jonkman, J.; Robertson, A.; Lackner, M.; Matha, D.

    2013-06-01

    The goal of this paper is to examine the appropriate length of a floating offshore wind turbine (FOWT) simulation - a fundamental question that needs to be answered to develop design requirements. To examine this issue, a loads analysis of an example FOWT was performed in FAST with varying simulation lengths. The offshore wind system used was the OC3-Hywind spar buoy, which was developed for use in the International Energy Agency Code Comparison Collaborative Project and supports NREL's offshore 5-megawatt baseline turbine. Realistic metocean data from the National Oceanic and Atmospheric Administration and repeated periodic wind files were used to excite the structure. The results of the analysis clearly show that loads do not increase for longer simulations. In regards to fatigue, a sensitivity analysis shows that the procedure used for counting half cycles is more important than the simulation length itself. Based on these results, neither the simulation length nor the periodic wind files affect response statistics and loads for FOWTs (at least for the spar studied here); a result in contrast to the offshore oil and gas industry, where running simulations of at least 3 hours in length is common practice.

  12. Low-Hysteresis Flow-Through Wind-Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Kunz, N.; Luna, P. M.; Roberts, A. C.; Smith, R. C.; Horne, W. L.; Smith, K. M.

    1992-01-01

    Improved flow-through wind-tunnel balance includes features minimizing both spurious force readings caused by internal pressurized flow and mechanical hysteresis. Symmetrical forces caused by internal flow cancelled.

  13. Estimating the Power Characteristics of Clusters of Large Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Drew, D.; Barlow, J. F.; Coceal, O.; Coker, P.; Brayshaw, D.; Lenaghan, D.

    2014-12-01

    The next phase of offshore wind projects in the UK focuses on the development of very large wind farms clustered within several allocated zones. However, this change in the distribution of wind capacity brings uncertainty for the operational planning of the power system. Firstly, there are concerns that concentrating large amounts of capacity in one area could reduce some of the benefits seen by spatially dispersing the turbines, such as the smoothing of the power generation variability. Secondly, wind farms of the scale planned are likely to influence the boundary layer sufficiently to impact the performance of adjacent farms, therefore the power generation characteristics of the clusters are largely unknown. The aim of this study is to use the Weather Research and Forecasting (WRF) model to investigate the power output of a cluster of offshore wind farms for a range of extreme events, taking into account the wake effects of the individual turbines and the neighbouring farms. Each wind farm in the cluster is represented as an elevated momentum sink and a source of turbulent kinetic energy using the WRF Wind Farm Parameterization. The research focuses on the Dogger Bank zone (located in the North Sea approximately 125 km off the East coast of the UK), which could have 7.2 GW of installed capacity across six separate wind farms. For this site, a 33 year reanalysis data set (MERRA, from NASA-GMAO) has been used to identify a series of extreme event case studies. These are characterised by either periods of persistent low (or high) wind speeds, or by rapid changes in power output. The latter could be caused by small changes in the wind speed inducing large changes in power output, very high winds prompting turbine shut down, or a change in the wind direction which shifts the wake effects of the neighbouring farms in the cluster and therefore changes the wind resource available.

  14. Shaking table test and numerical analysis of offshore wind turbine tower systems controlled by TLCD

    NASA Astrophysics Data System (ADS)

    Chen, Jianbing; Liu, Youkun; Bai, Xueyuan

    2015-03-01

    A wind turbine system equipped with a tuned liquid column damper (TLCD) is comprehensively studied via shaking table tests using a 1/13-scaled model. The effects of wind and wave actions are considered by inputting response-equivalent accelerations on the shaking table. The test results show that the control effect of the TLCD system is significant in reducing the responses under both wind-wave equivalent loads and ground motions, but obviously varies for different inputs. Further, a blade-hub-tower integrated numerical model for the wind turbine system is established. The model is capable of considering the rotational effect of blades by combining Kane's equation with the finite element method. The responses of the wind tower equipped with TLCD devices are numerically obtained and compared to the test results, showing that under both controlled and uncontrolled conditions with and without blades' rotation, the corresponding responses exhibit good agreement. This demonstrates that the proposed numerical model performs well in capturing the wind-wave coupled response of the offshore wind turbine systems under control. Both numerical and experimental results show that the TLCD system can significantly reduce the structural response and thus improve the safety and serviceability of the offshore wind turbine tower systems. Additional issues that require further study are discussed.

  15. Aspects of structural health and condition monitoring of offshore wind turbines.

    PubMed

    Antoniadou, I; Dervilis, N; Papatheou, E; Maguire, A E; Worden, K

    2015-02-28

    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector.

  16. Aspects of structural health and condition monitoring of offshore wind turbines

    PubMed Central

    Antoniadou, I.; Dervilis, N.; Papatheou, E.; Maguire, A. E.; Worden, K.

    2015-01-01

    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector. PMID:25583864

  17. Optimisation and evaluation of pre-design models for offshore wind turbines with jacket support structures and their influence on integrated load simulations

    NASA Astrophysics Data System (ADS)

    Schafhirt, S.; Kaufer, D.; Cheng, P. W.

    2014-12-01

    In recent years many advanced load simulation tools, allowing an aero-servo-hydroelastic analyses of an entire offshore wind turbine, have been developed and verified. Nowadays, even an offshore wind turbine with a complex support structure such as a jacket can be analysed. However, the computational effort rises significantly with an increasing level of details. This counts especially for offshore wind turbines with lattice support structures, since those models do naturally have a higher number of nodes and elements than simpler monopile structures. During the design process multiple load simulations are demanded to obtain an optimal solution. In the view of pre-design tasks it is crucial to apply load simulations which keep the simulation quality and the computational effort in balance. The paper will introduce a reference wind turbine model consisting of the REpower5M wind turbine and a jacket support structure with a high level of detail. In total twelve variations of this reference model are derived and presented. Main focus is to simplify the models of the support structure and the foundation. The reference model and the simplified models are simulated with the coupled simulation tool Flex5-Poseidon and analysed regarding frequencies, fatigue loads, and ultimate loads. A model has been found which reaches an adequate increase of simulation speed while holding the results in an acceptable range compared to the reference results.

  18. Power electronic solutions for interfacing offshore wind turbine generators to medium voltage DC collection grids

    NASA Astrophysics Data System (ADS)

    Daniel, Michael T.

    Here in the early 21st century humanity is continuing to seek improved quality of life for citizens throughout the world. This global advancement is providing more people than ever with access to state-of-the-art services in areas such as transportation, entertainment, computing, communication, and so on. Providing these services to an ever-growing population while considering the constraints levied by continuing climate change will require new frontiers of clean energy to be developed. At the time of this writing, offshore wind has been proven as both a politically and economically agreeable source of clean, sustainable energy by northern European nations with many wind farms deployed in the North, Baltic, and Irish Seas. Modern offshore wind farms are equipped with an electrical system within the farm itself to aggregate the energy from all turbines in the farm before it is transmitted to shore. This collection grid is traditionally a 3-phase medium voltage alternating current (MVAC) system. Due to reactive power and other practical constraints, it is preferable to use a medium voltage direct current (MVDC) collection grid when siting farms >150 km from shore. To date, no offshore wind farm features an MVDC collection grid. However, MVDC collection grids are expected to be deployed with future offshore wind farms as they are sited further out to sea. In this work it is assumed that many future offshore wind farms may utilize an MVDC collection grid to aggregate electrical energy generated by individual wind turbines. As such, this work presents both per-phase and per-pole power electronic converter systems suitable for interfacing individual wind turbines to such an MVDC collection grid. Both interfaces are shown to provide high input power factor at the wind turbine while providing DC output current to the MVDC grid. Common mode voltage stress and circulating currents are investigated, and mitigation strategies are provided for both interfaces. A power sharing

  19. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    DOE PAGES

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; ...

    2017-05-30

    Here, offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s–1 mean wind and 70 m s–1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts in wind directionmore » suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15–50°) suggest that veer should be considered.« less

  20. Gusts and shear within hurricane eyewalls can exceed offshore wind turbine design standards

    NASA Astrophysics Data System (ADS)

    Worsnop, Rochelle P.; Lundquist, Julie K.; Bryan, George H.; Damiani, Rick; Musial, Walt

    2017-06-01

    Offshore wind energy development is underway in the U.S., with proposed sites located in hurricane-prone regions. Turbine design criteria outlined by the International Electrotechnical Commission do not encompass the extreme wind speeds and directional shifts of hurricanes stronger than category 2. We examine a hurricane's turbulent eyewall using large-eddy simulations with Cloud Model 1. Gusts and mean wind speeds near the eyewall of a category 5 hurricane exceed the current Class I turbine design threshold of 50 m s-1 mean wind and 70 m s-1 gusts. Largest gust factors occur at the eye-eyewall interface. Further, shifts in wind direction suggest that turbines must rotate or yaw faster than current practice. Although current design standards omit mention of wind direction change across the rotor layer, large values (15-50°) suggest that veer should be considered.

  1. Computationally Inexpensive Approach for Pitch Control of Offshore Wind Turbine on Barge Floating Platform

    PubMed Central

    Zuo, Shan; Song, Y. D.; Wang, Lei; Song, Qing-wang

    2013-01-01

    Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to load centers and strong wave coupling, this paper proposes a computationally inexpensive robust adaptive control approach with memory-based compensation for blade pitch control. The method is tested and compared with a baseline controller and a conventional individual blade pitch controller with the “NREL offshore 5 MW baseline wind turbine” being mounted on a barge platform run on FAST and Matlab/Simulink, operating in the above-rated condition. It is shown that the advanced control approach is not only robust to complex wind and wave disturbances but adaptive to varying and uncertain system parameters as well. The simulation results demonstrate that the proposed method performs better in reducing power fluctuations, fatigue loads and platform vibration as compared to the conventional individual blade pitch control. PMID:24453834

  2. Gis-Based Wind Farm Site Selection Model Offshore Abu Dhabi Emirate, Uae

    NASA Astrophysics Data System (ADS)

    Saleous, N.; Issa, S.; Mazrouei, J. Al

    2016-06-01

    The United Arab Emirates (UAE) government has declared the increased use of alternative energy a strategic goal and has invested in identifying and developing various sources of such energy. This study aimed at assessing the viability of establishing wind farms offshore the Emirate of Abu Dhabi, UAE and to identify favourable sites for such farms using Geographic Information Systems (GIS) procedures and algorithms. Based on previous studies and on local requirements, a set of suitability criteria was developed including ocean currents, reserved areas, seabed topography, and wind speed. GIS layers were created and a weighted overlay GIS model based on the above mentioned criteria was built to identify suitable sites for hosting a new offshore wind energy farm. Results showed that most of Abu Dhabi offshore areas were unsuitable, largely due to the presence of restricted zones (marine protected areas, oil extraction platforms and oil pipelines in particular). However, some suitable sites could be identified, especially around Delma Island and North of Jabal Barakah in the Western Region. The environmental impact of potential wind farm locations and associated cables on the marine ecology was examined to ensure minimal disturbance to marine life. Further research is needed to specify wind mills characteristics that suit the study area especially with the presence of heavy traffic due to many oil production and shipping activities in the Arabian Gulf most of the year.

  3. Computationally inexpensive approach for pitch control of offshore wind turbine on barge floating platform.

    PubMed

    Zuo, Shan; Song, Y D; Wang, Lei; Song, Qing-wang

    2013-01-01

    Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to load centers and strong wave coupling, this paper proposes a computationally inexpensive robust adaptive control approach with memory-based compensation for blade pitch control. The method is tested and compared with a baseline controller and a conventional individual blade pitch controller with the "NREL offshore 5 MW baseline wind turbine" being mounted on a barge platform run on FAST and Matlab/Simulink, operating in the above-rated condition. It is shown that the advanced control approach is not only robust to complex wind and wave disturbances but adaptive to varying and uncertain system parameters as well. The simulation results demonstrate that the proposed method performs better in reducing power fluctuations, fatigue loads and platform vibration as compared to the conventional individual blade pitch control.

  4. Changing vessel routes could significantly reduce the cost of future offshore wind projects.

    PubMed

    Samoteskul, Kateryna; Firestone, Jeremy; Corbett, James; Callahan, John

    2014-08-01

    With the recent emphasis on offshore wind energy Coastal and Marine Spatial Planning (CMSP) has become one of the main frameworks used to plan and manage the increasingly complex web of ocean and coastal uses. As wind development becomes more prevalent, existing users of the ocean space, such as commercial shippers, will be compelled to share their historically open-access waters with these projects. Here, we demonstrate the utility of using cost-effectiveness analysis (CEA) to support siting decisions within a CMSP framework. In this study, we assume that large-scale offshore wind development will take place in the US Mid-Atlantic within the next decades. We then evaluate whether building projects nearshore or far from shore would be more cost-effective. Building projects nearshore is assumed to require rerouting of the commercial vessel traffic traveling between the US Mid-Atlantic ports by an average of 18.5 km per trip. We focus on less than 1500 transits by large deep-draft vessels. We estimate that over 29 years of the study, commercial shippers would incur an additional $0.2 billion (in 2012$) in direct and indirect costs. Building wind projects closer to shore where vessels used to transit would generate approximately $13.4 billion (in 2012$) in savings. Considering the large cost savings, modifying areas where vessels transit needs to be included in the portfolio of policies used to support the growth of the offshore wind industry in the US.

  5. Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Ernst, Benedikt; Schmitt, Henning; Seume, Jörg R.

    2014-12-01

    Offshore wind turbines operate in a complex unsteady flow environment which causes unsteady aerodynamic loads. The unsteady flow environment is characterized by a high degree of uncertainty. In addition, geometry variations and material imperfections also cause uncertainties in the design process. Probabilistic design methods consider these uncertainties in order to reach acceptable reliability and safety levels for offshore wind turbines. Variations of the rotor blade geometry influence the aerodynamic loads which also affect the reliability of other wind turbine components. Therefore, the present paper is dealing with geometric uncertainties of the rotor blades. These can arise from manufacturing tolerances and operational wear of the blades. First, the effect of geometry variations of wind turbine airfoils on the lift and drag coefficients are investigated using a Latin hypercube sampling. Then, the resulting effects on the performance and the blade loads of an offshore wind turbine are analyzed. The variations of the airfoil geometry lead to a significant scatter of the lift and drag coefficients which also affects the damage-equivalent flapwise bending moments. In contrast to that, the effects on the power and the annual energy production are almost negligible with regard to the assumptions made.

  6. 2014 U.S. Offshore Wind Market Report: Industry Trends, Technology Advancement, and Cost Reduction

    SciTech Connect

    Smith, Aaron; Stehly, Tyler; Walter Musial

    2015-09-29

    2015 has been an exciting year for the U.S. offshore wind market. After more than 15 years of development work, the U.S. has finally hit a crucial milestone; Deepwater Wind began construction on the 30 MW Block Island Wind Farm (BIWF) in April. A number of other promising projects, however, have run into economic, legal, and political headwinds, generating much speculation about the future of the industry. This slow, and somewhat painful, start to the industry is not without precedent; each country in northern Europe began with pilot-scale, proof-of-concept projects before eventually moving to larger commercial scale installations. Now, after more than a decade of commercial experience, the European industry is set to achieve a new deployment record, with more than 4 GW expected to be commissioned in 2015, with demonstrable progress towards industry-wide cost reduction goals. DWW is leveraging 25 years of European deployment experience; the BIWF combines state-of-the-art technologies such as the Alstom 6 MW turbine with U.S. fabrication and installation competencies. The successful deployment of the BIWF will provide a concrete showcase that will illustrate the potential of offshore wind to contribute to state, regional, and federal goals for clean, reliable power and lasting economic development. It is expected that this initial project will launch the U.S. industry into a phase of commercial development that will position offshore wind to contribute significantly to the electric systems in coastal states by 2030.

  7. NREL/University of Delaware Offshore Wind R&D Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-10-393

    SciTech Connect

    Musial, Walt

    2015-11-12

    Specifically, the work under this CRADA includes, but is not limited to, the development of test procedures for an offshore test site in Delaware waters; testing of installed offshore wind turbines; performance monitoring of those turbines; and a program of research and development on offshore wind turbine blades, components, coatings, foundations, installation and construction of bottom-fixed structures, environmental impacts, policies, and more generally on means to enhance the reliability, facilitate permitting, and reduce costs for offshore wind turbines. This work will be conducted both at NREL's National Wind Technology Center and participant facilities, as well as the established offshore wind test sites.

  8. Validation of the Mann spectral tensor for offshore wind conditions at different atmospheric stabilities

    NASA Astrophysics Data System (ADS)

    de Maré, Martin; Mann, Jakob

    2014-06-01

    Simulated wind fields are very useful when predicting loads on structures subjected to turbulent winds, wind turbines being a prime example. Knowledge of statistical properties such as the spatial and temporal correlations of real turbulent wind fields increases the realism of the simulated simulated wind fields. The statistical properties of real turbulent wind fields have been shown to depend on quantities such as the surface roughness, the mean wind speed, measurement height and atmospheric stability. The Mann spectral tensor attempts to predict all spatial correlations of shear generated turbulence given only three input parameters. The most suitable such input values have been investigated for different onshore surface roughnesses, but so far not for typical offshore conditions. The meteorological mast at the Rødsand II offshore wind farm has among other instruments sonic anemometers mounted at 15, 40 and 57 meters above sea level. Wind speed spectra at the three heights are calculated and binned with respect to both wind speed and atmospheric stability. The three parameters of the Mann spectral tensor are determined to ensure best fit to the spectra of each of the bins and are presented as a function of mean wind speed, measurement height and atmospheric stability. The behaviour of the presented parameters values are largely consistent with the previous onshore results. The parameter values are also compared to potentially related quantities and a constant quantity is derived. Given optimal parameters the spectral tensor is found to reproduce the surface layer generated turbulence well, also for different atmospheric stabilities, however in the wind speed spectra a contribution from the very large scale quasi-geostrophic turbulence is also observed, a contribution the spectral tensor does not attempt to model.

  9. Application of two passive strategies on the load mitigation of large offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Shirzadeh, Rasoul; Kühn, Martin

    2016-09-01

    This study presents the numerical results of two passive strategies to reduce the support structure loads of a large offshore wind turbine. In the first approach, an omnidirectional tuned mass damper is designed and implemented in the tower top to alleviate the structural vibrations. In the second approach, a viscous fluid damper model which is diagonally attached to the tower at two points is developed. Aeroelastic simulations are performed for the offshore 10MW INNWIND.EU reference wind turbine mounted on a jacket structure. Lifetime damage equivalent loads are evaluated at the tower base and compared with those for the reference wind turbine. The results show that the integrated design can extend the lifetime of the support structure.

  10. Offshore Wind Guidance Document: Oceanography and Sediment Stability (Version 1) Development of a Conceptual Site Model.

    SciTech Connect

    Roberts, Jesse D.; Jason Magalen; Craig Jones

    2014-06-01

    This guidance document provide s the reader with an overview of the key environmental considerations for a typical offshore wind coastal location and the tools to help guide the reader through a thoro ugh planning process. It will enable readers to identify the key coastal processes relevant to their offshore wind site and perform pertinent analysis to guide siting and layout design, with the goal of minimizing costs associated with planning, permitting , and long - ter m maintenance. The document highlight s site characterization and assessment techniques for evaluating spatial patterns of sediment dynamics in the vicinity of a wind farm under typical, extreme, and storm conditions. Finally, the document des cribe s the assimilation of all of this information into the conceptual site model (CSM) to aid the decision - making processes.

  11. Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.

    2013-12-01

    The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of

  12. Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.

    2011-12-01

    The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of

  13. Seasonal and annual variability of the global onshore and offshore wind power resource at 100 m

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Jacobson, M. Z.

    2010-12-01

    We present the results of numerical simulations of the global wind power potential over land and offshore with a coupled climate-meteorological-air pollution model, GATOR-GCMOM, that dynamically calculates wind power at the 100-m hub height of a modern 5 MW wind turbine at each time step. The model was run at various horizontal resolutions (4x5, 2x2.5, and 1.5x1.5 degrees of latitude and longitude) and with various initial conditions (summer or winter) for at least four years each. The global delivered wind power potential at 100 m at fast-wind locations (≥7 m/s) over land, excluding both polar regions, is found to be 138-150 TW (TW=1012 Watts) on average. This result further supports previous observation-based estimates of 72 TW at 80 m and model-based estimates of 79-126 TW at 100 m. Seasonal variations are however significant, with values as low as 94-102 TW in June-July-August (JJA) to 218-246 TW in December-January-February (DJF), with minima in September and maxima in January in all simulations. Global wind power over land at fast-wind locations during DJF is 1.6-2.5 times greater than that during JJA on average. Furthermore, the average wind power over land in the Northern Hemisphere (NH) is ˜126 TW, over 5 times greater than the Southern Hemisphere (SH) average (˜24 TW). In December, the NH wind power over land is up to 32 times greater than that in the SH. This suggests that the two hemispheres have different wind resources, driven by the different distributions of land and ocean areas. The offshore delivered wind power potential (excluding polar regions) is 15-23 TW at 100 m on average, consistent with previous estimates of 18-21 TW, varying between 16-17 and 19-31 TW from JJA to DJF. Wind power over land and near shore in fast-wind locations (which are 7-8% of the total land excluding polar regions) represents 7-10% of the theoretical global wind power over land plus ocean at all wind speeds of ˜1700 TW. Available wind power over land and near shore

  14. Electric power from offshore wind via synoptic-scale interconnection

    PubMed Central

    Kempton, Willett; Pimenta, Felipe M.; Veron, Dana E.; Colle, Brian A.

    2010-01-01

    World wind power resources are abundant, but their utilization could be limited because wind fluctuates rather than providing steady power. We hypothesize that wind power output could be stabilized if wind generators were located in a meteorologically designed configuration and electrically connected. Based on 5 yr of wind data from 11 meteorological stations, distributed over a 2,500 km extent along the U.S. East Coast, power output for each hour at each site is calculated. Each individual wind power generation site exhibits the expected power ups and downs. But when we simulate a power line connecting them, called here the Atlantic Transmission Grid, the output from the entire set of generators rarely reaches either low or full power, and power changes slowly. Notably, during the 5-yr study period, the amount of power shifted up and down but never stopped. This finding is explained by examining in detail the high and low output periods, using reanalysis data to show the weather phenomena responsible for steady production and for the occasional periods of low power. We conclude with suggested institutions appropriate to create and manage the power system analyzed here. PMID:20368464

  15. Electric power from offshore wind via synoptic-scale interconnection.

    PubMed

    Kempton, Willett; Pimenta, Felipe M; Veron, Dana E; Colle, Brian A

    2010-04-20

    World wind power resources are abundant, but their utilization could be limited because wind fluctuates rather than providing steady power. We hypothesize that wind power output could be stabilized if wind generators were located in a meteorologically designed configuration and electrically connected. Based on 5 yr of wind data from 11 meteorological stations, distributed over a 2,500 km extent along the U.S. East Coast, power output for each hour at each site is calculated. Each individual wind power generation site exhibits the expected power ups and downs. But when we simulate a power line connecting them, called here the Atlantic Transmission Grid, the output from the entire set of generators rarely reaches either low or full power, and power changes slowly. Notably, during the 5-yr study period, the amount of power shifted up and down but never stopped. This finding is explained by examining in detail the high and low output periods, using reanalysis data to show the weather phenomena responsible for steady production and for the occasional periods of low power. We conclude with suggested institutions appropriate to create and manage the power system analyzed here.

  16. Structural health and prognostics management for the enhancement of offshore wind turbine operations and maintenance strategies

    DOE PAGES

    Griffith, D. Todd; Yoder, Nathanael C.; Resor, Brian; ...

    2013-09-19

    Offshore wind turbines are an attractive source for clean and renewable energy for reasons including their proximity to population centers and higher capacity factors. One obstacle to the more widespread installation of offshore wind turbines in the USA, however, is that recent projections of offshore operations and maintenance costs vary from two to five times the land-based costs. One way in which these costs could be reduced is through use of a structural health and prognostics management (SHPM) system as part of a condition-based maintenance paradigm with smart loads management. Our paper contributes to the development of such strategies bymore » developing an initial roadmap for SHPM, with application to the blades. One of the key elements of the approach is a multiscale simulation approach developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. A case study of a trailing edge disbond is analysed to demonstrate the multiscale sensitivity of damage approach and to show the potential life extension and increased energy capture that can be achieved using simple changes in the overall turbine control and loads management strategy. Finally, the integration of health monitoring information, economic considerations such as repair costs versus state of health, and a smart loads management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.« less

  17. Structural health and prognostics management for the enhancement of offshore wind turbine operations and maintenance strategies

    SciTech Connect

    Griffith, D. Todd; Yoder, Nathanael C.; Resor, Brian; White, Jonathan; Paquette, Joshua

    2013-09-19

    Offshore wind turbines are an attractive source for clean and renewable energy for reasons including their proximity to population centers and higher capacity factors. One obstacle to the more widespread installation of offshore wind turbines in the USA, however, is that recent projections of offshore operations and maintenance costs vary from two to five times the land-based costs. One way in which these costs could be reduced is through use of a structural health and prognostics management (SHPM) system as part of a condition-based maintenance paradigm with smart loads management. Our paper contributes to the development of such strategies by developing an initial roadmap for SHPM, with application to the blades. One of the key elements of the approach is a multiscale simulation approach developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. A case study of a trailing edge disbond is analysed to demonstrate the multiscale sensitivity of damage approach and to show the potential life extension and increased energy capture that can be achieved using simple changes in the overall turbine control and loads management strategy. Finally, the integration of health monitoring information, economic considerations such as repair costs versus state of health, and a smart loads management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

  18. Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE: Preprint

    SciTech Connect

    Sethuraman, Latha; Maness, Michael; Dykes, Katherine

    2017-01-01

    Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation and maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy

  19. An integrated methodology on the suitability of offshore sites for wind farm development

    NASA Astrophysics Data System (ADS)

    Patlakas, Platon; Galanis, George; Péray, Marie; Filipot, Jean-François; Kalogeri, Christina; Spyrou, Christos; Diamantis, Dimitris; Kallos, Gerorge

    2016-04-01

    During, the last decades the potential and interest in wind energy investments has been constantly increasing in the European countries. As technology changes rapidly, more and more areas can be identified as suitable for energy applications. Offshore wind farms perfectly illustrate how new technologies allow to build bigger, more efficient and resistant in extreme conditions wind power plants. The current work proposes an integrated methodology to determine the suitability of an offshore marine area for the development of wind farm structures. More specifically, the region of interest is evaluated based both on the natural resources, connected to the local environmental characteristics, and potential constrains set by anthropogenic or other activities. State of the art atmospheric and wave models and a 10-year hindcast database are utilized in conjunction with local information for a number of potential constrains, leading to a 5-scale suitability index for the whole area. In this way, sub regions are characterized, at a high resolution mode, as poorly or highly suitable for wind farm development, providing a new tool for technical/research teams and decision makers. In addition, extreme wind and wave conditions and their 50-years return period are analyzed and used to define the safety level of the wind farms structural characteristics.

  20. Carolina Offshore Wind Integration Case Study: Phases I and II Final Technical Report

    SciTech Connect

    Fallon, Christopher; Piper, Orvane; Hazelip, William; Zhao, Yishan; Salvador, Lisa; Pruitt, Tom; Peterson, Jeffrey; Ashby, Rebecca; Pierce, Bob; Burner, Bob; Daniel, John; Zhu, Jinxiang; Moore, Maria; Liu, Shu; Pennock, Ken; Frank, Jaclyn; Ibanez, Eduardo; Heaney, Michael; Bloom, Aaron; Zhang, Yingchen; Elliott, Dennis; Seim, Harvey E.

    2015-04-30

    Duke Energy performed a phase 1 study to assess the impact of offshore wind development in the waters off the coasts of North Carolina and South Carolina. The study analyzed the impacts to the Duke Energy Carolinas electric power system of multiple wind deployment scenarios. Focusing on an integrated utility system in the Carolinas provided a unique opportunity to assess the impacts of offshore wind development in a region that has received less attention regarding renewables than others in the US. North Carolina is the only state in the Southeastern United States that currently has a renewable portfolio standard (RPS) which requires that 12.5% of the state’s total energy requirements be met with renewable resources by 2021. 12.5% of the state’s total energy requirements in 2021 equates to approximately 17,000 GWH of energy needed from renewable resources. Wind resources represent one of the ways to potentially meet this requirement. The study builds upon and augments ongoing work, including a study by UNC to identify potential wind development sites and the analysis of impacts to the regional transmission system performed by the NCTPC, an Order 890 planning entity of which DEC is a member. Furthermore, because the region does not have an independent system operator (ISO) or regional transmission organization (RTO), the study will provide additional information unique to non-RTO/ISO systems. The Phase 2 study builds on the results of Phase 1 and investigates the dynamic stability of the electrical network in Task 4, the operating characteristics of the wind turbines as they impact operating reserve requirements of the DEC utility in Task 5, and the production cost of integrating the offshore wind resources into the DEC generation fleet making comparisons to future planned operation without the addition of the wind resources in Task 6.

  1. Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint

    SciTech Connect

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.

  2. New Approaches To Off-Shore Wind Energy Management Exploiting Satellite EO Data

    NASA Astrophysics Data System (ADS)

    Morelli, Marco; Masini, Andrea; Venafra, Sara; Potenza, Marco Alberto Carlo

    2013-12-01

    Wind as an energy resource has been increasingly in focus over the past decades, starting with the global oil crisis in the 1970s. The possibility of expanding wind power production to off-shore locations is attractive, especially in sites where wind levels tend to be higher and more constant. Off-shore high-potential sites for wind energy plants are currently being looked up by means of wind atlases, which are essentially based on NWP (Numerical Weather Prediction) archive data and that supply information with low spatial resolution and very low accuracy. Moreover, real-time monitoring of active off- shore wind plants is being carried out using in-situ installed anemometers, that are not very reliable (especially on long time periods) and that should be periodically substituted when malfunctions or damages occur. These activities could be greatly supported exploiting archived and near real-time satellite imagery, that could provide accurate, global coverage and high spatial resolution information about both averaged and near real-time off-shore windiness. In this work we present new methodologies aimed to support both planning and near-real-time monitoring of off-shore wind energy plants using satellite SAR(Synthetic Aperture Radar) imagery. Such methodologies are currently being developed in the scope of SATENERG, a research project funded by ASI (Italian Space Agency). SAR wind data are derived from radar backscattering using empirical geophysical model functions, thus achieving greater accuracy and greater resolution with respect to other wind measurement methods. In detail, we calculate wind speed from X-band and C- band satellite SAR data, such as Cosmo-SkyMed (XMOD2) and ERS and ENVISAT (CMOD4) respectively. Then, using also detailed models of each part of the wind plant, we are able to calculate the AC power yield expected behavior, which can be used to support either the design of potential plants (using historical series of satellite images) or the

  3. 78 FR 59968 - Potential Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore Oregon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... wind energy development on the OCS offshore Oregon in the area described in this notice; and (3... consequences of wind energy development in the area, and the multiple uses of the area. On May 15, 2013, BOEM... interest. BOEM is soliciting submissions of interest in commercial wind energy development with this notice...

  4. 76 FR 22130 - Commercial Leasing for Wind Power on the Outer Continental Shelf Offshore New Jersey-Call for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... nominations for one or more commercial leases for the construction of a wind energy project(s) on the Outer... consultation with the BOEMRE/New Jersey Renewable Energy Task Force and has been identified as a Wind Energy... the Start'' offshore wind energy initiative. A detailed description of the area and its development is...

  5. 78 FR 8190 - Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore North Carolina...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... Bureau of Ocean Energy Management Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS... Information and Nominations for Commercial Leasing for Wind Power Offshore North Carolina (Call), published on... obtaining a commercial wind lease in one or more, or any portion of, the Call Areas, postmarked by March 7...

  6. Model test of new floating offshore wind turbine platforms

    NASA Astrophysics Data System (ADS)

    Shin, Hyunkyoung; Dam, Pham Thanh; Jung, Kwang Jin; Song, inseob; Rim, Chaewhan; Chung, Taeyoung

    2013-06-01

    This paper presents the model test results of 3 new spar platforms which were developed based on the OC3-Hywind spar to support a 5-MW wind turbine. By changing the shape but keeping both volume and mass of OC3- Hywind spar platform, those platforms were expected to experience different hydrodynamic and hydrostatic loads. The scale models were built with a 1/128 scale ratio. The model tests were carried out in waves, including both rotating rotor effect and mean wind speed. The characteristic motions of the 3 new models were measured; Response Amplitude Operators (RAO) and significant motions were calculated and compared with those of OC3-Hywind.

  7. Modelling impacts of offshore wind farms on trophic web: the Courseulles-sur-Mer case study

    NASA Astrophysics Data System (ADS)

    Raoux, Aurore; Pezy, Jean-Philippe; Dauvin, Jean-Claude; Tecchio, samuele; Degraer, Steven; Wilhelmsson, Dan; Niquil, Nathalie

    2016-04-01

    The French government is planning the construction of three offshore wind farms in Normandy. These offshore wind farms will integrate into an ecosystem already subject to a growing number of anthropogenic disturbances such as transportation, fishing, sediment deposit, and sediment extraction. The possible effects of this cumulative stressors on ecosystem functioning are still unknown, but they could impact their resilience, making them susceptible to changes from one stable state to another. Understanding the behaviour of these marine coastal complex systems is essential in order to anticipate potential state changes, and to implement conservation actions in a sustainable manner. Currently, there are no global and integrated studies on the effects of construction and exploitation of offshore wind farms. Moreover, approaches are generally focused on the conservation of some species or groups of species. Here, we develop a holistic and integrated view of ecosystem impacts through the use of trophic webs modelling tools. Trophic models describe the interaction between biological compartments at different trophic levels and are based on the quantification of flow of energy and matter in ecosystems. They allow the application of numerical methods for the characterization of emergent properties of the ecosystem, also called Ecological Network Analysis (ENA). These indices have been proposed as ecosystem health indicators as they have been demonstrated to be sensitive to different impacts on marine ecosystems. We present here in detail the strategy for analysing the potential environmental impacts of the construction of the Courseulles-sur-Mer offshore wind farm (Bay of Seine) such as the reef effect through the use of the Ecopath with Ecosim software. Similar Ecopath simulations will be made in the future on the Le Tréport offshore wind farm site. Results will contribute to a better knowledge of the impacts of the offshore wind farms on ecosystems. They also allow to

  8. US East Coast offshore wind energy resources and their relationship to time-varying electricity demand

    NASA Astrophysics Data System (ADS)

    Dvorak, M. J.; Corcoran, B. A.; Ten Hoeve, J. E.; Jacobson, M. Z.; McIntyre, N.

    2011-12-01

    This study characterizes the annual-mean US East Coast (USEC) offshore wind energy (OWE) resource based on 5 years of skillful, high resolution mesoscale model (WRF-ARW) results at the turbine hub height of 90 m. Model output was validated buoys and offshore towers, which provides insight into the relative errors of forecasting winds in the region. The most suitable locations for OWE are prescribed, based on their wind resource, shallow bathymetry, low hurricane risk, and peak-power generation potential. The offshore region from Maine to Virginia was found to have exceptional overall resource the best wind resource, shallow water, and low hurricane risk. The region east of Long Island, NY to Cape Cod, MA has the best summertime peak resource, due to regional upwelling that often strengthens the sea breeze. Overall, the resource from Maine to Florida out to 200-m depth, using turbine capacity factor cutoffs of 45% and 40% is between 1175-1672 TWh (134-191 GW avg.). Between 30-42% of the electricity demand for the entire US (2009) could be provided using USEC OWE alone and 93-133% of Maine to Florida (2008) demand.

  9. Risk formulation for the sonic effects of offshore wind farms on fish in the EU region.

    PubMed

    Kikuchi, Ryunosuke

    2010-02-01

    In 2007, European leaders agreed to source 20% of their energy needs from renewable energy; since that time, offshore wind farms have been receiving attention in the European Union (EU). In 2008, the European Community submitted a proposal to the United Nations Environment Program (UNEP) in order to combat marine noise pollution. In consideration of these facts, the present paper aims to deduce a preliminary hypothesis and its formulation for the effect of offshore wind farm noise on fish. The following general picture is drawn: the short-term potential impact during pre-construction; the short-term intensive impact during construction; and the physiological and/or masking effects that may occur over a long period while the wind farm is in operation. The EU's proposal to UNEP includes noise databases that list the origins of man-made sounds; it is advisable that offshore wind farms should be listed in the noise databases in order to promote rational environment management. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Modeling and simulation of offshore wind farm O&M processes

    SciTech Connect

    Joschko, Philip; Widok, Andi H.; Appel, Susanne; Greiner, Saskia; Albers, Henning; Page, Bernd

    2015-04-15

    This paper describes a holistic approach to operation and maintenance (O&M) processes in the domain of offshore wind farm power generation. The acquisition and process visualization is followed by a risk analysis of all relevant processes. Hereafter, a tool was designed, which is able to model the defined processes in a BPMN 2.0 notation, as well as connect and simulate them. Furthermore, the notation was enriched with new elements, representing other relevant factors that were, to date, only displayable with much higher effort. In that regard a variety of more complex situations were integrated, such as for example new process interactions depending on different weather influences, in which case a stochastic weather generator was combined with the business simulation or other wind farm aspects important to the smooth running of the offshore wind farms. In addition, the choices for different methodologies, such as the simulation framework or the business process notation will be presented and elaborated depending on the impact they had on the development of the approach and the software solution. - Highlights: • Analysis of operation and maintenance processes of offshore wind farms • Process modeling with BPMN 2.0 • Domain-specific simulation tool.

  11. Simulation of an offshore wind farm using fluid power for centralized electricity generation

    NASA Astrophysics Data System (ADS)

    Jarquin-Laguna, A.

    2016-09-01

    A centralized approach for electricity generation within a wind farm is explored through the use of fluid power technology. This concept considers a new way of generation, collection and transmission of wind energy inside a wind farm, in which electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A numerical model was developed to capture the relevant physics from the dynamic interaction between different turbines coupled to a common hydraulic network and controller. This paper presents two examples of the time-domain simulation results for an hypothetical hydraulic wind farm subject to turbulent wind conditions. The performance and operational parameters of individual turbines are compared with those of a reference wind farm with conventional technology turbines, using the same wind farm layout and environmental conditions. For the presented case study, results indicate that the individual wind turbines are able to operate within operational limits with the current pressure control concept. Despite the stochastic turbulent wind input and wake effects, the hydraulic wind farm is able to produce electricity with reasonable performance in both below and above rated conditions.

  12. Structural Health Monitoring challenges on the 10-MW offshore wind turbine model

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, E.; Kosova, G.; Musella, U.; Manzato, S.; Peeters, B.; Marulo, F.; Desmet, W.

    2015-07-01

    The real-time structural damage detection on large slender structures has one of its main application on offshore Horizontal Axis Wind Turbines (HAWT). The renewable energy market is continuously pushing the wind turbine sizes and performances. This is the reason why nowadays offshore wind turbines concepts are going toward a 10 MW reference wind turbine model. The aim of the work is to perform operational analyses on the 10-MW reference wind turbine finite element model using an aeroelastic code in order to obtain long-time-low- cost simulations. The aeroelastic code allows simulating the damages in several ways: by reducing the edgewise/flapwise blades stiffness, by adding lumped masses or considering a progressive mass addiction (i.e. ice on the blades). The damage detection is then performed by means of Operational Modal Analysis (OMA) techniques. Virtual accelerometers are placed in order to simulate real measurements and to estimate the modal parameters. The feasibility of a robust damage detection on the model has been performed on the HAWT model in parked conditions. The situation is much more complicated in case of operating wind turbines because the time periodicity of the structure need to be taken into account. Several algorithms have been implemented and tested in the simulation environment. They are needed in order to carry on a damage detection simulation campaign and develop a feasible real-time damage detection method. In addition to these algorithms, harmonic removal tools are needed in order to dispose of the harmonics due to the rotation.

  13. Building a stakeholder's vision of an offshore wind-farm project: A group modeling approach.

    PubMed

    Château, Pierre-Alexandre; Chang, Yang-Chi; Chen, Hsin; Ko, Tsung-Ting

    2012-03-15

    This paper describes a Group Model Building (GMB) initiative that was designed to discuss the various potential effects that an offshore wind-farm may have on its local ecology and socioeconomic development. The representatives of various organizations in the study area, Lu-Kang, Taiwan, have held several meetings, and structured debates have been organized to promote the emergence of a consensual view on the main issues and their implications. A System Dynamics (SD) model has been built and corrected iteratively with the participants through the GMB process. The diverse interests within the group led the process toward the design of multifunctional wind-farms with different modalities. The scenario analyses, using the SD model under various policies, including no wind-farm policy, objectively articulates the vision of the local stakeholders. The results of the SD simulations show that the multifunctional wind-farms may have superior economic effects and the larger wind-farms with bird corridors could reduce ecological impact. However, the participants of the modeling process did not appreciate any type of offshore wind-farm development when considering all of the identified key factors of social acceptance. The insight gained from the study can provide valuable information to actualize feasible strategies for the green energy technique to meet local expectations.

  14. Effects of wave induced motion on power generation of offshore floating wind farms

    NASA Astrophysics Data System (ADS)

    Shoele, Kourosh

    2014-11-01

    Wind power has been the world's fastest growing energy source for more than a decade. There is a continuous effort to study the potentials of offshore floating wind farms in producing electricity. One of the major technical challenges in studying the performance of offshore floating wind farms is the hydrodynamic and aerodynamic interactions between individual turbines. In this study, a novel approach is presented to study the hydrodynamic interaction between group of floating wind turbines and determine how wave induced motion of the platforms modifies the power generation of the farm. In particular, exact analytical models are presented to solve the hydrodynamic diffraction and radiation problem of a group of floating wind turbine platforms, to model the aerodynamic interaction between turbines, and to quantify the nonlinear dynamic of the mooring lines used to stabilize the floating platforms through connecting them to the seabed. The overall performance of the farm with different configuration and at different wind and wave conditions are investigated and the effects of the sea state condition as well as the distance between the turbines in the farm on the low frequency temporal variation of the power output are discussed.

  15. Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    SciTech Connect

    Ling, Hao; Hamilton, Mark F.; Bhalla, Rajan; Brown, Walter E.; Hay, Todd A.; Whitelonis, Nicholas J.; Yang, Shang-Te; Naqvi, Aale R.

    2013-09-30

    Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

  16. Offshore Wind Farms in the North Sea: Is there an effect on the zooplankton community?

    NASA Astrophysics Data System (ADS)

    Auch, Dominik; Dudeck, Tim; Callies, Ulrich; Riethmüller, Rolf; Hufnagl, Marc; Eckhardt, André; Ove Möller, Klas; Haas, Bianca; Spreitzenbarth, Stefan; van Beusekom, Justus; Walter, Bettina; Temming, Axel; Möllmann, Christian; Floeter, Jens

    2016-04-01

    The climate conference in Paris 2015 has resulted in ambitious goals to mitigate the extent of global climate warming within this century. In Germany, the expansion of renewable energy sources is without any alternative to match the own aims of greenhouse gas reductions. Therefore, in the German EEZ of the North Sea around 10 offshore wind farms (OWFs) are already working and more are currently planned or already under construction. At this already substantial level of offshore wind energy production little is known about the effects of OWFs on the pelagic ecosystem. Earlier investigations have shown an increase of benthic organisms settling on hard substrates provided by the power plant foundations. However, the effects of offshore power plants on lower trophic level organisms within the water column are poorly understood. Thus, we investigated the abundance and distribution of zooplankton within and around OWFs. The analysis was based on optical data derived from a Video Plankton Recorder (VPR). The VPR was mounted on a TRIAXUS system including a suite of different sensors, hence allowing to combine zooplankton information with ambient hydrographic parameters. The combination of the VPR and the TRIAXUS system enabled us to analyse continuous zooplankton and hydrographic data with a high spatial resolution. In this study, we present results of transects through the OWFs Global Tech I, BARD Offshore 1, and Alpha Ventus. The analysis exhibits distinct pattern in the spatial distribution both of physical state variables and of plankton organisms within the vicinity of OWFs, especially of meroplankton, the larval phase of benthic organisms. Keywords: Offshore Wind Farms, Zooplankton, TRIAXUS, Video Plankton Recorder, Meroplankton Corresponding author: Dominik Auch, Institute for Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, 22767 Hamburg, Germany; auch.dominik@web.de

  17. Final Summary Report: Em-Powering Coastal States and Utilities through Model Offshore Wind Legislation and Outreach

    SciTech Connect

    Jeremy Firestone; Dawn Kurtz Crompton

    2011-11-30

    The final summary report summarizes the most significant findings from three project reports detailing: feed-in tariffs, model request for proposals for new generation, and model state offshore wind power legislation.

  18. Comments for the Cape Wind Associates, LLC, Horseshoe Shoal, Nantucket Sound (Offshore Renewable Energy Project/OCS Air Permit)

    EPA Pesticide Factsheets

    List of comments for the Cape Wind Associates, LLC, Horseshoe Shoal, Nantucket Sound (Offshore Renewable Energy Project/OCS Air Permit: Massachusetts Plan Approval including nonattainment NSR Appendix A requirements).

  19. Smart Novel Semi-Active Tuned Mass Damper for Fixed-Bottom and Floating Offshore Wind (Presentation)

    SciTech Connect

    Rodriguez Tsouroukdissian, Arturo

    2016-05-02

    The intention of this paper is to present the results of a novel smart semi-active tuned mass damper (SA-TMD), which mitigates unwanted loads for both fixed-bottom and floating offshore wind systems. (Presentation Format).

  20. Application Documents for the Cape Wind Associates, LLC, Horseshoe Shoal, Nantucket Sound (Offshore Renewable Energy Project/OCS Air Permit)

    EPA Pesticide Factsheets

    List of application documents for the Cape Wind Associates, LLC, Horseshoe Shoal, Nantucket Sound (Offshore Renewable Energy Project/OCS Air Permit: Massachusetts Plan Approval including nonattainment NSR Appendix A requirements).

  1. Integration of offshore wind farms through high voltage direct current networks

    NASA Astrophysics Data System (ADS)

    Livermore, Luke

    The integration of offshore wind farms through Multi Terminal DC (MTDC) networks into the GB network was investigated. The ability of Voltage Source Converter (VSC) High Voltage Direct Current (HVDC) to damp Subsynchronous Resonance (SSR) and ride through onshore AC faults was studied. Due to increased levels of wind generation in Scotland, substantial onshore and offshore reinforcements to the GB transmission network are proposed. Possible inland reinforcements include the use of series compensation through fixed capacitors. This potentially can lead to SSR. Offshore reinforcements are proposed by two HVDC links. In addition to its primary functions of bulk power transmission, a HVDC link can be used to provide damping against SSR, and this function has been modelled. Simulation studies have been carried out in PSCAD. In addition, a real-time hardware-in-the-loop HVDC test rig has been used to implement and validate the proposed damping scheme on an experimental platform. When faults occur within AC onshore networks, offshore MTDC networks are vulnerable to DC overvoltages, potentially damaging the DC plant and cables. Power reduction and power dissipation control systems were investigated to ride through onshore AC faults. These methods do not require dedicated fast communication systems. Simulations and laboratory experiments are carried out to evaluate the control systems, with the results from the two platforms compared..

  2. Fitness to work: a comparison of European guidelines in the offshore wind industry.

    PubMed

    Preisser, Alexandra Marita; McDonough, Rosalie Victoria; Harth, Volker

    2016-01-01

    Occupational medicine must be able to meet the challenges of rapidly changing technologies and innovations, including the implementation of health and safety standards for physically and psychologically demanding work environments. One such challenge is presented by the offshore wind industry. Here, the demand for "Fitness to Work" regulations for potential employees is justified. An appropriate evaluation has to consider the two aspects "fit for task" and "fit for location and conditions". Guidelines for the fitness testing of offshore employees have been created by various national organisations. The guidelines of the industry organisations of the United Kingdom (Oil & Gas UK) and the Netherlands (NOGEPA), as well as the Norwegian Directorate of Health, were developed for employees of offshore oil and gas platforms. In Germany, however, a medical guideline for fitness testing specific to workers in the offshore wind industry has recently been created. Such recommendations should be made on the basis of accident statistics and rescue reports, but there are only limited data available. In this paper, we present, compare and discuss the content and features of the various guidelines, as well as their recommendations for medical assessment.

  3. The importance of ships and spare parts in LCAs of offshore wind power.

    PubMed

    Arvesen, Anders; Birkeland, Christine; Hertwich, Edgar G

    2013-03-19

    We develop and assess life cycle inventories of a conceptual offshore wind farm using a hybrid life cycle assessment (LCA) methodology. Special emphasis is placed on aspects of installation, operation, and maintenance, as these stages have been given only cursory consideration in previous LCAs. The results indicate that previous studies have underestimated the impacts caused by offshore operations and (though less important) exchange of parts. Offshore installation and maintenance activities cause 28% (10 g CO(2)-Eq/kWh) of total greenhouse gas emissions and 31-45% of total impact indicator values at the most (marine eutrophication, acidification, particulates, photochemical ozone). Transport and dumping of rock in installation phase and maintenance of wind turbines in use phase are major contributory activities. Manufacturing of spare parts is responsible for 6% (2 g CO2-Eq/kWh) of greenhouse gas emissions and up to 13% of total impact indicator values (freshwater ecotoxicity). Assumptions on lifetimes, work times for offshore activities and implementation of NOx abatement on vessels are shown to have a significant influence on results. Another source of uncertainty is assumed operating mode data for vessels determining fuel consumption rates.

  4. Spatial-temporal analysis of coherent offshore wind field structures measured by scanning Doppler-lidar

    NASA Astrophysics Data System (ADS)

    Valldecabres, L.; Friedrichs, W.; von Bremen, L.; Kühn, M.

    2016-09-01

    An analysis of the spatial and temporal power fluctuations of a simplified wind farm model is conducted on four offshore wind fields data sets, two from lidar measurements and two from LES under unstable and neutral atmospheric conditions. The integral length scales of the horizontal wind speed computed in the streamwise and the cross-stream direction revealed the elongation of the structures in the direction of the mean flow. To analyse the effect of the structures on the power output of a wind turbine, the aggregated equivalent power of two wind turbines with different turbine spacing in the streamwise and cross-stream direction is analysed at different time scales under 10 minutes. The fact of considering the summation of the power of two wind turbines smooths out the fluctuations of the power output of a single wind turbine. This effect, which is stronger with increasing spacing between turbines, can be seen in the aggregation of the power of two wind turbines in the streamwise direction. Due to the anti-correlation of the coherent structures in the cross-stream direction, this smoothing effect is stronger when the aggregated power is computed with two wind turbines aligned orthogonally to the mean flow direction.

  5. Offshore wind profile measurements using a Doppler LIDAR at the Hazaki Oceanographical Research Station

    NASA Astrophysics Data System (ADS)

    Shimada, Susumu; Ohsawa, Teruo; Ohgishi, Tatsuya; Kikushima, Yoshihiro; Kogaki, Testuya; Kawaguchi, Koji; Nakamura, Satoshi

    2014-08-01

    Vertical wind speed profiles near the coast were observed using a Doppler Light Detection and Ranging (LIDAR) system at the Hazaki Oceanographical Research Station (HORS) from September 17 to 26, 2013. The accuracies of the theoretical wind profile models of the log profile model and the Monin-Obukov similarity (MOS) theory were examined by comparing them to those of the observed wind profiles. As a result, MOS, which takes into account the stability effects during wind profile calculations, successfully estimated the wind profile more accurately than the log profile model when the wind was from a sea sector (from sea to land). Conversely, both models did not estimate the profile adequately when the wind was from a land sector (from land to sea). Moreover, the wind profile for the land sector was found to include an obvious diurnal cycle, which is relevant to the stability change over land. Consequently, it is found that the atmospheric stability plays an important roll to determine the offshore wind speed profiles near the coast for not only the sea sector but also the land sector.

  6. An Assessment of the Economic Potential of Offshore Wind in the United States from 2015 to 2030

    DOE Data Explorer

    Beiter, Philipp; Musial, Walter; Kilcher, Levi; Maness, Michael; Smith, Aaron

    2017-05-24

    Output data from an NREL report entitled "An Assessment of the Economic Potential of Offshore Wind in the United States from 2015 to 2030" (NREL/TP-6A20-67675), which analyzes the spatial variation of levelized cost of energy (LCOE) and levelized avoided cost of energy (LACE) to understand the economic potential of fixed-bottom and floating offshore wind technologies across more than 7,000 U.S. coastal sites between 2015 and 2030.

  7. Offshore Wind Mapping Mediterranean area using SAR. A case study of retrieval around peninsular regions.

    NASA Astrophysics Data System (ADS)

    Calaudi, Rosamaria; Arena, Felice; Badger, Merete; Sempreviva, Anna Maria

    2013-04-01

    Satellite observations like Scatterometers e.g. QuickScat, and Synthetic Aperture Radars (SAR) of the ocean surface provide information about the spatial wind variability over large areas. This is very valuable, for mapping offshore wind resources for offshore wind farm installation, where the most suitable locations within a given region must be identified using at least 5 year wind data over the whole domain. This is a special issue in the Mediterranean, where spatial information is not readily available because buoys or masts are sparse, with long periods of missing data, and measurements represent only one point. Here, we focus on the SAR images that have the advantage of high spatial resolution (down to 100m) allowing to derive information close to the coast but with the disadvantage of low time resolution causing lack of information on regimes with low time scale. We retrieved SAR (ENVISAT ASAR scenes acquired in Wide Swath Mode-WSM-) wind speed in the Mediterranean from March 2002 to April 2012 using the Johns Hopkins University, Applied Physics Laboratory (JHU/APL) software APL/NOAA SAR Wind Retrieval System (ANSWRS version 2.0) (Monaldo 2000; Monaldo et al. 2006). The ANSWRS software produces per default wind speed fields initialized using wind directions determined by the Navy Operational Global Atmospheric Prediction System (NOGAPS) models interpolated in time and space to match the satellite data. NOGAPS data are available at 6-hour intervals mapped to a 1° latitude/longitude grid. Here, we present a case study in Calabria, a long, narrow and mountainous peninsula in South Italy that causes a significant wind conditions variability from one coast to the other. We considered a 10m mast, measuring hourly wind speed and direction located at the coastline at the harbor of the town Crotone, belonging to the marine network of sensors of ISPRA (Institute for Environmental Protection and Research). Three points of the SAR images were chosen at offshore

  8. Joint Offshore Wind Field Monitoring with Spaceborne SAR and Platform-Based Doppler LIDAR Measurements

    NASA Astrophysics Data System (ADS)

    Jacobsen, S.; Lehner, S.; Hieronimus, J.; Schneemann, J.; Kuhn, M.

    2015-04-01

    The increasing demand for renewable energy resources has promoted the construction of offshore wind farms e.g. in the North Sea. While the wind farm layout consists of an array of large turbines, the interrelation of wind turbine wakes with the remaining array is of substantial interest. The downstream spatial evolution of turbulent wind turbine wakes is very complex and depends on manifold parameters such as wind speed, wind direction and ambient atmospheric stability conditions. To complement and validate existing numerical models, corresponding observations are needed. While in-situ measurements with e.g. anemometers provide a time-series at the given location, the merits of ground-based and space- or airborne remote sensing techniques are indisputable in terms of spatial coverage. Active microwave devices, such as Scatterometer and Synthetic Aperture Radar (SAR), have proven their capabilities of providing sea surface wind measurements and particularly SAR images reveal wind variations at a high spatial resolution while retaining the large coverage area. Platform-based Doppler LiDAR can resolve wind fields with a high spatial coverage and repetition rates of seconds to minutes. In order to study the capabilities of both methods for the investigation of small scale wind field structures, we present a direct comparison of observations obtained by high resolution TerraSAR-X (TS-X) X-band SAR data and platform-based LiDAR devices at the North Sea wind farm alpha ventus. We furthermore compare the results with meteorological data from the COSMO-DE model run by the German Weather Service DWD. Our study indicates that the overall agreement between SAR and LiDAR wind fields is good and that under appropriate conditions small scale wind field variations compare significantly well.

  9. OC5 Project Phase Ib: Validation of hydrodynamic loading on a fixed, flexible cylinder for offshore wind applications

    DOE PAGES

    Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.; ...

    2016-10-13

    This paper summarizes the findings from Phase Ib of the Offshore Code Comparison, Collaboration, Continued with Correlation (OC5) project. OC5 is a project run under the International Energy Agency (IEA) Wind Research Task 30, and is focused on validating the tools used for modelling offshore wind systems through the comparison of simulated responses of select offshore wind systems (and components) to physical test data. For Phase Ib of the project, simulated hydrodynamic loads on a flexible cylinder fixed to a sloped bed were validated against test measurements made in the shallow water basin at the Danish Hydraulic Institute (DHI) withmore » support from the Technical University of Denmark (DTU). The first phase of OC5 examined two simple cylinder structures (Phase Ia and Ib) to focus on validation of hydrodynamic models used in the various tools before moving on to more complex offshore wind systems and the associated coupled physics. As a result, verification and validation activities such as these lead to improvement of offshore wind modelling tools, which will enable the development of more innovative and cost-effective offshore wind designs.« less

  10. OC5 Project Phase Ib: Validation of hydrodynamic loading on a fixed, flexible cylinder for offshore wind applications

    SciTech Connect

    Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.; Popko, Wojciech; Borg, Michael; Bredmose, Henrik; Schlutter, Flemming; Qvist, Jacob; Bergua, Roger; Harries, Rob; Yde, Anders; Nygaard, Tor Anders; Vaal, Jacobus Bernardus de; Oggiano, Luca; Bozonnet, Pauline; Bouy, Ludovic; Sanchez, Carlos Barrera; García, Raul Guanche; Bachynski, Erin E.; Tu, Ying; Bayati, Ilmas; Borisade, Friedemann; Shin, Hyunkyoung; van der Zee, Tjeerd; Guerinel, Matthieu

    2016-10-13

    This paper summarizes the findings from Phase Ib of the Offshore Code Comparison, Collaboration, Continued with Correlation (OC5) project. OC5 is a project run under the International Energy Agency (IEA) Wind Research Task 30, and is focused on validating the tools used for modelling offshore wind systems through the comparison of simulated responses of select offshore wind systems (and components) to physical test data. For Phase Ib of the project, simulated hydrodynamic loads on a flexible cylinder fixed to a sloped bed were validated against test measurements made in the shallow water basin at the Danish Hydraulic Institute (DHI) with support from the Technical University of Denmark (DTU). The first phase of OC5 examined two simple cylinder structures (Phase Ia and Ib) to focus on validation of hydrodynamic models used in the various tools before moving on to more complex offshore wind systems and the associated coupled physics. As a result, verification and validation activities such as these lead to improvement of offshore wind modelling tools, which will enable the development of more innovative and cost-effective offshore wind designs.

  11. Investigation of sonar transponders for offshore wind farms: modeling approach, experimental setup, and results.

    PubMed

    Fricke, Moritz B; Rolfes, Raimund

    2013-11-01

    The installation of offshore wind farms in the German Exclusive Economic Zone requires the deployment of sonar transponders to prevent collisions with submarines. The general requirements for these systems have been previously worked out by the Research Department for Underwater Acoustics and Marine Geophysics of the Bundeswehr. In this article, the major results of the research project "Investigation of Sonar Transponders for Offshore Wind Farms" are presented. For theoretical investigations a hybrid approach was implemented using the boundary element method to calculate the source directivity and a three-dimensional ray-tracing algorithm to estimate the transmission loss. The angle-dependence of the sound field as well as the weather-dependence of the transmission loss are compared to experimental results gathered at the offshore wind farm alpha ventus, located 45 km north of the island Borkum. While theoretical and experimental results are in general agreement, the implemented model slightly underestimates scattering at the rough sea surface. It is found that the source level of 200 dB re 1 μPa at 1 m is adequate to satisfy the detectability of the warning sequence at distances up to 2 NM (≈3.7 km) within a horizontal sector of ±60° if realistic assumptions about signal-processing and noise are made. An arrangement to enlarge the angular coverage is discussed.

  12. Seabird aggregative patterns: a new tool for offshore wind energy risk assessment.

    PubMed

    Christel, Isadora; Certain, Grégoire; Cama, Albert; Vieites, David R; Ferrer, Xavier

    2013-01-15

    The emerging development of offshore wind energy has raised public concern over its impact on seabird communities. There is a need for an adequate methodology to determine its potential impacts on seabirds. Environmental Impact Assessments (EIAs) are mostly relying on a succession of plain density maps without integrated interpretation of seabird spatio-temporal variability. Using Taylor's power law coupled with mixed effect models, the spatio-temporal variability of species' distributions can be synthesized in a measure of the aggregation levels of individuals over time and space. Applying the method to a seabird aerial survey in the Ebro Delta, NW Mediterranean Sea, we were able to make an explicit distinction between transitional and feeding areas to define and map the potential impacts of an offshore wind farm project. We use the Ebro Delta study case to discuss the advantages of potential impacts maps over density maps, as well as to illustrate how these potential impact maps can be applied to inform on concern levels, optimal EIA design and monitoring in the assessment of local offshore wind energy projects.

  13. Health and climate benefits of offshore wind facilities in the Mid-Atlantic United States

    NASA Astrophysics Data System (ADS)

    Buonocore, Jonathan J.; Luckow, Patrick; Fisher, Jeremy; Kempton, Willett; Levy, Jonathan I.

    2016-07-01

    Electricity from fossil fuels contributes substantially to both climate change and the health burden of air pollution. Renewable energy sources are capable of displacing electricity from fossil fuels, but the quantity of health and climate benefits depend on site-specific attributes that are not often included in quantitative models. Here, we link an electrical grid simulation model to an air pollution health impact assessment model and US regulatory estimates of the impacts of carbon to estimate the health and climate benefits of offshore wind facilities of different sizes in two different locations. We find that offshore wind in the Mid-Atlantic is capable of producing health and climate benefits of between 54 and 120 per MWh of generation, with the largest simulated facility (3000 MW off the coast of New Jersey) producing approximately 690 million in benefits in 2017. The variability in benefits per unit generation is a function of differences in locations (Maryland versus New Jersey), simulated years (2012 versus 2017), and facility generation capacity, given complexities of the electrical grid and differences in which power plants are offset. This work demonstrates health and climate benefits of offshore wind, provides further evidence of the utility of geographically-refined modeling frameworks, and yields quantitative insights that would allow for inclusion of both climate and public health in benefits assessments of renewable energy.

  14. Prediction of dynamic strains on a monopile offshore wind turbine using virtual sensors

    NASA Astrophysics Data System (ADS)

    Iliopoulos, A. N.; Weijtjens, W.; Van Hemelrijck, D.; Devriendt, C.

    2015-07-01

    The monitoring of the condition of the offshore wind turbine during its operational states offers the possibility of performing accurate assessments of the remaining life-time as well as supporting maintenance decisions during its entire life. The efficacy of structural monitoring in the case of the offshore wind turbine, though, is undermined by the practical limitations connected to the measurement system in terms of cost, weight and feasibility of sensor mounting (e.g. at muddline level 30m below the water level). This limitation is overcome by reconstructing the full-field response of the structure based on the limited number of measured accelerations and a calibrated Finite Element Model of the system. A modal decomposition and expansion approach is used for reconstructing the responses at all degrees of freedom of the finite element model. The paper will demonstrate the possibility to predict dynamic strains from acceleration measurements based on the aforementioned methodology. These virtual dynamic strains will then be evaluated and validated based on actual strain measurements obtained from a monitoring campaign on an offshore Vestas V90 3 MW wind turbine on a monopile foundation.

  15. Approaching population thresholds in presence of uncertainty: Assessing displacement of seabirds from offshore wind farms

    SciTech Connect

    Busch, Malte Garthe, Stefan

    2016-01-15

    Assessment of the displacement impacts of offshore wind farms on seabirds is impeded by a lack of evidence regarding species-specific reactions to developed sites and the potential ecological consequences faced by displaced individuals. In this study, we present a method that makes best use of the currently limited understanding of displacement impacts. The combination of a matrix table displaying the full range of potential displacement and mortality levels together with seasonal potential biological removal (PBR) assessments provides a tool that increases confidence in the conclusions of impact assessments. If unrealistic displacement levels and/or mortality rates are required to equal or approach seasonal PBRs, this gives an indication of the likeliness of adverse impacts on the assessed population. This approach is demonstrated by assessing the displacement impacts of an offshore wind farm cluster in the German North Sea on the local common guillemot (Uria aalge) population. - Highlights: • A novel approach for assessing displacement impacts of offshore wind farms on seabirds is presented making best use of limited data • A displacement matrix approach is linked with PBR analysis to increased confidence in assessment conclusions drawn • A case example demonstrates the applicability of the methods described in practice.

  16. Regional scale hydrodynamic modelling of offshore wind farm development areas off the east coast of Scotland

    NASA Astrophysics Data System (ADS)

    O'Hara Murray, Rory; Gallego, Alejandro

    2013-04-01

    There is considerable interest in Scotland, supported by the Scottish Government, in the expansion of renewable energy production. In particular, significant offshore wind energy developments are already planned in coastal waters to the east of the Forth and Tay estuaries. It is important to understand the local and cumulative environmental impact of such developments within this region, to aid licensing decisions but also to inform marine spatial planning in general. Substantial wind farm developments may affect physical processes within the region, such as tidal-, wind-, and wave-driven circulation, as well as coastal sediment transport and more complex estuarine dynamics. Such physical impacts could have ecological and, ultimately, socio-economic consequences. The Firth of Forth and Tay areas both exhibit complex estuarine characteristics due to fresh water input, complex bathymetry and coastline, and tidal mixing. Our goal is to construct an unstructured grid hydrodynamic model of the wider Firth of Forth and Tay region using the Finite-Volume Coastal Ocean Model (FVCOM), resolving the complex estuarine hydrography of the area and representing offshore wind developments. Hydrodynamic modelling will provide an accurate baseline of the hydrography in this region but also allow the assessment of the effect on the physical environment of multiple wind farm development scenarios.

  17. Optimizing investments in coupled offshore wind -electrolytic hydrogen storage systems in Denmark

    NASA Astrophysics Data System (ADS)

    Hou, Peng; Enevoldsen, Peter; Eichman, Joshua; Hu, Weihao; Jacobson, Mark Z.; Chen, Zhe

    2017-08-01

    In response to electricity markets with growing levels of wind energy production and varying electricity prices, this research examines incentives for investments in integrated renewable energy power systems. A strategy for using optimization methods for a power system consisting of wind turbines, electrolyzers, and hydrogen fuel cells is explored. This research reveals the investment potential of coupling offshore wind farms with different hydrogen systems. The benefits in terms of a return on investment are demonstrated with data from the Danish electricity markets. This research also investigates the tradeoffs between selling the hydrogen directly to customers or using it as a storage medium to re-generate electricity at a time when it is more valuable. This research finds that the most beneficial configuration is to produce hydrogen at a time that complements the wind farm and sell the hydrogen directly to end users.

  18. Optimizing investments in coupled offshore wind-electrolytic hydrogen storage systems in Denmark

    DOE PAGES

    Hou, Peng; Enevoldsen, Peter; Eichman, Joshua; ...

    2017-05-25

    In response to electricity markets with growing levels of wind energy production and varying electricity prices, this research examines incentives for investments in integrated renewable energy power systems. A strategy for using optimization methods for a power system consisting of wind turbines, electrolyzers, and hydrogen fuel cells is explored. This research reveals the investment potential of coupling offshore wind farms with different hydrogen systems. The benefits in terms of a return on investment are demonstrated with data from the Danish electricity markets. This research also investigates the tradeoffs between selling the hydrogen directly to customers or using it as amore » storage medium to re-generate electricity at a time when it is more valuable. Finally, this research finds that the most beneficial configuration is to produce hydrogen at a time that complements the wind farm and sell the hydrogen directly to end users.« less

  19. Contribution of tuned liquid column gas dampers to the performance of offshore wind turbines under wind, wave, and seismic excitations

    NASA Astrophysics Data System (ADS)

    Bargi, Khosrow; Dezvareh, Reza; Mousavi, Seyed Amin

    2016-09-01

    The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jackettype offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column gas damper (TLCGD). Using a Simulink-based model, an analytical model is developed to simulate global behavior of JOWTs under different dynamic excitations. The study is followed by a parametric study to explore efficiency of the TLCGD in terms of nacelle acceleration reduction under wind, wave, and earthquake loads. Study results indicate that optimum frequency of the TLCGD is rather insensitive to excitation type. In addition, while the gain in vibration control from TLCGDs with higher mass ratios is generally more pronounced, heavy TLCGDs are more sensitive to their tuned frequency such that ill-regulated TLCGD with high mass ratio can lead to destructive results. It is revealed that a well regulated TLCGD has noticeable contribution to the dynamic response of the JOWT under any excitation.

  20. Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint

    SciTech Connect

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2012-11-01

    In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.

  1. Measurement and Analysis of Extreme Wave and Ice Actions in the Great Lakes for Offshore Wind Platform Design

    SciTech Connect

    England, Tony; van Nieuwstadt, Lin; De Roo, Roger; Karr, Dale; Lozenge, David; Meadows, Guy

    2016-05-30

    This project, funded by the Department of Energy as DE-EE0005376, successfully measured wind-driven lake ice forces on an offshore structure in Lake Superior through one of the coldest winters in recent history. While offshore regions of the Great Lakes offer promising opportunities for harvesting wind energy, these massive bodies of freshwater also offer extreme and unique challenges. Among these challenges is the need to anticipate forces exerted on offshore structures by lake ice. The parameters of interest include the frequency, extent, and movement of lake ice, parameters that are routinely monitored via satellite, and ice thickness, a parameter that has been monitored at discrete locations over many years and is routinely modeled. Essential relationships for these data to be of use in the design of offshore structures and the primary objective of this project are measurements of maximum forces that lake ice of known thicknesses might exert on an offshore structure.

  2. Modelling potential changes in marine biogeochemistry due to large-scale offshore wind farms

    NASA Astrophysics Data System (ADS)

    van der Molen, Johan; Rees, Jon; Limpenny, Sian

    2013-04-01

    Large-scale renewable energy generation by offshore wind farms may lead to changes in marine ecosystem processes through the following mechanism: 1) wind-energy extraction leads to a reduction in local surface wind speeds; 2) these lead to a reduction in the local wind wave height; 3) as a consequence there's a reduction in SPM resuspension and concentrations; 4) this results in an improvement in under-water light regime, which 5) may lead to increased primary production, which subsequently 6) cascades through the ecosystem. A three-dimensional coupled hydrodynamics-biogeochemistry model (GETM_ERSEM) was used to investigate this process for a hypothetical wind farm in the central North Sea, by running a reference scenario and a scenario with a 10% reduction (as was found in a case study of a small farm in Danish waters) in surface wind velocities in the area of the wind farm. The ERSEM model included both pelagic and benthic processes. The results showed that, within the farm area, the physical mechanisms were as expected, but with variations in the magnitude of the response depending on the ecosystem variable or exchange rate between two ecosystem variables (3-28%, depending on variable/rate). Benthic variables tended to be more sensitive to the changes than pelagic variables. Reduced, but noticeable changes also occurred for some variables in a region of up to two farm diameters surrounding the wind farm. An additional model run in which the 10% reduction in surface wind speed was applied only for wind speeds below the generally used threshold of 25 m/s for operational shut-down showed only minor differences from the run in which all wind speeds were reduced. These first results indicate that there is potential for measurable effects of large-scale offshore wind farms on the marine ecosystem, mainly within the farm but for some variables up to two farm diameters away. However, the wave and SPM parameterisations currently used in the model are crude and need to be

  3. Building the U.S. First Offshore Wind Farm-Applying EBM Approaches to Successfully Address Offshore Energy, Commercial Fisheries, and Recreational Boating interactions

    NASA Astrophysics Data System (ADS)

    Lipsky, A.

    2016-02-01

    In August 2015 construction commenced on the Block Island Wind Farm, the first offshore wind energy project in the U.S. This pilot-scale offshore energy project, located 18 miles offshore of the Rhode Island mainland, was sited through a comprehensive ocean planning process. As the project progressed into design and construction, our team utilized potent ecosystem based management approaches to great advantage to address the human and resource interactions that existed in the project area. These practices have included designing and executing collaborative long-term monitoring ventures to fill key science gaps and reconcile fisheries concerns, establishing effective industry to industry engagement, and developing durable multi-sector agreements. This presentation will describe the specific EBM approaches used after the planning process was completed to bring the project to construction; highlighting where key aspects of the National Ocean Policy goals and principles have been successfully applied.

  4. Building the U.S. First Offshore Wind Farm-Applying EBM Approaches to Successfully Address Offshore Energy, Commercial Fisheries, and Recreational Boating interactions

    NASA Astrophysics Data System (ADS)

    Lipsky, A.

    2016-12-01

    In August 2015 construction commenced on the Block Island Wind Farm, the first offshore wind energy project in the U.S. This pilot-scale offshore energy project, located 18 miles offshore of the Rhode Island mainland, was sited through a comprehensive ocean planning process. As the project progressed into design and construction, our team utilized potent ecosystem based management approaches to great advantage to address the human and resource interactions that existed in the project area. These practices have included designing and executing collaborative long-term monitoring ventures to fill key science gaps and reconcile fisheries concerns, establishing effective industry to industry engagement, and developing durable multi-sector agreements. This presentation will describe the specific EBM approaches used after the planning process was completed to bring the project to construction; highlighting where key aspects of the National Ocean Policy goals and principles have been successfully applied.

  5. High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Richards, Phillip W.; Griffith, D. Todd; Hodges, Dewey H.

    2014-06-01

    Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine rotor blades. Derating refers to altering the rotor angular speed and blade pitch to limit power production and loads on the rotor blades. High- fidelity analysis techniques like 3D finite element modeling (FEM) should be used alongside beam models of wind turbine blades to characterize these control strategies in terms of their effect to mitigate fatigue damage and extend life of turbine blades. This study will consider a commonly encountered damage type for wind turbine blades, the trailing edge disbond, and show how FEM can be used to quantify the effect of operations and control strategies designed to extend the fatigue life of damaged blades. The Virtual Crack Closure Technique (VCCT) will be used to post-process the displacement and stress results to provide estimates of damage severity/criticality and provide a means to estimate the fatigue life under a given operations and control strategy.

  6. Evaluation of offshore wind energy resources for power generation based on scatterometer and SAR data along the Indian coast

    NASA Astrophysics Data System (ADS)

    Arun Kumar, S. V. V.; Prajapati, Jagdish; Kumar, Raj

    2016-05-01

    India has the fifth largest installed wind power capacity in the world, mainly from onshore wind farms. As on today, there are no offshore wind power farms installed in the country. However, with the utilization of onshore and the proposed offshore wind farms, it is expected to reach 60,000 MW generation capacities by 2022. A large amount of data is necessary to assess the wind potential for these future wind farms. Offshore buoys and meteorological masts are both scarce and expensive. In the present study, we have utilized QuikSCAT (2000-2009), OSCAT (2010-2014), ASCAT (2012-2015) scatterometer and RISAT-1 SAR (2012-2014) data to evaluate the possible wind energy resources along the Indian coast. Orbit wise scatterometer wind products have been processed to generate long-term synoptic monthly means along the entire coast. The monthly average wind energy density (in W/m2) has been computed and extended up to 80 m height (standard wind turbine height) using power law. As scatterometer data are relatively coarser and unavailable near the coast, high resolution winds have been retrieved using RISAT-1 SAR data. However, due to inherent limitations of having lesser swath and data availability of SAR, presently the study has been conducted along Gujarat coast. Then, unit capacity of wind power was computed and potential sites are identified for the wind farms. The data is very useful in identifying potential sites of wind energy in the coastal and offshore regions. We are planning to extend this study for the entire Indian coast in the near future.

  7. Meeting the quest for spatial efficiency: progress and prospects of extensive aquaculture within offshore wind farms

    NASA Astrophysics Data System (ADS)

    Buck, B. H.; Krause, G.; Michler-Cieluch, T.; Brenner, M.; Buchholz, C. M.; Busch, J. A.; Fisch, R.; Geisen, M.; Zielinski, O.

    2008-09-01

    Along the German North Sea coast, the observed high spatial competition of stakeholders has encouraged the idea of integrating open ocean aquaculture in conjunction with offshore wind farms beyond the 12 miles zone. The article provides an overview on the current state of transdisciplinary research on a potential implementation of such a multifunctional use concept on a showcase basis, covering biological, technical, economic and social/policy aspects as well as private-public partnerships and the relevant institutional bodies. We show that the cultivation of seaweeds and blue mussels is biologically and technically feasible in a high-energy environment using modified cultivation strategies. The point of departure of our multi-use concept was that the solid groundings of wind turbines could serve as attachment points for the aquaculture installations and become the key to the successful commercial cultivation of any offshore aquatic organism. However, spaces in between the turbines are also attractive for farming projects, since public access is restricted and thus the cultivation site protected from outside influences. An economic analysis of different operation scenarios indicates that the market price and the annual settlement success of juvenile mussels are the main factors that determine the breakeven point. Social and policy science research reveals that the integration of relevant actors into the development of a multi-use concept for a wind farm-mariculture interaction is a complex and controversial issue. Combining knowledge and experience of wind farm planners as well as mussel fishermen and mariculturists within the framework of national and EU policies is probably the most important component for designing and developing an effective offshore co-management regime to limit the consumption of ocean space.

  8. Dynamics modeling and loads analysis of an offshore floating wind turbine

    NASA Astrophysics Data System (ADS)

    Jonkman, Jason Mark

    The vast deepwater wind resource represents a potential to use offshore floating wind turbines to power much of the world with renewable energy. Many floating wind turbine concepts have been proposed, but dynamics models, which account for the wind inflow, aerodynamics, elasticity, and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and platform and mooring dynamics of the floater, were needed to determine their technical and economic feasibility. This work presents the development of a comprehensive simulation tool for modeling the coupled dynamic response of offshore floating wind turbines, the verification of the simulation tool through model-to-model comparisons, and the application of the simulation tool to an integrated loads analysis for one of the promising system concepts. A fully coupled aero-hydro-servo-elastic simulation tool was developed with enough sophistication to address the limitations of previous frequency- and time-domain studies and to have the features required to perform loads analyses for a variety of wind turbine, support platform, and mooring system configurations. The simulation capability was tested using model-to-model comparisons. The favorable results of all of the verification exercises provided confidence to perform more thorough analyses. The simulation tool was then applied in a preliminary loads analysis of a wind turbine supported by a barge with catenary moorings. A barge platform was chosen because of its simplicity in design, fabrication, and installation. The loads analysis aimed to characterize the dynamic response and to identify potential loads and instabilities resulting from the dynamic couplings between the turbine and the floating barge in the presence of combined wind and wave excitation. The coupling between the wind turbine response and the barge-pitch motion, in particular, produced larger extreme loads in the floating turbine than experienced by an equivalent land

  9. Linear and Nonlinear Analyses of a Wind-Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Karkehabadi, R.; Rhew, R. D.

    2004-01-01

    The NASA Langley Research Center (LaRC) has been designing strain-gauge balances for utilization in wind tunnels since its inception. The utilization of balances span a wide variety of aerodynamic tests. A force balance is an inherently critically stressed component due to the requirements of measurement sensitivity. Force balance stress analysis and acceptance criteria are under review due to LaRC wind tunnel operational safety requirements. This paper presents some of the analyses done at NASA LaRC. Research and analyses were performed in order to investigate the structural integrity of the balances and better understand their performance. The analyses presented in this paper are helpful in understanding the overall behavior of an existing balance and can also be used in design of new balances to enhance their performance. As a first step, maximum load combination is used for linear structural analysis. When nonlinear effects are encountered, the analysis is extended to include the nonlinearities. Balance 1621 is typical for LaRC designed balances and was chosen for this study due to its traditional high load capacity, Figure 1. Maximum loading occurs when all 6 components are applied simultaneously with their maximum value allowed (limit load). This circumstance normally will not occur in the wind tunnel. However, if it occurs, is the balance capable of handling the loads with an acceptable factor of safety? Preliminary analysis using Pro/Mechanica indicated that this balance might experience nonlinearity. It was decided to analyze this balance by using NASTRAN so that a nonlinear analysis could be conducted. Balance 1621 was modeled and meshed in PATRAN for analysis in NASTRAN. The model from PATRAN/NASTRAN is compared to the one from Pro/Mechanica. For a complete analysis, it is necessary to consider all the load cases as well as use a dense mesh near all the edges. Because of computer limitations, it is not feasible to analyze model with the dense mesh near

  10. Load extrapolations based on measurements from an offshore wind turbine at alpha ventus

    NASA Astrophysics Data System (ADS)

    Lott, Sarah; Cheng, Po Wen

    2016-09-01

    Statistical extrapolations of loads can be used to estimate the extreme loads that are supposed to occur on average once in a given return period. Load extrapolations of extreme loads recorded for a period of three years at different measurement positions of an offshore wind turbine at the alpha ventus offshore test field have been performed. The difficulties that arise when using measured instead of simulated extreme loads in order to determine 50-year return loads will be discussed in detail. The main challenge are outliers in the databases that have a significant influence on the extrapolated extreme loads. Results of the short- and longterm extreme load extrapolations, comprising different methods for the extreme load extraction, the choice of the statistical distribution function as well as the fitting method are presented. Generally, load extrapolation with measurement data is possible, but care should be taken in terms of the selection of the database and the choice of the distribution function and fitting method.

  11. Offshore wind resource estimation using satellite images: what are the challenges?

    NASA Astrophysics Data System (ADS)

    Bay Hasager, Charlotte; Badger, Merete; Mouche, Alexis; Astrup, Poul; Stoffelen, Ad; Karagali, Ioanna

    2010-05-01

    In the EU-Norsewind project (2008-2012) short for ‘Northern Seas Wind Index Database' the aim is to produce state-of-the-art offshore wind atlas. The method builds on combining information from around 15 ground-based wind lidars on offshore platforms, several meteorological masts, satellite information and modeling in the area of interest - Baltic, Irish and North Sea. An advantage of lidar is observation at several heights providing wind profile information also at the height of wind turbines. The information is however only valid in the observation point. Similar situation exists for tall met-masts. Both lidar and met-mast data collection are rather costly, yet in progress in the Norsewind project in the coming 1.5 years. Meanwhile satellite information provides series of spatial snap-shots of the area of interest at limited cost. Finally meteorological modeling will tie together all information. The satellite data will be used for verification of the spatial results of the wind atlas. At present, the Norsewind satellite image archive includes Envisat ASAR (Advanced Synthetic Aperture Radar) in wide swath mode (WSM), passive microwave SSM/I and scatterometer QuikSCAT and ASCAT images. The three different satellite remote sensing principles provide a unique opportunity to map with 1) high spatial scale though with only 300-1000 samples for each point of interest (ASAR); 2) twice daily temporal scale for 10 years at low spatial scale (QuikSCAT) and followed by ASCAT in same or better spatial scale; 3) several times per day for 20 years at low spatial scale, but wind speed only far from the coasts (SSM/I). The passive microwave SSM/I and the scatterometers are in orbit in space with the prime task of mapping ocean winds. The challenges using satellite remote sensing in wind energy are mainly five: 1) number of samples; 2) Weibull fitting at conditional data; 3) diurnal variation; 4) 10 m versus hub-height; 5) satellite wind retrieval. Each of the challenges is

  12. Application of a large-eddy simulation model to the analysis of flow conditions in offshore wind farms

    NASA Astrophysics Data System (ADS)

    Steinfeld, Gerald; Tambke, Jens; Peinke, Joachim; Heinemann, Detlev

    2010-05-01

    Flows in the atmospheric boundary layer over a sea surface are characterised by a lower ambient turbulence intensity than boundary layer flows over land surfaces. Thus, offshore the wake turbulence behind a wind turbine might have a stronger impact on subsequent wind turbines than onshore. Due to the lower ambient turbulence intensity and therefore reduced turbulent diffusion, offshore the velocity minimum behind a wind turbine can probably be detected over a longer distance than onshore. Moreover, as the meandering of the wake flow might be due to the ambient atmospheric turbulence, also the meandering of the wake flow offshore might be different. Maps, showing projected wind farms in the North Sea, reveal that also rather small distances between two adjacent wind farms will occur. Therefore, not only single wind turbines within a wind farm but also complete wind farms will affect each other. Up to now all these potential impacts are not taken into account satisfactory when wind farms are planned. Most of the models applied today for estmating the yield of offshore wind farms have been derived about twenty years ago based on measurements at comparatively small onshore, sometimes near-coast, but never offshore sites. Moreover, the models are based on measurements at much smaller wind turbines as those used today. Due to the monotone increase of the wind velocity with height observed in the atmosphere, today's wind turbines experience a much larger variation of the mean wind velocity than their predecessors twenty years ago - increasing the potential for a vertical asymmetry of the wake flow. The measurements carried out by the RAVE initiative at the German offshore test site "alpha ventus" will allow a validation and further development of models that estimate the flow conditions within a wind farm consisting of multi-MW wind turbines under the special conditions of the marine atmospheric boundary layer. ForWind at the University of Oldenburg supplements the data

  13. Study of wind speed attenuation at Kavaratti Island using land-based, offshore, and satellite measurements

    NASA Astrophysics Data System (ADS)

    Joseph, Antony; Rivonkar, Pradhan; Balakrishnan Nair, T. M.

    2012-06-01

    The role of dense coconut palms in attenuating the wind speed at Kavaratti Island, which is located in the southeastern Arabian Sea, is examined based on land-based and offshore wind measurements (U10) using anchored-buoy-mounted and satellite-borne sensors (QuikSCAT scatterometer and TMI microwave imager) during an 8-year period (2000-2007). It is found that round the year monthly-mean wind speed measurements from the Port Control Tower (PCT) located within the coconut palm farm at the Kavaratti Island are weaker by 15-61% relative to those made from the nearby offshore region. Whereas wind speed attenuation at the island is ~15-40% in the mid-June to mid-October south-west monsoon period, it is ~41-61% during the rest of the year. Wind direction measurements from all the devices overlapped, except in March-April during which the buoy measurements deviated from the other measurements by ~20°. U10 wind speed measurements from PCT during the November 2009 tropical cyclone "Phyan" indicated approximately 50-80% attenuation relative to those from the seaward boundary of the island's lagoon (and therefore least influenced by the coconut palms). The observed wind speed attenuation can be understood through the theory of free turbulent flow jets embodied in the boundary-layer fluid dynamics, according to which both the axial and transverse components of the efflux of flows discharged through the inter-leaves porosity (orifice) undergo increasing attenuation in the downstream direction with increasing distance from the orifice. Thus, the observed wind speed attenuation at Kavaratti Island is attributable to the decline in wind energy transmission from the seaward boundary of the coconut palm farm with distance into the farm. Just like mangrove forests function as bio-shields against forces from oceanic waves and stormsurges through their large above-ground aerial root systems and standing crop, and thereby playing a distinctive role in ameliorating the effects of

  14. Observed drag coefficients in high winds in the near offshore of the South China Sea

    DOE PAGES

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; ...

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a heightmore » of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.« less

  15. Observed drag coefficients in high winds in the near offshore of the South China Sea

    SciTech Connect

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a height of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.

  16. Observed drag coefficients in high winds in the near offshore of the South China Sea

    NASA Astrophysics Data System (ADS)

    Bi, Xueyan; Gao, Zhiqiu; Liu, Yangang; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-01

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a height of 10 m is about 32 m s-1. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5-10 m s-1, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s-1. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18-27 m s-1. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s-1. Above this, the difference in the 10 m drag coefficients of the two towers disappears.

  17. Health and climate benefits of offshore wind facilities in the Mid-Atlantic United States

    DOE PAGES

    Buonocore, Jonathan J.; Luckow, Patrick; Fisher, Jeremy; ...

    2016-07-14

    Electricity from fossil fuels contributes substantially to both climate change and the health burden of air pollution. Renewable energy sources are capable of displacing electricity from fossil fuels, but the quantity of health and climate benefits depend on site-specific attributes that are not often included in quantitative models. Here, we link an electrical grid simulation model to an air pollution health impact assessment model and US regulatory estimates of the impacts of carbon to estimate the health and climate benefits of offshore wind facilities of different sizes in two different locations. We find that offshore wind in the Mid-Atlantic ismore » capable of producing health and climate benefits of between $54 and $120 per MWh of generation, with the largest simulated facility (3000 MW off the coast of New Jersey) producing approximately $690 million in benefits in 2017. The variability in benefits per unit generation is a function of differences in locations (Maryland versus New Jersey), simulated years (2012 versus 2017), and facility generation capacity, given complexities of the electrical grid and differences in which power plants are offset. In the end, this work demonstrates health and climate benefits of off shore wind, provides further evidence of the utility of geographically-refined modeling frameworks, and yields quantitative insights that would allow for inclusion of both climate and public health in benefits assessments of renewable energy.« less

  18. Model Development and Loads Analysis of a Wind Turbine on a Floating Offshore Tension Leg Platform

    SciTech Connect

    Matha, D.; Fischer, T.; Kuhn, M.; Jonkman, J.

    2010-02-01

    This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. Models in this code are of greater fidelity than most of the models that have been used to analyze floating turbines in the past--which have neglected important hydrodynamic and mooring system effects. The report provides a description of the development process of a TLP model, which is a modified version of a Massachusetts Institute of Technology design derived from a parametric linear frequency-domain optimization process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the International Electrotechnical Commission offshore wind turbine design standard was performed with the verified TLP model. Response statistics, extreme event tables, fatigue lifetimes, and selected time histories of design-driving extreme events are analyzed and presented. Loads for the wind turbine on the TLP are compared to those of an equivalent land-based turbine in terms of load ratios. Major instabilities for the TLP are identified and described.

  19. A Comparison Study of Offshore Wind Support Structures with Monopiles and Jackets for U.S. Waters: Preprint

    SciTech Connect

    Damiani, Rick; Dykes, Katherine; Scott, George

    2016-08-01

    U.S. experience in offshore wind is limited, and high costs are expected unless innovations are introduced in one or multiple aspects of the project, from the installed technology to the balance of system (BOS). The substructure is the main single component responsible for the BOS capital expenditure (CapEx) and thus one that, if improved, could yield significant levelized cost of energy (LCOE) savings. For projects in U.S. waters, multimember, lattice structures (also known as jackets) can render required stiffness for transitional water depths at potentially lower costs than monopiles (MPs). In this study, we used a systems engineering approach to evaluate the LCOE of prototypical wind power plants at six locations along the eastern seaboard and the Gulf of Mexico for both types of support structures. Using a reference wind turbine and actual metocean conditions for the selected sites, we calculated loads for a parked and an operational situation, and we optimized the MP- and jacket-based support structures to minimize their overall mass. Using a suite of cost models, we then computed their associated LCOE. For all water depths, the MP-based configurations were heavier than their jacket counterparts, but the overall costs for the MPs were less than they were for jackets up to depths of slightly less than 30 m. When the associated manufacturing and installation costs were included, jackets resulted in lower LCOE for depths greater than 40 m. These results can be used by U.S. stakeholders to understand the potential for different technologies at different sites, but the methodology illustrated in this study can be further employed to analyze the effects of innovations and design choices throughout wind power plant systems.

  20. A comparison study of offshore wind support structures with monopiles and jackets for U.S. waters

    NASA Astrophysics Data System (ADS)

    Damiani, R.; Dykes, K.; Scott, G.

    2016-09-01

    U.S. experience in offshore wind is limited, and high costs are expected unless innovations are introduced in one or multiple aspects of the project, from the installed technology to the balance of system (BOS). The substructure is the main single component responsible for the BOS capital expenditure (CapEx) and thus one that, if improved, could yield significant levelized cost of energy (LCOE) savings. For projects in U.S. waters, multimember lattice structures (also known as jackets) can render required stiffness for transitional water depths at potentially lower costs than monopiles (MPs). In this study, we used a systems engineering approach to evaluate the LCOE of prototypical wind power plants at six locations along the eastern seaboard and the Gulf of Mexico for both types of support structures. Using a reference wind turbine and actual metocean conditions for the selected sites, we calculated loads for a parked and an operational situation, and we optimized the MP- and jacket-based support structures to minimize their overall mass. Using a suite of cost models, we then computed their associated LCOE. For all water depths, the MP-based configurations were heavier than their jacket counterparts, but the overall costs for the MPs were less than they were for jackets up to depths of slightly less than 30m. When the associated manufacturing and installation costs were included, jackets resulted in lower LCOE for depths greater than 40m. These results can be used by U.S. stakeholders to understand the potential for different technologies at different sites, but the methodology illustrated in this study can be further employed to analyze the effects of innovations and design choices throughout wind power plant systems.

  1. Effects of offshore wind farms on marine wildlife—a generalized impact assessment

    NASA Astrophysics Data System (ADS)

    Bergström, Lena; Kautsky, Lena; Malm, Torleif; Rosenberg, Rutger; Wahlberg, Magnus; Åstrand Capetillo, Nastassja; Wilhelmsson, Dan

    2014-03-01

    Marine management plans over the world express high expectations to the development of offshore wind energy. This would obviously contribute to renewable energy production, but potential conflicts with other usages of the marine landscape, as well as conservation interests, are evident. The present study synthesizes the current state of understanding on the effects of offshore wind farms on marine wildlife, in order to identify general versus local conclusions in published studies. The results were translated into a generalized impact assessment for coastal waters in Sweden, which covers a range of salinity conditions from marine to nearly fresh waters. Hence, the conclusions are potentially applicable to marine planning situations in various aquatic ecosystems. The assessment considered impact with respect to temporal and spatial extent of the pressure, effect within each ecosystem component, and level of certainty. Research on the environmental effects of offshore wind farms has gone through a rapid maturation and learning process, with the bulk of knowledge being developed within the past ten years. The studies showed a high level of consensus with respect to the construction phase, indicating that potential impacts on marine life should be carefully considered in marine spatial planning. Potential impacts during the operational phase were more locally variable, and could be either negative or positive depending on biological conditions as well as prevailing management goals. There was paucity in studies on cumulative impacts and long-term effects on the food web, as well as on combined effects with other human activities, such as the fisheries. These aspects remain key open issues for a sustainable marine spatial planning.

  2. A Comprehensive Structural Study of Offshore Wind Turbine Foundation and Non-Model Based Damage Detection using Effective Mass with Application to Small Components/ Cables and a Truss Wind Turbine Tower

    SciTech Connect

    Smith, Scott A.

    2016-10-01

    This research has two areas of focus. The first area is to investigate offshore wind turbine (OWT) designs, for use in the Maryland offshore wind area (MOWA), using intensive modeling techniques. The second focus area is to investigate a way to detect damage in wind turbine towers and small electrical components.

  3. Review of Offshore Wind Farm Impact Monitoring and Mitigation with Regard to Marine Mammals.

    PubMed

    Verfuss, Ursula K; Sparling, Carol E; Arnot, Charlie; Judd, Adrian; Coyle, Michael

    2016-01-01

    Monitoring and mitigation reports from 19 UK and 9 other European Union (EU) offshore wind farm (OWF) developments were reviewed, providing a synthesis of the evidence associated with the observed environmental impact on marine mammals. UK licensing conditions were largely concerned with mitigation measures reducing the risk of physical and auditory injury from pile driving. At the other EU sites, impact monitoring was conducted along with mitigation measures. Noise-mitigation measures were developed and tested in UK and German waters in German government-financed projects. We highlight some of the review's findings and lessons learned with regard to noise impact on marine mammals.

  4. Impact hypothesis for offshore wind farms: Explanatory models for species distribution at extremely exposed rocky areas

    NASA Astrophysics Data System (ADS)

    Schläppy, Marie-Lise; Šaškov, Aleksej; Dahlgren, Thomas G.

    2014-07-01

    The increasing need for renewable and clean energy production is likely to result in a diversification of locations for the implementation of offshore wind farms which have been so far predominantly sited on soft substrata. In contrast, offshore wind turbines placed on rocky reefs in highly exposed areas are much less common and the impacts on local flora and fauna can only be hypothesized. On the Western coast of Norway, a rocky reef with a highly complex topography has been chosen to be the first full-scale offshore wind farm in the country. Underwater video analyses and multibeam bathymetry data with a generalized linear model were used opportunistically to investigate the influence of geomorphic explanatory variables on the occurrence of selected taxa (algae, sea urchins and sea stars) identified in the study area. Combining video observations and multibeam bathymetry in a generalized linear model revealed that the geomorphic descriptors: aspect, slope, rugosity, and benthic position indexes (BPI), were of significance for algae, sea urchins and sea stars at Havsul and served in showing their habitat preferences. Kelp occurred in areas of high rugosity, on gentle slopes, at elevated areas with a southerly orientation and on the sheltered side of rock or bedrock. Thus, construction disturbance that modify those variables may lead to a change in the area preferred by kelp. Turbines that shade southerly aspects may affect small kelp plants in reducing their available habitat. Sea urchins were more abundant on steep slopes and both sea stars and sea urchins showed a preference for a complex local relief (high rugosity) and heterogeneity in fine and broad elevation (shown by BPI). Thus, foundations and cable route preparation may significantly change the slope, rugosity of BPI broad, which will change the basis for sea urchin populations. It may likewise significantly change the rugosity or BPI (fine or broad), which may change the distribution of sea stars. The

  5. Doppler lidar measurements in the marine boundary layer for offshore wind-energy applications

    NASA Astrophysics Data System (ADS)

    Pichugina, Y.; Banta, R. M.; Brewer, A.; Hardesty, R.; Sandberg, S. P.

    2011-12-01

    Accurate measurement of wind-speed profiles aloft in the marine boundary layer is a difficult challenge. The development of offshore wind energy is an application that requires accurate information on wind speeds above the surface at the levels occupied by turbine blades. Little measured data are available at these heights, and the behavior of near-surface winds is often unrepresentative of that at the required heights. As a consequence, numerical model data, another potential source of information, is unverified at these levels of the atmosphere. A motion-compensated, high-resolution Doppler lidar measurements of the marine wind flow will be presented. The system, which has been evaluated in several ways, has been used in several ship-borne measurement campaigns over the past decade, and a sampling of data from the 2004 New England Air Quality Study (NEAQS) shows the kind of analysis and information available. Although individual Doppler lidar scans have been shown to provide useful images of the flow structure, the emphasis here is on high-resolution (<10 m in the lowest 100 m), high-precision, profiles of wind speed and direction averaged over 15-min, calculated from the scan data. Examples include time-height cross sections, time series, and profiles of wind speed and direction aloft, and distributions of quantities such as wind speed, shear through the blade layer, and deviations between values of wind speed at hub height calculated from power-law profiles and those measured by the Doppler lidar. These results show strong spatial and temporal variability to the wind field in the marine boundary layer. Winds near the coast show diurnal behavior, and frequent occurrences of low-level jet structure are evident especially during nocturnal periods. Persistent patterns of spatial variability of the flow field due to coastal irregularities should be of particular concern for wind energy planning, because this affects the representativeness of fixed

  6. Experimental investigations on the aerodynamics and aeromechanics of wind turbines for floating offshore applications

    NASA Astrophysics Data System (ADS)

    Khosravi, Morteza

    There are many advantages in floating wind turbines in deep waters, however, there are also significant technological challenges associated with it too. The dynamic excitation of wind and waves can induce excessive motions along each of the 6 degrees of freedom (6-DOF) of the floating platforms. These motions will then be transferred to the turbine, and directly impact the wake characteristics of the floating wind turbines, and consequently the resultant wind loadings and performances of the wind turbines sited in offshore wind farms. In the present study, a comprehensive experimental study was performed to analyze the performance, loading, and the near wake characteristics of a rigid wind turbine model subjected to surge, heave, and pitch motions. The experimental study was performed in a large-scale atmospheric boundary layer wind tunnel with a scaled three-blade Horizontal Axial Wind Turbine model placed in a turbulent boundary layer airflow with similar mean and turbulence characteristics as those over a typical offshore wind farm. The base of the 1:300 scaled model wind turbine was mounted on translation and rotation stages. These stages can be controlled to generate surge, pitch and heave motions to simulate the dynamic motions experienced by floating offshore wind turbines. During the experiments, the velocity scaling method was chosen to maintain the similar velocity ratios (i.e., the ratios of the incoming airflow flow to that of turbine base motion) between the model and the prototype. During the experiments, a high resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting ''free run'' PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, ''phase

  7. Calibration Designs for Non-Monolithic Wind Tunnel Force Balances

    NASA Technical Reports Server (NTRS)

    Johnson, Thomas H.; Parker, Peter A.; Landman, Drew

    2010-01-01

    This research paper investigates current experimental designs and regression models for calibrating internal wind tunnel force balances of non-monolithic design. Such calibration methods are necessary for this class of balance because it has an electrical response that is dependent upon the sign of the applied forces and moments. This dependency gives rise to discontinuities in the response surfaces that are not easily modeled using traditional response surface methodologies. An analysis of current recommended calibration models is shown to lead to correlated response model terms. Alternative modeling methods are explored which feature orthogonal or near-orthogonal terms.

  8. The Feasibility of Wind and Solar Energy Application for Oil and Gas Offshore Platform

    NASA Astrophysics Data System (ADS)

    Tiong, Y. K.; Zahari, M. A.; Wong, S. F.; Dol, S. S.

    2015-04-01

    Renewable energy is an energy which is freely available in nature such as winds and solar energy. It plays a critical role in greening the energy sector as these sources of energy produce little or no pollution to environment. This paper will focus on capability of renewable energy (wind and solar) in generating power for offshore application. Data of wind speeds and solar irradiation that are available around SHELL Sabah Water Platform for every 10 minutes, 24 hours a day, for a period of one year are provided by SHELL Sarawak Sdn. Bhd. The suitable wind turbine and photovoltaic panel that are able to give a high output and higher reliability during operation period are selected by using the tabulated data. The highest power output generated using single wind energy application is equal to 492 kW while for solar energy application is equal to 20 kW. Using the calculated data, the feasibility of renewable energy is then determined based on the platform energy demand.

  9. A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.

    PubMed

    Borg, M; Collu, M

    2015-02-28

    The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT.

  10. Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz: Preprint

    SciTech Connect

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2012-06-01

    This paper introduces the concept of constant Volt/Hz operation of offshore wind power plants. The deployment of offshore WPPs requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cables, there is a need to use High-Voltage Direct Current transmission, which is economical for transmission distances longer than 50 kilometers. In the concept presented here, the onshore substation is operated at 60 Hz synced with the grid, and the offshore substation is operated at variable frequency and voltage, thus allowing the WPP to be operated at constant Volt/Hz.

  11. Long term estimations of low frequency noise levels over water from an off-shore wind farm.

    PubMed

    Bolin, Karl; Almgren, Martin; Ohlsson, Esbjörn; Karasalo, Ilkka

    2014-03-01

    This article focuses on computations of low frequency sound propagation from an off-shore wind farm. Two different methods for sound propagation calculations are combined with meteorological data for every 3 hours in the year 2010 to examine the varying noise levels at a reception point at 13 km distance. It is shown that sound propagation conditions play a vital role in the noise impact from the off-shore wind farm and ordinary assessment methods can become inaccurate at longer propagation distances over water. Therefore, this paper suggests that methodologies to calculate noise immission with realistic sound speed profiles need to be combined with meteorological data over extended time periods to evaluate the impact of low frequency noise from modern off-shore wind farms.

  12. The 13-inch magnetic suspension and balance system wind tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, William G., Jr.; Dress, David A.

    1989-01-01

    NASA Langley has a small, subsonic wind tunnel in use with the 13-inch Magnetic Suspension and Balance System (MSBS). The tunnel is capable of speeds up to Mach 0.5. This report presents tunnel design and construction details. It includes flow uniformity, angularity, and velocity fluctuation data. It also compares experimental Mach number distribution data with computed results for the General Electric Streamtube Curvature Program.

  13. Potential scour for marine current turbines based on experience of offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Chen, L.; Lam, W. H.; Shamsuddin, A. H.

    2013-06-01

    The oceans have tremendous untapped natural resources. These sources are capable to make significant contribution to our future energy demands. Marine current energy offers sustainable and renewable alternative to conventional sources. Survival problems of Marine Current Turbines (MCTs) need to be addressed due to the harsh marine environment. The analogous researches in wind turbine have been conducted. Some of the results and knowledge are transferable to marine current energy industry. There still exist some gaps in the state of knowledge. Scour around marine structures have been well recognised as an engineering issue as scour is likely to cause structural instability. This paper aims to review different types of foundation of MCTs and potential scour and scour protection around these foundations based on the experience of offshore wind turbine farm.

  14. Local fatigue behavior in tapered areas of large offshore wind turbine blades

    NASA Astrophysics Data System (ADS)

    Aydin Raeis Hosseiny, Seyed; Jakobsen, Johnny

    2016-07-01

    Thickness transitions in load carrying elements lead to improved geometries and efficient material utilization. However, these transitions may introduce localized areas with high stress concentrations and may act as crack initiators that could potentially cause delamination and further catastrophic failure of an entire blade structure. The local strength degradation under an ultimate static loading, subsequent to several years of fatigue, is predicted for an offshore wind turbine blade. Fatigue failure indexes of different damage modes are calculated using a sub-modeling approach. Multi axial stresses are accounted for using a developed failure criterion with residual strengths instead of the virgin strengths. Damage initiation is predicted by including available Wohler curve data of E-Glass fabrics and epoxy matrix into multi-axial fatigue failure criteria. As a result of this study, proper knock-down factors for ply-drop effects in wind turbine blades under multi-axial static and fatigue loadings can be obtained.

  15. Integrated condition monitoring of a fleet of offshore wind turbines with focus on acceleration streaming processing

    NASA Astrophysics Data System (ADS)

    Helsen, Jan; Gioia, Nicoletta; Peeters, Cédric; Jordaens, Pieter-Jan

    2017-05-01

    Particularly offshore there is a trend to cluster wind turbines in large wind farms, and in the near future to operate such a farm as an integrated power production plant. Predictability of individual turbine behavior across the entire fleet is key in such a strategy. Failure of turbine subcomponents should be detected well in advance to allow early planning of all necessary maintenance actions; Such that they can be performed during low wind and low electricity demand periods. In order to obtain the insights to predict component failure, it is necessary to have an integrated clean dataset spanning all turbines of the fleet for a sufficiently long period of time. This paper illustrates our big-data approach to do this. In addition, advanced failure detection algorithms are necessary to detect failures in this dataset. This paper discusses a multi-level monitoring approach that consists of a combination of machine learning and advanced physics based signal-processing techniques. The advantage of combining different data sources to detect system degradation is in the higher certainty due to multivariable criteria. In order to able to perform long-term acceleration data signal processing at high frequency a streaming processing approach is necessary. This allows the data to be analysed as the sensors generate it. This paper illustrates this streaming concept on 5kHz acceleration data. A continuous spectrogram is generated from the data-stream. Real-life offshore wind turbine data is used. Using this streaming approach for calculating bearing failure features on continuous acceleration data will support failure propagation detection.

  16. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design

    PubMed Central

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-01-01

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. PMID:25583870

  17. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design.

    PubMed

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-02-28

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms.

  18. Prediction of short-term distributions of load extremes of offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Wang, Ying-guang

    2016-12-01

    This paper proposes a new methodology to select an optimal threshold level to be used in the peak over threshold (POT) method for the prediction of short-term distributions of load extremes of offshore wind turbines. Such an optimal threshold level is found based on the estimation of the variance-to-mean ratio for the occurrence of peak values, which characterizes the Poisson assumption. A generalized Pareto distribution is then fitted to the extracted peaks over the optimal threshold level and the distribution parameters are estimated by the method of the maximum spacing estimation. This methodology is applied to estimate the short-term distributions of load extremes of the blade bending moment and the tower base bending moment at the mudline of a monopile-supported 5MW offshore wind turbine as an example. The accuracy of the POT method using the optimal threshold level is shown to be better, in terms of the distribution fitting, than that of the POT methods using empirical threshold levels. The comparisons among the short-term extreme response values predicted by using the POT method with the optimal threshold levels and with the empirical threshold levels and by using direct simulation results further substantiate the validity of the proposed new methodology.

  19. Unstructured grid modelling of offshore wind farm impacts on seasonally stratified shelf seas

    NASA Astrophysics Data System (ADS)

    Cazenave, Pierre William; Torres, Ricardo; Allen, J. Icarus

    2016-06-01

    Shelf seas comprise approximately 7% of the world's oceans and host enormous economic activity. Development of energy installations (e.g. Offshore Wind Farms (OWFs), tidal turbines) in response to increased demand for renewable energy requires a careful analysis of potential impacts. Recent remote sensing observations have identified kilometre-scale impacts from OWFs. Existing modelling evaluating monopile impacts has fallen into two camps: small-scale models with individually resolved turbines looking at local effects; and large-scale analyses but with sub-grid scale turbine parameterisations. This work straddles both scales through a 3D unstructured grid model (FVCOM): wind turbine monopiles in the eastern Irish Sea are explicitly described in the grid whilst the overall grid domain covers the south-western UK shelf. Localised regions of decreased velocity extend up to 250 times the monopile diameter away from the monopile. Shelf-wide, the amplitude of the M2 tidal constituent increases by up to 7%. The turbines enhance localised vertical mixing which decreases seasonal stratification. The spatial extent of this extends well beyond the turbines into the surrounding seas. With significant expansion of OWFs on continental shelves, this work highlights the importance of how OWFs may impact coastal (e.g. increased flooding risk) and offshore (e.g. stratification and nutrient cycling) areas.

  20. Incorporation of Multi-Member Substructure Capabilities in FAST for Analysis of Offshore Wind Turbines: Preprint

    SciTech Connect

    Song, H.; Robertson, A.; Jonkman, J.; Sewell, D.

    2012-05-01

    FAST, developed by the National Renewable Energy Laboratory (NREL), is an aero-hydro-servo-elastic tool widely used for analyzing onshore and offshore wind turbines. This paper discusses recent modifications made to FAST to enable the examination of offshore wind turbines with fixed-bottom, multi-member support structures (which are commonly used in transitional-depth waters).; This paper addresses the methods used for incorporating the hydrostatic and hydrodynamic loading on multi-member structures in FAST through its hydronamic loading module, HydroDyn. Modeling of the hydrodynamic loads was accomplished through the incorporation of Morison and buoyancy loads on the support structures. Issues addressed include how to model loads at the joints of intersecting members and on tapered and tilted members of the support structure. Three example structures are modeled to test and verify the solutions generated by the modifications to HydroDyn, including a monopile, tripod, and jacket structure. Verification is achieved through comparison of the results to a computational fluid dynamics (CFD)-derived solution using the commercial software tool STAR-CCM+.

  1. Wind Tunnel Force Balance Calibration Study - Interim Results

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2012-01-01

    Wind tunnel force balance calibration is preformed utilizing a variety of different methods and does not have a direct traceable standard such as standards used for most calibration practices (weights, and voltmeters). These different calibration methods and practices include, but are not limited to, the loading schedule, the load application hardware, manual and automatic systems, re-leveling and non-re-leveling. A study of the balance calibration techniques used by NASA was undertaken to develop metrics for reviewing and comparing results using sample calibrations. The study also includes balances of different designs, single and multi-piece. The calibration systems include, the manual, and the automatic that are provided by NASA and its vendors. The results to date will be presented along with the techniques for comparing the results. In addition, future planned calibrations and investigations based on the results will be provided.

  2. Single-Vector Calibration of Wind-Tunnel Force Balances

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; DeLoach, R.

    2003-01-01

    An improved method of calibrating a wind-tunnel force balance involves the use of a unique load application system integrated with formal experimental design methodology. The Single-Vector Force Balance Calibration System (SVS) overcomes the productivity and accuracy limitations of prior calibration methods. A force balance is a complex structural spring element instrumented with strain gauges for measuring three orthogonal components of aerodynamic force (normal, axial, and side force) and three orthogonal components of aerodynamic torque (rolling, pitching, and yawing moments). Force balances remain as the state-of-the-art instrument that provide these measurements on a scale model of an aircraft during wind tunnel testing. Ideally, each electrical channel of the balance would respond only to its respective component of load, and it would have no response to other components of load. This is not entirely possible even though balance designs are optimized to minimize these undesirable interaction effects. Ultimately, a calibration experiment is performed to obtain the necessary data to generate a mathematical model and determine the force measurement accuracy. In order to set the independent variables of applied load for the calibration 24 NASA Tech Briefs, October 2003 experiment, a high-precision mechanical system is required. Manual deadweight systems have been in use at Langley Research Center (LaRC) since the 1940s. These simple methodologies produce high confidence results, but the process is mechanically complex and labor-intensive, requiring three to four weeks to complete. Over the past decade, automated balance calibration systems have been developed. In general, these systems were designed to automate the tedious manual calibration process resulting in an even more complex system which deteriorates load application quality. The current calibration approach relies on a one-factor-at-a-time (OFAT) methodology, where each independent variable is

  3. Use of numerical wind-wave models for assessment of the offshore wave energy resource

    SciTech Connect

    Pontes, M.T.; Barstow, S.; Bertotti, L.; Cavaleri, L.; Oliveira-Pires, H.

    1997-08-01

    In the last two decades the performance of numerical wind-wave models has improved considerably. Several models have been routinely producing good quality wave estimates globally since the mid-1980s. The verifications of wind-wave models have mainly focused on the evaluation of the error of the significant wave height H{sub s} estimates. However, for wave energy purposes, the main parameters to be assessed are the wave power P{sub w} and the mean (energy) period T{sub e}. Since P{sub w} is proportional to H{sub s}{sup 2}T{sub e}, its expected error is much larger than for the single-wave parameters. This paper summarizes the intercomparison of two wind-wave models against buoy data in the North Atlantic and the Mediterranean Sea to select the most suitable one for the construction of an Atlas of the wave energy resource in European waters. A full verification in the two basins of the selected model--the WAM model, implemented in the routine operation of the European Centre for Medium-Range Weather Forecasts--was then performed against buoy and satellite altimeter data. It was found that the WAM model accuracy is very good for offshore locations in the North Atlantic; but for the Mediterranean Sea the results are much less accurate, probably due to a lower quality of the input wind fields.

  4. Use of numerical wind-wave models for assessment of the offshore wave energy resource

    SciTech Connect

    Pontes, M.T.; Barstow, S.; Bertotti, L.; Cavaleri, L.; Oliveira-Pires, H.

    1996-12-31

    In the last two decades the performance of numerical wind-wave models has improved considerably. Several models have been routinely producing since the mid 1980`s good quality wave estimates globally. The verifications of wind-wave models have mainly focused on the evaluation of the error of the significant wave height H{sub s} estimates. However for wave energy purposes the main parameters to be assessed are the wave power P{sub w} and the mean (energy) period T{sub e}. Since P{sub w} is proportional to H{sub s}{sup 2}T{sub e}, its expected error is much larger than for the single wave parameters. This paper summarizes the intercomparison of two wind-wave models against buoy data in the North Atlantic and the Mediterranean Sea to select the most suitable one for the construction of an Atlas of the wave energy resource in Europe. A full verification in the two basins of the selected model--the WAM model, implemented in the routine operation of the European Centre for Medium-Range Weather Forecasts--was then performed against buoy and satellite altimeter data. It was found that the WAM model accuracy is very good for offshore locations in the North Atlantic, but for the Mediterranean Sea the results are much less accurate probably due to a lower quality of the input wind fields.

  5. Assessment of the Present and Future Offshore Wind Power Potential: A Case Study in a Target Territory of the Baltic Sea Near the Latvian Coast

    PubMed Central

    Teilans, Artis

    2013-01-01

    Offshore wind energy development promises to be a significant domestic renewable energy source in Latvia. The reliable prediction of present and future wind resources at offshore sites is crucial for planning and selecting the location for wind farms. The overall goal of this paper is the assessment of offshore wind power potential in a target territory of the Baltic Sea near the Latvian coast as well as the identification of a trend in the future wind energy potential for the study territory. The regional climate model CLM and High Resolution Limited Area Model (Hirlam) simulations were used to obtain the wind climatology data for the study area. The results indicated that offshore wind energy is promising for expanding the national electricity generation and will continue to be a stable resource for electricity generation in the region over the 21st century. PMID:23983619

  6. Assessment of the present and future offshore wind power potential: a case study in a target territory of the Baltic Sea near the Latvian coast.

    PubMed

    Lizuma, Lita; Avotniece, Zanita; Rupainis, Sergejs; Teilans, Artis

    2013-01-01

    Offshore wind energy development promises to be a significant domestic renewable energy source in Latvia. The reliable prediction of present and future wind resources at offshore sites is crucial for planning and selecting the location for wind farms. The overall goal of this paper is the assessment of offshore wind power potential in a target territory of the Baltic Sea near the Latvian coast as well as the identification of a trend in the future wind energy potential for the study territory. The regional climate model CLM and High Resolution Limited Area Model (Hirlam) simulations were used to obtain the wind climatology data for the study area. The results indicated that offshore wind energy is promising for expanding the national electricity generation and will continue to be a stable resource for electricity generation in the region over the 21st century.

  7. Site characterization of foundation soil for Offshore Wind Farms - an example from the German North Sea

    NASA Astrophysics Data System (ADS)

    Kreiter, Stefan; Mörz, Tobias; Metzen, Jan F.; Hepp, Daniel A.; Ossig, Benjamin; Otto, Daniel; Socko, Lukasz; Keil, Hanno; Spieß, Volkhard; Hebbeln, Dierk

    2010-05-01

    The promising possibility to reduce CO2 emissions from energy production by the erection of offshore wind farms caused a boom of wind farm projects in the German North Sea. The projected wind turbines have overall heights of up to 200 m above sea level and require considerable foundation depths of up to 50 m pile length in the subsoil. Little experience exists concerning the optimal geotechnical site characterisation for such projects. As approximately 80 considerable sized foundations are needed per wind farm, costs have to be minimized to help making renewable energies competitive. The cost effective and save design of the foundation depends on a reliable knowledge of the upper 50 to 100 m of the subsoil. The marine subsoil of the German North Sea is in general a favourable foundation soil, but Quaternary buried glacial and fluvial valleys introduce heterogeneities, which have to be accurately mapped and considered for the installation planning. Necessary site investigations combine geophysical exploration, core drilling and cone penetration testing. At the same time they have to be in accordance with the national approval procedure which is organised in Germany in several steps. Here, an industry-financed and scientifically-accompanied geotechnical site characterisation of one exemplary offshore wind farm project is presented (partners: RWE-Innogy, ENOVA and MARUM; Initiative "germanwind"). In order to image the lateral highly heterogeneous sedimentation environment in the North Sea a dense net of high resolution multichannel seismic lines was acquired using the University of Bremen shallow water seismic equipment. This provided seismic images of 1.5 m lateral resolution and 2-3 m vertical resolution therefore overcoming the low signal penetration of conventional boomer seimics and the low resolution of conventional multichannel seismics. The seismic survey was complemented with push cores and cone penetration tests at 14 sites, each reaching down to about 50 m

  8. Design, manufacturing and tests of first cryogen-free MgB2 prototype coils for offshore wind generators

    NASA Astrophysics Data System (ADS)

    Sarmiento, G.; Sanz, S.; Pujana, A.; Merino, J. M.; Iturbe, R.; Apiñaniz, S.; Nardelli, D.; Marino, I.

    2014-05-01

    Although renewable sector has started to take advantage of the offshore wind energy recently, the development is very intense. Turbines reliability, size, and cost are key aspects for the wind industry, especially in marine locations. A superconducting generator will allow a significant reduction in terms of weight and size, but cost and reliability are two aspects to deal with. MgB2 wire is presented as one promising option to be used in superconducting coils for wind generators. This work shows the experimental results in first cryogen-free MgB2 prototype coils, designed according to specific requirements of TECNALIA's wind generator concept.

  9. On the Use of Coupled Wind, Wave, and Current Fields in the Simulation of Loads on Bottom-Supported Offshore Wind Turbines during Hurricanes: March 2012 - September 2015

    SciTech Connect

    Kim, Eungsoo; Manuel, Lance; Curcic, Milan; Chen, Shuyi S.; Phillips, Caleb; Veers, Paul

    2016-06-01

    In the United States, potential offshore wind plant sites have been identified along the Atlantic seaboard and in the Gulf of Mexico. It is imperative that we define external conditions associated with hurricanes and severe winter storms and consider load cases for which wind turbines may need to be designed. We selected two hurricanes, Ike (2008) and Sandy (2012), and investigated the effect these tropical storms would have on bottom-supported offshore wind turbines that were hypothetically in or close to their path as they made landfall. For realistic turbine loads assessment, it is important that the coupled influences of the changing wind, wave, and current fields are simulated throughout the evolution of the hurricanes. We employed a coupled model--specifically, the University of Miami Coupled Model (UMCM)--that integrates atmospheric, wave, and ocean components to produce needed wind, wave, and current data. The wind data are used to generate appropriate vertical wind profiles and full wind velocity fields including turbulence; the current field over the water column is obtained by interpolated discrete output current data; and short-crested irregular second-order waves are simulated using output directional wave spectra from the coupled model. We studied two monopile-supported offshore wind turbines sited in 20 meters of water in the Gulf of Mexico to estimate loads during Hurricane Ike, and a jacket space-frame platform-supported offshore wind turbine sited in 50 meters of water in the mid-Atlantic region to estimate loads during Hurricane Sandy. In this report we discuss in detail how the simulated hurricane wind, wave, and current output data are used in turbine loads studies. In addition, important characteristics of the external conditions are studied, including the relative importance of swell versus wind seas, aerodynamic versus hydrodynamic forces, current velocity effects, yaw control options for the turbine, hydrodynamic drag versus inertia forces

  10. Full load estimation of an offshore wind turbine based on SCADA and accelerometer data

    NASA Astrophysics Data System (ADS)

    Noppe, N.; Iliopoulos, A.; Weijtjens, W.; Devriendt, C.

    2016-09-01

    As offshore wind farms (OWFs) grow older, the optimal use of the actual fatigue lifetime of an offshore wind turbine (OWT) and predominantly its foundation will get more important. In case of OWTs, both quasi-static wind/thrust loads and dynamic loads, as induced by turbulence, waves and the turbine's dynamics, contribute to its fatigue life progression. To estimate the remaining useful life of an OWT, the stresses acting on the fatigue critical locations within the structure should be monitored continuously. Unfortunately, in case of the most common monopile foundations these locations are often situated below sea-level and near the mud line and thus difficult or even impossible to access for existing OWTs. Actual strain measurements taken at accessible locations above the sea level show a correlation between thrust load and several SCADA parameters. Therefore a model is created to estimate the thrust load using SCADA data and strain measurements. Afterwards the thrust load acting on the OWT is estimated using the created model and SCADA data only. From this model the quasi static loads on the foundation can be estimated over the lifetime of the OWT. To estimate the contribution of the dynamic loads a modal decomposition and expansion based virtual sensing technique is applied. This method only uses acceleration measurements recorded at accessible locations on the tower. Superimposing both contributions leads to a so-called multi-band virtual sensing. The result is a method that allows to estimate the strain history at any location on the foundation and thus the full load, being a combination of both quasi-static and dynamic loads, acting on the entire structure. This approach is validated using data from an operating Belgian OWF. An initial good match between measured and predicted strains for a short period of time proofs the concept.

  11. 75 FR 82055 - Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore Massachusetts...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Energy Management, Regulation and Enforcement, Office of Offshore Alternative Energy Programs, 381 Elden... of Offshore Alternative Energy Programs, 381 Elden Street, Mail Stop 4090, Herndon, Virginia 20170...: Bureau of Ocean Energy Management, Regulation and Enforcement, Office of Offshore Alternative Energy...

  12. Wind-Tunnel Balance Characterization for Hypersonic Research Applications

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Commo, Sean A.; Parker, Peter A.

    2012-01-01

    Wind-tunnel research was recently conducted at the NASA Langley Research Center s 31-Inch Mach 10 Hypersonic Facility in support of the Mars Science Laboratory s aerodynamic program. Researchers were interested in understanding the interaction between the freestream flow and the reaction control system onboard the entry vehicle. A five-component balance, designed for hypersonic testing with pressurized flow-through capability, was used. In addition to the aerodynamic forces, the balance was exposed to both thermal gradients and varying internal cavity pressures. Historically, the effect of these environmental conditions on the response of the balance have not been fully characterized due to the limitations in the calibration facilities. Through statistical design of experiments, thermal and pressure effects were strategically and efficiently integrated into the calibration of the balance. As a result of this new approach, researchers were able to use the balance continuously throughout the wide range of temperatures and pressures and obtain real-time results. Although this work focused on a specific application, the methodology shown can be applied more generally to any force measurement system calibration.

  13. Preliminary assessment of the variability of UK offshore wind speed as a function of distance to the coast

    NASA Astrophysics Data System (ADS)

    Soler-Bientz, Rolando; Watson, Simon

    2016-09-01

    In the UK, there is an interest in the expected offshore wind resource given ambitious national plans to expand offshore capacity. There is also an increasing interest in alternative datasets to evaluate wind seasonal and inter-annual cycles which can be very useful in the initial stages of the design of wind farms in order to identify prospective areas where local measurements can then be applied to determine small-scale variations in the marine wind climate. In this paper we analyse both MERRA2 reanalysis data and measured offshore mast data to determine patterns in wind speed variation and how they change as a function of the distance from the coast. We also identify an empirical expression to estimate wind speed based on the distance from the coast. From the analysis, it was found that the variations of the seasonal cycles seem to be almost independent of the distance to the nearest shore and that they are an order of magnitude larger than the variations of the diurnal cycles. It was concluded that the diurnal variations decreased to less than a half for places located more than 100km from the nearest shore and that the data from the MERRA2 reanalysis grid points give an under-prediction of the average values of wind speed for both the diurnal and seasonal cycles. Finally, even though the two offshore masts were almost the same nearest distance from the coast and were geographically relatively close, they exhibited significantly different behaviour in terms of the strength of their diurnal and seasonal cycles which may be due to the distance from the coast for the prevailing wind direction being quite different for the two sites.

  14. Impact of Offshore Wind Energy Plants on the Soil Mechanical Behaviour of Sandy Seafloors

    NASA Astrophysics Data System (ADS)

    Stark, Nina; Lambers-Huesmann, Maria; Zeiler, Manfred; Zoellner, Christian; Kopf, Achim

    2010-05-01

    Over the last decade, wind energy has become an important renewable energy source. Especially, the installation of offshore windfarms offers additional space and higher average wind speeds than the well-established windfarms onshore. Certainly, the construction of offshore wind turbines has an impact on the environment. In the framework of the Research at Alpha VEntus (RAVE) project in the German offshore wind energy farm Alpha Ventus (north of the island Borkum in water depths of about 30 m) a research plan to investigate the environmental impact had been put into place. An ongoing study focuses on the changes in soil mechanics of the seafloor close to the foundations and the development of scour. Here, we present results of the first geotechnical investigations after construction of the plants (ca. 1 - 6 months) compared to geotechnical measurements prior to construction. To study the soil mechanical behaviour of the sand, sediment samples from about thirty different positions were measured in the laboratory to deliver, e.g., grain size (0.063 - 0.3 mm), friction angles (~ 32°), unit weight (~ 19.9 kN/m³) and void ratios (~ 0.81). For acoustic visualisation, side-scan-sonar (towed and stationary) and multibeam-echosounders (hull mounted) were used. Data show a flat, homogenous seafloor prior to windmill erection, and scouring effects at and in the vicinity of the foundations afterwards. Geotechnical in-situ measurements were carried out using a standard dynamic Cone Penetration Testing lance covering the whole windfarm area excluding areas in a radius < 50 m from the installed windmills (due the accessibility with the required research vessel). In addition, the small free-fall penetrometer Nimrod was deployed at the same spots, and furthermore, in the areas close to the tripod foundations (down to a distance of ~ 5 m from the central pile). Before construction, CPT as well as Nimrod deployments confirm a flat, homogenous sandy area with tip resistance values

  15. An Adaptive Coordinated Control for an Offshore Wind Farm Connected VSC Based Multi-Terminal DC Transmission System

    NASA Astrophysics Data System (ADS)

    Kumar, M. Ajay; Srikanth, N. V.

    2014-11-01

    The voltage source converter (VSC) based multiterminal high voltage direct current (MTDC) transmission system is an interesting technical option to integrate offshore wind farms with the onshore grid due to its unique performance characteristics and reduced power loss via extruded DC cables. In order to enhance the reliability and stability of the MTDC system, an adaptive neuro fuzzy inference system (ANFIS) based coordinated control design has been addressed in this paper. A four terminal VSC-MTDC system which consists of an offshore wind farm and oil platform is implemented in MATLAB/ SimPowerSystems software. The proposed model is tested under different fault scenarios along with the converter outage and simulation results show that the novel coordinated control design has great dynamic stabilities and also the VSC-MTDC system can supply AC voltage of good quality to offshore loads during the disturbances.

  16. Development of mooring-anchor program in public domain for coupling with floater program for FOWTs (Floating Offshore Wind Turbines)

    SciTech Connect

    Kim, MooHyun

    2014-08-01

    This report presents the development of offshore anchor data sets which are intended to be used to develop a database that allows preliminary selection and sizing of anchors for the conceptual design of floating offshore wind turbines (FOWTs). The study is part of a project entitled “Development of Mooring-Anchor Program in Public Domain for Coupling with Floater Program for FOWTs (Floating Offshore Wind Turbines)”, under the direction of Dr. Moo-Hyun Kim at the Texas A&M University and with the sponsorship from the US Department of Energy (Contract No. DE-EE0005479, CFDA # 81.087 for DE-FOA-0000415, Topic Area 1.3: Subsurface Mooring and Anchoring Dynamics Models).

  17. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    NASA Astrophysics Data System (ADS)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  18. Summary of Conclusions and Recommendations Drawn from the DeepCWind Scaled Floating Offshore Wind System Test Campaign: Preprint

    SciTech Connect

    Robertson, A. N.; Jonkman, J. M.; Masciola, M. D.; Molta, P.; Goupee, A. J.; Coulling, A. J.; Prowell, I.; Browning, J.

    2013-07-01

    The DeepCwind consortium is a group of universities, national labs, and companies funded under a research initiative by the U.S. Department of Energy (DOE) to support the research and development of floating offshore wind power. The two main objectives of the project are to better understand the complex dynamic behavior of floating offshore wind systems and to create experimental data for use in validating the tools used in modeling these systems. In support of these objectives, the DeepCwind consortium conducted a model test campaign in 2011 of three generic floating wind systems, a tension-leg platform (TLP), a spar-buoy (spar), and a semisubmersible (semi). Each of the three platforms was designed to support a 1/50th-scale model of a 5 MW wind turbine and was tested under a variety of wind/wave conditions. The focus of this paper is to summarize the work done by consortium members in analyzing the data obtained from the test campaign and its use for validating the offshore wind modeling tool, FAST.

  19. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    DOE PAGES

    Browning, J. R.; Jonkman, J.; Robertson, A.; ...

    2014-12-16

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale inmore » a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less

  20. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    NASA Astrophysics Data System (ADS)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-12-01

    High-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.

  1. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    SciTech Connect

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-12-16

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.

  2. Monitoring dynamic loads on wind tunnel force balances

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T.; White, William C.

    1989-01-01

    Two devices have been developed at NASA Langley to monitor the dynamic loads incurred during wind-tunnel testing. The Balance Dynamic Display Unit (BDDU), displays and monitors the combined static and dynamic forces and moments in the orthogonal axes. The Balance Critical Point Analyzer scales and sums each normalized signal from the BDDU to obtain combined dynamic and static signals that represent the dynamic loads at predefined high-stress points. The display of each instrument is a multiplex of six analog signals in a way that each channel is displayed sequentially as one-sixth of the horizontal axis on a single oscilloscope trace. Thus this display format permits the operator to quickly and easily monitor the combined static and dynamic level of up to six channels at the same time.

  3. Monitoring dynamic loads on wind tunnel force balances

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T.; White, William C.

    1989-01-01

    Two devices have been developed at NASA Langley to monitor the dynamic loads incurred during wind-tunnel testing. The Balance Dynamic Display Unit (BDDU), displays and monitors the combined static and dynamic forces and moments in the orthogonal axes. The Balance Critical Point Analyzer scales and sums each normalized signal from the BDDU to obtain combined dynamic and static signals that represent the dynamic loads at predefined high-stress points. The display of each instrument is a multiplex of six analog signals in a way that each channel is displayed sequentially as one-sixth of the horizontal axis on a single oscilloscope trace. Thus this display format permits the operator to quickly and easily monitor the combined static and dynamic level of up to six channels at the same time.

  4. Helical piles: an innovative foundation design option for offshore wind turbines.

    PubMed

    Byrne, B W; Houlsby, G T

    2015-02-28

    Offshore wind turbines play a key part in the renewable energy strategy in the UK and Europe as well as in other parts of the world (for example, China). The majority of current developments, certainly in UK waters, have taken place in relatively shallow water and close to shore. This limits the scale of the engineering to relatively simple structures, such as those using monopile foundations, and these have been the most common design to date, in UK waters. However, as larger turbines are designed, or they are placed in deeper water, it will be necessary to use multi-footing structures such as tripods or jackets. For these designs, the tension on the upwind footing becomes the critical design condition. Driven pile foundations could be used, as could suction-installed foundations. However, in this paper, we present another concept-the use of helical pile foundations. These foundations are routinely applied onshore where large tension capacities are required. However, for use offshore, a significant upscaling of the technology will be needed, particularly of the equipment required for installation of the piles. A clear understanding of the relevant geotechnical engineering will be needed if this upscaling is to be successful.

  5. Research on foundation response of a tri-floater offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Gao, Y. W.; Li, C.; Cheng, X.

    2013-12-01

    Platform structure is the basic guarantee for safety operation of offshore wind turbines. Based on the boundary element method and combined with multi-body dynamics, we analyzed motion response and wave force mechanism to the platform structure, and obtained the dynamic response and the wave force change of the platform structures in time domain. We also analyzed the motion response and wave force change of semi-submerged platform in surge, sway and heave also roll, pitch and yaw direction. The results show that in translational direction, the motion response is periodic variation under three different incident direction; in the translational direction response appear a periodic attenuation change, and in the direction of rotation, motion response mainly concentrated in the 0s to 50s; in time domain, 90° of incidence, platform force is largest, wave force are mainly concentrated in the 0s to 50s. The result is high reference value on offshore tension leg platform structural design and optimization.

  6. A model for Quick Load Analysis for monopile-type offshore wind turbine substructures

    NASA Astrophysics Data System (ADS)

    Schløer, Signe; Garcia Castillo, Laura; Fejerskov, Morten; Stroescu, Emanuel; Bredmose, Henrik

    2016-09-01

    A model for Quick Load Analysis, QuLA, of an offshore wind turbine substructure is presented. The aerodynamic rotor loads and damping are precomputed for a load-based configuration. The dynamic structural response is represented by the first global fore-aft mode only and is computed in the frequency domain using the equation of motion. The model is compared against the state of the art aeroelastic code, Flex5, and both life time fatigue and extreme loads are considered in the comparison. In general there is good similarity between the two models. Some derivation for the sectional forces are explained in terms of the model simplifications. The difference in the sectional moments are found to be within 14% for the fatigue load case and 10% for the extreme load condition.

  7. Strategic planning to reduce conflicts for offshore wind development in Taiwan: A social marketing perspective.

    PubMed

    Chen, Jyun-Long; Liu, Hsiang-Hsi; Chuang, Ching-Ta

    2015-10-15

    This study aims to improve the current inefficiency and ineffectiveness of communications among stakeholders when planning and constructing offshore wind farms (OWFs). An analysis using a social marketing approach with segmentation techniques is used to identify the target market based on stakeholders' perceptions. The empirical results identify three stakeholder segments: (1) impact-attend group; (2) comprehensive group; and (3) benefit-attend group. The results suggest that communication should be implemented to alter stakeholders' attitudes toward the construction of OWFs. Furthermore, based on the results of segmentation, target markets are identified to plan the communication strategies for reducing the conflicts among stakeholders of OWF construction. The results also indicated that in the planning phase of construction for OWFs, effective stakeholder participation and policy communication can enhance the perception of benefits to reduce conflict with local communities and ocean users. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Investigating Marine Boundary Layer Parameterizations for Improved Off-Shore Wind Predictions by Combining Observations with Models via State Estimation

    NASA Astrophysics Data System (ADS)

    Delle Monache, Luca; Hacker, Josh; Kosovic, Branko; Lee, Jared; Vandenberghe, Francois; Wu, Yonghui; Clifton, Andrew; Hawkins, Sam; Nissen, Jesper; Rostkier-Edelstein, Dorita

    2014-05-01

    Despite advances in model representation of the spatial and temporal evolution of the atmospheric boundary layer (ABL) a fundamental understanding of the processes shaping the Marine Boundary Layer (MBL) is still lacking. As part of a project funded by the U.S. Department of Energy, we are tackling this problem by combining available atmosphere and ocean observations with advanced coupled atmosphere-wave models, and via state estimation (SE) methodologies. The over-arching goal is to achieve significant advances in the scientific understanding and prediction of the underlying physical processes of the MBL, with an emphasis on the coupling between the atmosphere and the ocean via momentum and heat fluxes. We are using the single-column model (SCM) and three-dimensional (3D) versions of the Weather Research and Forecasting (WRF) model, observations of MBL structure as provided by coastal and offshore remote sensing platforms and meteorological towers, and probabilistic SE. We are systematically investigating the errors in the treatment of the surface layer of the MBL, identifying structural model inadequacies associated with its representation. We expect one key deficiency of current model representations of the surface layer of the MBL that can have a profound effect on fluxes estimates: the use of Monin-Obukhov similarity theory (MOST). This theory was developed for continental ABLs using land-based measurements, which accounts for mechanical and thermal forcing on turbulence but neglects the influence of ocean waves. We have developed an atmosphere-wave coupled modeling system by interfacing WRF with a wave model (Wavewatch III - WWIII), which is used for evaluating errors in the representation of wave-induced forcing on the energy balance at the interface between atmosphere and ocean. The Data Assimilation Research Testbed (DART) includes the SE algorithms that provide the framework for obtaining spatial and temporal statistics of wind-error evolution (and hence

  9. Case study of preliminary cyclic load evaluation and triaxial soil testing in offshore wind farm planning

    NASA Astrophysics Data System (ADS)

    Otto, Daniel; Ossig, Benjamin; Kreiter, Stefan; Kouery, Saed; Moerz, Tobias

    2010-05-01

    In 2020 Germany aims to produce 20% of its electrical power trough renewable energy sources. Assigned Offshore Wind farms in the German exclusive economic zone of the North- and the Baltic Sea are important step toward a fulfilment of this goal. However the save erecting of 5-6 MW wind power plants (total construction size: > 200m) in water depth of around 40 m is related to unprecedented technical, logistical and financial challenges. With an intended lifetime expectation of 50 years for the foundations, construction materials and the soils around the foundation are subject to high and continued stresses from self-weight, waves, wind and current. These stresses are not only static, but have also a significant cyclic component. An estimated 250 million cyclic load changes may lead to an accumulation of plastic deformation in the soil that potentially may affect operability or lifespan of the plant. During a preliminary geotechnical site survey of one of the largest (~150 km2) offshore wind project sites within the German Bight (~45 km North off the island Juist) a total of 16 drill cores with in situ cone penetration data and a total sample length of ~800 m where recovered. Preliminary foundation designs and static self weight and lateral load calculations were used to design a cycling triaxial lab testing program on discrete natural soil samples. Individual tests were performed by foundation type and at vertical and lateral load maxima to evaluate the long-term soil behaviour under cyclic load. Tests have been performed on granular, cohesive and intermediate natural soils. Following an introduction to the unique MARUM triaxial apparatus and testing conditions, the cyclic triaxial test results are shown and explained. Furthermore cyclic shear strength and stiffness are compared to their static counterparts. Unique soil behaviour like abrupt partial failure, pore pressure response and unexpected in part load independent cyclic deformation behaviour is discussed and

  10. The creation of a comprehensive metocean data set for offshore wind turbine simulations: Comprehensive metocean data set

    SciTech Connect

    Stewart, Gordon M.; Robertson, Amy; Jonkman, Jason; Lackner, Matthew A.

    2015-07-30

    A database of meteorological and ocean conditions is presented for use in offshore wind energy research and design. The original data are from 23 ocean sites around the USA and were obtained from the National Data Buoy Center run by the National Oceanic and Atmospheric Administration. The data are presented in a processed form that includes the variables of interest for offshore wind energy design: wind speed, significant wave height, wave peak-spectral period, wind direction and wave direction. For each site, a binning process is conducted to create conditional probability functions for each of these variables. The sites are then grouped according to geographic location and combined to create three representative sites, including a West Coast site, an East Coast site and a Gulf of Mexico site. Both the processed data and the probability distribution parameters for the individual and representative sites are being hosted on a publicly available domain by the National Renewable Energy Laboratory, with the intent of providing a standard basis of comparison for meteorological and ocean conditions for offshore wind energy research worldwide.

  11. Dynamic strain estimation for fatigue assessment of an offshore monopile wind turbine using filtering and modal expansion algorithms

    NASA Astrophysics Data System (ADS)

    Maes, K.; Iliopoulos, A.; Weijtjens, W.; Devriendt, C.; Lombaert, G.

    2016-08-01

    Offshore wind turbines are exposed to continuous wind and wave excitation. The monitoring of high periodic strains at critical locations is important to assess the remaining lifetime of the structure. At some critical locations below the water level, direct measurements of the strains are not feasible. Response estimation techniques can then be used to estimate the strains from a limited set of response measurements and a system model. This paper compares a Kalman filtering algorithm, a joint input-state estimation algorithm, and a modal expansion algorithm, for the estimation of dynamic strains in the tower of an offshore monopile wind turbine. The algorithms make use of a model of the structure and a limited number of response measurements for the prediction of the strain responses. The strain signals obtained from the response estimation algorithms are compared to the actual measured strains in the tower.

  12. An Assessment of Wave and Wind Data for Use in Design of Tension Leg Platforms - U.S. Offshore Areas.

    DTIC Science & Technology

    1984-07-01

    RD-Ai59 723 AN ASSESSMENT OF NAVE AND WIND DATA FOR USE IN DESIGN OF TENSION LEG PLAT (U) DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER...CHART NATIOMAL BUREAU OF STANDARDS- 1963-A V. Us.Dsparvywit AD-A 159 723 oGw AJSUSMEN OF WAVE AND WIND DATA SUSE IN DESIGN -OF, TENSION LEG PLATFORM...Assessment of Wave and Wind data for July 1984 use in Design of Tension Leg Platform 6.P 0i.~,280grn,80.0~. Code % U.S. Offshore areas William H

  13. The dynamics of the Mississippi River plume: Impact of topography, wind and offshore forcing on the fate of plume waters

    NASA Astrophysics Data System (ADS)

    Schiller, R. V.; Kourafalou, V. H.; Hogan, P.; Walker, N. D.

    2011-06-01

    High-resolution numerical simulations of the northern Gulf of Mexico region using the Hybrid Coordinate Ocean Model (HYCOM) were employed to investigate the dynamical processes controlling the fate of the Mississippi River plume, in particular the conditions that favor cross-marginal transport. The study focuses on the effects of topography, wind-driven and eddy-driven circulation on the offshore removal of plume waters. A realistically forced simulation (nested in a data-assimilative regional Gulf of Mexico HYCOM model) reveals that the offshore removal is a frequent plume pathway. Eastward wind-driven currents promote large freshwater transport toward the shelf break and the DeSoto Canyon, where eddies with diameters ranging from 50 to 130 km interact with the buoyant plume and effectively entrain the riverine waters. Our estimates show that the offshore removal by eddies can be as large as the wind-driven shelf transport. The proximity of eddies to the shelf break is a sufficient condition for offshore removal, and shelf-to-offshore interaction is facilitated by the steep bottom topography near the delta. Strong eddy-plume interactions were observed when the Loop Current System impinged against the shelf break, causing the formation of coherent, narrow low-salinity bands that extended toward the gulf interior. The offshore pathways depend on the position of the eddies near the shelf edge, their life span and the formation of eddy pairs that generate coherent cross-shelf flows. This study elucidates the dynamics that initiate a unique cross-marginal removal mechanism of riverine low-salinity, nutrient-rich waters, allowing their export along connectivity pathways, induced by a large-scale current system.

  14. Spatial and temporal patterns of airflow across a foredune and beach surface under offshore winds: implications for aeolian sediment transport

    NASA Astrophysics Data System (ADS)

    Jackson, D.; Delgado-Fernandez, I.; Lynch, K.; Baas, A. C.; Cooper, J. A.; Beyers, M.

    2010-12-01

    The input of aeolian sediment into foredune systems from beaches represents a key component of sediment budget analysis along many soft sedimentary coastlines. Where there are significant offshore wind components in local wind regimes this is normally excluded from analysis. However, recent work has shown that if the topography of the foredune is favourable then this offshore component is steered or undergoes flow reversal through leeside eddying to give onshore transport events at the back beach under offshore flow conditions. At particular distances from the foredune crest flow reattaches to the surface to continue its incident offshore direction. The location of this reattachment point has important implications for aeolian transport of sand on the back beach and foredune toe locations. This study reports initial results where the positioning of the reattachment point is mobile and is driven by incident wind velocity (at the foredune crest) and the actual undulations of the foredune crest’s topography, dictating heterogeneous flow behaviour at the beach. Using detailed field measurements (25 Hz, three-dimensional sonic anemometry) and computational fluid dynamic modelling, a temporal and spatial pattern of reattachment positions are described. Implications for aeolian transport and dune evolution are also examined.

  15. Offshore wind farm flow measured by complementary remote sensing techniques: radar satellite TerraSAR-X and lidar windscanners

    NASA Astrophysics Data System (ADS)

    Schneemann, J.; Hieronimus, J.; Jacobsen, S.; Lehner, S.; Kühn, M.

    2015-06-01

    Scanning Doppler lidar systems offer continuous wind measurements with some kilometres of range and a spatial distribution of concurrent measurements down to some metres. The synthetic aperture radar (SAR) satellite TerraSAR-X is capable to cover offshore areas of hundreds of square kilometres and to obtain wind data spatially distributed with some tens of metres. Images can be taken up to twice a day when the satellite passes the measurement site. Simultaneous wind speed measurements with ground based scanning Doppler lidar and TerraSAR-X in the region of the offshore wind farm ”alpha ventus” in the German North Sea were collected. A comparison of both systems in free stream conditions is performed by extrapolating the lidardata to the measurement height of the radar satellite assuming a logarithmic wind profile. In wake conditions the wake tracks obtained by lidar and TerraSAR-X are compared. In free stream conditions the comparison reveals a mean absolute wind velocity difference ≤ 0.4 m/s in two of the four considered cases and 1.1 m/s in one case. The fourth case shows a bad agreement due to a unusually low radar backscatter in the satellite's measurement. In wake conditions the wind turbine wakes could be tracked in the lidar and the satellite data. The comparison for the considered case reveals similar wake tracks in principle, but no matching due to the time difference of the measurements and the lower spatial resolution of the radar measurements.

  16. Wind Speed Estimation and Parametrization of Wake Models for Downregulated Offshore Wind Farms within the scope of PossPOW Project

    NASA Astrophysics Data System (ADS)

    Göçmen Bozkurt, Tuhfe; Giebel, Gregor; Kjølstad Poulsen, Niels; Mirzaei, Mahmood

    2014-06-01

    With increasing installed capacity, wind farms are requested to downregulate more frequently, especially in the offshore environment. Determination and verification of possible (or available) power of downregulated offshore wind farms are the aims of the PossPOW project (see PossPOW.dtu.dk). Two main challenges encountered in the project so far are the estimation of wind speed and the recreation of the flow inside the downregulated wind farm as if it is operating ideally. The rotor effective wind speed was estimated using power, pitch angle and rotational speed as inputs combined with a generic Cp model. The results have been compared with Horns Rev-I dataset and NREL 5MW simulations under both downregulation and normal operation states. For the real-time flow recreation, the GCLarsen single wake model was re-calibrated using a 1-s dataset from Horns Rev and tested for the downregulated period. The re-calibrated model has to be further parametrized to include dynamic effects such as wind direction variability and meandering also considering different averaging time scales before implemented in full scale wind farms.

  17. Are Sea State Measurements Required for Fatigue Load Monitoring of Offshore Wind Turbines?

    NASA Astrophysics Data System (ADS)

    Smolka, U.; Kaufer, D.; Cheng, P. W.

    2014-12-01

    Neural network algorithms have shown the capability to infer the actual wind turbine loading from standard signals commonly used for operational control purposes. Fatigue load monitoring done with this readily available data, can offer a robust and cost effective alternative to conventional maintenance-intensive mechanical stress measurement devices. The concept needs to be adopted to offshore wind turbines, where the exposure to the harsh environment with rather difficult accessibility makes the use particularly attractive. At such a site the impact of hydro-dynamically dominated loads might result in poor fatigue estimates, which is due to the lack of information on the surrounding sea state. In order to avoid the need of measuring-buoys, this work studies the employment of additional accelerometers mounted directly at the structure. Various potential placements and three sub-structure types are considered to account for the characteristic structural response caused by wave induced loading. The feasibility is demonstrated on generic data, gained from simulations. Recommended practices are deduced and applied to data from the AREVA M5000 turbine at "alpha ventus".

  18. Value of information of repair times for offshore wind farm maintenance planning

    NASA Astrophysics Data System (ADS)

    Seyr, Helene; Muskulus, Michael

    2016-09-01

    A large contribution to the total cost of energy in offshore wind farms is due to maintenance costs. In recent years research has focused therefore on lowering the maintenance costs using different approaches. Decision support models for scheduling the maintenance exist already, dealing with different factors influencing the scheduling. Our contribution deals with the uncertainty in the repair times. Given the mean repair times for different turbine components we make some assumptions regarding the underlying repair time distribution. We compare the results of a decision support model for the mean times to repair and those repair time distributions. Additionally, distributions with the same mean but different variances are compared under the same conditions. The value of lowering the uncertainty in the repair time is calculated and we find that using distributions significantly decreases the availability, when scheduling maintenance for multiple turbines in a wind park. Having detailed information about the repair time distribution may influence the results of maintenance modeling and might help identify cost factors.

  19. Integrated Layout and Support Structure Optimization for Offshore Wind Farm Design

    NASA Astrophysics Data System (ADS)

    Ashuri, T.; Ponnurangam, C.; Zhang, J.; Rotea, M.

    2016-09-01

    This paper develops a multidisciplinary design optimization framework for integrated design optimization of offshore wind farm layout and support structure. A computational model is developed to characterize the physics of the wind farm wake, aerodynamic and hydrodynamic loads, response of the support structure to these loads, soil- structure interaction, as well as different cost elements. Levelized cost of energy is introduced as the objective function. The design constraints are the farm external boundary, and support structure buckling, first modal-frequency, fatigue damage and ultimate stresses. To evaluate the effectiveness of the proposed approach, four optimization scenarios are considered: a feasible baseline design, optimization of layout only, optimization of support structure only, and integrated design of the layout and support structure. Compared to the baseline design, the optimization results show that the isolated support structure design reduces the levelized cost of energy by 0.6%, the isolated layout design reduces the levelized cost of energy by 2.0%, and the integrated layout and support structure design reduces the levelized cost of energy by 2.6%.

  20. Multiple tuned mass damper based vibration mitigation of offshore wind turbine considering soil-structure interaction

    NASA Astrophysics Data System (ADS)

    Hussan, Mosaruf; Sharmin, Faria; Kim, Dookie

    2017-08-01

    The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.

  1. Performance Analysis of a Wind Turbine Driven Swash Plate Pump for Large Scale Offshore Applications

    NASA Astrophysics Data System (ADS)

    Buhagiar, D.; Sant, T.

    2014-12-01

    This paper deals with the performance modelling and analysis of offshore wind turbine-driven hydraulic pumps. The concept consists of an open loop hydraulic system with the rotor main shaft directly coupled to a swash plate pump to supply pressurised sea water. A mathematical model is derived to cater for the steady state behaviour of entire system. A simplified model for the pump is implemented together with different control scheme options for regulating the rotor shaft power. A new control scheme is investigated, based on the combined use of hydraulic pressure and pitch control. Using a steady-state analysis, the study shows how the adoption of alternative control schemes in a the wind turbine-hydraulic pump system may result in higher energy yields than those from a conventional system with an electrical generator and standard pitch control for power regulation. This is in particular the case with the new control scheme investigated in this study that is based on the combined use of pressure and rotor blade pitch control.

  2. Power output of offshore wind farms in relation to atmospheric stability

    NASA Astrophysics Data System (ADS)

    Alblas, Laurens; Bierbooms, Wim; Veldkamp, Dick

    2014-12-01

    Atmospheric stability is known to influence wind farm power output, by affecting power losses due to wakes. This research tries to answer what atmospheric stability does to the power production and how conventional simulations using the Jensen wake model compare and can be improved. Data is used from two offshore wind farms, Egmond aan Zee (OWEZ) and North Hoyle. Stability distributions are determined using metmast data. By combining this data with the production data, the influence of stability on the power output is studied. It is found that very unstable conditions result in higher power output (i.e. smaller wake losses) than near-neutral conditions, and these again show higher power output than during very stable conditions. Differences in normalized power output of 10-20% exist between the very unstable and very stable conditions. Simulations can be improved by adapting the wake decay constant (WDC). Observed WDC values are k >= TI, as opposed to the conventional k ≈ 0.5TI. A hypothesis for further research is proposed regarding the influence of vertical turbulence.

  3. A modular and cost-effective superconducting generator design for offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Keysan, Ozan; Mueller, Markus

    2015-03-01

    Superconducting generators have the potential to reduce the tower head mass for large (∼10 MW) offshore wind turbines. However, a high temperature superconductor generator should be as reliable as conventional generators for successful entry into the market. Most of the proposed designs use the superconducting synchronous generator concept, which has a higher cost than conventional generators and suffers from reliability issues. In this paper, a novel claw pole type of superconducting machine is presented. The design has a stationary superconducting field winding, which simplifies the design and increases the reliability. The machine can be operated in independent modules; thus even if one of the sections fails, the rest can operate until the next planned maintenance. Another advantage of the design is the very low superconducting wire requirement; a 10 MW, 10 rpm design is presented which uses 13 km of MgB2 wire at 30 K. The outer diameter of the machine is 6.63 m and it weighs 184 tonnes including the structural mass. The design is thought to be a good candidate for entering the renewable energy market, with its low cost and robust structure.

  4. The lightning striking probability for offshore wind turbine blade with salt fog contamination

    NASA Astrophysics Data System (ADS)

    Li, Qingmin; Ma, Yufei; Guo, Zixin; Ren, Hanwen; Wang, Guozheng; Arif, Waqas; Fang, Zhiyang; Siew, Wah Hoon

    2017-08-01

    The blades of an offshore wind turbine are prone to be adhered with salt fog after long-time exposure in the marine-atmosphere environment, and salt fog reduces the efficiency of the lightning protection system. In order to study the influence of salt fog on lightning striking probability (LSP), the lightning discharge process model for the wind turbine blade is adopted in this paper considering the accumulation mechanism of surface charges around the salt fog area. The distribution of potential and electric field with the development of the downward leader is calculated by COMSOL Multiphysics LiveLink for MATLAB. A quantitative characterization method is established to calculate the LSP base on the average electric field before the return stroke and the LSP distribution of the blade is shown in the form of a graphic view. The simulation results indicate that the receptor and conductor area close to the receptor area are more likely to get struck by lightning, and the LSP increases under the influence of salt fog. The validity of the model is verified by experiments. Furthermore, the receptor can protect the blade from lightning strikes effectively when the lateral distance between the rod electrode and receptor is short. The influence of salt fog on LSP is more obvious if salt fog is close to the receptor or if the scope of salt fog area increases.

  5. Geophysical Mapping of the South Carolina Atlantic Offshore for Wind Energy Development

    NASA Astrophysics Data System (ADS)

    Knapp, C. C.; Brantley, D.; Battista, B.; Gayes, P. T.; Knapp, J. H.; White, S. M.

    2016-12-01

    The submerged continental margin of the southeastern United States records a geologic history of continental collision during Paleozoic time (500-300 Mya), and subsequent continental rifting and break-up with associated magmatism during early Mesozoic time (230-180 Mya). Subsequent development as a passive continental margin has resulted in accumulation of a thick sedimentary cover deposited through numerous cycles of sea level change on the margin. Themost recent phase of deposition (Pleistocene; <1.8 Ma) took place during repeated, large-scale (120 m) sea-level changes which resulted in extensive exposure and inundation of the shelf. The shallow subsurface of the near-shore environment under consideration for wind energy development requires thorough analysis of seabed bottom type, seafloor roughness and geomorphology, potential sites of cultural resources and features such as active and inactive faults, filled channels, and potential slope instabilities which would have a considerable potential impact on siting of installations for wind energy. To this end, a geophysical survey has been conducted to further refine future wind farm locations. The study is focused on the inner shelf from 18 to 26 km offshore of North Myrtle Beach, SC and a second smaller area offshore of Georgetown, SC. The collaborative effort is generating multibeam, side scan sonar, chirp sub-bottom and magnetometer data. Seafloor acoustic backscatter is derived from the same instrument acquiring the bathymetry. Bathymetry shows a radial distribution of coast-perpendicular features that transition between two coastal processes: 1) there is the sediment distribution caused by longshore currents and wave energy, and 2) there are areas related to the coastal inlets that disrupt the primary sedimentation patterns and impose patterns of terrestrial sedimentation such as those from rivers, deltas and estuaries. There are numerous systems tracts and channels acting on the seafloor over time in the

  6. Model test of an inverted conical cylinder floating offshore wind turbine moored by a spring-tensioned-leg

    NASA Astrophysics Data System (ADS)

    Shin, Hyunkyoung; Cho, Sangrai; Jung, Kwangjin

    2014-03-01

    A new 5-MW floating offshore wind turbine moored by a spring-tensioned-leg was proposed for installa­tion in about 50m water depth. Its substructure is a platform of the inverted conical cylinder type with massive ballast weight plate at the bottom. A 1:128 scale model was built for the preliminary engineering development. The model tests in waves and wind were carried out to estimate motion characteristics of this platform in the Ocean Engineering Wide Tank of the University of Ulsan. Its motions were measured and the RAOs were compared. The proposed floating off­shore wind turbine showed a good stability and decent responses in waves, wind and operation of the wind turbine.

  7. The influence of non-logarithmic wind speed profiles on potential power output at Danish offshore sites

    NASA Astrophysics Data System (ADS)

    Motta, M.; Barthelmie, R. J.; Vølund, P.

    2005-04-01

    Detailed knowledge of mean wind speed profiles is essential for properly assessing the power output of a potential wind farm. Since atmospheric stratification plays a crucial role in affecting wind speed profiles, obtaining a detailed picture of the climatology of stability conditions at a given site is very important. In the present study, long time series from offshore measurement sites around Denmark are analysed, with the aim of quantifying the role of atmospheric stability in wind speed profiles and in our ability to model them. A simple method for evaluating stability is applied, and the resulting statistics of the atmospheric stratification is thoroughly studied. A significant improvement in the mean wind speed profile prediction is obtained by applying a stability correction to the logarithmic profiles suitable for neutral conditions. These results are finally used to estimate power densities at different heights. Copyright

  8. Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses

    NASA Astrophysics Data System (ADS)

    Kempton, Willett; Archer, Cristina L.; Dhanju, Amardeep; Garvine, Richard W.; Jacobson, Mark Z.

    2007-01-01

    We develop methods for assessing offshore wind resources, using a model of the vertical structure of the planetary boundary layer (PBL) over water and a wind-electric technology analysis linking turbine and tower limitations to bathymetry and continental shelf geology. These methods are tested by matching the winds of the Middle-Atlantic Bight (MAB) to energy demand in the adjacent states (Massachusetts through North Carolina, U.S.A.). We find that the MAB wind resource can produce 330 GW average electrical power, a resource exceeding the region's current summed demand for 73 GW of electricity, 29 GW of light vehicle fuels (now gasoline), and 83 GW of building fuels (now distillate fuel oil and natural gas). Supplying these end-uses with MAB wind power would reduce by 68% the region's CO2 emissions, and reduce by 57% its greenhouse gas forcing. These percentages are in the range of the global reductions needed to stabilize climate.

  9. Epifauna dynamics at an offshore foundation--implications of future wind power farming in the North Sea.

    PubMed

    Krone, Roland; Gutow, Lars; Joschko, Tanja J; Schröder, Alexander

    2013-04-01

    In the light of the introduction of thousands of large offshore wind power foundations into the North Sea within the next decades, this manuscript focuses on the biofouling processes and likely reef effects. The study explores the macrozoobenthos (biofouling) colonization at an offshore platform which is comparable to offshore wind turbine foundations. A total of 183 single samples were taken and the parameters water depth and time were considered comparing biofouling masses and communities. The blue mussel Mytilus edulis, Anthozoa and the Amphipoda Jassa spp. were the dominant species. The community from the 1 m zone and those from the 5 and 20-28 m zones can clearly be differentiated. The 10 m zone community represents the transition between the M. edulis dominated 1 m and 5 m zones and the Anthozoa dominated 20-28 m zone. In the future offshore wind farms, thousands of wind turbine foundations will provide habitat for a hard bottom fauna which is otherwise restricted to the sparse rocky habitats scattered within extensive sedimentary soft bottoms of the German Bight. However, offshore wind power foundations cannot be considered natural rock equivalents as they selectively increase certain natural hard bottom species. The surface of the construction (1280 m²) was covered by an average of 4300 kg biomass. This foundation concentrates on its footprint area (1024 m²) 35 times more macrozoobenthos biomass than the same area of soft bottom in the German exclusive economic zone (0.12 kg m(-2)), functioning as a biomass hotspot. Concerning the temporal biomass variation, we assume that at least 2700 kg biomass was exported on a yearly basis. 345 × 10(4) single mussel shells of different sizes were produced during the study period. It is anticipated that the M. edulis abundance will increase in the North Sea due to the expansion of the offshore wind farm development. This will result in the enhanced production of secondary hard substrate (mussel shells

  10. Modelling the 2013 Typhoon Haiyan storm surge: Effect of waves, offshore winds, tide phase, and translation speed

    NASA Astrophysics Data System (ADS)

    Bilgera, P. H. T.

    2015-12-01

    Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.

  11. Modelling the 2013 Typhoon Haiyan Storm Surge: Effect of Waves, Offshore Winds, Tide Phase, and Translation Speed

    NASA Astrophysics Data System (ADS)

    Bilgera, P. H. T.; Villanoy, C.; Cabrera, O.

    2016-02-01

    Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.

  12. Breaking wave impact forces on truss support structures for offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Cieślikiewicz, Witold; Gudmestad, Ove T.; Podrażka, Olga

    2014-05-01

    Due to depletion of the conventional energy sources, wind energy is becoming more popular these days. Wind energy is being produced mostly from onshore farms, but there is a clear tendency to transfer wind farms to the sea. The foundations of offshore wind turbines may be truss structures and might be located in shallow water, where are subjected to highly varying hydrodynamic loads, particularly from plunging breaking waves. There are models for impact forces prediction on monopiles. Typically the total wave force on slender pile from breaking waves is a superposition of slowly varying quasi-static force, calculated from the Morison equation and additional dynamical, short duration force due to the impact of the breaker front or breaker tongue. There is not much research done on the truss structures of wind turbines and there are still uncertainties on slamming wave forces, due to plunging breaking waves on those structures. Within the WaveSlam (Wave slamming forces on truss structures in shallow water) project the large scale tests were carried out in 2013 at the Large Wave Flume in Forschungszentrum Küste (FZK) in Hannover, Germany. The following institutions participated in this initiative: the University of Stavanger and the Norwegian University of Science and Technology (project management), University of Gdańsk, Poland, Hamburg University of Technology and the University of Rostock, Germany and Reinertsen AS, Norway. This work was supported by the EU 7th Framework Programme through the grant to the budget of the Integrating Activity HYDRALAB IV. The main aim of the experiment was to investigate the wave slamming forces on truss structures, development of new and improvement of existing methods to calculate forces from the plunging breakers. The majority of the measurements were carried out for regular waves with specified frequencies and wave heights as well as for the irregular waves based on JONSWAP spectrum. The truss structure was equipped with both

  13. Repeated mapping of reefs constructed by Sabellaria spinulosa Leuckart 1849 at an offshore wind farm site

    NASA Astrophysics Data System (ADS)

    Pearce, Bryony; Fariñas-Franco, Jose M.; Wilson, Christian; Pitts, Jack; deBurgh, Angela; Somerfield, Paul J.

    2014-07-01

    Sabellaria spinulosa reefs are considered to be sensitive and of high conservation status. This article evaluates the feasibility of using remote sensing technology to delineate S. spinulosa reefs. S. spinulosa reef habitats associated with the Thanet Offshore Windfarm site were mapped using high resolution sidescan sonar (410 kHz) and multibeam echo sounder (<1 m2) data in 2005 (baseline), 2007 (pre-construction baseline) and 2012 (post-construction). The S. spinulosa reefs were identified in the acoustic data as areas of distinct irregular texturing. Maps created using acoustic data were validated using quantitative measures of reef quality, namely tube density (as a proxy for the density of live S. spinulosa), percentage cover of S. spinulosa structures (both living and dead) and associated macrofauna derived from seabed images taken across the development site. Statistically significant differences were observed in all physical measures of S. spinulosa as well the number (S) and diversity (H') of associated species, derived from seabed images classified according to the presence or absence of reef, validating the use of high resolution sidescan sonar to map these important biogenic habitats. High precision mapping in the early stages allowed for the micro-siting of wind turbines in a way that caused minimal damage to S. spinulosa reefs during construction. These habitats have since recovered and expanded in extent. The surveys undertaken at the Thanet Offshore Windfarm site demonstrate the importance of repeat mapping for this emerging industry, allowing habitat enhancement to be attributed to the development whilst preventing background habitat degradation from being wrongly attributed to the development.

  14. Optimization of Installation, Operation and Maintenance at Offshore Wind Projects in the U.S.: Review and Modeling of Existing and Emerging Approaches

    SciTech Connect

    Baldock, Nick; Sevilla, Fernando; Redfern, Robin; Storey, Alexis; Kempenaar, Anton; Elkinton, Chris

    2014-12-19

    The United States Department of Energy (DOE) awarded a grant to GL Garrad Hassan (GL GH) to investigate the logistics, opportunities, and costs associated with existing and emerging installation and operation and maintenance (O&M) activities at offshore wind projects as part of the DOE’s program to reduce barriers facing offshore wind project development in the United States (U.S.). This report (the Report) forms part of Subtopic 5.3 “Optimized Installation, Operation and Maintenance Strategies Study” which in turn is part of the “Removing Market Barriers in U.S. Offshore Wind” set of projects for the DOE. The purpose of Subtopic 5.3 is to aid and facilitate informed decision-making regarding installation and O&M during the development, installation, and operation of offshore wind projects in order to increase efficiency and reduce the levelized cost of energy (LCoE). Given the large area of U.S. territorial waters, the generally higher mean wind speeds offshore, and the proximity to the coast of many large U.S. cities, offshore wind power has the potential to become a significant contributor of energy to U.S. markets. However, for the U.S. to ensure that the development of offshore wind energy projects is carried out in an efficient and cost-effective manner, it is important to be cognizant of the current and emerging practices in both the domestic and international offshore wind energy industries. The U.S. can harness the experience gained globally and combine this with the skills and assets of an already sizeable onshore wind industry, as well as the resources of a mature offshore oil and gas industry, to develop a strong offshore wind sector. The work detailed in this report is aimed at assisting with that learning curve, particularly in terms of offshore specific installation and O&M activities. This Report and the Installation and O&M LCoE Analysis Tool, which were developed together by GL GH as part of this study, allow readers to identify, model

  15. Retrieving the Balanced Winds on the Globe as a Generalized Inverse Problem

    NASA Technical Reports Server (NTRS)

    Lu, Huei-Iin; Robertson, Franklin R.; Arnold, James E. (Technical Monitor)

    2000-01-01

    A generalized inverse technique is applied to retrieve two types of balanced winds that characterize the large-scale dynamics of the atmosphere: rotational winds based upon the linear balance equation, and divergent winds based upon the vorticity budget equation. Both balance equations are singular at or near the equator. The balance equations are transformed in spherical harmonic function space to an under-determined system, for which the scale-weighed least-squares solution consists of a sum of principal and singular components. The principal components represent the response to the source function for the regular eigenmodes, while the singular components are determined by the projection of an independent measurement on the singular eigenmodes. The method was tested with the NCEP/NCAR reanalysis data in which a quasi-balance condition exists. A realistic balanced wind field is retrievable when the singular components are computed based upon the reanalyzed wind data.

  16. Retrieving the Balanced Winds on the Globe as a Generalized Inverse Problem

    NASA Technical Reports Server (NTRS)

    Lu, Huei-Iin; Robertson, Franklin R.; Arnold, James E. (Technical Monitor)

    2000-01-01

    A generalized inverse technique is applied to retrieve two types of balanced winds that characterize the large-scale dynamics of the atmosphere: rotational winds based upon the linear balance equation, and divergent winds based upon the vorticity budget equation. Both balance equations are singular at or near the equator. The balance equations are transformed in spherical harmonic function space to an under-determined system, for which the scale-weighed least-squares solution consists of a sum of principal and singular components. The principal components represent the response to the source function for the regular eigenmodes, while the singular components are determined by the projection of an independent measurement on the singular eigenmodes. The method was tested with the NCEP/NCAR reanalysis data in which a quasi-balance condition exists. A realistic balanced wind field is retrievable when the singular components are computed based upon the reanalyzed wind data.

  17. A Spatial-Economic Cost-Reduction Pathway Analysis for U.S. Offshore Wind Energy Development from 2015–2030

    SciTech Connect

    Beiter, Philipp; Musial, Walter; Smith, Aaron; Kilcher, Levi; Damiani, Rick; Maness, Michael; Sirnivas, Senu; Stehly, Tyler; Gevorgian, Vahan; Mooney, Meghan; Scott, George

    2016-09-01

    This report describes a comprehensive effort undertaken by the National Renewable Energy Laboratory (NREL) to understand the cost of offshore wind energy for markets in the United States. The study models the cost impacts of a range of offshore wind locational cost variables for more than 7,000 potential coastal sites in U.S. offshore wind resource areas. It also assesses the impact of more than 50 technology innovations on potential future costs for both fixed-bottom and floating wind systems. Comparing these costs to an initial site-specific assessment of local avoided generating costs, the analysis provides a framework for estimating the economic potential for offshore wind. The analysis is intended to inform a broad set of stakeholders and enable an assessment of offshore wind as part of energy development and energy portfolio planning. It provides information that federal and state agencies and planning commissions could use to inform initial strategic decisions about offshore wind developments in the United States.

  18. A Spatial-Economic Cost-Reduction Pathway Analysis for U.S. Offshore Wind Energy Development from 2015-2030

    SciTech Connect

    Beiter, Philipp; Stehly, Tyler

    2016-10-05

    The potential for cost reduction and economic viability for offshore wind varies considerably within the United States. This analysis models the cost impact of a range of offshore wind locational cost variables across more than 7,000 potential coastal sites in the United States' offshore wind resource area. It also assesses the impact of over 50 technology innovations on potential future costs between 2015 and 2027 (Commercial Operation Date) for both fixed-bottom and floating wind systems. Comparing these costs to an initial assessment of local avoided generating costs, this analysis provides a framework for estimating the economic potential for offshore wind. Analyzing economic potential within this framework can help establish a refined understanding across industries of the technology and site-specific risks and opportunities associated with future offshore wind development. The findings from the original report indicate that under the modeled scenario, offshore wind can be expected to achieve significant cost reductions and may approach economic viability in some parts of the United States within the next 15 years.

  19. Draft Permit & Supporting Documentation for the Cape Wind Associates, LLC, Horseshoe Shoal, Nantucket Sound (Offshore Renewable Energy Project/OCS Air Permit)

    EPA Pesticide Factsheets

    List of draft permit & supporting documentation for the Cape Wind Associates, LLC, Horseshoe Shoal, Nantucket Sound (Offshore Renewable Energy Project/OCS Air Permit: Massachusetts Plan Approval including nonattainment NSR Appendix A requirements).

  20. Final Permit Documents for the Cape Wind Associates, LLC, Horseshoe Shoal, Nantucket Sound (Offshore Renewable Energy Project/OCS Air Permit)

    EPA Pesticide Factsheets

    List of finla permit documents for the Cape Wind Associates, LLC, Horseshoe Shoal, Nantucket Sound (Offshore Renewable Energy Project/OCS Air Permit: Massachusetts Plan Approval including nonattainment NSR Appendix A requirements).

  1. Public Hearing & Comment Period Document(s) for the Cape Wind Associates, LLC, Horseshoe Shoal, Nantucket Sound (Offshore Renewable Energy Project/OCS Air Permit)

    EPA Pesticide Factsheets

    List of public hearing & comment period document(s) for the Cape Wind Associates, LLC, Horseshoe Shoal, Nantucket Sound (Offshore Renewable Energy Project/OCS Air Permit: Massachusetts Plan Approval including nonattainment NSR Appendix A requirements).

  2. Electromagnetic sensors for monitoring of scour and deposition processes at bridges and offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Michalis, Panagiotis; Tarantino, Alessandro; Judd, Martin

    2014-05-01

    Recent increases in precipitation have resulted in severe and frequent flooding incidents. This has put hydraulic structures at high risk of failure due to scour, with severe consequences to public safety and significant economic losses. Foundation scour is the leading cause of bridge failures and one of the main climate change impacts to highway and railway infrastructure. Scour action is also being considered as a major risk for offshore wind farm developments as it leads to excessive excavation of the surrounding seabed. Bed level conditions at underwater foundations are very difficult to evaluate, considering that scour holes are often re-filled by deposited loose material which is easily eroded during smaller scale events. An ability to gather information concerning the evolution of scouring will enable the validation of models derived from laboratory-based studies and the assessment of different engineering designs. Several efforts have focused on the development of instrumentation techniques to measure scour processes at foundations. However, they are not being used routinely due to numerous technical and cost issues; therefore, scour continues to be inspected visually. This research project presents a new sensing technique, designed to measure scour depth variation and sediment deposition around the foundations of bridges and offshore wind turbines, and to provide an early warning of an impending structural failure. The monitoring system consists of a probe with integrated electromagnetic sensors, designed to detect the change in the surrounding medium around the foundation structure. The probe is linked to a wireless network to enable remote data acquisition. A developed prototype and a commercial sensor were evaluated to quantify their capabilities to detect scour and sediment deposition processes. Finite element modelling was performed to define the optimum geometric characteristics of the prototype scour sensor based on models with various permittivity

  3. Femtosecond laser-inscribed fiber Bragg gratings for strain monitoring in power cables of offshore wind turbines.

    PubMed

    Burgmeier, Jörg; Schippers, Wolfgang; Emde, Nico; Funken, Peter; Schade, Wolfgang

    2011-05-01

    A fiber Bragg grating sensor system used for monitoring the effects of strain on the power cable of an offshore wind turbine is presented. The Bragg grating structure was inscribed into coated nonphotosensitive standard telecommunication fibers using an IR femtosecond laser and the point-by-point writing technique. Because of the presence of the protective coating of the fiber, the mechanical stability of the resultant sensor device is better than that of a sensor consisting of a bare fiber. A system containing this sensing element was to our knowledge for the first time successfully installed and tested in an offshore wind turbine prototype (REpower 6M, REpower Systems, AG, Germany) in February 2010, near Ellhöft (Germany). The fabrication process of the fiber Bragg gratings, measurement results of the online monitoring, and a comparison between the sensor signal and commonly used sensing techniques are presented.

  4. Strain monitoring in power cables of offshore wind energy plants with femtosecond laser inscribed fibre Bragg gratings

    NASA Astrophysics Data System (ADS)

    Burgmeier, Jörg; Funken, Peter; Schade, Wolfgang

    2011-05-01

    A fibre Bragg grating sensor system used for monitoring of strain being effective on the power cable of an offshore wind turbine is presented. The Bragg grating structure was inscribed in coated non-photosensitive standard telecommunication fibres using an infrared femtosecond laser and the point-by-point writing technique. Due to the presence of the protective coating of the fibre, the mechanical stability of the resultant sensor device is better than that of a sensor consisting of a bare fibre. A system containing this sensing element was successfully installed and tested in an offshore wind turbine prototype (REpower 6M) in February 2010, near Ellhöft, Germany). The fabrication process of the fibre Bragg gratings, a comparison between the sensor signal and a commonly used strain gauge and measurement results of the online monitoring are presented.

  5. Verification of the New FAST v8 Capabilities for the Modeling of Fixed-Bottom Offshore Wind Turbines: Preprint

    SciTech Connect

    Barahona, B.; Jonkman, J.; Damiani, R.; Robertson, A.; Hayman, G.

    2014-12-01

    Coupled dynamic analysis has an important role in the design of offshore wind turbines because the systems are subject to complex operating conditions from the combined action of waves and wind. The aero-hydro-servo-elastic tool FAST v8 is framed in a novel modularization scheme that facilitates such analysis. Here, we present the verification of new capabilities of FAST v8 to model fixed-bottom offshore wind turbines. We analyze a series of load cases with both wind and wave loads and compare the results against those from the previous international code comparison projects-the International Energy Agency (IEA) Wind Task 23 Subtask 2 Offshore Code Comparison Collaboration (OC3) and the IEA Wind Task 30 OC3 Continued (OC4) projects. The verification is performed using the NREL 5-MW reference turbine supported by monopile, tripod, and jacket substructures. The substructure structural-dynamics models are built within the new SubDyn module of FAST v8, which uses a linear finite-element beam model with Craig-Bampton dynamic system reduction. This allows the modal properties of the substructure to be synthesized and coupled to hydrodynamic loads and tower dynamics. The hydrodynamic loads are calculated using a new strip theory approach for multimember substructures in the updated HydroDyn module of FAST v8. These modules are linked to the rest of FAST through the new coupling scheme involving mapping between module-independent spatial discretizations and a numerically rigorous implicit solver. The results show that the new structural dynamics, hydrodynamics, and coupled solutions compare well to the results from the previous code comparison projects.

  6. Forecasting surface wind speeds over offshore islands near Taiwan during tropical cyclones: Comparisons of data-driven algorithms and parametric wind representations

    NASA Astrophysics Data System (ADS)

    Wei, Chih-Chiang

    2015-03-01

    Tropical cyclones often affect the western North Pacific region. Between May and October annually, enormous flood damage is frequently caused by typhoons in Taiwan. This study adopted machine learning techniques to forecast the hourly wind speeds over offshore islands near Taiwan during tropical cyclones. To develop a highly reliable surface wind speed prediction technique, the four kernel-based support vector machines for regression (SVR) models, comprising radial basis function, linear, polynomial, and Pearson VII universal kernels were used. To ensure the accuracy of the SVR model, traditional regressions and the parametric wind representations, comprising the modified Rankine profile, Holland wind profile, and DeMaria wind profile were used to compare wind speed forecasts. The methodology was applied to two islands near Taiwan, Lanyu, and Pengjia Islets. The forecasting horizon ranged from 1 to 6 h. The results indicated that the Pearson VII SVR is the most precise of the kernel-based SVR models, regressions, and parametric wind representations. Additionally, Typhoons Nanmadol and Saola which made landfall over Taiwan during 2011 and 2012 were simulated and examined. The results showed that the Pearson VII SVR yielded more favorable results than did the regressions and Holland wind profile. In addition, we observed that Holland wind profile seems applicable to open ocean but unsuitable for areas affected by topographic effects, such as the Central Mountain Range of Taiwan.

  7. Floating Offshore Wind in Oregon: Potential for Jobs and Economic Impacts in Oregon Coastal Counties from Two Future Scenarios

    SciTech Connect

    Jimenez, Tony; Keyser, David; Tegen, Suzanne

    2016-07-01

    This analysis examines the employment and potential economic impacts of large-scale deployment of offshore wind technology off the coast of Oregon. This analysis examines impacts within the seven Oregon coastal counties: Clatsop, Tillamook, Lincoln, Lane, Douglas, Coos, and Curry. The impacts highlighted here can be used in county, state, and regional planning discussions and can be scaled to get a general sense of the economic development opportunities associated with other deployment scenarios.

  8. On the effects of basic platform design characteristics on floating offshore wind turbine control and their mitigation

    NASA Astrophysics Data System (ADS)

    Olondriz, Joannes; Elorza, Iker; Trojaola, Ignacio; Pujana, Aron; Landaluze, Joseba

    2016-09-01

    Semi-submersible floating offshore wind turbines present significant advantages over other designs in terms of cost, deployment, maintenance and site-independence. However, these advantages are achieved by shifting a part of the burden of stabilising the platform pitch and roll motions to the turbine control system. A study is presented here of the effects of basic platform dimensions on the performance of a standard pitch controller and the possible methods for mitigating said effects.

  9. Design study and full scale MBS-CFD simulation of the IDEOL floating offshore wind turbine foundation

    NASA Astrophysics Data System (ADS)

    Borisade, F.; Choisnet, T.; Cheng, P. W.

    2016-09-01

    A two MW floating offshore wind turbine is developed within the EU-FP7 project FLOATGEN. The focus of this paper is to perform design studies of the mooring foundation at the hull and to investigate the full scale floater concept in a coupled MBS-CFD environment at regular waves. Measurements from wave tank model tests are used for validation. The results show the potential of CFD methods to be used as virtual test bed during the design process.

  10. Evaluation of Warm and Cold Shaft Designs for Large Multi-megawatt Direct Drive Offshore Superconducting Wind Generators

    NASA Astrophysics Data System (ADS)

    Kulkarni, Devdatta; Chen, Edward; Ho, Mantak; Karmaker, Haran

    For offshore large multi-megawatt direct drive wind generators, because of its ability to generate high flux fields, superconducting (SC) technology can offer significant size and mass reduction over traditional technologies. However, cryogenic cooling design remains as one of the major obstacles to overcome. Different cryogenic cooling designs, such as warm shaft and cold shaft rotor design, present different advantages and challenges technically and commercially. This paper presents the investigations on both designs for large SC generators from manufacturability and service perspectives.

  11. In situ observations of suspended particulate matter plumes at an offshore wind farm, southern North Sea

    NASA Astrophysics Data System (ADS)

    Baeye, Matthias; Fettweis, Michael

    2015-08-01

    Suspended particulate matter (SPM) plumes associated with the monopile foundations of the Belgian offshore wind farm (OWF) Belwind I were acoustically profiled by means of a Doppler current profiler (ADCP). Together with the analysis of a bottom lander dataset of optical and acoustic backscatter sensors (OBSs and ADPs respectively), the spatiotemporal SPM plume dynamics were inferred. The fieldwork comprised (1) near-bed measurements of hydrodynamics and SPM concentrations in the direct vicinity of the wind turbines, by means of a bottom lander over a spring-neap cycle in May 2010; this dataset represents a typically tide-driven situation because there was no significant meteorological forcing during the measurement period; (2) additional vessel-based measurements conducted in May 2013 to capture the SPM plumes inside and outside the OWF over part of a tidal cycle. Both in situ datasets revealed that the SPM plumes were generated at the turbine piles, consistent with aerial and space-borne imagery. The SPM plumes are well aligned with the tidal current direction in the wake of the monopiles, concentrations being estimated to reach up to 5 times that of the background concentration of about 3 mg/l. It is suggested that the epifaunal communities colonizing the monopile surface and the protective rock collar at the base play a key role as source of the suspended matter recorded in the plumes. The organisms filter and trap fine SPM from the water column, resulting in predominant accumulation of SPM, including detritus and (pseudo-) faeces, at the base of the piles. When tidal currents exceed a certain velocity, fine particles in the near-bed fluff layer are re-suspended and transported downstream in the wake of the piles.

  12. Analysis of unsteady flow over Offshore Wind Turbine in combination with different types of foundations

    NASA Astrophysics Data System (ADS)

    Alesbe, Israa; Abdel-Maksoud, Moustafa; Aljabair, Sattar

    2017-06-01

    Environmental effects have an important influence on Offshore Wind Turbine (OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element (BEM)— panMARE code—to simulate the unsteady flow behavior of a full OWT with various combinations of aerodynamic and hydrodynamic loads in the time domain. This code is implemented to simulate potential flows for different applications and is based on a three-dimensional first-order panel method. Three different OWT configurations consisting of a generic 5 MW NREL rotor with three different types of foundations (Monopile, Tripod, and Jacket) are investigated. These three configurations are analyzed using the RANSE solver which is carried out using ANSYS CFX for validating the corresponding results. The simulations are performed under the same environmental atmospheric wind shear and rotor angular velocity, and the wave properties are wave height of 4 m and wave period of 7.16 s. In the present work, wave environmental effects were investigated firstly for the two solvers, and good agreement is achieved. Moreover, pressure distribution in each OWT case is presented, including detailed information about local flow fields. The time history of the forces at inflow direction and its moments around the mudline at each OWT part are presented in a dimensionless form with respect to the mean value of the last three loads and the moment amplitudes obtained from the BEM code, where the contribution of rotor force is lower in the tripod case and higher in the jacket case and the calculated hydrodynamic load that effect on jacket foundation type is lower than other two cases.

  13. Model development on the dynamic of wave-current interaction and the implementation on the offshore wind power

    NASA Astrophysics Data System (ADS)

    Wu, Tso-Ren; Huang, Chin-Cheng; Lin, Chun-Wei; Chuang, Mei-Hui; Cheng, Che-Yu; Tsai, Yu-Lin

    2015-04-01

    In this study, we performed the three-dimensional numerical simulation and analysis for solving the dynamic loads from waves and currents on the offshore wind turbines. Scenarios focused on the extreme weather conditions. During the typhoon event, the wind-driven storm waves and currents have to be considered while solving the dynamic load on the structures. The Splash3D model was adopted to perform the simulation of the interaction between breaking waves and structures. The core of the Splash3D model is the Truchas model which was developed by Los Alamos National Laboratory (LANL) and featured as high accuracy. Splash3D is capable of solving the dynamic process for the interaction between the structure and fluids with complex breaking free-surface. This model is also able to simulate the local scour under the violent flow condition. In order to adequately simulate the waves under monsoon or typhoon, we developed a new wave generation module based on the dispersion relationship. This wave-maker module was used to generate regular waves, irregular waves, and breaking waves under the extreme weather condition. The module was used to simulate the synthetic effect under the effects of waves and currents for obtaining the force distribution on the foundation of the offshore wind turbine. Keyword: Splash3D, wind power, VOF, wave-current interaction, dynamic loads, wind turbines.

  14. Dynamic responses of a semi-type offshore floating wind turbine during normal state and emergency shutdown

    NASA Astrophysics Data System (ADS)

    Hu, Zhi-qiang; Li, Liang; Wang, Jin; Hu, Qiu-hao; Shen, Ma-cheng

    2016-03-01

    This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine (OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time domain, using an aero-hydro-servo-elastic simulation code-FAST. Owing to the unique viscous features of the reference system, the original viscous damping model implemented in FAST is replaced with a quadratic one to gain an accurate capture of viscous effects. Simulation cases involve free-decay motion in still water, steady motions in the presence of regular waves and wind as well as dynamic response in operational sea states with and without wind. Simulations also include the cases for transient responses induced by fast blade pitching after emergency shutdown. The features of platform motions, local structural loads and a typical mooring line tension force under a variety of excitations are obtained and investigated.

  15. Negative long term effects on harbour porpoises from a large scale offshore wind farm in the Baltic—evidence of slow recovery

    NASA Astrophysics Data System (ADS)

    Teilmann, Jonas; Carstensen, Jacob

    2012-12-01

    Offshore wind farms constitute a new and fast growing industry all over the world. This study investigates the long term impact on harbour porpoises, Phocoena phocoena, for more than 10 years (2001-12) from the first large scale offshore wind farm in the world, Nysted Offshore Wind Farm, in the Danish western Baltic Sea (72 × 2.3 MW turbines). The wind farm was brought into full operation in December 2003. At six stations, acoustic porpoise detectors (T-PODs) were placed inside the wind farm area and at a reference area 10 km to the east, to monitor porpoise echolocation activity as a proxy of porpoise presence. A modified statistical BACI design was applied to detect changes in porpoise presence before, during and after construction of the wind farm. The results show that the echolocation activity has significantly declined inside Nysted Offshore Wind Farm since the baseline in 2001-2 and has not fully recovered yet. The echolocation activity inside the wind farm has been gradually increasing (from 11% to 29% of the baseline level) since the construction of the wind farm, possibly due to habituation of the porpoises to the wind farm or enrichment of the environment due to reduced fishing and to artificial reef effects.

  16. Thermally Sprayed SiC Coatings for Offshore Wind Turbine Bearing Applications

    NASA Astrophysics Data System (ADS)

    Mubarok, F.; Armada, S.; Fagoaga, I.; Espallargas, N.

    2013-12-01

    Tribological tests were conducted on thermally sprayed silicon carbide (SiC) coatings to investigate its potential on reducing wear in offshore wind turbine bearings. The tests were carried out under dry conditions, 3.5 wt.% NaCl solution, and polyalfaolefin (PAO)-lubricated conditions. In order to obtain good quality SiC coatings, it is compulsory to modify the feedstock to limit SiC decomposition during atmospheric spraying process. The SiC feedstock used in this research has been modified with yttrium aluminum garnet (Y3Al5O12) oxide additives that originated from its metal salt precursors. High-frequency pulse detonation (HFPD) technique has been utilized to produce coatings of around 100 μm in thickness. The sliding tests have recorded the lowest coefficient of friction (COF) of 0.15 in PAO condition and the highest COF of 0.50 in dry sliding. The wear tracks morphology show that during dry sliding test, the coatings experience abrasive wear accompanied by tribo-oxidation reaction that initiates crack formation along the splat boundaries. On the other two sliding test conditions (NaCl and PAO), polishing of asperities and some grain plowing from the splats were observed in the wear tracks. Tribochemical wear was found to be the main mechanism producing smooth surfaces. Nevertheless, in all cases, the wear losses were negligible.

  17. Breaking phase focused wave group loads on offshore wind turbine monopiles

    NASA Astrophysics Data System (ADS)

    Ghadirian, A.; Bredmose, H.; Dixen, M.

    2016-09-01

    The current method for calculating extreme wave loads on offshore wind turbine structures is based on engineering models for non-breaking regular waves. The present article has the aim of validating previously developed models at DTU, namely the OceanWave3D potential flow wave model and a coupled OceanWave3D-OpenFOAM solver, against measurements of focused wave group impacts on a monopile. The focused 2D and 3D wave groups are reproduced and the free surface elevation and the in-line forces are compared to the experimental results. In addition, the pressure distribution on the monopile is examined at the time of maximum force and discussed in terms of shape and magnitude. Relative pressure time series are also compared between the simulations and experiments and detailed pressure fields for a 2D and 3D impact are discussed in terms of impact type. In general a good match for free surface elevation, in-line force and wave-induced pressures is found.

  18. Renewables-to-reefs? - Decommissioning options for the offshore wind power industry.

    PubMed

    Smyth, Katie; Christie, Nikki; Burdon, Daryl; Atkins, Jonathan P; Barnes, Richard; Elliott, Michael

    2015-01-15

    The offshore wind power industry is relatively new but increasing globally, hence it is important that the whole life-cycle is managed. The construction-operation-decommissioning cycle is likely to take 20-30 years and whilst decommissioning may not be undertaken for many years, its management needs to be addressed in both current and future marine management regimes. This can be defined within a Drivers-Activities-Pressures-State Changes-Impacts (on human Welfare)-Responses framework. This paper considers the main decommissioning options - partial or complete removal of all components. A SWOT analysis shows environmental and economic benefits in partial as opposed to complete removal, especially if habitat created on the structures has conservation or commercial value. Benefits (and repercussions) are defined in terms of losses and gains of ecosystem services and societal benefits. The legal precedents and repercussions of both options are considered in terms of the 10-tenets of sustainable marine management. Finally a 'renewables-to-reefs' programme is proposed.

  19. Assessing trophic linkages in and around offshore wind farms using two high-speed optical sensors

    NASA Astrophysics Data System (ADS)

    Dudeck, Tim; Hufnagl, Marc; Auch, Dominik; Eckhardt, André; Möller, Klas-Ove; van Beusekom, Justus; Walter, Bettina; Möllmann, Christian; Floeter, Jens

    2016-04-01

    In search for clean, renewable energy sources European countries have built and planned numerous Offshore Wind Farms (OWF) in the North Sea region. While some research has been carried out on their influence on marine mammals and bottom-dwelling organisms, less is known about fish and lower trophic levels in these areas. Yet, marine mammals purposely seek these structures and there are indications that there are higher chances of fish encounters. However, the local bottom-up effects probably driving these aggregations of higher trophic level organisms are poorly understood. In this study we show preliminary results of primary and secondary production in and around German OWFs in the North Sea using a Laser Optical Particle Counter and a Video Plankton Recorder. With the two sensors working simultaneously on the TRIAXUS system at high speed, we were able to investigate and ground-truth size-spectrum changes on a very high spatial resolution making it possible to detect OWF effects from local to larger scales. Our results show new possibilities in OWF research and the necessity to collect highly resolved field data for meaningful results in these dynamic environments. Furthermore, the use of size spectra simplifies the integration of energy flow through low and medium trophic levels into biogeochemical models by using only a single automatically measurable variable such as size.

  20. Environmental Effects of Offshore Wind Development. Fiscal Year 2012 Progress Report

    SciTech Connect

    Copping, Andrea E.; Hanna, Luke A.; Butner, R. Scott; Carlson, Thomas J.; Halvorsen, Michele B.; Duberstein, Corey A.; Matzner, Shari; Whiting, Jonathan M.; Blake, Kara M.; Stavole, Jessica

    2012-09-01

    Potential environmental effects of offshore wind (OSW) energy projects are not well understood, and regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. To examine the environmental risks associated with OSW developments in the U.S. Pacific Northwest National Laboratory (PNNL) focused on the following four priority research areas in FY 2012: • Environmental Risk Evaluation System (ERES) - Followed project developments on the two OSW projects that PNNL screened in FY 2011 for environmental consequence: Fishermen’s Energy off the coast of Atlantic City, NJ and LEEDCo. near Cleveland, OH in Lake Erie. • Tethys - Developed a smart knowledge base which houses environmental research, data and information pertaining to OSW energy: • Technical Assessment - Produced a new software to create an automated process of identifying and differentiating between flying organism such as birds and bats by using thermal imagery; and • North Atlantic Right Whales - Developed an environmental risk management system to mitigate the impacts on North Atlantic Right Whales (NARW) during installation and piledriving stages of OSW developments. By identifying and addressing the highest priority environmental risks for OSW devices and associated installations the ERES process assists project proponents, regulators, and stakeholders to engage in the most efficient and effective siting and permitting pathways.

  1. An Aeroelastic Perspective of Floating Offshore Wind Turbine Wake Formation and Instability

    NASA Astrophysics Data System (ADS)

    Rodriguez, Steven N.; Jaworski, Justin W.

    2015-11-01

    The wake formation and wake stability of floating offshore wind turbines are investigated from an aeroelastic perspective. The aeroelastic model is composed of the Sebastian-Lackner free-vortex wake aerodynamic model coupled to the nonlinear Hodges-Dowell beam equations, which are extended to include the effects of blade profile asymmetry, higher-order torsional effects, and kinetic energy components associated with periodic rigid-body motions of floating platforms. Rigid-body platform motions are also assigned to the aerodynamic model as varying inflow conditions to emulate operational rotor-wake interactions. Careful attention is given to the wake formation within operational states where the ratio of inflow velocity to induced velocity is over 50%. These states are most susceptible to aerodynamic instabilities, and provide a range of states about which a wake stability analysis can be performed. In addition, the stability analysis used for the numerical framework is implemented into a standalone free-vortex wake aerodynamic model. Both aeroelastic and standalone aerodynamic results are compared to evaluate the level of impact that flexible blades have on the wake formation and wake stability.

  2. Simplified rotor load models and fatigue damage estimates for offshore wind turbines.

    PubMed

    Muskulus, M

    2015-02-28

    The aim of rotor load models is to characterize and generate the thrust loads acting on an offshore wind turbine. Ideally, the rotor simulation can be replaced by time series from a model with a few parameters and state variables only. Such models are used extensively in control system design and, as a potentially new application area, structural optimization of support structures. Different rotor load models are here evaluated for a jacket support structure in terms of fatigue lifetimes of relevant structural variables. All models were found to be lacking in accuracy, with differences of more than 20% in fatigue load estimates. The most accurate models were the use of an effective thrust coefficient determined from a regression analysis of dynamic thrust loads, and a novel stochastic model in state-space form. The stochastic model explicitly models the quasi-periodic components obtained from rotational sampling of turbulent fluctuations. Its state variables follow a mean-reverting Ornstein-Uhlenbeck process. Although promising, more work is needed on how to determine the parameters of the stochastic model and before accurate lifetime predictions can be obtained without comprehensive rotor simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. MODEL REQUEST FOR PROPOSALS TO PROVIDE ENERGY AND OTHER ATTRIBUTES FROM AN OFFSHORE WIND POWER PROJECT

    SciTech Connect

    Jeremy Firestone; Dawn Kurtz Crompton

    2011-10-22

    This document provides a model RFP for new generation. The 'base' RFP is for a single-source offshore wind RFP. Required modifications are noted should a state or utility seek multi-source bids (e.g., all renewables or all sources). The model is premised on proposals meeting threshold requirements (e.g., a MW range of generating capacity and a range in terms of years), RFP issuer preferences (e.g., likelihood of commercial operation by a date certain, price certainty, and reduction in congestion), and evaluation criteria, along with a series of plans (e.g., site, environmental effects, construction, community outreach, interconnection, etc.). The Model RFP places the most weight on project risk (45%), followed by project economics (35%), and environmental and social considerations (20%). However, if a multi-source RFP is put forward, the sponsor would need to either add per-MWh technology-specific, life-cycle climate (CO2), environmental and health impact costs to bid prices under the 'Project Economics' category or it should increase the weight given to the 'Environmental and Social Considerations' category.

  4. Sensor Measurement Strategies for Monitoring Offshore Wind and Wave Energy Devices

    NASA Astrophysics Data System (ADS)

    O'Donnell, Deirdre; Srbinovsky, Bruno; Murphy, Jimmy; Popovici, Emanuel; Pakrashi, Vikram

    2015-07-01

    While the potential of offshore wind and wave energy devices is well established and accepted, operations and maintenance issues are still not very well researched or understood. In this regard, scaled model testing has gained popularity over time for such devices at various technological readiness levels. The dynamic response of these devices are typically measured by different instruments during such scaled tests but agreed sensor choice, measurement and placement guidelines are still not in place. This paper compared the dynamic responses of some of these sensors from a scaled ocean wave testing to highlight the importance of sensor measurement strategies. The possibility of using multiple, cheaper sensors of seemingly inferior performance as opposed to the deployment of a small number of expensive and accurate sensors are also explored. An energy aware adaptive sampling theory is applied to highlight the possibility of more efficient computing when large volumes of data are available from the tested structures. Efficient sensor measurement strategies are expected to have a positive impact on the development of an device at different technological readiness levels while it is expected to be helpful in reducing operation and maintenance costs if such an approach is considered for the devices when they are in operation.

  5. Toward Improved Off-Shore Wind Predictions by Combining Observations with Models through State Estimation - An Analysis of Marine Boundary Layer Parameterizations

    NASA Astrophysics Data System (ADS)

    Kosovic, B.; Delle Monache, L.; Hacker, J.; Lee, J. A.; Vandenberghe, F. C.; Wu, Y.; Clifton, A.; Hawkins, S.; Nissen, J.; Rostkier-Edelstein, D.

    2014-12-01

    In recent years, significant advances have been achieved in model representation of atmospheric boundary layers (ABL). However, fundamental understanding of the processes governing the evolution of the Marine Boundary Layer (MBL) is still incomplete. We address this problem by combining available atmosphere and ocean observations with advanced coupled atmosphere-wave models, via state estimation (SE) methodologies. The goal is to improve wind prediction for off-shore wind energy applications through advances in understanding and parameterization of underlying physical processes, with an emphasis on the coupling between the atmosphere and the ocean via momentum and heat fluxes. We systematically investigate the errors in the treatment of the surface layer of the MBL in the Weather Research and Forecasting (WRF) model and identify structural model inadequacies associated with the MBL parameterization. For this purpose we are using both the single-column model (SCM) and three-dimensional (3D) versions of the WRF model, observations of MBL structure provided by offshore observational platform FINO1, and probabilistic SE. We have also developed an atmosphere-wave coupled modeling system by interfacing WRF with a wave model (WaveWatch III - WWIII). This modeling system is used for evaluating errors in the representation of wave-induced forcing on the energy balance at the interface between atmosphere and ocean. Probabilistic SE is based on the Data Assimilation Research Testbed (DART). DART is the framework for obtaining spatial and temporal statistics of wind-error evolution (and hence the surface-layer fluxes), along with objective tuning of model parameters. We explore one of the potential sources of MBL model errors associated with roughness length parameterized using Charnock's relation. Charnock's roughness length parameterization assumes wind-driven waves are in equilibrium. However, it has been shown that swells propagating at different speeds and angles with

  6. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; a compilation

    NASA Astrophysics Data System (ADS)

    Lindeboom, H. J.; Kouwenhoven, H. J.; Bergman, M. J. N.; Bouma, S.; Brasseur, S.; Daan, R.; Fijn, R. C.; de Haan, D.; Dirksen, S.; van Hal, R.; Hille Ris Lambers, R.; ter Hofstede, R.; Krijgsveld, K. L.; Leopold, M.; Scheidat, M.

    2011-07-01

    The number of offshore wind farms is increasing rapidly, leading to questions about the environmental impact of such farms. In the Netherlands, an extensive monitoring programme is being executed at the first offshore wind farm (Offshore Windfarm Egmond aan Zee, OWEZ). This letter compiles the short-term (two years) results on a large number of faunal groups obtained so far. Impacts were expected from the new hard substratum, the moving rotor blades, possible underwater noise and the exclusion of fisheries. The results indicate no short-term effects on the benthos in the sandy area between the generators, while the new hard substratum of the monopiles and the scouring protection led to the establishment of new species and new fauna communities. Bivalve recruitment was not impacted by the OWEZ wind farm. Species composition of recruits in OWEZ and the surrounding reference areas is correlated with mud content of the sediment and water depth irrespective the presence of OWEZ. Recruit abundances in OWEZ were correlated with mud content, most likely to be attributed not to the presence of the farm but to the absence of fisheries. The fish community was highly dynamic both in time and space. So far, only minor effects upon fish assemblages especially near the monopiles have been observed. Some fish species, such as cod, seem to find shelter inside the farm. More porpoise clicks were recorded inside the farm than in the reference areas outside the farm. Several bird species seem to avoid the park while others are indifferent or are even attracted. The effects of the wind farm on a highly variable ecosystem are described. Overall, the OWEZ wind farm acts as a new type of habitat with a higher biodiversity of benthic organisms, a possibly increased use of the area by the benthos, fish, marine mammals and some bird species and a decreased use by several other bird species.

  7. Screening Analysis for the Environmental Risk Evaluation System Fiscal Year 2011 Report Environmental Effects of Offshore Wind Energy

    SciTech Connect

    Copping, Andrea E.; Hanna, Luke A.

    2011-11-01

    Potential environmental effects of offshore wind (OSW) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and avian and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2011, Pacific Northwest National Laboratory (PNNL) scientists adapted and applied the Environmental Risk Evaluation System (ERES), first developed to examine the effects of marine and hydrokinetic energy devices on aquatic environments, to offshore wind development. PNNL scientists conducted a risk screening analysis on two initial OSW cases: a wind project in Lake Erie and a wind project off the Atlantic coast of the United States near Atlantic City, New Jersey. The screening analysis revealed that top-tier stressors in the two OSW cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device, such as alterations in bottom habitats. Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted during FY 2012. The ERES screening analysis provides an assessment of the vulnerability of environmental receptors to stressors associated with OSW installations; a probability analysis is needed to determine specific risk levels to receptors. As more data become available that document effects of offshore wind farms on specific receptors in U.S. coastal and Great Lakes waters, probability analyses will be performed.

  8. Fatigue loading on a 5MW offshore wind turbine due to the combined action of waves and current

    NASA Astrophysics Data System (ADS)

    Peeringa, Johan M.

    2014-06-01

    In the design of an offshore wind turbine the natural frequencies of the structure are of importance. In the design of fixed offshore wind turbine support structures it cannot be avoided that the first eigenmode of the structure lies in the frequency band of wave excitation. This study indicates that wave-current interaction should be taken into account for support structure design load calculations. Wave-current interaction changes the shape of the wave spectrum and the energy content in the wave frequency range of 0.2 - 0.35Hz. This is in the range of natural frequencies fixed offshore wind turbine structures are designed for. The waves are affected by the current in two ways. First there is a frequency shift, Doppler effect, for the fixed observer when the wave travels on a current. Second the shape of the wave is modified in case the wave travels from an area without current into an area with current. Due to wave-current interaction the wave height and wave length change. For waves on an opposing current the wave energy content increases, while for wave on a following current the wave energy content slightly reduces. Simulations of normal production cases between cut-in and cut-out wind speed are performed for a 5MW wind turbine in 20m water depth including waves with 1) a following current, 2) an opposing current and 3) no current present. In case of waves having an opposing current, the 1Hz equivalent fore-aft tower bending moment at the seabed is about 10% higher compared to load cases with waves only.

  9. ANEMOS: Development of a next generation wind power forecasting system for the large-scale integration of onshore and offshore wind farms.

    NASA Astrophysics Data System (ADS)

    Kariniotakis, G.; Anemos Team

    2003-04-01

    Objectives: Accurate forecasting of the wind energy production up to two days ahead is recognized as a major contribution for reliable large-scale wind power integration. Especially, in a liberalized electricity market, prediction tools enhance the position of wind energy compared to other forms of dispatchable generation. ANEMOS, is a new 3.5 years R&D project supported by the European Commission, that resembles research organizations and end-users with an important experience on the domain. The project aims to develop advanced forecasting models that will substantially outperform current methods. Emphasis is given to situations like complex terrain, extreme weather conditions, as well as to offshore prediction for which no specific tools currently exist. The prediction models will be implemented in a software platform and installed for online operation at onshore and offshore wind farms by the end-users participating in the project. Approach: The paper presents the methodology of the project. Initially, the prediction requirements are identified according to the profiles of the end-users. The project develops prediction models based on both a physical and an alternative statistical approach. Research on physical models gives emphasis to techniques for use in complex terrain and the development of prediction tools based on CFD techniques, advanced model output statistics or high-resolution meteorological information. Statistical models (i.e. based on artificial intelligence) are developed for downscaling, power curve representation, upscaling for prediction at regional or national level, etc. A benchmarking process is set-up to evaluate the performance of the developed models and to compare them with existing ones using a number of case studies. The synergy between statistical and physical approaches is examined to identify promising areas for further improvement of forecasting accuracy. Appropriate physical and statistical prediction models are also developed for

  10. Simulations of an Offshore Wind Farm Using Large-Eddy Simulation and a Torque-Controlled Actuator Disc Model

    NASA Astrophysics Data System (ADS)

    Creech, Angus; Früh, Wolf-Gerrit; Maguire, A. Eoghan

    2015-05-01

    We present here a computational fluid dynamics (CFD) simulation of Lillgrund offshore wind farm, which is located in the Øresund Strait between Sweden and Denmark. The simulation combines a dynamic representation of wind turbines embedded within a large-eddy simulation CFD solver and uses hr-adaptive meshing to increase or decrease mesh resolution where required. This allows the resolution of both large-scale flow structures around the wind farm, and the local flow conditions at individual turbines; consequently, the response of each turbine to local conditions can be modelled, as well as the resulting evolution of the turbine wakes. This paper provides a detailed description of the turbine model which simulates the interaction between the wind, the turbine rotors, and the turbine generators by calculating the forces on the rotor, the body forces on the air, and instantaneous power output. This model was used to investigate a selection of key wind speeds and directions, investigating cases where a row of turbines would be fully aligned with the wind or at specific angles to the wind. Results shown here include presentations of the spin-up of turbines, the observation of eddies moving through the turbine array, meandering turbine wakes, and an extensive wind farm wake several kilometres in length. The key measurement available for cross-validation with operational wind farm data is the power output from the individual turbines, where the effect of unsteady turbine wakes on the performance of downstream turbines was a main point of interest. The results from the simulations were compared to the performance measurements from the real wind farm to provide a firm quantitative validation of this methodology. Having achieved good agreement between the model results and actual wind farm measurements, the potential of the methodology to provide a tool for further investigations of engineering and atmospheric science problems is outlined.

  11. Impact of active and break wind spells on the demand-supply balance in wind energy in India

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal

    2017-01-01

    With an installed capacity of over 19,000 MW, the wind power currently accounts for almost 70% of the total installed capacity among the renewable energy sector in India. The extraction of wind power mainly depends on prevailing meteorology which is strongly influenced by monsoon variability. The monsoon season is characterized by significant fluctuations in between periods of wet and dry spells. During the dry spells, the demand for power from agriculture and cooling equipment increases, whereas during the wet periods, such demand reduces, although, at the same time, the power supply increases because of strong westerly winds contributing to an enhanced production of wind energy. At this backdrop, we aim to assess the impact of intra-seasonal wind variability on the balance of energy supply and demand during monsoon seasons in India. Further, we explore the probable cause of wind variability by relating it to El Nino events. It is observed that the active and break phases in wind significantly impact the overall wind potential output. Although the dry spells are generally found to reduce the overall wind potential, their impact on the potential seems to have declined after the year 2000. The impact of meteorological changes on variations in wind power studied in this work should find applications typically in taking investment decisions on conventional generation facilities, like thermal, which are currently used to maintain the balance of power supply and demand.

  12. An analysis of offshore wind farm SCADA measurements to identify key parameters influencing the magnitude of wake effects

    NASA Astrophysics Data System (ADS)

    Mittelmeier, N.; Blodau, T.; Steinfeld, G.; Rott, A.; Kühn, M.

    2016-09-01

    Atmospheric conditions have a clear influence on wake effects. Stability classification is usually based on wind speed, turbulence intensity, shear and temperature gradients measured partly at met masts, buoys or LiDARs. The objective of this paper is to find a classification for stability based on wind turbine Supervisory Control and Data Acquisition (SCADA) measurements in order to fit engineering wake models better to the current ambient conditions. Two offshore wind farms with met masts have been used to establish a correlation between met mast stability classification and new aggregated statistical signals based on multiple measurement devices. The significance of these new signals on power production is demonstrated for two wind farms with met masts and validated against data from one further wind farm without a met mast. We found a good correlation between the standard deviation of active power divided by the average power of wind turbines in free flow with the ambient turbulence intensity when the wind turbines were operating in partial load.

  13. New Structural-Dynamics Module for Offshore Multimember Substructures within the Wind Turbine Computer-Aided Engineering Tool FAST: Preprint

    SciTech Connect

    Song, H.; Damiani, R.; Robertson, A.; Jonkman, J.

    2013-08-01

    FAST, developed by the National Renewable Energy Laboratory (NREL), is a computer-aided engineering (CAE) tool for aero-hydro-servo-elastic analysis of land-based and offshore wind turbines. This paper discusses recent upgrades made to FAST to enable loads simulations of offshore wind turbines with fixed-bottom, multimember support structures (e.g., jackets and tripods, which are commonly used in transitional-depth waters). The main theory and strategies for the implementation of the multimember substructure dynamics module (SubDyn) within the new FAST modularization framework are introduced. SubDyn relies on two main engineering schematizations: 1) a linear frame finite-element beam (LFEB) model and 2) a dynamics system reduction via Craig-Bampton's method. A jacket support structure and an offshore system consisting of a turbine atop a jacket substructure were simulated to test the SubDyn module and to preliminarily assess results against results from a commercial finite-element code.

  14. Pelagic effects of offshore wind farm foundations in the stratified North Sea

    NASA Astrophysics Data System (ADS)

    Floeter, Jens; van Beusekom, Justus E. E.; Auch, Dominik; Callies, Ulrich; Carpenter, Jeffrey; Dudeck, Tim; Eberle, Sabine; Eckhardt, André; Gloe, Dominik; Hänselmann, Kristin; Hufnagl, Marc; Janßen, Silke; Lenhart, Hermann; Möller, Klas Ove; North, Ryan P.; Pohlmann, Thomas; Riethmüller, Rolf; Schulz, Sabrina; Spreizenbarth, Stefan; Temming, Axel; Walter, Bettina; Zielinski, Oliver; Möllmann, Christian

    2017-08-01

    A recent increase in the construction of Offshore Wind Farms (OWFs) has initiated numerous environmental impact assessments and monitoring programs. These focus on sea mammals, seabirds, benthos or demersal fish, but generally ignore any potential effects OWFs may have on the pelagic ecosystem. The only work on the latter has been through modelling analyses, which predict localised impacts like enhanced vertical mixing leading to a decrease in seasonal stratification, as well as shelf-wide changes of tidal amplitudes. Here we provide for the first-time empirical bio-physical data from an OWF. The data were obtained by towing a remotely operated vehicle (TRIAXUS ROTV) through two non-operating OWFs in the summer stratified North Sea. The undulating TRIAXUS transects provided high-resolution CTD data accompanied by oxygen and chlorophyll-a measurements. We provide empirical indication that vertical mixing is increased within the OWFs, leading to a doming of the thermocline and a subsequent transport of nutrients into the surface mixed layer (SML). Nutrients were taken up rapidly because underwater photosynthetically active radiation (PAR) enabled net primary production in the entire water column, especially within submesoscale chlorophyll-a pillars that were observed at regular intervals within the OWF regions. Video Plankton Recorder (VPR) images revealed distinct meroplankton distribution patterns in a copepod-dominated plankton community. Hydroacoustic records did not show any OWF effects on the distribution of pelagic fish. The results of a pre-OWF survey show however, that it is difficult to fully separate the anthropogenic impacts from the natural variability.

  15. Smart Novel Semi-Active Tuned Mass Damper for Fixed-Bottom and Floating Offshore Wind (Paper)

    SciTech Connect

    Rodriguez Tsouroukdissian, Arturo; Lackner, Mathew; Cross-Whiter, John; Park, Se Myung; Pourazarm, Pariya; La Cava, William; Lee, Sungho

    2016-05-02

    The intention of this paper is to present the results of a novel smart semi-active tuned mass damper (SA-TMD), which mitigates unwanted loads for both fixed-bottom and floating offshore wind systems. The paper will focus on the most challenging water depths for both fixed-bottom and floating systems. A close to 38m Monopile and 55m Tension Leg Platform (TLP) will be considered. A technical development and trade-off analysis will be presented comparing the new system with existing passive non-linear TMD (N-TMD) technology and semi-active. TheSATMD works passively and activates itself with low power source under unwanted dynamic loading in less than 60msec. It is composed of both variable stiffness and damping elements coupled to a central pendulum mass. The analysis has been done numerically in both FAST(NREL) and Orcaflex (Orcina), and integrated in the Wind Turbine system employing CAD/CAE. The results of this work will pave the way for experimental testing to complete the technology qualification process. The load reductions under extreme and fatigue cases reach up significant levels at tower base, consequently reducing LCOE for fixed-bottom to floating wind solutions. The nacelle acceleration is reduced substantially under severe random wind and sea states, reducing the risks of failure of electromechanical components and blades at the rotor nacelle assembly. The SA-TMD system isa new technology that has not been applied previously in wind solutions. Structural damping devices aim to increase offshore wind turbine system robustness and reliability, which eases multiple substructures installations and global stability.

  16. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    SciTech Connect

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  17. Recommendations for load validation of an offshore wind turbine with the use of statistical data: experience from alpha ventus

    NASA Astrophysics Data System (ADS)

    Faerron Guzmán, Ricardo; Cheng, Po Wen

    2016-09-01

    The present paper provides insight into the validation of computer models used for simulations of offshore wind turbines. The offshore turbines are affected by environmental conditions that must be logged during the measurement campaign of the prototype and used for the simulations during the validation process. A simple generic methodology is presented to be used for the comparison of statistical data from the measurement campaign and the simulations. This allows a better analysis of the simulations and helps limit the apparition of outliers in the measurements. An example of the use of the methodology is provided with the use of the data recorded for the AD5-116 5MW turbine at alpha ventus. For it, the turbine power, operational parameters and blade and tower loads are compared.

  18. Collision and displacement vulnerability among marine birds of the California Current System associated with offshore wind energy infrastructure

    USGS Publications Warehouse

    Adams, Josh; Kelsey, Emily C.; Felis, Jonathan J.; Pereksta, David M.

    2016-10-27

    With growing climate change concerns and energy constraints, there is an increasing need for renewable energy sources within the United States and globally. Looking forward, offshore wind-energy infrastructure (OWEI) has the potential to produce a significant proportion of the power needed to reach our Nation’s renewable energy goal. Offshore wind-energy sites can capitalize open areas within Federal waters that have persistent, high winds with large energy production potential. Although there are few locations in the California Current System (CCS) where it would be acceptable to build pile-mounted wind turbines in waters less than 50 m deep, the development of technology able to support deep-water OWEI (>200 m depth) could enable wind-energy production in the CCS. As with all human-use of the marine environment, understanding the potential impacts of wind-energy infrastructure on the marine ecosystem is an integral part of offshore wind-energy research and planning. Herein, we present a comprehensive database to quantify marine bird vulnerability to potential OWEI in the CCS (see https://doi.org/10.5066/F79C6VJ0). These data were used to quantify marine bird vulnerabilities at the population level. For 81 marine bird species present in the CCS, we created three vulnerability indices: Population Vulnerability, Collision Vulnerability, and Displacement Vulnerability. Population Vulnerability was used as a scaling factor to generate two comprehensive indicies: Population Collision Vulnerability (PCV) and Population Displacement Vulnerability (PDV). Within the CCS, pelicans, terns (Forster’s [Sterna forsteri], Caspian [Hydroprogne caspia], Elegant [Thalasseus elegans], and Least Tern [Sternula antillarum]), gulls (Western [Larus occidentalis] and Bonaparte’s Gull [Chroicocephalus philadelphia]), South Polar Skua (Stercorarius maccormicki), and Brandt’s Cormorant (Phalacrocorax penicillatus) had the greatest PCV scores. Brown Pelican (Pelicanus occidentalis

  19. Collision and displacement vulnerability among marine birds of the California Current System associated with offshore wind energy infrastructure

    USGS Publications Warehouse

    Adams, Josh; Kelsey, Emily C.; Felis, Jonathan J.; Pereksta, David M.

    2016-10-27

    With growing climate change concerns and energy constraints, there is an increasing need for renewable energy sources within the United States and globally. Looking forward, offshore wind-energy infrastructure (OWEI) has the potential to produce a significant proportion of the power needed to reach our Nation’s renewable energy goal. Offshore wind-energy sites can capitalize open areas within Federal waters that have persistent, high winds with large energy production potential. Although there are few locations in the California Current System (CCS) where it would be acceptable to build pilemounted wind turbines in waters less than 50 m deep, the development of technology able to support deep-water OWEI (>200 m depth) could enable wind-energy production in the CCS. As with all humanuse of the marine environment, understanding the potential impacts of wind-energy infrastructure on the marine ecosystem is an integral part of offshore wind-energy research and planning. Herein, we present a comprehensive database to quantify marine bird vulnerability to potential OWEI in the CCS (see http://dx.doi.org/10.5066/F79C6VJ0). These data were used to quantify marine bird vulnerabilities at the population level. For 81 marine bird species present in the CCS, we created three vulnerability indices: Population Vulnerability, Collision Vulnerability, and Displacement Vulnerability. Population Vulnerability was used as a scaling factor to generate two comprehensive indicies: Population Collision Vulnerability (PCV) and Population Displacement Vulnerability (PDV). Within the CCS, pelicans, terns (Forster’s [Sterna forsteri], Caspian [Hydroprogne caspia], Elegant [Thalasseus elegans], and Least Tern [Sternula antillarum]), gulls (Western [Larus occidentalis] and Bonaparte’s Gull [Chroicocephalus philadelphia]), South Polar Skua (Stercorarius maccormicki), and Brandt’s Cormorant (Phalacrocorax penicillatus) had the greatest PCV scores. Brown Pelican (Pelicanus occidentalis

  20. Onshore and offshore wind resource evaluation in the northeastern area of the Iberian Peninsula: quality assurance of the surface wind observations

    NASA Astrophysics Data System (ADS)

    Hidalgo, A.; González-Rouco, J. F.; Jiménez, P. A.; Navarro, J.; García-Bustamante, E.; Lucio-Eceiza, E. E.; Montávez, J. P.; García, A. Y.; Prieto, L.

    2012-04-01

    Offshore wind energy is becoming increasingly important as a reliable source of electricity generation. The areas located in the vicinity of the Cantabrian and Mediterranean coasts are areas of interest in this regard. This study targets an assessment of the wind resource focused on the two coastal regions and the strip of land between them, thereby including most of the northeastern part of the Iberian Peninsula (IP) and containing the Ebro basin. The analysis of the wind resource in inland areas is crucial as the wind channeling through the existing mountains has a direct impact on the sea circulations near the coast. The thermal circulations generated by the topography near the coast also influence the offshore wind resource. This work summarizes the results of the first steps of a Quality Assurance (QA) procedure applied to the surface wind database available over the area of interest. The dataset consists of 752 stations compiled from different sources: 14 buoys distributed over the IP coast provided by Puertos del Estado (1990-2010); and 738 land sites over the area of interest provided by 8 different Spanish institutions (1933-2010) and the National Center of Atmospheric Research (NCAR; 1978-2010). It is worth noting that the variety of institutional observational protocols lead to different temporal resolutions and peculiarities that somewhat complicate the QA. The QA applied to the dataset is structured in three steps that involve the detection and suppression of: 1) manipulation errors (i.e. repetitions); 2) unrealistic values and ranges in wind module and direction; 3) abnormally low (e.g. long constant periods) and high variations (e.g. extreme values and inhomogeneities) to ensure the temporal consistency of the time series. A quality controlled observational network of wind variables with such spatial density and temporal length is not frequent and specifically for the IP is not documented in the literature. The final observed dataset will allow for a

  1. Three-dimensional æolian dynamics within a bowl blowout during offshore winds: Greenwich Dunes, Prince Edward Island, Canada

    NASA Astrophysics Data System (ADS)

    Hesp, Patrick A.; Walker, Ian J.

    2012-01-01

    This paper examines the æolian dynamics of a deep bowl blowout within the foredune of the Greenwich Dunes, on the northeastern shore or Prince Edward Island, Canada. Masts of cup anemometers and sonic anemometers were utilized to measure flow velocities and directions during a strong regional ESE (offshore) wind event. The flow across the blowout immediately separated at the upwind rim crest, and within the blowout was strongly reversed. High, negative vertical flows occurred down the downwind (but seaward) vertical scarp which projected into the separation envelope and topographically forced flow back into the blowout. A pronounced, accelerated jet flow existed near the surface across the blowout basin, and the flow exhibited a complex, anti-clockwise structure with the near-surface flow following the contours around the blowout basin and lower slopes. Significant æolian sediment transport occurred across the whole bowl basin and sediment was delivered by saltation and suspension out the blowout to the east. This study demonstrates that strong offshore winds produce pronounced topographically forced flow steering, separation, reversal, and more complex three-dimensional motions within a bowl blowout, and that such winds within a bowl blowout play a notable role in transporting sediment within and beyond deep topographic hollows in the foredune.

  2. Enrichment and shifts in macrobenthic assemblages in an offshore wind farm area in the Belgian part of the North Sea.

    PubMed

    Coates, Delphine A; Deschutter, Yana; Vincx, Magda; Vanaverbeke, Jan

    2014-04-01

    The growing development of offshore wind energy installations across the North Sea is producing new hard anthropogenic structures in the natural soft sediments, causing changes to the surrounding macrobenthos. The extent of modification in permeable sediments around a gravity based wind turbine in the Belgian part of the North Sea was investigated in the period 2011-2012, along four gradients (south-west, north-east, south-east, north-west). Sediment grain size significantly reduced from 427 μm at 200 m to 312 ± 3 μm at 15 m from the foundation along the south-west and north-west gradients. The organic matter content increased from 0.4 ± 0.01% at 100 m to 2.5 ± 0.9% at 15 m from the foundation. The observed changes in environmental characteristics triggered an increase in the macrobenthic density from 1390 ± 129 ind m⁻² at 200 m to 18 583 ± 6713 ind m⁻² at 15 m together with an enhanced diversity from 10 ± 2 at 200 m to 30 ± 5 species per sample at 15 m. Shifts in species dominance were also detected with a greater dominance of the ecosystem-engineer Lanice conchilega (16-25%) close to the foundation. This study suggests a viable prediction of the effects offshore wind farms could create to the naturally occurring macrobenthos on a large-scale. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Mobile demersal megafauna at artificial structures in the German Bight - Likely effects of offshore wind farm development

    NASA Astrophysics Data System (ADS)

    Krone, R.; Gutow, L.; Brey, T.; Dannheim, J.; Schröder, A.

    2013-07-01

    Within the next few decades, large underwater structures of thousands of wind turbines in the northern European shelf seas will substantially increase the amount of habitat available for mobile demersal megafauna. As a first indication of the possible effects of this large scale habitat creation on faunal stocks settling on hard substrata, we compared selected taxa of the mobile demersal megafauna (decapods and fish) associated with the foundation of an offshore research platform (a wind-power foundation equivalent) with those of five shipwrecks and different areas of soft bottoms in the southern German Bight, North Sea. When comparing the amount of approximately 5000 planned wind-power foundations (covering 5.1 × 106 m2 of bottom area) with the existing number of at least 1000 shipwrecks (covering 1.2 × 106 m2 of bottom area), it becomes clear that the southern North Sea will provide about 4.3 times more available artificial hard substratum habitats than currently available. With regard to the fauna found on shipwrecks, on soft substrata and on the investigated wind-power foundation, we predict that the amount of added hard substrata will allow the stocks of substrata-limited mobile demersal hard bottom species to increase by 25-165% in that area. The fauna found at the offshore platform foundations is very similar to that at shipwrecks. Megafauna abundances at the foundations, however, are lower compared to those at the highly fractured wrecks and are irregularly scattered over the foundations. The upper regions of the platform construction (5 and 15 m depth) were only sparsely colonized by mobile fauna, the anchorages, however, more densely. The faunal assemblages from the shipwrecks and the foundations, respectively, as well as from the soft bottoms clearly differed from each other. We predict that new wind-power foundations will support the spread of hard bottom fauna into soft bottom areas with low wreck densities.

  4. Quantifying the Opportunity Space for Future Electricity Generation: An Application to Offshore Wind Energy in the United States

    SciTech Connect

    Marcy, Cara; Beiter, Philipp

    2016-09-01

    This report provides a high-level indicator of the future electricity demand for additional electric power generation that is not met by existing generation sources between 2015 and 2050. The indicator is applied to coastal regions, including the Great Lakes, to assess the regional opportunity space for offshore wind. An assessment of opportunity space can be a first step in determining the prospects and the system value of a technology. The metric provides the maximal amount of additional generation that is likely required to satisfy load in future years.

  5. JacketSE: An Offshore Wind Turbine Jacket Sizing Tool; Theory Manual and Sample Usage with Preliminary Validation

    SciTech Connect

    Damiani, Rick

    2016-02-08

    This manual summarizes the theory and preliminary verifications of the JacketSE module, which is an offshore jacket sizing tool that is part of the Wind-Plant Integrated System Design & Engineering Model toolbox. JacketSE is based on a finite-element formulation and on user-prescribed inputs and design standards' criteria (constraints). The physics are highly simplified, with a primary focus on satisfying ultimate limit states and modal performance requirements. Preliminary validation work included comparing industry data and verification against ANSYS, a commercial finite-element analysis package. The results are encouraging, and future improvements to the code are recommended in this manual.

  6. Offshore wind farms in the southwestern Baltic Sea: A model study of regional impacts on oxygen conditions

    NASA Astrophysics Data System (ADS)

    Janßen, Holger; Schröder, Toni; Zettler, Michael L.; Pollehne, Falk

    2015-01-01

    Offshore wind farm piles are secondary hard substrate and hence an attractive colonization surface for many species. Especially in marine areas dominated by soft sediments, wind farms may lead to a significant increase in biomass by enlarging habitats from benthos layers into the pelagic column. A concomitant effect is the increase in oxygen consumption through respiration of living biomass and especially through degradation of dead biomass, mainly Mytilus edulis. This leads to impacts on the regional oxygen budget, and local anoxia in the direct vicinity of wind farm piles has been documented in scientific literature. The present study investigates the regional impact of multiple wind farms on oxygen concentration levels and on the appearance of hypoxia. A five-year data sampling with a steel cylinder and fouling plates delivered data for a 3D ecosystem model. The results show that wind farms do not lead to a significant decrease in oxygen on the mesoscale level. But additional anoxia may occur locally, which may lead to the release of hydrogen sulfide on microscale level and potential subsequent regional impacts.

  7. Development of an Offshore Direct-Drive Wind Turbine Model by Using a Flexible Multibody Simulation (Poster)

    SciTech Connect

    Bergua, R.; Jove, J.; Campbell, J.; Guo, Y.; Van Dam, J.

    2014-05-01

    Modern wind turbines are complex, highly-coupled systems. The dynamic interaction between various components is especially pronounced for multi-megawatt wind turbines. As a result, design process is generally split in several phases. First step consists of creating a global aero-elastic model that includes essential dynamics of structural components using the minimum-possible number of degrees of freedom (d.o.f.). The most important simplifications concern drivetrain and rotor-nacelle assembly (RNA). This approach has been shown valid for several wind turbine configurations. Nevertheless, with increasing size of wind turbines, any simplified design approach must be validated. The present work deals with the comparison and validation of the two modeling approaches for directdrive offshore wind turbines. ARNA/drivetrain model idealized as collection of lumped masses and springs is compared to a detailed Finite Element Method (FEM) based model. The comparison between models focuses on dynamic loads concerning drivetrain system. The comparison is performed in several operational conditions in order to explore the range of validity of the simplified model. Finally, the paper proposes a numerical-based workflow to assess the validity of simplified models of RNA/drivetrain in an aero-elastic global WT model.

  8. Developing Methods for Detection of Munitions and Explosives of Concern in Offshore Wind Energy Areas

    NASA Astrophysics Data System (ADS)

    DuVal, C.; Trembanis, A. C.; Miller, J. K.; Carton, G.

    2016-12-01

    Munitions and Explosives of Concern (MEC) have been acknowledged globally as a topic of concern. Increasing use of coastal and continental shelf environments for renewable energy development and other activities has and continues to place humans in contact with legacy military munitions. The Bureau of Ocean Energy Management (BOEM) recognized the need to develop guidance concerning methods for MEC detection in the case of offshore energy development. The study was designed to identify the most likely MEC to be encountered in the Atlantic Outer Continental Shelf (OCS) Wind Energy Areas (WEA), review available technologies and develop a process for selecting appropriate technologies and methodologies for their detection. The process for selecting and optimizing technologies and methods for detection of MEC in BOEM OCS WEAs was developed and tested through the synthesis of historical research, physical site characterization, remote sensing technology review, and in-field trials. To test the selected approach, designated personnel were tasked with seeding a portion of the Delaware WEA with munitions surrogates, while a second group of researchers not privy to the surrogate locations, tested and optimized the selected methodology. The effectiveness of a methodology will be related to ease of detection and other associated parameters. The approach for the in-field trial consists of a combination of wide-area assessment surveying by vessel mounted 230/550 kHz Edgetech 6205 Phase Measuring sonar and near-seafloor surveying using a Teledyne Gavia autonomous underwater vehicle (AUV) equipped with high-resolution 900/1800 kHz Marine Sonics side-scan sonar, Geometrics G880-AUV cesium-vapor magnetometer, and 2 megapixel Point Grey color camera. Survey parameters (e.g. track-line spacing, coverage overlap, AUV altitude) were varied to determine the optimal survey methods, as well as simulate MEC burial to test magnetometer range performance. Preliminary results indicate the

  9. Characteristics of offshore extreme wind-waves detected by surface drifters with a low-cost GPS wave sensor

    NASA Astrophysics Data System (ADS)

    Komatsu, Kosei

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, mo-mentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious dis-asters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal re-gions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and di-rection sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by

  10. Access Framework: Model Text (November 2011): An Act to Establish a Framework for Development of Offshore Wind Power

    SciTech Connect

    Jeremy Firestone; Dawn Kurtz Crompton

    2011-10-22

    The model offshore wind power legislation focused on two aspects: compensation for use of ocean space and environmental assessment. In particular, the model legislation recommends the adoption of a rent and royalty scheme that is premised on high rent and low royalties in order to stimulate qualified bids from developers who are motivated to begin production as early as possible and to discourage sham bidding. The model legislation also includes a provision that sets royalties at a lower rate in the early years of project operation, and that provides states with the discretion to waive or defer rent and/or royalties for a period of time to meet the goals and objectives of energy independence, job creation, reduced emissions of conventional pollutants and greenhouse gases and increased state requirements for electricity from renewable sources. The environmental impact assessment (EIA) is structured to provide a systematic and interdisciplinary evaluation of the potential positive and negative life-cycle effects of a proposed offshore wind project on the physical, biological, cultural and socio-economic attributes of the project.

  11. Study on Load-Bearing Characteristics of a New Pile Group Foundation for an Offshore Wind Turbine

    PubMed Central

    Liu, Run; Lian, Jijian; Ding, Hongyan

    2014-01-01

    Because offshore wind turbines are high-rise structures, they transfer large horizontal loads and moments to their foundations. One of the keys to designing a foundation is determining the sensitivities and laws affecting its load-bearing capacity. In this study, this procedure was carried out for a new high-rise cap pile group foundation adapted to the loading characteristics of offshore wind turbines. The sensitivities of influential factors affecting the bearing properties were determined using an orthogonal test. Through a combination of numerical simulations and model tests, the effects of the inclination angle, length, diameter, and number of side piles on the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity were determined. The results indicate that an increase in the inclination angle of the side piles will increase the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity. An increase in the length of the side piles will increase the vertical bearing capacity and bending bearing capacity. When the length of the side piles is close to the central pile, the increase is more apparent. Finally, increasing the number of piles will increase the horizontal bearing capacity; however, the growth rate is small because of the pile group effect. PMID:25250375

  12. Study on load-bearing characteristics of a new pile group foundation for an offshore wind turbine.

    PubMed

    Lang, Ruiqing; Liu, Run; Lian, Jijian; Ding, Hongyan

    2014-01-01

    Because offshore wind turbines are high-rise structures, they transfer large horizontal loads and moments to their foundations. One of the keys to designing a foundation is determining the sensitivities and laws affecting its load-bearing capacity. In this study, this procedure was carried out for a new high-rise cap pile group foundation adapted to the loading characteristics of offshore wind turbines. The sensitivities of influential factors affecting the bearing properties were determined using an orthogonal test. Through a combination of numerical simulations and model tests, the effects of the inclination angle, length, diameter, and number of side piles on the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity were determined. The results indicate that an increase in the inclination angle of the side piles will increase the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity. An increase in the length of the side piles will increase the vertical bearing capacity and bending bearing capacity. When the length of the side piles is close to the central pile, the increase is more apparent. Finally, increasing the number of piles will increase the horizontal bearing capacity; however, the growth rate is small because of the pile group effect.

  13. Local effects of blue mussels around turbine foundations in an ecosystem model of Nysted off-shore wind farm, Denmark

    NASA Astrophysics Data System (ADS)

    Maar, Marie; Bolding, Karsten; Petersen, Jens Kjerulf; Hansen, Jørgen L. S.; Timmermann, Karen

    2009-08-01

    The development of off-shore wind farms along the coastline of north-west Europe is rapidly increasing; it is therefore important to study how this will affect the marine environment. The present study modelled the growth and feed-backs of blue mussels in natural beds and on turbine foundations in an off-shore wind farm (OWF) located in a shallow coastal ecosystem by coupling a dynamic energy budget (DEB) model to a small-scale 3D hydrodynamic-biogeochemical model. The model results showed that blue mussels located higher up in the water column on turbine pillars achieved a 7-18 times higher biomass than those located on the scour protection because the former experience an enhanced advective food supply. Secondly, the high biomasses of blue mussels on foundations created local 'hot spots' of biological activity and changed ecosystem dynamics due to their feed-backs e.g. ingestion of microplankton and copepods, excretion of ammonium and egestion of faecal pellets. The model results were supported by field measurements around foundations of Chl a concentrations and biomasses of the fauna community. Our study emphasised that OWFs seem to be particularly favourable for blue mussels in the western Baltic Sea and that the functioning of the OWFs as artificial reef ecosystems depends upon how the blue mussels interact with their local pelagic and benthic environment.

  14. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    NASA Astrophysics Data System (ADS)

    Versteijlen, W. G.; van Dalen, K. N.; Metrikine, A. V.; Hamre, L.

    2014-06-01

    The fundamental natural frequency as measured on installed offshore wind turbines is significantly higher than its designed value, and it is expected that the explanation for this can be found in the currently adopted modeling of soil-structure interaction. The small-strain soil stiffness is an important design parameter, as it has a defining influence on the first natural frequency of these structures. In this contribution, in situ seismic measurements are used to derive the small-strain shear modulus of soil as input for 3D soil-structure interaction models to assess the initial soil stiffness at small strains for offshore wind turbine foundations. A linear elastic finite element model of a half-space of solids attached to a pile is used to derive an equivalent first mode shape of the foundation. The second model extends the first one by introducing contact elements between pile and soil, to take possible slip and gap-forming into account. The deflections derived with the 3D models are smaller than those derived with the p- y curve design code. This higher stiffness is in line with the higher measured natural frequencies. Finally a method is suggested to translate the response of 3D models into 1D engineering models of a beam laterally supported by uncoupled distributed springs.

  15. Active stall control for large offshore horizontal axis wind turbines; a conceptual study considering different actuation methods

    NASA Astrophysics Data System (ADS)

    Pereira, R.; van Bussel, G. J. W.; Timmer, W. A.

    2014-12-01

    The increasing size of Horizontal Axis Wind Turbines and the trend to install wind farms further offshore demand more robust design options. If the pitch system could be eliminated, the availability of Horizontal Axis Wind Turbines should increase. This research investigates the use of active stall control to regulate power production in replacement of the pitch system. A feasibility study is conducted using a blade element momentum code and taking the National Renewable Energy Laboratory 5 MW turbine as baseline case. Considering half of the blade span is equipped with actuators, the required change in the lift coefficient to regulate power was estimated in ΔCl = 0.7. Three actuation technologies are investigated, namely Boundary Layer Transpiration, Trailing Edge Jets and Dielectric Barrier Discharge actuators. Results indicate the authority of the actuators considered is not sufficient to regulate power, since the change in the lift coefficient is not large enough. Active stall control of Horizontal Axis Wind Turbines appears feasible only if the rotor is re-designed from the start to incorporate active-stall devices.

  16. High-Throughput Computation and the Applicability of Monte Carlo Integration in Fatigue Load Estimation of Floating Offshore Wind Turbines

    SciTech Connect

    Graf, Peter A.; Stewart, Gordon; Lackner, Matthew; Dykes, Katherine; Veers, Paul

    2016-05-01

    Long-term fatigue loads for floating offshore wind turbines are hard to estimate because they require the evaluation of the integral of a highly nonlinear function over a wide variety of wind and wave conditions. Current design standards involve scanning over a uniform rectangular grid of metocean inputs (e.g., wind speed and direction and wave height and period), which becomes intractable in high dimensions as the number of required evaluations grows exponentially with dimension. Monte Carlo integration offers a potentially efficient alternative because it has theoretical convergence proportional to the inverse of the square root of the number of samples, which is independent of dimension. In this paper, we first report on the integration of the aeroelastic code FAST into NREL's systems engineering tool, WISDEM, and the development of a high-throughput pipeline capable of sampling from arbitrary distributions, running FAST on a large scale, and postprocessing the results into estimates of fatigue loads. Second, we use this tool to run a variety of studies aimed at comparing grid-based and Monte Carlo-based approaches with calculating long-term fatigue loads. We observe that for more than a few dimensions, the Monte Carlo approach can represent a large improvement in computational efficiency, but that as nonlinearity increases, the effectiveness of Monte Carlo is correspondingly reduced. The present work sets the stage for future research focusing on using advanced statistical methods for analysis of wind turbine fatigue as well as extreme loads.

  17. Mass Balance Implications of Wind-Transported Snow Loss From Antarctic Ice Shelves

    NASA Astrophysics Data System (ADS)

    Leonard, K. C.; Jacobs, S. S.; Cullather, R. I.

    2008-12-01

    Some fraction of the snow that falls as precipitation over the Antarctic ice sheet is transported across the coastline by the wind. This is a long-recognized but poorly constrained problem. If recent projections of increasing coastal wind speeds are correct, wind-blown snow transport will also intensify, as the relationship between mass transport and wind speed is strongly nonlinear. The large-scale importance of wind- transported snow to coastal ocean freshening or ice sheet mass balance depends on unknowns including details of the transport of snow by the wind, the net precipitation over Antarctica, and the effective length of its coastline. Prior estimates of snow loss into the ocean from Antarctica range over two orders of magnitude, from less than 2 to more than 200 Gt / year. Modeled annual snow transport based on measured winds at an automatic weather station site on the northern edge of the Ross Ice Shelf is in good agreement with measured values from Halley Station. When extrapolated around the coastline, these values fall between the reported extremes. Because most of Antarctica's coastal areas experience higher winds and greater snow supply than its ice shelves, this data provides a lower limit on the mass of snow removed from the ice sheet by the wind. From this lower bound we estimate the probable range of values for present-day wind blown snow export to the Southern Ocean, and explore the implications of projected rising winds for increases in wind-blown snow transport.

  18. Wind tunnel balance system for determination of wind-induced vibrations of a rigid shuttle model in the launch configuration

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A wind tunnel balance system was designed to determine the wind-induced vibrations of a space shuttle model. The balance utilizes a flexible sting mounting in conjunction with a geometrically scaled rigid model. Bending and torsional displacements are determined through strain-gauge-instrumented spring bar mechanisms. The natural frequency of the string-model system can be varied continuously throughout the expected scaled frequency range of the shuttle vehicle while a test is in progress by the use of moveable riders on the spring bar mechanism. Through the use of a frequency analyzer, the output can be used to determine troublesome vibrational frequencies. A dimensional analysis of the wind-induced vibration problem is also presented which suggests a test procedure. In addition a computer program for analytical studies of the forced vibration problem is presented.

  19. Assessment of weather downtime for the construction of offshore wind farm by using wind and wave simulations

    NASA Astrophysics Data System (ADS)

    Kikuchi, Yuka; Ishihara, Takeshi

    2016-09-01

    In this study, numerical simulations for winds and waves were carried out using WRF and WW3 and the predicted wind speed, wave height and wave period were validated with measurement. Annual average values of absolute monthly error of wind speed, wave height and wave period were 4.30%, 12.3% and 7.8%. The prediction accuracy were improved by bias modification in the region of low wave height and short wave period. Predicted seasonal frequency distributions showed good agreement with measurements. The criteria of experienced construction methods were investigated at Choshi and Kitakyushu wind farm and the sensitivity of environmental conditions on weather downtime were clarified. At Choshi, the weather downtime was predicted by using wind and wave simulations and showed good agreement with the actual weather downtime.