Science.gov

Sample records for ball-milling multiscale characterizations

  1. Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Yu, Wen; Chai, Tianyou; Liu, Zhuo; Zhou, Xiaojie

    2016-01-01

    It is difficult to model multi-frequency signal, such as mechanical vibration and acoustic signals of wet ball mill in the mineral grinding process. In this paper, these signals are decomposed into multi-scale intrinsic mode functions (IMFs) by the empirical mode decomposition (EMD) technique. A new adaptive multi-scale spectral features selection approach based on sphere criterion (SC) is applied to these IMFs frequency spectra. The candidate sub-models are constructed by the partial least squares (PLS) with the selected features. Finally, the branch and bound based selective ensemble (BBSEN) algorithm is applied to select and combine these ensemble sub-models. This method can be easily extended to regression and classification problems with multi-time scale signal. We successfully apply this approach to a laboratory-scale ball mill. The shell vibration and acoustic signals are used to model mill load parameters. The experimental results demonstrate that this novel approach is more effective than the other modeling methods based on multi-scale frequency spectral features.

  2. Characterization of ball-milled carbon nanotube dispersed aluminum mixed powders

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Abdullah, U.; Yaacob, I.; Ali, Y.

    2016-04-01

    Currently, carbon nanotube (CNT) is attracting much interest as fibrous materials for reinforcing aluminum matrix composites due to unique properties, such as high strength, elastic modulus, flexibility and high aspect ratios. However, the quality of the dispersion is the major concerning factor which determines the homogeneity of the enhanced mechanical and tribological properties of the composite. This work study and characterized carbon nanotube dispersion in ballmilled CNT-aluminum mixed powders with four different formulations such as 1, 1.5, 2 and 2.5 wt% CNT under high energy planetary ball milling operations. The ball milling was performed for two hours at constant milling speed of 250 rpm under controlled atmosphere. The characterization is performed using FESEM and EDX analyzer for mapping, elemental and line analysis. The experimental results showed homogeneous dispersion of CNTs in aluminum matrix. The composite mixture showed similar pattern from mapping, elemental and line analysis. Identification of only two peaks proved that controlled atmosphere during milling prevented the formation of inter metallic compounds such as aluminum carbide in the composite mixture. Therefore, this CNT-A1 composite powder mixture can be used for new nano-composite development without any agglomeration problem.

  3. Preparation, characterization and optoelectronic properties of nanodiamonds doped zinc oxide nanomaterials by a ball milling technique

    NASA Astrophysics Data System (ADS)

    Ullah, Hameed; Sohail, Muhammad; Malik, Uzma; Ali, Naveed; Bangash, Masroor Ahmad; Nawaz, Mohsan

    2016-07-01

    Zinc oxide (ZnO) is one of the very important metal oxides (MOs) for applications in optoelectronic devices which work in the blue and UV regions. However, to meet the challenges of obtaining ZnO nanomaterials suitable for practical applications, various modifications in physico-chemical properties are highly desirable. One of the ways adopted for altering the properties is to synthesize composite(s) of ZnO with various reinforcements. Here we report on the tuning of optoelectronic properties of ZnO upon doping by nanodiamonds (NDs) using the ball milling technique. A varying weight percent (wt.%) of NDs were ball milled for 2 h with ZnO nanoparticles prepared by a simple precipitation method. The effects of different parameters, the calcination temperature of ZnO, wt.% of NDs and mechanical milling upon the optoelectronic properties of the resulting ZnO-NDs nanocomposites have been investigated. The ZnO-NDs nanocomposites were characterized by IR spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The UV-vis spectroscopy revealed the alteration in the bandgap energy (Eg ) of ZnO as a function of the calcination temperature of ZnO, changing the concentration of NDs, and mechanical milling of the resulting nanocomposites. The photoluminescence (PL) spectroscopy showed a decrease in the deep level emission (DLE) peaks and an increase in near-band-edge transition peaks as a result of the increasing concentration of NDs. The decrease in DLE and increase in band to band transition peaks were due to the strong interaction between the NDs and the Zn+; consequently, the Zn+ concentration decreased on the interstitial sites.

  4. Preparation and solid-state characterization of ball milled saquinavir mesylate for solubility enhancement.

    PubMed

    Branham, Michael Lee; Moyo, Thomas; Govender, Thirumala

    2012-01-01

    Saquinavir is an anti-retroviral drug with very low oral bioavailability (e.g. 0.7-4.0%) due to its affinity toward efflux transporters (P-gp) and metabolic enzymes (CYP3A4). The aim of this study was to characterize the effects of high-energy ball milling on saquinavir solid-state characteristics and aqueous solubility for the design of effective buccal drug delivery systems. The solubility of saquinavir mesylate was evaluated in simulated saliva before and after milling for 1, 3, 15, 30, 50, and 60 h. To elucidate changes in crystallinity and long-range structure in the drug, analyses of the milled powders were performed using XRD, ATR-IR, DSC/TGA, BET surface area, EDX and SEM. In addition, the effects of milling time on saquinavir solubility were statistically correlated using repeated measures ANOVA. Results of this study indicate that the milling of saquinavir mesylate produces nanoporous particles with unique surface structures, thermal properties, and increased aqueous solubility. Optimal milling time occurred at 3h and corresponded to a 9-fold solubility enhancement in simulated saliva. Thermal analysis revealed only a slight decrease in melting point (T(m)) from 242 °C to 236 °C after 60 h milling. XRD diffractograms indicate a gradual crystalline-to-amorphous transition with some residual crystallinity remaining after 60 h milling time. Unstable polymorphic structures appeared between 15 and 30 h which were converted to more stable isomorphs at 60 h. Aggregate formation also seems to occur after 15 h but no metal contamination of the drug was observed during the milling process as determined by EDX analysis. In conclusion, high-energy ball milling may be a method of choice for improving the solubility of saquinavir and facilitating novel drug formulations design.

  5. Preparation, characterization and optoelectronic properties of nanodiamonds doped zinc oxide nanomaterials by a ball milling technique

    NASA Astrophysics Data System (ADS)

    Ullah, Hameed; Sohail, Muhammad; Malik, Uzma; Ali, Naveed; Bangash, Masroor Ahmad; Nawaz, Mohsan

    2016-07-01

    Zinc oxide (ZnO) is one of the very important metal oxides (MOs) for applications in optoelectronic devices which work in the blue and UV regions. However, to meet the challenges of obtaining ZnO nanomaterials suitable for practical applications, various modifications in physico-chemical properties are highly desirable. One of the ways adopted for altering the properties is to synthesize composite(s) of ZnO with various reinforcements. Here we report on the tuning of optoelectronic properties of ZnO upon doping by nanodiamonds (NDs) using the ball milling technique. A varying weight percent (wt.%) of NDs were ball milled for 2 h with ZnO nanoparticles prepared by a simple precipitation method. The effects of different parameters, the calcination temperature of ZnO, wt.% of NDs and mechanical milling upon the optoelectronic properties of the resulting ZnO–NDs nanocomposites have been investigated. The ZnO–NDs nanocomposites were characterized by IR spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The UV-vis spectroscopy revealed the alteration in the bandgap energy (Eg ) of ZnO as a function of the calcination temperature of ZnO, changing the concentration of NDs, and mechanical milling of the resulting nanocomposites. The photoluminescence (PL) spectroscopy showed a decrease in the deep level emission (DLE) peaks and an increase in near-band-edge transition peaks as a result of the increasing concentration of NDs. The decrease in DLE and increase in band to band transition peaks were due to the strong interaction between the NDs and the Zn+; consequently, the Zn+ concentration decreased on the interstitial sites.

  6. Characterization of cationic starch flocculants synthesized by dry process with ball milling activating method.

    PubMed

    Su, Yuting; Du, Hongying; Huo, Yinqiang; Xu, Yongliang; Wang, Jie; Wang, Liying; Zhao, Siming; Xiong, Shanbai

    2016-06-01

    The cationic starch flocculants were synthesized by the reaction of maize starch which was activated by a ball-milling treatment with 2,3-epoxypropyl trimethyl ammonium chlorides (ETMAC) using the dry method. The cationic starches were characterized by several approaches including scanning electron microscope (SEM), degree of substitution (DS), infrared spectrum (IR), X-ray diffraction (XRD), flocculating activity, electron spin resonance (ESR), and solid-state nuclear magnetic resonance (NMR). The effect of mechanical activation on starch etherifying modification was investigated. The mechanical activation cracked starch granules and destructed their crystal structures. This resulted in enhancements to the reaction activity and reaction efficiency, which was approved by ESR and solid state NMR. The starch flocculants, synthesized by the reaction of mechanically activated starches at 90°C for 2.5h with ETMAC at molar ratio of 0.40:1.00, showed good flocculation activity. The substitution degree (0.300) and reaction efficiency (75.06%) of starch flocculants synthesized with mechanically activated starches were significantly greater than those of starch flocculants with native starches (P<0.05).

  7. Microstructural characterization of amorphous and nanocrystalline boron nitride prepared by high-energy ball milling

    SciTech Connect

    Ghosh, J. Mazumdar, S.; Das, M.; Ghatak, S.; Basu, A.K.

    2008-04-01

    Microstructural parameters like crystallite size, lattice strain, stacking faults and dislocation density were evaluated from the X-ray diffraction data of boron nitride (BN) powder milled in a high-energy vibrational ball mill for different length of time (2-120 h), using different model based approaches like Scherrer analysis, integral breadth method, Williamson-Hall technique and modified Rietveld technique. From diffraction line-broadening analysis of the successive patterns of BN with varying milling time, it was observed that overall line broadening was an operative cause for crystallite size reduction at lower milling time ({approx}5 h), whereas lattice strains were the prominent cause of line broadening at higher milling times (>19 h). For intermediate milling time (7-19 h), both crystallite size and lattice strain influence the profile broadening although their relative contribution vary with milling time. Microstructural information showed that after long time milling (>19 h) BN becomes mixture of nanocrystalline and amorphous BN. The accumulations of defects cause this crystalline to amorphous transition. It has been found that twin fault ({beta}') and deformation fault ({alpha}) significantly contributed to BN powder as synthesized by a high-energy ball-milling technique. Present study consider only three ball-milled (0, 2 and 3 h) BN powder for faults calculation because fault effected reflections (1 0 1, 1 0 2, 1 0 3) disappear with milling time (>3 h). The morphology and particle size of the BN powders before and after ball milling were also observed in a field emission scanning electron microscope (FESEM)

  8. Preparation and Characterization of Nano structured Materials from Fly Ash: A Waste from Thermal Power Stations, by High Energy Ball Milling

    PubMed Central

    2007-01-01

    The Class F fly ash has been subjected to high energy ball milling and has been converted into nanostructured material. The nano structured fly ash has been characterized for its particle size by using particle size analyzer, specific surface area with the help of BET surface area apparatus, structure by X-ray diffraction studies and FTIR, SEM and TEM have been used to study particle aggregation and shape of the particles. On ball milling, the particle size got reduced from 60 μm to 148 nm by 405 times and the surface area increased from 0.249 m2/gm to 25.53 m2/gm i.e. by more than 100%. Measurement of surface free energy as well as work of adhesion found that it increased with increased duration of ball milling. The crystallite was reduced from 36.22 nm to 23.01 nm for quartz and from 33.72 nm to 16.38 nm for mullite during ball milling to 60 h. % crystallinity reduced from 35% to 16% during 60 h of ball milling because of destruction of quartz and hematite crystals and the nano structured fly ash is found to be more amorphous. Surface of the nano structured fly ash has become more active as is evident from the FTIR studies. Morphological studies revealed that the surface of the nano structured fly ash is more uneven and rough and shape is irregular, as compared to fresh fly ash which are mostly spherical in shape.

  9. Highly Al-doped TiO{sub 2} nanoparticles produced by Ball Mill Method: structural and electronic characterization

    SciTech Connect

    Santos, Desireé M. de los Navas, Javier Sánchez-Coronilla, Antonio; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2015-10-15

    Highlights: • Highly Al-doped TiO{sub 2} nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO{sub 2} nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy. The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti{sup 4+} ions by Al{sup 3+} in the TiO{sub 2} lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature.

  10. Synthesis, characterization and performance of high energy ball milled meso-scale zero valent iron in Fenton reaction.

    PubMed

    Ambika, Selvaraj; Devasena, M; Nambi, Indumathi Manivannan

    2016-10-01

    Understanding contaminant degradation by different sized zero valent iron (ZVI) particles is one important aspect in addressing the long-term stability of these particles in field studies. In this study, meso zero valent iron (mZVI) particles were synthesised in a milling time of 10 h using ball milling technique. The efficacy of mZVI particles for removal of phenol was quantitatively evaluated in comparison with coarse zero valent iron (cZVI) and nano zero valent iron (nZVI) particles. Phenol degradation experiments were carried out in sacrificial batch mode at room temperature independently with cZVI, nZVI and mZVI under varied pH conditions of 3, 4, 6, 7, 8 and 10. Batch experiments substantiating the reactivity of mZVI under unbuffered pH system were also carried out and compared with buffered and poorly buffered pH systems. mZVI particles showed consistent phenol degradation at circum-neutral pH with efficiency of 44%, 67%, and 89% in a span of 5, 10 and 20 min respectively. The dissolved iron species and residual iron formation were also measured as a function of pH. Unbuffered systems at circum-neutral pH produced less residual iron when compared to buffered and poorly buffered systems. At this pH, oxidation of Fe(2+) produced a different oxidant Ferryl ion, which was found to effectively participate in phenol degradation. PMID:27397842

  11. Preparation and characterization of nanocrystalline ZrO2-7%Y2O3 powders for thermal barrier coatings by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Bobzin, Kirsten; Zhao, Lidong; Schlaefer, Thomas; Warda, Thomas

    2011-06-01

    High-energy ball milling is an effective method to produce nanocrystalline oxides. In this study, a conventional ZrO2-7%Y2O3 spray powder was ball-milled to produce nanocrystalline powders with high levels of crystalline disorders for deposition of thermal barrier coatings. The powder was milled both with 100Cr6 steel balls and with ZrO2-3%Y2O3 ceramic balls as grinding media. The milling time was varied in order to investigate the effect of the milling time on the crystallite size. The powders were investigated in terms of their crystallite sizes and morphologies by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that under given milling conditions the powder was already nanostructured after 40 min milling. The crystallite size decreased significantly with increasing milling time within first 120 min. After that, a further increase of milling time did not lead to a significant reduction of the crystallite size. Ball-milling led to lattice microstrains. Milling with the steel balls resulted in finer nano-sized crystal grains, but caused the contamination of the powder. The nano-sized crystal grains coarsened during the heat-treatment at 1250°C.

  12. Multifractal properties of ball milling dynamics

    SciTech Connect

    Budroni, M. A. Pilosu, V.; Rustici, M.; Delogu, F.

    2014-06-15

    This work focuses on the dynamics of a ball inside the reactor of a ball mill. We show that the distribution of collisions at the reactor walls exhibits multifractal properties in a wide region of the parameter space defining the geometrical characteristics of the reactor and the collision elasticity. This feature points to the presence of restricted self-organized zones of the reactor walls where the ball preferentially collides and the mechanical energy is mainly dissipated.

  13. DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, AND ORE BIN CHUTE, LOOKING EAST NORTHEAST. CRUSHED ORE FROM THE SECONDARY ORE BIN WAS INTRODUCED INTO THE FEED TROUGH VIA A CHUTE. AS THE BALL MILL TURNED, THE ROUND SCOOP ALSO TURNED IN THE TROUGH TO CHANNEL ORE INTO THE BALL MILL. SEE CA-292-14 FOR IDENTICAL B&W NEGATIVE. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  14. DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, AND ORE BIN CHUTE, LOOKING EAST NORTHEAST. CRUSHED ORE FROM THE SECONDARY ORE BIN WAS INTRODUCED INTO THE FEED TROUGH VIA A CHUTE. AS THE BALL MILL TURNED, THE ROUND SCOOP ALSO TURNED IN THE TROUGH TO CHANNEL ORE INTO THE BALL MILL. SEE CA-292-20 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  15. Synthesis of aluminum nitride powders from a plasma-assisted ball milled precursor through carbothermal reaction

    SciTech Connect

    Liu, Zhi-jie; Dai, Le-yang; Yang, De-zheng; Wang, Sen; Zhang, Bao-jian; Wang, Wen-chun; Cheng, Tie-han

    2015-01-15

    Highlights: • A novel and high efficiency synthesizing AlN powders method combining mechanical ball milling and DBDP has been developed. • The particle size, the crystallite size, the lattice distortion, the morphology of Al{sub 2}O{sub 3} powders, and the AlN conversion rate are investigated and compared under the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP. • The ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermal temperature. - Abstract: In this paper, aluminum nitride (AlN) powers have been produced with a novel and high efficiency method by thermal annealing at 1100–1600 °C of alumina (Al{sub 2}O{sub 3}) powders which were previously ball milled for various time up to 40 h with and without the assistant of dielectric barrier discharge plasma (DBDP). The ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP and the corresponding synthesized AlN powers are characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscopy. From the characteristics of the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP, it can be seen that the ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermal temperature. Meanwhile, the synthesized AlN powders can be known as hexagonal AlN with fine crystal morphology and irregular lump-like structure, and have uniform distribution with the average particle size of about between 500 nm and 1000 nm. This provides an important method for fabricating ultra fine powders and synthesizing nitrogen compounds.

  16. DETAIL OF CYCLONE CLASSIFIER, WITH MARCY NO. 86 BALL MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CYCLONE CLASSIFIER, WITH MARCY NO. 86 BALL MILL BELOW AND BEHIND IT. STRAIGHT HORIZONTAL PIPE IS SLIME FEED FROM ROD MILL. PIPE OUT TOP OF CYCLONE AND CURVING AT LOWER RIGHT CARRIED FINELY GROUND SLIME TO FLOTATION CONDITIONER TANK. PIPE NOT VISIBLE OUT BOTTOM OF CYCLONE CONVEYED COARSER SLIME TO BALL MILL. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  17. Magnetic and Magnetocaloric Properties of High-Energy Ball-Milled Nanocrystalline CeMn2Ge2 Compound

    NASA Astrophysics Data System (ADS)

    Kaya, Melike; Dincer, Ilker; Akturk, Selcuk; Elerman, Yalcin

    2016-10-01

    CeMn2Ge2 nanopowders have been obtained by high-energy ball milling for 5 and 10 hours from bulk compound to investigate the effect of milling time on magnetic and magnetocaloric properties. CeMn2Ge2 nanopowders have been characterized by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy, transmission electron microscopy, and magnetization measurements. The average grain size of the nanoparticles from XRD measurements is about 12.2 and 8 nm for 5-hour and 10-hour ball-milled samples, respectively. The investigations reveal that magnetic entropy change (∆ S m) can be altered by changing the particle size of the compound. Maximum ∆ S m is -2.45 and -1.30 J kg-1 K-1 for the 5- and 10-hour ball-milled nanopowders, respectively.

  18. Magnetic and Magnetocaloric Properties of High-Energy Ball-Milled Nanocrystalline CeMn2Ge2 Compound

    NASA Astrophysics Data System (ADS)

    Kaya, Melike; Dincer, Ilker; Akturk, Selcuk; Elerman, Yalcin

    2016-07-01

    CeMn2Ge2 nanopowders have been obtained by high-energy ball milling for 5 and 10 hours from bulk compound to investigate the effect of milling time on magnetic and magnetocaloric properties. CeMn2Ge2 nanopowders have been characterized by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy, transmission electron microscopy, and magnetization measurements. The average grain size of the nanoparticles from XRD measurements is about 12.2 and 8 nm for 5-hour and 10-hour ball-milled samples, respectively. The investigations reveal that magnetic entropy change (∆S m) can be altered by changing the particle size of the compound. Maximum ∆S m is -2.45 and -1.30 J kg-1 K-1 for the 5- and 10-hour ball-milled nanopowders, respectively.

  19. Powder properties of hydrogenated ball-milled graphite

    SciTech Connect

    Zhang, Y.; Wedderburn, J.; Harris, R.; Book, D.

    2014-12-15

    Ball milling is an effective way of producing defective and nanostructured graphite. In this work, the hydrogen storage properties of graphite, ball-milled in a tungsten carbide milling pot under 3 bar hydrogen for various times (0–40 h), were investigated by TGA-Mass Spectrometry, XRD, SEM and laser diffraction particle size analysis. For the conditions used in this study, 10 h is the optimum milling time resulting in desorption of 5.5 wt% hydrogen upon heating under argon to 990 °C. After milling for 40 h, the graphite became significantly more disordered, and the amount of desorbed hydrogen decreased. After milling up to 10 h, the BET surface area increased while particle size decreased; however, there is no apparent correlation between these parameters, and the hydrogen storage properties of the hydrogenated ball-milled graphite.

  20. Crystallization of amorphous Fe90Zr10 under ball milling.

    PubMed

    Kwon, Young-Soon; Kim, Ji-Soon; Kim, Jin-Chun; Kwon, Yong-Jae; Povstugar, Ivan; Yelsukov, Eugene; Kim, Cheol-Eeh; Lee, Hyung-Soon

    2010-01-01

    The present study deals with structural transformations induced by high-energy ball-milling of an amorphous Fe90Zr10 alloy prepared by melt-spinning. The amorphous melt-spun ribbons were found to undergo crystallization into BCC alpha-Fe(Zr) nanocrystallites under high-energy ball milling. The decomposition degree of the amorphous phase increased with increasing milling time and intensity. Our results suggest that the observed crystallization is a deformation-induced process rather than a thermally induced one.

  1. 6. FF coal pulverizer (ball mill inside). GG building in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FF coal pulverizer (ball mill inside). GG building in background did preliminary crushing; pulverizer to left, coal conveyor and air cleaning towers to right; conveyor on left brought crushed coal to FF. Looking north/northeast - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  2. Generation of drugs coated iron nanoparticles through high energy ball milling

    NASA Astrophysics Data System (ADS)

    Radhika Devi, A.; Chelvane, J. A.; Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh; Murty, B. S.

    2014-03-01

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  3. Generation of drugs coated iron nanoparticles through high energy ball milling

    SciTech Connect

    Radhika Devi, A.; Murty, B. S.; Chelvane, J. A.; Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh

    2014-03-28

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  4. Ball-milled sulfur-doped graphene materials contain metallic impurities originating from ball-milling apparatus: their influence on the catalytic properties.

    PubMed

    Chua, Chun Kiang; Sofer, Zdeněk; Khezri, Bahareh; Webster, Richard D; Pumera, Martin

    2016-07-21

    Graphene materials have found applications in a wide range of devices over the past decade. In order to meet the demand for graphene materials, various synthesis methods are constantly being improved or invented. Ball-milling of graphite to obtain graphene materials is one of the many versatile methods to easily obtain bulk quantities. In this work, we show that the graphene materials produced by ball-milling are spontaneously contaminated with metallic impurities originating from the grinding bowls and balls. Ball-milled sulfur-doped graphene materials obtained from two types of ball-milling apparatus, specifically made up of stainless steel and zirconium dioxide, were investigated. Zirconium dioxide-based ball-milled sulfur-doped graphene materials contain a drastically lower amount of metallic impurities than stainless steel-based ball-milled sulfur-doped graphene materials. The presence of metallic impurities is demonstrated by their catalytic effects toward the electrochemical catalysis of hydrazine and cumene hydroperoxide. The general impression toward ball-milling of graphite as a versatile method for the bulk production of 'metal-free' graphene materials without the need for post-processing and the selection of ball-milling tools should be cautioned. These findings would have wide-reaching implications for graphene research. PMID:27314607

  5. Ball-milled sulfur-doped graphene materials contain metallic impurities originating from ball-milling apparatus: their influence on the catalytic properties.

    PubMed

    Chua, Chun Kiang; Sofer, Zdeněk; Khezri, Bahareh; Webster, Richard D; Pumera, Martin

    2016-07-21

    Graphene materials have found applications in a wide range of devices over the past decade. In order to meet the demand for graphene materials, various synthesis methods are constantly being improved or invented. Ball-milling of graphite to obtain graphene materials is one of the many versatile methods to easily obtain bulk quantities. In this work, we show that the graphene materials produced by ball-milling are spontaneously contaminated with metallic impurities originating from the grinding bowls and balls. Ball-milled sulfur-doped graphene materials obtained from two types of ball-milling apparatus, specifically made up of stainless steel and zirconium dioxide, were investigated. Zirconium dioxide-based ball-milled sulfur-doped graphene materials contain a drastically lower amount of metallic impurities than stainless steel-based ball-milled sulfur-doped graphene materials. The presence of metallic impurities is demonstrated by their catalytic effects toward the electrochemical catalysis of hydrazine and cumene hydroperoxide. The general impression toward ball-milling of graphite as a versatile method for the bulk production of 'metal-free' graphene materials without the need for post-processing and the selection of ball-milling tools should be cautioned. These findings would have wide-reaching implications for graphene research.

  6. Ball Mill Synthesis of Bulk Quaternary Cu2ZnSnSe4 and Thermoelectric Studies

    NASA Astrophysics Data System (ADS)

    Tiwari, Kunal J.; Prem Kumar, D. S.; Mallik, Ramesh Chandra; Malar, P.

    2016-08-01

    In this work, quaternary chalcogenide Cu2ZnSnSe4 (CZTSe) was synthesized using a mechanochemical ball milling process and its thermoelectric properties were studied by electrical resistivity, Seebeck coefficient, and thermal conductivity measurements. The synthesis process comprises three steps viz., wet ball milling of the elemental precursors, vacuum annealing, and densification by hot pressing. The purpose of this is to evaluate the feasibility of introducing wet milling in place of vacuum melting in solid state synthesis for the reaction of starting elements. We report the structural characterization and thermoelectric studies conducted on samples that were milled at 300 rpm and 500 rpm. X-ray diffraction (XRD) analysis showed the existence of multiple phases in the as-milled samples, indicating the requirement for heat treatment. Therefore, the ball milled powders were cold pressed and vacuum annealed to eliminate the secondary phases. Annealed samples were hot pressed and made into dense pellets for further investigations. In addition to XRD, energy dispersive spectroscopy (EDS) studies were performed on hot pressed samples to study the composition. XRD and EDS studies confirm CZTSe phase formation along with ZnSe secondary phase. Electrical resistivity and Seebeck coefficient measurements were done on the hot pressed samples in the temperature range 340-670 K to understand the thermoelectric behaviour. Thermal conductivity was calculated from the specific heat capacity and thermal diffusivity values. The thermoelectric figure of merit zT values for samples milled at 300 rpm and 500 rpm are ˜0.15 and ˜0.16, respectively, at 630 K, which is in good agreement with the values reported for solid state synthesized compounds.

  7. Facile and Cost-Effective Synthesis and Deposition of a YBCO Superconductor on Copper Substrates by High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    Alami, Abdul Hai; Assad, Mhd Adel; Aokal, Camilia

    2016-09-01

    The article investigates the synthesis and deposition of YBCO on a copper substrate for various functional purposes. The superconductor is first prepared by mechanically alloying elemental components (yttrium, barium, and copper) for 50 hours in a high-energy ball mill with subsequent protocol of heat treatment in an oxygen-rich atmosphere to arrive at stoichiometric ratios of YBa2Cu3O7. The material is then deposited on a thin copper substrate also by ball milling under various parameters of rotational speed and deposition time to select the best and most homogenous substrate coverage. Atomic force microscopy has confirmed the desired results, and other microstructural, thermal, and electrical techniques are used to characterize the obtained material. High-energy ball milling proved to be a versatile means to synthesize and deposit the material in a straightforward manner and controllable parameters for different deposit thicknesses and coverages.

  8. Solvent-free mechanochemical glycosylation in ball mill.

    PubMed

    Tyagi, Mohit; Khurana, Darpan; Kartha, K P Ravindranathan

    2013-09-20

    Starting from acetobromosugars and an alcohol (alkyl/substituted alkyl/akenyl/alkynyl/glyceryl/cyclohexyl/steryl) various O-glycosides have been prepared mechanochemically under solvent-free conditions employing a planetary ball mill in the presence of metal carbonates (environmentally benign or otherwise) as promoters. The method was proven to be mild and efficient and applicable on preparative scale for the synthesis of various mono- and disaccharide glycosides. 4-Pentenyl glycoside so produced could, in four successive reactions in the same pot, be converted in high isolated yields into triazole-substituted pentyl glycoside that can find application in the area of medicinal chemistry.

  9. Effects and mechanism of ball milling on torrefaction of pine sawdust.

    PubMed

    Gong, Chunxiao; Huang, Jing; Feng, Chen; Wang, Guanghui; Tabil, Lope; Wang, Decheng

    2016-08-01

    The effects and mechanism of ball milling on the torrefaction process were studied. Ball- and hammer-milled (screen size 1mm) pine sawdust samples were torrefied at three temperatures (230, 260, and 290°C) and two durations (30 and 60min) to investigate into their torrefaction behavior and physicochemical properties. The results showed that, under identical torrefaction conditions, torrefied ball-milled pine sawdust had a higher carbon content and fixed carbon, and lower hydrogen and oxygen contents than torrefied hammer-milled pine sawdust. Torrefied ball-milled pine sawdust produced lower mass and energy yields, but higher heating values than torrefied hammer-milled pine sawdust. Ball milling destroyed the crystalline structure of cellulose and thus reduced the thermal stability of hemicellulose, cellulose, and lignin, causing them to degrade at relatively lower temperatures. In conclusion, biomass pretreated with a combination of ball milling and torrefaction has the potential to produce an alternative fuel to coal. PMID:27136611

  10. Effects and mechanism of ball milling on torrefaction of pine sawdust.

    PubMed

    Gong, Chunxiao; Huang, Jing; Feng, Chen; Wang, Guanghui; Tabil, Lope; Wang, Decheng

    2016-08-01

    The effects and mechanism of ball milling on the torrefaction process were studied. Ball- and hammer-milled (screen size 1mm) pine sawdust samples were torrefied at three temperatures (230, 260, and 290°C) and two durations (30 and 60min) to investigate into their torrefaction behavior and physicochemical properties. The results showed that, under identical torrefaction conditions, torrefied ball-milled pine sawdust had a higher carbon content and fixed carbon, and lower hydrogen and oxygen contents than torrefied hammer-milled pine sawdust. Torrefied ball-milled pine sawdust produced lower mass and energy yields, but higher heating values than torrefied hammer-milled pine sawdust. Ball milling destroyed the crystalline structure of cellulose and thus reduced the thermal stability of hemicellulose, cellulose, and lignin, causing them to degrade at relatively lower temperatures. In conclusion, biomass pretreated with a combination of ball milling and torrefaction has the potential to produce an alternative fuel to coal.

  11. Ball-milled CuPc/TiO{sub 2} hybrid nanocomposite and its photocatalytic degradation of aqueous Rhodamine B

    SciTech Connect

    Mekprasart, W.; Vittayakorn, N.; Pecharapa, W.

    2012-11-15

    Graphical abstract: This work reports on the synthesis of hybrid composites of titanium dioxide and copper phthalocyanine via ball-milling assisted process in combination with mechanical mixing process. Their structural properties and photocatalytic degradation of aqueous RhB were investigated. The significant enhancement of the photocatalytic performance of the composite may be related to the charge recombination suppression guiding to the increase of free functional radicals participated in degradation process. Highlights: ► CuPc/TiO{sub 2} nanocomposite was synthesized by ball-milling assisted process and mechanical mixing method. ► Ball milling process can reduce CuPc size and assist the formation of well-dispersed composite. ► Loaded CuPc has inconsiderable influence on basic crystal structure of TiO{sub 2} matrix. ► The optical absorption properties of TiO{sub 2} in UV and visible light is improved with the existence of CuPc. ► CuPc/TiO{sub 2} nanocomposite can efficiently heighten the catalytic performance of TiO{sub 2} in the photodegradation of RhB. -- Abstract: Hybrid composites of titanium dioxide and copper phthalocyanine were synthesized by ball-milling assisted process in combination with mechanically stirring method. Structural properties of as-synthesized composites were characterized by X-ray diffraction (XRD), X-ray absorption fine structure (XANES) and scanning electron microscope (SEM). The optical absorbance of as-prepared composites and their photocatalytic activities were investigated by UV–vis spectroscopy. XRD and XANES results confirm that CuPc/TiO{sub 2} nanocomposite is still in the same structure of TiO{sub 2} and CuPc. SEM result reveals that the decreasing particle size of ball-milled CuPc has good dispersion on the surface of TiO{sub 2}. Absorptivity in UV region of the composites is heightened and shifted to visible light due to strong absorbance in blue-green spectrum of CuPc. The photocatalytic degradation of Rhodamine

  12. Hydrogen storage materials discovery via high throughput ball milling and gas sorption.

    PubMed

    Li, Bin; Kaye, Steven S; Riley, Conor; Greenberg, Doron; Galang, Daniel; Bailey, Mark S

    2012-06-11

    The lack of a high capacity hydrogen storage material is a major barrier to the implementation of the hydrogen economy. To accelerate discovery of such materials, we have developed a high-throughput workflow for screening of hydrogen storage materials in which candidate materials are synthesized and characterized via highly parallel ball mills and volumetric gas sorption instruments, respectively. The workflow was used to identify mixed imides with significantly enhanced absorption rates relative to Li2Mg(NH)2. The most promising material, 2LiNH2:MgH2 + 5 atom % LiBH4 + 0.5 atom % La, exhibits the best balance of absorption rate, capacity, and cycle-life, absorbing >4 wt % H2 in 1 h at 120 °C after 11 absorption-desorption cycles.

  13. Influence of milling time on fineness of Centella Asiatica particle size produced using planetary ball mill

    NASA Astrophysics Data System (ADS)

    Borhan, M. Z.; Ahmad, R.; Rusop, M.; Abdullah, S.

    2012-11-01

    Centella Asiatica (C. Asiatica)contains asiaticoside as bioactive constituent which can be potentially used in skin healing process. Unfortunately, the normal powders are difficult to be absorbed by the body effectively. In order to improve the value of use, nano C. Asiatica powder was prepared. The influence of milling time was carried out at 0.5, 2, 4, 6, 8 hours and 10 hours. The effect of ball milling at different times was characterized using particles size analysis and FTIR Spectroscopy. The fineness of ground product was evaluated by recording the z-Average (nm), undersize distribution and polydispersity index (PdI). The results show that the smallest size particles by mean is 233 nm while FTIR spectra shows that there is no changing in the major component in the C. Asiatica powders with milling time.

  14. A new approach for remediation of As-contaminated soil: ball mill-based technique.

    PubMed

    Shin, Yeon-Jun; Park, Sang-Min; Yoo, Jong-Chan; Jeon, Chil-Sung; Lee, Seung-Woo; Baek, Kitae

    2016-02-01

    In this study, a physical ball mill process instead of chemical extraction using toxic chemical agents was applied to remove arsenic (As) from contaminated soil. A statistical analysis was carried out to establish the optimal conditions for ball mill processing. As a result of the statistical analysis, approximately 70% of As was removed from the soil at the following conditions: 5 min, 1.0 cm, 10 rpm, and 5% of operating time, media size, rotational velocity, and soil loading conditions, respectively. A significant amount of As remained in the grinded fine soil after ball mill processing while more than 90% of soil has the original properties to be reused or recycled. As a result, the ball mill process could remove the metals bound strongly to the surface of soil by the surface grinding, which could be applied as a pretreatment before application of chemical extraction to reduce the load. PMID:26667646

  15. Properties of high-energy ball-milled Fe-Se based superconductors.

    PubMed

    Ahn, Jung-Ho; Sangjun-Oh

    2012-02-01

    We have synthesized FeSe0.5Te0.5 superconductors by high-energy ball-milling and subsequent annealing. High-energy ball-milling of elemental powder mixtures resulted in the formation of metastable and/or nanocrystalline phases. Both XRD and DSC results show that the ball-milled powers were completely transformed to FeSe0.5Te0.5 with the grain size of a few nanometers during sintering at low temperatures. The resulting materials exhibited superconducting transition at 14 K. The enhancement of critical current density was observed for the high-energy ball-milled powder, compared with the un-milled powders.

  16. Athermal character of the solid state amorphization of lactose induced by ball milling

    NASA Astrophysics Data System (ADS)

    Willart, J. F.; Caron, V.; Lefort, R.; Danède, F.; Prévost, D.; Descamps, M.

    2004-12-01

    In this paper, we report the possibility to reach pure glassy amorphous lactose by ball milling of crystalline α lactose under a dry nitrogen atmosphere. This route to the glassy state is found to be free of mutarotation towards the anomer β while this mutarotation is unavoidable using the usual thermal route, i.e. the quench of the liquid. This result definitely makes the 'local quench melting' hypothesis unsuitable to account for amorphization by ball milling.

  17. Raman spectroscopy of ball-milled TiO 2

    NASA Astrophysics Data System (ADS)

    Gajović, A.; Stubičar, M.; Ivanda, M.; Furić, K.

    2001-05-01

    Raman spectroscopy was applied to study structural and dimensional changes during high-energy ball milling of TiO 2 anatase. Milling was performed for up to 10 h using two different sets of grinding tools (wolfram carbide (WC) and agate). The diminution of the TiO 2 particle to nanometric size was monitoring by low-frequency Raman spectroscopy. The nanometric sizes were confirmed by transmission electron microscopy (TEM). After short milling time by WC the bands of high-pressure TiO 2 II phase (α-PbO 2 structure) were detected in Raman spectrum. Prolonged milling time was needed for transformation to rutil. When milling was performed by agate, the time necessary for both phase transitions was longer, presumably because of lower ball-to-powder weight ratio. The low-frequency Raman band of the prolonged milled samples was broad, which suggests the wide dispersion in nano-particle dimensions. The position of the low-frequency band in longer-milled samples indicated dimensions smaller than 20 nm, since the diameter of the particle is inversely proportional to the low-frequency mode of the spherical particles. These results were in agreement with the TEM results.

  18. Crystal structure of ball-milled mixture of sodium chloride and magnesium chloride-ethanol adduct

    SciTech Connect

    Jiang Xue; Tian Xiuzhi; Fan Zhiqiang

    2008-02-05

    NaCl doped MgCl{sub 2}.nEtOH adducts were prepared by ball-milling MgCl{sub 2}.2.5EtOH with NaCl. Both the ball-milled MgCl{sub 2}.nEtOH/NaCl mixture and pure MgCl{sub 2}.2.5EtOH adducts were analyzed by X-ray diffraction (XRD), transmission electron microscope (TEM), thermogravimetry (TG) and differencial scanning calorimetry (DSC). A simple MgCl{sub 2}.nEtOH/NaCl mixture without ball-milling treatment was also studied for comparison. Two kinds of mixed crystals, Na{sub 2}MgCl{sub 4} and NaMgCl{sub 3}, were found to be formed in a ball-milled mixture that contained 16 mol.% NaCl. TG and DSC analysis of the samples also provided indirect evidences supporting the presence of the mixed crystals in the ball-milled mixture. Adding certain amounts of NaCl in MgCl{sub 2}.2.5EtOH adduct, either by co-milling or by simple mixing, greatly increased the thermal stability of the adduct, but thermal decomposition behaviour of the ball-milled mixture was still different from that of a simple mixture.

  19. Response to Thermal Exposure of Ball-Milled Aluminum-Borax Powder Blends

    NASA Astrophysics Data System (ADS)

    Birol, Yucel

    2013-04-01

    Aluminum-borax powder mixtures were ball milled and heated above 873 K (600 °C) to produce Al-B master alloys. Ball-milled powder blends reveal interpenetrating layers of deformed aluminum and borax grains that are increasingly refined with increasing milling time. Thermal exposure of the ball-milled powder blends facilitates a series of thermite reactions between these layers. Borax, dehydrated during heating, is reduced by Al, and B thus generated reacts with excess Al to produce AlB2 particles dispersed across the aluminum grains starting at 873 K (600 °C). AlB2 particles start to form along the interface of the aluminum and borax layers. Once nucleated, these particles grow readily to become hexagonal-shaped crystals that traverse the aluminum grains with increasing temperatures as evidenced by the increase in the size as well as in the number of the AlB2 particles. Ball milling for 1 hour suffices to achieve a thermite reaction between borax and aluminum. Ball milling further does not impact the response of the powder blend to thermal exposure. The nucleation-reaction sites are multiplied, however, with increasing milling time and thus insure a higher number of smaller AlB2 particles. The size of the AlB2 platelets may be adjusted with the ball milling time.

  20. Impact of high energy ball milling on the nanostructure of magnetite–graphite and magnetite–graphite–molybdenum disulphide blends

    SciTech Connect

    Österle, W.; Orts-Gil, G.; Gross, T.; Deutsch, C.; Hinrichs, R.; Vasconcellos, M.A.Z.; Zoz, H.; Yigit, D.; Sun, X.

    2013-12-15

    Different, partly complementary and partly redundant characterization methods were applied to study the transition of magnetite, graphite and MoS{sub 2} powders to mechanically alloyed nanostructures. The applied methods were: Transmission electron microscopy (TEM), Mössbauer spectroscopy (MS), Raman spectroscopy (RS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The main objective was to prepare a model material providing the essential features of a typical tribofilm forming during automotive braking, and to assess the impact of different constituents on sliding behaviour and friction level. Irrespective of the initial grain size, the raw materials were transferred to a nanocrystalline structure and mixed on a nanoscopic scale during high energy ball milling. Whereas magnetite remained almost unchanged, graphite and molybdenum disulphide were transformed to a nanocrystalline and highly disordered structure. The observed increase of the coefficient of friction was attributed to a loss of lubricity of the latter ingredient due to this transformation and subsequent oxidation. - Highlights: • Characterization of microstructural changes induced by high energy ball milling • Assessment of the potential of different characterization methods • Impact of mechanical alloying on tribological performance revealed by tests • Preparation of an artificial third body resembling the one formed during braking.

  1. Effect of high-energy ball milling time on structural and magnetic properties of nanocrystalline cobalt ferrite powders

    NASA Astrophysics Data System (ADS)

    Cedeño-Mattei, Yarilyn; Perales-Pérez, Oscar; Uwakweh, Oswald N. C.

    2013-09-01

    Cobalt ferrite nanocrystals synthesized by conventional and size-controlled coprecipitation methods were treated by high-energy ball milling, HEBM, in order to study the effect of crystal size reduction and/or strain on the resulting magnetic properties. Processed nanocrystals were characterized by X-ray diffraction, Brunauer, Emmett, and Teller surface area analysis, transmission electron microscopy (TEM), and vibrating sample magnetometry. The cobalt ferrite nanocrystals exhibited crystal size reduction from initial values (average crystallite sizes of 12±1 nm and 18±3 nm, respectively) down to 10 nm after HEBM for 10 h. The specific surface area was decreased by milling (from 96.5 to 59.4 m2/g; for the 12 nm cobalt ferrite nanocrystals), due to particles aggregation. TEM analyses corroborated the aggregation of the nanoparticles at such long milling times. The same cobalt ferrite nanocrystals exhibited a rise in coercivity from 394 to 560 Oe after 5 h ball milling which was attributed to the introduction of strain anisotropy, namely point defects, as suggested by the systematic shift of the diffraction peaks towards higher angles. In turn, the magnetic characterization of the starting 18 nm-nanocrystals reported a drop in coercivity from 4506 Oe to 491 Oe that was attributed predominantly to size reduction within the single domain region. A correlation between particle size, cationic distribution, and HEBM processing conditions became evident.

  2. Synthesis of Nano-Size AlN Powders by Carbothermal Reduction from Plasma-Assisted Ball Milling Precursor

    NASA Astrophysics Data System (ADS)

    Liu, Zhijie; Wang, Wenchun; Yang, Dezheng; Wang, Sen; Dai, Leyang

    2016-07-01

    Nano-size aluminum nitride (AlN) powders have been successfully synthesized with a high efficiency method through annealing from milling assisted by discharge plasma (p-milling) alumina (Al2O3) precursors. The characterization of the p-milling Al2O3 powders and the synthesized AlN are investigated. Compared to conventional ball milling (c-milling), it can be found that the precursors by p-milling have a finer grain size with a higher specific surface area, which lead to a faster reaction efficiency and higher conversion to AlN at lower temperatures. The activation energy of p-milling Al2O3 is found to be 371.5 kJ/mol, a value that is much less than the reported value of the unmilled and the conventional milled Al2O3. Meanwhile, the synthesized AlN powders have unique features, such as an irregular lamp-like morphology with uniform particle distribution and fine average particle size. The results are attributed to the unique synergistic effect of p-milling, which is the effect of deformation, fracture, and cold welding of Al2O3 powders resulting from ball milling, that will be enhanced due to the introduction of discharge plasma. supported by National Natural Science Foundation of China (No. 51177008)

  3. Anisotropy induced large exchange bias behavior in ball milled Ni-Co-Mn-Sb alloys

    SciTech Connect

    Nayak, Ajaya K.; Sahoo, Roshnee; Suresh, K. G.; Nigam, A. K.; Chen, X.; Ramanujan, R. V.

    2011-06-06

    We report the effect of decrease in the grain size on the structural, magnetic and exchange bias (EB) behavior in ball milled Ni{sub 50-x}Co{sub x}Mn{sub 38}Sb{sub 12} (x=0 and 5) Heusler alloys. The existence of a wide range of grain sizes in the ball milled samples results in dramatic changes in the structural and magnetic properties. For x=0, a large EB field of 3.2 kOe is observed in the ball milled sample, compared to a value of 245 Oe of the bulk sample. This increase is attributed to the enhanced exchange coupling between the soft and hard magnetic particles.

  4. Structural and magnetic stability of high energy ball milled Co2MnSi

    NASA Astrophysics Data System (ADS)

    Vinesh, A.; Sudheesh, V. D.; Sebastian, Varkey; Lakshmi, N.; Venugopalan, K.

    2015-07-01

    Structural and magnetic properties of ball milled Co2MnSi have been studied and compared with that of ordered bulk sample. The milled sample (with average size determined using the Williamson-Hall method) shows that the chemical ordering for this sample is very stable and is little effected by high energy ball milling. However, the reduction in the saturation magnetic moment of the milled sample shows that there is spin disordering induced on ball milling - attributable to the formation of a magnetically dead layer at the surface of the nano-sized samples. The ordered sample (unmilled) has a saturation moment value of 4.4 μB per formula unit at room temperature and is in agreement with the prediction of Slater Pauling curve. On milling it reduces to ~3 μB per formula unit at room temperature with an accompanying increase in the coercivity, retentivity and squareness factor.

  5. Remediation of oil-contaminated sand by coal agglomeration using ball milling.

    PubMed

    Shin, Yu-Jen; Shen, Yun-Hwei

    2011-10-01

    The mechanical shear force provided by a less energy intensive device (usually operating at 20-200 rpm), a ball mill, was used toperform coal agglomeration and its effects on remediation of a model fuel oil-contaminated sand were evaluated. Important process parameters such as the amount of coal added, milling time, milling speed and the size of milling elements are discussed. The results suggested that highly hydrophobic oil-coal agglomerates, formed by adding suitable amounts of coal into the oil-contaminated sand, could be mechanically liberated from cleaned sand during ball milling and recovered as a surface coating on the steel balls. Over 90% removal of oil from oil-contaminated sand was achieved with 6 wt% of coal addition and an optimum ball milling time of 20 min and speed of 200 rpm. This novel process has considerable potential for cleaning oil-contaminated sands.

  6. Ball milling synthesis of silica nanoparticle from rice husk ash for drug delivery application.

    PubMed

    Salavati-Niasari, Masoud; Javidi, Jaber; Dadkhah, Mahnaz

    2013-07-01

    Silica nanoparticles were synthesized from rice husk ash at room temperature by using high energy planetary ball mill. The milling time and mill rotational speed were varied in four levels. The morphology of the synthesized powders was investigated by the FE-SEM and TEM image as well as XRD patterns. The results have revealed that the nano-sized amorphous silica particles are formed after about 6 h ball milling and they are spherical in shape. The average particle size of the silica powders is found to be around 70 nm which decreases with increasing ball milling time or mill rotational speed. The as-synthesized silica nanoparticles were subsequently employed as drug carrier to investigate in vitro release behavior of Penicillin-G in simulated body fluid. UV-Vis spectroscopy was used to determine the amount of Penicillin-G released from the carrier. Penicillin-G release profile from silica nanoparticles exhibited a delayed release effect. PMID:22931308

  7. Effective high-energy ball milling in air of Fe65Co35 alloys

    NASA Astrophysics Data System (ADS)

    Sirvent, P.; Berganza, E.; Aragón, A. M.; Bollero, A.; Moure, A.; García-Hernández, M.; Marín, P.; Fernández, J. F.; Quesada, A.

    2014-05-01

    Fe65Co35 alloys are technologically relevant, especially in magnetic storage and composite permanent magnets, due to the fact that they present higher saturation magnetization per volume than any other material. Out of the various approaches undertaken for its production, mechanical ball milling remains the most common and efficient method, especially considering the large industrial scale of the applications. With the development of cost-efficient processing in mind, the influence of performing the synthesis of the FeCo alloys in air instead of the standard argon atmosphere is studied. The structural and magnetic characterization, along with the study of the oxygen content of the samples, proves that synthesizing FeCo alloys in air produce materials with nearly identical magnetic performance as their argon-milled counterpart, with the oxidation extent of the materials consisting almost exclusively of the oxide passivating layer located at the surface. In addition, no aging effect was observed in the saturation magnetization up to 6 months. It is concluded that the use of argon atmospheres, desiccators and/or glove boxes may be entirely removed from the process without affecting the magnetic properties.

  8. Phase Transformation and Magnetic Property of Ni-Mn-Ga Powders Prepared by Dry Ball Milling

    NASA Astrophysics Data System (ADS)

    Tian, B.; Chen, F.; Tong, Y. X.; Li, L.; Zheng, Y. F.

    2012-12-01

    This study investigated the phase transformations and magnetic properties of Ni-Mn-Ga alloy powders prepared by dry ball milling in argon atmosphere. The Fe and Cr elements were found to be introduced in the alloy after ball milling, which should result from the severe collision and friction among the particles, balls, and vial. The x-ray diffraction result indicated that the Fe and Cr elements should have alloyed with the Ni-Mn-Ga matrix. The martensitic transformation temperature and Curie temperature of the 800 °C annealed powders decreased by ~33 °C and increased by ~28 °C, respectively, as compared to that of the bulk alloy. The comprehensive effect of the changing of valence electron concentration of the alloy due to the introduction of Fe and Cr and the grain refinement of the alloy caused by ball milling should be responsible for the reduction of martensitic transformation temperature. The saturation magnetization of the 800 °C annealed powders became larger (~5 emu/g) than that of the bulk alloy. The enhancement of magnetic properties, such as the increase of Curie temperature and enhancement of saturation magnetization of the annealed Ni-Mn-Ga powders, should be attributed to the increase of magnetic exchange caused by introduction of Fe in the alloy. The contaminations of Fe and Cr elements emerging from the dry ball milling process changed the phase transformation and magnetic properties of the Ni-Mn-Ga alloy. Therefore, the dry ball milling process is difficult to control the contamination from the milling medium and not suitable to prepare Ni-Mn-Ga powders. On the contrary, the wet ball milling method under liquid medium should be a better method to prevent the contamination and fabricate pure Ni-Mn-Ga ferromagnetic shape memory alloy powders.

  9. Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Xue, Yuhua; Chen, Hao; Qu, Jia; Dai, Liming

    2015-12-01

    N-doped graphene was prepared by ball milling of graphite with melamine. It was found that ball-milling reduced the size of graphite particles from 30 to 1 μm and facilitated the exfoliation of the resultant small particles into few-layer N-doped graphene nanosheets under ultrasonication. The as-prepared N-doped graphene nanoplatelets (NGnPs) exhibited a nitrogen content as high as 11.4 at.%, making them attractive as efficient electrode materials in supercapacitors for energy storage and as highly-active metal-free catalysts for oxygen reduction in fuel cells for energy conversion.

  10. Factors influencing the ball milling of Si3N4 in water

    NASA Technical Reports Server (NTRS)

    Freedman, M. R.; Kiser, J. D.; Herbell, T. P.

    1985-01-01

    A statistical study of the ball milling of Si3N4 powder in Si3N4 hardware was undertaken to understand how the resulting increase in specific surface area is related to solids loading and mill speed. An attempt was made to optimize milling conditions. The degree of communication was more dependent upon solids loading than mill speed. A practical grinding limit between 0.5 and 0.75 microns was achieved in 144 hr independent of solids loading. Ball mill wear and media wear were independent of both solids loading and mill speed.

  11. Structural and microstructural changes in monoclinic ZrO{sub 2} during the ball-milling with stainless steel assembly

    SciTech Connect

    Stefanic, G. . E-mail: stefanic@irb.hr; Music, S.; Gajovic, A.

    2006-04-13

    High-energy ball-milling of monoclinic ZrO{sub 2} was performed in air using the planetary ball mill with a stainless steel milling assembly. Structural and microstructural changes during the ball-milling were monitored using X-ray powder diffraction, Raman spectroscopy, Moessbauer spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectrometry. The results of line broadening analysis indicated a decrease in the crystallite size and an increase in the microstrains with the ball-milling time increased up to {approx}150 min. The results of quantitative phase analysis indicated the presence of a very small amount of tetragonal ZrO{sub 2} phase in this early stage of ball-milling. The onset of m-ZrO{sub 2} {sup {yields}} t-ZrO{sub 2} transition occurred between 10 and 15 h of ball-milling, which resulted in a complete transition after 20 h of ball-milling. Further ball-milling caused a decrease of the t-ZrO{sub 2} lattice parameters followed by a probable transition into c-ZrO{sub 2}. It was concluded that the stabilization of t- and c-ZrO{sub 2} polymorphs at RT can be attributed to the incorporation of aliovalent cations (Fe{sup 2+}, Fe{sup 3+} and Cr{sup 3+}) introduced into the sample due to the wear and oxidation of the milling media.

  12. Two step meso-acidophilic bioleaching of chalcopyrite containing ball mill spillage and removal of the surface passivation layer.

    PubMed

    Panda, S; Parhi, P K; Nayak, B D; Pradhan, N; Mohapatra, U B; Sukla, L B

    2013-02-01

    Meso-acidophilic bacterial leaching of ball mill spillage (containing chalcopyrite >80%) was carried out in an innovative two-step bioleaching method. The major drawback of meso-acidophilic bioleaching limiting industrial application is the passivation phenomenon over the ore surfaces in iron-sulfur rich environments. In the present study, we present a novel wash solution that efficiently removed the passivation layer. FTIR characterization of the bioleached sample indicated that the residues could be further leached to recover extra copper after wash solution application. XRD study indicated accumulation of sulfates (SO(4)(-)) of Na, K, Fe and oxy hydroxides of iron [FeO(OH)] in the form of jarosite outlining the passivation layer. SEM, FESEM-EDS studies indicated severe corrosion effects of the wash solution on the passivation layer. Two step bioleaching of the ore sample yielded 32.6% copper in 68days in the first interlude and post wash solution application yielded 10.8% additional copper.

  13. Remarkable performance improvement of inexpensive ball-milled Si nanoparticles by carbon-coating for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kasukabe, Takatoshi; Nishihara, Hirotomo; Iwamura, Shinichiroh; Kyotani, Takashi

    2016-07-01

    Si nanoparticles prepared by ball-milling (BM-Si) are expected as practical negative-electrode materials for lithium-ion batteries, but their performance is much lower than those of more expensive Si nanomaterials, such as chemical-vapor-deposition derived Si nanoparticles (CVD-Si) having a tight network structure. It is found that carbon-coating of aggregations of BM-Si forms a quasi-network structure, thereby making the performance comparable to that of CVD-Si under capacity restriction (to 1500 mAh g-1). In this case, the structural transition of BM-Si during charge/discharge cycling is characterized by the formation of a specific 'wrinkled structure', which is very similar to that formed in CVD-Si.

  14. Electric modulus formalism and electrical transport property of ball mill synthesized nanocrystalline Mn doped ZrO2 solid solution

    NASA Astrophysics Data System (ADS)

    Saha, S.; Nandy, A.; Meikap, A. K.; Pradhan, S. K.

    2015-12-01

    Here we report the formation of Mn doped nanocrystalline ZrO2 solid solution synthesized by high energy ball-milling method and the transport mechanism in the temperature range 298 Kcharacterization of different phases and relative phase abundances using XRD patterns. The electrical study shows the dc conductivity enhances as the doping percentage increases. Complex electric modulus study shows low frequency region approaches to ideal Debye type behaviour while the high frequency side deviates. Alternating current conductivity is found to follow the power law σ'(f,T)∝fsTn. A transformation from small polaron hopping to correlated barrier hopping has been observed from the temperature dependence frequency exponent study. The contribution of grain boundary resistance is found to be dominating over the grain resistance in the ac conduction process.

  15. Investigation of griseofulvin and hydroxypropylmethyl cellulose acetate succinate miscibility in ball milled solid dispersions.

    PubMed

    Al-Obaidi, Hisham; Lawrence, M Jayne; Al-Saden, Noor; Ke, Peng

    2013-02-25

    Solid dispersions of varying weight ratios compositions of the nonionic drug, griseofulvin and the hydrophilic, anionic polymer, hydroxylpropylmethyl cellulose acetate succinate, have been prepared by ball milling and the resulting samples characterized using a combination of Fourier transform infra-red spectroscopy, X-ray powder diffraction and differential scanning calorimetry. The results suggest that griseofulvin forms hydrogen bonds with the hydroxylpropylmethyl cellulose acetate succinate polymer when prepared in the form of a solid dispersion but not when prepared in a physical mixture of the same composition. As anticipated, the actual measured glass transition temperature of the solid dispersions displayed a linear relationship between that predicted using the Gordon-Taylor and Fox equations assuming ideal mixing, but interestingly only at griseofulvin contents less than 50 wt%. At griseofulvin concentrations greater than this, the measured glass transition temperature of the solid dispersions was almost constant. Furthermore, the crystalline content of the solid dispersions, as determined by differential scanning calorimetry and X-ray powder diffraction followed a similar trend in that the crystalline content significantly decreased at ratios less than 50 wt% of griseofulvin. When the physical mixtures of griseofulvin and the hydroxylpropylmethyl cellulose acetate succinate polymer were analyzed using the Flory-Huggins model, a negative free energy of mixing with an interaction parameter of -0.23 were obtained. Taken together these results suggest that anionic hydrophilic hydroxylpropylmethyl cellulose acetate succinate polymer is a good solvent for crystalline nonionic griseofulvin with the solubility of griseofulvin in the solid dispersion being was estimated to be within the range 40-50 wt%. Below this solubility limit, the amorphous drug exists as amorphous glassy solution while above these values the system is supersaturated and glassy suspension and

  16. Magnetic property and microstructure of single crystalline Nd2Fe14B ultrafine particles ball milled from HDDR powders

    NASA Astrophysics Data System (ADS)

    Li, W. F.; Hu, X. C.; Cui, B. Z.; Yang, J. B.; Han, J. Z.; Hadjipanayis, G. C.

    2013-08-01

    In this work we report the microstructure and magnetic property of single crystalline Nd2Fe14B ultrafine particles ball milled from HDDR Nd-Fe-B alloys. The average size of the particles is 283 nm, and TEM observation reveals that these particles are single crystalline. The coercivity of these particles is 6.0 kOe, which is much higher than that of the particles ball milled from sintered and hot pressed Nd-Fe-B magnets. Micromagnetic analysis shows that the coercivity degradation is caused by surface damage during ball milling.

  17. Magnetic properties of ball-milled SrFe12O19 particles consolidated by Spark-Plasma Sintering.

    PubMed

    Stingaciu, Marian; Topole, Martin; McGuiness, Paul; Christensen, Mogens

    2015-09-15

    The room-temperature magnetic properties of ball-milled strontium hexaferrite particles consolidated by spark-plasma sintering are strongly influenced by the milling time. Scanning electron microscopy revealed the ball-milled SrFe12O19 particles to have sizes varying over several hundred nanometers. X-Ray powder-diffraction studies performed on the ball-milled particles before sintering clearly demonstrate the occurrence of a pronounced amorphization process. During sintering at 950 °C, re-crystallization takes place, even for short sintering times of only 2 minutes and transformation of the amorphous phase into a secondary phase is unavoidable. The concentration of this secondary phase increases with increasing ball-milling time. The remanence and maximum magnetization values at 1T are weakly influenced, while the coercivity drops dramatically from 2340 Oe to 1100 Oe for the consolidated sample containing the largest amount of secondary phase.

  18. Magnetic properties of ball-milled SrFe12O19 particles consolidated by Spark-Plasma Sintering.

    PubMed

    Stingaciu, Marian; Topole, Martin; McGuiness, Paul; Christensen, Mogens

    2015-01-01

    The room-temperature magnetic properties of ball-milled strontium hexaferrite particles consolidated by spark-plasma sintering are strongly influenced by the milling time. Scanning electron microscopy revealed the ball-milled SrFe12O19 particles to have sizes varying over several hundred nanometers. X-Ray powder-diffraction studies performed on the ball-milled particles before sintering clearly demonstrate the occurrence of a pronounced amorphization process. During sintering at 950 °C, re-crystallization takes place, even for short sintering times of only 2 minutes and transformation of the amorphous phase into a secondary phase is unavoidable. The concentration of this secondary phase increases with increasing ball-milling time. The remanence and maximum magnetization values at 1T are weakly influenced, while the coercivity drops dramatically from 2340 Oe to 1100 Oe for the consolidated sample containing the largest amount of secondary phase. PMID:26369360

  19. Magnetic properties of ball-milled SrFe12O19 particles consolidated by Spark-Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Stingaciu, Marian; Topole, Martin; McGuiness, Paul; Christensen, Mogens

    2015-09-01

    The room-temperature magnetic properties of ball-milled strontium hexaferrite particles consolidated by spark-plasma sintering are strongly influenced by the milling time. Scanning electron microscopy revealed the ball-milled SrFe12O19 particles to have sizes varying over several hundred nanometers. X-Ray powder-diffraction studies performed on the ball-milled particles before sintering clearly demonstrate the occurrence of a pronounced amorphization process. During sintering at 950 oC, re-crystallization takes place, even for short sintering times of only 2 minutes and transformation of the amorphous phase into a secondary phase is unavoidable. The concentration of this secondary phase increases with increasing ball-milling time. The remanence and maximum magnetization values at 1T are weakly influenced, while the coercivity drops dramatically from 2340 Oe to 1100 Oe for the consolidated sample containing the largest amount of secondary phase.

  20. Magnetic properties of ball-milled SrFe12O19 particles consolidated by Spark-Plasma Sintering

    PubMed Central

    Stingaciu, Marian; Topole, Martin; McGuiness, Paul; Christensen, Mogens

    2015-01-01

    The room-temperature magnetic properties of ball-milled strontium hexaferrite particles consolidated by spark-plasma sintering are strongly influenced by the milling time. Scanning electron microscopy revealed the ball-milled SrFe12O19 particles to have sizes varying over several hundred nanometers. X-Ray powder-diffraction studies performed on the ball-milled particles before sintering clearly demonstrate the occurrence of a pronounced amorphization process. During sintering at 950 oC, re-crystallization takes place, even for short sintering times of only 2 minutes and transformation of the amorphous phase into a secondary phase is unavoidable. The concentration of this secondary phase increases with increasing ball-milling time. The remanence and maximum magnetization values at 1T are weakly influenced, while the coercivity drops dramatically from 2340 Oe to 1100 Oe for the consolidated sample containing the largest amount of secondary phase. PMID:26369360

  1. Comparative Study by MS and XRD of Fe50Al50 Alloys Produced by Mechanical Alloying, Using Different Ball Mills

    NASA Astrophysics Data System (ADS)

    Rojas Martínez, Y.; Pérez Alcázar, G. A.; Bustos Rodríguez, H.; Oyola Lozano, D.

    2005-02-01

    In this work we report a comparative study of the magnetic and structural properties of Fe50Al50 alloys produced by mechanical alloying using two different planetary ball mills with the same ball mass to powder mass relation. The Fe50Al50 sample milled during 48 h using the Fritsch planetary ball mill pulverisette 5 and balls of 20 mm, presents only a bcc alloy phase with a majority of paramagnetic sites, whereas that sample milled during the same time using the Fritsch planetary ball mill pulverisette 7 with balls of 15 mm, presents a bcc alloy phase with paramagnetic site (doublet) and a majority of ferromagnetic sites which include pure Fe. However for 72 h of milling this sample presents a bcc paramagnetic phase, very similar to that prepared with the first system during 48 h. These results show that the conditions used in the first ball mill equipment make more efficient the milling process.

  2. Formation of budesonide/α-lactose glass solutions by ball-milling

    NASA Astrophysics Data System (ADS)

    Dudognon, E.; Willart, J. F.; Caron, V.; Capet, F.; Larsson, T.; Descamps, M.

    2006-04-01

    The possibility to obtain amorphous budesonide stabilised by blending with an excipient characterised by a higher glass transition temperature, namely α-lactose, has been studied. We carried out the mixing of the two compounds at room temperature by ball-milling. The four obtained blends (containing, respectively, 10, 30, 50 and 70% w of budesonide) are X-ray amorphous and exhibit a single glass transition located between the ones of pure milled crystalline compounds. This revealed that the two amorphous phases are miscible whatever the composition and sufficiently mixed to relax as a whole. Ball-milling thus appears as a powerful tool to form amorphous molecular alloys with enhanced stability properties.

  3. Excess lithium storage in LiFePO4-Carbon interface by ball-milling

    NASA Astrophysics Data System (ADS)

    Guo, Hua; Song, Xiaohe; Zheng, Jiaxin; Pan, Feng

    2016-07-01

    As one of the most popular cathode materials for high power lithium ion batteries (LIBs) of the electrical-vehicle (EV), lithium iron phosphate (LiFePO4 (LFP)) is limited to its relatively lower theoretical specific capacity of 170mAh g‑1. To break the limits and further improve the capacity of LFP is promising but challenging. In this study, the ball-milling method is applied to the mixture of LFP and carbon, and the effective capacity larger than the theoretical one by 30mAh g‑1 is achieved. It is demonstrated that ball-milling leads to the LFP-Carbon interface to store the excess Li-ions.

  4. Electromagnetic properties of Co flaky particles prepared via ball-milling method

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Jiang, Jian-Tang; Yuan, Yong; Gong, Yuan-Xun; Zhen, Liang

    2016-10-01

    Flaky cobalt particles with different aspect ratio were produced with ball-milling method. The phase structure and morphology of the particles were identified by XRD analysis and SEM observation. The static magnetic and electromagnetic properties of the particles were measured and effects of shape, microstructure and filling fraction were investigated. Phase transition from fcc lattice to hcp lattice occur due to the drive of ball-milling is responsible for the largely increased coercivity. Particles with high aspect ratio are found to possess high permittivity and permeability, compelling the frequency of absorption peak to shift to low frequency. Coatings using cobalt particles milled for 20 h as fillers present a RL peak of -33 dB at 8 GHz at the thickness of 2.5 mm together with a broad effective absorbing (RL below -10 dB) bandwidth covering 6-10 GHz.

  5. Microstructure and martensitic transformation in Si-coated TiNi powders prepared by ball milling

    SciTech Connect

    Kim, Jae-hyun; Cho, Gyu-bong; Im, Yeon-min; Chun, Byong-sun; Kim, Yeon-wook; Nam, Tae-hyun

    2013-12-15

    Graphical abstract: - Highlights: • Amorphous Si-coated TiNi powders were prepared successfully by ball milling. • Ti{sub 4}Ni{sub 4}Si{sub 7} was formed at the interface between Si and TiNi after annealing. • Si-coated Ti–Ni powders displayed the R phase after annealing. - Abstract: Si was coated on the surface of Ti–49Ni (at%) alloy powders by ball milling in order to improve the electrochemical properties of the Si electrodes of secondary Li ion batteries and then the microstructure and martensitic transformation behavior were investigated by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Ti–Ni powders coated with Si were fabricated successfully by ball milling. As-milled powders consisted of highly deformed Ti–Ni powders with the B2 phase and amorphous Si layers. The thickness of the Si layer coated on the surface of the Ti–Ni powders increased from 3–5 μm to 10–15 μm by extending the milling time from 3 h to 48 h. However, severe contamination from the grinding media, ZrO{sub 2} occurred when the ball milling time was as long as 48 h. By heating as-milled powders to various temperatures in the range of 673–873 K, the highly deformed Ti–Ni powders were recovered and Ti{sub 4}Ni{sub 4}Si{sub 7} was formed. Two-stage B2–R–B19′ transformation occurred when as-milled Si-coated Ti–49Ni alloy powders were heated to temperatures below 873 K, above this temperature one-stage B2–B19′ transformation occurred.

  6. High energy ball milling study of Fe{sub 2}MnSn Heusler alloy

    SciTech Connect

    Jain, Vivek Kumar Lakshmi, N.; Jain, Vishal; Sijo, A. K.; Venugopalan, K.

    2015-06-24

    The structural and magnetic properties of as-melted and high energy ball milled alloy samples have been studied by X-ray diffraction, DC magnetization and electronic structure calculations by means of density functional theory. The observed properties are compared to that of the bulk sample. There is a very good enhancement of saturation magnetization and coercivity in the nano-sized samples as compared to bulk which is explained in terms of structural disordering and size effect.

  7. High energy ball milling study of Fe2MnSn Heusler alloy

    NASA Astrophysics Data System (ADS)

    Jain, Vivek Kumar; Lakshmi, N.; Jain, Vishal; Sijo A., K.; Venugopalan, K.

    2015-06-01

    The structural and magnetic properties of as-melted and high energy ball milled alloy samples have been studied by X-ray diffraction, DC magnetization and electronic structure calculations by means of density functional theory. The observed properties are compared to that of the bulk sample. There is a very good enhancement of saturation magnetization and coercivity in the nano-sized samples as compared to bulk which is explained in terms of structural disordering and size effect.

  8. Dielectric properties of vanadium doped barium titanate synthesized via high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Dulian, Piotr; Bąk, Wojciech; Wieczorek-Ciurowa, Krystyna; Kajtoch, Czesław

    2014-06-01

    The study shows the advisability of using a mechanochemical synthesis method, based on a high-energy planetary ball milling, to a modification of barium titanate by a vanadium doping. This method improves useful properties of BaTi0:95V0:05O3 as a capacitor material. It has a high value of electric permittivity ɛ' in the wide range of temperature and low dielectric losses ɛ″ as well as a low electrical conductivity.

  9. Magnetoresistivity and microstructure of YBa2Cu3Oy prepared using planetary ball milling

    NASA Astrophysics Data System (ADS)

    Hamrita, A.; Ben Azzouz, F.; Madani, A.; Ben Salem, M.

    2012-01-01

    We have studied the microstructure and the magnetoresistivity of polycrystalline YBa2Cu3Oy (YBCO or Y-123 for brevity) embedded with nanoparticles of Y-deficient YBCO, generated by the planetary ball milling technique. Bulk samples were synthesized from a precursor YBCO powder, which was prepared from commercial high purity Y2O3, Ba2CO3 and CuO via a one-step annealing process in air at 950 °C. After planetary ball milling of the precursor, the powder was uniaxially pressed and subsequently annealed at 950 °C in air. Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM), microstructure investigation by transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDXS) were carried out. TEM analyses show that nanoparticles of Y-deficient YBCO, generated by ball milling, are embedded in the superconducting matrix. Electrical resistance as a function of temperature, ρ(T), revealed that the zero resistance temperature, Tco, is 84.5 and 90 K for the milled and unmilled samples respectively. The milled ceramics exhibit a large magnetoresistance in weak magnetic fields at liquid nitrogen temperature. This attractive effect is of high significance as it makes these materials promising candidates for practical application in magnetic field sensor devices.

  10. Microstructure and Physical Properties of Tb2TiO5 Neutron Absorber Synthesized by Ball Milling and Sintering

    NASA Astrophysics Data System (ADS)

    Huang, Jinghua; Ran, Guang; Liu, Tengjiao; Shen, Qiang; Li, Ning

    2016-10-01

    Tb2TiO5 neutron absorber was synthesized by ball milling and sintering. Microstructure character of ball-milled Tb4O7-17.605%TiO2 (mass fraction, %) powders and sintered bulks was analyzed using XRD, SEM and TEM. The microhardness, coefficient of thermal expansion and thermal conductivity of sintered bulks were measured. The experiment results showed that the nanocrystalline solid solution was obtained during ball milling. After 96 h of ball milling, TiO2 was completely solved in Tb4O7 and the crystal size of Tb4O7 was up to 37 nm. The bulk materials prepared by cold isostatic pressing were sintered at 1300 °C. Tb2TiO5 bulks with an orthorhombic structure were obtained. The microhardness of sintered bulks, as well as the thermal conductivity, increased firstly with increasing ball milling time and then decreased. The coefficient of thermal expansion decreased initially and then increased with increasing ball milling time. For the sintered bulk with powder milled for 48 h, the highest values of both microhardness and thermal conductivity were observed, whereas the lowest coefficient of thermal expansion was exhibited. In addition, with increasing testing temperature, the thermal conductivity of sintered bulks initially fell and then rebounded while an opposite trend was found in the coefficient of thermal expansion.

  11. Microstructure and Physical Properties of Tb2TiO5 Neutron Absorber Synthesized by Ball Milling and Sintering

    NASA Astrophysics Data System (ADS)

    Huang, Jinghua; Ran, Guang; Liu, Tengjiao; Shen, Qiang; Li, Ning

    2016-08-01

    Tb2TiO5 neutron absorber was synthesized by ball milling and sintering. Microstructure character of ball-milled Tb4O7-17.605%TiO2 (mass fraction, %) powders and sintered bulks was analyzed using XRD, SEM and TEM. The microhardness, coefficient of thermal expansion and thermal conductivity of sintered bulks were measured. The experiment results showed that the nanocrystalline solid solution was obtained during ball milling. After 96 h of ball milling, TiO2 was completely solved in Tb4O7 and the crystal size of Tb4O7 was up to 37 nm. The bulk materials prepared by cold isostatic pressing were sintered at 1300 °C. Tb2TiO5 bulks with an orthorhombic structure were obtained. The microhardness of sintered bulks, as well as the thermal conductivity, increased firstly with increasing ball milling time and then decreased. The coefficient of thermal expansion decreased initially and then increased with increasing ball milling time. For the sintered bulk with powder milled for 48 h, the highest values of both microhardness and thermal conductivity were observed, whereas the lowest coefficient of thermal expansion was exhibited. In addition, with increasing testing temperature, the thermal conductivity of sintered bulks initially fell and then rebounded while an opposite trend was found in the coefficient of thermal expansion.

  12. Ball milling: a green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Xing, Tan; Sunarso, Jaka; Yang, Wenrong; Yin, Yongbai; Glushenkov, Alexey M.; Li, Lu Hua; Howlett, Patrick C.; Chen, Ying

    2013-08-01

    Technological and scientific challenges coupled with environmental considerations have attracted a search for robust, green and energy-efficient synthesis and processing routes for advanced functional nanomaterials. In this article, we demonstrate a high-energy ball milling technique for large-scale synthesis of nitrogen doped carbon nanoparticles, which can be used as an electro-catalyst for oxygen reduction reactions after a structural refinement with controlled thermal annealing. The resulting carbon nanoparticles exhibited competitive catalytic activity (5.2 mA cm-2 kinetic-limiting current density compared with 7.6 mA cm-2 on Pt/C reference) and excellent methanol tolerance compared to a commercial Pt/C catalyst. The proposed synthesis route by ball milling and annealing is an effective process for carbon nanoparticle production and efficient nitrogen doping, providing a large-scale production method for the development of highly efficient and practical electrocatalysts.Technological and scientific challenges coupled with environmental considerations have attracted a search for robust, green and energy-efficient synthesis and processing routes for advanced functional nanomaterials. In this article, we demonstrate a high-energy ball milling technique for large-scale synthesis of nitrogen doped carbon nanoparticles, which can be used as an electro-catalyst for oxygen reduction reactions after a structural refinement with controlled thermal annealing. The resulting carbon nanoparticles exhibited competitive catalytic activity (5.2 mA cm-2 kinetic-limiting current density compared with 7.6 mA cm-2 on Pt/C reference) and excellent methanol tolerance compared to a commercial Pt/C catalyst. The proposed synthesis route by ball milling and annealing is an effective process for carbon nanoparticle production and efficient nitrogen doping, providing a large-scale production method for the development of highly efficient and practical electrocatalysts. Electronic

  13. Effect of adding ball-milled achenes to must on bioactive compounds and antioxidant activities in fruit wine.

    PubMed

    Lee, Pao-Ju; Chen, Shaun

    2016-03-01

    This study reports the utilization of ball-milled achenes in fermentation to increase the levels of ellagic acid and total phenol content, as well as to enhance the antioxidant capacity of strawberry wine. Achenes were micronized using ball-milling process, and then added to strawberry must prior to fermentation. The effects of the addition of ball-milled achenes on the ellagic acid and total phenol content in strawberry wine were determined, and the free radical scavenging and iron chelation activities were also analyzed. Quality attributes and acceptance were studied in comparison with a leading commercial strawberry wine for market application. The particle sizes of achenes were reduced from 1.1 mm to 400 nm after 30 min of ball-milling, and this led to an increase in the amount of extracted ellagic acid from 550.72 to 915.24 μg/g. The addition of ball-milled achenes to must led to a 19.72 % and 52.37 % increase in ellagic acid and total phenol content in strawberry wine, respectively. The increase in bioactive compounds resulted in increases of 54.09 %, 51.49 % and 56.97 % in ABTS and DPPH radical scavenging, and ferrous ion chelating activities, respectively. Although the commercial strawberry wine showed greater aroma intensity, no significant differences in overall quality and acceptance among the conventional process, added ball-milled achenes and the leading commercial strawberry wines were found. This study demonstrates that supplementation of ball-milled achenes in fermentation can be beneficial in increasing the levels of bioactive compounds and antioxidative capacity, indicating a good market potential. PMID:27570280

  14. Size effect on the melting temperature depression of Al12Mg17 complex metallic alloy nanoparticles prepared by planetary ball milling

    NASA Astrophysics Data System (ADS)

    Zolriasatein, Ashkan; Shokuhfar, Ali

    2015-11-01

    This research investigates the synthesis and size-dependent melting point depression of complex metallic alloy (CMA) nanoparticles. Al12Mg17 which belongs to this new category of intermetallic materials was initially produced as pre-alloyed ingot, then homogenized to achieve single phase compound and crushed into small size powder and finally, mechanically milled in a planetary ball mill to synthesize nanoparticles. Phase and microstructural characterizations of the as-crushed and milled powders were performed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Effects of the mechanical milling on thermal behavior of the Al12Mg17 nanoparticles in comparison with as-cast Al12Mg17 ingot has been investigated by differential scanning calorimetry (DSC) measurement. It was found that an average particle size of 24 nm with crystallite size of 16 nm was achieved after 20 h of ball milling process. The size- dependent melting point depression of the Al12Mg17 nanoparticles has been experimentally observed and also comparison of the obtained results with theoretical models was carried out.

  15. Synthesis of Fe/SiO{sub 2} and iron oxides/SiO{sub 2} nanocomposites by long-term ball milling

    SciTech Connect

    Pozo López, G.; Condó, A.M.; Urreta, S.E.; Silvetti, S.P.

    2014-01-01

    Graphical abstract: - Highlights: • Iron–iron oxides/silica composites are synthesized by long term dry ball-milling. • Bcc iron and α-quartz powders are used as precursors. • Surface effects enhance coercivity in iron/silica nanocomposites. • In spite of their small size, about 10 nm, iron particles are ferromagnetic. • Ferro and superparamagnetic particles are found in maghemite/silica composites. - Abstract: Iron oxide/SiO{sub 2} nanocomposites are synthesized by dry ball-milling a mixture of bcc Fe and α-quartz powders for prolonged times. A sequence of nanocomposites is obtained, with small magnetic particles dispersed in a non magnetic, amorphous matrix. The powders are characterized by X-ray diffraction and transmission electron microscopy. The magnetic hysteresis properties are investigated in the range 50–300 K. After 120 h milling, deformed, non-spherical, α-Fe nanocrystallites of about 10 nm in size and very few small (<10 nm) maghemite particles are found. At room temperature, iron particles are ferromagnetic and a large effective magnetic anisotropy is estimated, which is mainly attributed to surface effects. Between 160 and 200 h milling, maghemite nanoparticles are observed while after 220 h grinding, hematite phase appears; after 340 h milling, the sample consists of ferromagnetic hematite particles with a broad size distribution (5–50 nm) embedded in an amorphous matrix.

  16. A study of the mechanism of microwave-assisted ball milling preparing ZnFe2O4

    NASA Astrophysics Data System (ADS)

    Zhang, Yingzhe; Wu, Yujiao; Qin, Qingdong; Wang, Fuchun; Chen, Ding

    2016-07-01

    In this paper, well dispersed ZnFe2O4 nano-particles with high magnetization saturation of 82.23 emu/g were first synthesized by microwave assisted ball milling and then the influences of pre-treatments and microwave powers to the progress were studied. It was found that under the both function of crack effect induced by ball milling and rotary motion induced by microwave the synthesized ferrtie nano-particles were well dispersed that is much different from the powders synthesized by normal high energy ball milling. The pre-treatment of ball milling can only enhance the reaction rate in the first several hours but the pre-irradiation of microwave can enhance the hole reaction rate. Further more, it was also been found that with increasing the microwave power, the more raw materials will converted into zinc ferrite in the first 5 h. 5 h latter the microwave power of 720 W is high enough for the coupling effect of microwave and ball milling with stirrer rotation speed of 256 rpm.

  17. Electrochemical properties of the TiO2(B) powders ball mill treated for lithium-ion battery application

    PubMed Central

    2013-01-01

    Background Belt or wire shaped TiO2(B) particles were synthesized for lithium ion battery application by a hydrothermal and heat treatment process. In order to facilitate TiO2(B)/C composites fabrication, the synthesized TiO2(B) particles were crushed into smaller sizes by ball milling. Results Ball mill treated TiO2(B) particles of less than 1.0 μm with a fraction of anatase phase, compared to as-synthesized TiO2(B) particles with about 24 μm in average particle size, showed a significant improvement in the electrochemical properties. They showed a much improved stability in the charge–discharge cycles and irreversibility. They maintained about 98% of the initial capacity during 50 cycles while as-synthesized sample before ball mill treatment showed a gradual decrease in the capacity with the cycles. The irreversibility of 12.4% of as-synthesized sample was also greatly improved to 7% after ball milling treatment. Conclusions Our results indicate ball mill treatment can be an economical way to improve electrochemical properties of TiO2(B) anode materials for lithium ion battery application. PMID:24196343

  18. Energy efficiency of cement finish grinding in a dry batch ball mill

    SciTech Connect

    Touil, D.; Belaadi, S.; Frances, C. . E-mail: Christine.Frances@ensiacet.fr

    2006-03-15

    Dry grinding experiments on cement clinker were carried out using a laboratory batch ball mill equipped with torque measurement. The specific energy was found to be dependent on operating parameters and clinker environment. Additional compounds such as gypsum and pozzolanic tuff improve energy efficiency. The optimal parameters allowing maximising the energy efficiency factor were determined. Energy efficiency factors were obtained both on the crude material (size minus 2.8 mm) and on a sieved fraction (1-0.71 mm). They demonstrate that a low initial rate of breakage implies higher energy efficiency. On the contrary, conditions ensuring an initial maximal rate of breakage lead to an increase of the energy consumption.

  19. Parametric evaluation of ball milling of SiC in water

    NASA Technical Reports Server (NTRS)

    Kiser, J. D.; Herbell, T. P.; Freedman, M. R.

    1985-01-01

    A statistically designed experiment was conducted to determine optimum conditions for ball milling alpha-SiC in water. The influence of pH adjustment, volume percent solids loading, and mill rotational speed on grinding effectiveness was examined. An equation defining the effect of those milling variables on specific surface area was obtained. The volume percent solids loading of the slurry had the greatest influence on the grinding effectiveness in terms of increase in specific surface area. As grinding effectiveness improved, mill and media wear also increased. Contamination was minimized by use of sintered alpha-SiC milling hardware.

  20. Ball Milling Assisted Solvent and Catalyst Free Synthesis of Benzimidazoles and Their Derivatives.

    PubMed

    El-Sayed, Taghreed H; Aboelnaga, Asmaa; Hagar, Mohamed

    2016-01-01

    Benzoic acid and o-phenylenediamine efficiently reacted under the green solvent-free Ball Milling method. Several reaction parameters were investigated such as rotation frequency; milling balls weight and milling time. The optimum reaction condition was milling with 56.6 g weight of balls at 20 Hz frequency for one hour milling time. The study was extended for synthesis of a series of benzimidazol-2-one or benzimidazol-2-thione using different aldehydes; carboxylic acids; urea; thiourea or ammonium thiocyanate with o-phenylenediamine. Moreover; the alkylation of benzimidazolone or benzimidazolthione using ethyl chloroacetate was also studied. PMID:27563861

  1. Strong textured SmCo5 nanoflakes with ultrahigh coercivity prepared by multistep (three steps) surfactant-assisted ball milling

    NASA Astrophysics Data System (ADS)

    Zuo, Wen-Liang; Zhao, Xin; Xiong, Jie-Fu; Zhang, Ming; Zhao, Tong-Yun; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2015-08-01

    The high coercivity of 26.2 kOe for SmCo5 nanoflakes are obtained by multistep (three steps) surfactant-assisted ball milling. The magnetic properties, phase structure and morphology are studied by VSM, XRD and SEM, respectively. The results demonstrate that the three step ball-milling can keep more complete crystallinity (relatively less defects) during the process of milling compared with one step high energy ball-milling, which enhances the texture degree and coercivity. In addition, the mechanism of coercivity are also studied by the temperature dependence of demagnetization curves for aligned SmCo5 nanoflakes/resin composite, the result indicates that the magnetization reversal could be controlled by co-existed mechanisms of pinning and nucleation.

  2. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill

    NASA Astrophysics Data System (ADS)

    Cai, Huimei; Xu, Lingyun; Chen, Guijie; Peng, Chuanyi; Ke, Fei; Liu, Zhengquan; Li, Daxiang; Zhang, Zhengzhu; Wan, Xiaochun

    2016-07-01

    A low-cost and highly efficient biosorbent was prepared by loading zirconium(IV) onto ball-milled, ultrafine tea powder (UTP-Zr) for removal of fluoride from drinking water. To evaluate the fluoride adsorption capacity of UTP-Zr over a wide range of conditions, the biosorbent dosage, contact time, initial pH, initial fluoride concentration and presence of other ions were varied. UTP-Zr performed well over the considerably wide pH range of 3-10. The residual concentration of Zr in the treated water was below the limit of detection (0.01 mg/L). Fluoride adsorption by the UTP-Zr biosorbent followed the Langmuir model, with a maximum adsorption capacity of 12.43 mgF/g at room temperature. The fluoride adsorption kinetics fit the pseudo-second-order kinetic model. The synthesized biosorbent was characterized by BET, SEM, EDS, XRD and XPS to reveal how UTP-Zr interacts with fluoride. Results from this study demonstrated that UTP-based biosorbents will be useful and safe for the removal of fluoride from drinking water.

  3. The effect of oxygen on ball milling of a near-equiatomic FeV sigma phase

    SciTech Connect

    Costa, B. F. O.; Le Caeer, G.; Malaman, B.

    2008-10-15

    A coarse-grained near-equiatomic tetragonal sigma phase Fe{sub 48}V{sub 52} is milled in argon in a vibratory mill with a small steady air supply. The oxygen content increases regularly at a rate of about 0.25 at. %/h. Besides a classical short step, during which the sigma phase transforms into an alpha phase, two main steps occur. During the first step, from {approx}40 to {approx}140 h of milling, the bcc alpha phase is enriched in iron and heterogeneous because of a preferential oxidation of vanadium atoms. The bcc phase is partially amorphized as it is when milling in the absence of oxygen and nanocrystalline vanadium oxides do form. The second step is characterized by the coarsening of vanadium oxide particles and by the formation of ternary ferrous oxides. The results are discussed in the light of a vacancy mechanism proposed recently to account for the high stability of oxide nanoclusters in oxide dispersion strengthened Fe-based alloys processed by ball milling.

  4. Ball-milled solid dispersions of BCS Class IV drugs: Impact on the dissolution rate and intestinal permeability of acyclovir.

    PubMed

    Nart, Viviane; França, Maria Terezinha; Anzilaggo, Daiane; Riekes, Manoela Klüppel; Kratz, Jadel Müller; de Campos, Carlos Eduardo Maduro; Simões, Cláudia Maria Oliveira; Stulzer, Hellen Karine

    2015-08-01

    Acyclovir, an analog of 2'-deoxyguanosine, is one of the most important drugs in the current approved antiviral treatment. However, it's biopharmaceutical properties, contribute to acyclovir's poor oral bioavailability, which restricts the clinical use of the drug. In this view, the aim of this work was to improve the dissolution rate and intestinal permeability of acyclovir through the development of ball milling solid dispersions with the hydrophilic carriers Pluronic F68®, hydroxypropylmethyl cellulose K100M® and chitosan. Solid dispersions were obtained and completely characterized through different solid state techniques. The solid state data demonstrated a decrease in the crystallinity (amorphous phase and defects) and the presence of hydrogen bonds for SD HPMC and SD CTS. The enhancement of dissolution rates was observed for all SDs developed. In addition, no detrimental effects over the in vitro antiviral activity were detected. The solid dispersions with Pluronic F68® significantly improved the intestinal permeability of acyclovir across Caco-2 cells. In summary, the SDs developed in this study could be considered as potential systems for solid dosage forms containing acyclovir with superior biopharmaceutical properties.

  5. Influence of Iron Oxide Particles on the Strength of Ball-Milled Iron

    SciTech Connect

    Lesuer, D R; Syn, C K; Sherby, O D

    2005-12-07

    Detailed microstructural and mechanical property studies of ball-milled iron, in the powder and consolidated states, are reviewed and assessed. The analyses cover three and one-half orders of magnitude of grain size (from 6 nm to 20 mm) and focus on the influence of oxide particles on the strength. The study includes the early work of Koch and Yang, Kimura and Takaki and continues with the more recent work of Umemoto et al and Belyakov, Sakai et al. It is shown that the major contributors to strength are the nanooxide particles. These particles are created by adiabatic shear banding during ball-milling leading to a bimodal distribution of particles. The predicted strength from particles, {sigma}{sub p}, is given by {sigma}{sub p} = B {center_dot} (D*{sub S}){sup -1/2} where D*{sub S} is the surface-to-surface interparticle spacing, and B = 395 MPa {center_dot} {micro}m{sup -1/2}. A model is proposed that accounts for the influence of the bimodal particle size distribution on strength.

  6. Effect of ball milling energy on rheological and thermal properties of amaranth flour.

    PubMed

    Roa, Diego F; Baeza, Rosa I; Tolaba, Marcela P

    2015-12-01

    Pearled amaranth grains obtained by abrasive milling were processed by planetary ball milling to produce amaranth flours. The influence of milling energy on rheological and thermal behavior of amaranth flour dispersions and stability during 24 h storage at 4 °C were investigated based on a factorial design. The rheological behavior of flour dispersions (4 % and 8 % w/v) was determined using a rotational viscometer, while gelatinization degree was determined by differential scanning calorimetry as a measure of structural changes.The power law model was found to be suitable in expressing the relationship between shear stress and shear rate. Flour dispersions showed a pseudoplastic behavior. However this character decreased with the storage being dependent on flour concentration and milling energy. A decrease of the consistency index and an increase of the flow behavior index were observed as a result of the increasing milling energy. Gelatinization enthalpy decrease showed the loss of crystalline structure due to ball milling. Amaranth flour dispersions presented increasing stability during storage. It was observed, that the stability changed with the concentration of amaranth flours.Thus, more stable dispersions were obtained as the flour concentration increased. The highly milled sample was the most stable sample during the storage.

  7. Fast sample preparation for analysis of tablets and capsules: the ball-mill extraction method.

    PubMed

    Kok, S J; Debets, A J

    2001-11-01

    A new ball-mill extraction method for solid dosage forms was developed. It was used for tablets, and compared with a conventional (powdering and sonication) method applied in pharmaceutical analysis of solid dosage forms. The ball-mill sample preparation procedure is both quantitative and fast. No powdering, weighing and sonication steps are needed in the sample preparation. The complete procedure takes 2 min (milling and extraction) and 5 min (centrifugation), respectively, much less than the conventional method in which sample preparation takes approximately 45-90 min. The samples are centrifuged in the mill vial, which saves time and avoids evaporation of solvent. Stainless steel extraction vials with different diameters were fabricated to enable the use of various extraction volumes. The extraction recovery was tested using various types of tablets (small, large and extended release tablets) with active compounds at low and higher concentrations, recoveries were comparable with the conventional method. The relative small investment and simplicity of the method makes it excellently suited for use in various pharmaceutical (development and quality assurance) laboratories. PMID:11516911

  8. Ball mill assisted rapid mechanochemical extraction method for natural products from plants.

    PubMed

    Wang, Man; Bi, Wentao; Huang, Xiaohua; Chen, David Da Yong

    2016-06-01

    A ball mill assisted mechanochemical extraction method was developed to extract compounds of natural product (NP) from plant using ionic liquid (IL). A small volume ball mill, also known as PastPrep(®) Homogenizer, which is often used for high-speed lysis of biological samples and for other applications, was used to dramatically increase the speed, completeness and reproducibility of the extraction process at room temperature to preserve the chemical integrity of the extracted compounds. In this study, tanshinones were selected as target compounds to evaluate the performance of this extraction method. Factors affecting the extraction efficiency, such as the duration, IL concentration and solid/liquid ratio were systematically optimized using the response surface methodology. Under the optimized conditions, the described method was more efficient and much faster than the conventional extraction methods such as methanol based ultrasound assisted extraction (UAE) and heat reflux extraction (HRE) that consumes a lot more organic solvent. In addition, the natural products of interest were enriched by anion metathesis of ionic liquids, combining extraction and preconcentration in the same process. The extractant was analyzed by HPLC and LC-MS. The reproducibility (RSD, n=5), correlation coefficient (r(2)) of the calibration curve, and the limit of detection, were determined to be in the range of 4.7-5.2%, 0.9992-0.9995, and 20-51ng/mL, respectively. PMID:27157426

  9. Ball mill assisted rapid mechanochemical extraction method for natural products from plants.

    PubMed

    Wang, Man; Bi, Wentao; Huang, Xiaohua; Chen, David Da Yong

    2016-06-01

    A ball mill assisted mechanochemical extraction method was developed to extract compounds of natural product (NP) from plant using ionic liquid (IL). A small volume ball mill, also known as PastPrep(®) Homogenizer, which is often used for high-speed lysis of biological samples and for other applications, was used to dramatically increase the speed, completeness and reproducibility of the extraction process at room temperature to preserve the chemical integrity of the extracted compounds. In this study, tanshinones were selected as target compounds to evaluate the performance of this extraction method. Factors affecting the extraction efficiency, such as the duration, IL concentration and solid/liquid ratio were systematically optimized using the response surface methodology. Under the optimized conditions, the described method was more efficient and much faster than the conventional extraction methods such as methanol based ultrasound assisted extraction (UAE) and heat reflux extraction (HRE) that consumes a lot more organic solvent. In addition, the natural products of interest were enriched by anion metathesis of ionic liquids, combining extraction and preconcentration in the same process. The extractant was analyzed by HPLC and LC-MS. The reproducibility (RSD, n=5), correlation coefficient (r(2)) of the calibration curve, and the limit of detection, were determined to be in the range of 4.7-5.2%, 0.9992-0.9995, and 20-51ng/mL, respectively.

  10. Dissipation mechanisms in polycrystalline YBCO prepared by sintering of ball-milled precursor powder

    NASA Astrophysics Data System (ADS)

    Hannachi, E.; Ben Salem, M. K.; Slimani, Y.; Hamrita, A.; Zouaoui, M.; Ben Azzouz, F.; Ben Salem, M.

    2013-12-01

    Magnetoresistivity (ρ(T,H)) measurements of polycrystalline YBa2Cu3Oy (Y-123) and YBa2Cu3Oy embedded with nanoparticles of Y-deficient Y-123, generated by the planetary ball milling, have been compared and analyzed by the Ambegaokar and Halperin phase slip model (AH) and thermally activated flux creep (TAFC). Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDXS), were carried out. SEM analyses show that nanoparticles of Y-deficient Y-123, generated by ball milling, are embedded in the superconducting matrix. The broadening of the resistive transition under magnetic field is found to possess two distinct regions, which suggests that dissipation phenomenon in milled and unmilled samples is caused by two mechanisms: the order parameter fluctuations and the vortex-dynamics separated by a crossover temperature T. The critical current Jc(0) at zero temperature in the grain boundaries decreases as a power law, H, which is an indication of the sensitivity of a single junction between the superconducting grains to the applied magnetic field. Jc(0) of the milled material is higher than the one of the unmilled and the activation energies of vortex flux motion U(H) behavior in the applied magnetic field is enhanced by the presence of the nanoparticles embedded in the matrix.

  11. Phase evolution in carbide dispersion strengthened nanostructured copper composite by high energy ball milling

    NASA Astrophysics Data System (ADS)

    Hussain, Zuhailawati; Nur Hawadah, M. S.

    2012-09-01

    In this study, high-energy ball milling was applied to synthesis in situ nanostructured copper based composite reinforced with metal carbides. Cu, M (M=W or Ti) and graphite powder mixture were mechanically alloyed for various milling time in a planetary ball mill with composition of Cu-20vol%WC and Cu-20vol%TiC. Then the as-milled powder were compacted at 200 to 400 MPa and sintered in a vacuum furnace at 900°C. The results of X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analysis showed that formation of tungsten carbides (W2C and WC phases) was observed after sintering of Cu-W-C mixture while TiC precipitated in as-milled powder of Cu-Ti-C composite after 5 h and become amorphous with longer milling. Mechanism of MA explained the cold welding and fracturing event during milling. Cu-W-C system shows fracturing event is more dominant at early stage of milling and W particle still existed after milling up to 60 h. While in Cu-Ti-C system, cold welding is more dominant and all Ti particles dissolved into Cu matrix.

  12. Structure and hard magnetic properties of barium hexaferrite with and without La 2O 3 prepared by ball milling

    NASA Astrophysics Data System (ADS)

    Babu, V.; Padaikathan, P.

    2002-03-01

    The barium hexaferrites have been prepared by ball milling of a BaO 2 and Fe 2O 3 mixture followed by thermal heat treatments. The structure and magnetic properties were investigated using X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer techniques. The effect of grain refiner was also studied and it was found that the hard magnetic properties were improved significantly. The sintered product of barium hexaferrite powders prepared from ball milling has higher coercive force than that of other barium hexaferrite made from oxide/carbonate.

  13. Preparation of chiral amino esters by asymmetric phase-transfer catalyzed alkylations of Schiff bases in a ball mill.

    PubMed

    Nun, Pierrick; Pérez, Violaine; Calmès, Monique; Martinez, Jean; Lamaty, Frédéric

    2012-03-19

    The asymmetric alkylation of Schiff bases under basic conditions in a ball mill was performed. The starting Schiff bases of glycine were prepared beforehand by milling protected glycine hydrochloride and benzophenone imine, in the absence of solvent. The Schiff base was then reacted with a halogenated derivative in a ball mill in the presence of KOH. By adding a chiral ammonium salt derived from cinchonidine, the reaction proceeded asymmetrically under phase-transfer catalysis conditions, giving excellent yields and enantiomeric excesses up to 75 %. Because an equimolar amount of starting material was used, purification was greatly simplified.

  14. Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample.

    PubMed

    Ma, Zongqing; Liu, Yongchang; Yu, Liming; Cai, Qi

    2012-07-13

    The ball milling technique has been successfully applied to the synthesis of various materials such as equilibrium intermetallic phases, amorphous compounds, nanocrystalline materials, or metastable crystalline phases. However, how the phase composition and nanoscale microstructure evolute during ball milling in various materials is still controversial due to the complex mechanism of ball milling, especially in the field of solid-state amorphization caused by ball milling. In the present work, the phase evolution during the high-energy ball milling process of the Mg and Cu (atomic ratio is 1:1) mixed powder was investigated. It was found that Mg firstly reacts with Cu, forming the Mg2Cu alloy in the primary stage of ball milling. As the milling time increases, the diffracted peaks of Mg2Cu and Cu gradually disappear, and only a broad halo peak can be observed in the X-ray diffraction pattern of the final 18-h milled sample. As for this halo peak, lots of previous studies suggested that it originated from the amorphous phase formed during the ball milling. Here, a different opinion that this halo peak results from the very small size of crystals is proposed: As the ball milling time increases, the sizes of Mg2Cu and Cu crystals become smaller and smaller, so the diffracted peaks of Mg2Cu and Cu become broader and broader and result in their overlap between 39° and 45°, at last forming the amorphous-like halo peak. In order to determine the origin of this halo peak, microstructure observation and annealing experiment on the milled sample were carried out. In the transmission electron microscopy dark-field image of the milled sample, lots of very small nanocrystals (below 20 nm) identified as Mg2Cu and Cu were found. Moreover, in the differential scanning calorimetry curve of the milled sample during the annealing process, no obvious exothermic peak corresponding to the crystallization of amorphous phase is observed. All the above results confirm that the broad

  15. Discrete element method based scale-up model for material synthesis using ball milling

    NASA Astrophysics Data System (ADS)

    Santhanam, Priya Radhi

    Mechanical milling is a widely used technique for powder processing in various areas. In this work, a scale-up model for describing this ball milling process is developed. The thesis is a combination of experimental and modeling efforts. Initially, Discrete Element Model (DEM) is used to describe energy transfer from milling tools to the milled powder for shaker, planetary, and attritor mills. The rolling and static friction coefficients are determined experimentally. Computations predict a quasisteady rate of energy dissipation, E d, for each experimental configuration. It is proposed that the milling dose defined as a product of Ed and milling time, t, divided by the mass of milled powder, mp characterizes the milling progress independently of the milling device or milling conditions used. Once the milling dose is determined for one experimental configuration, it can be used to predict the milling time required to prepare the same material in any milling configuration, for which Ed is calculated. The concept is validated experimentally for DEM describing planetary and shaker mills. For attritor, the predicted Ed includes substantial contribution from milling tool interaction events with abnormally high forces (>103 N). The energy in such events is likely dissipated to heat or plastically deform milling tools rather than refine material. Indeed, DEM predictions for the attritor correlate with experiments when such events are ignored in the analysis. With an objective of obtaining real-time indicators of milling progress, power, torque, and rotation speed of the impeller of an attritor mill are measured during preparation of metal matrix composite powders in the subsequent portion of this thesis. Two material systems are selected and comparisons made between in-situ parameters and experimental milling progress indicators. It is established that real-time measurements can certainly be used to describe milling progress. However, they need to be interpreted carefully

  16. Reaction between LiBH4 and MgH2 induced by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Ding, Zhao; Zhao, Xuzhe; Shaw, Leon L.

    2015-10-01

    Previous studies of ab initio density functional theory (DFT) calculations have predicted that reactions between LiBH4 and MgH2 can take place at temperature near 200 °C. However, such predictions have been shown to be inconsistent with many experiments. Herein, we have designed a novel process termed as ball milling with aerosol spraying (BMAS) to prove, for the first time, that the reaction between LiBH4 and MgH2 can indeed occur during ball milling at room temperature. Through this BMAS process we have demonstrated unambiguously the formation of MgB2 and LiH during ball milling of MgH2 while aerosol spraying of the LiBH4/THF solution. In this BMAS process, aerosol spraying of the LiBH4/THF solution leads to the formation of LiBH4 nanoparticles which decompose to form Li2B12H12. The Li2B12H12 formed then reacts with MgH2 in situ during ball milling to form MgB2 and LiH. The discovery made in this study has significant implications in making LiBH4 + MgH2 as a viable system for reversible hydrogen storage applications near ambient temperature in the future.

  17. Effect of ball-milling surfactants on the interface chemistry in hot-compacted SmCo5 magnets

    SciTech Connect

    Li, WF; Sepehri-Amin, H; Zheng, LY; Cui, BZ; Gabay, AM; Hono, K; Huang, WJ; Ni, C; Hadjipanayis, GC

    2012-11-01

    Anisotropic SmCo5 nanoflakes prepared by high-energy ball-milling with surfactants have great potential in applications for high-performance nanocomposite magnets. For such "nanocomposite" applications, the surface structure and chemistry of nanoflakes are crucial for achieving high coercivity. In this study, hot-pressed samples from anisotropic SmCo5 nanoflakes, ball-milled with different surfactants, oleic acid (OA) and oleylamine (OY), were investigated. Interface layers between the SmCo5 nanoflakes were found to consist of samarium oxides and a soft magnetic Co phase. These surface layers contribute to the degradation of hard magnetic performance, which is confirmed by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy analysis of the cross-section of a single flake ball-milled with OA. Samples milled with OY show a much thinner interface layer in compacted samples, which means that the surface degradation during ball-milling with OY is much less than that with OA. The results show clearly that the choice of proper surfactant and the control of processing parameters are the key factors for improving the surface condition of the nanoflakes and the resulting hard magnetic properties. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. One step conversion of wheat straw to sugars by simultaneous ball milling, mild acid, and fungus Penicillium simplicissimum treatment.

    PubMed

    Yuan, Li; Chen, Zhenhua; Zhu, Yonghua; Liu, Xuanming; Liao, Hongdong; Chen, Ding

    2012-05-01

    Wheat straw is one of the major lignocellulosic plant residues in many countries including China. An attractive alternative is the utilization of wheat straw for bioethanol production. This article mainly studies a simple one-step wet milling with Penicillium simplicissimum and weak acid to hydrolysis of wheat straw. The optimal condition for hydrolysis was ball milling 48 h in citrate solvent (pH = 4) with P. simplicissimum H5 at the speed of 500 rpm and the yield of sugar increased with increased milling time. Corresponding structure transformations before and after milling analyzed by X-ray diffraction, transmission Fourier transform infrared spectroscopy, and environmental scanning electron microscopy clearly indicated that this combined treatment could be attributed to the crystalline and chemical structure changes of cellulose in wheat straw during ball milling. This combined treatment of ball milling, mild acid, and fungus hydrolysis enabled the conversion of the wheat straw. Compared with traditional method of ball milling, this work showed a more simple, novel, and environmentally friendly way in mechanochemical treatment of wheat straw.

  19. Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose.

    PubMed

    Deng, Sha; Huang, Rui; Zhou, Mi; Chen, Feng; Fu, Qiang

    2016-12-10

    Cellulose films with excellent mechanical strength are of interest to many researchers, but unfortunately they often lack the ductility and water resistance. This work demonstrates an efficient and easily industrialized method for hydrophobic cellulose films made of modified microfibrillated cellulose (MFC). Prior to film fabrication, the simultaneous exfoliation and acylation of MFC was achieved through the synergetic effect of mechanical and chemical actions generated from ball milling in the presence of hexanoyl chloride. Largely enhanced tensile strength and elongation at break have been achieved (4.98MPa, 4.37% for original MFC films, 140MPa, 21.3% for modified ones). Due to hydrophobicity and compact structure, modified films show excellent water resistance and decreased water vapor permeability. Moreover, optical performance of modified films is also improved compared with the original MFC films. Our work can largely expand the application of this biodegradable resource and ultimately reduce the need for petroleum-based plastics. PMID:27577904

  20. Dehydrogenation kinetics of as-received and ball-milled LiAlH4

    NASA Astrophysics Data System (ADS)

    Andreasen, A.; Vegge, T.; Pedersen, A. S.

    2005-12-01

    In this paper, we investigate the dehydrogenation kinetics of LiAlH4 into Li3AlH6 (reaction I) and further into LiH (reaction II). We find the apparent activation energies to be ∼ 80 and 100 kJ/mol for reactions I and II, respectively. Furthermore, we investigate the effect of ball milling on crystallite size and the dehydrogenation kinetics of both reactions I and II. We find a clear correlation between crystallite size and dehydrogenation kinetics of reaction I. On the other hand, we find the kinetics of reaction II to be independent of the crystallite size. This indicates that reaction I is limited by a mass transfer process, while reaction II is limited by the intrinsic kinetics.

  1. EXAFS study of metal-coated particles produced by ball milling

    SciTech Connect

    Heald, S.M.; Jayanetti, S.; Pandya, K.I.

    1992-01-01

    EXAFS measurements have been carried out on mixtures of Sa with Ge and Si, and Pt with SiO[sub 2] which have been ball milled for extended periods. In these systems the brittle component (Ge, Si, or SiO[sub 2]) is ground to nanocrystalline dimensions while the ductile metal is found to coat the outer surface the particles. Analysis shows that in the Sn-Ge and Sn-Si systems, mixing at the interface is found to form apparently cubic SnGe and SnSi alloys respectively. In the Pt-SiO[sub 2] system while no mixing is observed, the Pt is found to be highly dispersed on the surface of SiO[sub 2] particles.

  2. EXAFS study of metal-coated particles produced by ball milling

    SciTech Connect

    Heald, S.M.; Jayanetti, S.; Pandya, K.I.

    1992-11-01

    EXAFS measurements have been carried out on mixtures of Sa with Ge and Si, and Pt with SiO{sub 2} which have been ball milled for extended periods. In these systems the brittle component (Ge, Si, or SiO{sub 2}) is ground to nanocrystalline dimensions while the ductile metal is found to coat the outer surface the particles. Analysis shows that in the Sn-Ge and Sn-Si systems, mixing at the interface is found to form apparently cubic SnGe and SnSi alloys respectively. In the Pt-SiO{sub 2} system while no mixing is observed, the Pt is found to be highly dispersed on the surface of SiO{sub 2} particles.

  3. Microwave Absorption Properties of Iron Nanoparticles Prepared by Ball-Milling

    NASA Astrophysics Data System (ADS)

    Chu, Xuan T. A.; Ta, Bach N.; Ngo, Le T. H.; Do, Manh H.; Nguyen, Phuc X.; Nam, Dao N. H.

    2016-05-01

    A nanopowder of iron was prepared using a high-energy ball milling method, which is capable of producing nanoparticles at a reasonably larger scale compared to conventional chemical methods. Analyses using x-ray diffraction and magnetic measurements indicate that the iron nanoparticles are a single phase of a body-centered cubic structure and have quite stable magnetic characteristics in the air. The iron nanoparticles were then mixed with paraffin and pressed into flat square plates for free-space microwave transmission and reflection measurements in the 4-8 GHz range. Without an Al backing plate, the Fe nanoparticles seem to only weakly absorb microwave radiation. The reflected signal S 11 drops to zero and a very large negative value of reflection loss ( RL) are observed for Al-backed samples, suggesting the existence of a phase matching resonance near frequency f ˜ 6 GHz.

  4. Solid acid-catalyzed depolymerization of barley straw driven by ball milling.

    PubMed

    Schneider, Laura; Haverinen, Jasmiina; Jaakkola, Mari; Lassi, Ulla

    2016-04-01

    This study describes a time and energy saving, solvent-free procedure for the conversion of lignocellulosic barley straw into reducing sugars by mechanocatalytical pretreatment. The catalytic conversion efficiency of several solid acids was tested which revealed oxalic acid dihydrate as a potential catalyst with high conversion rate. Samples were mechanically treated by ball milling and subsequently hydrolyzed at different temperatures. The parameters of the mechanical treatment were optimized in order to obtain sufficient amount of total reducing sugar (TRS) which was determined following the DNS assay. Additionally, capillary electrophoresis (CE) and Fourier transform infrared spectrometry (FT-IR) were carried out. Under optimal conditions TRS 42% was released using oxalic acid dihydrate as a catalyst. This study revealed that the acid strength plays an important role in the depolymerization of barley straw and in addition, showed, that the oxalic acid-catalyzed reaction generates low level of the degradation product 5-hydroxymethylfurfural (HMF). PMID:26859328

  5. Structural, microstructural and magnetocaloric investigations in high-energy ball milled NiMnGa powders

    NASA Astrophysics Data System (ADS)

    de Santanna, Y. V. B.; de Melo, M. A. C.; Santos, I. A.; Coelho, A. A.; Gama, S.; Cótica, L. F.

    2008-11-01

    In this paper, structural, microstrucutural and magnetocaloric properties of Ni 2.18Mn 0.82Ga alloys submitted to high-energy ball milling are reported. A 7-layered orthorhombic martensitic ( Pnnm) phase was detected in post-milling annealed samples, which reached a microstrucuture composed predominantly by nanograins. The magnetocaloric effect is strongly weakened in comparison with as-cast samples of similar composition. This effect can be attributed to the absence of the mesoscale twin-related martensitic variants in the nanostructurated powders. However, post-milled samples annealed at 1123 K for 4 h present relative cooling powers as high as those observed for manganites. Therefore, these materials can be considered as potential candidates for use as regenerators in prototypal magnetic refrigerators.

  6. Solvent-free ball-milling subcomponent synthesis of metallosupramolecular complexes.

    PubMed

    Giri, Chandan; Sahoo, Prasit Kumar; Puttreddy, Rakesh; Rissanen, Kari; Mal, Prasenjit

    2015-04-20

    Subcomponent self-assembly from components A, B, C, D, and Fe(2+) under solvent-free conditions by self-sorting leads to the construction of three structurally different metallosupramolecular iron(II) complexes. Under carefully selected ball-milling conditions, tetranuclear [Fe4 (AD2 )6 ](4-) 22-component cage 1, dinuclear [Fe2 (BD2 )3 ](2-) 11-component helicate 2, and 5-component mononuclear [Fe(CD3 )](2+) complex 3 were prepared simultaneously in a one-pot reaction from 38 components. Through subcomponent substitution reaction by adding subcomponent B, the [Fe4 (AD2 )6 ](4-) cage converts quantitatively to the [Fe2 (BD2 )3 ](2-) helicate, which, in turn, upon addition of subcomponent C, transforms to [Fe(CD3 )](2+) , following the hierarchical preference based on the thermodynamic stability of the complexes.

  7. Cross-Coupling Biarylation of Nitroaryl Chlorides Through High Speed Ball Milling

    PubMed Central

    Lam, Solita; Puplampu-Dove, Yvonne; Morris, Adrienne; Epps, Ayunna; Mandouma, Ghislain

    2016-01-01

    Solvent-free reaction using a high-speed ball milling technique has been applied to the classical Ullmann coupling reaction. Cross-coupling biarylation of several nitroaryl chlorides was achieved in good yields when performed in custom-made copper vials through continuous shaking without additional copper or solvent. Cross-coupling products were obtained almost pure and NMR-ready. These reactions were cleaner than solution phase coupling which require longer reaction time in high boiling solvents, and added catalysts as well as lengthy extraction and purification steps. Gram quantities of cross biaryl compounds have been synthesized with larger copper vials, a proof that this method can be used to reduce industrial waste and for sustainability. PMID:27294205

  8. Studies of superspin glass state and AC-losses in La0.7Sr0.3MnO3 nanoparticles obtained by high-energy ball-milling

    NASA Astrophysics Data System (ADS)

    Phong, P. T.; Manh, D. H.; Nguyen, L. H.; Tung, D. K.; Phuc, N. X.; Lee, I.-J.

    2014-11-01

    Single-phase perovskite compound La0.7Sr0.3MnO3 was synthesized by a high-energy ball milling method. Nanoparticle nature of this manganite with the average particle diameter of 11 nm was revealed from structure and morphology characterizations. The results of ac magnetic susceptibility measurements show that the system can be described as an ensemble of interacting magnetic nanoparticles, which indicates that the dipole-dipole interactions are strong enough to create superspin glass state in the sample. Furthermore, the specific loss power which is exhausted on the irradiation of an ensemble of particles with a magnetic field has been calculated and measured experimentally.

  9. Enhanced Piezoelectric Properties and Tunability of Lead-Free Ceramics Prepared by High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    Mahesh, M. L. V.; Bhanuprasad, V. V.; James, A. R.

    2013-12-01

    Zirconium-doped barium titanate Ba(Zr0.15Ti0.85)O3 lead-free ceramics (hereinafter referred to as BZT) were synthesized using the solid-state reaction method by adopting the high-energy ball milling technique. Nanosized BZT powders resulted from high-energy ball milling, which in turn enhanced the dielectric and piezoelectric properties of the ceramics. A single-phase perovskite structure free from secondary phase peaks was observed for sintered BZT samples, and a relative density of ˜94% of the theoretical density was achieved. The electric-field-induced polarization-current data indicate the ferroelectric nature of the samples. Unipolar strain as high as 0.12% was realized for the ceramics sintered at 1350°C, indicating their potential for use in actuator applications. Very high tunability of >70% for these ceramics is also reported.

  10. Acid-Assisted Ball Milling of Cellulose as an Efficient Pretreatment Process for the Production of Butyl Glycosides.

    PubMed

    Boissou, Florent; Sayoud, Nassim; De Oliveira Vigier, Karine; Barakat, Abdellatif; Marinkovic, Sinisa; Estrine, Boris; Jérôme, François

    2015-10-12

    Ball milling of cellulose in the presence of a catalytic amount of H2SO4 was found to be a promising pre-treatment process to produce butyl glycosides in high yields. Conversely to the case of water, n-butanol has only a slight effect on the recrystallization of ball-milled cellulose. As a result, thorough depolymerization of cellulose prior the glycosylation step is no longer required, which is a pivotal aspect with respect to energy consumption. This process was successfully transposed to wheat straw from which butyl glycosides and xylosides were produced in good yields. Butyl glycosides and xylosides are important chemicals as they can be used as hydrotropes but also as intermediates in the production of valuable amphiphilic alkyl glycosides.

  11. Acid-Assisted Ball Milling of Cellulose as an Efficient Pretreatment Process for the Production of Butyl Glycosides.

    PubMed

    Boissou, Florent; Sayoud, Nassim; De Oliveira Vigier, Karine; Barakat, Abdellatif; Marinkovic, Sinisa; Estrine, Boris; Jérôme, François

    2015-10-12

    Ball milling of cellulose in the presence of a catalytic amount of H2SO4 was found to be a promising pre-treatment process to produce butyl glycosides in high yields. Conversely to the case of water, n-butanol has only a slight effect on the recrystallization of ball-milled cellulose. As a result, thorough depolymerization of cellulose prior the glycosylation step is no longer required, which is a pivotal aspect with respect to energy consumption. This process was successfully transposed to wheat straw from which butyl glycosides and xylosides were produced in good yields. Butyl glycosides and xylosides are important chemicals as they can be used as hydrotropes but also as intermediates in the production of valuable amphiphilic alkyl glycosides. PMID:26346950

  12. Study on the influence of volume size of the milling jar in purifying Tronoh silica sand using ball milling process

    NASA Astrophysics Data System (ADS)

    Hashim, Nazratulhuda; Mamat, Othman

    2015-07-01

    Tronoh silica sand is the potential source for the SiO2. Purification is an important step in expanding the usage of the Tronoh silica sand. Since the residual impurities are the obstacle in achieving high purity silica, the low speed ball mill will be introduced as a main equipment in purifying Tronoh silica sand. The objective of this study is to understand the influence of volume size of the milling jar in purifying Tronoh silica sand by using ball milling process. The chemical composition of the samples were analyzed by using XRF and SEM. The results showed that the highest purity of the Tronoh silica sand can be achieved by using the 1.0 ℓ milling jar.

  13. ZnO nanoparticles obtained by ball milling technique: Structural, micro-structure, optical and photo-catalytic properties

    NASA Astrophysics Data System (ADS)

    Balamurugan, S.; Joy, Josny; Godwin, M. Anto; Selvamani, S.; Raja, T. S. Gokul

    2016-05-01

    The ZnO nanoparticles were obtained by ball milling of commercial grade ZnO powder at 250 rpm for 20 h and studied their structural, micro-structure, optical and photo-catalytic properties. Due to ball milling significant decrease in lattice parameters and average crystalline size is noticed for the as-milled ZnO nano powder. The HRSEM images of the as-milled powder consist of agglomerated fine spherical nanoparticles in the range of ~10-20 nm. The room temperature PL spectrum of as-milled ZnO nano powder excited under 320 nm reveals two emission bands at ~406 nm (violet emission) and ~639 nm (green emission). Interestingly about 98 % of photo degradation of methylene (MB) by the ZnO catalyst is achieved at 100 minutes of solar light irradiation.

  14. Self-sintering-assisted high intergranular connectivity in ball-milled ex situ MgB2 bulks

    NASA Astrophysics Data System (ADS)

    Mizutani, Shunsuke; Yamamoto, Akiyasu; Shimoyama, Jun-ichi; Ogino, Hiraku; Kishio, Kohji

    2014-11-01

    To understand the mechanisms leading to higher intergranular connectivity in polycrystalline ex situ MgB2 prepared using a pressure-less self-sintering technique, the influence of the initial particle size of the MgB2 powder was investigated. MgB2 bulks sintered at 900 °C for 24 h using ball-milled powders exhibited a network structure with both qualitatively and quantitatively improved intergranular couplings. The connectivity calculated using normal-state transport measurements reached a high value of ˜40%, which is comparable to that of MgB2 bulks fabricated via Mg diffusion or high-pressure-assisted processes. Moreover, the sintering time required to achieve a reasonably high connectivity of 25-30% was less than 1 h. Notably, microstructural analyses confirmed the formation of intergranular necks and grain boundaries during the early stage of sintering. These results suggested self-sintering of the ball-milled MgB2 bulks proceeded much more rapidly than those sintered using an MgB2 powder without ball-milling. Increased intergranular contact points and decreased gap length between grains in green compact are assumed to be the origins for the stimulated self-sintering and corresponding increase in the electrical connectivity.

  15. Crystallization and microstructure of 8YSZ nanopowders synthesized by ball-mill assisted constant pH route

    NASA Astrophysics Data System (ADS)

    Mohanty, Subrat K.; Nayak, Bibhuti B.

    2013-06-01

    8 mol% Y2O3 stabilized ZrO2 (8YSZ) nanopowders were prepared by two ways of precipitation technique namely conventional precipitation (i.e. stepwise increase of pH) and constant pH precipitation (i.e. precipitation at constant pH). The crystallization, microstructure and density of both the powders were studied with and without ball milling. The ball milled powders prepared in conventional method were found to be sintered upto 92% of the theoretical density, whereas the powders prepared in constant pH precipitation method after ball milling showed 97% of the theoretical density, at 1600°C. The presence of fine and uniformly distributed pores were observed, for the 8YSZ pellets synthesized via conventional precipitation method, whereas a relatively dense microstructure was observed for that synthesized via constant pH precipitation method, from the SEM micrographs. Constant pH route shows better results as compared to conventional route and seems to be effective way of synthesis to prepare 8YSZ for electrolyte in solid oxide fuel cell (SOFC) application.

  16. Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling

    NASA Astrophysics Data System (ADS)

    Cagnetta, Giovanni; Hassan, Mohammed Mansour; Huang, Jun; Yu, Gang; Weber, Roland

    2016-03-01

    Secondary copper recovery is attracting increasing interest because of the growth of copper containing waste including e-waste. The pyrometallurgical treatment in smelters is widely utilized, but it is known to produce waste fluxes containing a number of toxic pollutants due to the large amount of copper involved, which catalyses the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (“dioxins”). Dioxins are generated in secondary copper smelters on fly ash as their major source, resulting in highly contaminated residues. In order to assess the toxicity of this waste, an analysis of dioxin-like compounds was carried out. High levels were detected (79,090 ng TEQ kg‑1) in the ash, above the Basel Convention low POPs content (15,000 ng TEQ kg‑1) highlighting the hazardousness of this waste. Experimental tests of high energy ball milling with calcium oxide and silica were executed to assess its effectiveness to detoxify such fly ash. Mechanochemical treatment obtained 76% dioxins reduction in 4 h, but longer milling time induced a partial de novo formation of dioxins catalysed by copper. Nevertheless, after 12 h treatment the dioxin content was substantially decreased (85% reduction) and the copper, thanks to the phenomena of incorporation and amorphization that occur during milling, was almost inactivated.

  17. Experimental study of residence time distributions of ball-mill circuits grinding coal-water mixtures

    SciTech Connect

    Shoji, K.; Takahashi, Y.; Ohtake, A.; Austin, L.G.

    2008-08-15

    Residence time distributions (RTDs) were estimated by water tracing in a number of wet overflow ball mills (diameters 0.38 to 4.65 m) producing dense, coal-water slurries. In open-circuit mills of 0.38 m diameter and various length-diameter (LID) ratios, the mean residence times of solid were also determined from measured mill holdups. Holdup increased with increased mill feed rate, but the mean residence times of coal and water were still equal to each other. The experimental residence time distributions were fitted to the Mori-Jimbo-Yamazaki semi-infinite, axial mixing model, and the dimensionless mixing coefficient was determined for each of 25 tests in single- and two-compartment mills. This coefficient was found to be independent to the feed rate but linearly proportional to the D/L ratio. The mixing coefficient was smaller for two-compartment mills than for single-compartment mills, showing that there was reduced mixing introduced by the diaphragm separating the compartments. Equations are given to scale residence time distributions for changes in mill diameter and length.

  18. Effect of ball milling materials and methods on powder processing of Bi2223 superconductors

    NASA Astrophysics Data System (ADS)

    Yavuz, M.; Maeda, H.; Vance, L.; Liu, H. K.; Dou, S. X.

    1998-10-01

    Various milling systems consisting of agate and polypropylene grinding containers, agate and YSZ balls, and dry and wet milling were used in planetary ball-milling and YSZ balls and YSZ container were used in wet and dry attrition milling. The differently milled powders were then evaluated by measurements of particle size, surface area, porosity, size distribution and chemical analysis of the Si, Zr and C contents. The results show that dry milling is much more efficient for particle size reduction in planetary milling than wet milling, whereas wet milling and dry milling gave quite similar results in attrition milling. Meanwhile 0953-2048/11/10/056/img6 contamination was found in powder milled with an agate container with agate balls. Some C contamination from the polypropylene container was detected after milling, but negligible Zr from YSZ balls and C from the grinding carrier (hexane). It was found that after 1 h milling in the planetary mill fracture mechanisms transform from the elastic to the plastic region. Therefore, further milling is not very effective. It was also shown that the Bi2212 phase decomposes into several non-superconducting oxides such as 0953-2048/11/10/056/img7, CuO and a main amorphous phase after extensive dry milling.

  19. Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling

    PubMed Central

    Cagnetta, Giovanni; Hassan, Mohammed Mansour; Huang, Jun; Yu, Gang; Weber, Roland

    2016-01-01

    Secondary copper recovery is attracting increasing interest because of the growth of copper containing waste including e-waste. The pyrometallurgical treatment in smelters is widely utilized, but it is known to produce waste fluxes containing a number of toxic pollutants due to the large amount of copper involved, which catalyses the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (“dioxins”). Dioxins are generated in secondary copper smelters on fly ash as their major source, resulting in highly contaminated residues. In order to assess the toxicity of this waste, an analysis of dioxin-like compounds was carried out. High levels were detected (79,090 ng TEQ kg−1) in the ash, above the Basel Convention low POPs content (15,000 ng TEQ kg−1) highlighting the hazardousness of this waste. Experimental tests of high energy ball milling with calcium oxide and silica were executed to assess its effectiveness to detoxify such fly ash. Mechanochemical treatment obtained 76% dioxins reduction in 4 h, but longer milling time induced a partial de novo formation of dioxins catalysed by copper. Nevertheless, after 12 h treatment the dioxin content was substantially decreased (85% reduction) and the copper, thanks to the phenomena of incorporation and amorphization that occur during milling, was almost inactivated. PMID:26975802

  20. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries.

    PubMed

    Zhang, Biao; Dugas, Romain; Rousse, Gwenaelle; Rozier, Patrick; Abakumov, Artem M; Tarascon, Jean-Marie

    2016-01-18

    Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)2F3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P'2-Na1[Fe0.5Mn0.5]O2 and C/'Na3+xV2(PO4)2F3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology.

  1. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries

    PubMed Central

    Zhang, Biao; Dugas, Romain; Rousse, Gwenaelle; Rozier, Patrick; Abakumov, Artem M.; Tarascon, Jean-Marie

    2016-01-01

    Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)2F3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P′2-Na1[Fe0.5Mn0.5]O2 and C/‘Na3+xV2(PO4)2F3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology. PMID:26777573

  2. Iron Nanoparticles Fabricated by High-Energy Ball Milling for Magnetic Hyperthermia

    NASA Astrophysics Data System (ADS)

    Tung, D. K.; Manh, D. H.; Phong, L. T. H.; Nam, P. H.; Nam, D. N. H.; Anh, N. T. N.; Nong, H. T. T.; Phan, M. H.; Phuc, N. X.

    2016-05-01

    Iron nanoparticles (FeNPs) have been successfully prepared by high-energy ball milling in air for various milling times from 1 h to 32 h. Their structure, particle size, elemental composition, magnetic, and inductive heating properties were investigated by means of x-ray diffraction (XRD) analysis, field-emission scanning electron microscopy, energy-dispersive x-ray (EDX) spectroscopy, vibrating-sample magnetometry, and magnetic induction heating, respectively. XRD analysis showed that the average crystallite size decreased to 11 nm after 10 h of milling, then remained almost unchanged for longer milling times. Coexistence of iron (Fe) and iron oxide (FeO) phases was detected after 12 h of milling. EDX analysis also confirmed the occurrence of oxidation, which can be reconciled with the corresponding decrease and increase in saturation magnetization ( M s) with milling time when exposed to oxygen and when annealed under H2 ambient due to oxygen reduction. The time-dependent magnetic and inductive heating responses of the FeNPs were investigated for prospective application in magnetic hyperthermia. The effect of varying the alternating-current (AC) magnetic field strength on the saturation heating temperature and specific loss power of FeNP-containing ferrofluid with concentration of 4 mg/mL was also studied and is discussed.

  3. Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling.

    PubMed

    Cagnetta, Giovanni; Hassan, Mohammed Mansour; Huang, Jun; Yu, Gang; Weber, Roland

    2016-03-15

    Secondary copper recovery is attracting increasing interest because of the growth of copper containing waste including e-waste. The pyrometallurgical treatment in smelters is widely utilized, but it is known to produce waste fluxes containing a number of toxic pollutants due to the large amount of copper involved, which catalyses the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans ("dioxins"). Dioxins are generated in secondary copper smelters on fly ash as their major source, resulting in highly contaminated residues. In order to assess the toxicity of this waste, an analysis of dioxin-like compounds was carried out. High levels were detected (79,090 ng TEQ kg(-1)) in the ash, above the Basel Convention low POPs content (15,000 ng TEQ kg(-1)) highlighting the hazardousness of this waste. Experimental tests of high energy ball milling with calcium oxide and silica were executed to assess its effectiveness to detoxify such fly ash. Mechanochemical treatment obtained 76% dioxins reduction in 4 h, but longer milling time induced a partial de novo formation of dioxins catalysed by copper. Nevertheless, after 12 h treatment the dioxin content was substantially decreased (85% reduction) and the copper, thanks to the phenomena of incorporation and amorphization that occur during milling, was almost inactivated.

  4. Analysis of the Magnetocaloric Effect in Powder Samples Obtained by Ball Milling

    NASA Astrophysics Data System (ADS)

    Blázquez, J. S.; Ipus, J. J.; Moreno-Ramírez, L. M.; Borrego, J. M.; Lozano-Pérez, S.; Franco, V.; Conde, C. F.; Conde, A.

    2015-06-01

    Since the discovery of the giant magnetocaloric effect (MCE) close to room temperature in FeRh and particularly in Gd5Si2Ge2 compounds, the study of this phenomenon has experienced an exponential growth. Among the different techniques used to produce magnetocaloric materials, ball milling has been shown as a very versatile one and presents several advantages over other preparation techniques ( e.g., easy scale-up to industrial production). Although a general decrease of the peak value of the magnetic entropy change is observed for milled samples, it can be compensated by the large broadening of the MCE peak, leading to an increase of the refrigeration capacity. In this short review, several aspects inherent to powder samples affecting MCE will be discussed, such as the relevant effect of the demagnetizing field, the possible multiphase character, and the presence of Curie temperature distributions. In mechanically alloyed samples, the two latter factors are typically affected by the degree of integration of the different starting constituents.

  5. Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method

    NASA Astrophysics Data System (ADS)

    Chen, Daming; Harward, Ian; Baptist, Joshua; Goldman, Sara; Celinski, Zbigniew

    2015-12-01

    Barium ferrite has attracted considerable interest in the fields of permanent magnets and perpendicular magnetic recording due to its strong uniaxial anisotropy and high Curie temperature (Tc). We prepared aluminum doped barium ferrite ceramics (BaAlxFe12-xO19, 0≤x≤6) by the ball mill method. The powder was milled for 96 h, and after forming pellets, annealed for 48 h in air at 1000 °C. The X-ray diffraction (XRD) data show that there are only single hexagonal phases in the samples without any impurity phase. The crystal lattice constants, a and c, were calculated by Cohen's method. Both a and c decrease with increasing x, ranging from 0.588 nm and 2.318 nm to 0.573 nm and 2.294 nm, respectively. A Vibrating Sample Magnetometer (VSM) and Superconducting Quantum Interference Device (SQUID) were used to investigate Tc and magnetic properties of BaFe12-xAlxO19. It is found that Tc decreases with increasing x, from 425 °C to 298 °C. It is also found that the saturated magnetization (4πMs) decreases with increasing x, while the coercivity (Hc) increases with the increase in x. The anisotropy field was also determined from the SQUID measurement.

  6. Fluid mechanics of slurry flow through the grinding media in ball mills

    SciTech Connect

    Songfack, P.K.; Rajamani, R.K.

    1995-12-31

    The slurry transport within the ball mill greatly influences the mill holdup, residence time, breakage rate, and hence the power draw and the particle size distribution of the mill product. However, residence-time distribution and holdup in industrial mills could not be predicted a priori. Indeed, it is impossible to determine the slurry loading in continuously operating mills by direct measurement, especially in industrial mills. In this paper, the slurry transport problem is solved using the principles of fluid mechanics. First, the motion of the ball charge and its expansion are predicted by a technique called discrete element method. Then the slurry flow through the porous ball charge is tackled with a fluid-flow technique called the marker and cell method. This may be the only numerical technique capable of tracking the slurry free surface as it fluctuates with the motion of the ball charge. The result is a prediction of the slurry profile in both the radial and axial directions. Hence, it leads to the detailed description of slurry mass and ball charge within the mill. The model predictions are verified with pilot-scale experimental work. This novel approach based on the physics of fluid flow is devoid of any empiricism. It is shown that the holdup of industrial mills at a given feed percent solids can be predicted successfully.

  7. Anisotropic SmCo{sub 5} nanoflakes by surfactant-assisted high energy ball milling

    SciTech Connect

    Cui, B. Z.; Gabay, A. M.; Li, W. F.; Hadjipanayis, G. C.; Marinescu, M.; Liu, J. F.

    2010-05-15

    Crystallographically anisotropic SmCo{sub 5} nanoflakes were fabricated directly by one-step surfactant-assisted high energy ball milling (HEBM) of Sm{sub 17}Co{sub 83} ingot powders for 5 h in heptane and oleic acid (OA) without preprocessing or further annealing. The SmCo{sub 5} nanoflakes have a strong [001] out-of-plane texture. The thickness of nanoflakes is in the range of 8-80 nm while their length is 0.5-8 {mu}m. The surfactant OA plays an important role in the formation of SmCo{sub 5} nanoflakes. HEBM of SmCo{sub 5} ingots in heptane without OA resulted in the formation of magnetically isotropic more or less equiaxed SmCo{sub 5} particles with a size of 2-30 {mu}m. Closely packed 'kebablike' SmCo{sub 5} nanoflakes were formed by HEBM in heptane with 15 wt % OA. HEBM in 150 wt % OA led to well-separated nanoflakes instead of the closely packed kebablike nanostructure. This resulted in the enhanced [001] out-of-plane texture. In-plane transmission electron microscope examination showed that the SmCo{sub 5} nanoflakes were composed of grains with sizes in the range of 4-8 nm. Coercivities of about 18.0 kOe were obtained for the anisotropic SmCo{sub 5} nanoflakes.

  8. Room temperature dual ferroic behaviour of ball mill synthesized NdFeO3 orthoferrite

    NASA Astrophysics Data System (ADS)

    Aparnadevi, N.; Saravana Kumar, K.; Manikandan, M.; Paul Joseph, D.; Venkateswaran, C.

    2016-07-01

    Phase pure NdFeO3 has been achieved using high energy ball milling of oxide precursors with subsequent sintering. It is established that structural arrangement of NdFeO3 regulates the multifunctional feature of the material. Rietveld refinement of the room temperature X-ray diffraction pattern shows that the Fe-O-Fe bond angle significantly favors the super exchange interaction, which is predominantly antiferromagnetic in nature. Magnetization measurement illustrates antiferromagnetic behaviour with a weak ferromagnetic component caused by the canted nature of the Fe3+ spins at room temperature. Absorption bands in the visible ambit, apparent from the UV-Vis diffuse reflectance studies, is found due to the crystal ligand field of octahedral oxygen environment of Fe3+ ions. The direct band gap is estimated to be 2.39 eV from the diffuse reflectance spectrum. The lossy natured ferroelectric loop having a maximum polarization of 0.23 μC/cm2 at room temperature is found to be driven by the non-collinear magnetic structure with reverse Dzyaloshinskii-Moriya effect. Magnetic field has influence on the dielectric constant as evident from the impedance spectroscopy, indicating the strong coupling between ferroelectric and the magnetic structure of NdFeO3.

  9. Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling.

    PubMed

    Cagnetta, Giovanni; Hassan, Mohammed Mansour; Huang, Jun; Yu, Gang; Weber, Roland

    2016-01-01

    Secondary copper recovery is attracting increasing interest because of the growth of copper containing waste including e-waste. The pyrometallurgical treatment in smelters is widely utilized, but it is known to produce waste fluxes containing a number of toxic pollutants due to the large amount of copper involved, which catalyses the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans ("dioxins"). Dioxins are generated in secondary copper smelters on fly ash as their major source, resulting in highly contaminated residues. In order to assess the toxicity of this waste, an analysis of dioxin-like compounds was carried out. High levels were detected (79,090 ng TEQ kg(-1)) in the ash, above the Basel Convention low POPs content (15,000 ng TEQ kg(-1)) highlighting the hazardousness of this waste. Experimental tests of high energy ball milling with calcium oxide and silica were executed to assess its effectiveness to detoxify such fly ash. Mechanochemical treatment obtained 76% dioxins reduction in 4 h, but longer milling time induced a partial de novo formation of dioxins catalysed by copper. Nevertheless, after 12 h treatment the dioxin content was substantially decreased (85% reduction) and the copper, thanks to the phenomena of incorporation and amorphization that occur during milling, was almost inactivated. PMID:26975802

  10. Ball milling effects for induced carriers and reduced grain size on thermoelectric properties in Bi1‑ x Sr x CuSeO (x = 0,0.1)

    NASA Astrophysics Data System (ADS)

    Mizuno, Shu; Ishizawa, Mamoru; Fujishiro, Hiroyuki; Naito, Tomoyuki; Katsui, Hirokazu; Goto, Takashi

    2016-11-01

    We have investigated the ball milling effects for thermoelectric Bi1‑ x Sr x CuSeO (x = 0,0.1) materials. The characteristic rotation speed R for the ball milling exists, at which the crystallite size of the starting powder suddenly decreased. The grain size in the bulks sintered using ball-milled powders also decreased and thermoelectric properties were enhanced mainly by the induced carriers, rather than by the reduction in thermal conductivity. The ball milling effects of carrier doping on thermoelectricity are discussed.

  11. Study of morphology and magnetic properties of the HoNi{sub 3} crystalline and ball-milled compound

    SciTech Connect

    Bajorek, Anna; Skornia, Paweł; Prusik, Krystian; Wojtyniak, Marcin; Chełkowska, Grażyna

    2015-03-15

    The morphology and magnetic properties of the HoNi{sub 3} crystalline and ball-milled intermetallic compounds are presented. The polycrystalline HoNi{sub 3} bulk compound crystallizes in the rhombohedral PuNi{sub 3} — type of crystal structure and indicates ferrimagnetic arrangement with the Curie temperature of T{sub C} = 57 ± 2 K, the helimagnetic temperature T{sub h} = 23 ± 2 K with the total saturation magnetic moment of 6.84 μ{sub B}/f.u. at 2 K. The use of the ball-milling method leads to the formation of HoNi{sub 3} nanoflakes with typical thickness of less than 100 nm prone to agglomeration upon milling. The increase of grinding duration leads to the reduction in crystallite size, which was confirmed by various complementary microscopical and diffraction studies. Moreover, the increase in milling duration results in the emergence of the relatively small coercivity (H{sub C}), remanence (M{sub r}) and a variation of the saturation magnetization (M{sub S}). - Graphical abstract: Display Omitted - Highlights: • The ball-milling method exhibits significant potential for producing RT{sub 3} nanopowders. • The AFM method was used for the first time in analysis of R–T nanoflakes morphology. • HoNi{sub 3} compound forms polycrystalline and textured nanoflakes evolving upon milling. • The decrease in crystallite size via grinding is confirmed by XRD, TEM and AFM. • The magnetic parameters were sensitive to the extension of pulverization b.

  12. Bismuth-ceramic nanocomposites through ball milling and liquid crystal synthetic methods

    NASA Astrophysics Data System (ADS)

    Dellinger, Timothy Michael

    Three methods were developed for the synthesis of bismuth-ceramic nanocomposites, which are of interest due to possible use as thermoelectric materials. In the first synthetic method, high energy ball milling of bismuth metal with either MgO or SiO2 was found to produce nanostructured bismuth dispersed on a ceramic material. The morphology of the resulting bismuth depended on its wetting behavior with respect to the ceramic: the metal wet the MgO, but did not wet on the SiO2. Differential Scanning Calorimetry measurements on these composites revealed unusual thermal stability, with nanostructure retained after multiple cycles of heating and cooling through the metal's melting point. The second synthesis methodology was based on the use of lyotropic liquid crystals. These mixtures of water and amphiphilic molecules self-assemble to form periodic structures with nanometer-scale hydrophilic and hydrophobic domains. A novel shear mixing methodology was developed for bringing together reactants which were added to the liquid crystals as dissolved salts. The liquid crystals served to mediate synthesis by acting as nanoreactors to confine chemical reactions within the nanoscale domains of the mesophase, and resulted in the production of nanoparticles. By synthesizing lead sulfide (PbS) and bismuth (Bi) particles as proof-of-concept, it was shown that nanoparticle size could be controlled by controlling the dimensionality of the nanoreactors through control of the liquid crystalline phase. Particle size was shown to decrease upon going from three-dimensionally percolating nanoreactors, to two dimensional sheet-like nanoreactors, to one dimensional rod-like nanoreactors. Additionally, particle size could be controlled by varying the precursor salt concentration. Since the nanoparticles did not agglomerate in the liquid crystal immediately after synthesis, bismuth-ceramic nanocomposites could be prepared by synthesizing Bi nanoparticles and mixing in SiO2 particles which

  13. Preparation of Si nano-crystals with controlled oxidation state from SiO disproportionated by ZrO2 ball-milling

    NASA Astrophysics Data System (ADS)

    Okamoto, Yuji; Harada, Yoshitomo; Ohta, Narumi; Takada, Kazunori; Sumiya, Masatomo

    2016-09-01

    We demonstrate that a SiO disproportionation reaction can be achieved simply by high energy mechanochemical milling. The planetary ball-milling of ZrO2 for a few minutes generated Si nano-crystals. Milling conditions including rotation speed, ball number, milling time, and type of ball material were able to control the oxidation states of Si. The ball-milled SiO powder was tested as an anode of a lithium battery. ZrO2 contamination from the vial and balls was eliminated by dipping the ball-milled SiO powder in (NH4)HSO4 molten salt and heating for 5 min. The disproportionated SiO powder showed characteristics comparable to those of a powder prepared by a conventional heating process taking several hours.

  14. Effect of ball milling and dynamic compaction on magnetic properties of Al{sub 2}O{sub 3}/Co(P) composite particles

    SciTech Connect

    Denisova, E. A.; Kuzovnikova, L. A.; Iskhakov, R. S. Eremin, E. V.; Bukaemskiy, A. A.; Nemtsev, I. V.

    2014-05-07

    The evolution of the magnetic properties of composite Al{sub 2}O{sub 3}/Co(P) particles during ball milling and dynamic compaction is investigated. To prepare starting composite particles, the Al{sub 2}O{sub 3} granules were coated with a Co{sub 95}P{sub 5} shell by electroless plating. The magnetic and structural properties of the composite particles are characterized by scanning electron microscopy, X-ray diffraction, and the use of the Physical Property Measurement System. The use of composite core-shell particles as starting powder for mechanoactivation allows to decrease treatment duration to 1 h and to produce a more homogeneous bulk sample than in the case of the mixture of Co and Al{sub 2}O{sub 3} powders. The magnetic properties of the milled composite particles are correlated with changes in the microstructure. Reduction in grain size of Co during milling leads to an increase of the volume fraction of superparamagnetic particles and to a decrease of the saturation magnetization. The local magnetic anisotropy field depends on the amount of hcp-Co phase in sample. The anisotropy field value decreases from 8.4 kOe to 3.8 kOe with an increase in milling duration up to 75 min. The regimes of dynamic compaction were selected so that the magnetic characteristics—saturation magnetization and coercive field—remained unchanged.

  15. Textured Pr{sub 2}Fe{sub 14}B flakes with submicron or nanosize thickness prepared by surfactant-assisted ball milling

    SciTech Connect

    Zuo, Wen-Liang E-mail: shenbg@aphy.iphy.ac.cn; Liu, Rong-Ming; Zheng, Xin-Qi; Wu, Rong-Rong; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen E-mail: shenbg@aphy.iphy.ac.cn

    2014-05-07

    The textured Pr{sub 2}Fe{sub 14}B nanoflakes were produced by surfactant-assisted ball milling (SABM). Single phase tetragonal structure was characterized for the samples before and after SABM by X-ray diffraction (XRD). The thickness and length of the as-milled flakes are mainly in the range of 50–150 nm and 0.5–2 μm, respectively. For the field-aligned Pr{sub 2}Fe{sub 14}B nanoflakes, the out-of-plane texture (the easy magnetization direction (EMD) along the c-axis) is indicated from the increasing (00l) peaks in the XRD patterns. SEM image demonstrates that the EMD is parallel to flaky surface, which is different from the RCo{sub 5} (R = rare earth) system with EMD perpendicular to the surface. We propose a hypothesis that the easy glide planes are related with the area of crystal planes. In addition, a large coercivity H{sub c} = 3.9 kOe is observed in the Pr{sub 2}Fe{sub 14}B flakes with strong texture.

  16. Formation of NiAl Intermetallic Compound by Cold Spraying of Ball-Milled Ni/Al Alloy Powder Through Postannealing Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Chang-Jiu; Wang, Xiu-Ru; Ren, Zhi-Liang; Li, Cheng-Xin; Yang, Guan-Jun

    2008-12-01

    Ni/Al alloy powders were synthesized by ball milling of nickel-aluminum powder mixture with a Ni/Al atomic ratio of 1:1. Ni/Al alloy coating was deposited by cold spraying using N2 as accelerating gas. NiAl intermetallic compound was evolved in situ through postspray annealing treatment of cold-sprayed Ni/Al alloy coating. The effect of annealing temperature on the phase transformation behavior from Ni/Al mechanical alloy to intermetallics was investigated. The microstructure of the mechanically alloying Ni/Al powder and NiAl coatings was characterized by scanning electron microscopy and x-ray diffraction analysis. The results show that a dense Ni/Al alloy coating can be successfully deposited by cold spraying using the mechanically alloyed powder as feedstocks. The as-sprayed alloy coating exhibited a laminated microstructure retained from the mechanically alloying powder. The annealing of the subsequent Ni/Al alloy coating at a temperature higher than 850 °C leads to complete transformation from Ni/Al alloy to NiAl intermetallic compound.

  17. Size dependence of the magnetic and hyperfine properties of nanostructured hematite ( α-Fe 2 O 3 ) powders prepared by the ball milling technique

    NASA Astrophysics Data System (ADS)

    André-Filho, J.; León-Félix, L.; Coaquira, J. A. H.; Garg, V. K.; Oliveira, A. C.

    2014-01-01

    In this work we present the study of hematite ( α-Fe2O3) nanostructures synthesized by the ball milling technique. The structural characterization and the crystallite size estimation have been carried out using the X-ray diffraction (XRD) technique. Data analyses indicate that the hematite phase (space group, R-3C) is preserved after the milling process. As the milling time is increased, a second phase ( α-Fe) appears. The mean crystallite size shows a decreasing tendency as the milling time is increased. High-resolution transmission electron microscopy (HRTEM) images show the formation of grains composed of crystallites with irregular shapes. Mössbauer spectra of milled powders carried out at 297 and 77 K are well modeled with a histogram distribution of hyperfine fields. The presence of one additional sextet which corresponds to the ∝-Fe phase is also determined in agreement with XRD data analysis. Magnetic measurements suggest the suppression of the Morin transition in the milled samples and the absence of thermal relaxation effects in agreement with the Mössbauer spectroscopy results.

  18. Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process

    NASA Astrophysics Data System (ADS)

    Fathinia, Siavash; Fathinia, Mehrangiz; Rahmani, Ali Akbar; Khataee, Alireza

    2015-02-01

    In the present study pyrite nanoparticles were prepared by high energy mechanical ball milling utilizing a planetary ball mill. Various pyrite samples were produced by changing the milling time from 2 h to 6 h, in the constant milling speed of 320 rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) linked with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer-Emmett-Teller (BET) were performed to explain the characteristics of primary (unmilled) and milled pyrite samples. The average particle size distribution of the produced pyrite during 6 h milling was found to be between 20 nm and 100 nm. The catalytic performance of the different pyrite samples was examined in the heterogeneous Fenton process for degradation of C.I. Acid Orange 7 (AO7) solution. Results showed that the decolorization efficiency of AO7 in the presence of 6 h-milled pyrite sample was the highest. The impact of key parameters on the degradation efficiency of AO7 by pyrite nanoparticles catalyzed Fenton process was modeled using central composite design (CCD). Accordingly, the maximum removal efficiency of 96.30% was achieved at initial AO7 concentration of 16 mg/L, H2O2 concentration of 5 mmol/L, catalyst amount of 0.5 g/L and reaction time of 25 min.

  19. Effects of process control agent on the synthesis of AIN-carbon nanotube by ball-milling.

    PubMed

    Nam, Hye Rim; Kim, Young Jin; Ahn, Jung-Ho

    2013-09-01

    Aluminum and its alloy are of importance due to high specific strength. In particular, aluminum matrix composites have good corrosion resistance and mechanical property at high temperatures. However, enhanced mechanical strength and wear resistance via proper heat treatments are strongly required for many structural applications. For this purpose, we synthesized carbon nanotube (CNT)-reinforced aluminum matrix composites by employing a new method. We employed controlled ball-milling and sintering: the use of some specific process control agents (PCAs) for ball-milling and sintering in a specific atmosphere. The use of our PCAs was beneficial both for homogeneous mixing and for the formation of hard dispersoids. Hardened layers was formed at the surface of the present aluminum-CNT composites as a result of reaction of aluminum with PCAs and nitrogen in the processing atmosphere. The resulting materials after sintering showed interesting mechanical properties, combined with surface hardening. The hardening mainly stems from the formation of Al-N-O phase at the surface of specimens. PMID:24205586

  20. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods

    NASA Astrophysics Data System (ADS)

    Rahimi Kord Sofla, M.; Brown, R. J.; Tsuzuki, T.; Rainey, T. J.

    2016-09-01

    This study compared the fundamental properties of cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) extracted from sugarcane bagasse. Conventional hydrolysis was used to extract CNC while ball milling was used to extract CNF. Images generated by scanning electron microscope and transmission electron microscope showed CNC was needle-like with relatively lower aspect ratio and CNF was rope-like in structure with higher aspect ratio. Fourier-transformed infrared spectra showed that the chemical composition of nanocellulose and extracted cellulose were identical and quite different from bagasse. Dynamic light scattering studies showed that CNC had uniform particle size distribution with a median size of 148 nm while CNF had a bimodal size distribution with median size 240 ± 12 nm and 10 μm. X-ray diffraction showed that the amorphous portion was removed during hydrolysis; this resulted in an increase in the crystalline portion of CNC compared to CNF. Thermal degradation of cellulose initiated at a much lower temperature, in the case of the nanocrystals while the CNF prepared by ball milling were not affected, indicating higher thermal stability.

  1. Multiscale Fractal Characterization of Hierarchical Heterogeneity in Sandstone Reservoirs

    NASA Astrophysics Data System (ADS)

    Liu, Yanfeng; Liu, Yuetian; Sun, Lu; Liu, Jian

    2016-07-01

    Heterogeneities affecting reservoirs often develop at different scales. Previous studies have described these heterogeneities using different parameters depending on their size, and there is no one comprehensive method of reservoir evaluation that considers every scale. This paper introduces a multiscale fractal approach to quantify consistently the hierarchical heterogeneities of sandstone reservoirs. Materials taken from typical depositional pattern and aerial photography are used to represent three main types of sandstone reservoir: turbidite, braided, and meandering river system. Subsequent multiscale fractal dimension analysis using the Bouligand-Minkowski method characterizes well the hierarchical heterogeneity of the sandstone reservoirs. The multiscale fractal dimension provides a curve function that describes the heterogeneity at different scales. The heterogeneity of a reservoir’s internal structure decreases as the observational scale increases. The shape of a deposit’s facies is vital for quantitative determination of the sedimentation type, and thus enhanced oil recovery. Characterization of hierarchical heterogeneity by multiscale fractal dimension can assist reservoir evaluation, geological modeling, and even the design of well patterns.

  2. Multiscale characterization and analysis of shapes

    DOEpatents

    Prasad, Lakshman; Rao, Ramana

    2002-01-01

    An adaptive multiscale method approximates shapes with continuous or uniformly and densely sampled contours, with the purpose of sparsely and nonuniformly discretizing the boundaries of shapes at any prescribed resolution, while at the same time retaining the salient shape features at that resolution. In another aspect, a fundamental geometric filtering scheme using the Constrained Delaunay Triangulation (CDT) of polygonized shapes creates an efficient parsing of shapes into components that have semantic significance dependent only on the shapes' structure and not on their representations per se. A shape skeletonization process generalizes to sparsely discretized shapes, with the additional benefit of prunability to filter out irrelevant and morphologically insignificant features. The skeletal representation of characters of varying thickness and the elimination of insignificant and noisy spurs and branches from the skeleton greatly increases the robustness, reliability and recognition rates of character recognition algorithms.

  3. GEL-STATE NMR OF BALL-MILLED WHOLE CELL WALLS IN DMSO-d6 USING 2D SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls were used for obtaining 2D solution-state NMR spectra without actual solubilization or structural modification. Ball-milled whole cell walls were swelled directly in the NMR tube with DMSO-d6 where they formed a gel. There are relatively few gel-state NMR studies. Most have involved...

  4. High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization

    NASA Astrophysics Data System (ADS)

    Wang, Dingsheng; Gao, Mingxia; Pan, Hongge; Wang, Junhua; Liu, Yongfeng

    2014-06-01

    Amorphous-Si@SiOx/C composites with amorphous Si particles as core and coated with a double layer of SiOx and carbon are prepared by ball-milling crystal micron-sized silicon powders and carbonization of the citric acid intruded in the ball-milled Si. Different ratios of Si to citric acid are used in order to optimize the electrochemical performance. It is found that SiOx exists naturally at the surfaces of raw Si particles and its content increases to ca. 24 wt.% after ball-milling. With an optimized Si to citric acid weight ratio of 1/2.5, corresponding to 8.4 wt.% C in the composite, a thin carbon layer is coated on the surfaces of a-Si@SiOx particles, moreover, floc-like carbon also forms and connects the carbon coated a-Si@SiOx particles. The composite provides a capacity of 1450 mA h g-1 after 100 cycles at a current density of 100 mA g1, and a capacity of 1230 mA h g-1 after 100 cycles at 500 mA g1 as anode material for lithium-ion batteries. Effects of ball-milling and the addition of citric acid on the microstructure and electrochemical properties of the composites are revealed and the mechanism of the improvement in electrochemical properties is discussed.

  5. Manganese(III) Acetate-Promoted Cross-Coupling Reaction of Benzothiazole/Thiazole Derivatives with Organophosphorus Compounds under Ball-Milling Conditions.

    PubMed

    Li, Liang; Wang, Jun-Jie; Wang, Guan-Wu

    2016-07-01

    The first solvent-free manganese(III) acetate-promoted reaction of benzothiazole/thiazole derivatives with organophosphorus compounds including phosphine oxides, phosphinate ester, and phosphonate diester has been efficiently developed under ball-milling conditions, providing a highly efficient and green protocol to structurally diverse C2-phosphonylated benzothiazole/thiazole derivatives with remarkable functional group tolerance and excellent yields. PMID:27248000

  6. Stainless-Steel Ball-Milling Method for Hydro-/Deutero-genation using H2O/D2O as a Hydrogen/Deuterium Source.

    PubMed

    Sawama, Yoshinari; Kawajiri, Takahiro; Niikawa, Miki; Goto, Ryota; Yabe, Yuki; Takahashi, Tohru; Marumoto, Takahisa; Itoh, Miki; Kimura, Yuuichi; Monguchi, Yasunari; Kondo, Shin-ichi; Sajiki, Hironao

    2015-11-01

    A one-pot continuous-flow method for hydrogen (deuterium) generation and subsequent hydrogenation (deuterogenation) was developed using a stainless-steel (SUS304)-mediated ball-milling approach. SUS304, especially zero-valent Cr and Ni as constituents of the SUS304, and mechanochemical processing played crucial roles in the development of the reactions. PMID:26493945

  7. HRTEM and TEM studies of amorphous structures in ZrNiTiCu base alloys obtained by rapid solidification or ball milling.

    PubMed

    Dutkiewicz, J; Lityńska, L; Maziarz, W; Kocisko, R; Molnarová, M; Kovácová, A

    2009-01-01

    Amorphous structure of Ti(25)Zr(17)Ni(29)Cu(29) composition was studied. Alloys were prepared either by rapid solidification using melt spinning or by high-energy ball milling. The composition of multi-component eutectic in slowly cooled samples of ZrNiTiCu alloy was determined using EDS measurements in scanning microscope of slowly cooled cast samples. The alloys of eutectic composition were melt-spun or ball-milled. Transmission electron microscopy (TEM) studies of melt-spun ribbons from alloys near eutectic composition did not show presence of nanocrystals within the amorphous structure. TEM studies of ball-milled powders showed presence of nanocrystallites of size 2-5 nm. The electron diffraction pattern showed intense diffused ring due to the presence of the amorphous phase and a weak spot due to crystalline phases which were difficult to identify. The high temperature high-pressure compaction in vacuum of amorphous ball-milled powders resulted in a similar structure like in the powders showing nanocrystals embedded in the amorphous matrix. The crystallites were imaged using HREM. Interplanar distances were measured in pictures obtained by inverse fast Fourier transform (IFFT) of atomic planes to obtain better contrast. Analysis of the IFFT from high-resolution micrographs allowed to identify Cu(10)Zr(7) phase. Point analysis and elemental mapping performed using nondispersive X-ray energy spectroscopy showed uniform elements distribution indicating that chemical segregation to nanocrystals is within measurement error. PMID:18614372

  8. Properties of dispersion-strengthened chromium - 4-volume-percent-thoria alloys produced by ball milling in hydrogen iodide

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1974-01-01

    The effects of processing variables on the tensile properties and ductile-to-brittle transition temperature (DBTT) of Cr + 4 vol. %ThO2 alloys and of pure Cr produced by ball milling in hydrogen iodide were investigated. Hot rolled Cr + ThO2 was stronger than either hot pressed Cr + ThO2 or pure Cr at temperatures up to 1537 C. Hot pressed Cr + ThO2 had a DBTT of 501 C as compared with minus 8 to 24 C for the hot rolled Cr + ThO2 and with 139 C for pure Cr. It is postulated that the dispersoid in the hot rolled alloys lowers the DBTT by inhibiting recovery and recrystallization of the strained structure.

  9. The structure and magnetic properties of Sm-Fe-N powders prepared by ball milling at low temperature

    NASA Astrophysics Data System (ADS)

    Fang, Qiuli; An, Xiaoxin; Wang, Fang; Li, Ying; Du, Juan; Xia, Weixing; Yan, Aru; Liu, J. Ping; Zhang, Jian

    2016-07-01

    Sm-Fe-N powders have great potential to be used for preparing high-performance bonded permanent magnets because of their high anisotropy field and large saturation magnetization. In this work, we report the morphology, structure, oxygen content and magnetic properties of the Sm-Fe-N powders prepared by high energy ball milling at low temperature. Compared with the samples milled at room temperature, the Sm-Fe-N powders prepared at low temperature display more homogeneous morphology, less decomposition, lower oxygen content, and therefore enhanced magnetic performance. Our experimental results indicate that the low temperature milling will be a promising method for fabricating Sm-Fe-N bonded magnets with high-performance.

  10. Superthermostability of nanoscale TIC-reinforced copper alloys manufactured by a two-step ball-milling process

    NASA Astrophysics Data System (ADS)

    Wang, Fenglin; Li, Yunping; Xu, Xiandong; Koizumi, Yuichiro; Yamanaka, Kenta; Bian, Huakang; Chiba, Akihiko

    2015-12-01

    A Cu-TiC alloy, with nanoscale TiC particles highly dispersed in the submicron-grained Cu matrix, was manufactured by a self-developed two-step ball-milling process on Cu, Ti and C powders. The thermostability of the composite was evaluated by high-temperature isothermal annealing treatments, with temperatures ranging from 727 to 1273 K. The semicoherent nanoscale TiC particles with Cu matrix, mainly located along the grain boundaries, were found to exhibit the promising trait of blocking grain boundary migrations, which leads to a super-stabilized microstructures up to approximately the melting point of copper (1223 K). Furthermore, the Cu-TiC alloys after annealing at 1323 K showed a slight decrease in Vickers hardness as well as the duplex microstructure due to selective grain growth, which were discussed in terms of hardness contributions from various mechanisms.

  11. Inkjet-printed flexible organic thin-film thermoelectric devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s/polymer composites through ball-milling

    PubMed Central

    Jiao, Fei; Di, Chong-an; Sun, Yimeng; Sheng, Peng; Xu, Wei; Zhu, Daoben

    2014-01-01

    In this article, we put forward a simple method for the synthesis of thermoelectric (TE) composite materials. Both n- and p-type composites were obtained by ball-milling the insoluble and infusible metal coordination polymers with other polymer solutions. The particle size, film morphology and composition were characterized by dynamic light scattering, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. The TE properties of the drop-cast composite film were measured at different temperatures. An inkjet-printed flexible device was fabricated and the output voltage and short-circuit current at various hot-side temperatures (Thot) and temperature gradients (ΔT) were tested. The composite material not only highly maintained the TE properties of the pristine material but also greatly improved its processability. This method can be extended to other insoluble and infusible TE materials for solution-processed flexible TE devices. PMID:24615147

  12. Significantly improved dehydrogenation of ball-milled MgH2 doped with CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Shan, Jiawei; Li, Ping; Wan, Qi; Zhai, Fuqiang; Zhang, Jun; Li, Ziliang; Liu, Zhaojiang; Volinsky, Alex A.; Qu, Xuanhui

    2014-12-01

    CoFe2O4 nanoparticles are added to magnesium hydride (MgH2) by high-energy ball milling in order to improve its hydriding properties. The hydrogen storage properties and catalytic mechanism are investigated by pressure-composition-temperature (PCT), differential thermal analysis (DTA), X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The nonisothermal desorption results show that the onset desorption temperature of the MgH2 + 7 mol% CoFe2O4 is 160 °C, which is 200 °C lower than of the as-received MgH2. The dehydrogenation process of the MgH2 doped with the CoFe2O4 nanoparticles includes two steps. DTA curves and XRD patterns reveal that a chemical reaction happens between MgH2 and CoFe2O4, forming the final products of the ternary combination, corresponding to Co3Fe7, MgO and Co. The onset desorption temperature of the ball-milled MgH2 doped with Co3Fe7, MgO and Co is about 260 °C, approximately 100 °C lower than the un-doped MgH2, demonstrating that the ternary combination (Co3Fe7, MgO, and Co) also has a great catalytic effect on the MgH2 hydrogen storage properties. It is also confirmed that the various methods of adding the ternary combination have different effects on the MgH2 hydriding-dehydriding process.

  13. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries.

    PubMed

    Xu, Jiantie; Shui, Jianglan; Wang, Jianli; Wang, Min; Liu, Hua-Kun; Dou, Shi Xue; Jeon, In-Yup; Seo, Jeong-Min; Baek, Jong-Beom; Dai, Liming

    2014-10-28

    Although much progress has been made to develop high-performance lithium-sulfur batteries (LSBs), the reported physical or chemical routes to sulfur cathode materials are often multistep/complex and even involve environmentally hazardous reagents, and hence are infeasible for mass production. Here, we report a simple ball-milling technique to combine both the physical and chemical routes into a one-step process for low-cost, scalable, and eco-friendly production of graphene nanoplatelets (GnPs) edge-functionalized with sulfur (S-GnPs) as highly efficient LSB cathode materials of practical significance. LSBs based on the S-GnP cathode materials, produced by ball-milling 70 wt % sulfur and 30 wt % graphite, delivered a high initial reversible capacity of 1265.3 mAh g(-1) at 0.1 C in the voltage range of 1.5-3.0 V with an excellent rate capability, followed by a high reversible capacity of 966.1 mAh g(-1) at 2 C with a low capacity decay rate of 0.099% per cycle over 500 cycles, outperformed the current state-of-the-art cathode materials for LSBs. The observed excellent electrochemical performance can be attributed to a 3D "sandwich-like" structure of S-GnPs with an enhanced ionic conductivity and lithium insertion/extraction capacity during the discharge-charge process. Furthermore, a low-cost porous carbon paper pyrolyzed from common filter paper was inserted between the 0.7S-0.3GnP electrode and porous polypropylene film separator to reduce/eliminate the dissolution of physically adsorbed polysulfide into the electrolyte and subsequent cross-deposition on the anode, leading to further improved capacity and cycling stability.

  14. Scale-up of organic reactions in ball mills: process intensification with regard to energy efficiency and economy of scale.

    PubMed

    Stolle, Achim; Schmidt, Robert; Jacob, Katharina

    2014-01-01

    The scale-up of the Knoevenagel-condensation between vanillin and barbituric acid carried out in planetary ball mills is investigated from an engineering perspective. Generally, the reaction proceeded in the solid state without intermediate melting and afforded selectively only one product. The reaction has been used as a model to analyze the influence and relationship of different parameters related to operation in planetary ball mills. From the viewpoint of technological parameters the milling ball diameter, dMB, the filling degree with respect to the milling balls' packing, ΦMB,packing, and the filling degree of the substrates with respect to the void volume of the milling balls' packing, ΦGS, have been investigated at different reaction scales. It was found that milling balls with small dMB lead to higher yields within shorter reaction time, treaction, or lower rotation frequency, rpm. Thus, the lower limit is set considering the technology which is available for the separation of the milling balls from the product after the reaction. Regarding ΦMB,packing, results indicate that the optimal value is roughly 50% of the total milling beakers' volume, VB,total, independent of the reaction scale or reaction conditions. Thus, 30% of VB,total are taken by the milling balls. Increase of the initial batch sizes changes ΦGS significantly. However, within the investigated parameter range no negative influence on the yield was observed. Up to 50% of VB,total can be taken over by the substrates in addition to 30% for the total milling ball volume. Scale-up factors of 15 and 11 were realized considering the amount of substrates and the reactor volume, respectively. Beside technological parameters, variables which influence the process itself, treaction and rpm, were investigated also. Variation of those allowed to fine-tune the reaction conditions in order to maximize the yield and minimize the energy intensity.

  15. Dielectric and photocatalytic properties of sulfur doped TiO{sub 2} nanoparticles prepared by ball milling

    SciTech Connect

    Jalalah, Mohammed; Faisal, M.; Bouzid, Houcine; Ismail, Adel A.; Al-Sayari, Saleh A.

    2013-09-01

    Graphical abstract: - Highlights: • Designing of visible light responsive photocatalyst utilizing ball milling. • Sulphur used as dopant in commercial TiO{sub 2} P25 at different atomic percentage. • S doping resulted in an intense increase in absorption in the visible light region. • Newly design photocatalyst exhibited excellent photocatalytic performance. • 0.11 at.% S-doped TiO{sub 2} shows 3-times higher activity than that of TiO{sub 2} P25. - Abstract: Sulfur (S) doped commercial TiO{sub 2} P-25 has been achieved by changing the amount of thiourea using ball milling technique. The results of XRD clearly reveal biphasial anatase and rutile mixtures for all prepared samples and doping of S does not change the morphology of the TiO{sub 2}. The optical absorption edge of S-doped TiO{sub 2} was red shifted with indirect bandgap energy of 2.8 eV. The dielectric studies confirm that the dielectric constant of TiO{sub 2} increases after doping, however it becomes more conductive. Newly designed S-doped TiO{sub 2} photocatalysts exhibited excellent photocatalytic performance for the degradation of methylene blue (MB) under visible light. The overall photocatalytic activity of 0.11 at.% S-doped TiO{sub 2} was significantly 3-times higher than that of commercial TiO{sub 2} P-25 and complete degradation of MB has taken place after 90 min of irradiation under visible light while only 35% dye degraded when the reaction has been carried out in the presence of undoped TiO{sub 2}.

  16. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling.

    PubMed

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Wang, Bin; Wang, Yujue; Huang, Jun; Yu, Gang; Winglee, Judy; Wiesner, Mark R

    2016-03-15

    Ball milling was used to prepare two ultrafine magnetic biochar/Fe3O4 and activated carbon (AC)/Fe3O4 hybrid materials targeted for use in pharmaceutical removal by adsorption and mechanochemical degradation of pharmaceutical compounds. Both hybrid adsorbents prepared after 2h milling exhibited high removal of carbamazepine (CBZ), and were easily separated magnetically. These adsorbents exhibited fast adsorption of CBZ and tetracycline (TC) in the initial 1h. The biochar/Fe3O4 had a maximum adsorption capacity of 62.7mg/g for CBZ and 94.2mg/g for TC, while values obtained for AC/Fe3O4 were 135.1mg/g for CBZ and 45.3mg/g for TC respectively when data were fitted using the Langmuir expression. Solution pH values slightly affected the sorption of TC on the adsorbents, while CBZ sorption was almost pH-independent. The spent adsorbents with adsorbed CBZ and TC were milled to degrade the adsorbed pollutants. The adsorbed TC itself was over 97% degraded after 3h of milling, while about half of adsorbed CBZ were remained. The addition of quartz sand was found to improve the mechanochemical degradation of CBZ on biochar/Fe3O4, and its degradation percent was up to 98.4% at the dose of 0.3g quarts sand/g adsorbent. This research provided an easy method to prepare ultrafine magnetic adsorbents for the effective removal of typical pharmaceuticals from water or wastewater and degrade them using ball milling.

  17. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries.

    PubMed

    Xu, Jiantie; Shui, Jianglan; Wang, Jianli; Wang, Min; Liu, Hua-Kun; Dou, Shi Xue; Jeon, In-Yup; Seo, Jeong-Min; Baek, Jong-Beom; Dai, Liming

    2014-10-28

    Although much progress has been made to develop high-performance lithium-sulfur batteries (LSBs), the reported physical or chemical routes to sulfur cathode materials are often multistep/complex and even involve environmentally hazardous reagents, and hence are infeasible for mass production. Here, we report a simple ball-milling technique to combine both the physical and chemical routes into a one-step process for low-cost, scalable, and eco-friendly production of graphene nanoplatelets (GnPs) edge-functionalized with sulfur (S-GnPs) as highly efficient LSB cathode materials of practical significance. LSBs based on the S-GnP cathode materials, produced by ball-milling 70 wt % sulfur and 30 wt % graphite, delivered a high initial reversible capacity of 1265.3 mAh g(-1) at 0.1 C in the voltage range of 1.5-3.0 V with an excellent rate capability, followed by a high reversible capacity of 966.1 mAh g(-1) at 2 C with a low capacity decay rate of 0.099% per cycle over 500 cycles, outperformed the current state-of-the-art cathode materials for LSBs. The observed excellent electrochemical performance can be attributed to a 3D "sandwich-like" structure of S-GnPs with an enhanced ionic conductivity and lithium insertion/extraction capacity during the discharge-charge process. Furthermore, a low-cost porous carbon paper pyrolyzed from common filter paper was inserted between the 0.7S-0.3GnP electrode and porous polypropylene film separator to reduce/eliminate the dissolution of physically adsorbed polysulfide into the electrolyte and subsequent cross-deposition on the anode, leading to further improved capacity and cycling stability. PMID:25290080

  18. Multi-scale characterization of topographic anisotropy

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; Koons, P. O.; Osti, B.; Upton, P.; Tucker, G. E.

    2016-05-01

    We present the every-direction variogram analysis (EVA) method for quantifying orientation and scale dependence of topographic anisotropy to aid in differentiation of the fluvial and tectonic contributions to surface evolution. Using multi-directional variogram statistics to track the spatial persistence of elevation values across a landscape, we calculate anisotropy as a multiscale, direction-sensitive variance in elevation between two points on a surface. Tectonically derived topographic anisotropy is associated with the three-dimensional kinematic field, which contributes (1) differential surface displacement and (2) crustal weakening along fault structures, both of which amplify processes of surface erosion. Based on our analysis, tectonic displacements dominate the topographic field at the orogenic scale, while a combination of the local displacement and strength fields are well represented at the ridge and valley scale. Drainage network patterns tend to reflect the geometry of underlying active or inactive tectonic structures due to the rapid erosion of faults and differential uplift associated with fault motion. Regions that have uniform environmental conditions and have been largely devoid of tectonic strain, such as passive coastal margins, have predominantly isotropic topography with typically dendritic drainage network patterns. Isolated features, such as stratovolcanoes, are nearly isotropic at their peaks but exhibit a concentric pattern of anisotropy along their flanks. The methods we provide can be used to successfully infer the settings of past or present tectonic regimes, and can be particularly useful in predicting the location and orientation of structural features that would otherwise be impossible to elude interpretation in the field. Though we limit the scope of this paper to elevation, EVA can be used to quantify the anisotropy of any spatially variable property.

  19. Multiscale Approach to Characterize Mechanical Properties of Tissue Engineered Skin.

    PubMed

    Tupin, S; Molimard, J; Cenizo, V; Hoc, T; Sohm, B; Zahouani, H

    2016-09-01

    Tissue engineered skin usually consist of a multi-layered visco-elastic material composed of a fibrillar matrix and cells. The complete mechanical characterization of these tissues has not yet been accomplished. The purpose of this study was to develop a multiscale approach to perform this characterization in order to link the development process of a cultured skin to the mechanical properties. As a proof-of-concept, tissue engineered skin samples were characterized at different stages of manufacturing (acellular matrix, reconstructed dermis and reconstructed skin) for two different aging models (using cells from an 18- and a 61-year-old man). To assess structural variations, bi-photonic confocal microscopy was used. To characterize mechanical properties at a macroscopic scale, a light-load micro-mechanical device that performs indentation and relaxation tests was designed. Finally, images of the internal network of the samples under stretching were acquired by combining confocal microscopy with a tensile device. Mechanical properties at microscopic scale were assessed. Results revealed that adding cells during manufacturing induced structural changes, which provided higher elastic modulus and viscosity. Moreover, senescence models exhibited lower elastic modulus and viscosity. This multiscale approach was efficient to characterize and compare skin equivalent samples and permitted the first experimental assessment of the Poisson's ratio for such tissues.

  20. Phase development during high-energy ball-milling of zinc oxide and iron - the impact of grain size on the source and the degree of contamination.

    PubMed

    Štefanić, G; Krehula, S; Štefanić, I

    2015-11-21

    High-energy ball-milling of powder mixtures of zincite (ZnO) and iron (α-Fe) at different weight ratios was performed in air using a planetary ball mill with a stainless steel milling assembly. Structural and microstructural changes during the ball-milling (up to 30 h) were monitored using X-ray powder diffraction, field emission scanning electron microscopy (FE-SEM) and UV-Vis diffuse reflectance spectroscopy. The mechanism of iron oxidation was determined from the results of Mössbauer spectroscopy. It was found that an early phase of ball-milling caused the oxidation of iron from Fe(0) to Fe(2+) followed by the formation of a solid solution structurally similar to wüstite. The wüstite-type phase rapidly disappeared upon prolonged milling, which was accompanied by further oxidation of iron from Fe(2+) to Fe(3+) and the formation of spinel-type ferrite structurally similar to franklinite (ZnFe2O4) in the products with a high zinc content, or magnetite (Fe3O4) in the products with a high iron content. Further milling or annealing had a low impact on the franklinite-type phase, but caused the transition of the magnetite-type phase to the phase structurally similar to hematite (α-Fe2O3). The results of energy dispersive X-ray spectrometry (EDS) showed a dramatic increase in the degree of contamination with the increase in the proportion of the starting iron (∼9 times higher contamination during the milling of pure iron compared with pure zincite). It was shown that the source of contamination (balls or vial) strongly depends on the type of milled sample. Ball-milling of relatively big and heavy grains (starting iron) caused preferential contamination from the vial whereas ball-milling of smaller and lighter grains (products obtained after prolonged milling) caused preferential contamination from the balls. After prolonged milling the contamination due to wear of the balls was dominant in all the products. An explanation for the observed impact of grain size on

  1. Phase development during high-energy ball-milling of zinc oxide and iron - the impact of grain size on the source and the degree of contamination.

    PubMed

    Štefanić, G; Krehula, S; Štefanić, I

    2015-11-21

    High-energy ball-milling of powder mixtures of zincite (ZnO) and iron (α-Fe) at different weight ratios was performed in air using a planetary ball mill with a stainless steel milling assembly. Structural and microstructural changes during the ball-milling (up to 30 h) were monitored using X-ray powder diffraction, field emission scanning electron microscopy (FE-SEM) and UV-Vis diffuse reflectance spectroscopy. The mechanism of iron oxidation was determined from the results of Mössbauer spectroscopy. It was found that an early phase of ball-milling caused the oxidation of iron from Fe(0) to Fe(2+) followed by the formation of a solid solution structurally similar to wüstite. The wüstite-type phase rapidly disappeared upon prolonged milling, which was accompanied by further oxidation of iron from Fe(2+) to Fe(3+) and the formation of spinel-type ferrite structurally similar to franklinite (ZnFe2O4) in the products with a high zinc content, or magnetite (Fe3O4) in the products with a high iron content. Further milling or annealing had a low impact on the franklinite-type phase, but caused the transition of the magnetite-type phase to the phase structurally similar to hematite (α-Fe2O3). The results of energy dispersive X-ray spectrometry (EDS) showed a dramatic increase in the degree of contamination with the increase in the proportion of the starting iron (∼9 times higher contamination during the milling of pure iron compared with pure zincite). It was shown that the source of contamination (balls or vial) strongly depends on the type of milled sample. Ball-milling of relatively big and heavy grains (starting iron) caused preferential contamination from the vial whereas ball-milling of smaller and lighter grains (products obtained after prolonged milling) caused preferential contamination from the balls. After prolonged milling the contamination due to wear of the balls was dominant in all the products. An explanation for the observed impact of grain size on

  2. Solvent-free cross-dehydrogenative coupling reactions under high speed ball-milling conditions applied to the synthesis of functionalized tetrahydroisoquinolines.

    PubMed

    Su, Weike; Yu, Jingbo; Li, Zhenhua; Jiang, Zhijiang

    2011-11-01

    Solvent-free reaction using a high-speed ball milling technique has been first applied to cross-dehydrogenative coupling (CDC) reactions between tetrahydroisoquinolines and three types of pronucleophiles such as nitroalkanes, alkynes, and indoles. All coupling products were obtained in good yields at short reaction times (no more than 40 min). When alkynes and indoles were used as pronucleophile, the reactions can be catalyzed efficiently by recoverable copper balls without any additional metal catalyst. PMID:21961457

  3. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon

    2015-04-01

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na2CO3, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na2CO3, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4M HCl, 100°C and pulp density of 20g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching.

  4. Magnetically enhanced hard-soft SmCo5-FeNi composites obtained via high energy ball milling and heat treatment

    NASA Astrophysics Data System (ADS)

    Rai, B. K.; Mishra, S. R.

    2013-10-01

    The effect of high energy ball milling on the structure and magnetic properties of SmCo5-x%FeNi (x: 5,15), magnetically hard-soft phase composites, has been investigated as a function of composition ratio, ball milling time, and annealing temperature using x-ray diffraction and room temperature magnetometry. The milling resulted in decomposition of SmCo5 and FeNi phases. Heat treatment of ball-milled composites resulted in a secondary soft magnetic phase FeCo. High remanence and coercivity values are obtained at a low annealing temperature of ˜650 °C and short annealing time (20 min). Magnetic measurements of annealed composite sample, SmCo5-5%FeNi, show enhancement in magnetization (178%), remanence (127%), and coercivity (67%) as compared to that of pure SmCo5. The enhancement in coercivity and remanence is attributed to the effective exchange coupling between hard SmCo5 and soft FeCo/FeNi phases. Overall better magnetic properties were presented by composites with low FeNi content. The facile synthesis process represents a general process toward SmCo5 based exchange-spring nanocomposites for high performance bulk permanent magnet.

  5. Synthesis of Nd2Fe14C compound by high-energy ball-milling Nd-Fe alloy in heptane and annealing under vacuum

    NASA Astrophysics Data System (ADS)

    Geng, H. M.; Ji, Y.; Feng, X. Y.; Zhang, J. J.; Ran, Z.; Yan, Y.; Wang, W. Q.; Su, F.; Du, X. B.

    2016-06-01

    A simple synthesis route for the Nd2Fe14C compound with good permanent magnetic properties is presented. Being high-energy ball-milled in heptane (C7H16) for 8 h, the NdFe3.5 alloy consisting of Nd2Fe17 and Nd phases disproportionates into NdH2+δ and α-Fe. Subsequently, NdH2+δ decomposes when annealed from room temperature to 900 °C under vacuum, and H2 is released. Meanwhile Nd2Fe14C, NdC and little α-Fe phases are formed in the final product. H and C atoms come from the decomposition of heptane. Coercivity of 1.39 T and maximum magnetic energy product of 62.7 kJ m-3 have been achieved. Too short a ball-milling time results in the insufficient disproportionation of NdFe3.5 alloy and the residue of Nd2Fe17 phase in the final product. Too long a ball-milling time results in the appearance of NdC2 and more α-Fe phases besides Nd2Fe14C and NdC phases. Hexane (C6H14), octane (C8H18) and nonane (C9H20) have been proved to have a similar effect to heptane.

  6. Solid-state synthesis of Mg{sub 2}Si via short-duration ball-milling and low-temperature annealing

    SciTech Connect

    Ioannou, M.; Chrissafis, K.; Pavlidou, E.; Gascoin, F.; Kyratsi, Th.

    2013-01-15

    In this work, a short duration ball-milling of elemental Mg and Si followed by a thermal treatment is suggested in order to synthesize magnesium silicide via solid-state reaction. The formation of magnesium silicide was studied in terms of its structure and thermal characteristics by powder X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and differential scanning calorimetry. Pure Mg{sub 2}Si was formed after short milling and heating at temperatures as low as 280 Degree-Sign C. Differential scanning calorimetry analysis was performed to study the kinetics of the reaction. The activation energy of the reaction was calculated using the Ozawa-Flynn-Wall and Friedman methods. The thermoelectric properties suggested semiconducting behavior whereas thermal conductivity values of highly dense hot-pressed pellets are consistent with the literature. - Graphical abstract: Thermographs of ball-milled Mg and Si powders (1 and 2) show exothermic areas suggesting Mg{sub 2}Si formation at low temperatures. Unmilled Mg and Si mixture (3) forms Mg{sub 2}Si at higher temperatures. Highlights: Black-Right-Pointing-Pointer Ball-milling process is crucial for the formation of pure Mg{sub 2}Si at low temperatures. Black-Right-Pointing-Pointer Synthesis profiles based on different temperature settings and duration are suggested. Black-Right-Pointing-Pointer Thermal analysis confirms the shift of the Mg{sub 2}Si formation at low temperatures.

  7. Role of local heating in crystallization of amorphous alloys under ball milling: An experiment on Fe{sub 90}Zr{sub 10}

    SciTech Connect

    Kwon, Y. S.; Kim, J. S.; Povstugar, I. V.; Yelsukov, E. P.; Choi, P. P.

    2007-04-01

    Fe{sub 90}Zr{sub 10} was chosen as a model system to elucidate the roles of mechanical deformation and local heating in the phenomenon of ball-milling-induced crystallization of amorphous alloys. The structural evolution of melt-spun amorphous Fe{sub 90}Zr{sub 10} ribbons under different milling conditions and high-pressure torsion was investigated by means of x-ray diffraction, Moessbauer spectroscopy, and magnetic measurements. Despite a considerable difference in the local temperatures for high-energy and low-energy ball millings, cryomilling (under liquid nitrogen-cooling), and high-pressure torsion, amorphous Fe{sub 90}Zr{sub 10} crystallizes into a supersaturated {alpha}-Fe(Zr) solid solution in all cases. Local heating occurring under high- and low-energy millings only plays a minor role and leads to a slight shift of the crystallization products towards equilibrium state. Mechanical deformation was established as the primary cause of crystallization of the amorphous Fe-Zr alloy under ball milling.

  8. Quantification of residual crystallinity in ball milled commercially sourced lactose monohydrate by thermo-analytical techniques and terahertz spectroscopy.

    PubMed

    Smith, Geoff; Hussain, Amjad; Bukhari, Nadeem Irfan; Ermolina, Irina

    2015-05-01

    The quantification of crystallinity is necessary in order to be able to control the milling process. The use of thermal analysis for this assessment presents certain challenges, particularly in the case of crystal hydrates. In this study, the residual crystallinity on ball milling of lactose monohydrate (LMH), for periods up to 90min, was evaluated by thermo-analytical techniques (TGA, DSC) and terahertz spectroscopy (THz). In general, the results from one of the DSC analysis and the THz measurements agree showing a monotonous decrease in relative residual crystallinity with milling time (∼80% reduction after 60min milling) and a slight increase at the 90min time point. However, the estimates from TGA and two other methods of analyzing DSC curve do not agree with the former techniques and show variability with significantly higher estimates for crystallinity. It was concluded that, the thermal techniques require more complex treatment of the data in the evaluation of changes in crystallinity of a milled material (in particular to account for the de-vitrification and mutarotation of the material that inevitably occurs during the measurement cycle) while the analysis of THz data is more straightforward, with the measurement having no impact on the native state of the material. PMID:25784570

  9. A comparison between different X-ray diffraction line broadening analysis methods for nanocrystalline ball-milled FCC powders

    NASA Astrophysics Data System (ADS)

    Soleimanian, V.; Mojtahedi, M.

    2015-06-01

    The microstructural characteristics of aluminum, copper and nickel powders are investigated using different X-ray diffraction line broadening analysis approaches. Prior to analysis, the powders were ball-milled to produce a nanocrystalline structure with high density of probable types of lattice defects. A variety of methods, including Scherrer, Williamson-Smallman, Williamson-Hall, Warren-Averbach, modified Williamson-Hall, modified Warren-Averbach, Rietveld refinement and whole powder pattern modeling (WPPM) approaches are applied. In this way, microstructural characteristics such as crystallite size, microstrain, dislocation density, effective outer cut-off radius of dislocations and the probability of twining and stacking faults are calculated. On the other hand, the results of conventional and advanced line broadening analysis methods are compared. It is revealed that the density of linear and planar defects in the mechanically deformed aluminum powder is significantly smaller than that of copper and nickel, as well as the level of anisotropic strain broadening. Moreover, the WPPM procedure provided a better profile fitting with more accurate results.

  10. A novel combined pretreatment of ball milling and microwave irradiation for enhancing enzymatic hydrolysis of microcrystalline cellulose.

    PubMed

    Peng, Huadong; Li, Hongqiang; Luo, Hao; Xu, Jian

    2013-02-01

    Microcrystalline cellulose (MCC) was performed as a mode substrate to investigate its potential ability of bioconversion in a novel combined pretreatment of ball milling (BM) and/or microwave irradiation (MWI). The variation of structure characteristics of MCC before/after pretreatment were investigated, including crystallinity index (CrI), size of crystal (S(C)), specific surface area (SSA) and degree of polymerization (DP). Their correlation with the rate of enzymatic hydrolysis was differentiated by an optimized equation which indicated the rate of hydrolysis was much more sensitive to CrI than SSA and DP. To achieve the same or higher glucose yield of BM for 3h and 6h, BM for 1h with MWI for 20min could save 54.8% and 77.40% energy consumption, respectively. Moreover, chemicals were not required in this process. It is concluded that the combination of BM and short time MWI is an environment-friendly, economical and effective approach to treat biomass. PMID:23306114

  11. Textured PrCo{sub 5} nanoflakes with large coercivity prepared by low power surfactant-assisted ball milling

    SciTech Connect

    Zuo, Wen-Liang Liu, Rong-Ming; Zheng, Xin-Qi; Wu, Rong-Rong; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2014-05-07

    The effect of the milling time on the structure, morphology, coercivity, and remanence ratio of textured PrCo{sub 5} nanoflakes produced by low power surfactant-assisted ball milling (SABM) was investigated. The X-ray powder diffraction (XRD) patterns indicate that the SABM PrCo{sub 5} samples are all CaCu{sub 5}-type hexagonal structure. The average grain size is smaller than 10 nm when the SABM time is equal to or longer than 5.5 h. The thickness of nanoflakes is mainly in the range of 50−100 nm while the length is 0.5−5 μm when the SABM time reaches 8 h. For the field-aligned PrCo{sub 5} nanoflakes, the out-of-plane texture is indicated from the increasing (0 0 l) peaks in the XRD patterns, and the easy magnetization direction is perpendicular to the flake surface. The strong texture of PrCo{sub 5} nanoflakes leads to a large coercivity H{sub c} (7.8 kOe) and obvious anisotropic magnetic behaviors for the aligned samples.

  12. Effects of high-energy ball-milling on injectability and strength of β-tricalcium-phosphate cement.

    PubMed

    Bae, Jiyoung; Ida, Yumika; Sekine, Kazumitsu; Kawano, Fumiaki; Hamada, Kenichi

    2015-07-01

    Calcium phosphate cement (CPC) offers many advantages as a bone-substitution material. The objective of this study is to develop a new CPC that simultaneously exhibits fine injectability, a short setting time, and high strength. β-tricalcium phosphate (β-TCP, control) powder was ball-milled for 24h to produce a new cement powder. The modified β-TCP after 24h milling (mβ-TCP-24h) exhibited excellent injectability even 1h after mixing. The mechanical properties of the set cement (compact) were evaluated using compressive strength (CS) and diametral tensile strength (DTS) testing. The CS and DTS values of the mβ-TCP-24h compacts were 8.02MPa and 2.62MPa, respectively, at 5h after mixing, and were 49.6MPa and 7.9MPa, respectively, at 2 weeks after mixing. All the CS and DTS values of the mβ-TCP-24h compacts were significantly higher than those of the control for the same duration after mixing. These results suggest that the mechano-chemically modified β-TCP powder dissolves rapidly and accelerates hydroxyapatite precipitation, which successfully shortens the cement setting time and enhances the strength. This study supports that mβ-TCP-24h is a promising candidate for use in injectable CPCs with improved strength. PMID:25855467

  13. Preparation of CNT/AlSi10Mg composite powders by high-energy ball milling and their physical properties

    NASA Astrophysics Data System (ADS)

    Wang, Lin-zhi; Liu, Ying; Wei, Wen-hou; An, Xu-guang; Zhang, Tao; Pu, Ya-yun

    2016-03-01

    This study investigated the effects of carbon nanotube (CNT) concentration on the micro-morphologies and laser absorption properties of CNT/AlSi10Mg composite powders produced by high-energy ball milling. A scanning electron microscope, X-ray diffractometer, laser particle size analyzer, high-temperature synchronous thermal analyzer, and UV/VIS/NIR spectrophotometer were used for the analysis of micrographs, phases, granulometric parameters, thermal properties, and laser absorption properties of the composite powders, respectively. The results showed that the powders gradually changed from flake- to granule-like morphology and the average particle size sharply decreased with increases in milling rotational speed and milling time. Moreover, a uniform dispersion of CNTs in AlSi10Mg powders was achieved only for a CNT content of 1.5wt%. Laser absorption values of the composite powders were also observed to gradually increase with the increase of CNT concentration, and different spectra displayed characteristic absorption peaks at a wavelength of approximately 826 nm.

  14. DEM modeling of ball mills with experimental validation: influence of contact parameters on charge motion and power draw

    NASA Astrophysics Data System (ADS)

    Boemer, Dominik; Ponthot, Jean-Philippe

    2016-07-01

    Discrete element method simulations of a 1:5-scale laboratory ball mill are presented in this paper to study the influence of the contact parameters on the charge motion and the power draw. The position density limit is introduced as an efficient mathematical tool to describe and to compare the macroscopic charge motion in different scenarios, i.a. with different values of the contact parameters. While the charge motion and the power draw are relatively insensitive to the stiffness and the damping coefficient of the linear spring-slider-damper contact law, the coefficient of friction has a strong influence since it controls the sliding propensity of the charge. Based on the experimental calibration and validation by charge motion photographs and power draw measurements, the descriptive and predictive capabilities of the position density limit and the discrete element method are demonstrated, i.e. the real position of the charge is precisely delimited by the respective position density limit and the power draw can be predicted with an accuracy of about 5 %.

  15. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    PubMed

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  16. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-01

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  17. Grinding Wear Behaviour of Stepped Austempered Ductile Iron as Media Material During Comminution of Iron Ore in Ball Mills

    NASA Astrophysics Data System (ADS)

    Raghavendra, H.; Bhat, K. L.; Udupa, K. Rajendra; Hegde, M. M. Rajath

    2011-01-01

    An attempt has been made to evaluate the suitability of austempered ductile iron (ADI) as media material for grinding iron ore in a ball mill. Spheroidal graphite (S.G) iron balls are austenitised at 900° C for 60 minutes and given stepped austempering treatment at 280° C for 30 minutes and 60 minutes followed by 380° C for 60 minutes in each case. These materials are characterised by measuring hardness, analysing X-ray diffraction (X-RD), studying microstructure using optical and scanning electron microscope (SEM). Grinding wear behaviour of these materials was assessed for wear loss in wet condition at different pH value of the mineral slurry and found that the wear rate of grinding media material decreases with increase in pH of the slurry. The wear resistance of ADI balls were compared with forged En31 steel balls and found that the stepped austempered ductile iron is superior to forged En31 steel balls.

  18. Grinding Wear Behaviour of Stepped Austempered Ductile Iron as Media Material During Comminution of Iron Ore in Ball Mills

    SciTech Connect

    Raghavendra, H.; Bhat, K. L.; Udupa, K. Rajendra; Hegde, M. M. Rajath

    2011-01-17

    An attempt has been made to evaluate the suitability of austempered ductile iron (ADI) as media material for grinding iron ore in a ball mill. Spheroidal graphite (S.G) iron balls are austenitised at 900 deg. C for 60 minutes and given stepped austempering treatment at 280 deg. C for 30 minutes and 60 minutes followed by 380 deg. C for 60 minutes in each case. These materials are characterised by measuring hardness, analysing X-ray diffraction (X-RD), studying microstructure using optical and scanning electron microscope (SEM). Grinding wear behaviour of these materials was assessed for wear loss in wet condition at different pH value of the mineral slurry and found that the wear rate of grinding media material decreases with increase in pH of the slurry. The wear resistance of ADI balls were compared with forged En31 steel balls and found that the stepped austempered ductile iron is superior to forged En31 steel balls.

  19. Multiscale characterization and representation of composite materials during processing.

    PubMed

    Zobeiry, Navid; Forghani, Alireza; Li, Chao; Gordnian, Kamyar; Thorpe, Ryan; Vaziri, Reza; Fernlund, Goran; Poursartip, Anoush

    2016-07-13

    Given the importance of residual stresses and dimensional changes in composites manufacturing, process simulation has been the focus of many studies in recent years. Consequently, various constitutive models and simulation approaches have been developed and implemented for composites process simulation. In this paper, various constitutive models, ranging from elastic to nonlinear viscoelastic; and simulation approaches ranging from separated flow/solid phases to multiscale integrated phases are presented and their applicability for process simulation is discussed. Attention has been paid to practical aspects of the problem where the complexity of the model coupled with the complexity and size scaling of the structure increases the characterization and simulation costs. Two specific approaches and their application are presented in detail: the pseudo-viscoelastic cure hardening instantaneously linear elastic (CHILE) and linear viscoelastic (VE). It is shown that CHILE can predict the residual stress formation in simple cure cycles such as the one-hold cycle for HEXCEL AS4/8552 where the material does not devitrify during processing. It is also shown that using this simple approach, the cure cycle can be modified to lower the residual stress level and therefore increase the mechanical performance of the composite laminate. For a more complex cure cycle where the material is devitrified during a post-cure, it is shown that a more complex model such as VE is required. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242297

  20. A comparison of the amorphization of zeolitic imidazolate frameworks (ZIFs) and aluminosilicate zeolites by ball-milling.

    PubMed

    Baxter, Emma F; Bennett, Thomas D; Cairns, Andrew B; Brownbill, Nick J; Goodwin, Andrew L; Keen, David A; Chater, Philip A; Blanc, Frédéric; Cheetham, Anthony K

    2016-03-14

    X-ray diffraction has been used to investigate the kinetics of amorphization through ball-milling at 20 Hz, for five zeolitic imidazolate frameworks (ZIFs) - ZIF-8, ZIF-4, ZIF-zni, BIF-1-Li and CdIF-1. We find that the rates of amorphization for the zinc-containing ZIFs increase with increasing solvent accessible volume (SAV) in the sequence ZIF-8 > ZIF-4 > ZIF-zni. The Li-B analogue of the dense ZIF-zni amorphizes more slowly than the corresponding zinc phase, with the behaviour showing a correlation with their relative bulk moduli and SAVs. The cadmium analogue of ZIF-8 (CdIF-1) amorphizes more rapidly than the zinc counterpart, which we ascribe primarily to its relatively weak M-N bonds as well as the higher SAV. The results for the ZIFs are compared to three classical zeolites - Na-X, Na-Y and ZSM-5 - with these taking up to four times longer to amorphize. The presence of adsorbed solvent in the pores is found to render both ZIF and zeolite frameworks more resistant to amorphization. X-ray total scattering measurements show that amorphous ZIF-zni is structurally indistinguishable from amorphous ZIF-4 with both structures retaining the same short-range order that is present in their crystalline precursors. By contrast, both X-ray total scattering measurements and (113)Cd NMR measurements point to changes in the local environment of amorphous CdIF-1 compared with its crystalline CdIF-1 precursor.

  1. A comparison of the amorphization of zeolitic imidazolate frameworks (ZIFs) and aluminosilicate zeolites by ball-milling.

    PubMed

    Baxter, Emma F; Bennett, Thomas D; Cairns, Andrew B; Brownbill, Nick J; Goodwin, Andrew L; Keen, David A; Chater, Philip A; Blanc, Frédéric; Cheetham, Anthony K

    2016-03-14

    X-ray diffraction has been used to investigate the kinetics of amorphization through ball-milling at 20 Hz, for five zeolitic imidazolate frameworks (ZIFs) - ZIF-8, ZIF-4, ZIF-zni, BIF-1-Li and CdIF-1. We find that the rates of amorphization for the zinc-containing ZIFs increase with increasing solvent accessible volume (SAV) in the sequence ZIF-8 > ZIF-4 > ZIF-zni. The Li-B analogue of the dense ZIF-zni amorphizes more slowly than the corresponding zinc phase, with the behaviour showing a correlation with their relative bulk moduli and SAVs. The cadmium analogue of ZIF-8 (CdIF-1) amorphizes more rapidly than the zinc counterpart, which we ascribe primarily to its relatively weak M-N bonds as well as the higher SAV. The results for the ZIFs are compared to three classical zeolites - Na-X, Na-Y and ZSM-5 - with these taking up to four times longer to amorphize. The presence of adsorbed solvent in the pores is found to render both ZIF and zeolite frameworks more resistant to amorphization. X-ray total scattering measurements show that amorphous ZIF-zni is structurally indistinguishable from amorphous ZIF-4 with both structures retaining the same short-range order that is present in their crystalline precursors. By contrast, both X-ray total scattering measurements and (113)Cd NMR measurements point to changes in the local environment of amorphous CdIF-1 compared with its crystalline CdIF-1 precursor. PMID:26575842

  2. Mechanical ball-milling preparation of fullerene/cobalt core/shell nanocomposites with high electrochemical hydrogen storage ability.

    PubMed

    Bao, Di; Gao, Peng; Shen, Xiande; Chang, Cheng; Wang, Longqiang; Wang, Ying; Chen, Yujin; Zhou, Xiaoming; Sun, Shuchao; Li, Guobao; Yang, Piaoping

    2014-02-26

    The design and synthesis of new hydrogen storage nanomaterials with high capacity at low cost is extremely desirable but remains challenging for today's development of hydrogen economy. Because of the special honeycomb structures and excellent physical and chemical characters, fullerenes have been extensively considered as ideal materials for hydrogen storage materials. To take the most advantage of its distinctive symmetrical carbon cage structure, we have uniformly coated C60's surface with metal cobalt in nanoscale to form a core/shell structure through a simple ball-milling process in this work. The X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectra, high-solution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDX) elemental mappings, and X-ray photoelectron spectroscopy (XPS) measurements have been conducted to evaluate the size and the composition of the composites. In addition, the blue shift of C60 pentagonal pinch mode demonstrates the formation of Co-C chemical bond, and which enhances the stability of the as-obtained nanocomposites. And their electrochemical experimental results demonstrate that the as-obtained C60/Co composites have excellent electrochemical hydrogen storage cycle reversibility and considerably high hydrogen storage capacities of 907 mAh/g (3.32 wt % hydrogen) under room temperature and ambient pressure, which is very close to the theoretical hydrogen storage capacities of individual metal Co (3.33 wt % hydrogen). Furthermore, their hydrogen storage processes and the mechanism have also been investigated, in which the quasi-reversible C60/Co↔C60/Co-Hx reaction is the dominant cycle process.

  3. Multiscale study for stochastic characterization of shale samples

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman; Javadpour, Farzam; Sahimi, Muhammad; Piri, Mohammad

    2016-03-01

    Characterization of shale reservoirs, which are typically of low permeability, is very difficult because of the presence of multiscale structures. While three-dimensional (3D) imaging can be an ultimate solution for revealing important complexities of such reservoirs, acquiring such images is costly and time consuming. On the other hand, high-quality 2D images, which are widely available, also reveal useful information about shales' pore connectivity and size. Most of the current modeling methods that are based on 2D images use limited and insufficient extracted information. One remedy to the shortcoming is direct use of qualitative images, a concept that we introduce in this paper. We demonstrate that higher-order statistics (as opposed to the traditional two-point statistics, such as variograms) are necessary for developing an accurate model of shales, and describe an efficient method for using 2D images that is capable of utilizing qualitative and physical information within an image and generating stochastic realizations of shales. We then further refine the model by describing and utilizing several techniques, including an iterative framework, for removing some possible artifacts and better pattern reproduction. Next, we introduce a new histogram-matching algorithm that accounts for concealed nanostructures in shale samples. We also present two new multiresolution and multiscale approaches for dealing with distinct pore structures that are common in shale reservoirs. In the multiresolution method, the original high-quality image is upscaled in a pyramid-like manner in order to achieve more accurate global and long-range structures. The multiscale approach integrates two images, each containing diverse pore networks - the nano- and microscale pores - using a high-resolution image representing small-scale pores and, at the same time, reconstructing large pores using a low-quality image. Eventually, the results are integrated to generate a 3D model. The methods

  4. Degradation of trichloroethene with a noval ball milled Fe-C nanocomposite

    SciTech Connect

    Gao, Jie; Wang, Wei; Rondinone, Adam Justin; He, Feng; Liang, Liyuan

    2015-07-18

    Nanoscale zero-valent iron (NZVI) is effective in reductively degrading dense non-aqueous phase liquids (DNAPLs), such as trichloroethene (TCE), in groundwater (i.e., dechlorination) although the NZVI technology itself still suffers from high material costs and inability to target hydrophobic contaminants in source zones. To address these problems, we developed a novel, inexpensive iron-carbon (Fe-C) nanocomposite material by simultaneously milling micron-size iron and activated carbon powder. Microscopic and X-ray diffraction (XRD) characterization of the composite material revealed that nanoparticles of Fe were dispersed in activated carbon and a new iron carbide phase was formed. Bench-scale studies showed that this material instantaneously sorbed >90% of TCE from aqueous solutions and subsequently decomposed TCE into non-chlorinated products. Compared to milled Fe, Fe-C nanocomposite dechlorinated TCE at a slightly slower rate and favored the production of ethene over other TCE degradation products such as C3-C6 compounds. When placed in hexane-water mixture, the Fe-C nanocomposite materials are preferentially partitioned into the organic phase, indicating the ability of the composite materials to target DNAPL during remediation.

  5. Degradation of trichloroethene with a noval ball milled Fe-C nanocomposite

    DOE PAGES

    Gao, Jie; Wang, Wei; Rondinone, Adam Justin; He, Feng; Liang, Liyuan

    2015-07-18

    Nanoscale zero-valent iron (NZVI) is effective in reductively degrading dense non-aqueous phase liquids (DNAPLs), such as trichloroethene (TCE), in groundwater (i.e., dechlorination) although the NZVI technology itself still suffers from high material costs and inability to target hydrophobic contaminants in source zones. To address these problems, we developed a novel, inexpensive iron-carbon (Fe-C) nanocomposite material by simultaneously milling micron-size iron and activated carbon powder. Microscopic and X-ray diffraction (XRD) characterization of the composite material revealed that nanoparticles of Fe were dispersed in activated carbon and a new iron carbide phase was formed. Bench-scale studies showed that this material instantaneously sorbedmore » >90% of TCE from aqueous solutions and subsequently decomposed TCE into non-chlorinated products. Compared to milled Fe, Fe-C nanocomposite dechlorinated TCE at a slightly slower rate and favored the production of ethene over other TCE degradation products such as C3-C6 compounds. When placed in hexane-water mixture, the Fe-C nanocomposite materials are preferentially partitioned into the organic phase, indicating the ability of the composite materials to target DNAPL during remediation.« less

  6. Degradation of Trichloroethene with a Novel Ball Milled Fe-C Nanocomposite.

    PubMed

    Gao, Jie; Wang, Wei; Rondinone, Adam J; He, Feng; Liang, Liyuan

    2015-12-30

    Nanoscale zero-valent iron (NZVI) is effective in reductively degrading dense non-aqueous phase liquids (DNAPLs), such as trichloroethene (TCE), in groundwater (i.e., dechlorination) although the NZVI technology itself still suffers from high material costs and inability to target hydrophobic contaminants in source zones. To address these problems, we developed a novel, inexpensive iron-carbon (Fe-C) nanocomposite material by simultaneously milling micron-size iron and activated carbon powder. Microscopic and X-ray diffraction (XRD) characterization of the composite material revealed that nanoparticles of Fe were dispersed in activated carbon and a new iron carbide phase was formed. Bench-scale studies showed that this material instantaneously sorbed >90% of TCE from aqueous solutions and subsequently decomposed TCE into non-chlorinated products. Compared to milled Fe, Fe-C nanocomposite dechlorinated TCE at a slightly slower rate and favored the production of ethene over other TCE degradation products such as C3--C6 compounds. When placed in hexane-water mixture, the Fe-C nanocomposite materials are preferentially partitioned into the organic phase, indicating the ability of the composite materials to target DNAPL during remediation.

  7. Physical and electrochemical properties of LiFePO 4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling

    NASA Astrophysics Data System (ADS)

    Konarova, Muxina; Taniguchi, Izumi

    A novel preparation technique was developed to synthesize LiFePO 4 nanoparticles through a combination of spray pyrolysis (SP) with wet ball-milling (WBM). Using this technique, the preparation of LiFePO 4 nanoparticles was investigated for a wide range of process parameters such as ball-milling time and sintering temperature. The effect of process parameters on the physical and electrochemical properties of LiFePO 4 was then discussed through analysis using by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), the Brunauer-Emmet-Teller (BET) method, Raman spectroscopy and using an electrochemical cell of Li|1 M LiClO 4 in EC:DEC = 1:1|LiFePO 4. LiFePO 4 nanoparticles with a geometric mean diameter of 58 nm were prepared at a rotating speed of 800 rpm and a ball-milling time of 12 h in an Ar atmosphere followed by heat treatment at 500 °C for 4 h in a N 2 + 3% H 2 atmosphere. The sample delivered first discharge capacities of 164 and 100 mAh g -1 at charge-discharge rates of 0.1 and 10 C in the test cells, respectively. The electrochemical properties of LiFePO 4 nanoparticles were strongly affected by the formation of Fe 2P, Fe 3P and α-Fe 2O 3 at higher charge-discharge rates.

  8. Facile synthesis and regeneration of Mg(BH4)2 by high energy reactive ball milling of MgB2.

    PubMed

    Gupta, Shalabh; Hlova, Ihor Z; Kobayashi, Takeshi; Denys, Roman V; Chen, Fu; Zavaliy, Ihor Y; Pruski, Marek; Pecharsky, Vitalij K

    2013-01-28

    We report direct hydrogenation of MgB(2) in a planetary ball mill. Magnesium borohydride, Mg(BH(4))(2), and various polyhedral borane anion salts have been synthesized at pressures between 50 and 350 bar H(2) without the need for subsequent isothermal hydrogenation at elevated temperature and pressure. The obtained products release ∼4 wt% H(2) below 390 °C, and a major portion of Mg(BH(4))(2) transforms back to MgB(2) at around 300 °C, demonstrating the possibility of reversible hydrogen storage in an Mg(BH(4))(2)-MgB(2) system.

  9. Mechanical and Microstructure Study of Nickel-Based ODS Alloys Processed by Mechano-Chemical Bonding and Ball Milling

    NASA Astrophysics Data System (ADS)

    Amare, Belachew N.

    Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural

  10. Multiscale characterization of a heterogeneous aquifer using an ASR operation.

    PubMed

    Pavelic, Paul; Dillon, Peter J; Simmons, Craig T

    2006-01-01

    Heterogeneity in the physical properties of an aquifer can significantly affect the viability of aquifer storage and recovery (ASR) by reducing the recoverable proportion of low-salinity water where the ambient ground water is brackish or saline. This study investigated the relationship between knowledge of heterogeneity and predictions of solute transport and recovery efficiency by combining permeability and ASR-based tracer testing with modeling. Multiscale permeability testing of a sandy limestone aquifer at an ASR trial site showed that small-scale core data give lower-bound estimates of aquifer hydraulic conductivity (K), intermediate-scale downhole flowmeter data offer valuable information on variations in K with depth, and large-scale pumping test data provide an integrated measure of the effective K that is useful to constrain ground water models. Chloride breakthrough and thermal profiling data measured during two cycles of ASR showed that the movement of injected water is predominantly within two stratigraphic layers identified from the flowmeter data. The behavior of the injectant was reasonably well simulated with a four-layer numerical model that required minimal calibration. Verification in the second cycle achieved acceptable results given the model's simplicity. Without accounting for the aquifer's layered structure, high precision could be achieved on either piezometer breakthrough or recovered water quality, but not both. This study demonstrates the merit of an integrated approach to characterizing aquifers targeted for ASR.

  11. Structural; magnetic and catalytic properties of nanocrystalline Cu0.5Zn0.5Fe2O4 synthesized by microwave combustion and ball milling methods

    NASA Astrophysics Data System (ADS)

    Mahmoud, M. H.; Hassan, Azza M.; Said, Abd El-Aziz A.; Hamdeh, H. H.

    2016-06-01

    Effects of high energy ball-milling on nanosized Cu0.5Zn0.5Fe2O4 powders were studied at 30 and 330 min of milling. The powders were initially synthesized from its stoichiometric metal nitrates and urea mixtures, using a microwave assisted combustion method. Ball-milling induced electromechanical reaction was examined by XRD, TEM, Mössbauer spectroscopy, magnetization, and catalytic performance by exploring potential changes in size, phases and chemical structure. Before Milling, the as-prepared powders were comprised of small grains of poor spinel crystallinity and very small crystallite size, and a minor α-Fe2O3 phase. Progressive milling significantly reduced the grain size, increased chemical disorder, and reduced the hematite phase. These changes are also manifested in the magnetization measurements. The Catalytic activity performance was carried out using dehydrogenation of isopropyl alcohol. The observed activity was correlated to the presence of Cu2+ and Fe3+ catalysts at octahedral sites before and after milling.

  12. Detailed Investigation of Ion Exchange in Ball Milled LiH+MgB2 System using Ultra-High Field NMR Spectroscopy

    SciTech Connect

    Hu, Jian Z.; Kwak, Ja Hun; Yang, Zhenguo; Wan, Xiufeng; Shaw, Leonard D.

    2010-06-01

    The present study with the detailed 1H-6Li cross polarization NMR analysis confirms the formation of a ternary compound, (Mg1-xLi2x)B2, during ball milling of LiH + ½ MgB2 at room temperature. The 6Li sites in (Mg1-xLi2x)B2 exhibit spinning sidebands (SSBs), whereas the 6Li sites in LiH do not. The SSBs and the very short spin-lattice relaxation time manifested by the 6Li sites in (Mg1-xLi2x)B2 indicate that the Li ions in (Mg1-xLi2x)B2 are located between the layered boron structures and close to Mg ions. The formation of (Mg1-xLi2x)B2 explains the previous observation that the LiH + ½ MgB2 mixture ball milled effectively has a greatly enhanced hydriding kinetics at temperatures below the melting point of LiBH4.

  13. Synthesis of boron suboxide (B{sub 6}O) with ball milled boron oxide (B{sub 2}O{sub 3}) under lower pressure and temperature

    SciTech Connect

    Jiao Xiaopeng; Jin Hua; Liu Fuyang; Ding Zhanhui; Yang Bin; Lu Fengguo; Zhao Xudong; Liu Xiaoyang

    2010-07-15

    Boron reacted with ball milled boron oxide under pressures between 1 and 5 GPa and at temperatures between 1300 and 1700 {sup o}C to afford boron suboxide (B{sub 6}O). Icosahedral B{sub 6}O grains with diameters ranging from 100 nm to 1.3 {mu}m were prepared. The factors that affect the synthesis of B{sub 6}O are investigated. The best sample with crystal size up to 1.3 {mu}m is obtained at 2 GPa and 1400 {sup o}C for 6 h. The indentation experiment gave an average Vickers hardness of 32.3 GPa for bulk B{sub 6}O sample, which is consistent with previous reports. Bulk B{sub 6}O sample exhibits oxidation resistance in air up to 1000 {sup o}C and mild oxidation in the temperatures of 1000-1200 {sup o}C, which is more oxidation resistant than diamond. It is possible that B{sub 6}O could be used as a substitute for diamond in industry because of its relatively mild synthesis conditions, high thermal stability and high hardness. - Graphical abstract: Icosahedral B{sub 6}O grains were prepared for mixtures of boron and ball milled boron oxide at 2 GPa and 1400 {sup o}C, a milder synthesis condition in comparison with previous works.

  14. Multiscale Hydrogeophysical Data Assimilation for Plume-Scale Subsurface Characterization

    NASA Astrophysics Data System (ADS)

    Wainwright, H. M.; Sassen, D. S.; Chen, J.; Hubbard, S. S.

    2011-12-01

    Predictions of subsurface contaminant plume evolution and natural attenuation capacity often fail due to the difficulty to tractably characterize heterogeneity of flow-and-transport properties at the plume-relevant scales. This study presents a stochastic-estimation framework for assimilating multiscale datasets and characterizing a plume-scale subsurface domain. We utilize the concept of reactive facies, which is based on the hypothesis that we can identify packages of sediments that have distinct distributions of properties influencing reactive transport, such as effective surface area, mineralogy and permeability. Because geophysical attributes are often sensitive to some of those properties, this concept allows us to take advantage of both geophysical and lithological datasets, to characterize the spatial distribution of reactive transport parameters. Previous research has illustrated that crosshole geophysical methods can be used to identify and spatially distribute reactive facies at the local scale. To map the spatial distribution of reactive facies at the plume-scale, we must (1) honor the large-scale trend without smoothing out the detail structure of facies, and (2) assimilate multi-source, multiscale datasets in a consistent manner, including wellbore data and crosshole and surface geophysical data. To tackle these challenges, we have developed a hierarchical Bayesian framework, which consists of three statistical sub-models: a data model, a process model, and a prior model. The data model - developed according to the stochastic feature of measurement errors - provides the linkage between the multiple geophysical datasets and the spatially distributed geophysical attributes through linear/nonlinear forward models. The process model describes the spatial distribution of reactive facies and geophysical attributes as spatial random processes controlled by geostatistical and petrophysical parameters. We use an indicator random field with a trend function for

  15. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching

    SciTech Connect

    Swain, Basudev Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo Lee, Chan Gi; Hong, Hyun Seon

    2015-04-15

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na{sub 2}CO{sub 3}, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na{sub 2}CO{sub 3}, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4 M HCl, 100 °C and pulp density of 20 g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. - Highlights: • Simplest process for treatment of GaN an LED industry waste developed. • The process developed recovers gallium from waste LED waste dust. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} revealed. • Solid-state chemistry involved in this process reported. • Quantitative leaching of the GaN was achieved.

  16. Structure-Property Correlation in Fe-Al2O3 In Situ Nanocomposite Synthesized by High-Energy Ball Milling and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Udhayabanu, V.; Ravi, K. R.; Murty, B. S.

    2016-07-01

    In the present study, Fe-10 vol pct Al2O3 in situ nanocomposite has been derived by high-energy ball milling of Fe2O3-Fe-Al powder mixture followed by the consolidation using spark plasma sintering (SPS). The consolidated nanocomposite has bimodal-grained structure consisting of nanometer- and submicron-sized Fe grains along with nanometer-sized Al2O3, and Fe3O4 particles. The mechanical property analysis reveals that compressive yield strength of Fe-10 vol pct Al2O3 nanocomposite is 2100 MPa which is nearly two times higher than that of monolithic Fe processed by Mechanical Milling and SPS. The strengthening contributions obtained from matrix, grain size, and particles in the synthesized nanocomposite have been calculated theoretically, and are found to be matching well with the experimental strength levels.

  17. Multiphase transformation and hybrid nanostructure under non-equilibrium and equilibrium condition during high-energy ball milling of BaTiO3 powders

    NASA Astrophysics Data System (ADS)

    Ghosh, Jiten; Bysakh, Sandip; Mazumder, Sujata

    2014-04-01

    BaTiO3 is a well-known technologically important electroceramic material. In the present study high-energy ball-milling processing for producing distortion in the parent thermodynamically stable tetragonal BaTiO3 has been followed. This has produced nano-sized particles as well as a reactive surface. The intention of the present work is to study (i) structural changes on mechanical activation of perovskite BaTiO3 phase and (ii) possible formation of lattice defect as a result of lattice strain generated during milling that can serve peculiar channels of enhanced diffusion of gas molecules at ambient condition. Catalytic activity of nano-sized BaTiO3 has been explained on a result of high structural distortion brought into solid by milling.

  18. Effect of ball milling and thermal treatment on exchange bias and magnetocaloric properties of Ni48Mn39.5Sn10.5Al2 ribbons

    NASA Astrophysics Data System (ADS)

    Czaja, P.; Przewoźnik, J.; Fitta, M.; Bałanda, M.; Chrobak, A.; Kania, B.; Zackiewicz, P.; Wójcik, A.; Szlezynger, M.; Maziarz, W.

    2016-03-01

    The combined effect of ball milling and subsequent heat treatment on microstructure, magnetic, magnetocaloric and exchange bias properties of Ni48Mn39.5Sn10.5Al2 ribbons is reported. The annealing treatment results in the increase of the critical martensitic transformation temperature. The magnetic entropy change ΔSM of the order of 7.9 and -2.3 J kg K-1 for the annealed 50-32 μm powder fraction is determined. This is less than in the as melt spun ribbon but appears at a considerably higher temperature. At the same time EB is decreased due to annealing treatment. This decrease is attributed to the strengthened ferromagnetic exchange coupling due heat induced stress and structural relaxation.

  19. Structure-Property Correlation in Fe-Al2O3 In Situ Nanocomposite Synthesized by High-Energy Ball Milling and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Udhayabanu, V.; Ravi, K. R.; Murty, B. S.

    2016-10-01

    In the present study, Fe-10 vol pct Al2O3 in situ nanocomposite has been derived by high-energy ball milling of Fe2O3-Fe-Al powder mixture followed by the consolidation using spark plasma sintering (SPS). The consolidated nanocomposite has bimodal-grained structure consisting of nanometer- and submicron-sized Fe grains along with nanometer-sized Al2O3, and Fe3O4 particles. The mechanical property analysis reveals that compressive yield strength of Fe-10 vol pct Al2O3 nanocomposite is 2100 MPa which is nearly two times higher than that of monolithic Fe processed by Mechanical Milling and SPS. The strengthening contributions obtained from matrix, grain size, and particles in the synthesized nanocomposite have been calculated theoretically, and are found to be matching well with the experimental strength levels.

  20. Ultrathin SmCo5 nanoflakes with high-coercivity prepared by solid particle (NaCl) and surfactant co-assisted ball milling.

    PubMed

    Zuo, Wen-Liang; Zhao, Xin; Zhao, Tong-Yun; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2016-01-01

    The ultrathin SmCo5 nanoflakes with average thickness smaller than 50 nm are prepared by a novel method of solid particle (NaCl) and surfactant co-assisted ball milling. The as-prepared nanoflakes exhibit a narrower thickness distribution of 10-50 nm and high coercivity of 23 kOe. The possible formation mechanism of nanoflakes are proposed. Temperature dependence of demagnetization curves indicate that the magnetization reversal may be controlled by both nucleation and pinning. The results of X-ray powder diffraction and magnetic measurement for aligned SmCo5 nanoflakes resin composite indicate that the nanoflakes have a high texture degree. The ultrathin thickness and high coercivity are beneficial for preparing the high performance soft/hard coupling magnets and nanocomposite magnets. PMID:27174410

  1. Ultrathin SmCo5 nanoflakes with high-coercivity prepared by solid particle (NaCl) and surfactant co-assisted ball milling

    PubMed Central

    Zuo, Wen-Liang; Zhao, Xin; Zhao, Tong-Yun; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2016-01-01

    The ultrathin SmCo5 nanoflakes with average thickness smaller than 50 nm are prepared by a novel method of solid particle (NaCl) and surfactant co-assisted ball milling. The as-prepared nanoflakes exhibit a narrower thickness distribution of 10–50 nm and high coercivity of 23 kOe. The possible formation mechanism of nanoflakes are proposed. Temperature dependence of demagnetization curves indicate that the magnetization reversal may be controlled by both nucleation and pinning. The results of X-ray powder diffraction and magnetic measurement for aligned SmCo5 nanoflakes resin composite indicate that the nanoflakes have a high texture degree. The ultrathin thickness and high coercivity are beneficial for preparing the high performance soft/hard coupling magnets and nanocomposite magnets. PMID:27174410

  2. Ultrathin SmCo5 nanoflakes with high-coercivity prepared by solid particle (NaCl) and surfactant co-assisted ball milling

    NASA Astrophysics Data System (ADS)

    Zuo, Wen-Liang; Zhao, Xin; Zhao, Tong-Yun; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2016-05-01

    The ultrathin SmCo5 nanoflakes with average thickness smaller than 50 nm are prepared by a novel method of solid particle (NaCl) and surfactant co-assisted ball milling. The as-prepared nanoflakes exhibit a narrower thickness distribution of 10–50 nm and high coercivity of 23 kOe. The possible formation mechanism of nanoflakes are proposed. Temperature dependence of demagnetization curves indicate that the magnetization reversal may be controlled by both nucleation and pinning. The results of X-ray powder diffraction and magnetic measurement for aligned SmCo5 nanoflakes resin composite indicate that the nanoflakes have a high texture degree. The ultrathin thickness and high coercivity are beneficial for preparing the high performance soft/hard coupling magnets and nanocomposite magnets.

  3. Use of cellobiohydrolase-free cellulase blends for the hydrolysis of microcrystalline cellulose and sugarcane bagasse pretreated by either ball milling or ionic liquid [Emim][Ac].

    PubMed

    Teixeira, Ricardo Sposina Sobral; da Silva, Ayla Sant'Ana; Kim, Han-Woo; Ishikawa, Kazuhiko; Endo, Takashi; Lee, Seung-Hwan; Bon, Elba P S

    2013-12-01

    This study investigated the requirement of cellobiohydrolases (CBH) for saccharification of microcrystalline cellulose and sugarcane bagasse pretreated either by ball milling (BM) or by ionic liquid (IL) [Emim][Ac]. Hydrolysis was done using CBH-free blends of Pyrococcus horikoshii endoglucanase (EG) plus Pyrococcus furiosus β-glucosidase (EGPh/BGPf) or Optimash™ BG while Acremonium Cellulase was used as control. IL-pretreated substrates were hydrolyzed more effectively by CBH-free enzymes than were the BM-pretreated substrates. IL-treatment decreased the crystallinity and increased the specific surface area (SSA), whereas BM-treatment decreased the crystallinity without increasing the SSA. The hydrolysis of IL-treated cellulose by EGPh/BGPf showed a saccharification rate of 3.92 g/Lh and a glucose yield of 81% within 9h. These results indicate the efficiency of CBH-free enzymes for the hydrolysis of IL-treated substrates.

  4. X-ray absorption, neutron diffraction, and M{umlt o}ssbauer effect studies of MnZn{endash}ferrite processed through high-energy ball milling

    SciTech Connect

    Fatemi, D.J.; Harris, V.G.; Chen, M.X.; Malik, S.K.; Yelon, W.B.; Long, G.J.; Mohan, A.

    1999-04-01

    MnZn{endash}ferrite has been prepared via high-energy ball milling of elemental oxides MnO, ZnO, and {alpha}-Fe{sub 2}O{sub 3}. Neutron diffraction measurements suggest a high density of vacancies in a spinel structure. The spinel phase appears to comprise 99.8 wt;{percent} of the material in the sample milled for 40 h, with the remainder attributable to unreacted {alpha}-Fe{sub 2}O{sub 3}. The x-ray absorption near-edge structure was analyzed to provide an understanding of the charge state of the constituent Fe ions. This analysis reveals about 2/3 of Fe cations to be trivalent, increasing to about 3/4 after a 5 h anneal at 450;{degree}C. The heat treatment is also observed to induce a cation redistribution in the ball-milled ferrite toward that of a standard processed via ceramics methods. Results from M{umlt o}ssbauer spectroscopy determine the average hyperfine fields in the sample milled 40 h to be 289 and 487 kOe at 295 and 78 K, respectively. The average isomer shift is 0.32 mm/s at 295 K and 0.46 mm/s at 78 K, values which are typical of iron (III) in a spinel oxide lattice. As expected for a cubic-like environment, the quadrupole shifts are very small, ranging from 0.07 mm/s at 295 K to 0.00 mm/s at 78 K. {copyright} {ital 1999 American Institute of Physics.}

  5. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.

    PubMed

    Buaban, Benchaporn; Inoue, Hiroyuki; Yano, Shinichi; Tanapongpipat, Sutipa; Ruanglek, Vasimon; Champreda, Verawat; Pichyangkura, Rath; Rengpipat, Sirirat; Eurwilaichitr, Lily

    2010-07-01

    Sugarcane bagasse is one of the most promising agricultural by-products for conversion to biofuels. Here, ethanol fermentation from bagasse has been achieved using an integrated process combining mechanical pretreatment by ball milling, with enzymatic hydrolysis and fermentation. Ball milling for 2 h was sufficient for nearly complete cellulose structural transformation to an accessible amorphous form. The pretreated cellulosic residues were hydrolyzed by a crude enzyme preparation from Penicillium chrysogenum BCC4504 containing cellulase activity combined with Aspergillus flavus BCC7179 preparation containing complementary beta-glucosidase activity. Saccharification yields of 84.0% and 70.4% for glucose and xylose, respectively, were obtained after hydrolysis at 45 degrees C, pH 5 for 72 h, which were slightly higher than those obtained with a commercial enzyme mixture containing Acremonium cellulase and Optimash BG. A high conversion yield of undetoxified pretreated bagasse (5%, w/v) hydrolysate to ethanol was attained by separate hydrolysis and fermentation processes using Pichia stipitis BCC15191, at pH 5.5, 30 degrees C for 24 h resulting in an ethanol concentration of 8.4 g/l, corresponding to a conversion yield of 0.29 g ethanol/g available fermentable sugars. Comparable ethanol conversion efficiency was obtained by a simultaneous saccharification and fermentation process which led to production of 8.0 g/l ethanol after 72 h fermentation under the same conditions. This study thus demonstrated the potential use of a simple integrated process with minimal environmental impact with the use of promising alternative on-site enzymes and yeast for the production of ethanol from this potent lignocellulosic biomass.

  6. Layered-Layered-Spinel Cathode Materials Prepared by a High-Energy Ball-Milling Process for Lithium-ion Batteries.

    PubMed

    Kim, Soo; Noh, Jae-Kyo; Aykol, Muratahan; Lu, Zhi; Kim, Haesik; Choi, Wonchang; Kim, Chunjoong; Chung, Kyung Yoon; Wolverton, Chris; Cho, Byung-Won

    2016-01-13

    In this work, we report the electrochemical properties of 0.5Li2MnO3·0.25LiNi0.5Co0.2Mn0.3O2·0.25LiNi0.5Mn1.5O4 and 0.333Li2MnO3·0.333LiNi0.5Co0.2Mn0.3O2·0.333LiNi0.5Mn1.5O4 layered-layered-spinel (L*LS) cathode materials prepared by a high-energy ball-milling process. Our L*LS cathode materials can deliver a large and stable capacity of ∼200 mAh g(-1) at high voltages up to 4.9 V, and do not show the anomalous capacity increase upon cycling observed in previously reported three-component cathode materials synthesized with different routes. Furthermore, we have performed synchrotron-based in situ X-ray diffraction measurements and found that there are no significant structural distortions during charge/discharge runs. Lastly, we carry out (opt-type) van der Waals-corrected density functional theory (DFT) calculations to explain the enhanced cycle characteristics and reduced phase transformations in our ball-milled L*LS cathode materials. Our simple synthesis method brings a new perspective on the use of the high-power L*LS cathodes in practical devices.

  7. Study of magnetic behavior in ball-milled nanocrystalline Fe-50 at.%Al alloy as a function of milling time

    NASA Astrophysics Data System (ADS)

    Rajan, S.; Shukla, R.; Kumar, A.; Vyas, A.; Brajpuriya, R.

    2015-04-01

    Ball milling technique has been extensively used to prepare different metastable states with nanocrystalline microstructures from intermetallic compounds. The present study was made on the identification of the changes in magnetic and electronic properties as a result of high-energy ball milling of Fe-50 at.%Al alloy samples. The phase formation and physical properties of the alloys were determined as a function of milling time by means of Mössbauer and X-ray photoelectron spectroscopy (XPS). The Mössbauer results show the formation of nanostructured body-centered cubic (BCC) FeAl alloy only after 5 h of mechanical milling and the same is also confirmed by Scanning electron microscope (SEM) and Transmission electron microscopy (TEM) studies. Mössbauer studies further confirm that there is magnetic behavior retention in the FeAl alloy samples even after 5 h of milling but magnetization decreases as the milling time increases. The reason for the same is due to the shocks and fracturing of the Al atoms embedded in the sites of Fe and as a result of which Fe-Fe nearest neighbors decreases. Secondly, with the increase in milling time, the particle size and the number density of equiatomic BCC Fe50Al50 grains decrease while the volume of grain boundary containing a solid solution of BCC FeAl and concentration of Al in a solid solution of BCC FeAl at the grain boundary increases as a result of which magnetization decreases. The shift in the binding energy of Fe2p and Al2p core level towards higher binding energy also supports the alloy formation after milling.

  8. Multi-scale characterization of white matter tract geometry.

    PubMed

    Savadjiev, Peter; Rathi, Yogesh; Bouix, Sylvain; Verma, Ragini; Westin, Carl-Fredrik

    2012-01-01

    The geometry of white matter tracts is of increased interest for a variety of neuroscientific investigations, as it is a feature reflective of normal neurodevelopment and disease factors that may affect it. In this paper, we introduce a novel method for computing multi-scale fibre tract shape and geometry based on the differential geometry of curve sets. By measuring the variation of a curve's tangent vector at a given point in all directions orthogonal to the curve, we obtain a 2D "dispersion distribution function" at that point. That is, we compute a function on the unit circle which describes fibre dispersion, or fanning, along each direction on the circle. Our formulation is then easily incorporated into a continuous scale-space framework. We illustrate our method on different fibre tracts and apply it to a population study on hemispheric lateralization in healthy controls. We conclude with directions for future work.

  9. Magnetic properties of Co1-xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol-gel autocombustion method and its ball milling

    NASA Astrophysics Data System (ADS)

    Yadav, Raghvendra Singh; Havlica, Jaromir; Hnatko, Miroslav; Šajgalík, Pavol; Alexander, Cigáň; Palou, Martin; Bartoníčková, Eva; Boháč, Martin; Frajkorová, Františka; Masilko, Jiri; Zmrzlý, Martin; Kalina, Lukas; Hajdúchová, Miroslava; Enev, Vojtěch

    2015-03-01

    In this article, Co1-xZnxFe2O4 (x=0.0 and 0.5) spinel ferrite nanoparticles were achieved at 800 °C by starch-assisted sol-gel autocombustion method. To further reduce the particle size, these synthesized ferrite nanoparticles were ball-milled for 2 h. X-ray diffraction patterns demonstrated single phase formation of Co1-xZnxFe2O4 (x=0.0 and 0.5) spinel ferrite nanoparticles. FE-SEM analysis indicated the nanosized spherical particles formation with spherical morphology. The change in Raman modes and relative intensity were observed due to ball milling and consequently decrease of particle size and cationic redistribution. An X-ray Photoelectron Spectroscopy (XPS) result indicated that Co2+, Zn2+ and Fe3+ exist in octahedral and tetrahedral sites. The cationic redistribution of Zn2+ and consequently Fe3+ occurred between octahedral and tetrahedral sites after ball-milling. The change in saturation magnetization (Ms) and coercivity (Hc) with decrease of nanocrystalline size and distribution of cations in spinel ferrite were observed.

  10. Effect of ball-milling and Fe-/Al-doping on the structural aspect and visible light photocatalytic activity of TiO2 towards Escherichia coli bacteria abatement.

    PubMed

    Schlur, Laurent; Begin-Colin, Sylvie; Gilliot, Pierre; Gallart, Mathieu; Carré, Gaëlle; Zafeiratos, Spiros; Keller, Nicolas; Keller, Valérie; André, Philippe; Greneche, Jean-Marc; Hezard, Bernard; Desmonts, Marie-Hélène; Pourroy, Geneviève

    2014-05-01

    Escherichia coli abatement was studied in liquid phase under visible light in the presence of two commercial titania photocatalysts, and of Fe- and Al-doped titania samples prepared by high energy ball-milling. The two commercial titania photocatalysts, Aeroxide P25 (Evonik industries) exhibiting both rutile and anatase structures and MPT625 (Ishihara Sangyo Kaisha), a Fe-, Al-, P- and S-doped titania exhibiting only the rutile phase, are active suggesting that neither the structure nor the doping is the driving parameter. Although the MPT625 UV-visible spectrum is shifted towards the visible domain with respect to the P25 one, the effect on bacteria is not increased. On the other hand, the ball milled iron-doped P25 samples exhibit low activities in bacteria abatement under visible light due to charge recombinations unfavorable to catalysis as shown by photoluminescence measurements. While doping elements are in interstitial positions within the rutile structure in MPT625 sample, they are located at the surface in ball milled samples and in isolated octahedral units according to (57)Fe Mössbauer spectrometry. The location of doping elements at the surface is suggested to be responsible for the sample cytotoxicity observed in the dark.

  11. Effects of zero-valent metals together with quartz sand on the mechanochemical destruction of dechlorane plus coground in a planetary ball mill.

    PubMed

    Wang, Haizhu; Huang, Jun; Zhang, Kunlun; Yu, Yunfei; Liu, Kai; Yu, Gang; Deng, Shubo; Wang, Bin

    2014-01-15

    Mechanochemical destruction by grinding with additives in high energy ball milling has been identified as a good alternative to traditional incineration for the disposal of wastes containing halogenated organic pollutants. Despite CaO normally used as an additive, recently Fe+SiO2 has been used to replace CaO for a faster destruction. In the present study, zero-valent metals (Al, Zn, besides Fe) together with SiO2 were investigated for their efficiencies of prompting the destruction of dechlorane plus (DP). Aluminum was found of be the best with a destruction percentage of nearly 99% for either syn- or anti-DP after 2.5h milling. In comparison, only 88/85% and 37/32% of syn-/anti-DP were destroyed when using zinc and iron after the same time, respectively. The detected water soluble chloride was lower than the stoichiometric amount containing in the original DP samples, due to the Si-Cl bond formed during the process. The potential fate of C and Cl present in DP is in the form of inorganic carbon, inorganic Cl and formation of Si-Cl bonds, respectively. The results suggested that Al+SiO2 is promising in the mechanochemical destruction of chlorinated organic pollutants like DP. PMID:24295775

  12. The grinding behavior of ground copper powder for Cu/CNT nanocomposite fabrication by using the dry grinding process with a high-speed planetary ball mill

    NASA Astrophysics Data System (ADS)

    Choi, Heekyu; Bor, Amgalan; Sakuragi, Shiori; Lee, Jehyun; Lim, Hyung-Tae

    2016-01-01

    The behavior of ground copper powder for copper-carbon nanotube (copper-CNT) nanocomposite fabrication during high-speed planetary ball milling was investigated because the study of the behavior characteristics of copper powder has recently gained scientific interest. Also, studies of Cu/CNT composites have widely been done due to their useful applications to enhanced, advanced nano materials and components, which would significantly improve the properties of new mechatronics-integrated materials and components. This study varied experimental conditions such as the rotation speed and the grinding time with and without CNTs, and the particle size distribution, median diameter, crystal structure and size, and particle morphology were monitored for a given grinding time. We observed that pure copper powders agglomerated and that the morphology changed with changing rotation speed. The particle agglomerations were observed with maximum experiment conditions (700 rpm, 60 min) in this study of the grinding process for mechanical alloys in the case of pure copper powders because the grinding behavior of Cu/CNT agglomerations was affected by the addition of CNTs. Indeed, the powder morphology and the crystal size of the composite powder could be changed by increasing the grinding time and the rotation speed.

  13. Covalent modification of glassy carbon spheres through ball milling under solvent free conditions: A novel electrochemical interface for mercury(II) quantification.

    PubMed

    Kempegowda, Raghu G; Malingappa, Pandurangappa

    2014-08-01

    A simple and green chemistry protocol has been proposed based on the covalent anchoring of benzamide molecule on glassy carbon spheres through ball milling under solvent free condition. The modification proceeds through the formation of an amide bond between carboxylic group of glassy carbon spheres and the amino group of modifier molecule. The formation of covalent bond was ascertained using X-ray photoelectron spectroscopy. Scanning electron microscopy was used to study the surface morphology of milled glassy carbon spheres. The aqueous colloidal solution of modified glassy carbon spheres was used in the preparation of thin film electrodes and subsequently used as a novel electrochemical interface in the quantification of mercury at trace level using a differential pulse anodic stripping voltammetric technique. The modified electrode showed good sensitivity and selectivity towards mercury with a detection limit of 1nM with least interference from most of the ions. The analytical utility of the proposed electrode has been validated by determining the mercury levels in number of sample matrices. PMID:24881534

  14. Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Hu, Renzong; Zhang, Miao; Liu, Jiangwen; Zhu, Min

    2016-06-01

    A novel approach has been developed to prepare silicon@carbon/graphene sheets (Si@C/G) composite with a unique structure, in which carbon coated Si nanoparticles are uniformly dispersed in a matrix of graphene sheets, to enhance the cycleability and electronic conductivity of Si-based anodes for Li-ion batteries. In this study, Si nanoparticles and expanded graphite (EG) are treated by combining high-energy wet ball-milling in sucrose solution with subsequent pyrolysis treatment to produce this Si@C/G composite. To achieve better overall electrochemical performance, the carbon content of the composites is also studied systematically. The as-designed Si30@C40/G30 (Si:C:G = 30:40:30, by weight) composite exhibits a high Li-storage capacity of 1259 mAh g-1 at a current density of 0.2 A g-1 in the first cycle. Further, a stable cycleability with 99.1/88.2% capacity retention from initial reversible charge capacity can be achieved over 100/300 cycles, showing great promise for batteries applications. This good electrochemical performance can be attributed to the uniform coating and binding effect of pyrolytic carbon as well as the network of graphene sheets, which increase the electronic conductivity and Li+ diffusion in the composite, and effectively accommodated the volume change of Si nanoparticles during the Li+ alloying and dealloying processes.

  15. Effects of zero-valent metals together with quartz sand on the mechanochemical destruction of dechlorane plus coground in a planetary ball mill.

    PubMed

    Wang, Haizhu; Huang, Jun; Zhang, Kunlun; Yu, Yunfei; Liu, Kai; Yu, Gang; Deng, Shubo; Wang, Bin

    2014-01-15

    Mechanochemical destruction by grinding with additives in high energy ball milling has been identified as a good alternative to traditional incineration for the disposal of wastes containing halogenated organic pollutants. Despite CaO normally used as an additive, recently Fe+SiO2 has been used to replace CaO for a faster destruction. In the present study, zero-valent metals (Al, Zn, besides Fe) together with SiO2 were investigated for their efficiencies of prompting the destruction of dechlorane plus (DP). Aluminum was found of be the best with a destruction percentage of nearly 99% for either syn- or anti-DP after 2.5h milling. In comparison, only 88/85% and 37/32% of syn-/anti-DP were destroyed when using zinc and iron after the same time, respectively. The detected water soluble chloride was lower than the stoichiometric amount containing in the original DP samples, due to the Si-Cl bond formed during the process. The potential fate of C and Cl present in DP is in the form of inorganic carbon, inorganic Cl and formation of Si-Cl bonds, respectively. The results suggested that Al+SiO2 is promising in the mechanochemical destruction of chlorinated organic pollutants like DP.

  16. Facile solid state ball milling as a green strategy to prepare 2-(2,4-dichlorophenoxy)-N‧-(2-hydroxybenzylidene)acetohydrazide complexes

    NASA Astrophysics Data System (ADS)

    Fekri, Ahmed; Zaky, Rania

    2014-11-01

    2-(2,4-Dichlorophenoxy)-N‧-(2-hydroxybenzylidene)acetohydrazide (H2L) complexes were prepared by ball milling involving the reaction of ligand with Ni(II), Co(II), Cu(II) and VO(II) salts (mechanochemical syntheses). The compounds were elucidated by elemental analysis, spectroscopy (1H NMR, IR, UV-visible, MS spectra), and physical measurements (magnetic susceptibility and molar conductance). IR spectra suggested that the H2L behaved as a monodentate and/or bidentate ligand coordinating via azomethine nitrogen and/or deprotonated enolized carbonyl oxygen. The electronic spectra of the complexes and their magnetic moments provided information about geometries. The antimicrobial activities of the ligand and its complexes were studied against gram positive bacteria; Staphylococcus aureus, gram-negative bacteria; Escherichia coli and pathogenic fungi; Candida albicans by using minimum inhibition concentrations method (MIC). Also, the antioxidant (ABTS-derived free radical method) and cytotoxic (in vitro Ehrlich Ascites) activities of the isolated compounds were evaluated.

  17. Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions.

    PubMed

    León, Verónica; Rodriguez, Antonio M; Prieto, Pilar; Prato, Maurizio; Vázquez, Ester

    2014-01-28

    A ball-milling treatment can be employed to exfoliate graphite through interactions with commercially available melamine under solid conditions. This procedure allows the fast production of relatively large quantities of material with a low presence of defects. The milling treatment can be modulated in order to achieve graphene flakes with different sizes. Once prepared, the graphene samples can be redispersed in organic solvents, water, or culture media, forming stable dispersions that can be used for multiple purposes. In the present work, we have screened electron-rich benzene derivatives along with triazine derivatives in their respective ability to exfoliate graphite. The results suggest that the formation of a hydrogen-bonding network is important for the formation of multipoint interactions with the surfaces of graphene, which can be used for the exfoliation of graphite and the stabilization of graphene in different solvents. Aminotriazine systems were found to be the best partners in the preparation and stabilization of graphene layers in different solvents, while the equivalent benzene derivatives did not show comparable exfoliation ability. Computational studies have also been performed to rationalize the experimental results. The results provide also the basis for further work in the preparation of noncovalently modified graphene, where derivatives of aminotriazines can be designed to form extensive hydrogen-bond 2D networks on the graphene surface with the aim of manipulating their electronic and chemical properties.

  18. Magnetic properties and coercivity mechanism of Sm1-xPrxCo5 (x=0-0.6) nanoflakes prepared by surfactant-assisted ball milling

    NASA Astrophysics Data System (ADS)

    Xu, M. L.; Yue, M.; Wu, Q.; Li, Y. Q.; Lu, Q. M.

    2016-05-01

    Sm1-xPrxCo5 (x=0-0.6) nanoflakes with CaCu5 structure were successfully prepared by surfactant-assisted high-energy ball milling (SAHEBM). The crystal structure and magnetic properties of Sm1-xPrxCo5 (x=0-0.6) nanoflakes were studied by X-ray diffraction and vibrating sample magnetometer. Effects of Pr addition on the structure, magnetic properties and coercivity mechanism of Sm1-xPrxCo5 nanoflakes were systematically investigated. XRD results show that all the nanoflakes have a hexagonal CaCu5-type (Sm, Pr)1Co5 main phase and the (Sm, Pr)2Co7 impurity phase, and all of the samples exhibit a strong (00l) texture after magnetic alignment. As the Pr content increases, remanence firstly increases, then slightly reduced, while anisotropy field (HA) and Hci of decrease monotonically. Maximum energy product [(BH)max] of the flakes increases first, peaks at 24.4 MGOe with Pr content of x = 0.4, then drops again. Magnetization behavior analysis indicate that the coercivity mechanism is mainly controlled by inhomogeneous domain wall pinning, and the pinning strength weakens with the increased Pr content, suggesting the great influence of HA on the coercivity of flakes.

  19. Influence of ball milling and annealing conditions on the properties of L10 FePt nanoparticles fabricated by a new green chemical synthesis method

    NASA Astrophysics Data System (ADS)

    Hu, X. C.; Capobianchi, A.; Gallagher, R.; Hadjipanayis, G. C.

    2014-05-01

    In this work, a new green chemical strategy for the synthesis of L10 FePt alloy nanoparticles is reported. The precursor is a polycrystalline molecular complex (Fe(H2O)6PtCl6), in which Fe and Pt atoms are arranged on alternating planes and milled with NaCl to form nanocrystals. Then the mixture was annealed under reducing atmosphere (5% H2 and 95% Ar) at temperatures varying from 350 °C to 500 °C for 2 h with a heating rate of 5 °C/min. After the reduction, the mixture was washed with water to remove the NaCl and L10 FePt nanoparticles were obtained. The X-Ray Diffraction pattern showed the presence of the characteristic peaks of the fct phase of FePt nanoparticles. Influence of precursor/NaCl ratio and ball milling time on particle size was investigated. Transmission electron microscopy images revealed that smaller precursor/NaCl ratio (10 mg/20 g) and longer milling time (15 h) lead to smaller particle size and narrower size distribution. Milling time does not influence the coercivity much but the decrease of the amount of precursor leads to a decrease of coercivity from 10.8 kOe to 4.8 kOe.

  20. Facile solid state ball milling as a green strategy to prepare 2-(2,4-dichlorophenoxy)-N'-(2-hydroxybenzylidene)acetohydrazide complexes.

    PubMed

    Fekri, Ahmed; Zaky, Rania

    2014-11-11

    2-(2,4-Dichlorophenoxy)-N'-(2-hydroxybenzylidene)acetohydrazide (H2L) complexes were prepared by ball milling involving the reaction of ligand with Ni(II), Co(II), Cu(II) and VO(II) salts (mechanochemical syntheses). The compounds were elucidated by elemental analysis, spectroscopy (1H NMR, IR, UV-visible, MS spectra), and physical measurements (magnetic susceptibility and molar conductance). IR spectra suggested that the H2L behaved as a monodentate and/or bidentate ligand coordinating via azomethine nitrogen and/or deprotonated enolized carbonyl oxygen. The electronic spectra of the complexes and their magnetic moments provided information about geometries. The antimicrobial activities of the ligand and its complexes were studied against gram positive bacteria; Staphylococcus aureus, gram-negative bacteria; Escherichia coli and pathogenic fungi; Candida albicans by using minimum inhibition concentrations method (MIC). Also, the antioxidant (ABTS-derived free radical method) and cytotoxic (in vitro Ehrlich Ascites) activities of the isolated compounds were evaluated.

  1. Influence of ball milling and annealing conditions on the properties of L1{sub 0} FePt nanoparticles fabricated by a new green chemical synthesis method

    SciTech Connect

    Hu, X. C.; Capobianchi, A.; Gallagher, R.; Hadjipanayis, G. C.

    2014-05-07

    In this work, a new green chemical strategy for the synthesis of L1{sub 0} FePt alloy nanoparticles is reported. The precursor is a polycrystalline molecular complex (Fe(H{sub 2}O){sub 6}PtCl{sub 6}), in which Fe and Pt atoms are arranged on alternating planes and milled with NaCl to form nanocrystals. Then the mixture was annealed under reducing atmosphere (5% H{sub 2} and 95% Ar) at temperatures varying from 350 °C to 500 °C for 2 h with a heating rate of 5 °C/min. After the reduction, the mixture was washed with water to remove the NaCl and L1{sub 0} FePt nanoparticles were obtained. The X-Ray Diffraction pattern showed the presence of the characteristic peaks of the fct phase of FePt nanoparticles. Influence of precursor/NaCl ratio and ball milling time on particle size was investigated. Transmission electron microscopy images revealed that smaller precursor/NaCl ratio (10 mg/20 g) and longer milling time (15 h) lead to smaller particle size and narrower size distribution. Milling time does not influence the coercivity much but the decrease of the amount of precursor leads to a decrease of coercivity from 10.8 kOe to 4.8 kOe.

  2. Effect of the method of introduction of Y2O3 into NiAl-based powder alloys on their structure: I. Agitation in a ball mill

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Vershinina, T. N.; Skachkov, O. A.; Drozdov, A. A.; Morozov, A. E.; Pozharov, S. V.

    2012-09-01

    The effect of the sintering temperature (1100-1400°C) of NiAl alloy samples with oxide Y2O3 produced by hydrostatic pressing on their structure and phase composition and the distribution of oxide particles in a NiAl-based intermetallic matrix alloyed with ˜0.5 at % Fe is considered. It is found that dispersed oxide particles in the compact material prepared from a mixture of oxide Y2O3 powder and a NiAl alloy (produced by calcium hydride reduction of a mixture of nickel and aluminum oxides) powder in a standard ball mill are nonuniformly distributed in the volume. The morphology of oxides changes during sintering: sintered samples contain rounded particles, which differ strongly from the clearly faceted angular particles of oxide Y2O3 added to a mixture (they represent conglomerates of single crystals). In the sintered samples, large aggregates of oxides are revealed along grain boundaries. Mass transfer is possible at the NiAl/Y2O3 interface in the system: it leads to partial substitution of aluminum and/or iron atoms for yttrium atoms in the Y2O3 lattice and to the formation of submicroscopic particles of (Fe,Al)5Y3O12-type oxides.

  3. Enhanced coercivity and remanence of PrCo5 nanoflakes prepared by surfactant-assisted ball milling with heat-treated starting powder

    NASA Astrophysics Data System (ADS)

    Zuo, Wen-Liang; Zhao, Xin; Xiong, Jie-Fu; Shang, Rong-Xiang; Zhang, Ming; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2015-07-01

    PrCo5 nanoflakes with strong texture and high coercivity of 8.15 kOe were prepared by surfactant-assisted ball milling with heat-treated starting powder. The thickness and length of the as-milled nanoflakes are mainly in the ranges of 50-100 nm and 0.5-3 μm, respectively. The x-ray diffraction patterns demonstrate that the heat treatment can increase the single phase and crystallinity of the PrCo5 compound, and combined with the demagnetization curves, indicate that the single phase and crystallinity are important for preparing high-coercivity and strong-textured rare earth permanent magnetic nanoflakes. In addition, the coercivity mechanism of the as-milled PrCo5 nanoflakes is studied by the angle dependence of coercivity for an aligned sample and the field dependence of coercivity, isothermal (IRM) and dc demagnetizing (DCD) remanence curves for an unaligned sample. The results indicate that the coercivity is dominated by co-existing mechanisms of pinning and nucleation. Furthermore, exchange coupling and dipolar coupling also co-exist in the sample. Project supported by the National Basic Research Program of China (Grant No. 2014CB643702), the National Natural Science Foundation of China (Grant No. 51401235), and Beijing Natural Science Foundation, China (Grant No. 2152034).

  4. Synthesis of boron suboxide (B 6O) with ball milled boron oxide (B 2O 3) under lower pressure and temperature

    NASA Astrophysics Data System (ADS)

    Jiao, Xiaopeng; Jin, Hua; Liu, Fuyang; Ding, Zhanhui; Yang, Bin; Lu, Fengguo; Zhao, Xudong; Liu, Xiaoyang

    2010-07-01

    Boron reacted with ball milled boron oxide under pressures between 1 and 5 GPa and at temperatures between 1300 and 1700 °C to afford boron suboxide (B 6O). Icosahedral B 6O grains with diameters ranging from 100 nm to 1.3 μm were prepared. The factors that affect the synthesis of B 6O are investigated. The best sample with crystal size up to 1.3 μm is obtained at 2 GPa and 1400 °C for 6 h. The indentation experiment gave an average Vickers hardness of 32.3 GPa for bulk B 6O sample, which is consistent with previous reports. Bulk B 6O sample exhibits oxidation resistance in air up to 1000 °C and mild oxidation in the temperatures of 1000-1200 °C, which is more oxidation resistant than diamond. It is possible that B 6O could be used as a substitute for diamond in industry because of its relatively mild synthesis conditions, high thermal stability and high hardness.

  5. Resolving Nuclear Reactor Lifetime Extension Questions: A Combined Multiscale Modeling and Positron Characterization approach

    SciTech Connect

    Wirth, B; Asoka-Kumar, P; Denison, A; Glade, S; Howell, R; Marian, J; Odette, G; Sterne, P

    2004-04-06

    The objective of this work is to determine the chemical composition of nanometer precipitates responsible for irradiation hardening and embrittlement of reactor pressure vessel steels, which threaten to limit the operating lifetime of nuclear power plants worldwide. The scientific approach incorporates computational multiscale modeling of radiation damage and microstructural evolution in Fe-Cu-Ni-Mn alloys, and experimental characterization by positron annihilation spectroscopy and small angle neutron scattering. The modeling and experimental results are

  6. Multiscale Characterization of bcc Crystals Deformed to Large Extents of Strain

    SciTech Connect

    Florando, J; LeBlanc, M; Lassila, D; Bulatov, V; Rhee, M; Arsenlis, A; Becker, R; Jr., J M; Magid, K

    2007-02-20

    In an effort to help advance the predictive capability of LLNL's multiscale modeling program a new experimental technique has been developed to provide high fidelity data on metallic single crystals out to relatively large extents of strain. The technique uses a '6 Degrees of Freedom' testing apparatus in conjunction with a 3-D image correlation system. Utilizing this technique, a series of experiments have been performed that reveal unexpected behavior which cannot be explained using traditional crystal plasticity theory. In addition, analysis and characterization techniques have also been developed to help quantify the unexpected behavior. Interactions with multiscale modelers include the development of a possible mechanism that might explain the anomalous behavior, as well as the discovery of a new 4-node dislocation junction.

  7. M{umlt o}ssbauer investigation of intermixing during ball milling of Fe{sub 0.3}Cr{sub 0.7} and Fe{sub 0.5}W{sub 0.5} powder mixtures

    SciTech Connect

    Le Caeer, G.; Delcroix, P.; Shen, T.D.; Malaman, B.

    1996-11-01

    Intermixing of Fe and T (T=Cr,W) during ball milling of elemental powder mixtures Fe{sub 1{minus}x}T{sub x}, with x=0.70 for T=Cr and x=0.50 for T=W, has been followed by {sup 57}Fe M{umlt o}ssbauer spectroscopy at room temperature (RT) and by magnetization measurements for T=W. The chemical compositions have been chosen to yield final alloys or compounds which are nonmagnetic at RT to better follow the evolution of magnetic phases with milling times. For a long period of milling time t{sub m} before reaching the final stationary state, the hyperfine magnetic field distributions remain stationary in shape for both T=Cr and T=W. Only the relative weight of the magnetic contribution decreases with t{sub m}. For T=W, the average moment of magnetic Fe atoms is further shown to remain constant with t{sub m}. Stationary hyperfine field distribution shapes are found to be similar not only for {ital T}=Cr and W but also for T=Si (x=0.50) while published spectra suggest to add T=Al, Ti, V, Ta, Re to the latter nonexhaustive list. The stationary shape is characterized by a narrow peak located at a field close to the field of alpha iron at RT (330 kG) and by a broad, almost featureless, band from 50-100 kG to 300-320 kG. The broad band represents about 2/3 of the normalized field distribution. We deduce that the interpretation which consists in attributing the x-ray diffraction peaks of Fe-based bcc solid solutions to a single Fe-rich homogeneous solid solution must be done with care for intermediate milling times. We cannot infer from such hyperfine measurements a detailed description of the regions of the powders which are responsible for such magnetic features. We argue however that irregular interfaces between nanometer-sized Fe-rich zones and {ital T}-rich zones may play a role to explain the observed shape of the hyperfine field distributions.

  8. CHARACTERIZING COUPLED CHARGE TRANSPORT WITH MULTISCALE MOLECULAR DYNAMICS

    SciTech Connect

    Swanson, Jessica

    2011-08-31

    This is the final progress report for Award DE-SC0004920, entitled 'Characterizing coupled charge transport with multi scale molecular dynamics'. The technical abstract will be provided in the uploaded report.

  9. Morphological, Thermal, and Magnetic Analysis of Ball-Milled γ-Fe2O3 and Fe3O4 Nanoparticles for Biomedical Application

    NASA Astrophysics Data System (ADS)

    Burnham, Philip; Papaefthymiou, Georgia C.; Viescas, Arthur; Li, Calvin; Dollahon, Norman

    2013-03-01

    Superparamagnetic iron oxide nanoparticles are promising agents for hyperthermia cancer treatment, because, when exposed to an alternating magnetic field, they impart heat to surrounding tissue. A comparison of γ-Fe2O3 and Fe3O4 nanoparticles for such application is presented. The particles were obtained via surfactant-assisted high energy ball-milling in a hexane/oleic acid carrier-fluid environment. Particles with diameters of 5 to 16 nm were prepared with mass ratios (oleic acid):(γ-Fe2O3) of 0:1, 1:5, 1:10 and 1:20, with milling times of 3, 6, 9, and 12 hours. TEM micrographs revealed spherical morphology and the effect of oleic acid shells. Optimal size distributions were obtained for high oleic acid contents. At room temperature, a reduced internal magnetic field ~480 kOe) was recorded via Mössbauer spectroscopy compared to bulk γ-Fe2O3 ~500 kOe), due to magnetic relaxation; Fe3O4 particles produced similar results. For the γ-Fe2O3 and Fe3O4 nanoparticles with 20% oleic acid by mass, comparative ZFC/FC magnetization (Happ = 200 Oe in temperature range from 2 to 400 K) and hysteresis loops (T = 2 K and 300 K up to Happ = 6 kOe) were obtained. Thermal transport characteristics were verified by Specific Absorption Rate (SAR) measurements using an AC magnetic field (f = 282 kHz). Differences and similarities in behavior will be discussed.

  10. Enhanced magnetic properties of NiO powders by the mechanical activation of aluminothermic reduction of NiO prepared by a ball milling process

    NASA Astrophysics Data System (ADS)

    Padhan, Aneeta Manjari; Ravikumar, P.; Saravanan, P.; Alagarsamy, Perumal

    2016-11-01

    We report the effect of mechanical activation on NiO-Al (x wt%) reduction reaction and resulting structural and magnetic properties by carrying out high-energy planetary ball milling. The pure NiO (un-milled) and milled NiO-Al (x≤2.5) powders exhibit face centered cubic structure, but the antiferromagnetic nature of pure NiO powder shows significant room temperature ferromagnetism with moderate moment and coercivity after milling due to non-stoichiometry in NiO caused by the defects, size reduction and oxidation of Ni. On the other hand, the addition of Al between 2.5 and 10% in NiO forms solid solution of NiO-Al with considerable reduction in the moment due to the atomic disorder. With increasing Al above 10%, NiO reduction reaction progresses gradually and as a result, the average magnetization increases from 0.57 to 4.3 emu/g with increasing Al up to 25%. A maximum of 91% reduction was observed for NiO-Al (40%) powders in 30 h of milling with a large increase in magnetization (~24 emu/g) along with the development of α-Al2O3. Thermomagnetization data reveal the presence of mixed magnetic phases in milled NiO powders and the component of induced ferromagnetic phase fades out with increasing Al due to the formation of Ni from the NiO-Al reduction reaction. The changes in the structural and magnetic properties are discussed on the basis of mechanical activation on the reduction of NiO by Al. The controlled reduction reaction with different Al content in NiO-Al is encouraging for the applications in catalysis and process of ore reduction.

  11. Effect of Gd-substitution on the ferroelectric and magnetic properties of BiFeO3 processed by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Sharma, Shiwani; Mishra, Alok; Saravanan, P.; Pandey, O. P.; Sharma, Puneet

    2016-11-01

    Multiferroic BiFeO3 was synthesized by means of high-energy ball milling (HEBM) followed by thermal annealing at various temperatures and the effect of Gd3+ substitution (x=0.0-0.20) at Bi3+ site was investigated in this study. It is found that the Gd-substitution tends to decrease the impurity phases and the crystallization of single phase BiFeO3 is observed at x=0.1. Scanning electron micrograph of Bi1-xGdxFeO3 sintered sample indicated a decrease in particle size and change in shape with increasing x. For all the studied samples, the measured dielectric constant values tend to increase from 110 (x=0.0) to 250 (x=0.10). The dielectric loss is found to be more for the pure BiFeO3 as compared to the Bi1-xGdxFeO3. Ferroelectric loops show a maximum polarization of 1.63 μC/cm2 for the Bi0.9Gd0.1FeO3. Magnetization (M) versus magnetic field (H) hysteresis loops at 300 K BiFeO3 and Bi0.9Gd0.1FeO3 demonstrated non-saturated loops, suggesting the antiferromagnetic nature of the samples. The M-H behavior of the Bi1-xGdxFeO3 at 300 K shows the antiferromagnetic nature of the samples. The estimated magnetization value at 10 kOe for the Bi0.9Gd0.1FeO3 sample (0.23 emu/g) is found to be higher than that of the pure BiFeO3 (0.037 emu/g).

  12. Cathode performance of LiMnPO 4/C nanocomposites prepared by a combination of spray pyrolysis and wet ball-milling followed by heat treatment

    NASA Astrophysics Data System (ADS)

    Doan, The Nam Long; Taniguchi, Izumi

    LiMnPO 4/C nanocomposites could be prepared by a combination of spray pyrolysis and wet ball-milling followed by heat treatment in the range of spray pyrolysis temperature from 200 to 500 °C. The ordered LiMnPO 4 olivine structure without any impurity phase could be identified by X-ray diffraction analysis for all samples. It could be also confirmed from scanning electron microscopy and transmission electron microscopy observations that the final samples were the LiMnPO 4/C nanocomposites with approximately 100 nm in primary particles size. The LiMnPO 4/C nanocomposite samples were used as cathode active materials for lithium batteries, and the electrochemical tests were carried out for the cell Li|1 M LiPF 6 in EC:DMC = 1:1|LiMnPO 4/C at various charge/discharge rates in three charge modes. As a result, the final sample which was synthesized at 300 °C by spray pyrolysis showed the best electrochemical performance due to the largest specific surface area, the smallest primary particle size and a well distribution of carbon. At galvanostatic charge/discharge rates of 0.05 C, the cell delivered first discharge capacities of 123 and 165 mAh g -1 in correspondence to charge cutoff voltages of 4.4 and 5.0 V, respectively. Furthermore, in a constant current-constant voltage charge mode at 4.4 V, the cells also exhibited initial discharge capacities of 147 mAh g -1 at 0.05 C, 145 mAh g -1 at 0.1 C, 123 mAh g -1 at 1 C and 65 mAh g -1 at 10 C. Moreover, the cells showed fair good cycleability over 100 cycles.

  13. Multiscale analysis of replication technique efficiency for 3D roughness characterization of manufactured surfaces

    NASA Astrophysics Data System (ADS)

    Jolivet, S.; Mezghani, S.; El Mansori, M.

    2016-09-01

    The replication of topography has been generally restricted to optimizing material processing technologies in terms of statistical and single-scale features such as roughness. By contrast, manufactured surface topography is highly complex, irregular, and multiscale. In this work, we have demonstrated the use of multiscale analysis on replicates of surface finish to assess the precise control of the finished replica. Five commercial resins used for surface replication were compared. The topography of five standard surfaces representative of common finishing processes were acquired both directly and by a replication technique. Then, they were characterized using the ISO 25178 standard and multiscale decomposition based on a continuous wavelet transform, to compare the roughness transfer quality at different scales. Additionally, atomic force microscope force modulation mode was used in order to compare the resins’ stiffness properties. The results showed that less stiff resins are able to replicate the surface finish along a larger wavelength band. The method was then tested for non-destructive quality control of automotive gear tooth surfaces.

  14. Multi-scale Characterization of Cellulose TEMPO-Nanofiber Suspension

    NASA Astrophysics Data System (ADS)

    Mao, Yimin; Liu, Kai; Hsiao, Benjamin

    Cellulose nanofiber (CNF) suspensions were characterized at multiple length scales. CNF suspension was prepared by applying 2,2,6,6-tetramethyl-1- piperidinyloxy (TEMPO) oxidation method to dry wood pulp. TEMPO method was able to produce fine fibers with a cross section dimension being in the order of magnitude of several nanometers, and length being several hundred nanometers. The surface was negatively charged. Charge density was characterized by Zeta-potential measurement. Both small-angle X-ray (SAXS) and small-angle neutron (SANS) methods were employed to examine fiber dimensions in solution. Data fitting indicated that newly-developed ribbon model was able to capture the essence of CNF's geometry, which is also computationally economic. The rectangular-shaped cross section was consistent to cellulose's crystal structure; and was able to provide insights into how cellulose crystals were biologically synthesized and packed in nature. Multi-angle dynamic light scattering (DLS) was used to study CNF's diffusion properties. A strong scattering-angle dependence of auto-correlation function was observed. The characterization is useful to understanding suspension quality of CNF, and can provide guideline for follow-up research aimed for a variety of applications.

  15. Controlling the number of walls in multi walled carbon nanotubes/alumina hybrid compound via ball milling of precipitate catalyst

    NASA Astrophysics Data System (ADS)

    Nosbi, Norlin; Akil, Hazizan Md

    2015-06-01

    This paper reports the influence of milling time on the structure and properties of the precipitate catalyst of multi walled carbon nanotubes (MWCNT)/alumina hybrid compound, produced through the chemical vapour deposition (CVD) process. For this purpose, light green precipitate consisted of aluminium, nickel(II) nitrate hexahydrate and sodium hydroxide mixture was placed in a planetary mill equipped with alumina vials using alumina balls at 300 rpm rotation speed for various milling time (5-15 h) prior to calcinations and CVD process. The compound was characterized using various techniques. Based on high-resolution transmission electron microscopy analysis, increasing the milling time up to 15 h decreased the diameter of MWCNT from 32.3 to 13.1 nm. It was noticed that the milling time had a significant effect on MWCNT wall thickness, whereby increasing the milling time from 0 to 15 h reduced the number of walls from 29 to 12. It was also interesting to note that the carbon content increased from 23.29 wt.% to 36.37 wt.% with increasing milling time.

  16. A Multi-Scale Approach for fracture characterization

    NASA Astrophysics Data System (ADS)

    Collombin, Maxime; Derron, Marc-Henri; Sartori, Mario; Jaboyedoff, Michel; Matasci, Battista; Humair, Florian

    2016-04-01

    The study of fractured reservoirs is of primary importance for hydrocarbons, water and geothermal exploration. The investigation of natural fracture networks affecting potential reservoir is a key point in the present field of research since fracturing may constitute preferential flow paths for fluids consequently to an increase of the secondary permeability. Performed in the context of a geothermal project in the Western Alps of Switzerland, the present work focuses on the characterization of the fracturing pattern in order to better understand water circulations affecting a gneissic geology (tectonic unit of the "Aiguilles Rouges Massif"). The fracturing interpretation is here mainly based on a terrestrial LiDAR survey of outcrops close to (future) production wells as well as on discrete fracture network (DFN) modelling. The different sets of fractures are characterized in terms of orientation, spacing and trace length. In addition, traditional field survey observations and measurements from outcrops allow documenting the fracture aperture, types of fillings and the evidences of past and present-day fluid circulations. Fracturing patterns from outcrops and LIDAR analysis are then compared to regional structures observed on a DEM. Main objectives of this study are: (1) to compare and check the consistence of various sets of fracturing data, acquired by various methods at different scales; (2) to develop the most representative fracture model (DFN), taking into account these datasets. Once a DFN model established, each of the different fracture sets will be associated with permeability values in order to get a preliminary hydrodynamic model that will be confronted to borehole tests data and eventually used as inputs for flow simulation. Keywords: Fracturing analysis, LiDAR, borehole, Discrete Fracture Network, Flow simulation

  17. Multiscale seismic characterization of marine sediments by using a wavelet-based approach

    NASA Astrophysics Data System (ADS)

    Ker, Stephan; Le Gonidec, Yves; Gibert, Dominique

    2015-04-01

    We propose a wavelet-based method to characterize acoustic impedance discontinuities from a multiscale analysis of reflected seismic waves. This method is developed in the framework of the wavelet response (WR) where dilated wavelets are used to sound a complex seismic reflector defined by a multiscale impedance structure. In the context of seismic imaging, we use the WR as a multiscale seismic attributes, in particular ridge functions which contain most of the information that quantifies the complex geometry of the reflector. We extend this approach by considering its application to analyse seismic data acquired with broadband but frequency limited source signals. The band-pass filter related to such actual sources distort the WR: in order to remove these effects, we develop an original processing based on fractional derivatives of Lévy alpha-stable distributions in the formalism of the continuous wavelet transform (CWT). We demonstrate that the CWT of a seismic trace involving such a finite frequency bandwidth can be made equivalent to the CWT of the impulse response of the subsurface and is defined for a reduced range of dilations, controlled by the seismic source signal. In this dilation range, the multiscale seismic attributes are corrected from distortions and we can thus merge multiresolution seismic sources to increase the frequency range of the mutliscale analysis. As a first demonstration, we perform the source-correction with the high and very high resolution seismic sources of the SYSIF deep-towed seismic device and we show that both can now be perfectly merged into an equivalent seismic source with an improved frequency bandwidth (220-2200 Hz). Such multiresolution seismic data fusion allows reconstructing the acoustic impedance of the subseabed based on the inverse wavelet transform properties extended to the source-corrected WR. We illustrate the potential of this approach with deep-water seismic data acquired during the ERIG3D cruise and we compare

  18. Membrane characterization by microscopic and scattering methods: multiscale structure.

    PubMed

    Tamime, Rahma; Wyart, Yvan; Siozade, Laure; Baudin, Isabelle; Deumie, Carole; Glucina, Karl; Moulin, Philippe

    2011-04-13

    Several microscopic and scattering techniques at different observation scales (from atomic to macroscopic) were used to characterize both surface and bulk properties of four new flat-sheet polyethersulfone (PES) membranes (10, 30, 100 and 300 kDa) and new 100 kDa hollow fibers (PVDF). Scanning Electron Microscopy (SEM) with "in lens" detection was used to obtain information on the pore sizes of the skin layers at the atomic scale. White Light Interferometry (WLI) and Atomic Force Microscopy (AFM) using different scales (for WLI: windows: 900 × 900 µm2 and 360 × 360 µm2; number of points: 1024; for AFM: windows: 50 × 50 µm2 and 5 × 5 µm2; number of points: 512) showed that the membrane roughness increases markedly with the observation scale and that there is a continuity between the different scan sizes for the determination of the RMS roughness. High angular resolution ellipsometric measurements were used to obtain the signature of each cut-off and the origin of the scattering was identified as coming from the membrane bulk.

  19. Synthesis and characterization of Al-Zn/Al2O3 nano-powder composites.

    PubMed

    Durai, T G; Das, Karabi; Das, Siddhartha

    2007-06-01

    Composites consisting of Al-Zn/Al2O3 have been synthesized using high energy mechanical milling. High energy ball milling increases the sintering rate of the composite powder due to increased diffusion rate. Owing to the finer microstructure, the hardness of the sintered composite produced by using the mechanically milled nanocomposite powder is significantly higher than that of the sintered composite produced by using the as-mixed powder. The mean crystallite size of the matrix has been determined to be 27 nm by Scherrer equation using X-ray diffraction data. The powders have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and differential thermal analysis (DTA). The effect of high-energy ball milling and subsequent annealing on a mixture of Al and ZnO has also been investigated. DTA result show that the reaction temperature of Al-ZnO decreases with the increase in the ball milling time.

  20. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5†

    PubMed Central

    Ralph, John

    2014-01-01

    NMR fingerprinting of the components of finely divided plant cell walls swelled in DMSO has been recently described. Cell wall gels, produced directly in the NMR tube with perdeutero-dimethylsulfoxide, allowed the acquisition of well resolved/dispersed 2D 13C–1H correlated solution-state NMR spectra of the entire array of wall polymers, without the need for component fractionation. That is, without actual solubilization, and without apparent structural modification beyond that inflicted by the ball milling and ultrasonication steps, satisfactorily interpretable spectra can be acquired that reveal compositional and structural details regarding the polysaccharide and lignin components in the wall. Here, the profiling method has been improved by using a mixture of perdeuterated DMSO and pyridine (4:1, v/v). Adding pyridine provided not only easier sample handling because of the better mobility compared to the DMSO-d6-only system but also considerably elevated intensities and improved resolution of the NMR spectra due to the enhanced swelling of the cell walls. This modification therefore provides a more rapid method for comparative structural evaluation of plant cell walls than is currently available. We examined loblolly pine (Pinus taeda, a gymnosperm), aspen (Populus tremuloides, an angiosperm), kenaf (Hibiscus cannabinus, an herbaceous plant), and corn (Zea mays L., a grass, i.e., from the Poaceae family). In principle, lignin composition (notably, the syringyl : guaiacyl : p-hydroxyphenyl ratio) can be quantified without the need for lignin isolation. Correlations for p-coumarate units in the corn sample are readily seen, and a variety of the ferulate correlations are also well resolved; ferulates are important components responsible for cell wall cross-linking in grasses. Polysaccharide anomeric correlations were tentatively assigned for each plant sample based on standard samples and various literature data. With the new potential for chemometric analysis

  1. Multiscale Characterization of Nickel Titanium Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Gall, Keith

    Shape memory alloys were characterized by a variety of methods to investigate the relationship between microstructural phase transformation, macroscale deformation due to mechanical loading, material geometry, and initial material state. The major portion of the work is application of digital image correlation at several length scales to SMAs under mechanical loading. In addition, the connection between electrical resistance, stress, and strain was studied in NiTi wires. Finally, a new processing method was investigated to develop porous NiTi samples, which can be examined under DIC in future work. The phase transformation temperatures of a Nickel-Titanium based shape memory alloy (SMA) were initially evaluated under stress-free conditions by the differential scanning calorimetric (DSC) technique. Results show that the phase transformation temperature is significantly higher for transition from de-twinned martensite to austenite than from twinned martensite or R phase to austenite. To further examine transformation temperatures as a function of initial state a tensile test apparatus with in-situ electrical resistance (ER) measurements was used to evaluate the transformation properties of SMAs at a variety of stress levels and initial compositions. The results show that stress has a significant influence on the transformation of detwinned martensite, but a small influence on R phase and twinned martensite transformations. Electrical resistance changes linearly with strain during the transformations from both kinds of martensite to austenite. The linearity between ER and strain during the transformation from de-twinned martensite to austenite is not affected by the stress, facilitating application to control algorithms. A revised phase diagram is drawn to express these results. To better understand the nature of the local and global strain fields that accompany phase transformation in shape memory alloys (SMAs), here we use high resolution imaging together with image

  2. Towards Characterization, Modeling, and Uncertainty Quantification in Multi-scale Mechanics of Oragnic-rich Shales

    NASA Astrophysics Data System (ADS)

    Abedi, S.; Mashhadian, M.; Noshadravan, A.

    2015-12-01

    Increasing the efficiency and sustainability in operation of hydrocarbon recovery from organic-rich shales requires a fundamental understanding of chemomechanical properties of organic-rich shales. This understanding is manifested in form of physics-bases predictive models capable of capturing highly heterogeneous and multi-scale structure of organic-rich shale materials. In this work we present a framework of experimental characterization, micromechanical modeling, and uncertainty quantification that spans from nanoscale to macroscale. Application of experiments such as coupled grid nano-indentation and energy dispersive x-ray spectroscopy and micromechanical modeling attributing the role of organic maturity to the texture of the material, allow us to identify unique clay mechanical properties among different samples that are independent of maturity of shale formations and total organic content. The results can then be used to inform the physically-based multiscale model for organic rich shales consisting of three levels that spans from the scale of elementary building blocks (e.g. clay minerals in clay-dominated formations) of organic rich shales to the scale of the macroscopic inorganic/organic hard/soft inclusion composite. Although this approach is powerful in capturing the effective properties of organic-rich shale in an average sense, it does not account for the uncertainty in compositional and mechanical model parameters. Thus, we take this model one step forward by systematically incorporating the main sources of uncertainty in modeling multiscale behavior of organic-rich shales. In particular we account for the uncertainty in main model parameters at different scales such as porosity, elastic properties and mineralogy mass percent. To that end, we use Maximum Entropy Principle and random matrix theory to construct probabilistic descriptions of model inputs based on available information. The Monte Carlo simulation is then carried out to propagate the

  3. Effects of processing parameters on the synthesis of (K0.5Na0.5)NbO3 nanopowders by reactive high-energy ball milling method.

    PubMed

    Nguyen, Duc Van

    2014-01-01

    The effects of ball milling parameters, namely, the ball-to-powder mass ratio and milling speed, on the synthesis of (K0.5Na0.5)NbO3 nanopowders by high-energy ball milling method from a stoichiometric mixture containing Na2CO3, K2CO3, and Nb2O5 were investigated in this paper. The results indicated that the single crystalline phase of (K0.5Na0.5)NbO3 was received in as-milled samples synthesized using optimized ball-to-powder mass ratio of 35 : 1 and at a milling speed of 600 rpm for 5 h. In the optimized as-milled samples, no remaining alkali carbonates that can provide the volatilizable potassium-containing species were found and (K0.5Na0.5)NbO3 nanopowders were readily obtained via the formation of an intermediate carbonato complex. This complex was mostly transformed into (K0.5Na0.5)NbO3 at temperature as low as 350°C and its existence was no longer detected at spectroscopic level when calcination temperature crossed over 700°C.

  4. Synthesis of SnFe2O4 Nanomaterials Via High Energy Ball Milling of SnO (Stannous) and α-Fe2O3 (Hematite) Solid Precursors

    NASA Astrophysics Data System (ADS)

    Uwakweh, Oswald N. C.; Más, Rita; Morales, Carolyn; Vargas, Pedro; Silva, Josue; Rosa, Angel; Lopez, Neshma; Moyet, Richard Perez; Cardona, Yenny

    2011-10-01

    The synthesis of single phase tin-ferrite, SnFe2O4, from tin (II) oxide or stannous oxide (SnO), and hematite (α-Fe2O3) solid precursors was carried out via high energy ball milling (HEBM) under wet condition involving the addition of controlled amounts of acetone. The stoichiometric amounts of the precursor materials were ball milled continuously for up to 22 h in a Spex-8000D mill using a ball-to-powder ratio of 40:1, with hardened stainless steel balls in WC-lined jars. The time-dependent formation of the SnFe2O4 based on combined X-ray diffraction and room temperature Mössbauer spectroscopy (MS) measurements revealed reaction enhancements associated with particles size reduction. The 22 h milled material indicated that synthesized SnFe2O4 had a particle size of 10.91 nm, coercivity of 4.44 mT, magnetic saturation/remanent ratio ( M r/ M s) of 0.085, while its superparamagnetic behavior was confirmed based on the combined MS and vibrating sample magnetometer measurements.

  5. Effects of Processing Parameters on the Synthesis of (K0.5Na0.5)NbO3 Nanopowders by Reactive High-Energy Ball Milling Method

    PubMed Central

    Duc Van, Nguyen

    2014-01-01

    The effects of ball milling parameters, namely, the ball-to-powder mass ratio and milling speed, on the synthesis of (K0.5Na0.5)NbO3 nanopowders by high-energy ball milling method from a stoichiometric mixture containing Na2CO3, K2CO3, and Nb2O5 were investigated in this paper. The results indicated that the single crystalline phase of (K0.5Na0.5)NbO3 was received in as-milled samples synthesized using optimized ball-to-powder mass ratio of 35 : 1 and at a milling speed of 600 rpm for 5 h. In the optimized as-milled samples, no remaining alkali carbonates that can provide the volatilizable potassium-containing species were found and (K0.5Na0.5)NbO3 nanopowders were readily obtained via the formation of an intermediate carbonato complex. This complex was mostly transformed into (K0.5Na0.5)NbO3 at temperature as low as 350°C and its existence was no longer detected at spectroscopic level when calcination temperature crossed over 700°C. PMID:24592146

  6. Advanced in situ multi-scale characterization of hardness of carbon-fiber-reinforced plastic

    NASA Astrophysics Data System (ADS)

    Wang, Hongxin; Masuda, Hideki; Kitazawa, Hideaki; Onishi, Keiko; Kawai, Masamichi; Fujita, Daisuke

    2016-10-01

    In situ multi-scale characterization of hardness of carbon-fiber-reinforced plastic (CFRP) is demonstrated by a traditional hardness tester, instrumented indentation tester and atomic-force-microscope (AFM)-based nanoindentation. In particular, due to the large residual indentation and nonuniform distribution of the microscale carbon fibers, the Vickers hardness could not be calculated by the traditional hardness tester. In addition, the clear residual microindentation could not be formed on the CFRP by instrumented indentation tester because of the large tip half angle of the Berkovich indenter. Therefore, an efficient technique for characterizing the true nanoscale hardness of CFRP was proposed and evaluated. The local hardness of the carbon fibers or plastic matrix on the nanoscale did not vary with nanoindentation location. The Vickers hardnesses of the carbon fiber and plastic matrix determined by AFM-based nanoindentation were 340 ± 30 and 40 ± 2 kgf/mm2, respectively.

  7. Multi-scale mechanical characterization of scaffolds for heart valve tissue engineering.

    PubMed

    Argento, G; Simonet, M; Oomens, C W J; Baaijens, F P T

    2012-11-15

    Electrospinning is a promising technology to produce scaffolds for cardiovascular tissue engineering. Each electrospun scaffold is characterized by a complex micro-scale structure that is responsible for its macroscopic mechanical behavior. In this study, we focus on the development and the validation of a computational micro-scale model that takes into account the structural features of the electrospun material, and is suitable for studying the multi-scale scaffold mechanics. We show that the computational tool developed is able to describe and predict the mechanical behavior of electrospun scaffolds characterized by different microstructures. Moreover, we explore the global mechanical properties of valve-shaped scaffolds with different microstructural features, and compare the deformation of these scaffolds when submitted to diastolic pressures with a tissue engineered and a native valve. It is shown that a pronounced degree of anisotropy is necessary to reproduce the deformation patterns observed in the native heart valve.

  8. Size Distributions and Characterization of Native and Ground Samples for Toxicology Studies

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Cooper, Bonnie L.; Taylor, Larry A.

    2010-01-01

    This slide presentation shows charts and graphs that review the particle size distribution and characterization of natural and ground samples for toxicology studies. There are graphs which show the volume distribution versus the number distribution for natural occurring dust, jet mill ground dust, and ball mill ground dust.

  9. Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography.

    PubMed

    Schneider, Simon; Eppler, Florian; Weber, Marco; Olowojoba, Ganiu; Weiss, Patrick; Hübner, Christof; Mikonsaari, Irma; Freude, Wolfgang; Koos, Christian

    2016-01-01

    Nanocomposite materials represent a success story of nanotechnology. However, development of nanomaterial fabrication still suffers from the lack of adequate analysis tools. In particular, achieving and maintaining well-dispersed particle distributions is a key challenge, both in material development and industrial production. Conventional methods like optical or electron microscopy need laborious, costly sample preparation and do not permit fast extraction of nanoscale structural information from statistically relevant sample volumes. Here we show that optical coherence tomography (OCT) represents a versatile tool for nanomaterial characterization, both in a laboratory and in a production environment. The technique does not require sample preparation and is applicable to a wide range of solid and liquid material systems. Large particle agglomerates can be directly found by OCT imaging, whereas dispersed nanoparticles are detected by model-based analysis of depth-dependent backscattering. Using a model system of polystyrene nanoparticles, we demonstrate nanoparticle sizing with high accuracy. We further prove the viability of the approach by characterizing highly relevant material systems based on nanoclays or carbon nanotubes. The technique is perfectly suited for in-line metrology in a production environment, which is demonstrated using a state-of-the-art compounding extruder. These experiments represent the first demonstration of multiscale nanomaterial characterization using OCT. PMID:27557544

  10. Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Schneider, Simon; Eppler, Florian; Weber, Marco; Olowojoba, Ganiu; Weiss, Patrick; Hübner, Christof; Mikonsaari, Irma; Freude, Wolfgang; Koos, Christian

    2016-08-01

    Nanocomposite materials represent a success story of nanotechnology. However, development of nanomaterial fabrication still suffers from the lack of adequate analysis tools. In particular, achieving and maintaining well-dispersed particle distributions is a key challenge, both in material development and industrial production. Conventional methods like optical or electron microscopy need laborious, costly sample preparation and do not permit fast extraction of nanoscale structural information from statistically relevant sample volumes. Here we show that optical coherence tomography (OCT) represents a versatile tool for nanomaterial characterization, both in a laboratory and in a production environment. The technique does not require sample preparation and is applicable to a wide range of solid and liquid material systems. Large particle agglomerates can be directly found by OCT imaging, whereas dispersed nanoparticles are detected by model-based analysis of depth-dependent backscattering. Using a model system of polystyrene nanoparticles, we demonstrate nanoparticle sizing with high accuracy. We further prove the viability of the approach by characterizing highly relevant material systems based on nanoclays or carbon nanotubes. The technique is perfectly suited for in-line metrology in a production environment, which is demonstrated using a state-of-the-art compounding extruder. These experiments represent the first demonstration of multiscale nanomaterial characterization using OCT.

  11. Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography

    PubMed Central

    Schneider, Simon; Eppler, Florian; Weber, Marco; Olowojoba, Ganiu; Weiss, Patrick; Hübner, Christof; Mikonsaari, Irma; Freude, Wolfgang; Koos, Christian

    2016-01-01

    Nanocomposite materials represent a success story of nanotechnology. However, development of nanomaterial fabrication still suffers from the lack of adequate analysis tools. In particular, achieving and maintaining well-dispersed particle distributions is a key challenge, both in material development and industrial production. Conventional methods like optical or electron microscopy need laborious, costly sample preparation and do not permit fast extraction of nanoscale structural information from statistically relevant sample volumes. Here we show that optical coherence tomography (OCT) represents a versatile tool for nanomaterial characterization, both in a laboratory and in a production environment. The technique does not require sample preparation and is applicable to a wide range of solid and liquid material systems. Large particle agglomerates can be directly found by OCT imaging, whereas dispersed nanoparticles are detected by model-based analysis of depth-dependent backscattering. Using a model system of polystyrene nanoparticles, we demonstrate nanoparticle sizing with high accuracy. We further prove the viability of the approach by characterizing highly relevant material systems based on nanoclays or carbon nanotubes. The technique is perfectly suited for in-line metrology in a production environment, which is demonstrated using a state-of-the-art compounding extruder. These experiments represent the first demonstration of multiscale nanomaterial characterization using OCT. PMID:27557544

  12. Multiscale Characterization of Deformation Mechanisms in the Weld Joint of a Nickel-based Superalloy

    SciTech Connect

    Barabash, Oleg M.; Horton, Joe; Babu, Suresh; Vitek, John; David, Stan; Ice, Gene; Barabash, Rozaliya

    2007-12-19

    Multiscale plastic deformation in the heat affected zone (HAZ) of a Ni-based single crystal superalloy has been characterized using white microbeam synchrotron diffraction measurements together with OIM imaging, electron and optical microscopy. Characteristic length scales on the macro, meso and nano scale are determined. Dissolution of the {gamma} - phase particles during heating and secondary precipitation of {gamma} - phase during cooling is found, as well as formation and multiplication of dislocations. This process is more intense as one approaches the fusion line (FL). In the regions immediately neighboring the FL, {gamma} - phase particles dissolve completely and re-precipitate from the solid solution in the form of very small (50-70nm) particles. In the immediate vicinity of the FL, the temperature gradient and the rate of it's change reaches maximal values and causes the formation of large amounts of dislocations. Dislocations are concentrated in the ? matrix of the single crystal superalloy. X-ray Laue diffraction (both conventional and microbeam) and electron microscopy show that alternating dislocations slip systems dominate in the HAZ with typical Burgers vector b=[110]. Local lattice rotations in different zones of the weld joint are linking with the microslip events in different zones of the weld.

  13. Multiscale Characterization of Deformation Mechanisms in the Weld Joint of a Nickel-based Superalloy

    SciTech Connect

    Barabash, Oleg M

    2005-01-01

    Multiscale plastic deformation in the heat affected zone (HAZ) of a Ni-based single crystal superalloy has been characterized using white microbeam synchrotron diffraction measurements together with OIM imaging, electron and optical microscopy. Characteristic length scales on the macro, meso and nano scale are determined. Dissolution of the {gamma}{prime} - phase particles during heating and secondary precipitation of {gamma}{prime} - phase during cooling is found, as well as formation and multiplication of dislocations. This process is more intense as one approaches the fusion line (FL). In the regions immediately neighboring the FL, {gamma}{prime} - phase particles dissolve completely and re-precipitate from the solid solution in the form of very small (50-70nm) particles. In the immediate vicinity of the FL, the temperature gradient and the rate of it's change reaches maximal values and causes the formation of large amounts of dislocations. Dislocations are concentrated in the {gamma} matrix of the single crystal superalloy. X-ray Laue diffraction (both conventional and microbeam) and electron microscopy show that alternating dislocations slip systems dominate in the HAZ with typical Burgers vector b=[110]. Local lattice rotations in different zones of the weld joint are linking with the microslip events in different zones of the weld.

  14. Multiscale characterization of deformation mechanisms in the weld joint of a nickel-based superalloy

    SciTech Connect

    Barabash, Oleg M; Horton Jr, Joe A; Babu, Sudarsanam S; Vitek, John Michael; David, Stan A; Ice, Gene E; Barabash, Rozaliya

    2005-01-01

    Multiscale plastic deformation in the heat affected zone (HAZ) of a Ni-based single crystal superalloy has been characterized using white microbeam synchrotron diffraction measurements together with OIM imaging, electron and optical microscopy. Characteristic length scales on the macro, meso and nano scale are determined. Dissolution of the gamma' - phase particles during heating and secondary precipitation of gamma' during cooling is found, as well as formation and multiplication of dislocations. This process is more intense as one approaches the fusion line (FL). In the regions immediately neighboring the FL, gamma' - phase particles dissolve completely and re-precipitate from the solid solution in the form of very small (10-20nm) particles. In the immediate vicinity of the FL, the temperature gradient and the rate of it's change reaches maximal values and causes the formation of large amounts of dislocations. Dislocations are concentrated in the gamma matrix of the single crystal superalloy. X-ray Laue diffraction (both conventional and microbeam) and electron microscopy show that alternating dislocations slip systems dominate in the HAZ with Burgers vector b=[110] and dislocation lines [1-12] and [1-1-2] ; or b=[-110], dislocation lines [112] and [11-2] . Each of these two dislocation groups forms two Z-shaped dislocation lines fluctuating around two cubic directions [100] and [010]. Local lattice rotations in different zones of the weld joint are linking with the microslip events in different zones of the weld.

  15. Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components.

    PubMed

    Cavalli, M C; Griffa, M; Bressi, S; Partl, M N; Tebaldi, G; Poulikakos, L D

    2016-10-01

    When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured. It was shown that at higher mixing temperatures this film thickness was reduced. The reduction in film thickness can be attributed to the loss of volatiles as well as the mixing of RAP binder with virgin binder at higher temperatures. X-ray computer tomography was used to characterize statistically the distribution of the RAP and virgin aggregates geometric features: volume, width and shape anisotropy. In addition using X-ray computer tomography, the packing and spatial distribution of the RAP and virgin aggregates was characterized using the nearest neighbour metric. It was shown that mixing temperature may have a positive effect on the spatial distribution of the aggregates but did not affect the packing. The study shows a tendency for the RAP aggregates to be more likely distributed in clusters at lower mixing temperatures. At higher temperatures, they were more homogeneously distributed. This indicates a higher degree of blending both at microscale (binder film) and macroscale (spatial distribution) between RAP and virgin aggregates as a result of increasing mixing temperatures and the ability to quantify this using various imaging techniques. PMID:27148703

  16. A Multiscale Vibrational Spectroscopic Approach for Identification and Biochemical Characterization of Pollen

    PubMed Central

    Bağcıoğlu, Murat; Zimmermann, Boris; Kohler, Achim

    2015-01-01

    Background Analysis of pollen grains reveals valuable information on biology, ecology, forensics, climate change, insect migration, food sources and aeroallergens. Vibrational (infrared and Raman) spectroscopies offer chemical characterization of pollen via identifiable spectral features without any sample pretreatment. We have compared the level of chemical information that can be obtained by different multiscale vibrational spectroscopic techniques. Methodology Pollen from 15 different species of Pinales (conifers) were measured by seven infrared and Raman methodologies. In order to obtain infrared spectra, both reflectance and transmission measurements were performed on ground and intact pollen grains (bulk measurements), in addition, infrared spectra were obtained by microspectroscopy of multigrain and single pollen grain measurements. For Raman microspectroscopy measurements, spectra were obtained from the same pollen grains by focusing two different substructures of pollen grain. The spectral data from the seven methodologies were integrated into one data model by the Consensus Principal Component Analysis, in order to obtain the relations between the molecular signatures traced by different techniques. Results The vibrational spectroscopy enabled biochemical characterization of pollen and detection of phylogenetic variation. The spectral differences were clearly connected to specific chemical constituents, such as lipids, carbohydrates, carotenoids and sporopollenins. The extensive differences between pollen of Cedrus and the rest of Pinaceae family were unambiguously connected with molecular composition of sporopollenins in pollen grain wall, while pollen of Picea has apparently higher concentration of carotenoids than the rest of the family. It is shown that vibrational methodologies have great potential for systematic collection of data on ecosystems and that the obtained phylogenetic variation can be well explained by the biochemical composition of

  17. Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components.

    PubMed

    Cavalli, M C; Griffa, M; Bressi, S; Partl, M N; Tebaldi, G; Poulikakos, L D

    2016-10-01

    When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured. It was shown that at higher mixing temperatures this film thickness was reduced. The reduction in film thickness can be attributed to the loss of volatiles as well as the mixing of RAP binder with virgin binder at higher temperatures. X-ray computer tomography was used to characterize statistically the distribution of the RAP and virgin aggregates geometric features: volume, width and shape anisotropy. In addition using X-ray computer tomography, the packing and spatial distribution of the RAP and virgin aggregates was characterized using the nearest neighbour metric. It was shown that mixing temperature may have a positive effect on the spatial distribution of the aggregates but did not affect the packing. The study shows a tendency for the RAP aggregates to be more likely distributed in clusters at lower mixing temperatures. At higher temperatures, they were more homogeneously distributed. This indicates a higher degree of blending both at microscale (binder film) and macroscale (spatial distribution) between RAP and virgin aggregates as a result of increasing mixing temperatures and the ability to quantify this using various imaging techniques.

  18. Multi-scale characterization by FIB-SEM/TEM/3DAP.

    PubMed

    Ohkubo, T; Sepehri-Amin, H; Sasaki, T T; Hono, K

    2014-11-01

    In order to improve properties of functional materials, it is important to understand the relation between the structure and the properties since the structure has large effect to the properties. This can be done by using multi-scale microstructure analysis from macro-scale to nano and atomic scale. Scanning electron microscope (SEM) equipped with focused ion beam (FIB), transmission electron microscope (TEM) and 3D atom probe (3DAP) are complementary analysis tools making it possible to know the structure and the chemistry from micron to atomic resolution. SEM gives us overall microstructural and chemical information by various kinds of detectors such as secondary electron, backscattered electron, EDS and EBSD detectors. Also, it is possible to analyze 3D structure and chemistry via FIB serial sectioning. In addition, using TEM we can focus on desired region to get more complementary information from HRTEM/STEM/Lorentz images, SAED/NBD patterns and EDS/EELS to see the detail micro or nano-structure and chemistry. Especially, combination of probe Cs corrector and split EDS detectors with large detector size enable us to analyze the atomic scale elemental distribution. Furthermore, if the specimen has a complicated 3D nanostructure, or we need to analyze light elements such as hydrogen, lithium or boron, 3DAP can be used as the only technique which can visualize and analyze distribution of all constituent atoms of our materials within a few hundreds nm area. Hence, site-specific sample preparation using FIB/SEM is necessary to get desired information from region of interest. Therefore, this complementary analysis combination works very well to understand the detail of materials.In this presentation, we will show the analysis results obtained from some of functional materials by Carl Zeiss CrossBeam 1540EsB FIB/SEM, FEI Tecnai G(2) F30, Titan G2 80-200 TEMs and locally build laser assisted 3DAP. As the one of the example, result of multi-scale characterization for

  19. An x-ray photoemission electron microscopy study of the formation of Ti-Al phases in 4 mol% TiCl3 catalyzed NaAlH4 during high energy ball milling.

    PubMed

    Dobbins, Tabbetha; Abrecht, Mike; Uprety, Youaraj; Moore, Kristan

    2009-05-20

    This study reports reaction pathways to form TiAlx metallic complexes during the high energy ball milling of 4 mol% TiCl3 with NaAlH4 powders determined using local structure analysis of Tix+ and Alx+ species. Using x-ray photoemission electron microscopy (XPEEM) and x-ray diffraction (XRD), the oxidation state of Alx+ and Tix+ and the crystalline compounds existing in equilibrium with NaAlH4 were tracked for samples milled for times of 0 (i.e. mixing), 5, and 25 min. XPEEM analysis of the Al K edge after 5 min of milling reveals that Al remains in the 3+ oxidation state (i.e. in NaAlH4) around Ti0-rich regions of the sample. After 25 min of high energy milling, Ti0 has reacted with Al3+ (in nearby NaAlH4) to form TiAlx complexes. This study reports the pathway for TiAlx complex formation during milling of 4 mol% TiCl3catalyzed NaAlH4 to be as follows: (1) Ti3+ reduces to Ti0 (with Al3+ near Ti0 regions) and (2) Ti0 reacts with Al3+ in NaAlH4 to form TiAlx complexes.

  20. An x-ray photoemission electron microscopy study of the formation of Ti-Al phases in 4 mol% TiCl3 catalyzed NaAlH4 during high energy ball milling

    NASA Astrophysics Data System (ADS)

    Dobbins, Tabbetha; Abrecht, Mike; Uprety, Youaraj; Moore, Kristan

    2009-05-01

    This study reports reaction pathways to form TiAlx metallic complexes during the high energy ball milling of 4 mol% TiCl3 with NaAlH4 powders determined using local structure analysis of Tix+ and Alx+ species. Using x-ray photoemission electron microscopy (XPEEM) and x-ray diffraction (XRD), the oxidation state of Alx+ and Tix+ and the crystalline compounds existing in equilibrium with NaAlH4 were tracked for samples milled for times of 0 (i.e. mixing), 5, and 25 min. XPEEM analysis of the Al K edge after 5 min of milling reveals that Al remains in the 3+ oxidation state (i.e. in NaAlH4) around Ti0-rich regions of the sample. After 25 min of high energy milling, Ti0 has reacted with Al3+ (in nearby NaAlH4) to form TiAlx complexes. This study reports the pathway for TiAlx complex formation during milling of 4 mol% TiCl3 catalyzed NaAlH4 to be as follows: (1) Ti3+ reduces to Ti0 (with Al3+ near Ti0 regions) and (2) Ti0 reacts with Al3+ in NaAlH4 to form TiAlx complexes.

  1. Coexistence of short- and long-range ferromagnetic order in nanocrystalline Fe2Mn1-xCuxAl (x=0.0, 0.1 and 0.3) synthesized by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Thanh, Tran Dang; Nanto, Dwi; Tuyen, Ngo Thi Uyen; Nan, Wen-Zhe; Yu, YiKyung; Tartakovsky, Daniel M.; Yu, S. C.

    2015-11-01

    In this work, we prepared nanocrystalline Fe2Mn1-xCuxAl (x=0.0, 0.1 and 0.3) powders by the high energy ball milling technique, and then studied their critical properties. Our analysis reveals that the increase of Cu-doping concentration (up to x=0.3) in these powders leads to a gradual increase of the ferromagnetic-paramagnetic transition temperature from 406 to 452 K. The Banerjee criterion suggests that all the samples considered undergo a second-order phase transition. A modified Arrott plot and scaling analysis indicate that the critical exponents (β=0.419 and 0.442, γ=1.082 and 1.116 for x=0.0 and 0.1, respectively) are located in between those expected for the 3D-Heisenberg and the mean-field models; the values of β=0.495 and γ=1.046 for x=0.3 sample are very close to those of the mean-field model. These features reveal the coexistence of the short- and long-range ferromagnetic order in the nanocrystalline Fe2Mn1-xCuxAl powders. Particularly, as the concentration of Cu increases, values of the critical exponent shift towards those of the mean-field model. Such results prove the Cu doping favors establishing a long-range ferromagnetic order.

  2. Zn(1-x)Cu(x)O (0.02 ≤ x ≤ 0.1) Nanomaterials Prepared by Ball Milling, Citrate Sol Gel, and Molten Salt Flux Methods.

    PubMed

    Balamurugan, S; Melba, K

    2015-06-01

    The Cu doped ZnO, (Zn(1-x)Cu(x))O (x = 0.02, 0.04, 0.06, 0.08, and 0.1) nanomaterials were prepared by ball milling technique (BMT), citrate sol gel (CSG), and molten salt flux (MSF) methods. The various as-prepared (Zn(1-x)Cu(x))O materials were analyzed by powder X-ray diffraction (pXRD), FT-IR, and SEM-EDX measurements in order to check the phase formation, purity, surface morphology and elements present in the annealed materials. Due to the preparation methods as well as doping of 'x' slight variations in cell parameters are seen. The average crystalline size of CSG method shows smaller size (25-35 nm) than BMT and MSF approaches. The materials obtained by MSF technique reveal the average crystalline size in the range of 32-72 nm whereas the BMT materials exhibit 36-50 nm for the composition, 0.02 ≤ x ≤ 0.1. The presence of functional groups and the chemical bonding in (Zn(1-x)Cu(x))O system is confirmed through FT-IR measurements. It is evident from the FT-IR data that bands seen at 400-500 cm(-1) are characteristics of M-O (M = metal ion) bonding in the studied materials. The micro images observed by SEM exhibiting polycrystalline character as compared with the crystallite size obtained from XRD. Among the three approaches employed in the present investigations, in terms of average particle size the CSG method may be concluded as an efficient method for the preparation of Zn(1-x)Cu(x)O nanomaterials.

  3. Synthesis and characterization of xTiO{sub 2}{center_dot}(1 - x){alpha}-Fe{sub 2}O{sub 3} magnetic ceramic nanostructure system

    SciTech Connect

    Sorescu, Monica; Xu, Tianhong; Diamandescu, Lucian

    2010-11-15

    Rutile-doped hematite xTiO{sub 2}{center_dot}(1 - x){alpha}-Fe{sub 2}O{sub 3} (x = 0.0-1.0) nanostructures were synthesized using mechanochemical activation by ball milling. Their complex structural, magnetic and thermal properties were characterized by X-ray diffraction, Moessbauer spectroscopy and simultaneous DSC-TGA. XRD patterns yielded the dependence of lattice parameters and grain size as a function of ball milling time. For the molar concentrations x = 0.1 and 0.3, the Moessbauer spectra were fitted with one, two, three or four sextets, corresponding to the degree of Ti ion substitution of Fe ions in hematite lattice. After 12 h of ball milling, the completion of Ti ion substitution of Fe ions in hematite lattice occurs for x = 0.1 and 0.3. For x = 0.5 and 0.7, Moessbauer spectra fitting required sextets and a quadrupole-split doublet, representing Fe ions substituting Ti ions in the rutile lattice. The completion of Fe ion substitution of Ti ions in rutile lattice was not observed, as indicated by XRD patterns and Moessbauer spectra for these two molar concentrations. Simultaneous DSC-TGA measurements revealed that the mechanochemical activation by ball milling has a strong effect on the thermal behavior of this nanostructure system. The enthalpy dropped dramatically after 2 h of milling time, indicating the strong solid-solid interactions between TiO{sub 2} and {alpha}-Fe{sub 2}O{sub 3} after ball milling. The change in weight loss of hematite was caused by the decrease of grain size and ion substitutions between Fe and Ti after mechanochemical activation.

  4. Multi-scale analysis and characterization of the ITER pre-compression rings

    NASA Astrophysics Data System (ADS)

    Foussat, A.; Park, B.; Rajainmaki, H.

    2014-01-01

    The toroidal field (TF) system of ITER Tokamak composed of 18 "D" shaped Toroidal Field (TF) coils during an operating scenario experiences out-of-plane forces caused by the interaction between the 68kA operating TF current and the poloidal magnetic fields. In order to keep the induced static and cyclic stress range in the intercoil shear keys between coils cases within the ITER allowable limits [1], centripetal preload is introduced by means of S2 fiber-glass/epoxy composite pre-compression rings (PCRs). Those PCRs consist in two sets of three rings, each 5 m in diameter and 337 × 288 mm in cross-section, and are installed at the top and bottom regions to apply a total resultant preload of 70 MN per TF coil equivalent to about 400 MPa hoop stress. Recent developments of composites in the aerospace industry have accelerated the use of advanced composites as primary structural materials. The PCRs represent one of the most challenging composite applications of large dimensions and highly stressed structures operating at 4 K over a long term life. Efficient design of those pre-compression composite structures requires a detailed understanding of both the failure behavior of the structure and the fracture behavior of the material. Due to the inherent difficulties to carry out real scale testing campaign, there is a need to develop simulation tools to predict the multiple complex failure mechanisms in pre-compression rings. A framework contract was placed by ITER Organization with SENER Ingenieria y Sistemas SA to develop multi-scale models representative of the composite structure of the Pre-compression rings based on experimental material data. The predictive modeling based on ABAQUS FEM provides the opportunity both to understand better how PCR composites behave in operating conditions and to support the development of materials by the supplier with enhanced performance to withstand the machine design lifetime of 30,000 cycles. The multi-scale stress analysis has

  5. Multi-scale mechanical characterization of highly swollen photo-activated collagen hydrogels.

    PubMed

    Tronci, Giuseppe; Grant, Colin A; Thomson, Neil H; Russell, Stephen J; Wood, David J

    2015-01-01

    Biological hydrogels have been increasingly sought after as wound dressings or scaffolds for regenerative medicine, owing to their inherent biofunctionality in biological environments. Especially in moist wound healing, the ideal material should absorb large amounts of wound exudate while remaining mechanically competent in situ. Despite their large hydration, however, current biological hydrogels still leave much to be desired in terms of mechanical properties in physiological conditions. To address this challenge, a multi-scale approach is presented for the synthetic design of cyto-compatible collagen hydrogels with tunable mechanical properties (from the nano- up to the macro-scale), uniquely high swelling ratios and retained (more than 70%) triple helical features. Type I collagen was covalently functionalized with three different monomers, i.e. 4-vinylbenzyl chloride, glycidyl methacrylate and methacrylic anhydride, respectively. Backbone rigidity, hydrogen-bonding capability and degree of functionalization (F: 16 ± 12-91 ± 7 mol%) of introduced moieties governed the structure-property relationships in resulting collagen networks, so that the swelling ratio (SR: 707 ± 51-1996 ± 182 wt%), bulk compressive modulus (Ec: 30 ± 7-168 ± 40 kPa) and atomic force microscopy elastic modulus (EAFM: 16 ± 2-387 ± 66 kPa) were readily adjusted. Because of their remarkably high swelling and mechanical properties, these tunable collagen hydrogels may be further exploited for the design of advanced dressings for chronic wound care. PMID:25411409

  6. Dark-field X-ray microscopy for multiscale structural characterization

    PubMed Central

    Simons, H.; King, A.; Ludwig, W.; Detlefs, C.; Pantleon, W.; Schmidt, S.; Snigireva, I.; Snigirev, A.; Poulsen, H. F.

    2015-01-01

    Many physical and mechanical properties of crystalline materials depend strongly on their internal structure, which is typically organized into grains and domains on several length scales. Here we present dark-field X-ray microscopy; a non-destructive microscopy technique for the three-dimensional mapping of orientations and stresses on lengths scales from 100 nm to 1 mm within embedded sampling volumes. The technique, which allows ‘zooming’ in and out in both direct and angular space, is demonstrated by an annealing study of plastically deformed aluminium. Facilitating the direct study of the interactions between crystalline elements is a key step towards the formulation and validation of multiscale models that account for the entire heterogeneity of a material. Furthermore, dark-field X-ray microscopy is well suited to applied topics, where the structural evolution of internal nanoscale elements (for example, positioned at interfaces) is crucial to the performance and lifetime of macro-scale devices and components thereof. PMID:25586429

  7. Multi-scale mechanical characterization of highly swollen photo-activated collagen hydrogels

    PubMed Central

    Tronci, Giuseppe; Grant, Colin A.; Thomson, Neil H.; Russell, Stephen J.; Wood, David J.

    2015-01-01

    Biological hydrogels have been increasingly sought after as wound dressings or scaffolds for regenerative medicine, owing to their inherent biofunctionality in biological environments. Especially in moist wound healing, the ideal material should absorb large amounts of wound exudate while remaining mechanically competent in situ. Despite their large hydration, however, current biological hydrogels still leave much to be desired in terms of mechanical properties in physiological conditions. To address this challenge, a multi-scale approach is presented for the synthetic design of cyto-compatible collagen hydrogels with tunable mechanical properties (from the nano- up to the macro-scale), uniquely high swelling ratios and retained (more than 70%) triple helical features. Type I collagen was covalently functionalized with three different monomers, i.e. 4-vinylbenzyl chloride, glycidyl methacrylate and methacrylic anhydride, respectively. Backbone rigidity, hydrogen-bonding capability and degree of functionalization (F: 16 ± 12–91 ± 7 mol%) of introduced moieties governed the structure–property relationships in resulting collagen networks, so that the swelling ratio (SR: 707 ± 51–1996 ± 182 wt%), bulk compressive modulus (Ec: 30 ± 7–168 ± 40 kPa) and atomic force microscopy elastic modulus (EAFM: 16 ± 2–387 ± 66 kPa) were readily adjusted. Because of their remarkably high swelling and mechanical properties, these tunable collagen hydrogels may be further exploited for the design of advanced dressings for chronic wound care. PMID:25411409

  8. Development and Characterization of Embedded Sensory Particles Using Multi-Scale 3D Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.

    2014-01-01

    A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.

  9. Microstructural Characterization of Aluminum-Carbon Nanotube Nanocomposites Produced Using Different Dispersion Methods.

    PubMed

    Simões, Sónia; Viana, Filomena; Reis, Marcos A L; Vieira, Manuel F

    2016-06-01

    This research focuses on characterization of the impact of dispersion methods on aluminum-carbon nanotubes (Al-CNTs) nanocomposite structure. Nanocomposites were produced by a conventional powder metallurgy process after the dispersion of the CNTs on the Al powders, using two approaches: (1) the dispersion of CNTs and mixture with Al powders were performed in a single step by ultrasonication; and (2) the CNTs were previously untangled by ultrasonication and then mixed with Al powders by ball milling. Microstructural characterization of Al-CNT nanocomposites was performed by optical microscopy, scanning and transmission electron microscopy, electron backscatter diffraction, and high-resolution transmission electron microscopy (HRTEM). Microstructural characterization revealed that the use of ball milling for mixing CNTs with Al powders promoted the formation of CNT clusters of reduced size, more uniformly dispersed in the matrix, and a nanocomposite of smaller grain size. However, the results of HRTEM and Raman spectroscopy show that ball milling causes higher damage to the CNT structure. The strengthening effect of the CNT is attested by the increase in hardness and tensile strength of the nanocomposites. PMID:26954879

  10. Characterization of a clinical polymer-drug conjugate using multiscale modeling

    PubMed Central

    Peng, Lili X.; Ivetac, Anthony; Van, Sang; Zhao, Gang; Chaudhari, Akshay S.; Yu, Lei; Howell, Stephen B.; McCammon, J. Andrew; Gough, David A.

    2011-01-01

    The molecular conformation of certain therapeutic agents has been shown to affect the ability to gain access to target cells, suggesting potential value in defining conformation of candidate molecules. This study explores how the shape and size of poly-γ-glutamyl-glutamate paclitaxel (PGG-PTX), an amphiphilic polymer-drug with potential chemotherapeutic applications, can be systematically controlled by varying hydrophobic and hydrophilic entities. Eighteen different formulations of PGG-PTX varying in three PTX loading fractions of 0.18, 0.24, and 0.37 and six spatial arrangements of PTX (‘clusters’, ‘ends,’ even’, ‘middle’, ‘random’, and ‘side) were explored. Molecular dynamics (MD) simulations of all-atom (AA) models of PGG-PTX were run until a statistical equilibrium was reached at 100 ns and then continued as coarse-grained (CG) models until a statistical equilibrium was reached at an effective time of 800 ns. Circular dichroism spectroscopy was used to suggest initial modeling configurations. Results show that a PGG-PTX molecule has a strong tendency to form coil shapes, regardless of the PTX loading fraction and spatial PTX arrangement, although globular shapes exist at fPTX = 0.24. Also, less uniform PTX arrangements such as ‘ends’, ‘middle’, and ‘side’ produce coil geometries with more curvature. The prominence of coil shapes over globules demonstrates that PGG-PTX may confer a long circulation half-life and high propensity for accumulation to tumor endothelia. This multiscale modeling approach may be advantageous for the design of cancer therapeutic delivery systems. PMID:20564048

  11. Multi-scale, multi-method characterization of methane cycling in northern peatlands

    NASA Astrophysics Data System (ADS)

    Slater, L. D.; Comas, X.; Schafer, K. V.; Reeve, A. S.; Terry, N.; Parsekian, A.; Wright, W. C.; Alcivar, W.; Monahan, P.; Doelger, S.

    2011-12-01

    It is estimated that peatlands account for 5 to 10% of the methane (CH4) flux to the atmosphere. However, such calculations are likely underestimates because episodic ebullition of free phase methane is both poorly quantified experimentally, and inadequately represented in existing mechanistic models. A challenge in measuring ebullition exists because it exhibits high spatiotemporal variability such that sudden episodic events are likely only rarely, if ever, captured. We have initiated a multi-scale, multi-method program of research at a long-term field site (Caribou Bog, ME) to better quantify the spatiotemporal variability in methane production and release in peatlands, and to define the controlling environmental variables regulating these releases. Geophysical imaging technologies have been employed to non-invasively visualize the spatiotemporal distribution of biogenic gasses with minimal disturbance to the peat fabric and hence in situ gas regime. Ground penetrating radar (GPR) has been used in multiple acquisition modes to estimate gas content from changes in measured dielectric permittivity. Surface resistivity imaging has been used to infer variations in free phase gas concentration at a spatial scale larger than that easily captured with GPR. Tripod mounted LIDAR scanning of elevation rods installed at multiple depths within the peat profile has been used to capture spatiotemporal variability in the deformation of the peat caused by gas build up, redistribution and release. Geophysical imaging and scanning measurements have been supported by, (1) continuous flow chamber measurements of methane flux based on a fast methane analyzer (LI7700), (2) hydrological measurements using piezometer nests screened at multiple intervals, and (3) free phase gas traps monitored with autonomous cameras. Results acquired to date highlight the spatiotemporal complexity of methane releases from peatlands. We find evidence for different mechanisms driving the release of free

  12. Characterization of a clinical polymer-drug conjugate using multiscale modeling.

    PubMed

    Peng, Lili X; Ivetac, Anthony; Chaudhari, Akshay S; Van, Sang; Zhao, Gang; Yu, Lei; Howell, Stephen B; McCammon, J Andrew; Gough, David A

    2010-11-01

    The molecular conformation of certain therapeutic agents has been shown to affect the ability to gain access to target cells, suggesting potential value in defining conformation of candidate molecules. This study explores how the shape and size of poly-γ-glutamyl-glutamate paclitaxel (PGG-PTX), an amphiphilic polymer-drug with potential chemotherapeutic applications, can be systematically controlled by varying hydrophobic and hydrophilic entities. Eighteen different formulations of PGG-PTX varying in three PTX loading fractions (f(PTX)) of 0.18, 0.24, and 0.37 and six spatial arrangements of PTX ('clusters', 'ends', 'even', 'middle', 'random', and 'side') were explored. Molecular dynamics (MD) simulations of all-atom (AA) models of PGG-PTX were run until a statistical equilibrium was reached at 100 ns and then continued as coarse-grained (CG) models until a statistical equilibrium was reached at an effective time of 800 ns. Circular dichroism spectroscopy was used to suggest initial modeling configurations. Results show that a PGG-PTX molecule has a strong tendency to form coil shapes, regardless of the PTX loading fraction and spatial PTX arrangement, although globular shapes exist at f(PTX) = 0.24. Also, less uniform PTX arrangements such as 'ends', 'middle', and 'side' produce coil geometries with more curvature. The prominence of coil shapes over globules suggests that PGG-PTX may confer a long circulation half-life and high propensity for accumulation to tumor endothelia. This multiscale modeling approach may be advantageous for the design of cancer therapeutic delivery systems. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 936-951, 2010.

  13. Reconstruction and Quantitative Characterization of Multiphase, Multiscale Three-Dimensional Microstructure of a Cast Al-Si Base Alloy

    NASA Astrophysics Data System (ADS)

    Singh, H.; Gokhale, A. M.; Mao, Y.; Tewari, A.; Sachdev, A. K.

    2009-12-01

    The serial sectioning technique is well known for the reconstruction of three-dimensional (3D) microstructures of opaque materials. In recent years, techniques also have been developed for the reconstruction of high-fidelity, large-volume segments of 3D microstructures that use montage serial sections and robot-assisted automated acquisitions of montage serial sections. This article reports the reconstruction of the multiphase, multiscale 3D microstructure of a permanent mold cast unmodified Al-12 wt pct Si-1 wt pct Ni base alloy that contains eutectic Si platelets, coarse primary polyhedral Si particles, Fe-rich script intermetallic particles, and pores. These constituents are segmented, reconstructed, rendered, and characterized in three dimensions. The estimated 3D microstrucutral attributes include the distribution of eutectic platelet thickness; the mean volume, mean surface area, and mean thickness of the eutectic Si platelets; the mean volume and the mean surface area of the polyhedral primary Si particles; and the mean number of faces, edges, and corners on the polyhedral primary Si particles.

  14. Formation mechanism of calcified roots in terrestrial sediments: insights from a multitechnique and multiscale characterization strategy

    NASA Astrophysics Data System (ADS)

    El Khatib, Rime; Huguet, Arnaud; Bernard, Sylvain; Gocke, Martina; Wiesenberg, Guido; Derenne, Sylvie

    2015-04-01

    Root remains encrusted by secondary carbonates, e.g. carbonated rhizoliths, are common in many soils and terrestrial sediments from various environmental settings. Rhizoliths usually exhibit a cylindrical shape and may have different sizes (from a few µm up to several cm). These objects have been known for ages and intensively used as proxies for paleoenvironmental reconstruction. It is generally assumed that such encrustation is controlled or induced by complex organic-mineral interactions at the plant tissue scale, even though this has never been investigated in detail. The aim of this work was to better constrain the mechanisms of rhizolith formation, which remain unclear so far. Rhizoliths at different stages of encrustation and surrounding sediment were sampled at different depths from a loess-paleosol sequence (Nussloch, SW Germany). They were characterised using a multi-scale and multi-technique approach. The use of SEM and TEM to investigate rhizolith samples has offered a unique combination of chemical and structural information with submicrometer spatial resolution, while solid-state 13C NMR of decarbonated rhizoliths along with liquid and gas chromatography analyses of organic extracts have provided information at a molecular level. SEM and TEM reveal that the precipitation of secondary carbonates does not only occur around, but also within the plant root cells and evidence the close relationship existing between organic and inorganic phases within these complex systems. The fine-scale preservation of root cellular ultrastructure with remarkable integrity observed for samples at all stages of encrustation has likely been promoted by this intra-cellular carbonate precipitation. In parallel, gas and liquid chromatography analyses showed that microbial biomarkers were predominant in the former roots, in contrast with the surrounding sediment, dominated by plant biomarkers. This suggests that the molecular signatures of the organic matter differ between

  15. Microstructure and optical characterizations of mechanosynthesized nanocrystalline semiconducting ZrTiO4 compound

    NASA Astrophysics Data System (ADS)

    Dutta, Hema; Nandy, Anshuman; Pradhan, S. K.

    2016-08-01

    A ZrO2-TiO2 solid solution is obtained by high energy ball milling of equimolar mixture of monoclinic (m) ZrO2 and anatase (a) TiO2. Nanocrystalline orthorhombic ZrTiO4 compound is initiated from the nucleation of TiO2-ZrO2 solid solution with isostructural s-TiO2 (srilankite) base after 30 min of milling. After 12 h of milling, 95 mol% non-stoichiometric ZrTiO4 phase is formed. Post-annealing of 12 h ball-milled powder mixture at 1073 K for 1 h in open air results in complete formation of stoichiometric ZrTiO4 compound. Microstructures of all powder mixtures milled for different durations have been characterized by Rietveld's structure and microstructure refinement method using X-ray powder diffraction data. HRTEM images of 12 h milled and annealed samples provide direct evidence of the results obtained from the Rietveld analysis. Optical bandgaps of ball milled and annealed ZrTiO4 compounds lie within the semiconducting region (~2.0 eV) and increases with increase in milling time.

  16. Characterizing Multiscale Mechanical Properties of Brain Tissue Using Atomic Force Microscopy, Impact Indentation, and Rheometry.

    PubMed

    Canovic, Elizabeth Peruski; Qing, Bo; Mijailovic, Aleksandar S; Jagielska, Anna; Whitfield, Matthew J; Kelly, Elyza; Turner, Daria; Sahin, Mustafa; Van Vliet, Krystyn J

    2016-01-01

    To design and engineer materials inspired by the properties of the brain, whether for mechanical simulants or for tissue regeneration studies, the brain tissue itself must be well characterized at various length and time scales. Like many biological tissues, brain tissue exhibits a complex, hierarchical structure. However, in contrast to most other tissues, brain is of very low mechanical stiffness, with Young's elastic moduli E on the order of 100s of Pa. This low stiffness can present challenges to experimental characterization of key mechanical properties. Here, we demonstrate several mechanical characterization techniques that have been adapted to measure the elastic and viscoelastic properties of hydrated, compliant biological materials such as brain tissue, at different length scales and loading rates. At the microscale, we conduct creep-compliance and force relaxation experiments using atomic force microscope-enabled indentation. At the mesoscale, we perform impact indentation experiments using a pendulum-based instrumented indenter. At the macroscale, we conduct parallel plate rheometry to quantify the frequency dependent shear elastic moduli. We also discuss the challenges and limitations associated with each method. Together these techniques enable an in-depth mechanical characterization of brain tissue that can be used to better understand the structure of brain and to engineer bio-inspired materials. PMID:27684097

  17. Multi-scale Characterization and Modeling of Surface Slope Probability Distribution for ~20-km Diameter Lunar Craters

    NASA Astrophysics Data System (ADS)

    Mahanti, P.; Robinson, M. S.; Boyd, A. K.

    2013-12-01

    Craters ~20-km diameter and above significantly shaped the lunar landscape. The statistical nature of the slope distribution on their walls and floors dominate the overall slope distribution statistics for the lunar surface. Slope statistics are inherently useful for characterizing the current topography of the surface, determining accurate photometric and surface scattering properties, and in defining lunar surface trafficability [1-4]. Earlier experimental studies on the statistical nature of lunar surface slopes were restricted either by resolution limits (Apollo era photogrammetric studies) or by model error considerations (photoclinometric and radar scattering studies) where the true nature of slope probability distribution was not discernible at baselines smaller than a kilometer[2,3,5]. Accordingly, historical modeling of lunar surface slopes probability distributions for applications such as in scattering theory development or rover traversability assessment is more general in nature (use of simple statistical models such as the Gaussian distribution[1,2,5,6]). With the advent of high resolution, high precision topographic models of the Moon[7,8], slopes in lunar craters can now be obtained at baselines as low as 6-meters allowing unprecedented multi-scale (multiple baselines) modeling possibilities for slope probability distributions. Topographic analysis (Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) 2-m digital elevation models (DEM)) of ~20-km diameter Copernican lunar craters revealed generally steep slopes on interior walls (30° to 36°, locally exceeding 40°) over 15-meter baselines[9]. In this work, we extend the analysis from a probability distribution modeling point-of-view with NAC DEMs to characterize the slope statistics for the floors and walls for the same ~20-km Copernican lunar craters. The difference in slope standard deviations between the Gaussian approximation and the actual distribution (2-meter sampling) was

  18. A Comprehensive Specimen-Specific Multiscale Data Set for Anatomical and Mechanical Characterization of the Tibiofemoral Joint

    PubMed Central

    Chokhandre, Snehal; Colbrunn, Robb; Bennetts, Craig; Erdemir, Ahmet

    2015-01-01

    Understanding of tibiofemoral joint mechanics at multiple spatial scales is essential for developing effective preventive measures and treatments for both pathology and injury management. Currently, there is a distinct lack of specimen-specific biomechanical data at multiple spatial scales, e.g., joint, tissue, and cell scales. Comprehensive multiscale data may improve the understanding of the relationship between biomechanical and anatomical markers across various scales. Furthermore, specimen-specific multiscale data for the tibiofemoral joint may assist development and validation of specimen-specific computational models that may be useful for more thorough analyses of the biomechanical behavior of the joint. This study describes an aggregation of procedures for acquisition of multiscale anatomical and biomechanical data for the tibiofemoral joint. Magnetic resonance imaging was used to acquire anatomical morphology at the joint scale. A robotic testing system was used to quantify joint level biomechanical response under various loading scenarios. Tissue level material properties were obtained from the same specimen for the femoral and tibial articular cartilage, medial and lateral menisci, anterior and posterior cruciate ligaments, and medial and lateral collateral ligaments. Histology data were also obtained for all tissue types to measure specimen-specific cell scale information, e.g., cellular distribution. This study is the first of its kind to establish a comprehensive multiscale data set for a musculoskeletal joint and the presented data collection approach can be used as a general template to guide acquisition of specimen-specific comprehensive multiscale data for musculoskeletal joints. PMID:26381404

  19. Multi-scale simulation flow and multi-scale materials characterization for stress management in 3D through-silicon-via integration technologies - Effect of stress on 3D IC interconnect reliability

    NASA Astrophysics Data System (ADS)

    Sukharev, Valeriy; Zschech, Ehrenfried

    2014-06-01

    The paper addresses the growing need in a simulation-based design verification flow capable to analyze any design of 3D IC stacks and to determine across-layers implications in 3D IC reliability caused by through-silicon-via (TSV) and chip-package interaction (CPI) induced mechanical stresses. The limited characterization/measurement capabilities of 3D IC stacks and a strict "good die" requirement make this type of analysis really critical for the achievement of an acceptable level of functional and parametric yield and reliability. The paper focuses on the development of a design-for-manufacturability (DFM) type of methodology for managing mechanical stresses during a sequence of designs of 3D TSV-based dies, stacks and packages. A set of physics-based compact models for a multi-scale simulation, to assess the mechanical stress across the dies stacked and packaged with the 3D TSV technology, is proposed. As an example the effect of CPI/TSV induced stresses on stress migration (SM) and electromigration (EM) in the back-end-of-line (BEoL) and backside-redistribution-layer (BRDL) interconnect lines is considered. A strategy for a simulation feeding data generation and a respective materials characterization approach are proposed, with the goal to generate a database for multi-scale material parameters of wafer-level and package-level structures. A calibration technique based on fitting the simulation results to measured stress components and electrical characteristics of the test-chip devices is discussed.

  20. Spark Plasma Sintering and Multi-scale Characterization of Mesoporous Silica Disks

    NASA Astrophysics Data System (ADS)

    Maheshwari, Harsh

    Oil from shale and tight formations has helped the United States produce close to 10 million barrels of oil per day, a 40-year high. Well characterized sintered nano materials will serve as calibration materials for understanding important thermodynamic and flow properties of fluids in similar formations. To this effect, sintered mesoporous silica monoliths containing micro- and nano-porosity are characterized across multiple length scales at various processing temperatures using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers hardness tests, and Brunauer-Emmett-Teller (BET) gas adsorption measurements. Results show that the mesoporosity in raw SBA-15 silica powders can be retained during spark-plasma sintering (SPS) up to 850 ºC which is lower than those achieved by conventional sintering techniques (>1050 ºC). Details of micro- and meso-porosity were revealed by studying the internal structure through SEM and in-situ TEM tomography of the sintered specimens in comparison to the pristine silica powder. The microporosity is retained up to 950°C under the same pressure, and the degree of microporosity increases when the mesopores collapse due to individual nanoparticle shrinkage. In situ TEM characterization of mesoporosity in the absence of applied pressure reveal pore collapse above 1050°C, which is considerably above the temperatures observed under applied pressures during SPS processing. The degree of microporosity, obtained under different processing conditions, is correlated to the mechanical properties, available surface area and pore morphology. In spite of the unique synthesis process, sintered mesoporous silica satisfies the Ryshkewitch relationship -- the correlation of mechanical properties to porosity. Subsequently, in-situ TEM nanoindentation was conducted to investigate the mechanical properties of individual mesoporous silica nanoparticles. The ability to control the micro- and meso-porosity of these

  1. Solid-state characterization and dissolution properties of meloxicam-moringa coagulant-PVP ternary solid dispersions.

    PubMed

    Noolkar, Suhail B; Jadhav, Namdeo R; Bhende, Santosh A; Killedar, Suresh G

    2013-06-01

    The effect of ternary solid dispersions of poor water-soluble NSAID meloxicam with moringa coagulant (obtained by salt extraction of moringa seeds) and polyvinylpyrrolidone on the in vitro dissolution properties has been investigated. Binary (meloxicam-moringa and meloxicam-polyvinylpyrrolidone (PVP)) and ternary (meloxicam-moringa-PVP) systems were prepared by physical kneading and ball milling and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffractometry. The in vitro dissolution behavior of meloxicam from the different products was evaluated by means of United States Pharmacopeia type II dissolution apparatus. The results of solid-state studies indicated the presence of strong interactions between meloxicam, moringa, and PVP which were of totally amorphous nature. All ternary combinations were significantly more effective than the corresponding binary systems in improving the dissolution rate of meloxicam. The best performance in this respect was given by the ternary combination employing meloxicam-moringa-PVP ratio of [1:(3:1)] prepared by ball milling, with about six times increase in percent dissolution rate, whereas meloxicam-moringa (1:3) and meloxicam-PVP (1:4) prepared by ball milling improved dissolution of meloxicam by almost 3- and 2.5-folds, respectively. The achieved excellent dissolution enhancement of meloxicam in the ternary systems was attributed to the combined effects of impartation of hydrophilic characteristic by PVP, as well as to the synergistic interaction between moringa and PVP. PMID:23483432

  2. Solid-state characterization and dissolution properties of meloxicam-moringa coagulant-PVP ternary solid dispersions.

    PubMed

    Noolkar, Suhail B; Jadhav, Namdeo R; Bhende, Santosh A; Killedar, Suresh G

    2013-06-01

    The effect of ternary solid dispersions of poor water-soluble NSAID meloxicam with moringa coagulant (obtained by salt extraction of moringa seeds) and polyvinylpyrrolidone on the in vitro dissolution properties has been investigated. Binary (meloxicam-moringa and meloxicam-polyvinylpyrrolidone (PVP)) and ternary (meloxicam-moringa-PVP) systems were prepared by physical kneading and ball milling and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffractometry. The in vitro dissolution behavior of meloxicam from the different products was evaluated by means of United States Pharmacopeia type II dissolution apparatus. The results of solid-state studies indicated the presence of strong interactions between meloxicam, moringa, and PVP which were of totally amorphous nature. All ternary combinations were significantly more effective than the corresponding binary systems in improving the dissolution rate of meloxicam. The best performance in this respect was given by the ternary combination employing meloxicam-moringa-PVP ratio of [1:(3:1)] prepared by ball milling, with about six times increase in percent dissolution rate, whereas meloxicam-moringa (1:3) and meloxicam-PVP (1:4) prepared by ball milling improved dissolution of meloxicam by almost 3- and 2.5-folds, respectively. The achieved excellent dissolution enhancement of meloxicam in the ternary systems was attributed to the combined effects of impartation of hydrophilic characteristic by PVP, as well as to the synergistic interaction between moringa and PVP.

  3. Multiscale characterization of chemical–mechanical interactions between polymer fibers and cementitious matrix

    SciTech Connect

    Hernández-Cruz, Daniel; Hargis, Craig W.; Bae, Sungchul; Itty, Pierre A.; Meral, Cagla; Dominowski, Jolee; Radler, Michael J.; Kilcoyne, David A.; Monteiro, Paulo J. M.

    2014-04-01

    Together with a series of mechanical tests, the interactions and potential bonding between polymeric fibers and cementitious materials were studied using scanning transmission X-ray microscopy (STXM) and microtomography (lCT). Experimental results showed that these techniques have great potential to characterize the polymer fiber-hydrated cement-paste matrix interface, as well as differentiating the chemistry of the two components of a bi-polymer (hybrid) fiber the polypropylene core and the ethylene acrylic acid copolymer sheath. Similarly, chemical interactions between the hybrid fiber and the cement hydration products were observed, indicating the chemical bonding between the sheath and the hardened cement paste matrix. Microtomography allowed visualization of the performance of the samples, and the distribution and orientation of the two types of fiber in mortar. Beam flexure tests confirmed improved tensile strength of mixes containing hybrid fibers, and expansion bar tests showed similar reductions in expansion for the polypropylene and hybrid fiber mortar bars.

  4. Correlative multi-scale characterization of a fine grained Nd-Fe-B sintered magnet.

    PubMed

    Sasaki, T T; Ohkubo, T; Hono, K; Une, Y; Sagawa, M

    2013-09-01

    The Nd-rich phases in pressless processed fine grained Nd-Fe-B sintered magnets have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and three dimensional atom probe tomography (3DAP). The combination of the backscattered electron (BSE) and in-lens secondary electron (IL-SE) images in SEM led to an unambiguous identification of four types of Nd-rich phases, NdOx, Ia3 type phase, which is isostructural to Nd₂O₃, dhcp-Nd and Nd₁Fe₄B₄. In addition, the 3DAP analysis of thin Nd-rich grain boundary layer indicate that the coercivity has a close correlation with the chemistry of the grain boundary phase.

  5. Characterization of Piezoelectric PDMS-Nanoparticle Composites

    NASA Astrophysics Data System (ADS)

    Borsa, C. J.; Mionic Ebersold, M.; Bowen, P.; Farine, P.-A.; Briand, D.

    2015-12-01

    In this work, the novel fabrication and characterization of elastomeric piezoelectric nanocomposites are explored. Fabrication methods explored herein utilize ball milled barium titanate powder dispersions, along with double walled carbon nanotubes which are dispersed in toluene though the use of an ultrasonic probe. Test devices are then constructed with electrodes made from evaporated gold on polyimide foils and protective dielectrics of pristine PDMS. Two different device construction methods are explored utilizing both direct contact bonding and plasma bonding of the active composite layers to the dielectric/electrode. Test samples are evaluated through the use of a dedicated Berlincourt type piezoelectric d33 meter.

  6. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    SciTech Connect

    Pannala, S. Turner, J. A.; Allu, S.; Elwasif, W. R.; Kalnaus, S.; Simunovic, S.; Kumar, A.; Billings, J. J.; Wang, H.; Nanda, J.

    2015-08-21

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. Gaining an understanding of the role of these processes as well as development of predictive capabilities for design of better performing batteries requires synergy between theory, modeling, and simulation, and fundamental experimental work to support the models. This paper presents the overview of the work performed by the authors aligned with both experimental and computational efforts. In this paper, we describe a new, open source computational environment for battery simulations with an initial focus on lithium-ion systems but designed to support a variety of model types and formulations. This system has been used to create a three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. This paper also provides an overview of the experimental techniques to obtain crucial validation data to benchmark the simulations at various scales for performance as well as abuse. We detail some initial validation using characterization experiments such as infrared and neutron imaging and micro-Raman mapping. In addition, we identify opportunities for future integration of theory, modeling, and experiments.

  7. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pannala, S.; Turner, J. A.; Allu, S.; Elwasif, W. R.; Kalnaus, S.; Simunovic, S.; Kumar, A.; Billings, J. J.; Wang, H.; Nanda, J.

    2015-08-01

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. Gaining an understanding of the role of these processes as well as development of predictive capabilities for design of better performing batteries requires synergy between theory, modeling, and simulation, and fundamental experimental work to support the models. This paper presents the overview of the work performed by the authors aligned with both experimental and computational efforts. In this paper, we describe a new, open source computational environment for battery simulations with an initial focus on lithium-ion systems but designed to support a variety of model types and formulations. This system has been used to create a three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. This paper also provides an overview of the experimental techniques to obtain crucial validation data to benchmark the simulations at various scales for performance as well as abuse. We detail some initial validation using characterization experiments such as infrared and neutron imaging and micro-Raman mapping. In addition, we identify opportunities for future integration of theory, modeling, and experiments.

  8. Multiscale characterization of pyritized plant tissues in blueschist facies metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Bernard, Sylvain; Benzerara, Karim; Beyssac, Olivier; Brown, Gordon E., Jr.

    2010-09-01

    Pyritized plant tissues with well-preserved morphology were studied in rocks from Vanoise (western Alps, France) that experienced high-pressure, low-temperature metamorphic conditions in the blueschist facies during the Alpine orogeny. Organic and inorganic phases composing these fossils were characterized down to the nanometer scale by Raman microspectroscopy, scanning transmission X-ray microscopy and transmission electron microscopy. The graphitic but disordered organic matter composing these fossils is chemically and structurally homogeneous and mostly contains aromatic functional groups. Its original chemistry remains undefined likely because it was significantly transformed by diagenetic processes and/or thermal degradation during metamorphism. Various mineral phases are closely associated with this organic matter, including sulphides such as pyrite and pyrrhotite, carbonates such as ankerite and calcite, and iron oxides. A tentative time sequence of formation of these diverse mineral phases relative to organic matter decay is proposed. The absence of traces of organic matter sulphurization, the pervasive pyritization of the vascular tissues and the presence of ankerite suggest that the depositional/diagenetic environment of these metasediments was likely rich in reactive iron. Fe-sulphides and ankerite likely precipitated early and might have promoted the preservation of the fossilized biological soft tissues by providing mechanical resistance to compaction during diagenesis and subsequent metamorphism. In contrast, iron oxides which form rims of 100-nm in thickness at the interface between organic matter and Fe-sulphides may result from metamorphic processes. This study illustrates that it may be possible in some instances to deconvolve metamorphic from diagenetic imprints and opens new avenues to better constrain processes that may allow the preservation of organic fossils during diagenesis and metamorphism.

  9. Multi-physics and multi-scale characterization of shale anisotropy

    NASA Astrophysics Data System (ADS)

    Sarout, J.; Nadri, D.; Delle Piane, C.; Esteban, L.; Dewhurst, D.; Clennell, M. B.

    2012-12-01

    Shales are the most abundant sedimentary rock type in the Earth's shallow crust. In the past decade or so, they have attracted increased attention from the petroleum industry as reservoirs, as well as more traditionally for their sealing capacity for hydrocarbon/CO2 traps or underground waste repositories. The effectiveness of both fundamental and applied shale research is currently limited by (i) the extreme variability of physical, mechanical and chemical properties observed for these rocks, and by (ii) the scarce data currently available. The variability in observed properties is poorly understood due to many factors that are often irrelevant for other sedimentary rocks. The relationships between these properties and the petrophysical measurements performed at the field and laboratory scales are not straightforward, translating to a scale dependency typical of shale behaviour. In addition, the complex and often anisotropic micro-/meso-structures of shales give rise to a directional dependency of some of the measured physical properties that are tensorial by nature such as permeability or elastic stiffness. Currently, fundamental understanding of the parameters controlling the directional and scale dependency of shale properties is far from complete. Selected results of a multi-physics laboratory investigation of the directional and scale dependency of some critical shale properties are reported. In particular, anisotropic features of shale micro-/meso-structures are related to the directional-dependency of elastic and fluid transport properties: - Micro-/meso-structure (μm to cm scale) characterization by electron microscopy and X-ray tomography; - Estimation of elastic anisotropy parameters on a single specimen using elastic wave propagation (cm scale); - Estimation of the permeability tensor using the steady-state method on orthogonal specimens (cm scale); - Estimation of the low-frequency diffusivity tensor using NMR method on orthogonal specimens (<

  10. Multiscale characterization of pore size distributions using mercury porosimetry and nitrogen adsorption

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, J.; Tarquis, A. M.; Miranda, J. G. V.; Vidal Vázquez, E.

    2009-04-01

    The soil pore space is a continuum extremely variable in size, including structures smaller than nanometres and as large as macropores or cracks with millimetres or even centimetres size. Pore size distributions (PSDs) affects important soil functions, such as those related with transmission and storage of water, and root growth. Direct and indirect measurements of PSDs are becoming increasingly used to characterize soil structure. Mercury injection porosimetry and nitrogen adsorption isotherms are techniques commonly employed for assessing equivalent pore size diameters in the range from about 50 nm to 100 m and 2 to 500 nm, respectively. The multifractal formalism was used to describe Hg injection curves and N2 adsorption isotherms from two series of a Mollisol cultivated under no tillage and minimum tillage. Soil samples were taken from 0-10, 10-20 and 20-30 cm depths in two experimental fields located in the north of Buenos Aires and South of Santa Fe provinces, Argentina. All the data sets analyzed from the two studied soil attributes showed remarkably good scaling trends as assessed by singularity spectrum and generalized dimension spectrum. Both, experimental Hg injection curves and N2 adsorption isotherms could be fitted reasonably well with multifractal models. A wide variety of singularity and generalized dimension spectra was found for the variables. The capacity dimensions, D0, for both Hg injection and N2 adsorption data were not significantly different from the Euclidean dimension. However, the entropy dimension, D1, and correlation dimension, D2, obtained from mercury injection and nitrogen adsorption data showed significant differences. So, D1 values were on average 0.868 and varied from 0.787 to 0.925 for Hg intrusion curves. Entropy dimension, D1, values for N2 adsorption isotherms were on average 0.582 significantly lower than those obtained when using the former technique. Twenty-three out of twenty-four N2 isotherms had D1 values in a

  11. Multi-scale 3D characterization of long period stacking ordered structure in Mg-Zn-Gd cast alloys.

    PubMed

    Ishida, Masahiro; Yoshioka, Satoru; Yamamoto, Tomokazu; Yasuda, Kazuhiro; Matsumura, Syo

    2014-11-01

    Magnesium alloys containing rare earth elements are attractive as lightweight structural materials due to their low density, high-specific strength and recycling efficiency. Mg-Zn-Gd system is one of promising systems because of their high creep-resistant property[1]. It is reported that the coherent precipitation formation of the 14H long period stacking ordered structure (LPSO) in Mg-Zn-Gd system at temperatures higher than 623 K[2,3]. In this study, the 14H LPSO phase formed in Mg-Zn-Gd alloys were investigated by multi-scale characterization with X-ray computer tomography (X-CT), focused ion beam (FIB) tomography and aberration-corrected STEM observation for further understanding of the LPSO formation mechanism.The Mg89.5 Zn4.5 Gd6 alloy ingots were cast using high-frequency induction heating in argon atmosphere. The specimens were aged at 753 K for 24 h in air. The aged specimen were cut and polished mechanically for microstructural analysis. The micrometer resolution X-CT observation was performed by conventional scaner (Bruker SKY- SCAN1172) at 80 kV. The FIB tomography and energy dispersive x-ray spectroscopy (EDS) were carried out by a dual beam FIB-SEM system (Hitachi MI-4000L) with silicon drift detector (SDD) (Oxford X-Max(N)). The electron acceleration voltages were used with 3 kV for SEM observation and 10 kV for EDX spectroscopy. The 3D reconstruction from image series was performed by Avizo Fire 8.0 software (FEI). TEM/STEM observations were also performed by transmission electron microscopes (JEOL JEM 2100, JEM-ARM 200F) at the acceleration voltage of 200 keV.The LPSO phase was observed clearly in SEM image of the Mg89.5Zn4.5Gd6 alloy at 753 K for 2h (Fig.1 (a)). The atomic structure of LPSO phase observed as white gray region of SEM image was also confirmed as 14H LPSO structure by using selected electron diffraction patterns and high-resolution STEM observations. The elemental composition of LPSO phase was determined as Mg97Zn1Gd2 by EDS analyses

  12. Multiscale structural characterizations of mixed U(iv)-An(iii) oxalates (An(iii) = Pu or Am) combining XAS and XRD measurements.

    PubMed

    Arab-Chapelet, B; Martin, P M; Costenoble, S; Delahaye, T; Scheinost, A C; Grandjean, S; Abraham, F

    2016-04-28

    Mixed actinide(III,IV) oxalates of the general formula M2.2UAn(C2O4)5·nH2O (An = Pu or Am and M = H3O(+) and N2H5(+)) have been quantitatively precipitated by oxalic precipitation in nitric acid medium (yield >99%). Thorough multiscale structural characterization using XRD and XAS measurements confirmed the existence of mixed actinide oxalate solid solutions. The XANES analysis confirmed that the oxidation states of the metallic cations, tetravalent for uranium and trivalent for plutonium and americium, are maintained during the precipitation step. EXAFS measurements show that the local environments around U(+IV), Pu(+III) and Am(+III) are comparable, and the actinides are surrounded by ten oxygen atoms from five bidentate oxalate anions. The mean metal-oxygen distances obtained by XAS measurements are in agreement with those calculated from XRD lattice parameters. PMID:26979820

  13. MULTISCALE PHENOMENA IN MATERIALS

    SciTech Connect

    A. BISHOP

    2000-09-01

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  14. Dispersion of halloysite loaded with natural antimicrobials into pectins: Characterization and controlled release analysis.

    PubMed

    Gorrasi, Giuliana

    2015-01-01

    This paper reports the preparation and characterization of green composites based on pectins and nano-hybrids composed of halloysite nanotubes (HNTs) loaded with rosemary essential oil. Different hybrid percentages were mixed into a pectin matrix, by ball milling in the presence of water. Cast films were obtained and analyzed. Structural organization and physical properties (thermal, mechanical, barrier to water vapor) were correlated to the nano-hybrid content. A preliminary study on the kinetics of release of the rosmarinic acid, chosen as a model molecule, was also performed. This work showed the potential of these systems in the active packaging field where controlled release of active species is required.

  15. Dispersion of halloysite loaded with natural antimicrobials into pectins: Characterization and controlled release analysis.

    PubMed

    Gorrasi, Giuliana

    2015-01-01

    This paper reports the preparation and characterization of green composites based on pectins and nano-hybrids composed of halloysite nanotubes (HNTs) loaded with rosemary essential oil. Different hybrid percentages were mixed into a pectin matrix, by ball milling in the presence of water. Cast films were obtained and analyzed. Structural organization and physical properties (thermal, mechanical, barrier to water vapor) were correlated to the nano-hybrid content. A preliminary study on the kinetics of release of the rosmarinic acid, chosen as a model molecule, was also performed. This work showed the potential of these systems in the active packaging field where controlled release of active species is required. PMID:25965455

  16. Multi-scale Characterization of the Energy Landscape of Proteins with Application to the C3d/Efb-C Complex

    PubMed Central

    Haspel, Nurit; Geisbrecht, Brian V.; Lambris, John; Kavraki, Lydia

    2009-01-01

    We present a novel multi-level methodology to explore and characterize the low energy landscape and the thermodynamics of proteins. Traditional conformational search methods typically explore only a small portion of the conformational space of proteins and are hard to apply to large proteins due to the large amount of calculations required. In our multi-scale approach, we first provide an initial characterization of the equilibrium state ensemble of a protein using an efficient computational conformational sampling method. We then enrich the obtained ensemble by performing short Molecular Dynamics (MD) simulations on selected conformations from the ensembles as starting points. To facilitate the analysis of the results we project the resulting conformations on a low-dimensional landscape to efficiently focus on important interactions and examine low energy regions. This methodology provides a more extensive sampling of the low energy landscape than an MD simulation starting from a single crystal structure as it explores multiple trajectories of the protein. This enables us to obtain a broader view of the dynamics of proteins and it can help in understanding complex binding, improving docking results and more. In this work we apply the methodology to provide an extensive characterization of the bound complexes of the C3d fragment of human Complement component C3 and one of its powerful bacterial inhibitors, the inhibitory domain of Staphylococcus aureus extra-cellular fibrinogen-binding domain (Efb-C) and two of its mutants. We characterize several important interactions along the binding interface and define low free energy regions in the three complexes. PMID:19899169

  17. Identification and characterization of individual fractures in 3D networks of microtomography - a first step towards multi-scale analysis of reservoir fractures

    NASA Astrophysics Data System (ADS)

    Liu, J.; Liu, K.

    2015-12-01

    Fractures provide significant conduits for fluid flow in tight (low porosity) reservoirs. Hydraulic fracturing is often used to create fractures and thus to increase permeability and enhance hydrocarbon recovery. Although such technique is commonly used in the petroleum and geothermal industry, the relationships between reservoir rock, stress and fracture formation are not well understood partly because the three-dimensional (3D) geometry of subsurface fractures is difficult to image directly at the resolutions required. Microtomography enables the observation of 3D internal structures (both pores and fractures) of rocks at micro-scale. Fractures at micro-scale show similarity with those at macro-scale and can be described by power-laws based on previous two-dimensional (2D) studies of fractures. Aiming to establish the scaling law of fractures in 3D space, we characterize fractures in microtomographic images in this study. In our workflow the first crucial step is to identify individual fractures in the 3D network. Starting from 2D, percolation theory is used to detect the connectivity of fractures, and a modified moving window method is used to detect the strike of a fracture - by changing the placement of the moving window following the intersection of the fracture and the boundary until the end point of the fracture is found. The 3D topology of a fracture is determined by the analysis of the connectivity of fractures in 2D slices. Once individual fractures are identified and registered, the characterization of fractures can then be achievable. Direct characterization parameters include the position of each fracture, the size (in voxels), orientation, and dimensions in three principal orientations. Derivative parameters include the density of fractures, the density of intersections, and the statistics of the direct parameters. This technical progress promises further development of the multi-scale analysis of reservoir fractures.

  18. Magnetospheric Multiscale (MMS) Orbit

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS) mission, a Solar-Terrestrial Probe mission comprising of four identically instrumented spacecraft that will study the Earth's magn...

  19. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: laying a foundation for monitoring

    USGS Publications Warehouse

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2012-01-01

    agebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change – adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilitate ecosystem-wide characterization, monitoring, and analysis; however, approaches that characterize sagebrush with sufficient and accurate local detail across large enough areas to support this paradigm are unavailable. We describe the development of a new remote sensing sagebrush characterization approach for the state of Wyoming, U.S.A. This approach integrates 2.4 m QuickBird, 30 m Landsat TM, and 56 m AWiFS imagery into the characterization of four primary continuous field components including percent bare ground, percent herbaceous cover, percent litter, and percent shrub, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata Wyomingensis), and shrub height using a regression tree. According to an independent accuracy assessment, primary component root mean square error (RMSE) values ranged from 4.90 to 10.16 for 2.4 m QuickBird, 6.01 to 15.54 for 30 m Landsat, and 6.97 to 16.14 for 56 m AWiFS. Shrub and herbaceous components outperformed the current data standard called LANDFIRE, with a shrub RMSE value of 6.04 versus 12.64 and a herbaceous component RMSE value of 12.89 versus 14.63. This approach offers new advancements in sagebrush characterization from remote sensing and provides a foundation to quantitatively monitor these components into the future.

  20. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: Laying a foundation for monitoring

    NASA Astrophysics Data System (ADS)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2012-02-01

    Sagebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change - adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilitate ecosystem-wide characterization, monitoring, and analysis; however, approaches that characterize sagebrush with sufficient and accurate local detail across large enough areas to support this paradigm are unavailable. We describe the development of a new remote sensing sagebrush characterization approach for the state of Wyoming, U.S.A. This approach integrates 2.4 m QuickBird, 30 m Landsat TM, and 56 m AWiFS imagery into the characterization of four primary continuous field components including percent bare ground, percent herbaceous cover, percent litter, and percent shrub, and four secondary components including percent sagebrush ( Artemisia spp.), percent big sagebrush ( Artemisia tridentata), percent Wyoming sagebrush ( Artemisia tridentata Wyomingensis), and shrub height using a regression tree. According to an independent accuracy assessment, primary component root mean square error (RMSE) values ranged from 4.90 to 10.16 for 2.4 m QuickBird, 6.01 to 15.54 for 30 m Landsat, and 6.97 to 16.14 for 56 m AWiFS. Shrub and herbaceous components outperformed the current data standard called LANDFIRE, with a shrub RMSE value of 6.04 versus 12.64 and a herbaceous component RMSE value of 12.89 versus 14.63. This approach offers new advancements in sagebrush characterization from remote sensing and provides a foundation to quantitatively monitor these components into the future.

  1. Synthesis and characterization of actinide nitrides

    SciTech Connect

    Jaques, Brian; Butt, Darryl P.; Marx, Brian M.; Hamdy, A.S.; Osterberg, Daniel; Balfour, Gordon

    2007-07-01

    A carbothermic reduction of the metal oxides in a hydrogen/nitrogen mixed gas stream prior to nitriding in a nitrogen gas stream was used to synthesize uranium nitride at 1500 deg. C, cerium nitride at 1400 deg. C, and dysprosium nitride at 1500 deg. C. Cerium nitride and dysprosium nitride were also synthesized via hydriding and nitriding the metal shavings at 900 deg. C and 1500 deg. C, respectively. Also, a novel ball-milling synthesis route was used to produce cerium nitride and dysprosium nitride from the metal shavings at room temperature. Dysprosium nitride was also produced by reacting the metal shavings in a high purity nitrogen gas stream at 1300 deg. C. All materials were characterized by phase analysis via X-ray diffraction. Only the high purity materials were further analyzed via chemical analysis to characterize the trace oxygen concentration. (authors)

  2. Integrated, Multi-Scale Characterization of Imbibition and Wettability Phenomena Using Magnetic Resonance and Wide-Band Dielectric Measurements

    SciTech Connect

    Mukul M. Sharma; Steven L. Bryant; Carlos Torres-Verdin; George Hirasaki

    2007-09-30

    The petrophysical properties of rocks, particularly their relative permeability and wettability, strongly influence the efficiency and the time-scale of all hydrocarbon recovery processes. However, the quantitative relationships needed to account for the influence of wettability and pore structure on multi-phase flow are not yet available, largely due to the complexity of the phenomena controlling wettability and the difficulty of characterizing rock properties at the relevant length scales. This project brings together several advanced technologies to characterize pore structure and wettability. Grain-scale models are developed that help to better interpret the electric and dielectric response of rocks. These studies allow the computation of realistic configurations of two immiscible fluids as a function of wettability and geologic characteristics. These fluid configurations form a basis for predicting and explaining macroscopic behavior, including the relationship between relative permeability, wettability and laboratory and wireline log measurements of NMR and dielectric response. Dielectric and NMR measurements have been made show that the response of the rocks depends on the wetting and flow properties of the rock. The theoretical models can be used for a better interpretation and inversion of standard well logs to obtain accurate and reliable estimates of fluid saturation and of their producibility. The ultimate benefit of this combined theoretical/empirical approach for reservoir characterization is that rather than reproducing the behavior of any particular sample or set of samples, it can explain and predict trends in behavior that can be applied at a range of length scales, including correlation with wireline logs, seismic, and geologic units and strata. This approach can substantially enhance wireline log interpretation for reservoir characterization and provide better descriptions, at several scales, of crucial reservoir flow properties that govern oil

  3. Multi-scale characterization of lyotropic liquid crystals using 2H and diffusion MRI with spatial resolution in three dimensions.

    PubMed

    Bernin, Diana; Koch, Vanessa; Nydén, Magnus; Topgaard, Daniel

    2014-01-01

    The ability of lyotropic liquid crystals to form intricate structures on a range of length scales can be utilized for the synthesis of structurally complex inorganic materials, as well as in devices for controlled drug delivery. Here we employ magnetic resonance imaging (MRI) for non-invasive characterization of nano-, micro-, and millimeter scale structures in liquid crystals. The structure is mirrored in the translational and rotational motion of the water, which we assess by measuring spatially resolved self-diffusion tensors and 2H spectra. Our approach differs from previous works in that the MRI parameters are mapped with spatial resolution in all three dimensions, thus allowing for detailed studies of liquid crystals with complex millimeter-scale morphologies that are stable on the measurement time-scale of 10 hours. The 2H data conveys information on the nanometer-scale structure of the liquid crystalline phase, while the combination of diffusion and 2H data permits an estimate of the orientational distribution of micrometer-scale anisotropic domains. We study lamellar phases consisting of the nonionic surfactant C10E3 in 2H2O, and follow their structural equilibration after a temperature jump and the cessation of shear. Our experimental approach may be useful for detailed characterization of liquid crystalline materials with structures on multiple length scales, as well as for studying the mechanisms of phase transitions.

  4. Environmental Assessment and Monitoring with ICAMS (Image Characterization and Modeling System) Using Multiscale Remote-Sensing Data

    NASA Technical Reports Server (NTRS)

    Lam, N.; Qiu, H.-I.; Quattrochi, Dale A.; Zhao, Wei

    1997-01-01

    With the rapid increase in spatial data, especially in the NASA-EOS (Earth Observing System) era, it is necessary to develop efficient and innovative tools to handle and analyze these data so that environmental conditions can be assessed and monitored. A main difficulty facing geographers and environmental scientists in environmental assessment and measurement is that spatial analytical tools are not easily accessible. We have recently developed a remote sensing/GIS software module called Image Characterization and Modeling System (ICAMS) to provide specialized spatial analytical tools for the measurement and characterization of satellite and other forms of spatial data. ICAMS runs on both the Intergraph-MGE and Arc/info UNIX and Windows-NT platforms. The main techniques in ICAMS include fractal measurement methods, variogram analysis, spatial autocorrelation statistics, textural measures, aggregation techniques, normalized difference vegetation index (NDVI), and delineation of land/water and vegetated/non-vegetated boundaries. In this paper, we demonstrate the main applications of ICAMS on the Intergraph-MGE platform using Landsat Thematic Mapper images from the city of Lake Charles, Louisiana. While the utilities of ICAMS' spatial measurement methods (e.g., fractal indices) in assessing environmental conditions remain to be researched, making the software available to a wider scientific community can permit the techniques in ICAMS to be evaluated and used for a diversity of applications. The findings from these various studies should lead to improved algorithms and more reliable models for environmental assessment and monitoring.

  5. Multi-scale characterization of rock mass discontinuities and rock slope geometry using terrestrial remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Sturzenegger, Matthieu

    Terrestrial remote sensing techniques including both digital photogrammetry and laser scanning, represent useful complements to conventional field mapping and rock mass discontinuity characterization. Several studies have highlighted practical advantages at close-range (< 300 m), including the ability to map inaccessible rock exposures and hazard reduction related to both traffic and rockfall along investigated outcrops. In addition, several authors have demonstrated their potential to provide adequate quantification of discontinuity parameters. Consequently, their incorporation into rock slope stability investigations and design projects has grown substantially over recent years. As these techniques are increasingly applied by geologists and geological engineers, it is important that their use be properly evaluated. Furthermore, guidelines to optimize their application are required in a similar manner to standardization of conventional discontinuity mapping techniques. An important thesis objective is to develop recommendations for optimal applications of terrestrial remote sensing techniques for discontinuity characterization, based on a quantitative evaluation of various registration approaches, sampling bias and extended manual mapping of 3D digital models. It is shown that simple registration networks can provide adequate measurement of discontinuity geometry for engineering purposes. The bias associated with remote sensing mapping is described. The advantages of these techniques over conventional mapping are demonstrated, including reliable discontinuity orientation measurements. Persistence can be precisely quantified instead of approximately estimated, resulting in a new class for extremely persistent discontinuities being suggested. Secondary roughness and curvature can also be considered at larger scales. The techniques are suitable for the definition of discontinuity sets, and the estimation of both trace intensity and block size/shape, if sampling bias

  6. Chemical pretreatment of coal in a stirred ball mill

    SciTech Connect

    Birlingmair, D.; Chmielewski, T.; Pollard, J.

    1989-10-01

    Present studies on the electrochemical aspects of pyrite flotation in the presence of reducing agents were conducted to explain the effects observed during flotation of the separated organic and mineral-rich fractions of coal independently when sodium dithionite was used as an additive during and after grinding. In addition, the electrochemical phenomena occurring on the surface of pyrites of different origin was studied to aid in explaining the differences observed in the flotation of various coal-derived pyrite samples. Potentiometric and voltametric measurements have been conducted on electrodes prepared from natural pyrite samples of mineral and coal origin. Voltametric curves recorded on FeS{sub 2} electrodes indicate the presence of elemental sulfur, iron-oxy, and iron-hydroxy compounds, even on the freshly prepared surfaces. Comparison of voltametric curves with results of potentiometric measurements show that in the presence of dithionite several electrochemical processes are expected to take place on the pyrite surface. Voltametric curves recorded in solutions of different pH with and without sodium dithionite demonstrate that pyrite is a very good electrocatalyst in the anodic oxidation of dithionite. 13 refs., 12 figs.

  7. Corrosion chemistry closing comments: opportunities in corrosion science facilitated by operando experimental characterization combined with multi-scale computational modelling.

    PubMed

    Scully, John R

    2015-01-01

    Recent advances in characterization tools, computational capabilities, and theories have created opportunities for advancement in understanding of solid-fluid interfaces at the nanoscale in corroding metallic systems. The Faraday Discussion on Corrosion Chemistry in 2015 highlighted some of the current needs, gaps and opportunities in corrosion science. Themes were organized into several hierarchical categories that provide an organizational framework for corrosion. Opportunities to develop fundamental physical and chemical data which will enable further progress in thermodynamic and kinetic modelling of corrosion were discussed. These will enable new and better understanding of unit processes that govern corrosion at the nanoscale. Additional topics discussed included scales, films and oxides, fluid-surface and molecular-surface interactions, selected topics in corrosion science and engineering as well as corrosion control. Corrosion science and engineering topics included complex alloy dissolution, local corrosion, and modelling of specific corrosion processes that are made up of collections of temporally and spatially varying unit processes such as oxidation, ion transport, and competitive adsorption. Corrosion control and mitigation topics covered some new insights on coatings and inhibitors. Further advances in operando or in situ experimental characterization strategies at the nanoscale combined with computational modelling will enhance progress in the field, especially if coupling across length and time scales can be achieved incorporating the various phenomena encountered in corrosion. Readers are encouraged to not only to use this ad hoc organizational scheme to guide their immersion into the current opportunities in corrosion chemistry, but also to find value in the information presented in their own ways.

  8. Experimental characterization of multiscale and multifield turbulence as a critical gradient threshold is surpassed in the DIII-D tokamaka)

    NASA Astrophysics Data System (ADS)

    Hillesheim, J. C.; DeBoo, J. C.; Peebles, W. A.; Carter, T. A.; Wang, G.; Rhodes, T. L.; Schmitz, L.; McKee, G. R.; Yan, Z.; Staebler, G. M.; Burrell, K. H.; Doyle, E. J.; Holland, C.; Petty, C. C.; Smith, S. P.; White, A. E.; Zeng, L.

    2013-05-01

    A critical gradient for long wavelength (kθρs≲0.4) electron temperature fluctuations has been observed in an experiment in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], where below a threshold value of LTe-1=|∇Te|/Te electron temperature fluctuations are constant and above they steadily increase. Above the critical gradient, the electron heat flux inferred by power balance also increases rapidly. Critical gradients are a predicted attribute of turbulence arising from linear instabilities and are thought to be related to transport stiffness. The presented results are the first direct, systematic demonstration of critical gradient behavior in turbulence measurements in a tokamak. The experiment was performed by changing the deposition location of electron cyclotron heating shot-to-shot to locally scan LTe-1 at r/a = 0.6 in L-mode plasmas; rotation was also varied by changing the momentum input from neutral beam injection. Temperature fluctuations were measured with a correlation electron cyclotron emission (CECE) radiometry system. In addition to the CECE measurements, an array of turbulence measurements were acquired to characterize fluctuations in multiple fields and at multiple scales as LTe-1 and rotation were modified: long wavelength (kθρs≲0.5) density fluctuations were acquired with beam emission spectroscopy, the phase angle between electron temperature and density fluctuations was measured by coupling the CECE system and a reflectometer, intermediate scale (kθρs˜0.8) density fluctuations were measured with a Doppler backscattering (DBS) system, and low frequency flows were also measured with DBS. The accumulated measurements and trends constrain identification of the instability responsible for the observed critical gradient to the ∇Te-driven trapped electron mode.

  9. Development of a multi-scale and multi-modality imaging system to characterize tumours and their microenvironment in vivo

    NASA Astrophysics Data System (ADS)

    Rouffiac, Valérie; Ser-Leroux, Karine; Dugon, Emilie; Leguerney, Ingrid; Polrot, Mélanie; Robin, Sandra; Salomé-Desnoulez, Sophie; Ginefri, Jean-Christophe; Sebrié, Catherine; Laplace-Builhé, Corinne

    2015-03-01

    In vivo high-resolution imaging of tumor development is possible through dorsal skinfold chamber implantable on mice model. However, current intravital imaging systems are weakly tolerated along time by mice and do not allow multimodality imaging. Our project aims to develop a new chamber for: 1- long-term micro/macroscopic visualization of tumor (vascular and cellular compartments) and tissue microenvironment; and 2- multimodality imaging (photonic, MRI and sonography). Our new experimental device was patented in March 2014 and was primarily assessed on 75 mouse engrafted with 4T1-Luc tumor cell line, and validated in confocal and multiphoton imaging after staining the mice vasculature using Dextran 155KDa-TRITC or Dextran 2000kDa-FITC. Simultaneously, a universal stage was designed for optimal removal of respiratory and cardiac artifacts during microscopy assays. Experimental results from optical, ultrasound (Bmode and pulse subtraction mode) and MRI imaging (anatomic sequences) showed that our patented design, unlike commercial devices, improves longitudinal monitoring over several weeks (35 days on average against 12 for the commercial chamber) and allows for a better characterization of the early and late tissue alterations due to tumour development. We also demonstrated the compatibility for multimodality imaging and the increase of mice survival was by a factor of 2.9, with our new skinfold chamber. Current developments include: 1- defining new procedures for multi-labelling of cells and tissue (screening of fluorescent molecules and imaging protocols); 2- developing ultrasound and MRI imaging procedures with specific probes; 3- correlating optical/ultrasound/MRI data for a complete mapping of tumour development and microenvironment.

  10. Characterization of Multi-Scale Atmospheric Conditions Associated with Extreme Precipitation in the Transverse Ranges of Southern California

    NASA Astrophysics Data System (ADS)

    Oakley, N.; Kaplan, M.; Ralph, F. M.

    2015-12-01

    The east-west oriented Transverse Ranges of Southern California have historically experienced shallow landslides and debris flows that threaten life and property. Steep topography, soil composition, and frequent wildfires make this area susceptible to mass wasting. Extreme rainfall often acts as a trigger for these events. This work characterizes atmospheric conditions at multiple scales during extreme (>99th percentile) 1-day precipitation events in the major sub-ranges of the Transverse Ranges. Totals from these 1-day events generally exceed the established sub-daily intensity-duration thresholds for shallow landslides and debris flows in this region. Daily extreme precipitation values are derived from both gridded and station-based datasets over the period 1958-2014. For each major sub-range, extreme events are clustered by atmospheric feature and direction of moisture transport. A composite analysis of synoptic conditions is produced for each cluster to create a conceptual model of atmospheric conditions favoring extreme precipitation. The vertical structure of the atmosphere during these extreme events is also examined using observed and modeled soundings. Preliminary results show two atmospheric features to be of importance: 1) closed and cutoff low-pressure systems, areas of counter-clockwise circulation that can produce southerly flow orthogonal to the Transverse Range ridge axes; and 2) atmospheric rivers that transport large quantities of water vapor into the region. In some cases, the closed lows and atmospheric rivers work in concert with each other to produce extreme precipitation. Additionally, there is a notable east-west dipole of precipitation totals during some extreme events between the San Gabriel and Santa Ynez Mountains where extreme values are observed in one range and not the other. The cause of this relationship is explored. The results of this work can help forecasters and emergency responders determine the likelihood that an event will

  11. Experimental characterization of multiscale and multifield turbulence as a critical gradient threshold is surpassed in the DIII-D tokamak

    SciTech Connect

    Hillesheim, J. C.; Peebles, W. A.; Carter, T. A.; Wang, G.; Rhodes, T. L.; Schmitz, L.; Doyle, E. J.; Zeng, L.; DeBoo, J. C.; Staebler, G. M.; Burrell, K. H.; Petty, C. C.; Smith, S. P.; McKee, G. R.; Yan, Z.; Holland, C.; White, A. E.

    2013-05-15

    A critical gradient for long wavelength (k{sub θ}ρ{sub s}≲0.4) electron temperature fluctuations has been observed in an experiment in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], where below a threshold value of L{sub T{sub e}{sup −1}}=|∇T{sub e}|/T{sub e} electron temperature fluctuations are constant and above they steadily increase. Above the critical gradient, the electron heat flux inferred by power balance also increases rapidly. Critical gradients are a predicted attribute of turbulence arising from linear instabilities and are thought to be related to transport stiffness. The presented results are the first direct, systematic demonstration of critical gradient behavior in turbulence measurements in a tokamak. The experiment was performed by changing the deposition location of electron cyclotron heating shot-to-shot to locally scan L{sub T{sub e}{sup −1}} at r/a = 0.6 in L-mode plasmas; rotation was also varied by changing the momentum input from neutral beam injection. Temperature fluctuations were measured with a correlation electron cyclotron emission (CECE) radiometry system. In addition to the CECE measurements, an array of turbulence measurements were acquired to characterize fluctuations in multiple fields and at multiple scales as L{sub T{sub e}{sup −1}} and rotation were modified: long wavelength (k{sub θ}ρ{sub s}≲0.5) density fluctuations were acquired with beam emission spectroscopy, the phase angle between electron temperature and density fluctuations was measured by coupling the CECE system and a reflectometer, intermediate scale (k{sub θ}ρ{sub s}∼0.8) density fluctuations were measured with a Doppler backscattering (DBS) system, and low frequency flows were also measured with DBS. The accumulated measurements and trends constrain identification of the instability responsible for the observed critical gradient to the ∇T{sub e}-driven trapped electron mode.

  12. Facile synthesis and characterization of hexagonal NbSe{sub 2} nanoplates

    SciTech Connect

    Zhang, Xianghua; Zhang, Du; Tang, Hua; Ji, Xiaorui; Zhang, Yi; Tang, Guogang; Li, Changsheng

    2014-05-01

    Graphical abstract: - Highlights: • Uniform hexagonal NbSe{sub 2} nanoplates were prepared by a simple solid state reaction. • The possible formation mechanism of the NbSe{sub 2} nanoplates was discussed. • The formation of NbSe{sub 2} nanoplates undergoes a series of phase transition. - Abstract: The NbSe{sub 2} nanoplates with hexagonal morphology have been successfully prepared by a facile, environmentally friendly reaction in closed reactor at moderate temperature. The thermal (750 °C) solid-state reaction between the ball-milled mixture of micro-sized Nb and Se yielded a high yield of NbSe{sub 2} nanoplates. The as-prepared products were characterized by XRD, EDS, and SEM. The results showed that the as-prepared products were hexagonal phase NbSe{sub 2} nanoplates with uniform sizes and the formation of NbSe{sub 2} nanoplates underwent a series of phase transition. On the basis of experimental results obtained at different temperatures, a reasonable reaction process and a formation mechanism were proposed. Moreover, the ball milling time played a crucial role in acquiring the homogeneous distribution nanoplates.

  13. Multiscale Cancer Modeling

    PubMed Central

    Macklin, Paul; Cristini, Vittorio

    2013-01-01

    Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163

  14. An Analysis Platform for Multiscale Hydrogeologic Modeling with Emphasis on Hybrid Multiscale Methods

    SciTech Connect

    Scheibe, Timothy D.; Murphy, Ellyn M.; Chen, Xingyuan; Rice, Amy K.; Carroll, Kenneth C.; Palmer, Bruce J.; Tartakovsky, Alexandre M.; Battiato, Ilenia; Wood, Brian D.

    2015-01-01

    One of the most significant challenges facing hydrogeologic modelers is the disparity between those spatial and temporal scales at which fundamental flow, transport and reaction processes can best be understood and quantified (e.g., microscopic to pore scales, seconds to days) and those at which practical model predictions are needed (e.g., plume to aquifer scales, years to centuries). While the multiscale nature of hydrogeologic problems is widely recognized, technological limitations in computational and characterization restrict most practical modeling efforts to fairly coarse representations of heterogeneous properties and processes. For some modern problems, the necessary level of simplification is such that model parameters may lose physical meaning and model predictive ability is questionable for any conditions other than those to which the model was calibrated. Recently, there has been broad interest across a wide range of scientific and engineering disciplines in simulation approaches that more rigorously account for the multiscale nature of systems of interest. In this paper, we review a number of such approaches and propose a classification scheme for defining different types of multiscale simulation methods and those classes of problems to which they are most applicable. Our classification scheme is presented in terms of a flow chart (Multiscale Analysis Platform or MAP), and defines several different motifs of multiscale simulation. Within each motif, the member methods are reviewed and example applications are discussed. We focus attention on hybrid multiscale methods, in which two or more models with different physics described at fundamentally different scales are directly coupled within a single simulation. Very recently these methods have begun to be applied to groundwater flow and transport simulations, and we discuss these applications in the context of our classification scheme. As computational and characterization capabilities continue to

  15. Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Chung, Eric; Efendiev, Yalchin; Hou, Thomas Y.

    2016-09-01

    In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation.

  16. A mathematical framework for multiscale science and engineering : the variational multiscale method and interscale transfer operators.

    SciTech Connect

    Shadid, John Nicolas; Lehoucq, Richard B.; Christon, Mark Allen; Slepoy, Alexander; Bochev, Pavel Blagoveston; Collis, Samuel Scott; Wagner, Gregory John

    2004-05-01

    Existing approaches in multiscale science and engineering have evolved from a range of ideas and solutions that are reflective of their original problem domains. As a result, research in multiscale science has followed widely diverse and disjoint paths, which presents a barrier to cross pollination of ideas and application of methods outside their application domains. The status of the research environment calls for an abstract mathematical framework that can provide a common language to formulate and analyze multiscale problems across a range of scientific and engineering disciplines. In such a framework, critical common issues arising in multiscale problems can be identified, explored and characterized in an abstract setting. This type of overarching approach would allow categorization and clarification of existing models and approximations in a landscape of seemingly disjoint, mutually exclusive and ad hoc methods. More importantly, such an approach can provide context for both the development of new techniques and their critical examination. As with any new mathematical framework, it is necessary to demonstrate its viability on problems of practical importance. At Sandia, lab-centric, prototype application problems in fluid mechanics, reacting flows, magnetohydrodynamics (MHD), shock hydrodynamics and materials science span an important subset of DOE Office of Science applications and form an ideal proving ground for new approaches in multiscale science.

  17. Characterization of ultra fine alumina powder produced by wet milling

    SciTech Connect

    Hofius, H.; Hofmann, H.; Foerster, H.

    1995-09-01

    Different raw alumina powders were wet milled in a ball mill and in an attrition mill. The influence of the raw material properties as well as the milling parameters on the properties of the final product was investigated by chemical analysis, XRD, surface characterization and sintering experiments. The results show the synthesis of nanoscaled powder with a specific surface area {ge} 50 m{sup 2}/g can be achieved by wet milling. In addition domains with diameters of a few nm could be detected by XRD. The sintering temperature could be lowered from 1650{degrees}C to 1424{degrees}C. The hydration of {alpha}-Al{sub 2}O{sub 3}, will also be discussed.

  18. Characterization of Nanocomposites in Flyash for Possible Pesticide Application

    NASA Astrophysics Data System (ADS)

    Patra, Prasun; Roy, Indrani; Kumar, Rajesh; Gopal, Madhuban; Devakumar, C.; Gogoi, Robin; Srivastava, Chitra; Subramanium, B. S.; Goswami, Arunava

    2010-10-01

    Fly ash composed of crystalline abrasive silica alumina etc is a major source of pollution in and around Kolaghat thermal power plant, West Bengal. In an attempt to find ecofriendly use of fly ash, 300 kg of fly ash was taken to size range of 20-100 nm by (a) sieving, filtration followed by sonication and (b) long time low speed ball milling. Resultant slurry containing polydisperse naked nanoparticle mix was characterized using DLS, SEM, EDAX, and TEM etc. We hypothesized that immobilization of nanoflyash on solid matrix, and as a support for slow release of fumigants/fungicides/bactericides would usher in a variety of usages as value added low cost tiles in bathrooms and similar public utilities in India. Accordingly, we report here the preparation of metal and clay tiles with nanocomposite and nanoflyash. These tiles were impregnated with a number of other nanoparticles of choice.

  19. Engineering Digestion: Multiscale Processes of Food Digestion.

    PubMed

    Bornhorst, Gail M; Gouseti, Ourania; Wickham, Martin S J; Bakalis, Serafim

    2016-03-01

    Food digestion is a complex, multiscale process that has recently become of interest to the food industry due to the developing links between food and health or disease. Food digestion can be studied by using either in vitro or in vivo models, each having certain advantages or disadvantages. The recent interest in food digestion has resulted in a large number of studies in this area, yet few have provided an in-depth, quantitative description of digestion processes. To provide a framework to develop these quantitative comparisons, a summary is given here between digestion processes and parallel unit operations in the food and chemical industry. Characterization parameters and phenomena are suggested for each step of digestion. In addition to the quantitative characterization of digestion processes, the multiscale aspect of digestion must also be considered. In both food systems and the gastrointestinal tract, multiple length scales are involved in food breakdown, mixing, absorption. These different length scales influence digestion processes independently as well as through interrelated mechanisms. To facilitate optimized development of functional food products, a multiscale, engineering approach may be taken to describe food digestion processes. A framework for this approach is described in this review, as well as examples that demonstrate the importance of process characterization as well as the multiple, interrelated length scales in the digestion process.

  20. Engineering Digestion: Multiscale Processes of Food Digestion.

    PubMed

    Bornhorst, Gail M; Gouseti, Ourania; Wickham, Martin S J; Bakalis, Serafim

    2016-03-01

    Food digestion is a complex, multiscale process that has recently become of interest to the food industry due to the developing links between food and health or disease. Food digestion can be studied by using either in vitro or in vivo models, each having certain advantages or disadvantages. The recent interest in food digestion has resulted in a large number of studies in this area, yet few have provided an in-depth, quantitative description of digestion processes. To provide a framework to develop these quantitative comparisons, a summary is given here between digestion processes and parallel unit operations in the food and chemical industry. Characterization parameters and phenomena are suggested for each step of digestion. In addition to the quantitative characterization of digestion processes, the multiscale aspect of digestion must also be considered. In both food systems and the gastrointestinal tract, multiple length scales are involved in food breakdown, mixing, absorption. These different length scales influence digestion processes independently as well as through interrelated mechanisms. To facilitate optimized development of functional food products, a multiscale, engineering approach may be taken to describe food digestion processes. A framework for this approach is described in this review, as well as examples that demonstrate the importance of process characterization as well as the multiple, interrelated length scales in the digestion process. PMID:26799793

  1. Quantifying prediction fidelity in multiscale multiphysics simulations.

    SciTech Connect

    Adalsteinsson, Helgi

    2010-04-01

    Multiscale multiphysics problems arise in a host of application areas of significant relevance to DOE, including electrical storage systems (membranes and electrodes in fuel cells, batteries, and ultracapacitors), water surety, chemical analysis and detection systems, and surface catalysis. Multiscale methods aim to provide detailed physical insight into these complex systems by incorporating coupled effects of relevant phenomena on all scales. However, many sources of uncertainty and modeling inaccuracies hamper the predictive fidelity of multiscale multiphysics simulations. These include parametric and model uncertainties in the models on all scales, and errors associated with coupling, or information transfer, across scales/physics. This presentation introduces our work on the development of uncertainty quantification methods for spatially decomposed atomistic-to-continuum (A2C) multiscale simulations. The key thrusts of this research effort are: inference of uncertain parameters or observables from experimental or simulation data; propagation of uncertainty through particle models; propagation of uncertainty through continuum models; propagation of information and uncertainty across model/scale interfaces; and numerical and computational analysis and control. To enable the bidirectional coupling between the atomistic and continuum simulations, a general formulation has been developed for the characterization of sampling noise due to intrinsic variability in particle simulations, and for the propagation of both this sampling noise and parametric uncertainties through coupled A2C multiscale simulations. Simplified tests of noise quantification in particle computations are conducted through Bayesian inference of diffusion rates in an idealized isothermal binary material system. A proof of concept is finally presented based on application of the present formulation to the propagation of uncertainties in a model plane Couette flow, where the near wall region is

  2. Sample preparation for thermo-gravimetric determination and thermo-gravimetric characterization of refuse derived fuel.

    PubMed

    Robinson, T; Bronson, B; Gogolek, P; Mehrani, P

    2016-02-01

    Thermo-gravimetric analysis (TGA) is a useful method for characterizing fuels. In the past it has been applied to the study of refuse derived fuel (RDF) and related materials. However, the heterogeneity of RDF makes the preparation of small representative samples very difficult and this difficulty has limited the effectiveness of TGA for characterization of RDF. A TGA method was applied to a variety of materials prepared from a commercially available RDF using a variety of procedures. Applicability of TGA method to the determination of the renewable content of RDF was considered. Cryogenic ball milling was found to be an effective means of preparing RDF samples for TGA. When combined with an effective sample preparation, TGA could be used as an alternative method for assessing the renewable content of RDF.

  3. Synthesis and characterization of barium ferrite–silica nanocomposites

    SciTech Connect

    Aguilar-González, M.A.; Mendoza-Suárez, G.; Padmasree, K.P.

    2013-10-15

    In this work, we prepared barium ferrite-silica (BaM-SiO{sub 2}) nanocomposites of different molar ratios by high-energy ball milling, followed by heat-treatment at different temperatures. The microstructure, morphology and magnetic properties were characterized for different synthesis conditions by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). The results indicate that 15 h of milling was enough to avoid the generation of hematite phase and to get a good dispersion of barium ferrite particles in the ceramic matrix. For milling periods beyond 15 h and heat treatment above 900 °C, the XRD patterns showed the presence of hematite phase caused by the decomposition of BaM. The agglomerate size observed through SEM analysis was around 150 nm with a good BaM dispersion into the SiO{sub 2} matrix. The highest saturation magnetization (Ms) value obtained was 43 emu/g and the corresponding coercivity (Hc) value of 3.4 kOe for the composition 60BaM-40SiO{sub 2} milled for 15 h and heat treated at 900 °C. This coercivity value is acceptable for the application in magnetic recording media. Highlights: • Barium ferrite–silica nanocomposites were prepared by high energy ball milling. • Optimal processing time is 15 h milling and heat treatment at 900 °C. • This is enough to avoid the generation of hematite phase. • Obtain good dispersion of barium ferrite particles in the ceramic matrix • Above this processing time shows the presence of increased amount of hematite.

  4. Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy.

    PubMed

    Rudge, S R; Kurtz, T L; Vessely, C R; Catterall, L G; Williamson, D L

    2000-07-01

    Magnetic microcarrier particles useful for delivering chemotherapeutic drug molecules are described. The particles are formed by joint deformation of iron and carbon in a ball mill. Physical, chemical, and functional characterization has been carried out on the particles. Physical characteristics include microscopy, particle size analysis (0.5-5 microm), surface area (250 m2/g), water vapor adsorption isotherm (hydrophobic surface), and analysis of the iron-carbon interface by Mössbauer spectroscopy, X-ray diffraction, and differential thermal analysis. Chemical analysis was used to identify elements in the particles other than carbon and iron. Functional characteristics measured included the particles' ability to adsorb and desorb doxorubicin, cytotoxicity, and their magnetic susceptibility. PMID:10872770

  5. Massive Preparation of Reduced-Sensitivity Nano CL-20 and Its Characterization

    NASA Astrophysics Data System (ADS)

    Guo, Xiaode; Ouyang, Gang; Liu, Jie; Li, Qing; Wang, Longxiang; Gu, Zhiming; Li, Fengsheng

    2015-01-01

    Nano 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) was produced massively by ball milling. One thousand grams of the raw CL-20 were used per batch. The product was characterized using laser granularity measurement, scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The results show that the pulverized particles were pseudo-spheres with an average particle size (d50) of 200 nm, and the thermal decomposition peak temperature of the nano CL-20 was 239.61°C lower than that of the micrometer-sized CL-20 at a heating rate of 15°C . min-1. Furthermore, compared with the raw CL-20, the impact and friction sensitivities of the nano CL-20 were considerably reduced by 116.2 and 22%, respectively, indicating the great improvement in safety of CL-20.

  6. Microwave assisted synthesis and characterization of barium titanate nanoparticles for multi layered ceramic capacitor applications.

    PubMed

    Thirumalai, Sundararajan; Shanmugavel, Balasivanandha Prabu

    2011-01-01

    Barium titanate is a common ferroelectric electro-ceramic material having high dielectric constant, with photorefractive effect and piezoelectric properties. In this research work, nano-scale barium titanate powders were synthesized by microwave assisted mechano-chemical route. Suitable precursors were ball milled for 20 hours. TGA studies were performed to study the thermal stability of the powders. The powders were characterized by XRD, SEM and EDX Analysis. Microwave and Conventional heating were performed at 1000 degrees C. The overall heating schedule was reduced by 8 hours in microwave heating thereby reducing the energy and time requirement. The nano-scale, impurity-free and defect-free microstructure was clearly evident from the SEM micrograph and EDX patterns. LCR meter was used to measure the dielectric constant and dielectric loss values at various frequencies. Microwave heated powders showed superior dielectric constant value with low dielectric loss which is highly essential for the fabrication of Multi Layered Ceramic Capacitors. PMID:24427875

  7. Multiscale macromolecular simulation: role of evolving ensembles.

    PubMed

    Singharoy, A; Joshi, H; Ortoleva, P J

    2012-10-22

    Multiscale analysis provides an algorithm for the efficient simulation of macromolecular assemblies. This algorithm involves the coevolution of a quasiequilibrium probability density of atomic configurations and the Langevin dynamics of spatial coarse-grained variables denoted order parameters (OPs) characterizing nanoscale system features. In practice, implementation of the probability density involves the generation of constant OP ensembles of atomic configurations. Such ensembles are used to construct thermal forces and diffusion factors that mediate the stochastic OP dynamics. Generation of all-atom ensembles at every Langevin time step is computationally expensive. Here, multiscale computation for macromolecular systems is made more efficient by a method that self-consistently folds in ensembles of all-atom configurations constructed in an earlier step, history, of the Langevin evolution. This procedure accounts for the temporal evolution of these ensembles, accurately providing thermal forces and diffusions. It is shown that efficiency and accuracy of the OP-based simulations is increased via the integration of this historical information. Accuracy improves with the square root of the number of historical timesteps included in the calculation. As a result, CPU usage can be decreased by a factor of 3-8 without loss of accuracy. The algorithm is implemented into our existing force-field based multiscale simulation platform and demonstrated via the structural dynamics of viral capsomers.

  8. Multiscale Biomechanics of Tomato Fruits: A Review.

    PubMed

    Li, Zhiguo; Thomas, Colin

    2016-05-18

    Bruising and other mechanical damage to fruit caused by external forces during and postharvesting is manifested at the macroscale but is ultimately the result of failure of cells at the microscale. However, fruits have internal structures and cells from different tissue types react differently to application of an external force. Not much is known about the effects of such forces on single cells within tissues and one reason for this is the lack of multiscale models linking macro- (organ or whole fruit), meso- (tissue), and micro- (cell) mechanics. This review concerns tomato fruits specifically as this is an important crop and is an excellent exemplar of past and proposed research in this field. The first consideration is the multiscale anatomy of tomato fruits that provides the basis for mechanical modeling. The literature on experimental methods for studying multiscale mechanics of fruit is then reviewed, as are recent results from using those methods. Finally, future research directions are discussed, in particular the combination of work over all scales. It is clear that a bottom-up approach incorporating single-cell mechanics in finite element models of whole fruit assumed to have internal structures is a promising way forward for tomato fruits but further method developments may be needed for these and other fruits and vegetables, in particular recovery of representative single cells from tissues for mechanical characterization.

  9. Multi-scale petrophysical and geomechanical characterization of full core from the Groningen Field to understand mechanical stratigraphy and compaction behavior

    NASA Astrophysics Data System (ADS)

    van Eijs, Rob; Hol, Sander; Marcelis, Fons; Ishmukhametova, Gulfiia; van der Linden, Arjan; Zuiderwijk, Pedro; Makurat, Axel

    2016-04-01

    The Groningen gas field in The Netherlands is one of the largest onshore gas reserves known. Advancing production from the field has resulted in field-scale deformation with surface subsidence and accompanied local seismicity. Part of the deformation is associated with compaction of the Permian reservoir. While depletion-induced reservoir compaction is expected to be controlled locally by grain-scale physical mechanisms such as sub-critical cracking or particle re-arrangement and intergranular pressure solution creep, understanding of the intra-reservoir variability of these mechanisms is still limited, though crucial for predicting the coupling between production, rock deformation, and surface effects. To aid an improved understanding of fundamental processes and scaling effects, approximately 200 meters of core over the reservoir section was taken from a well in the Groningen Field, drilled in July 2015 close to the village of Zeerijp. Using this material, we have performed detailed laboratory investigations and will continue to do so in significant numbers, to compare the results obtained with well- and field-scale observations. In this contribution, we present several exemplary mechanical data sets for the reservoir and caprock, and compare these data with well-scale petrophysical and mechanical information, notably sonic, scratch and visual geological details with the aim to arrive at a multi-scale description of petrophysical and geomechanical rock properties. Our first comparison reveals a strong contrast in compressibility and strength between the reservoir and caprock, as well as a contribution of inelastic strain to the total strain response of the tested rock samples. We will discuss the observed mechanical stratigraphy in considering regional and field scale deformation patterns.

  10. Multiscale Simulation of Microbe Structure and Dynamics

    PubMed Central

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V.; Cheluvaraja, Srinath C.; Ortoleva, Peter J.

    2012-01-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin. PMID:21802438

  11. Multi-scale renormalization

    NASA Astrophysics Data System (ADS)

    Ford, C.; Wiesendanger, C.

    1997-02-01

    The standard MS renormalization prescription is inadequate for dealing with multi-scale problems. To illustrate this we consider the computation of the effective potential in the Higgs-Yukawa model. It is argued that it is natural to employ a two-scale renormalization group. We give a modified version of a two-scale scheme introduced by Einhorn and Jones. In such schemes the beta functions necessarily contain potentially large logarithms of the RG scale ratios. For credible perturbation theory one must implement a large logarithms resummation on the beta functions themselves. We show how the integrability condition for the two RG equations allows one to perform this resummation.

  12. Structural and statistical characterization of joints and multi-scale faults in an alternating sandstone and shale turbidite sequence at the Santa Susana Field Laboratory: Implications for their effects on groundwater flow and contaminant transport

    NASA Astrophysics Data System (ADS)

    Cilona, Antonino; Aydin, Atilla; Likerman, Jeremias; Parker, Beth; Cherry, John

    2016-04-01

    This paper describes the properties of faults and fractures in the Upper Cretaceous Chatsworth Formation exposed at Santa Susana Field Laboratory and its surroundings (Simi Hills, California), where groundwater flow and contamination have been studied for over three decades. The complex depositional architecture of this turbidite consisting of alternating sandstones and shales, interacting with formative stress conditions are responsible for multi-scale fault hierarchies and permeable fractures in which nearly all groundwater flow occurs. Intensity and distribution of background fractures and their relation to bedding thickness are established for sandstones, the dominant lithology. The architecture of faults with increasing displacement is described, and relationships among fault dimensional parameters captured. Data from ∼400 boreholes and piezometers reveal the effect of faults and fractures on groundwater flow. Large hydraulic head differences, observed across fault zones with shale-rich cores, indicate these structures as cross-flow barriers. Moreover, hydraulic head profiles under ambient conditions, and pumping tests suggest strong hydraulic connectivity in all directions to depth of hundreds of meters. This outcrop-based structural characterization relates the horizontal hydraulic conductivity to the observed well-connected fracture network, and explains the strong vertical connectivity across low-hydraulic conductivity shales as faults and sheared fractures provide flow pathways.

  13. Multiscale reactive molecular dynamics

    PubMed Central

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-01-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system. PMID:23249062

  14. Performance of distributed multiscale simulations

    PubMed Central

    Borgdorff, J.; Ben Belgacem, M.; Bona-Casas, C.; Fazendeiro, L.; Groen, D.; Hoenen, O.; Mizeranschi, A.; Suter, J. L.; Coster, D.; Coveney, P. V.; Dubitzky, W.; Hoekstra, A. G.; Strand, P.; Chopard, B.

    2014-01-01

    Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption. PMID:24982258

  15. The Magnetospheric Multiscale Constellation

    NASA Astrophysics Data System (ADS)

    Tooley, C. R.; Black, R. K.; Robertson, B. P.; Stone, J. M.; Pope, S. E.; Davis, G. T.

    2016-03-01

    The Magnetospheric Multiscale (MMS) mission is the fourth mission of the Solar Terrestrial Probe (STP) program of the National Aeronautics and Space Administration (NASA). The MMS mission was launched on March 12, 2015. The MMS mission consists of four identically instrumented spin-stabilized observatories which are flown in formation to perform the first definitive study of magnetic reconnection in space. The MMS mission was presented with numerous technical challenges, including the simultaneous construction and launch of four identical large spacecraft with 100 instruments total, stringent electromagnetic cleanliness requirements, closed-loop precision maneuvering and pointing of spinning flexible spacecraft, on-board GPS based orbit determination far above the GPS constellation, and a flight dynamics design that enables formation flying with separation distances as small as 10 km. This paper describes the overall mission design and presents an overview of the design, testing, and early on-orbit operation of the spacecraft systems and instrument suite.

  16. MULTISCALE THERMOHYDROLOGIC MODEL

    SciTech Connect

    T.A. Buscheck

    2001-12-21

    The purpose of the Multiscale Thermohydrologic Model (MSTHM) is to describe the thermohydrologic evolution of the near-field environment (NFE) and engineered barrier system (EBS) throughout the potential high-level nuclear waste repository at Yucca Mountain for a particular engineering design (CRWMS M&O 2000c). The process-level model will provide thermohydrologic (TH) information and data (such as in-drift temperature, relative humidity, liquid saturation, etc.) for use in other technical products. This data is provided throughout the entire repository area as a function of time. The MSTHM couples the Smeared-heat-source Drift-scale Thermal-conduction (SDT), Line-average-heat-source Drift-scale Thermohydrologic (LDTH), Discrete-heat-source Drift-scale Thermal-conduction (DDT), and Smeared-heat-source Mountain-scale Thermal-conduction (SMT) submodels such that the flow of water and water vapor through partially-saturated fractured rock is considered. The MSTHM accounts for 3-D drift-scale and mountain-scale heat flow, repository-scale variability of stratigraphy and infiltration flux, and waste package (WP)-to-WP variability in heat output from WPs. All submodels use the nonisothermal unsaturated-saturated flow and transport (NUFT) simulation code. The MSTHM is implemented in several data-processing steps. The four major steps are: (1) submodel input-file preparation, (2) execution of the four submodel families with the use of the NUFT code, (3) execution of the multiscale thermohydrologic abstraction code (MSTHAC), and (4) binning and post-processing (i.e., graphics preparation) of the output from MSTHAC. Section 6 describes the MSTHM in detail. The objectives of this Analyses and Model Report (AMR) are to investigate near field (NF) and EBS thermohydrologic environments throughout the repository area at various evolution periods, and to provide TH data that may be used in other process model reports.

  17. Demonstration of a Novel, Integrated, Multi-Scale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit

    SciTech Connect

    Scott R. Reeves

    2007-09-30

    The primary goal of this project was to demonstrate a new and novel approach for high resolution, 3D reservoir characterization that can enable better management of CO{sub 2} enhanced oil recovery (EOR) projects and, looking to the future, carbon sequestration projects. The approach adopted has been the subject of previous research by the DOE and others, and relies primarily upon data-mining and advanced pattern recognition approaches. This approach honors all reservoir characterization data collected, but accepts that our understanding of how these measurements relate to the information of most interest, such as how porosity and permeability vary over a reservoir volume, is imperfect. Ideally the data needed for such an approach includes surface seismic to provide the greatest amount of data over the entire reservoir volume of interest, crosswell seismic to fill the resolution gap between surface seismic and wellbore-scale measurements, geophysical well logs to provide the vertical resolution sought, and core data to provide the tie to the information of most interest. These data are combined via a series of one or more relational models to enable, in its most successful application, the prediction of porosity and permeability on a vertical resolution similar to logs at each surface seismic trace location. In this project, the procedure was applied to the giant (and highly complex) SACROC unit of the Permian basin in West Texas, one of the world's largest CO{sub 2}-EOR projects and a potentially world-class geologic sequestration site. Due to operational scheduling considerations on the part of the operator of the field, the crosswell data was not obtained during the period of project performance (it is currently being collected however as part of another DOE project). This compromised the utility of the surface seismic data for the project due to the resolution gap between it and the geophysical well logs. An alternative approach was adopted that utilized a

  18. An array method for detection, location and characterization of multi-scale seismic energy release associated to the deformation processes of active subduction zones

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Satriano, C.; Bernard, P.; Vilotte, J.; Obara, K.

    2013-12-01

    Detection, location and characterization of the seismic energy release associated to deformation processes in active subduction zones are fundamental for understanding the dynamics of active deformation and the mechanisms of generation and rupturing of large subduction earthquakes. The statistical analysis of this seismic energy release, spanning a wide range of space and time scales, as well as phenomena, (e.g., earthquakes, seismic repeaters, low and very low-frequency earthquakes, tectonic tremors) can provide original insides to the problem. We developed a new methodology exploiting the frequency selective coherence of the wave field at dense seismic arrays and local antennas that leads to stable and reliable detection, blind source separation, and location of distributed non-stationary sources. The methodology consist of: (1) a signal processing scheme yielding a simplified representation of a seismic signal by an adaptive time-frequency characterization of its statistical properties; (2) a fully probabilistic detection and location algorithm based on back projection of stacked local cross-correlations of the simplified signals. This new approach has been developed and tested on the Shikoku region in Japan, which is an exceptional field laboratory, due to its high seismic activity comprising a wide variety of phenomena observed by the dense Hi-net seismic network operated by NIED. We evaluate the capability and potential of the proposed methodology to detect, locate and characterize the energy release associated to possibly overlapping seismic radiation from earthquakes and low-frequency tectonic tremors. As future direction we also discuss an application to the International Maule Aftershock Deployment (IMAD) in Chile.

  19. An array method for detection, location and characterization of multi-scale seismic energy release associated to the deformation processes of active subduction zones

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Satriano, C.; Bernard, P.; Vilotte, J.; Obara, K.

    2011-12-01

    Detection, location and characterization of the seismic energy release associated to deformation processes in active subduction zones are fundamental for understanding the dynamics of active deformation and the mechanisms of generation and rupturing of large subduction earthquakes. The statistical analysis of this seismic energy release, spanning a wide range of space and time scales, as well as phenomena, (e.g., earthquakes, seismic repeaters, low and very low-frequency earthquakes, tectonic tremors) can provide original insides to the problem. We developed a new methodology exploiting the frequency selective coherence of the wave field at dense seismic arrays and local antennas that leads to stable and reliable detection, blind source separation, and location of distributed non-stationary sources. The methodology consist of: (1) a signal processing scheme yielding a simplified representation of a seismic signal by an adaptive time-frequency characterization of its statistical properties; (2) a fully probabilistic detection and location algorithm based on back projection of stacked local cross-correlations of the simplified signals. This new approach has been developed and tested on the Shikoku region in Japan, which is an exceptional field laboratory, due to its high seismic activity comprising a wide variety of phenomena observed by the dense Hi-net seismic network operated by NIED. We evaluate the capability and potential of the proposed methodology to detect, locate and characterize the energy release associated to possibly overlapping seismic radiation from earthquakes and low-frequency tectonic tremors. As future direction we also discuss an application to the International Maule Aftershock Deployment (IMAD) in Chile.

  20. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-ZnO/n-TiO 2

    NASA Astrophysics Data System (ADS)

    Chen, Shifu; Zhao, Wei; Liu, Wei; Zhang, Sujuan

    2008-12-01

    In this paper, p-type ZnO powder was prepared by decomposition of zinc nitrate at 350 °C for 1 h. p-n junction photocatalyst p-ZnO/TiO 2 was prepared by ball milling of TiO 2 in H 2O solution doped with p-ZnO. The p-n junction photocatalyst p-ZnO/TiO 2 was characterized by UV-vis diffuse reflection spectrum, scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and the fluorescence emission spectra. The photocatalytic activity of the photocatalyst was evaluated by photocatalytic reduction of Cr 2O 72- and photocatalytic oxidation of methyl orange (MO). The results showed that the photocatalytic activity of the p-n junction p-ZnO/TiO 2 is much higher than that of TiO 2 on the photocatalytic reduction of Cr 2O 72-. However, the photocatalytic activity of the photocatalyst is much lower than that of TiO 2 on the photocatalytic oxidation of methyl orange. Namely, the p-n junction photocatalyst p-ZnO/TiO 2 has higher photocatalytic reduction activity, but lower photocatalytic oxidation activity. When the amounts of doped p-ZnO are 0.0 and 2.0 wt.%, illumination for 20 min, the photoreduction efficiencies are 15.7 and 42.8%, and the photooxidation efficiencies are 68.1 and 26.1%, respectively. Effect of ball milling time on the photocatalytic activity of the photocatalyst was also investigated. The mechanisms of influence on the photocatalytic activity were also discussed by the p-n junction principle.

  1. Multi-scale characterization of dissolution structures and porosity distribution in the upper part of the Biscayne aquifer using ground penetrating radar (GPR)

    NASA Astrophysics Data System (ADS)

    Mount, Gregory J.

    The karst Biscayne aquifer is characterized by a heterogeneous spatial arrangement of porosity, making hydrogeological characterization difficult. In this dissertation, I investigate the use of ground penetrating radar (GPR), for understanding the spatial distribution of porosity variability in the Miami Limestone presented as a compilation of studies where scale of measurement is progressively increased to account for varying dimensions of dissolution features. In Chapter 2, GPR in zero offset acquisition mode is used to investigate the 2-D distribution of porosity and dielectric permittivity in a block of Miami Limestone at the laboratory scale (< 1.0 m). Petrophysical models based on fully saturated and unsaturated water conditions are used to estimate porosity and solid dielectric permittivity of the limestone. Results show a good correspondence between analytical and GPR-based porosity estimates and show variability between 22.0-66.0 %. In Chapter 3, GPR in common offset and common midpoint acquisition mode are used to estimate bulk porosity of the unsaturated Miami Limestone at the field scale (10.0-100.0 m). Estimates of porosity are based on the assumption that the directly measured water table reflector is flat and that any deviation is attributed to changes in velocity due to porosity variability. Results show sharp changes in porosity ranging between 33.2-60.9 % attributed to dissolution areas. In Chapter 4, GPR in common offset mode is used to characterize porosity variability in the saturated Biscayne aquifer at 100-1000 m field scales. The presence of numerous diffraction hyperbolae are used to estimate electromagnetic wave velocity and asses both horizontal and vertical changes in porosity after application of a petrophysical model. Results show porosity variability between 23.0-41.0 % and confirm the presence of isolated areas that could serve as enhanced infiltration or recharge. This research allows for the identification and delineation areas of

  2. The Magnetospheric Multiscale Magnetometers

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Dearborn, D.; Fischer, D.; Le, G.; Leinweber, H. K.; Leneman, D.; Magnes, W.; Means, J. D.; Moldwin, M. B.; Nakamura, R.; Pierce, D.; Plaschke, F.; Rowe, K. M.; Slavin, J. A.; Strangeway, R. J.; Torbert, R.; Hagen, C.; Jernej, I.; Valavanoglou, A.; Richter, I.

    2016-03-01

    The success of the Magnetospheric Multiscale mission depends on the accurate measurement of the magnetic field on all four spacecraft. To ensure this success, two independently designed and built fluxgate magnetometers were developed, avoiding single-point failures. The magnetometers were dubbed the digital fluxgate (DFG), which uses an ASIC implementation and was supplied by the Space Research Institute of the Austrian Academy of Sciences and the analogue magnetometer (AFG) with a more traditional circuit board design supplied by the University of California, Los Angeles. A stringent magnetic cleanliness program was executed under the supervision of the Johns Hopkins University's Applied Physics Laboratory. To achieve mission objectives, the calibration determined on the ground will be refined in space to ensure all eight magnetometers are precisely inter-calibrated. Near real-time data plays a key role in the transmission of high-resolution observations stored on board so rapid processing of the low-resolution data is required. This article describes these instruments, the magnetic cleanliness program, and the instrument pre-launch calibrations, the planned in-flight calibration program, and the information flow that provides the data on the rapid time scale needed for mission success.

  3. Characterization of multi-scale porous structure of fly ash/phosphate geopolymer hollow sphere structures: from submillimeter to nano-scale.

    PubMed

    Li, Ruifeng; Wu, Gaohui; Jiang, Longtao; Sun, Dongli

    2015-01-01

    In the present work, the porous structure of fly ash/phosphate geopolymer hollow sphere structures (FPGHSS), prepared by pre-bonding and curing technology, has been characterized by multi-resolution methods from sub-millimeter to nano-scale. Micro-CT and confocal microscopy could provide the macroscopic distribution of porous structure on sub-millimeter scale, and hollow fly ashes with sphere shape and several sub-millimeter open cells with irregular shape were identified. SEM is more suitable to illustrate the distribution of micro-sized open and closed cells, and it was found that the open cells of FPGHSS were mainly formed in the interstitial porosity between fly ashes. Mercury porosimeter measurement showed that the micro-sized open cell of FPGHSS demonstrated a normal/bimodal distribution, and the peaks of pore size distribution were mainly around 100 and 10 μm. TEM observation revealed that the phosphate geopolymer was mainly composed of the porous area with nano-pores and dense areas, which were amorphous Al-O-P phase and α-Al2O3 respectively. The pore size of nano-pores demonstrated a quasi-normal distribution from about 10 to 100 nm. Therefore, detailed information of the porous structure of FPGHSS could be revealed using multiple methods.

  4. Multi-scale characterization of pore evolution in a combustion metamorphic complex, Hatrurim basin, Israel: Combining (ultra) small-angle neutron scattering and image analysis

    SciTech Connect

    Wang, Hsiu-Wen; Anovitz, Lawrence {Larry} M; Burg, Avihu; Cole, David; Allard Jr, Lawrence Frederick; Jackson, Andrew J; Stack, Andrew G; Rother, Gernot; Ciarlette, Diane D

    2013-01-01

    Backscattered scanning electron micrograph and ultra small- and small-angle neutron scattering data have been combined to provide statistically meaningful data on the pore/grain structure and pore evolution of combustion metamorphic complexes from the Hatrurim basin, Israel. Three processes, anti-sintering roughening, alteration of protolith (dehydration, decarbonation, and oxidation) and crystallization of high-temperature minerals, occurred simultaneously, leading to significant changes in observed pore/grain structures. Pore structures in the protoliths, and in lowand high-grade metamorphic rocks show surface (Ds) and mass (Dm) pore fractal geometries with gradual increases in both Ds and Dm values as a function of metamorphic grade. This suggests that increases in pore volume and formation of less branching pore networks are accompanied by a roughening of pore/grain interfaces. Additionally, pore evolution during combustion metamorphism is also characterized by reduced contributions from small-scale pores to the cumulative porosity in the high-grade rocks. At high temperatures, small-scale pores may be preferentially closed by the formation of high-temperature minerals, producing a rougher morphology with increasing temperature. Alternatively, large-scale pores may develop at the expense of small-scale pores. These observations (pore fractal geometry and cumulative porosity) indicate that the evolution of pore/grain structures is correlated with the growth of high-temperature phases and is a consequence of the energy balance between pore/grain surface energy and energy arising from heterogeneous phase contacts. The apparent pore volume density further suggests that the localized time/temperature development of the high-grade Hatrurim rocks is not simply an extension of that of the low-grade rocks. The former likely represents the "hot spots (burning foci)" in the overall metamorphic terrain while the latter may represent contact aureoles.

  5. Preparation and Characterization of PETI-330/Multiwalled Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Delozier, Donavon M.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.

    2005-01-01

    As part of an ongoing effort to incorporate multi-functionality into advanced composites, blends of PETI-330 and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to approx. 300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were fabricated by injecting the mixtures at 260-280 C into a stainless steel tool followed by curing for 1 h at 371 C. The tool was designed to impart high shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Good quality moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of the MWCNTs were investigated using high-resolution scanning electron microscopy and Raman spectroscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed. Keywords: phenylethynyl terminated imides, high temperature polymers, nanocomposites,

  6. Preparation and Characterization of PETI-330/Multiwalled Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.

    2005-01-01

    As part of an ongoing effort to incorporate multifunctionality into advanced composites, blends of PETI-330 and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to 300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were made by injecting the mixtures at 260-280 C into an Invar tool followed by curing for 1 h at 371 C. The tool was designed to impart shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Good quality moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of the MWCNTs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed. Keywords: phenylethynyl terminated imides, high temperature polymers, nanocomposites, moldings

  7. Multiscale Thermohydrologic Model

    SciTech Connect

    T. Buscheck

    2004-10-12

    The purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. Thus, the goal is to predict the range of possible thermal-hydrologic conditions across the repository; this is quite different from predicting a single expected thermal-hydrologic response. The MSTHM calculates the following thermal-hydrologic parameters: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes (Table 1-1). These thermal-hydrologic parameters are required to support ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]). The thermal-hydrologic parameters are determined as a function of position along each of the emplacement drifts and as a function of waste package type. These parameters are determined at various reference locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert. The parameters are also determined at various defined locations in the adjoining host rock. The MSTHM uses data obtained from the data tracking numbers (DTNs) listed in Table 4.1-1. The majority of those DTNs were generated from the following analyses and model reports: (1) ''UZ Flow Model and Submodels'' (BSC 2004 [DIRS 169861]); (2) ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004); (3) ''Calibrated Properties Model'' (BSC 2004 [DIRS 169857]); (4) ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]); (5) ''Thermal Conductivity of the Non-Repository Lithostratigraphic Layers'' (BSC 2004 [DIRS 170033]); (6) ''Ventilation Model and Analysis Report'' (BSC 2004 [DIRS 169862]); (7) ''Heat Capacity

  8. Multi-scale characterization of a Contourite Depositional System from Gamma Ray data analysis. Insights from IODP Expedition 339 in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Lofi, Johanna; Ducassou, Emmanuelle; Galvani, Aurélie; Rodríguez-Tovar, Francisco Javier; Williams, Trevor; Hernández-Molina, Francisco Javier; Stow, Dorrik; Pardo-Igúzquiza, Eulogio

    2014-05-01

    Contourite Depositional Systems (CDS) generated by bottom current activity have been described in most oceanic basins, especially on the continental slope, rises and abyssal plains. Beside an economic light due to the continuous expansion of hydrocarbon exploration towards deeper water, CDS form sedimentary archives that can be crucial for paleoceanographic reconstructions. Recently, IODP Expedition 339 was conducted in the Gulf of Cadiz in order to investigate the CDS under the influence of the Mediterranean Outflow Water (MOW). Five sites were successfully drilled, cored and logged, making this area an ideal ground for testing the contourite paradigm over a 5 Ma long record. Following opening of the Gibraltar Gateway, preliminary results show that contourite deposition started from 4.2-4.5 Ma, increasing in the Quaternary. Significant widespread unconformities, present in all sites but with hiatuses of variable duration, are interpreted as a signal of intensified MOW, coupled with flow confinement. Expedition 339 data allows characterization of CDS from both seismic, core and well log data. Downhole logging measurements acquired during the expedition provided continuous in situ Natural and Spectral Gamma Ray (GR) records of the drilled formation, allowing for the analysis of the interaction between bottom circulation and sedimentary deposits at several scales: - At small scale, the good core recovery allows core/log integration. Grain size analysis performed on cores from Site U1386 have been combined with Gamma ray data, primarily tracking clay content, measured on cores and in open hole. The correlation confirm that high GR values correlate well with muddy intervals while low GR values reflect coarse-grained intervals; - At an intermediate scale, spectral analysis performed on GR logs at 3 sites (U1386C, U1389E and U1387C) confirm the record of orbital-scale variations in the sediment properties of contourites over the last 1.6 Ma; - At a larger scale, site to

  9. Multi-Scale Infrastructure Assessment

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA) multi-scale infrastructure assessment project supports both water resource adaptation to climate change and the rehabilitation of the nation’s aging water infrastructure by providing tools, scientific data and information to progra...

  10. Multiscale diffusion in the mitotic Drosophila melanogaster syncytial blastoderm.

    PubMed

    Daniels, Brian R; Rikhy, Richa; Renz, Malte; Dobrowsky, Terrence M; Lippincott-Schwartz, Jennifer

    2012-05-29

    Despite the fundamental importance of diffusion for embryonic morphogen gradient formation in the early Drosophila melanogaster embryo, there remains controversy regarding both the extent and the rate of diffusion of well-characterized morphogens. Furthermore, the recent observation of diffusional "compartmentalization" has suggested that diffusion may in fact be nonideal and mediated by an as-yet-unidentified mechanism. Here, we characterize the effects of the geometry of the early syncytial Drosophila embryo on the effective diffusivity of cytoplasmic proteins. Our results demonstrate that the presence of transient mitotic membrane furrows results in a multiscale diffusion effect that has a significant impact on effective diffusion rates across the embryo. Using a combination of live-cell experiments and computational modeling, we characterize these effects and relate effective bulk diffusion rates to instantaneous diffusion coefficients throughout the syncytial blastoderm nuclear cycle phase of the early embryo. This multiscale effect may be related to the effect of interphase nuclei on effective diffusion, and thus we propose that an as-yet-unidentified role of syncytial membrane furrows is to temporally regulate bulk embryonic diffusion rates to balance the multiscale effect of interphase nuclei, which ultimately stabilizes the shapes of various morphogen gradients.

  11. MULTISCALE THERMOHYDROLOGIC MODEL

    SciTech Connect

    T. Buscheck

    2005-07-07

    The intended purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. The goal of the MSTHM is to predict a reasonable range of possible thermal-hydrologic conditions within the emplacement drift. To be reasonable, this range includes the influence of waste-package-to-waste-package heat output variability relevant to the license application design, as well as the influence of uncertainty and variability in the geologic and hydrologic conditions relevant to predicting the thermal-hydrologic response in emplacement drifts. This goal is quite different from the goal of a model to predict a single expected thermal-hydrologic response. As a result, the development and validation of the MSTHM and the associated analyses using this model are focused on the goal of predicting a reasonable range of thermal-hydrologic conditions resulting from parametric uncertainty and waste-package-to-waste-package heat-output variability. Thermal-hydrologic conditions within emplacement drifts depend primarily on thermal-hydrologic conditions in the host rock at the drift wall and on the temperature difference between the drift wall and the drip-shield and waste-package surfaces. Thus, the ability to predict a reasonable range of relevant in-drift MSTHM output parameters (e.g., temperature and relative humidity) is based on valid predictions of thermal-hydrologic processes in the host rock, as well as valid predictions of heat-transfer processes between the drift wall and the drip-shield and waste-package surfaces. Because the invert contains crushed gravel derived from the host rock, the invert is, in effect, an extension of the host rock, with thermal and hydrologic properties that have been modified by virtue of the crushing (and the resulting

  12. The Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Burch, James

    Magnetospheric Multiscale (MMS), a NASA four-spacecraft mission scheduled for launch in November 2014, will investigate magnetic reconnection in the boundary regions of the Earth’s magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. Among the important questions about reconnection that will be addressed are the following: Under what conditions can magnetic-field energy be converted to plasma energy by the annihilation of magnetic field through reconnection? How does reconnection vary with time, and what factors influence its temporal behavior? What microscale processes are responsible for reconnection? What determines the rate of reconnection?
In order to accomplish its goals the MMS spacecraft must probe both those regions in which the magnetic fields are very nearly antiparallel and regions where a significant guide field exists. From previous missions we know the approximate speeds with which reconnection layers move through space to be from tens to hundreds of km/s. For electron skin depths of 5 to 10 km, the full 3D electron population (10 eV to above 20 keV) has to be sampled at rates greater than 10/s. The MMS Fast-Plasma Instrument (FPI) will sample electrons at greater than 30/s. Because the ion skin depth is larger, FPI will make full ion measurements at rates of greater than 6/s. 3D E-field measurements will be made by MMS once every ms. MMS will use an Active Spacecraft Potential Control device (ASPOC), which emits indium ions to neutralize the photoelectron current and keep the spacecraft from charging to more than +4 V. Because ion dynamics in Hall reconnection depend sensitively on ion mass, MMS includes a new-generation Hot Plasma Composition Analyzer (HPCA) that corrects problems with high proton fluxes that have prevented accurate ion-composition measurements near the dayside magnetospheric boundary. Finally, Energetic Particle Detector (EPD) measurements of electrons and

  13. Simulating and mapping spatial complexity using multi-scale techniques

    USGS Publications Warehouse

    De Cola, L.

    1994-01-01

    A central problem in spatial analysis is the mapping of data for complex spatial fields using relatively simple data structures, such as those of a conventional GIS. This complexity can be measured using such indices as multi-scale variance, which reflects spatial autocorrelation, and multi-fractal dimension, which characterizes the values of fields. These indices are computed for three spatial processes: Gaussian noise, a simple mathematical function, and data for a random walk. Fractal analysis is then used to produce a vegetation map of the central region of California based on a satellite image. This analysis suggests that real world data lie on a continuum between the simple and the random, and that a major GIS challenge is the scientific representation and understanding of rapidly changing multi-scale fields. -Author

  14. Multiscale vulnerability of complex networks.

    PubMed

    Boccaletti, Stefano; Buldú, Javier; Criado, Regino; Flores, Julio; Latora, Vito; Pello, Javier; Romance, Miguel

    2007-12-01

    We present a novel approach to quantify the vulnerability of a complex network, i.e., the capacity of a graph to maintain its functional performance under random damages or malicious attacks. The proposed measure represents a multiscale evaluation of vulnerability, and makes use of combined powers of the links' betweenness. We show that the proposed approach is able to properly describe some cases for which earlier measures of vulnerability fail. The relevant applications of our method for technological network design are outlined.

  15. MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES

    SciTech Connect

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-03-20

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  16. Multiscale Dynamics of Solar Magnetic Structures

    NASA Technical Reports Server (NTRS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-01-01

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries.We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  17. Characterization of cold-sprayed nanostructured Fe-based alloy

    NASA Astrophysics Data System (ADS)

    Li, Wen-Ya; Li, Chang-Jiu

    2010-01-01

    The ball-milled Fe-Si alloy was used as feedstock for deposition of nanocrystalline Fe-Si by cold spraying process. The microstructure of the as-sprayed nanostructured Fe-Si was characterized by using optical microscopy, scanning electron microscopy and transmission electron microscopy. The grain sizes of the feedstock and as-sprayed deposit were estimated based on X-ray diffraction analysis. The microhardness and coercivity of the deposited Fe-Si alloy were characterized. The results showed that the as-sprayed deposit presented a dense microstructure. The mean grain size of the as-deposited Fe-Si was several tens nanometers and comparable to that of the corresponding milled feedstock. The temperature of driving gas presented little effect on the microstructure of cold-sprayed nanostructured Fe-Si deposit. The mechanical alloying induced oxygen contents up to 8 wt% in the feedstocks and subsequent deposits. The microhardness of the deposit reached about 400 Hv. The deposit achieved a high coercivity up to 190 kA/m indicating the potential possibility for applications to recording materials.

  18. Differential Geometry Based Multiscale Models

    PubMed Central

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that

  19. Differential geometry based multiscale models.

    PubMed

    Wei, Guo-Wei

    2010-08-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are

  20. Differential geometry based multiscale models.

    PubMed

    Wei, Guo-Wei

    2010-08-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are

  1. Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling

    SciTech Connect

    Du, Qiang

    2014-11-12

    generation atomistic-to-continuum multiscale simulations. In addition, a rigorous studyof nite element discretizations of peridynamics will be considered. Using the fact that peridynamics is spatially derivative free, we will also characterize the space of admissible peridynamic solutions and carry out systematic analyses of the models, in particular rigorously showing how peridynamics encompasses fracture and other failure phenomena. Additional aspects of the project include the mathematical and numerical analysis of peridynamics applied to stochastic peridynamics models. In summary, the project will make feasible mathematically consistent multiscale models for the analysis and design of advanced materials.

  2. The Adaptive Multi-scale Simulation Infrastructure

    SciTech Connect

    Tobin, William R.

    2015-09-01

    The Adaptive Multi-scale Simulation Infrastructure (AMSI) is a set of libraries and tools developed to support the development, implementation, and execution of general multimodel simulations. Using a minimal set of simulation meta-data AMSI allows for minimally intrusive work to adapt existent single-scale simulations for use in multi-scale simulations. Support for dynamic runtime operations such as single- and multi-scale adaptive properties is a key focus of AMSI. Particular focus has been spent on the development on scale-sensitive load balancing operations to allow single-scale simulations incorporated into a multi-scale simulation using AMSI to use standard load-balancing operations without affecting the integrity of the overall multi-scale simulation.

  3. Multiscale geometric modeling of macromolecules II: Lagrangian representation

    PubMed Central

    Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599

  4. Peridynamic Multiscale Finite Element Methods

    SciTech Connect

    Costa, Timothy; Bond, Stephen D.; Littlewood, David John; Moore, Stan Gerald

    2015-12-01

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the

  5. Implementing Multiscale Fluid Simulations using Multiscale Universal Interface

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Hang; Kudo, Shuhei; Bian, Xin; Li, Zhen; Karniadakis, George; Crunch Team

    2015-11-01

    The power of multiscale fluid simulations lies in its ability to recover a hierarchical levels of details by choreographing multiple solvers, thus extending the length and time scale accessible given a fixed amount of computing power. However, practical difficulties frequently arise when stitching together solvers which were not designed to be coupled, and would often result in tedious and unsustainable coding effort. The Multiscale Universal Interface (MUI) aims to solve this problem by exposing a small set of generalized programming interfaces that can be dropped into existing solvers with minimal intrusion. Three deployment cases will be given for demonstrating real-world applications of MUI. In the first case we used MUI to implement simulations of polymer-grafted surface in flow using Smoothed Particle Hydrodynamics/Dissipative Particle Dynamics (SPH/DPD) and state variable coupling. In the second case we constructed coupled DPD/Finite Element Method (FEM) simulation of conjugate heat transfer in heterogeneous coolant. In the third case we built hybrid DPD/molecular dynamics (MD) simulations by blending the forces on atoms at interface regions. Supported by the DOE Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) and AFOSR FA9550-12-1-0463. Computer hours at ORNL allocated through INCITE BIP118 and DD102.

  6. Multi-scale Shock Technique

    2009-08-01

    The code to be released is a new addition to the LAMMPS molecular dynamics code. LAMMPS is developed and maintained by Sandia, is publicly available, and is used widely by both natioanl laboratories and academics. The new addition to be released enables LAMMPS to perform molecular dynamics simulations of shock waves using the Multi-scale Shock Simulation Technique (MSST) which we have developed and has been previously published. This technique enables molecular dynamics simulations of shockmore » waves in materials for orders of magnitude longer timescales than the direct, commonly employed approach.« less

  7. Large-scale production and characterization of biocompatible colloidal nanoalumina.

    PubMed

    Razali, W A W; Sreenivasan, V K A; Goldys, E M; Zvyagin, A V

    2014-12-23

    The rapid uptake of nanomaterials in life sciences calls for the development of universal, high-yield techniques for their production and interfacing with biomolecules. Top-down methods take advantage of the existing variety of bulk and thin-film solid-state materials for improved prediction and control of the resultant nanomaterial properties. We demonstrate the power of this approach using high-energy ball milling (HEBM) of alumina (Al2O3). Nanoalumina particles with a mean size of 25 nm in their most stable α-crystallographic phase were produced in gram quantities, suitable for biological and biomedical applications. Nanomaterial contamination from zirconia balls used in HEBM was reduced from 19 to 2% using a selective acid etching procedure. The biocompatibility of the milled nanomaterial was demonstrated by forming stable colloids in water and physiological buffers, corroborated by zeta potentials of +40 mV and -40 mV and characterized by in vitro cytotoxicity assays. Finally, the feasibility of a milled nanoalumina surface in anchoring a host of functional groups and biomolecules was demonstrated by the functionalization of their surface using facile silane chemistry, resulting in the decoration of the nanoparticle surface with amino groups suitable for further conjugation of biomolecules. PMID:25434921

  8. Nanosized copper ferrite materials: Mechanochemical synthesis and characterization

    SciTech Connect

    Manova, Elina; Tsoncheva, Tanya; Paneva, Daniela; Popova, Margarita; Velinov, Nikolay; Kunev, Boris; Tenchev, Krassimir; Mitov, Ivan

    2011-05-15

    Nanodimensional powders of cubic copper ferrite are synthesized by two-steps procedure of co-precipitation of copper and iron hydroxide carbonates, followed by mechanochemical treatment. X-ray powder diffraction, Moessbauer spectroscopy and temperature-programmed reduction are used for the characterization of the obtained materials. Their catalytic behavior is tested in methanol decomposition to hydrogen and CO and total oxidation of toluene. Formation of nanosized ferrite material is registered even after one hour of milling time. It is established that the prolonging of treatment procedure decreases the dispersion of the obtained product with the appearance of Fe{sub 2}O{sub 3}. It is demonstrated that the catalytic behavior of the samples depends not only on their initial phase composition, but on the concomitant ferrite phase transformations by the influence of the reaction medium. -- Graphical abstract: It is demonstrated that the catalytic behavior of the obtained copper ferrites depends not only on their initial phase composition, but on the concomitant phase transformations by the influence of the reaction medium. Display Omitted Highlights: {yields} Two-step co-precipitation-ball-milling procedure for copper ferrites preparation. {yields} The phase composition of ferrites depends on the milling duration. {yields} Ferrites transforms under the reaction medium, which affects their catalytic behavior. {yields} Ferrites decompose to magnetite and carbides during methanol decomposition. {yields} Agglomeration and further crystallization of ferrite occur during toluene oxidation.

  9. Ball-milling modification of single-walled carbon nanotubes: purification, cutting, and functionalization.

    PubMed

    Rubio, Noelia; Fabbro, Chiara; Herrero, M Antonia; de la Hoz, Antonio; Meneghetti, Moreno; Fierro, Jose L G; Prato, Maurizio; Vázquez, Ester

    2011-03-01

    Single-walled carbon nanotubes (SWNTs) can be successfully cut with relatively homogeneous sizes using a planetary mill. The optimized conditions produce highly dispersible SWNTs that can be efficiently functionalized in a variety of synthetic ways. As clearly shown by Raman spectroscopy, the milling/cutting procedure compares very favorably with the most common way of purifying SWNTs, namely, treatment with strong oxidizing acids. Moreover a similar milling process can be used to functionalize and cut pristine SWNTs by one-step nitrene chemistry. PMID:21290599

  10. Optimizing particle size reduction of biochar using a planetary ball mill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With world demand for fossil fuels consistently growing, reducing our dependence on petroleum products is a necessary strategy. Our research group is currently studying the feasibility of biochar as rubber composite filler. If biochar can be used as a partial or complete substitute for carbon black ...

  11. Mechanochemical Strecker Reaction: Access to α-Aminonitriles and Tetrahydroisoquinolines under Ball-Milling Conditions.

    PubMed

    Hernández, José G; Turberg, Mathias; Schiffers, Ingo; Bolm, Carsten

    2016-10-01

    A mechanochemical version of the Strecker reaction for the synthesis of α-aminonitriles was developed. The milling of aldehydes, amines, and potassium cyanide in the presence of SiO2 gave the corresponding α-aminonitriles in good to high yields. The high efficiency of the mechanochemical Strecker-type multicomponent reaction allowed the one-pot synthesis of tetrahydroisoquinolines after a subsequent internal N-alkylation reaction.

  12. HPMC as a potential enhancer of nimodipine biopharmaceutical properties via ball-milled solid dispersions.

    PubMed

    Riekes, Manoela Klüppel; Kuminek, Gislaine; Rauber, Gabriela Schneider; de Campos, Carlos Eduardo Maduro; Bortoluzzi, Adailton João; Stulzer, Hellen Karine

    2014-01-01

    The poor solubility of drugs remains one of the most challenging aspects of formulation development. Aiming at improving the biopharmaceutical limitations of the calcium channel blocker nimodipine, the development of solid dispersions is proposed herein. Three different proportions of nimodipine:HPMC were tested and all of them generated amorphous solid dispersions. Improvements of up 318% in the solubility and a 4-fold increase in the dissolution rate of nimodipine were achieved. Stability studies conducted over 90 days in a desiccator indicated that the initial characteristic of the formulations were maintained. However, at 40 °C/75% RH recrystallization was observed for solid dispersions with 70 and 80% of HPMC, whilst the formulation composed of 90% of the carrier remained amorphous. The increase in the stability observed when the HPMC concentration was increased from 70 to 90% in the solid dispersions was attributed to the dilution mechanism. PMID:24274533

  13. Polymorphic form of piroxicam influences the performance of amorphous material prepared by ball-milling.

    PubMed

    Naelapää, Kaisa; Boetker, Johan Peter; Veski, Peep; Rantanen, Jukka; Rades, Thomas; Kogermann, Karin

    2012-06-15

    The objective of this study was to investigate the influence of the starting solid state form of piroxicam (anhydrate form I: PRXAH I vs form II: PRXAH II) on the properties of the resulting amorphous material. The second objective was to obtain further insight into the impact of critical factors like thermal stress, dissolution medium and storage conditions on the thermal behavior, solid state transformations and physical stability of amorphous materials. For analysis differential scanning calorimetry (DSC), Raman spectroscopy and X-ray powder diffractometry (XRPD) were used. Pair-wise distribution function (PDF) analysis of the XRPD data was performed. PDF analysis indicated that the recrystallization behavior of amorphous samples was influenced by the amount of residual order in the samples. The recrystallization behavior of amorphous samples prepared from PRXAH I showed similarity to the starting material, whereas the recrystallization behavior of amorphous samples prepared from PRXAH II resembled to that of the PRX form III (PRXAH III). Multivariate data analysis (MVDA) helped to identify that the influence of storage time and temperature was more pronounced in the case of amorphous PRX prepared from PRXAH I. Furthermore, the wet slurry experiments with amorphous materials revealed the recrystallization of amorphous material as PRXMH in the biorelevant medium. PMID:22433471

  14. Chemical reactions of metal powders with organic and inorganic liquids during ball milling

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1975-01-01

    Chromium and/or nickel powders were milled in metal chlorides and in organic liquids representative of various functional groups. The powders always reacted with the liquid and became contaminated with elements from them. The milled powders had specific surface areas ranging from 0.14 to 37 sq m/g, and the total contamination with elements from the milling liquid ranged from 0.01 to 56 weight percent. Compounds resulting from substitution, addition, or elimination reactions formed in or from the milling liquid.

  15. The phase analysis of spark plasma sintered MgB2 after ball milling.

    PubMed

    Kang, Deuk-Kyun; Kim, Dong-Woong; Kim, Cheol-Jin; Ahn, In-Shup

    2010-01-01

    Mg and amorphous B powders below 10 and 3 micro meter were used as raw materials, and mixed by planetary-mill for 9 hours at argon atmosphere. MgB2 bulk was fabricated at the various temperatures by Spark Plasma Sintering. In the sintering process, mixed powders were sintered in graphite mold, at the pressure of 55 Mpa. The fabricated MgB2 samples were evaluated with XRD, EDS, FE-SEM, PPMS. MgB2, MgO and Fe phases were observed from XRD result. In the results, MgO and Fe were impurity which may affect superconducting properties of MgB2 samples, and it's distribution could be confirmed from EDS mapping result. In order to confirm the formation of MgB2 phase, DTA was used as heating rate of 10 degrees C/min at Ar atmosphere from room temperature to 1200 degrees C. In the PPMS result, the Tc (critical temperature) was about 21 K, and the density of spark plasma sintered samples increased to 1.87 g/cm3 by increasing sintering temperature.

  16. HPMC as a potential enhancer of nimodipine biopharmaceutical properties via ball-milled solid dispersions.

    PubMed

    Riekes, Manoela Klüppel; Kuminek, Gislaine; Rauber, Gabriela Schneider; de Campos, Carlos Eduardo Maduro; Bortoluzzi, Adailton João; Stulzer, Hellen Karine

    2014-01-01

    The poor solubility of drugs remains one of the most challenging aspects of formulation development. Aiming at improving the biopharmaceutical limitations of the calcium channel blocker nimodipine, the development of solid dispersions is proposed herein. Three different proportions of nimodipine:HPMC were tested and all of them generated amorphous solid dispersions. Improvements of up 318% in the solubility and a 4-fold increase in the dissolution rate of nimodipine were achieved. Stability studies conducted over 90 days in a desiccator indicated that the initial characteristic of the formulations were maintained. However, at 40 °C/75% RH recrystallization was observed for solid dispersions with 70 and 80% of HPMC, whilst the formulation composed of 90% of the carrier remained amorphous. The increase in the stability observed when the HPMC concentration was increased from 70 to 90% in the solid dispersions was attributed to the dilution mechanism.

  17. Nanocomposite formation in haematite-Mg, Ti system induced by high-energy ball milling.

    PubMed

    Lee, Chung-Hyo

    2013-06-01

    Reactant materials of haematite and Mg, Ti powders have been milled, where pure metals are used as reducing agent. It is found that nanocomposite powders in which MgO and TiO2 are dispersed in alpha-Fe matrix with nano-sized grains are obtained by MA of Fe2O3 with Mg and Ti for 30 min and 5 hours, respectively. It is suggested that the shorter MA time for the nanocomposite formation in Fe2O3-Mg is due to a larger negative heat associated with the chemical reduction of reactant materials. X-ray diffraction results show that the average grain size of alpha-Fe in alpha-Fe/TiO2 nanocomposite powders is in the range of 40 nm. From magnetic measurement, we can also obtain indirect information about the details of the solid-state reduction process during MA.

  18. Towards a Multiscale Approach to Cybersecurity Modeling

    SciTech Connect

    Hogan, Emilie A.; Hui, Peter SY; Choudhury, Sutanay; Halappanavar, Mahantesh; Oler, Kiri J.; Joslyn, Cliff A.

    2013-11-12

    We propose a multiscale approach to modeling cyber networks, with the goal of capturing a view of the network and overall situational awareness with respect to a few key properties--- connectivity, distance, and centrality--- for a system under an active attack. We focus on theoretical and algorithmic foundations of multiscale graphs, coming from an algorithmic perspective, with the goal of modeling cyber system defense as a specific use case scenario. We first define a notion of \\emph{multiscale} graphs, in contrast with their well-studied single-scale counterparts. We develop multiscale analogs of paths and distance metrics. As a simple, motivating example of a common metric, we present a multiscale analog of the all-pairs shortest-path problem, along with a multiscale analog of a well-known algorithm which solves it. From a cyber defense perspective, this metric might be used to model the distance from an attacker's position in the network to a sensitive machine. In addition, we investigate probabilistic models of connectivity. These models exploit the hierarchy to quantify the likelihood that sensitive targets might be reachable from compromised nodes. We believe that our novel multiscale approach to modeling cyber-physical systems will advance several aspects of cyber defense, specifically allowing for a more efficient and agile approach to defending these systems.

  19. Multiscale optimization in neural nets.

    PubMed

    Mjolsness, E; Garrett, C D; Miranker, W L

    1991-01-01

    One way to speed up convergence in a large optimization problem is to introduce a smaller, approximate version of the problem at a coarser scale and to alternate between relaxation steps for the fine-scale and coarse-scale problems. Such an optimization method for neural networks governed by quite general objective functions is presented. At the coarse scale, there is a smaller approximating neural net which, like the original net, is nonlinear and has a nonquadratic objective function. The transitions and information flow from fine to coarse scale and back do not disrupt the optimization, and the user need only specify a partition of the original fine-scale variables. Thus, the method can be applied easily to many problems and networks. There is generally about a fivefold improvement in estimated cost under the multiscale method. In the networks to which it was applied, a nontrivial speedup by a constant factor of between two and five was observed, independent of problem size. Further improvements in computational cost are very likely to be available, especially for problem-specific multiscale neural net methods.

  20. Synthesis and characterization of Bi-doped Mg{sub 2}Si thermoelectric materials

    SciTech Connect

    Fiameni, S.; Battiston, S.; Boldrini, S.; Famengo, A.; Agresti, F.; Barison, S.; Fabrizio, M.

    2012-09-15

    The Mg{sub 2}Si-based alloys are promising candidates for thermoelectric energy conversion for the middle high range of temperature. They are very attractive as they could replace lead-based compounds due to their low cost and non toxicity. They could also result in thermoelectric generator weight reduction (a key feature for the automotive application field). The high value of thermal conductivity of the silicide-based materials could be reduced by increasing the phonon scattering in the presence of nanosized crystalline grains without heavily interfering with the electrical conductivity of the thermoelectric material. Nanostructured materials were obtained under inert atmosphere through ball milling, thermal treatment and spark plasma sintering processes. In particular, the role of several bismuth doping amounts in Mg{sub 2}Si were investigated (Mg{sub 2}Si:Bi=1:x for x=0.01, 0.02 and 0.04 M ratio). The morphology, the composition and the structure of the samples were characterized by FE-SEM, EDS and XRD analyses after each process step. Moreover, the Seebeck coefficient analyses at high temperature and the electrical and thermal conductivity of the samples are presented in this work. The nanostructuring processes were affect by the MgO amount increase which influenced the thermoelectric properties of the samples mainly by reducing the electrical conductivity. With the aim of further increasing the scattering phenomena by interface or boundary effect, carbon nanostructures named Single Wall Carbon Nanohorns were added to the Mg{sub 2}Si in order to produce a nanocomposite material. The influence of the nanostructured filler on the thermoelectric material properties is also discussed. - Graphical abstract: Figure of merit (ZT) of Bi-doped samples and undoped Mg{sub 2}Si. A maximum ZT value of 0.39 at 600 Degree-Sign C was obtained for the nanocomposite material obtained adding Single Wall Carbon Nanohorns to the Bi 0.02 at% doped silicide. Highlights: Black

  1. Initial characterization of a highly contaminated high explosives outfall in preparation for in situ bioremediation

    SciTech Connect

    Betty A. Strietelmeier; Patrick J. Coyne; Patricia A. Leonard; W. Lamar Miller; Jerry R. Brian

    1999-12-01

    In situ bioremediation is a viable, cost-effective treatment for environmental contamination of many kinds. The feasibility of using biological techniques to remediate soils contaminated with high explosives (HE) requires laboratory evaluation before proceeding to a larger scale field operation. Laboratory investigations have been conducted at pilot scale which indicate that an anaerobic process could be successful at reducing levels of HE, primarily HMX, RDX and TNT, in contaminated soils. A field demonstration project has been designed to create an anaerobic environment for the degradation of HE materials. The first step in this project, initial characterization of the test area, was conducted and is the subject of this report. The levels of HE compounds found in the samples from the test area were higher than the EPA Method 8330 was able to extract without subsequent re-precipitation; therefore, a new method was developed using a superior extractant system. The test area sampling design was relatively simple as one might expect in an initial characterization. A total of 60 samples were each removed to a depth of 4 inches using a 1 inch diameter corer. The samples were spaced at relatively even intervals across a 20 foot cross-section through the middle of four 7-foot-long adjacent plots which are designed to be a part of an in situ bioremediation experiment. Duplicate cores were taken from each location for HE extraction and analysis in order to demonstrate and measure the heterogeneity of the contamination. Each soil sample was air dried and ball-milled to provide a homogeneous solid for extraction and analysis. Several samples had large consolidated pieces of what appeared to be solid HE. These were not ball-milled due to safety concerns, but were dissolved and the solutions were analyzed. The new extraction method was superior in that results obtained for several of the contaminants were up to 20 times those obtained with the EPA extraction method. The

  2. Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Olson, Corwin; Wright, Cinnamon; Long, Anne

    2012-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.

  3. Multi-scale statistical analysis of coronal solar activity

    DOE PAGES

    Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.

    2016-07-08

    Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.

  4. A Posteriori Analysis of Adaptive Multiscale Operator Decomposition Methods for Multiphysics Problems

    SciTech Connect

    Donald Estep; Michael Holst; Simon Tavener

    2010-02-08

    This project was concerned with the accurate computational error estimation for numerical solutions of multiphysics, multiscale systems that couple different physical processes acting across a large range of scales relevant to the interests of the DOE. Multiscale, multiphysics models are characterized by intimate interactions between different physics across a wide range of scales. This poses significant computational challenges addressed by the proposal, including: (1) Accurate and efficient computation; (2) Complex stability; and (3) Linking different physics. The research in this project focused on Multiscale Operator Decomposition methods for solving multiphysics problems. The general approach is to decompose a multiphysics problem into components involving simpler physics over a relatively limited range of scales, and then to seek the solution of the entire system through some sort of iterative procedure involving solutions of the individual components. MOD is a very widely used technique for solving multiphysics, multiscale problems; it is heavily used throughout the DOE computational landscape. This project made a major advance in the analysis of the solution of multiscale, multiphysics problems.

  5. Multiscale and cross entropy analysis of auroral and polar cap indices during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Gopinath, Sumesh; Prince, P. R.

    2016-01-01

    In order to improve general monoscale information entropy methods like permutation and sample entropy in characterizing the irregularity of complex magnetospheric system, it is necessary to extend these entropy metrics to a multiscale paradigm. We propose novel multiscale and cross entropy method for the analysis of magnetospheric proxies such as auroral and polar cap indices during geomagnetic disturbance times. Such modified entropy metrics are certainly advantageous in classifying subsystems such as individual contributions of auroral electrojets and field aligned currents to high latitude magnetic perturbations during magnetic storm and polar substorm periods. We show that the multiscale entropy/cross entropy of geomagnetic indices vary with scale factor. These variations can be attributed to changes in multiscale dynamical complexity of non-equilibrium states present in the magnetospheric system. These types of features arise due to imbalance in injection and dissipation rates of energy with variations in magnetospheric response to solar wind. We also show that the multiscale entropy values of time series decrease during geomagnetic storm times which reveals an increase in temporal correlations as the system gradually shifts to a more orderly state. Such variations in entropy values can be interpreted as the signature of dynamical phase transitions which arise at the periods of geomagnetic storms and substorms that confirms several previously found results regarding emergence of cooperative dynamics, self-organization and non-Markovian nature of magnetosphere during disturbed periods.

  6. A tensor-product-kernel framework for multiscale neural activity decoding and control.

    PubMed

    Li, Lin; Brockmeier, Austin J; Choi, John S; Francis, Joseph T; Sanchez, Justin C; Príncipe, José C

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  7. NOVEL PREPARATION AND MAGNETO CHEMICAL CHARACTERIZATION OF NANOPARTICLE MIXED ALCOHOL CATALYSTS

    SciTech Connect

    Seetala V. Naidu; Upali Siriwardane

    2005-05-24

    We have developed and streamlined the experimental systems: (a) Laser-induced solution deposition (LISD) photosynthesis, ball-milling, and chemical synthesis of Fe, Co, and Cu nanoparticle catalysts; (b) Sol-gel method for mesoporous {gamma}-Al{sub 2}O{sub 3}, SiO{sub 2}, hybrid alumina/silica granular supports; (c) Three sol-gel/oil-drop catalyst preparation methods to incorporate metal nanoparticles into mesoporous 1 mm granular supports; (d) Low-cost GC-TCD system with hydrogen as carrier gas for the determination of wide spectrum of alkanes produced during the F-T reactions; and (e) Gas-flow reactor and microchannel reactor for fast screening of catalysts. The LISD method could produce Co, Cu, and Fe (5 nm) nanoparticles, but in milligram quantities. We could produce nanoparticles in gram quantities using high-energy ball milling and chemical synthesis methods. Ball milling gave wide particle size distribution compared to the chemical synthesis method that gave almost uniform size ({approx}5 nm) particles. Metal nanoparticles Cu, Co, Fe, Cu/Co, Cu/Fe and Co/Fe were loaded (2-12 wt%) uniformly into {gamma}-Al{sub 2}O{sub 3}, SiO{sub 2}, or alumina/silica hybrid supports by combined sol-gel/oil-drop methods followed by calcination and hydrogenation steps, prior to syngas FT reaction studies. The properties of metal loaded {gamma}-Al{sub 2}O{sub 3} granules were compared for the two precursors: aluminum tri-sec-butoxide (ALTSB) and aluminum tri-iso-propoxide (ALTIP). The effect of solgel supports alumina, silica, and alumina/silica hybrid were examined on catalytic properties. Metal loading efficiencies for pure metal catalysts increased in the order Co, Cu and Fe in agreement with solubility of metal hydroxides. In case of mixed metals, Co and Cu seams to interfere and reduce Fe metal loading when metal nitrate solutions are used. The solubility differences of metal hydroxides would not allow precise control of metal loading. We have overcome this problem by

  8. Multiscale modeling of polyisoprene on graphite

    SciTech Connect

    Pandey, Yogendra Narayan; Brayton, Alexander; Doxastakis, Manolis; Burkhart, Craig; Papakonstantopoulos, George J.

    2014-02-07

    The local dynamics and the conformational properties of polyisoprene next to a smooth graphite surface constructed by graphene layers are studied by a multiscale methodology. First, fully atomistic molecular dynamics simulations of oligomers next to the surface are performed. Subsequently, Monte Carlo simulations of a systematically derived coarse-grained model generate numerous uncorrelated structures for polymer systems. A new reverse backmapping strategy is presented that reintroduces atomistic detail. Finally, multiple extensive fully atomistic simulations with large systems of long macromolecules are employed to examine local dynamics in proximity to graphite. Polyisoprene repeat units arrange close to a parallel configuration with chains exhibiting a distribution of contact lengths. Efficient Monte Carlo algorithms with the coarse-grain model are capable of sampling these distributions for any molecular weight in quantitative agreement with predictions from atomistic models. Furthermore, molecular dynamics simulations with well-equilibrated systems at all length-scales support an increased dynamic heterogeneity that is emerging from both intermolecular interactions with the flat surface and intramolecular cooperativity. This study provides a detailed comprehensive picture of polyisoprene on a flat surface and consists of an effort to characterize such systems in atomistic detail.

  9. Multiscale Modeling of UHTC: Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  10. Irreversible thermodynamics in multiscale stochastic dynamical systems.

    PubMed

    Santillán, Moisés; Qian, Hong

    2011-04-01

    This work extends the results of a recently developed theory of a rather complete thermodynamic formalism for discrete-state, continuous-time Markov processes with and without detailed balance. We investigate whether and in what way the thermodynamic structure is invariant in a multiscale stochastic system, that is, whether the relations between thermodynamic functions of state and process variables remain unchanged when the system is viewed at different time scales and resolutions. Our results show that the dynamics on a fast time scale contribute an entropic term to the internal energy function u(S)(x) for the slow dynamics. Based on the conditional free energy u(S)(x), we can then treat the slow dynamics as if the fast dynamics is nonexistent. Furthermore, we show that the free energy, which characterizes the spontaneous organization in a system without detailed balance, is invariant with or without the fast dynamics: The fast dynamics is assumed to reach stationarity instantaneously on the slow time scale; it has no effect on the system's free energy. The same cannot be said for the entropy and the internal energy, both of which contain the same contribution from the fast dynamics. We also investigate the consequences of time-scale separation in connection to the concepts of quasi-stationarity and steady adiabaticity introduced in the phenomenological steady-state thermodynamics.

  11. Sublimation-Condensation of Multiscale Tellurium Structures

    SciTech Connect

    Riley, Brian J.; Johnson, Bradley R.; Schaef, Herbert T.; Sundaram, S. K.

    2013-03-11

    This paper presents a simple technique for making tellurium (Te) nano and microtubes of widely varying dimensions with Multi-Scale Processing (MSP). In this process, the Te metal is placed in a reaction vessel (e.g., borosilicate or fused quartz), the vessel is evacuated, and then sealed under vacuum with a torch. The vessel is heat-treated in a temperature gradient where a portion of the tube that can also contain an additional substrate, is under a decreasing temperature gradient. Scanning and transmission electron microscopies have shown that multifaceted crystalline tubes have been formed extending from nano- up to micron-scale with diameters ranging from 51.2 ± 5.9 to 1042 ± 134 nm between temperatures of 157 and 224 °C, respectively. One-dimensional tubular features are seen at lower temperatures, while three-dimensional features, at the higher temperatures. These features have been characterized with X-ray diffraction and found to be trigonal Te with space group P3121. Our results show that the MSP can adequately be described using a simple Arrhenius equation.

  12. Magnetotellurics as a multiscale geophysical exploration method

    NASA Astrophysics Data System (ADS)

    Carbonari, Rolando; D'Auria, Luca; Di Maio, Rosa; Petrillo, Zaccaria

    2016-04-01

    Magnetotellurics (MT) is a geophysical method based on the use of natural electromagnetic signals to define subsurface electrical resistivity structure through electromagnetic induction. MT waves are generated in the Earth's atmosphere and magnetosphere by a range of physical processes, such as magnetic storms, micropulsations, lightning activity. Since the underground MT wave propagation is of diffusive type, the longer is the wavelength (i.e. the lower the wave frequency) the deeper will be the propagation depth. Considering the frequency band commonly used in MT prospecting (10-4 Hz to 104 Hz), the investigation depth ranges from few hundred meters to hundreds of kilometers. This means that magnetotellurics is inherently a multiscale method and, thus, appropriate for applications at different scale ranging from aquifer system characterization to petroleum and geothermal research. In this perspective, the application of the Wavelet transform to the MT data analysis could represent an excellent tool to emphasize characteristics of the MT signal at different scales. In this note, the potentiality of such an approach is studied. In particular, we show that the use of a Discrete Wavelet (DW) decomposition of measured MT time-series data allows to retrieve robust information about the subsoil resistivity over a wide range of spatial (depth) scales, spanning up to 5 orders of magnitude. Furthermore, the application of DWs to MT data analysis has proven to be a flexible tool for advanced data processing (e.g. non-linear filtering, denoising and clustering).

  13. Multiscale modelling in immunology: a review.

    PubMed

    Cappuccio, Antonio; Tieri, Paolo; Castiglione, Filippo

    2016-05-01

    One of the greatest challenges in biomedicine is to get a unified view of observations made from the molecular up to the organism scale. Towards this goal, multiscale models have been highly instrumental in contexts such as the cardiovascular field, angiogenesis, neurosciences and tumour biology. More recently, such models are becoming an increasingly important resource to address immunological questions as well. Systematic mining of the literature in multiscale modelling led us to identify three main fields of immunological applications: host-virus interactions, inflammatory diseases and their treatment and development of multiscale simulation platforms for immunological research and for educational purposes. Here, we review the current developments in these directions, which illustrate that multiscale models can consistently integrate immunological data generated at several scales, and can be used to describe and optimize therapeutic treatments of complex immune diseases.

  14. Collaborating for Multi-Scale Chemical Science

    SciTech Connect

    William H. Green

    2006-07-14

    Advanced model reduction methods were developed and integrated into the CMCS multiscale chemical science simulation software. The new technologies were used to simulate HCCI engines and burner flames with exceptional fidelity.

  15. On multiscale entropy analysis for physiological data

    NASA Astrophysics Data System (ADS)

    Thuraisingham, Ranjit A.; Gottwald, Georg A.

    2006-07-01

    We perform an analysis of cardiac data using multiscale entropy as proposed in Costa et al. [Multiscale entropy analysis of complex physiological time series, Phys. Rev. Lett. 89 (2002) 068102]. We reproduce the signatures of the multiscale entropy for the three cases of young healthy hearts, atrial fibrillation and congestive heart failure. We show that one has to be cautious how to interpret these signatures in terms of the underlying dynamics. In particular, we show that different dynamical systems can exhibit the same signatures depending on the sampling time, and that similar systems may have different signatures depending on the time scales involved. Besides the total amount of data we identify the sampling time, the correlation time and the period of possible nonlinear oscillations as important time scales which have to be involved in a detailed analysis of the signatures of multiscale entropies. We illustrate our ideas with the Lorenz equation as a simple deterministic chaotic system.

  16. Sliding Wear Properties of HVOF Thermally Sprayed Nylon-11 and Nylon-11/Ceramic Composites on Steel

    NASA Astrophysics Data System (ADS)

    Jackson, L.; Ivosevic, M.; Knight, R.; Cairncross, R. A.

    2007-12-01

    Polymer and polymer/ceramic composite coatings were produced by ball-milling 60 μm Nylon-11 together with nominal 10 vol.% of nano and multiscale ceramic reinforcements and by HVOF spraying these composite feedstocks onto steel substrates to produce semicrystalline micron and nanoscale reinforced polymer matrix composites. Room temperature dry sliding wear performance of pure Nylon-11, Nylon-11 reinforced with 7 nm silica, and multiscale Nylon-11/silica composite coatings incorporating 7-40 nm and 10 μm ceramic particles were characterized using a pin-on-disk tribometer. Coefficient of friction and wear rate were determined as a function of applied load and coating composition. Surface profilometry and scanning electron microscopy were used to characterize and analyze the coatings and wear scars. The pure Nylon-11 coating experienced less wear than the composites due to the occurrence of two additional wear mechanisms: abrasive and fatigue wear.

  17. Multiscale modelling of DNA mechanics

    NASA Astrophysics Data System (ADS)

    Dršata, Tomáš; Lankaš, Filip

    2015-08-01

    Mechanical properties of DNA are important not only in a wide range of biological processes but also in the emerging field of DNA nanotechnology. We review some of the recent developments in modeling these properties, emphasizing the multiscale nature of the problem. Modern atomic resolution, explicit solvent molecular dynamics simulations have contributed to our understanding of DNA fine structure and conformational polymorphism. These simulations may serve as data sources to parameterize rigid base models which themselves have undergone major development. A consistent buildup of larger entities involving multiple rigid bases enables us to describe DNA at more global scales. Free energy methods to impose large strains on DNA, as well as bead models and other approaches, are also briefly discussed.

  18. Multiscale dynamics in relaxor ferroelectrics

    SciTech Connect

    Toulouse, J.; Cai, L; Pattnaik, R. K.; Boatner, Lynn A

    2014-01-01

    The multiscale dynamics of complex oxides is illustrated by pairs of mechanical resonances that are excited in the relaxor ferroelectric K1 xLixTaO3 (KLT). These macroscopic resonances are shown to originate in the collective dynamics of piezoelectric polar nanodomains (PND) interacting with the surrounding lattice. Their characteristic Fano lineshapes and rapid evolution with temperature reveal the coherent interplay between the piezoelectric oscillations and orientational relaxations of the PNDs at higher temperature and the contribution of heterophase oscillations near the phase transition. A theoretical model is presented, that describes the evolution of the resonances over the entire temperature range. Similar resonances are observed in other relaxors and must therefore be a common characteristics of these systems.

  19. MULTISCALE MODELING OF POLYMER NANOCOMPOSITES

    SciTech Connect

    Maiti, A

    2007-07-16

    Polymer Nanocomposites are an important class of nanomaterials with potential applications including but not limited to structural and cushion materials, electromagnetic and heat shields, conducting plastics, sensors, and catalysts for various chemical and bio processes. Success in most such applications hinges on molecular-level control of structure and assembly, and a deep understanding of how the overall morphology of various components and the interfaces between them affect the composite properties at the macroscale. The length and time-scales associated with such assemblies are prohibitively large for a full atomistic modeling. Instead we adopt a multiscale methodology in which atomic-level interactions between different components of a composite are incorporated into a coarse-grained simulation of the mesoscale morphology, which is then represented on a numerical grid and the macroscopic properties computed using a finite-elements method.

  20. A concurrent multiscale micromorphic molecular dynamics

    SciTech Connect

    Li, Shaofan Tong, Qi

    2015-04-21

    In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from first principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation.

  1. Multiscale coupling of molecular dynamics and peridynamics

    NASA Astrophysics Data System (ADS)

    Tong, Qi; Li, Shaofan

    2016-10-01

    We propose a multiscale computational model to couple molecular dynamics and peridynamics. The multiscale coupling model is based on a previously developed multiscale micromorphic molecular dynamics (MMMD) theory, which has three dynamics equations at three different scales, namely, microscale, mesoscale, and macroscale. In the proposed multiscale coupling approach, we divide the simulation domain into atomistic region and macroscale region. Molecular dynamics is used to simulate atom motions in atomistic region, and peridynamics is used to simulate macroscale material point motions in macroscale region, and both methods are nonlocal particle methods. A transition zone is introduced as a messenger to pass the information between the two regions or scales. We employ the "supercell" developed in the MMMD theory as the transition element, which is named as the adaptive multiscale element due to its ability of passing information from different scales, because the adaptive multiscale element can realize both top-down and bottom-up communications. We introduce the Cauchy-Born rule based stress evaluation into state-based peridynamics formulation to formulate atomistic-enriched constitutive relations. To mitigate the issue of wave reflection on the interface, a filter is constructed by switching on and off the MMMD dynamic equations at different scales. Benchmark tests of one-dimensional (1-D) and two-dimensional (2-D) wave propagations from atomistic region to macro region are presented. The mechanical wave can transit through the interface smoothly without spurious wave deflections, and the filtering process is proven to be efficient.

  2. Nanomechanics and Multiscale Modeling of Sustainable Concretes

    NASA Astrophysics Data System (ADS)

    Zanjani Zadeh, Vahid

    The work presented in this dissertation is aimed to implement and further develop the recent advances in material characterization for porous and heterogeneous materials and apply these advances to sustainable concretes. The studied sustainable concretes were concrete containing fly ash and slag, Kenaf fiber reinforced concrete, and lightweight aggregate concrete. All these cement-based materials can be categorized as sustainable concrete, by achieving concrete with high strength while reducing cement consumption. The nanoindentation technique was used to infer the nanomechanical properties of the active hydration phases in bulk cement paste. Moreover, the interfacial transition zone (ITZ) of lightweight aggregate, normal aggregate, and Kenaf fibers were investigated using nanoindentation and imagine techniques, despite difficulties regarding characterizing this region. Samples were also tested after exposure to high temperature to evaluate the damage mechanics of sustainable concretes. It has been shown that there is a direct correlation between the nature of the nanoscale structure of a cement-based material with its macroscopic properties. This was addressed in two steps in this dissertation: (i) Nanoscale characterization of sustainable cementitious materials to understand the different role of fly ash, slag, lightweight aggregate, and Kenaf fibers on nanoscale (ii) Link the nanoscale mechanical properties to macroscale ones with multiscale modeling. The grid indentation technique originally developed for normal concrete was extended to sustainable concretes with more complex microstructure. The relation between morphology of cement paste materials and submicron mechanical properties, indentation modulus, hardness, and dissipated energy is explained in detail. Extensive experimental and analytical approaches were focused on description of the materials' heterogeneous microstructure as function of their composition and physical phenomenon. Quantitative

  3. Laser ultrasound technique applied in material characterization of thermally sprayed nickel aluminum coatings

    NASA Astrophysics Data System (ADS)

    Yeh, C. H.; Yang, C. H.; Hsiao, W. T.; Su, C.-Y.

    2012-05-01

    Thermal spraying processing usually uses a nickel-aluminum alloy system as the major powder due to its strong adhesion to substrates. The contents of powder material and the processing parameters used in the spraying process cause material properties of coatings exhibiting a wide variation. This research aims at nondestructive characterization of thermal spraying coatings. A laser-generation/laser-detection laser ultrasound technique (LUT) is used for the measurements of dispersion spectra of surface waves propagating along the coated surfaces. Theoretical model for surface waves propagating along a multi-layered structure with coating and substrate is used to model the sprayed coatings. An inversion algorithm based on Shuffled Complex Evolution (SCE-UA) is used to extract mechanical properties from the measured dispersion spectra cooperating with theoretical model. Three coatings with different sprayed powders and powder processing are investigated. Results indicate that substantial linear scatterings are observed for the inverted properties due to the measured dispersion spectra with limited bandwidth inherited from the relatively high attenuations. The slope of linear scattering can be used to distinguish the coating properties. The ANiBNb sample with ball-milled coating has the best properties based on its highest velocity and least attenuation. This method is potentially useful to characterize the mechanical properties of thermally spraying coating in a nondestructive way.

  4. A mathematical framework for multiscale science and engineering : the variational multiscale method and interscale transfer operators.

    SciTech Connect

    Wagner, Gregory John; Collis, Samuel Scott; Templeton, Jeremy Alan; Lehoucq, Richard B.; Parks, Michael L.; Jones, Reese E.; Silling, Stewart Andrew; Scovazzi, Guglielmo; Bochev, Pavel B.

    2007-10-01

    This report is a collection of documents written as part of the Laboratory Directed Research and Development (LDRD) project A Mathematical Framework for Multiscale Science and Engineering: The Variational Multiscale Method and Interscale Transfer Operators. We present developments in two categories of multiscale mathematics and analysis. The first, continuum-to-continuum (CtC) multiscale, includes problems that allow application of the same continuum model at all scales with the primary barrier to simulation being computing resources. The second, atomistic-to-continuum (AtC) multiscale, represents applications where detailed physics at the atomistic or molecular level must be simulated to resolve the small scales, but the effect on and coupling to the continuum level is frequently unclear.

  5. Multi-element least square HDMR methods and their applications for stochastic multiscale model reduction

    SciTech Connect

    Jiang, Lijian Li, Xinping

    2015-08-01

    Stochastic multiscale modeling has become a necessary approach to quantify uncertainty and characterize multiscale phenomena for many practical problems such as flows in stochastic porous media. The numerical treatment of the stochastic multiscale models can be very challengeable as the existence of complex uncertainty and multiple physical scales in the models. To efficiently take care of the difficulty, we construct a computational reduced model. To this end, we propose a multi-element least square high-dimensional model representation (HDMR) method, through which the random domain is adaptively decomposed into a few subdomains, and a local least square HDMR is constructed in each subdomain. These local HDMRs are represented by a finite number of orthogonal basis functions defined in low-dimensional random spaces. The coefficients in the local HDMRs are determined using least square methods. We paste all the local HDMR approximations together to form a global HDMR approximation. To further reduce computational cost, we present a multi-element reduced least-square HDMR, which improves both efficiency and approximation accuracy in certain conditions. To effectively treat heterogeneity properties and multiscale features in the models, we integrate multiscale finite element methods with multi-element least-square HDMR for stochastic multiscale model reduction. This approach significantly reduces the original model's complexity in both the resolution of the physical space and the high-dimensional stochastic space. We analyze the proposed approach, and provide a set of numerical experiments to demonstrate the performance of the presented model reduction techniques. - Highlights: • Multi-element least square HDMR is proposed to treat stochastic models. • Random domain is adaptively decomposed into some subdomains to obtain adaptive multi-element HDMR. • Least-square reduced HDMR is proposed to enhance computation efficiency and approximation accuracy in certain

  6. Simulated shift work in rats perturbs multiscale regulation of locomotor activity

    PubMed Central

    Hsieh, Wan-Hsin; Escobar, Carolina; Yugay, Tatiana; Lo, Men-Tzung; Pittman-Polletta, Benjamin; Salgado-Delgado, Roberto; Scheer, Frank A. J. L.; Shea, Steven A.; Buijs, Ruud M.; Hu, Kun

    2014-01-01

    Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation. PMID:24829282

  7. Simulated shift work in rats perturbs multiscale regulation of locomotor activity.

    PubMed

    Hsieh, Wan-Hsin; Escobar, Carolina; Yugay, Tatiana; Lo, Men-Tzung; Pittman-Polletta, Benjamin; Salgado-Delgado, Roberto; Scheer, Frank A J L; Shea, Steven A; Buijs, Ruud M; Hu, Kun

    2014-07-01

    Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation.

  8. Multiscale geometric modeling of macromolecules I: Cartesian representation

    PubMed Central

    Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo Wei

    2013-01-01

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the

  9. Multiscale geometric modeling of macromolecules I: Cartesian representation

    SciTech Connect

    Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2014-01-15

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace–Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the

  10. Local variance for multi-scale analysis in geomorphometry

    PubMed Central

    Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas

    2011-01-01

    Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements. PMID:21779138

  11. Multiscale geometric modeling of macromolecules I: Cartesian representation

    NASA Astrophysics Data System (ADS)

    Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2014-01-01

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the

  12. Local variance for multi-scale analysis in geomorphometry.

    PubMed

    Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas

    2011-07-15

    Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements. PMID:21779138

  13. Multiscale study of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Byeongchan

    Extremely small structures with reduced dimensionality have emerged as a scientific motif for their interesting properties. In particular, metal nanoparticles have been identified as a fundamental material in many catalytic activities; as a consequence, a better understanding of structure-function relationship of nanoparticles has become crucial. The functional analysis of nanoparticles, reactivity for example, requires an accurate method at the electronic structure level, whereas the structural analysis to find energetically stable local minima is beyond the scope of quantum mechanical methods as the computational cost becomes prohibitingly high. The challenge is that the inherent length scale and accuracy associated with any single method hardly covers the broad scale range spanned by both structural and functional analyses. In order to address this, and effectively explore the energetics and reactivity of metal nanoparticles, a hierarchical multiscale modeling is developed, where methodologies of different length scales, i.e. first principles density functional theory, atomistic calculations, and continuum modeling, are utilized in a sequential fashion. This work has focused on identifying the essential information that bridges two different methods so that a successive use of different methods is seamless. The bond characteristics of low coordination systems have been obtained with first principles calculations, and incorporated into the atomistic simulation. This also rectifies the deficiency of conventional interatomic potentials fitted to bulk properties, and improves the accuracy of atomistic calculations for nanoparticles. For the systematic shape selection of nanoparticles, we have improved the Wulff-type construction using a semi-continuum approach, in which atomistic surface energetics and crystallinity of materials are added on to the continuum framework. The developed multiscale modeling scheme is applied to the rational design of platinum

  14. A Multiscale Bidirectional Coupling Framework

    SciTech Connect

    Kabilan, Senthil; Kuprat, Andrew P.; Hlastala, Michael P.; Corley, Richard A.; Einstein, Daniel R.

    2011-12-01

    The lung is geometrically articulated across multiple scales from the trachea to the alveoli. A major computational challenge is to tightly link ODEs that describe lower scales to 3D finite element or finite volume models of airway mechanics using iterative communication between scales. In this study, we developed a novel multiscale computational framework for bidirectionally coupling 3D CFD models and systems of lower order ODEs. To validate the coupling framework, a four and eight generation Weibel lung model was constructed. For the coupled CFD-ODE simulations, the lung models were truncated at different generations and a RL circuit represented the truncated portion. The flow characteristics from the coupled models were compared to untruncated full 3D CFD models at peak inhalation and peak exhalation. Results showed that at no time or simulation was the difference in mass flux and/or pressure at a given location between uncoupled and coupled models was greater than 2.43%. The flow characteristics at prime locations for the coupled models showed good agreement to uncoupled models. Remarkably, due to reuse of the Krylov subspace, the cost of the ODE coupling is not much greater than uncoupled full 3D-CFD computations with simple prescribed pressure values at the outlets.

  15. Multiscale modelling of saliva secretion.

    PubMed

    Sneyd, James; Crampin, Edmund; Yule, David

    2014-11-01

    We review a multiscale model of saliva secretion, describing in brief how the model is constructed and what we have so far learned from it. The model begins at the level of inositol trisphosphate receptors (IPR), and proceeds through the cellular level (with a model of acinar cell calcium dynamics) to the multicellular level (with a model of the acinus), finally to a model of a saliva production unit that includes an acinus and associated duct. The model at the level of the entire salivary gland is not yet completed. Particular results from the model so far include (i) the importance of modal behaviour of IPR, (ii) the relative unimportance of Ca(2+) oscillation frequency as a controller of saliva secretion, (iii) the need for the periodic Ca(2+) waves to be as fast as possible in order to maximise water transport, (iv) the presence of functional K(+) channels in the apical membrane increases saliva secretion, (v) the relative unimportance of acinar spatial structure for isotonic water transport, (vi) the prediction that duct cells are highly depolarised, (vii) the prediction that the secondary saliva takes at least 1mm (from the acinus) to reach ionic equilibrium. We end with a brief discussion of future directions for the model, both in construction and in the study of scientific questions.

  16. MULTISCALE DISCRETIZATION OF SHAPE CONTOURS

    SciTech Connect

    Prasad, L.; Rao, R.

    2000-09-01

    We present an efficient multi-scale scheme to adaptively approximate the continuous (or densely sampled) contour of a planar shape at varying resolutions. The notion of shape is intimately related to the notion of contour, and the efficient representation of the contour of a shape is vital to a computational understanding of the shape. Any polygonal approximation of a planar smooth curve is equivalent to a piecewise constant approximation of the parameterized X and Y coordinate functions of a discrete point set obtained by densely sampling the curve. Using the Haar wavelet transform for the piecewise approximation yields a hierarchical scheme in which the size of the approximating point set is traded off against the morphological accuracy of the approximation. Our algorithm compresses the representation of the initial shape contour to a sparse sequence of points in the plane defining the vertices of the shape's polygonal approximation. Furthermore, it is possible to control the overall resolution of the approximation by a single, scale-independent parameter.

  17. Multi-scale Material Appearance

    NASA Astrophysics Data System (ADS)

    Wu, Hongzhi

    Modeling and rendering the appearance of materials is important for a diverse range of applications of computer graphics - from automobile design to movies and cultural heritage. The appearance of materials varies considerably at different scales, posing significant challenges due to the sheer complexity of the data, as well the need to maintain inter-scale consistency constraints. This thesis presents a series of studies around the modeling, rendering and editing of multi-scale material appearance. To efficiently render material appearance at multiple scales, we develop an object-space precomputed adaptive sampling method, which precomputes a hierarchy of view-independent points that preserve multi-level appearance. To support bi-scale material appearance design, we propose a novel reflectance filtering algorithm, which rapidly computes the large-scale appearance from small-scale details, by exploiting the low-rank structures of Bidirectional Visible Normal Distribution Functions and pre-rotated Bidirectional Reflectance Distribution Functions in the matrix formulation of the rendering algorithm. This approach can guide the physical realization of appearance, as well as the modeling of real-world materials using very sparse measurements. Finally, we present a bi-scale-inspired high-quality general representation for material appearance described by Bidirectional Texture Functions. Our representation is at once compact, easily editable, and amenable to efficient rendering.

  18. Multiscale Modeling of Hematologic Disorders

    SciTech Connect

    Fedosov, Dmitry A.; Pivkin, Igor; Pan, Wenxiao; Dao, Ming; Caswell, Bruce; Karniadakis, George E.

    2012-01-28

    Parasitic infectious diseases and other hereditary hematologic disorders are often associated with major changes in the shape and viscoelastic properties of red blood cells (RBCs). Such changes can disrupt blood flow and even brain perfusion, as in the case of cerebral malaria. Modeling of these hematologic disorders requires a seamless multiscale approach, where blood cells and blood flow in the entire arterial tree are represented accurately using physiologically consistent parameters. In this chapter, we present a computational methodology based on dissipative particle dynamics (DPD) which models RBCs as well as whole blood in health and disease. DPD is a Lagrangian method that can be derived from systematic coarse-graining of molecular dynamics but can scale efficiently up to small arteries and can also be used to model RBCs down to spectrin level. To this end, we present two complementary mathematical models for RBCs and describe a systematic procedure on extracting the relevant input parameters from optical tweezers and microfluidic experiments for single RBCs. We then use these validated RBC models to predict the behavior of whole healthy blood and compare with experimental results. The same procedure is applied to modeling malaria, and results for infected single RBCs and whole blood are presented.

  19. Multiscale modelling of evolving foams

    NASA Astrophysics Data System (ADS)

    Saye, R. I.; Sethian, J. A.

    2016-06-01

    We present a set of multi-scale interlinked algorithms to model the dynamics of evolving foams. These algorithms couple the key effects of macroscopic bubble rearrangement, thin film drainage, and membrane rupture. For each of the mechanisms, we construct consistent and accurate algorithms, and couple them together to work across the wide range of space and time scales that occur in foam dynamics. These algorithms include second order finite difference projection methods for computing incompressible fluid flow on the macroscale, second order finite element methods to solve thin film drainage equations in the lamellae and Plateau borders, multiphase Voronoi Implicit Interface Methods to track interconnected membrane boundaries and capture topological changes, and Lagrangian particle methods for conservative liquid redistribution during rearrangement and rupture. We derive a full set of numerical approximations that are coupled via interface jump conditions and flux boundary conditions, and show convergence for the individual mechanisms. We demonstrate our approach by computing a variety of foam dynamics, including coupled evolution of three-dimensional bubble clusters attached to an anchored membrane and collapse of a foam cluster.

  20. Stochastic multiscale modeling of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Wen, Bin

    Mechanical properties of engineering materials are sensitive to the underlying random microstructure. Quantification of mechanical property variability induced by microstructure variation is essential for the prediction of extreme properties and microstructure-sensitive design of materials. Recent advances in high throughput characterization of polycrystalline microstructures have resulted in huge data sets of microstructural descriptors and image snapshots. To utilize these large scale experimental data for computing the resulting variability of macroscopic properties, appropriate mathematical representation of microstructures is needed. By exploring the space containing all admissible microstructures that are statistically similar to the available data, one can estimate the distribution/envelope of possible properties by employing efficient stochastic simulation methodologies along with robust physics-based deterministic simulators. The focus of this thesis is on the construction of low-dimensional representations of random microstructures and the development of efficient physics-based simulators for polycrystalline materials. By adopting appropriate stochastic methods, such as Monte Carlo and Adaptive Sparse Grid Collocation methods, the variability of microstructure-sensitive properties of polycrystalline materials is investigated. The primary outcomes of this thesis include: (1) Development of data-driven reduced-order representations of microstructure variations to construct the admissible space of random polycrystalline microstructures. (2) Development of accurate and efficient physics-based simulators for the estimation of material properties based on mesoscale microstructures. (3) Investigating property variability of polycrystalline materials using efficient stochastic simulation methods in combination with the above two developments. The uncertainty quantification framework developed in this work integrates information science and materials science, and

  1. Prediction of hydraulic and electrical transport properties of sandstone with multiscale lattice Boltzmann/finite element simulation on microtomographic images

    NASA Astrophysics Data System (ADS)

    Wong, T.; Sun, W.

    2012-12-01

    Microcomputed tomography can be used to characterize the geometry of the pore space of a sedimentary rock, with resolution that is sufficiently refined for the realistic simulation of physical properties based on the 3D image. Significant advances have been made on the characterization of pore size distribution and connectivity, development of techniques such as lattice Boltzmann method to simulate permeability, and its upscaling. Sun, Andrade and Rudnicki (2011) recently introduced a multiscale method that dynamically links these three aspects, which were often treated separately in previous computational schemes. In this study, we improve the efficiency of this multiscale method by introducing a flood-fill algorithm to determine connectivity of the pores, followed by a multiscale lattice Boltzmann/finite element calculation to obtain homogenized effective anisotropic permeability. The improved multiscale method also includes new capacity to consistently determine electrical conductivity and formation factor from CT images. Furthermore, we also introduce a level set based method that transforms pore geometry to finite element mesh and thus enables direct simulation of pore-scale flow with finite element method. When applied to the microCT data acquired by Lindquist et al. (2000) for four Fontainebleau sandstone samples with porosities ranging from 7.5% to 22%, this multiscale method has proved to be computationally efficient and our simulations has provided new insights into the relation among permeability, pore geometry and connectivity.

  2. A Hybrid Multiscale Framework for Subsurface Flow and Transport Simulations

    SciTech Connect

    Scheibe, Timothy D.; Yang, Xiaofan; Chen, Xingyuan; Hammond, Glenn E.

    2015-06-01

    Extensive research efforts have been invested in reducing model errors to improve the predictive ability of biogeochemical earth and environmental system simulators, with applications ranging from contaminant transport and remediation to impacts of biogeochemical elemental cycling (e.g., carbon and nitrogen) on local ecosystems and regional to global climate. While the bulk of this research has focused on improving model parameterizations in the face of observational limitations, the more challenging type of model error/uncertainty to identify and quantify is model structural error which arises from incorrect mathematical representations of (or failure to consider) important physical, chemical, or biological processes, properties, or system states in model formulations. While improved process understanding can be achieved through scientific study, such understanding is usually developed at small scales. Process-based numerical models are typically designed for a particular characteristic length and time scale. For application-relevant scales, it is generally necessary to introduce approximations and empirical parameterizations to describe complex systems or processes. This single-scale approach has been the best available to date because of limited understanding of process coupling combined with practical limitations on system characterization and computation. While computational power is increasing significantly and our understanding of biological and environmental processes at fundamental scales is accelerating, using this information to advance our knowledge of the larger system behavior requires the development of multiscale simulators. Accordingly there has been much recent interest in novel multiscale methods in which microscale and macroscale models are explicitly coupled in a single hybrid multiscale simulation. A limited number of hybrid multiscale simulations have been developed for biogeochemical earth systems, but they mostly utilize application

  3. A Hybrid Multiscale Framework for Subsurface Flow and Transport Simulations

    DOE PAGES

    Scheibe, Timothy D.; Yang, Xiaofan; Chen, Xingyuan; Hammond, Glenn E.

    2015-06-01

    Extensive research efforts have been invested in reducing model errors to improve the predictive ability of biogeochemical earth and environmental system simulators, with applications ranging from contaminant transport and remediation to impacts of biogeochemical elemental cycling (e.g., carbon and nitrogen) on local ecosystems and regional to global climate. While the bulk of this research has focused on improving model parameterizations in the face of observational limitations, the more challenging type of model error/uncertainty to identify and quantify is model structural error which arises from incorrect mathematical representations of (or failure to consider) important physical, chemical, or biological processes, properties, ormore » system states in model formulations. While improved process understanding can be achieved through scientific study, such understanding is usually developed at small scales. Process-based numerical models are typically designed for a particular characteristic length and time scale. For application-relevant scales, it is generally necessary to introduce approximations and empirical parameterizations to describe complex systems or processes. This single-scale approach has been the best available to date because of limited understanding of process coupling combined with practical limitations on system characterization and computation. While computational power is increasing significantly and our understanding of biological and environmental processes at fundamental scales is accelerating, using this information to advance our knowledge of the larger system behavior requires the development of multiscale simulators. Accordingly there has been much recent interest in novel multiscale methods in which microscale and macroscale models are explicitly coupled in a single hybrid multiscale simulation. A limited number of hybrid multiscale simulations have been developed for biogeochemical earth systems, but they mostly utilize application

  4. Synthesis and Characterization of Al-Doped Mg2Si Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Battiston, S.; Fiameni, S.; Saleemi, M.; Boldrini, S.; Famengo, A.; Agresti, F.; Stingaciu, M.; Toprak, M. S.; Fabrizio, M.; Barison, S.

    2013-07-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion for the middle to high range of temperature. These materials are very attractive for TE research because of the abundance of their constituent elements in the Earth's crust. Mg2Si could replace lead-based TE materials, due to its low cost, nontoxicity, and low density. In this work, the role of aluminum doping (Mg2Si:Al = 1: x for x = 0.005, 0.01, 0.02, and 0.04 molar ratio) in dense Mg2Si materials was investigated. The synthesis process was performed by planetary milling under inert atmosphere starting from commercial Mg2Si pieces and Al powder. After ball milling, the samples were sintered by means of spark plasma sintering to density >95%. The morphology, composition, and crystal structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction analyses. Moreover, Seebeck coefficient analyses, as well as electrical and thermal conductivity measurements were performed for all samples up to 600°C. The resultant estimated ZT values are comparable to those reported in the literature for these materials. In particular, the maximum ZT achieved was 0.50 for the x = 0.01 Al-doped sample at 600°C.

  5. Synthesis and characterization of AA 6061- Graphene - SiC hybrid nanocomposites processed through microwave sintering

    NASA Astrophysics Data System (ADS)

    Jauhari, Siddhartha; Prashantha Kumar, H. G.; Xavior, . M. Anthony

    2016-09-01

    As one of the most essential industrial and engineering materials, Aluminum alloy 6061 have been extensively used in automobile industries and many engineering applications due to its impending properties like low density, good structural rigidity, feasibility to incorporate and enhance the strength by addition of various reinforcing materials. The essential criteria in enhancing the properties without sacrificing the ductility is always challenging in Aluminum and its alloys based composites. In the recent years, enormous research has been carried on ceramic based and carbon based reinforcement materials used in Aluminum metal matrix composites. But the combination of both is never tried so far due to lack of processing methods. The current research work is carried out to process, synthesize and perform the characterization of Al 6061 matrix nanocomposites with Graphene of flake size 10 μm and SiC of particle size 10 pm as reinforcement combinations in various proportions (weight percentage) which are carried out through powder metallurgy (PM) approach. The powders are processed through ultrasonic liquid processing method and the mixtures were ball milled by adding SiC particles followed by uniaxial hot compaction. Thus prepared compacts are sintered (conventional and microwave) and mechanical properties like hardness, density are investigated as a function of Graphene and SiC concentrations (weight fraction). Relevant strengthening mechanism involved in the Al6061 - Graphene -SiC composites in comparison with monolithic Al 6061 alloy were discussed.

  6. Preparation and Characterization of Bi2Te3/Graphite/Polythiophene Thermoelectric Composites

    NASA Astrophysics Data System (ADS)

    Lai, Chunhua; Li, Junjie; Pan, Chengjun; Wang, Lei; Bai, Xiaojun

    2016-06-01

    The Bi2Te3/graphite/polythiophene composites were prepared by solution mixing, mechanical ball milling, cold pressing and spark plasma sintering (SPS) in order to utilize and integrate the high Seebeck coefficient of Bi2Te3, high electrical conductivity of graphite (G) and low thermal conductivity of polythiophene (PTh). The structures and properties of the composites were characterized by scanning electron microscope, thermo gravimetric analyzer, x-ray diffraction and ULVAC ZEM-2 Seebeck coefficient measurement. The results showed that the related components were uniformly dispersed in the composites, and the electrical conductivity of the composites increased significantly with increasing G content. A small addition of Bi2Te3 to the matrix contributed to an increase in Seebeck coefficient and the thermal conductivity of the composites stayed at a low level owing to the low thermal conductivity of PTh. These composites prepared by SPS show an increase in Seebeck coefficient but a decrease in electrical conductivity as compared to corresponding composites prepared by cold pressing.

  7. Preparation and Characterization of Bi2Te3/Graphite/Polythiophene Thermoelectric Composites

    NASA Astrophysics Data System (ADS)

    Lai, Chunhua; Li, Junjie; Pan, Chengjun; Wang, Lei; Bai, Xiaojun

    2016-10-01

    The Bi2Te3/graphite/polythiophene composites were prepared by solution mixing, mechanical ball milling, cold pressing and spark plasma sintering (SPS) in order to utilize and integrate the high Seebeck coefficient of Bi2Te3, high electrical conductivity of graphite (G) and low thermal conductivity of polythiophene (PTh). The structures and properties of the composites were characterized by scanning electron microscope, thermo gravimetric analyzer, x-ray diffraction and ULVAC ZEM-2 Seebeck coefficient measurement. The results showed that the related components were uniformly dispersed in the composites, and the electrical conductivity of the composites increased significantly with increasing G content. A small addition of Bi2Te3 to the matrix contributed to an increase in Seebeck coefficient and the thermal conductivity of the composites stayed at a low level owing to the low thermal conductivity of PTh. These composites prepared by SPS show an increase in Seebeck coefficient but a decrease in electrical conductivity as compared to corresponding composites prepared by cold pressing.

  8. Formulation and characterization of a plasma sterilized, pharmaceutical grade chitosan powder.

    PubMed

    Crofton, Andrew R; Hudson, Samuel M; Howard, Kristy; Pender, Tyler; Abdelgawad, Abdelrahman; Wolski, Daniel; Kirsch, Wolff M

    2016-08-01

    Chitosan has great potential as a pharmaceutical excipient. In this study, chitosan flake was micronized using cryo-ball and cryo-jet milling and subsequently sterilized with nitrogen plasma. Micronized chitosan was characterized by laser diffraction, scanning electron microscopy (SEM), conductometric titration, viscometry, loss on drying, FTIR, and limulus amebocyte lysate (LAL) assays. Cryo-jet milling produced mean particle size of 16.05μm, 44% smaller than cryo-ball milling. Cryomilled chitosan demonstrated increased hygroscopicity, but reduced molecular weight and degree of deacetylation (DD). SEM imaging showed highly irregular shapes. FTIR showed changes consistent with reduced DD and an unexplained shift at 1100cm(-1). Plasma treated chitosan was sterile with <2.5EU/g after low-pressure plasma and <1.3EU/g after atmospheric pressure plasma treatment. Plasma treatment decreased the reduced viscosity of chitosan flake and powder, with a greater effect on powder. In conclusion, pharmaceutical grade, sterile chitosan powder was produced with cryo-jet milling and plasma sterilization. PMID:27112892

  9. The center for multiscale plasma dynamics

    SciTech Connect

    Kevrekidis, Yannis G

    2015-01-20

    This final report describes research performed in Princeton University, led by Professor Yannis G. Kevrekidis, over a period of six years (August 1, 2014 to July 31, 2010, including a one-year, no-cost extension) as part of the Center for Multiscale Plasma Dynamics led by the University of Maryland. The work resulted in the development and implementation of several multiscale algorithms based on the equation-free approach pioneered by the PI, including its applications in plasma dynamics problems. These algoriithms include coarse projective integration and coarse stability/bifurcation computations. In the later stages of the work, new links were made between this multiscale, coarse-graining approach and advances in data mining/machine learning algorithms.

  10. Generalized multiscale radial basis function networks.

    PubMed

    Billings, Stephen A; Wei, Hua-Liang; Balikhin, Michael A

    2007-12-01

    A novel modelling framework is proposed for constructing parsimonious and flexible multiscale radial basis function networks (RBF). Unlike a conventional standard single scale RBF network, where all the basis functions have a common kernel width, the new network structure adopts multiscale Gaussian functions as the bases, where each selected centre has multiple kernel widths, to provide more flexible representations with better generalization properties for general nonlinear dynamical systems. As a direct extension of the traditional single scale Gaussian networks, the new multiscale network is easy to implement and is quick to learn using standard learning algorithms. A k-means clustering algorithm and an improved orthogonal least squares (OLS) algorithm are used to determine the unknown parameters in the network model including the centres and widths of the basis functions, and the weights between the basis functions. It is demonstrated that the new network can lead to a parsimonious model with much better generalization property compared with the traditional single width RBF networks.

  11. Multiscale Computational Models of Complex Biological Systems

    PubMed Central

    Walpole, Joseph; Papin, Jason A.; Peirce, Shayn M.

    2014-01-01

    Integration of data across spatial, temporal, and functional scales is a primary focus of biomedical engineering efforts. The advent of powerful computing platforms, coupled with quantitative data from high-throughput experimental platforms, has allowed multiscale modeling to expand as a means to more comprehensively investigate biological phenomena in experimentally relevant ways. This review aims to highlight recently published multiscale models of biological systems while using their successes to propose the best practices for future model development. We demonstrate that coupling continuous and discrete systems best captures biological information across spatial scales by selecting modeling techniques that are suited to the task. Further, we suggest how to best leverage these multiscale models to gain insight into biological systems using quantitative, biomedical engineering methods to analyze data in non-intuitive ways. These topics are discussed with a focus on the future of the field, the current challenges encountered, and opportunities yet to be realized. PMID:23642247

  12. Multiscale Modeling of Cortical Neural Networks

    NASA Astrophysics Data System (ADS)

    Torben-Nielsen, Benjamin; Stiefel, Klaus M.

    2009-09-01

    In this study, we describe efforts at modeling the electrophysiological dynamics of cortical networks in a multi-scale manner. Specifically, we describe the implementation of a network model composed of simple single-compartmental neuron models, in which a single complex multi-compartmental model of a pyramidal neuron is embedded. The network is capable of generating Δ (2 Hz, observed during deep sleep states) and γ (40 Hz, observed during wakefulness) oscillations, which are then imposed onto the multi-compartmental model, thus providing realistic, dynamic boundary conditions. We furthermore discuss the challenges and chances involved in multi-scale modeling of neural function.

  13. Multiscale Modeling of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  14. Multiscale Methods for Nuclear Reactor Analysis

    NASA Astrophysics Data System (ADS)

    Collins, Benjamin S.

    The ability to accurately predict local pin powers in nuclear reactors is necessary to understand the mechanisms that cause fuel pin failure during steady state and transient operation. In the research presented here, methods are developed to improve the local solution using high order methods with boundary conditions from a low order global solution. Several different core configurations were tested to determine the improvement in the local pin powers compared to the standard techniques, that use diffusion theory and pin power reconstruction (PPR). Two different multiscale methods were developed and analyzed; the post-refinement multiscale method and the embedded multiscale method. The post-refinement multiscale methods use the global solution to determine boundary conditions for the local solution. The local solution is solved using either a fixed boundary source or an albedo boundary condition; this solution is "post-refinement" and thus has no impact on the global solution. The embedded multiscale method allows the local solver to change the global solution to provide an improved global and local solution. The post-refinement multiscale method is assessed using three core designs. When the local solution has more energy groups, the fixed source method has some difficulties near the interface: however the albedo method works well for all cases. In order to remedy the issue with boundary condition errors for the fixed source method, a buffer region is used to act as a filter, which decreases the sensitivity of the solution to the boundary condition. Both the albedo and fixed source methods benefit from the use of a buffer region. Unlike the post-refinement method, the embedded multiscale method alters the global solution. The ability to change the global solution allows for refinement in areas where the errors in the few group nodal diffusion are typically large. The embedded method is shown to improve the global solution when it is applied to a MOX/LEU assembly

  15. Multi-scale study of soil structure from different genetic horizons: from meter to nanometer

    NASA Astrophysics Data System (ADS)

    Karsanina, Marina; Skvortsova, Elena; Abrosimov, Konstantin; Sizonenko, Timofey; Romanenko, Konstantin; Belokhin, Vasily; Yudina, Anna; Gilyazetdinova, Dina; Korost, Dmitry; Gerke, Kirill

    2016-04-01

    Soil structure is extremely diverse, has numerous relevant scales, e.g., important pore hierarchical levels, such as intra and inter aggregate porosity, cracks and others. None of the existing imaging techniques is capable of catching all scales within one single image due to sample size/resolution limitations. The only way to experimentally obtain soil structural information from all important scales is to utilize multi-scale scanning using different imaging approaches. In this study we use macro X-ray tomography (with resolution of 100 um), micro X-ray tomography (with resolution range of 3-16 um) and SEM with nanoscale resolutions to obtain a vast multi-scale structural data from meter to nanometer. Two one meter long undisturbed soil columns extracted from soddy-podzolic and grey forest soils were used as objects of our multi-scale study. At first macrotomography was used to make the coarsest 3D image of the whole column. Afterwards, the column was carefully sliced to obtain smaller undisturbed samples for microtomography scanning. Some undisturbed soil pieces were also imaged using SEM to obtain sub-micron images of the soil structure. All resulting 2/3D images were segmented using up-to-date image processing and segmentation techniques to obtain solid material and pore space binary phases. Directional correlation functions were utilized to characterize multi-scale soil structures and compare/differentiate them from each other. We extensively show how such powerful structural descriptors as correlation functions can results in better soil structure characterization and classification. Combined with multi-scale image fusion and/or pore-scale modelling techniques 3D multi-scale images can used to assess scale dependant flow and transport properties. This work was partially supported by RFBR grant 15-34-20989 (field studies, X-ray tomography and SEM imaging) and RSF grant 14-17-00658 (directional correlation functions). References: 1. Karsanina, M.V., Gerke, K

  16. Multiscale modeling of nucleosome dynamics.

    PubMed

    Sharma, Shantanu; Ding, Feng; Dokholyan, Nikolay V

    2007-03-01

    Nucleosomes form the fundamental building blocks of chromatin. Subtle modifications of the constituent histone tails mediate chromatin stability and regulate gene expression. For this reason, it is important to understand structural dynamics of nucleosomes at atomic levels. We report a novel multiscale model of the fundamental chromatin unit, a nucleosome, using a simplified model for rapid discrete molecular dynamics simulations and an all-atom model for detailed structural investigation. Using a simplified structural model, we perform equilibrium simulations of a single nucleosome at various temperatures. We further reconstruct all-atom nucleosome structures from simulation trajectories. We find that histone tails bind to nucleosomal DNA via strong salt-bridge interactions over a wide range of temperatures, suggesting a mechanism of chromatin structural organization whereby histone tails regulate inter- and intranucleosomal assemblies via binding with nucleosomal DNA. We identify specific regions of the histone core H2A/H2B-H4/H3-H3/H4-H2B/H2A, termed "cold sites", which retain a significant fraction of contacts with adjoining residues throughout the simulation, indicating their functional role in nucleosome organization. Cold sites are clustered around H3-H3, H2A-H4 and H4-H2A interhistone interfaces, indicating the necessity of these contacts for nucleosome stability. Essential dynamics analysis of simulation trajectories shows that bending across the H3-H3 is a prominent mode of intranucleosomal dynamics. We postulate that effects of salts on mononucleosomes can be modeled in discrete molecular dynamics by modulating histone-DNA interaction potentials. Local fluctuations in nucleosomal DNA vary significantly along the DNA sequence, suggesting that only a fraction of histone-DNA contacts make strong interactions dominating mononucleosomal dynamics. Our findings suggest that histone tails have a direct functional role in stabilizing higher-order chromatin

  17. Multiscale information modelling for heart morphogenesis

    NASA Astrophysics Data System (ADS)

    Abdulla, T.; Imms, R.; Schleich, J. M.; Summers, R.

    2010-07-01

    Science is made feasible by the adoption of common systems of units. As research has become more data intensive, especially in the biomedical domain, it requires the adoption of a common system of information models, to make explicit the relationship between one set of data and another, regardless of format. This is being realised through the OBO Foundry to develop a suite of reference ontologies, and NCBO Bioportal to provide services to integrate biomedical resources and functionality to visualise and create mappings between ontology terms. Biomedical experts tend to be focused at one level of spatial scale, be it biochemistry, cell biology, or anatomy. Likewise, the ontologies they use tend to be focused at a particular level of scale. There is increasing interest in a multiscale systems approach, which attempts to integrate between different levels of scale to gain understanding of emergent effects. This is a return to physiological medicine with a computational emphasis, exemplified by the worldwide Physiome initiative, and the European Union funded Network of Excellence in the Virtual Physiological Human. However, little work has been done on how information modelling itself may be tailored to a multiscale systems approach. We demonstrate how this can be done for the complex process of heart morphogenesis, which requires multiscale understanding in both time and spatial domains. Such an effort enables the integration of multiscale metrology.

  18. Collaboratory for Multiscale Chemical Science (CMCS)

    SciTech Connect

    Allison, Thomas C

    2012-07-03

    This document provides details of the contributions made by NIST to the Collaboratory for Multiscale Chemical Science (CMCS) project. In particular, efforts related to the provision of data (and software in support of that data) relevant to the combustion pilot project are described.

  19. Physicochemical characterizations of nano-palm oil fuel ash

    SciTech Connect

    Rajak, Mohd Azrul Abdul; Majid, Zaiton Abdul; Ismail, Mohammad

    2015-07-22

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m{sup 2}/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.

  20. Physicochemical characterizations of nano-palm oil fuel ash

    NASA Astrophysics Data System (ADS)

    Rajak, Mohd Azrul Abdul; Majid, Zaiton Abdul; Ismail, Mohammad

    2015-07-01

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m2/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.

  1. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    SciTech Connect

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; Chung, Eric T.; Efendiev, Yalchin

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.

  2. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    SciTech Connect

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; Chung, Eric T.; Efendiev, Yalchin

    2015-08-15

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.

  3. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE PAGES

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; Chung, Eric T.; Efendiev, Yalchin

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  4. Multiscale quantification of tissue spiculation and distortion for detection of architectural distortion and spiculated mass in mammography

    NASA Astrophysics Data System (ADS)

    Lao, Zhiqiang; Zheng, Xin

    2011-03-01

    This paper proposes a multiscale method to quantify tissue spiculation and distortion in mammography CAD systems that aims at improving the sensitivity in detecting architectural distortion and spiculated mass. This approach addresses the difficulty of predetermining the neighborhood size for feature extraction in characterizing lesions demonstrating spiculated mass/architectural distortion that may appear in different sizes. The quantification is based on the recognition of tissue spiculation and distortion pattern using multiscale first-order phase portrait model in texture orientation field generated by Gabor filter bank. A feature map is generated based on the multiscale quantification for each mammogram and two features are then extracted from the feature map. These two features will be combined with other mass features to provide enhanced discriminate ability in detecting lesions demonstrating spiculated mass and architectural distortion. The efficiency and efficacy of the proposed method are demonstrated with results obtained by applying the method to over 500 cancer cases and over 1000 normal cases.

  5. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-02-01

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow.

  6. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe.

    PubMed

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-02-02

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow.

  7. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe

    PubMed Central

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-01-01

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow. PMID:26833427

  8. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe.

    PubMed

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-01-01

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow. PMID:26833427

  9. Multiscale approach to modeling intrinsic dissipation in solids

    NASA Astrophysics Data System (ADS)

    Kunal, K.; Aluru, N. R.

    2016-08-01

    In this paper, we develop a multiscale approach to model intrinsic dissipation under high frequency of vibrations in solids. For vibrations with a timescale comparable to the phonon relaxation time, the local phonon distribution deviates from the equilibrium distribution. We extend the quasiharmonic (QHM) method to describe the dynamics under such a condition. The local deviation from the equilibrium state is characterized using a nonequilibrium stress tensor. A constitutive relation for the time evolution of the stress component is obtained. We then parametrize the evolution equation using the QHM method and a stochastic sampling approach. The stress relaxation dynamics is obtained using mode Langevin dynamics. Methods to obtain the input variables for the Langevin dynamics are discussed. The proposed methodology is used to obtain the dissipation rate Edissip for different cases. Frequency and size effect on Edissip are studied. The results are compared with those obtained using nonequilibrium molecular dynamics (MD).

  10. Effect of Clay Amounts on Morphology and Mechanical Performances in Multiscale PET Composites

    NASA Astrophysics Data System (ADS)

    Barbosa, C. N.; Chabert, F.; Nassiet, V.; Viana, J. C.; Pereira, P.

    2011-05-01

    This work presents an investigation of the properties of poly(ethylene terephthalate)/glass fibres/nanoclay multiscale composites. The aim is to demonstrate the effect of adding various clay amounts on the morphology and mechanical performance of multiscale PET composites. Multiscale composites were prepared by adding 0.5, 1.0, 3.0, and 5.0 wt% of Cloisite15A montmorillonite: Initially, a masterbatch of pure PET blended with 10 wt% of Cloisite15A was obtained in a co-rotating twin screw extruder. The multiscale composites were then blended, via mechanical mixing, and injection moulded by adding the masterbatch to the glass fibre reinforced matrix. The morphological and mechanical characterizations of all compounds are discussed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that the characteristic (001) peak of the nanocomposite obtained by extrusion (masterbatch) shifted to the lower angle region stating an intercalated structure. However, the subsequent injection moulding process changed the morphological structure of the multiscale nanocomposites reducing the basal distance mostly for small loadings of nanoclay. The addition of nanoclay to PET matrices increases the degree of crystallinity, the clay platelets possibly playing the role of nucleating agent, as revealed by DSC and FTIR. The time relaxation spectra broaden as seen by DMA, as the ratio of clay/polymer interfaces increases. The yield stress of composites with 0.5 and 1 wt% of C15A content are enhanced. For more than 3% of nanoclay, the yield stress decreases. The Young's modulus is increased when adding C15 nanoclay. Indeed, clay exfoliation was not attained, but the intercalated particle dispersion improved the stiffness properties of PET/glass fibres/nanoclay composites.

  11. Effect of milling conditions on solid-state amorphization of glipizide, and characterization and stability of solid forms.

    PubMed

    Xu, Kailin; Xiong, Xinnuo; Zhai, Yuanming; Wang, Lili; Li, Shanshan; Yan, Jin; Wu, Di; Ma, Xiaoli; Li, Hui

    2016-09-10

    In this study, the amorphization of glipizide was systematically investigated through high-energy ball milling at different temperatures. The results of solid-state amorphization through milling indicated that glipizide underwent direct crystal-to-glass transformation at 15 and 25°C and crystal-to-glass-to-crystal conversion at 35°C; hence, milling time and temperature had significant effects on the amorphization of glipizide, which should be effectively controlled to obtain totally amorphous glipizide. Solid forms of glipizide were detailedly characterized through analyses of X-ray powder diffraction, morphology, thermal curves, vibrational spectra, and solid-state nuclear magnetic resonance. The physical stability of solid forms was investigated under different levels of relative humidity (RH) at 25°C. Forms I and III are kinetically stable and do not form any new solid-state forms at various RH levels. By contrast, Form II is kinetically unstable, undergoing direct glass-to-crystal transformation when RH levels higher than 32.8%. Therefore, stability investigation indicated that Form II should be stored under relatively dry conditions to prevent rapid crystallization. High temperatures can also induce the solid-state transformation of Form II; the conversion rate increased with increasing temperature.

  12. Magnetic characterization of nanocrystalline Fe80-xCrxCo20 (15≤x≤35) alloys during milling and subsequent annealing

    NASA Astrophysics Data System (ADS)

    Rastabi, Reza Amini; Ghasemi, Ali; Tavoosi, Majid; Sodaee, Tahmineh

    2016-10-01

    Magnetic characterization of nanocrystalline Fe-Cr-Co alloys during milling and annealing process was the goal of this study. To formation of Fe80-xCrxCo20 (15≤x≤35) solid solution, different powder mixtures of Fe, Cr and Co elements were mechanically milled in a planetary ball mill. The annealing process was done in as-milled samples at different temperature in the range of 500-640 °C for 2 h. The produced samples were characterized using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and vibrating sample magnetometer. Performed mechanical alloying in different powder mixtures lead to the formation of Fe-Cr-Co α-phase solid solution with average crystallite sizes of about 10 nm. The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110-200 Oe and 150-220 emu/g, respectively. The coercivity of produced alloys after annealing process decreased and reached to about 40-150 Oe. The highest value of coercivity in as-milled and annealed samples was achieved in alloys with higher Cr contents.

  13. Multiscale modeling of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Sheidaei, Azadeh

    In recent years, polymer nano-composites (PNCs) have increasingly gained more attention due to their improved mechanical, barrier, thermal, optical, electrical and biodegradable properties in comparison with the conventional micro-composites or pristine polymer. With a modest addition of nanoparticles (usually less than 5wt. %), PNCs offer a wide range of improvements in moduli, strength, heat resistance, biodegradability, as well as decrease in gas permeability and flammability. Although PNCs offer enormous opportunities to design novel material systems, development of an effective numerical modeling approach to predict their properties based on their complex multi-phase and multiscale structure is still at an early stage. Developing a computational framework to predict the mechanical properties of PNC is the focus of this dissertation. A computational framework has been developed to predict mechanical properties of polymer nano-composites. In chapter 1, a microstructure inspired material model has been developed based on statistical technique and this technique has been used to reconstruct the microstructure of Halloysite nanotube (HNT) polypropylene composite. This technique also has been used to reconstruct exfoliated Graphene nanoplatelet (xGnP) polymer composite. The model was able to successfully predict the material behavior obtained from experiment. Chapter 2 is the summary of the experimental work to support the numerical work. First, different processing techniques to make the polymer nanocomposites have been reviewed. Among them, melt extrusion followed by injection molding was used to manufacture high density polyethylene (HDPE)---xGnP nanocomposties. Scanning electron microscopy (SEM) also was performed to determine particle size and distribution and to examine fracture surfaces. Particle size was measured from these images and has been used for calculating the probability density function for GNPs in chapter 1. A series of nanoindentation tests have

  14. International Conference on Multiscale Methods and Partial Differential Equations.

    SciTech Connect

    Thomas Hou

    2006-12-12

    The International Conference on Multiscale Methods and Partial Differential Equations (ICMMPDE for short) was held at IPAM, UCLA on August 26-27, 2005. The conference brought together researchers, students and practitioners with interest in the theoretical, computational and practical aspects of multiscale problems and related partial differential equations. The conference provided a forum to exchange and stimulate new ideas from different disciplines, and to formulate new challenging multiscale problems that will have impact in applications.

  15. Multiscale 3D bioimaging: from cell, tissue to whole organism

    NASA Astrophysics Data System (ADS)

    Lau, S. H.; Wang, Ge; Chandrasekeran, Margam; Fan, Victor; Nazrul, Mohd; Chang, Hauyee; Fong, Tiffany; Gelb, Jeff; Feser, Michael; Yun, Wenbing

    2009-05-01

    While electron microscopes and AFMs are capable of high resolution imaging to molecular levels, there is an ongoing problem in integrating these results into the larger scale structure and functions of tissue and organs within a complex organism. Imaging biological samples with optical microscopy is predominantly done with histology and immunohistochemistry, which can take up to a several weeks to prepare, are artifact prone and only available as individual 2D images. At the nano resolution scale, the higher resolution electron microscopy and AFM are used, but again these require destructive sample preparation and data are in 2D. To bridge this gap, we describe a rapid non invasive hierarchical bioimaging technique using a novel lab based x-ray computed tomography to characterize complex biological organism in multiscale- from whole organ (mesoscale) to calcified and soft tissue (microscale), to subcellular structures, nanomaterials and cellular-scaffold interaction (nanoscale). While MicroCT (micro x-ray computed tomography) is gaining in popularity for non invasive bones and tissue imaging, contrast and resolution are still vastly inadequate compared to histology. In this study we will present multiscale results from a novel microCT and nanoCT (nano x-ray tomography system). The novel MicroCT can image large specimen and tissue sample at histology resolution of submicron voxel resolution, often without contrast agents, while the nanoCT using x-ray optics similar to those used in synchrotron radiation facilities, has 20nm voxel resolution, suitable for studying cellular, subcellular morphology and nanomaterials. Multiscale examples involving both calcified and soft tissue will be illustrated, which include imaging a rat tibia to the individual channels of osteocyte canaliculli and lacunae and an unstained whole murine lung to its alveoli. The role of the novel CT will also be discussed as a possible means for rapid virtual histology using a biopsy of a human

  16. Multiscale perspectives of virus entry via endocytosis

    PubMed Central

    2013-01-01

    Most viruses take advantage of endocytic pathways to gain entry into host cells and initiate infections. Understanding of virus entry via endocytosis is critically important for the design of antiviral strategies. Virus entry via endocytosis is a complex process involving hundreds of cellular proteins. The entire process is dictated by events occurring at multiple time and length scales. In this review, we discuss and evaluate the available means to investigate virus endocytic entry, from both experimental and theoretical/numerical modeling fronts, and highlight the importance of multiscale features. The complexity of the process requires investigations at a systems biology level, which involves the combination of different experimental approaches, the collaboration of experimentalists and theorists across different disciplines, and the development of novel multiscale models. PMID:23734580

  17. Stochastic multiscale model for carbonate rocks.

    PubMed

    Biswal, B; Oren, P-E; Held, R J; Bakke, S; Hilfer, R

    2007-06-01

    A multiscale model for the diagenesis of carbonate rocks is proposed. It captures important pore scale characteristics of carbonate rocks: wide range of length scales in the pore diameters; large variability in the permeability; and strong dependence of the geometrical and transport parameters on the resolution. A pore scale microstructure of an oolithic dolostone with generic diagenetic features is successfully generated. The continuum representation of a reconstructed cubic sample of side length 2mm contains roughly 42 x 10{6} crystallites and pore diameters varying over many decades. Petrophysical parameters are computed on discretized samples of sizes up to 1000{3}. The model can be easily adapted to represent the multiscale microstructure of a wide variety of carbonate rocks. PMID:17677251

  18. Tracking magnetogram proper motions by multiscale regularization

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.

    1995-01-01

    Long uninterrupted sequences of solar magnetograms from the global oscillations network group (GONG) network and from the solar and heliospheric observatory (SOHO) satellite will provide the opportunity to study the proper motions of magnetic features. The possible use of multiscale regularization, a scale-recursive estimation technique which begins with a prior model of how state variables and their statistical properties propagate over scale. Short magnetogram sequences are analyzed with the multiscale regularization algorithm as applied to optical flow. This algorithm is found to be efficient, provides results for all the spatial scales spanned by the data and provides error estimates for the solutions. It is found that the algorithm is less sensitive to evolutionary changes than correlation tracking.

  19. Concurrent Multiscale Modeling of Embedded Nanomechanics

    SciTech Connect

    Rudd, R E

    2001-04-13

    We discuss concurrent multiscale simulations of dynamic and temperature-dependent processes found in nanomechanical systems coupled to larger scale surroundings. We focus on the behavior of sub-micron Micro-Electro-Mechanical Systems (MEMS), especially micro-resonators. The coupling of length scales methodology we have developed for MEMS employs an atomistic description of small but key regions of the system, consisting of millions of atoms, coupled concurrently to a finite element model of the periphery. The result is a model that accurately describes the behavior of the mechanical components of MEMS down to the atomic scale. This paper reviews some of the general issues involved in concurrent multiscale simulation, extends the methodology to metallic systems and describes how it has been used to identify atomistic effects in sub-micron resonators.

  20. Stochastic multiscale model for carbonate rocks.

    PubMed

    Biswal, B; Oren, P-E; Held, R J; Bakke, S; Hilfer, R

    2007-06-01

    A multiscale model for the diagenesis of carbonate rocks is proposed. It captures important pore scale characteristics of carbonate rocks: wide range of length scales in the pore diameters; large variability in the permeability; and strong dependence of the geometrical and transport parameters on the resolution. A pore scale microstructure of an oolithic dolostone with generic diagenetic features is successfully generated. The continuum representation of a reconstructed cubic sample of side length 2mm contains roughly 42 x 10{6} crystallites and pore diameters varying over many decades. Petrophysical parameters are computed on discretized samples of sizes up to 1000{3}. The model can be easily adapted to represent the multiscale microstructure of a wide variety of carbonate rocks.

  1. Multi-scale modeling in cell biology

    PubMed Central

    Meier-Schellersheim, Martin; Fraser, Iain D. C.; Klauschen, Frederick

    2009-01-01

    Biomedical research frequently involves performing experiments and developing hypotheses that link different scales of biological systems such as, for instance, the scales of intracellular molecular interactions to the scale of cellular behavior and beyond to the behavior of cell populations. Computational modeling efforts that aim at exploring such multi-scale systems quantitatively with the help of simulations have to incorporate several different simulation techniques due to the different time and space scales involved. Here, we provide a non-technical overview of how different scales of experimental research can be combined with the appropriate computational modeling techniques. We also show that current modeling software permits building and simulating multi-scale models without having to become involved with the underlying technical details of computational modeling. PMID:20448808

  2. Multiscale tissue engineering for liver reconstruction

    PubMed Central

    Sudo, Ryo

    2014-01-01

    The liver is a target of in vitro tissue engineering despite its capability to regenerate in vivo. The construction of liver tissues in vitro remains challenging. In this review, conventional 3D cultures of hepatocytes are first discussed. Recent advances in the 3D culturing of liver cells are then summarized in the context of in vitro liver tissue reconstruction at the micro- and macroscales. The application of microfluidics technology to liver tissue engineering has been introduced as a bottom-up approach performed at the microscale, whereas whole-organ bioengineering technology was introduced as a top-down approach performed at the macroscale. Mesoscale approaches are also discussed in considering the integration of micro- and macroscale approaches. Multiple parallel multiscale liver tissue engineering studies are ongoing; however, no tissue-engineered liver that is appropriate for clinical use has yet been realized. The integration of multiscale tissue engineering studies is essential for further understanding of liver reconstruction strategies. PMID:24500493

  3. Ensemble-based multi-scale assimilation

    NASA Astrophysics Data System (ADS)

    Ravela, S.; Hansen, J.; Hill, C.; Hill, H.; Marshall, J.

    2003-04-01

    We develop ensemble methods for constraining numerical models due to errors induced both by uncertain initial states and model structure. In the present paper, circulation phenomena are physically simulated in a laboratory and sensors are used to extract observations (velocity, temperature, etc.). Ensembles of the MITGCM constructed across variations in state and model-parameterizations are assimilated with observations over sliding multi-scale assimilation windows to regulate the trajectory of the model attractors vis a vis the system attractor. The novel contribution of this work is in bringing together the use of multi-scale assimilations, physical processes of moderate complexity, techniques for extracting flow and providing physically meaningful ways to alter analyses for minimizing model/data misfit.

  4. Multiscale Cues Drive Collective Cell Migration

    NASA Astrophysics Data System (ADS)

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-07-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation.

  5. Multiscale Community Blockmodel for Network Exploration

    PubMed Central

    Ho, Qirong; Parikh, Ankur P.; Xing, Eric P.

    2013-01-01

    Real world networks exhibit a complex set of phenomena such as underlying hierarchical organization, multiscale interaction, and varying topologies of communities. Most existing methods do not adequately capture the intrinsic interplay among such phenomena. We propose a nonparametric Multiscale Community Blockmodel (MSCB) to model the generation of hierarchies in social communities, selective membership of actors to subsets of these communities, and the resultant networks due to within- and cross-community interactions. By using the nested Chinese Restaurant Process, our model automatically infers the hierarchy structure from the data. We develop a collapsed Gibbs sampling algorithm for posterior inference, conduct extensive validation using synthetic networks, and demonstrate the utility of our model in real-world datasets such as predator-prey networks and citation networks. PMID:24288419

  6. Multiscale Cues Drive Collective Cell Migration

    PubMed Central

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-01-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation. PMID:27460294

  7. Multiscale simulation of red blood cell aggregation

    NASA Astrophysics Data System (ADS)

    Bagchi, P.; Popel, A. S.

    2004-11-01

    In humans and other mammals, aggregation of red blood cells (RBC) is a major determinant to blood viscosity in microcirculation under physiological and pathological conditions. Elevated levels of aggregation are often related to cardiovascular diseases, bacterial infection, diabetes, and obesity. Aggregation is a multiscale phenomenon that is governed by the molecular bond formation between adjacent cells, morphological and rheological properties of the cells, and the motion of the extra-cellular fluid in which the cells circulate. We have developed a simulation technique using front tracking methods for multiple fluids that includes the multiscale characteristics of aggregation. We will report the first-ever direct computer simulation of aggregation of deformable cells in shear flows. We will present results on the effect of shear rate, strength of the cross-bridging bonds, and the cell rheological properties on the rolling motion, deformation and subsequent breakage of an aggregate.

  8. Towards multiscale modeling of influenza infection

    PubMed Central

    Murillo, Lisa N.; Murillo, Michael S.; Perelson, Alan S.

    2013-01-01

    Aided by recent advances in computational power, algorithms, and higher fidelity data, increasingly detailed theoretical models of infection with influenza A virus are being developed. We review single scale models as they describe influenza infection from intracellular to global scales, and, in particular, we consider those models that capture details specific to influenza and can be used to link different scales. We discuss the few multiscale models of influenza infection that have been developed in this emerging field. In addition to discussing modeling approaches, we also survey biological data on influenza infection and transmission that is relevant for constructing influenza infection models. We envision that, in the future, multiscale models that capitalize on technical advances in experimental biology and high performance computing could be used to describe the large spatial scale epidemiology of influenza infection, evolution of the virus, and transmission between hosts more accurately. PMID:23608630

  9. Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2002-01-01

    This document contains the proceedings of the Training Workshop on Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems held at NASA Langley Research Center, Hampton, Virginia, March 5 - 6, 2002. The workshop was jointly sponsored by Old Dominion University's Center for Advanced Engineering Environments and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objectives of the workshop were to give overviews of the diverse activities in hierarchical approach to material modeling from continuum to atomistics; applications of multiscale modeling to advanced and improved material synthesis; defects, dislocations, and material deformation; fracture and friction; thin-film growth; characterization at nano and micro scales; and, verification and validation of numerical simulations, and to identify their potential for future aerospace systems.

  10. Computational design and multiscale modeling of a nanoactuator using DNA actuation.

    PubMed

    Hamdi, Mustapha

    2009-12-01

    Developments in the field of nanobiodevices coupling nanostructures and biological components are of great interest in medical nanorobotics. As the fundamentals of bio/non-bio interaction processes are still poorly understood in the design of these devices, design tools and multiscale dynamics modeling approaches are necessary at the fabrication pre-project stage. This paper proposes a new concept of optimized carbon nanotube based servomotor design for drug delivery and biomolecular transport applications. The design of an encapsulated DNA-multi-walled carbon nanotube actuator is prototyped using multiscale modeling. The system is parametrized by using a quantum level approach and characterized by using a molecular dynamics simulation. Based on the analysis of the simulation results, a servo nanoactuator using ionic current feedback is simulated and analyzed for application as a drug delivery carrier. PMID:19880974

  11. Multiscale flow in an electro-hydrodynamically driven oil-in-oil emulsion.

    PubMed

    Varshney, Atul; Gohil, Smita; Sathe, Mayur; R V, Seshagiri Rao; Joshi, J B; Bhattacharya, S; Yethiraj, Anand; Ghosh, Shankar

    2016-02-14

    Efficient mixing strategies in a fluid involve generation of multi-scale flows which are strongly suppressed in highly viscous systems. In this work, we report a novel form of multi-scale flow, driven by an external electric field, in a highly viscous (η∼ 1 Pa s) oil-in-oil emulsion system consisting of micron-size droplets. This electro-hydrodynamic flow leads to dynamical organization at spatial scales much larger than that of the individual droplets. We characterize the dynamics associated with these structures by measuring the time variation of the bulk Reynolds stress in a rheometer, as well as through a micro-scale rheometric measurement by probing the spectrum of fluctuations of a thin fiber cantilever driven by these flows. The results display scale invariance in the energy spectra over three decades with a power law reminiscent of turbulent convection. We also demonstrate the mixing efficiency in such micro-scale systems. PMID:26693675

  12. Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series

    PubMed Central

    Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong; Zhang, Shan-Shan

    2016-01-01

    Visibility graph has established itself as a powerful tool for analyzing time series. We in this paper develop a novel multiscale limited penetrable horizontal visibility graph (MLPHVG). We use nonlinear time series from two typical complex systems, i.e., EEG signals and two-phase flow signals, to demonstrate the effectiveness of our method. Combining MLPHVG and support vector machine, we detect epileptic seizures from the EEG signals recorded from healthy subjects and epilepsy patients and the classification accuracy is 100%. In addition, we derive MLPHVGs from oil-water two-phase flow signals and find that the average clustering coefficient at different scales allows faithfully identifying and characterizing three typical oil-water flow patterns. These findings render our MLPHVG method particularly useful for analyzing nonlinear time series from the perspective of multiscale network analysis. PMID:27759088

  13. Use of QM/DMD as a Multiscale Approach to Modeling Metalloenzymes.

    PubMed

    Gallup, N M; Alexandrova, A N

    2016-01-01

    Enzymes are complex biomolecules capable of performing unique catalysis under physiological conditions at neutral temperature and pH. However, the architecture of enzymatic catalysis is often a combination of the quantum influence of the immediate active site, as well as the electrostatic and configurational influences of amino acids surrounding the active site. As a result of this cooperation between baseline chemical reactivity and electrostatic assistance, it has become important to model enzymes using multiscale methods that take advantage of treating the active site with quantum mechanical methods, while approximately treating the surrounding protein using cheaper, classically driven force-field molecular mechanics methods. Here we describe the use of a multiscale engine which utilizes a combination of density functional theory with discrete molecular dynamics (dubbed QM/DMD) to aid in the characterization of metalloenzymes. PMID:27498643

  14. Multiscale constitutive modeling of polymer materials

    NASA Astrophysics Data System (ADS)

    Valavala, Pavan Kumar

    Materials are inherently multi-scale in nature consisting of distinct characteristics at various length scales from atoms to bulk material. There are no widely accepted predictive multi-scale modeling techniques that span from atomic level to bulk relating the effects of the structure at the nanometer (10-9 meter) on macro-scale properties. Traditional engineering deals with treating matter as continuous with no internal structure. In contrast to engineers, physicists have dealt with matter in its discrete structure at small length scales to understand fundamental behavior of materials. Multiscale modeling is of great scientific and technical importance as it can aid in designing novel materials that will enable us to tailor properties specific to an application like multi-functional materials. Polymer nanocomposite materials have the potential to provide significant increases in mechanical properties relative to current polymers used for structural applications. The nanoscale reinforcements have the potential to increase the effective interface between the reinforcement and the matrix by orders of magnitude for a given reinforcement volume fraction as relative to traditional micro- or macro-scale reinforcements. To facilitate the development of polymer nanocomposite materials, constitutive relationships must be established that predict the bulk mechanical properties of the materials as a function of the molecular structure. A computational hierarchical multiscale modeling technique is developed to study the bulk-level constitutive behavior of polymeric materials as a function of its molecular chemistry. Various parameters and modeling techniques from computational chemistry to continuum mechanics are utilized for the current modeling method. The cause and effect relationship of the parameters are studied to establish an efficient modeling framework. The proposed methodology is applied to three different polymers and validated using experimental data available in

  15. Multiscale Models of Breast Cancer Progression

    PubMed Central

    Chakrabarti, Anirikh; Verbridge, Scott; Stroock, Abraham D.; Fischbach, Claudia; Varner, Jeffrey D.

    2013-01-01

    Breast cancer initiation, invasion and metastasis span multiple length and time scales. Molecular events at short length scales lead to an initial tumorigenic population, which left unchecked by immune action, acts at increasingly longer length scales until eventually the cancer cells escape from the primary tumor site. This series of events is highly complex, involving multiple cell types interacting with (and shaping) the microenvironment. Multiscale mathematical models have emerged as a powerful tool to quantitatively integrate the convective-diffusion-reaction processes occurring on the systemic scale, with the molecular signaling processes occurring on the cellular and subcellular scales. In this study, we reviewed the current state of the art in cancer modeling across multiple length scales, with an emphasis on the integration of intracellular signal transduction models with pro-tumorigenic chemical and mechanical microenvironmental cues. First, we reviewed the underlying biomolecular origin of breast cancer, with a special emphasis on angiogenesis. Then, we summarized the development of tissue engineering platforms which could provide highfidelity ex vivo experimental models to identify and validate multiscale simulations. Lastly, we reviewed top-down and bottom-up multiscale strategies that integrate subcellular networks with the microenvironment. We present models of a variety of cancers, in addition to breast cancer specific models. Taken together, we expect as the sophistication of the simulations increase, that multiscale modeling and bottom-up agent-based models in particular will become an increasingly important platform technology for basic scientific discovery, as well as the identification and validation of potentially novel therapeutic targets. PMID:23008097

  16. MUSCLE: MUltiscale Spherical-ColLapse Evolution

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.

    2016-05-01

    MUSCLE (MUltiscale Spherical ColLapse Evolution) produces low-redshift approximate N-body realizations accurate to few-Megaparsec scales. It applies a spherical-collapse prescription on multiple Gaussian-smoothed scales. It achieves higher accuracy than perturbative schemes (Zel'dovich and second-order Lagrangian perturbation theory - 2LPT), and by including the void-in-cloud process (voids in large-scale collapsing regions), solves problems with a single-scale spherical-collapse scheme.

  17. Multiscale/Multifunctional Probabilistic Composite Fatigue

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A multilevel (multiscale/multifunctional) evaluation is demonstrated by applying it to three different sample problems. These problems include the probabilistic evaluation of a space shuttle main engine blade, an engine rotor and an aircraft wing. The results demonstrate that the blade will fail at the highest probability path, the engine two-stage rotor will fail by fracture at the rim and the aircraft wing will fail at 109 fatigue cycles with a probability of 0.9967.

  18. Multiscale modeling of mucosal immune responses

    PubMed Central

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  19. Multiscale power analysis for heart rate variability

    NASA Astrophysics Data System (ADS)

    Zeng, Peng; Liu, Hongxing; Ni, Huangjing; Zhou, Jing; Xia, Lan; Ning, Xinbao

    2015-06-01

    We first introduce multiscale power (MSP) method to assess the power distribution of physiological signals on multiple time scales. Simulation on synthetic data and experiments on heart rate variability (HRV) are tested to support the approach. Results show that both physical and psychological changes influence power distribution significantly. A quantitative parameter, termed power difference (PD), is introduced to evaluate the degree of power distribution alteration. We find that dynamical correlation of HRV will be destroyed completely when PD>0.7.

  20. Spatial adaptive sampling in multiscale simulation

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, Bertrand; Barros, Kipton; Cieren, Emmanuel; Elango, Venmugil; Junghans, Christoph; Lookman, Turab; Mohd-Yusof, Jamaludin; Pavel, Robert S.; Rivera, Axel Y.; Roehm, Dominic; McPherson, Allen L.; Germann, Timothy C.

    2014-07-01

    In a common approach to multiscale simulation, an incomplete set of macroscale equations must be supplemented with constitutive data provided by fine-scale simulation. Collecting statistics from these fine-scale simulations is typically the overwhelming computational cost. We reduce this cost by interpolating the results of fine-scale simulation over the spatial domain of the macro-solver. Unlike previous adaptive sampling strategies, we do not interpolate on the potentially very high dimensional space of inputs to the fine-scale simulation. Our approach is local in space and time, avoids the need for a central database, and is designed to parallelize well on large computer clusters. To demonstrate our method, we simulate one-dimensional elastodynamic shock propagation using the Heterogeneous Multiscale Method (HMM); we find that spatial adaptive sampling requires only ≈50×N0.14 fine-scale simulations to reconstruct the stress field at all N grid points. Related multiscale approaches, such as Equation Free methods, may also benefit from spatial adaptive sampling.

  1. Multiscale sequentially-coupled arterial FSI technique

    NASA Astrophysics Data System (ADS)

    Tezduyar, Tayfun E.; Takizawa, Kenji; Moorman, Creighton; Wright, Samuel; Christopher, Jason

    2009-10-01

    Multiscale versions of the Sequentially-Coupled Arterial Fluid-Structure Interaction (SCAFSI) technique are presented. The SCAFSI technique was introduced as an approximate FSI approach in arterial fluid mechanics. It is based on the assumption that the arterial deformation during a cardiac cycle is driven mostly by the blood pressure. First we compute a “reference” arterial deformation as a function of time, driven only by the blood pressure profile of the cardiac cycle. Then we compute a sequence of updates involving mesh motion, fluid dynamics calculations, and recomputing the arterial deformation. The SCAFSI technique was developed and tested in conjunction with the stabilized space-time FSI (SSTFSI) technique. Beyond providing a computationally more economical alternative to the fully coupled arterial FSI approach, the SCAFSI technique brings additional flexibility, such as being able to carry out the computations in a spatially or temporally multiscale fashion. In the test computations reported here for the spatially multiscale versions of the SCAFSI technique, we focus on a patient-specific middle cerebral artery segment with aneurysm, where the arterial geometry is based on computed tomography images. The arterial structure is modeled with the continuum element made of hyperelastic (Fung) material.

  2. Turbulent photospheric drivers of multiscale solar corona

    NASA Astrophysics Data System (ADS)

    Uritsky, Vadim M.; Ofman, Leon; Davila, Joseph M.

    2015-04-01

    We investigate the collective dynamics of transient photospheric and coronal events detected using high-resolution solar magnetograms and coronal emission images. We focus on statistical, ensemble-averaged properties of the interacting solar regions [Uritsky et al., 2011, 2013, 2014; Uritsky and Davila, 2012], as opposed to case-oriented methodologies recruited in some previous studies. The behavior of solar events is studied in the three-dimensional space-time enabling accurate representation of the event evolution. By applying advanced data analysis methods including feature tracking algorithms, multiscale correlation analysis and scaling analysis techniques, we identify leading physical scenarios of the photosphere - corona coupling in quiet and active solar regions, and strive to identify new statistical precursors of coronal eruptions. We also discuss the possibility of modeling multiscale photosphere - corona interactions using idealized three-dimensional MHD models. The obtained results shed a new light on the origin of multiscale dissipation in the solar corona by enabling quantitative validation of several popular statistical physical scenarios, such as e.g. intermittent turbulence, self-organized criticality, and topological complexity.

  3. Point-process high-resolution representations of heartbeat dynamics for multiscale analysis: A CHF survivor prediction study.

    PubMed

    Valenza, G; Wendt, H; Kiyono, K; Hayano, J; Watanabe, E; Yamamoto, Y; Abry, P; Barbieri, R

    2015-08-01

    Multiscale analysis of human heartbeat dynamics has been proved effective in characterizeing cardiovascular control physiology in health and disease. However, estimation of multiscale properties can be affected by the interpolation procedure used to preprocess the unevenly sampled R-R intervals derived from the ECG. To this extent, in this study we propose the estimation of wavelet coefficients and wavelet leaders on the output of inhomogeneous point process models of heartbeat dynamics. The RR interval series is modeled using probability density functions (pdfs) characterizing and predicting the time until the next heartbeat event occurs, as a linear function of the past history. Multiscale analysis is then applied to the pdfs' instantaneous first order moment. The proposed approach is tested on experimental data gathered from 57 congestive heart failure (CHF) patients by evaluating the recognition accuracy in predicting survivor and non-survivor patients, and by comparing performances from the informative point-process based interpolation and non-informative spline-based interpolation. Results demonstrate that multiscale analysis of point-process high-resolution representations achieves the highest prediction accuracy of 65.45%, proving our method as a promising tool to assess risk prediction in CHF patients. PMID:26736666

  4. Efficient multiscale simulation of simple metallic systems

    NASA Astrophysics Data System (ADS)

    Choly, Nicholas Isaac

    2004-12-01

    The steady increase in computational resources and numerical sophistication has brought about a new approach in physical simulation. The methods that comprise this approach are known as multiscale methods, and have the defining characteristic of combining several simulation methods together, rendering tractable physical problems that no single simulation method can resolve. We have developed an approach for coupling quantum-mechanical and classical methods for the efficient simulation of multiscale problems in simple metals. The present multiscale method employs orbital-free density functional theory, in which fictitious orbitals are never introduced. We review the theory, and describe the state-of-the-art functionals associated with it. We have developed an efficient simulation code for performing orbital-free density functional theory calculations, and we describe the methods developed to treat the functional minimization problem. One of the biggest barriers hindering the widespread use of orbital-free methods is that only local pseudopotentials can be used, and hence the powerful machinery of norm-conserving pseudopotentials is inapplicable. We develop a similar machinery for local pseudopotentials, and we report on the application of these methods. We solve several problems associated with the efficient use of orbital-free density functional methods. Certain orbital-free methods are formulated in reciprocal space and are applicable to periodic systems. Incorporation of these methods in a multiscale setting requires that the effects of periodicity be absent. A direct translation of the methods to real space is extremely inefficient. Motivated by these considerations, we have developed an efficient method for applying orbital-free methods to non-periodic systems. We also overcome an algorithmic problem with the calculation of ionic forces in grid-based electronic structure methods in general. We develop and test an efficient method for computing ionic forces that

  5. Multiscale Models in the Biomechanics of Plant Growth

    PubMed Central

    Fozard, John A.

    2015-01-01

    Plant growth occurs through the coordinated expansion of tightly adherent cells, driven by regulated softening of cell walls. It is an intrinsically multiscale process, with the integrated properties of multiple cell walls shaping the whole tissue. Multiscale models encode physical relationships to bring new understanding to plant physiology and development. PMID:25729061

  6. Multi-Scale Validation of a Nanodiamond Drug Delivery System and Multi-Scale Engineering Education

    ERIC Educational Resources Information Center

    Schwalbe, Michelle Kristin

    2010-01-01

    This dissertation has two primary concerns: (i) evaluating the uncertainty and prediction capabilities of a nanodiamond drug delivery model using Bayesian calibration and bias correction, and (ii) determining conceptual difficulties of multi-scale analysis from an engineering education perspective. A Bayesian uncertainty quantification scheme…

  7. Multiscale Constitutive Modeling of Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    Underwood, Benjamin Shane

    Multiscale modeling of asphalt concrete has become a popular technique for gaining improved insight into the physical mechanisms that affect the material's behavior and ultimately its performance. This type of modeling considers asphalt concrete, not as a homogeneous mass, but rather as an assemblage of materials at different characteristic length scales. For proper modeling these characteristic scales should be functionally definable and should have known properties. Thus far, research in this area has not focused significant attention on functionally defining what the characteristic scales within asphalt concrete should be. Instead, many have made assumptions on the characteristic scales and even the characteristic behaviors of these scales with little to no support. This research addresses these shortcomings by directly evaluating the microstructure of the material and uses these results to create materials of different characteristic length scales as they exist within the asphalt concrete mixture. The objectives of this work are to; 1) develop mechanistic models for the linear viscoelastic (LVE) and damage behaviors in asphalt concrete at different length scales and 2) develop a mechanistic, mechanistic/empirical, or phenomenological formulation to link the different length scales into a model capable of predicting the effects of microstructural changes on the linear viscoelastic behaviors of asphalt concrete mixture, e.g., a microstructure association model for asphalt concrete mixture. Through the microstructural study it is found that asphalt concrete mixture can be considered as a build-up of three different phases; asphalt mastic, fine aggregate matrix (FAM), and finally the coarse aggregate particles. The asphalt mastic is found to exist as a homogenous material throughout the mixture and FAM, and the filler content within this material is consistent with the volumetric averaged concentration, which can be calculated from the job mix formula. It is also

  8. Multiscale flat norm signatures for shapes and images

    SciTech Connect

    Sandine, Gary; Morgan, Simon P; Vixie, Kevin R; Clawson, Keth; Asaki, Thomas J; Price, Brandon

    2009-01-01

    In this paper we begin to explore the application of the multiscale flat norm introduced in Morgan and Vixie to shape and image analysis. In particular, we look at the use of the multiscale flat norm signature for the identification of shapes. After briefly reviewing the multiscale flat norm, the L{sup 1}TV functional and the relation between these two, we introduce multiscale signatures that naturally follow from the multiscale flat norm and its components. A numerical method based on the min-cut, max-flow graph-cut is briefly recalled. We suggest using L{sup 2} minimization, rather than the usual Crofton's formula based approximation, for choosing the required weights. The resulting weights have the dual benefits of being analytically computable and of giving more accurate approximations to the anisotropic TV energy. Finally, we demonstrate the usefulness of the signatures on simple shape classification tasks.

  9. Multiscale entropy-based methods for heart rate variability complexity analysis

    NASA Astrophysics Data System (ADS)

    Silva, Luiz Eduardo Virgilio; Cabella, Brenno Caetano Troca; Neves, Ubiraci Pereira da Costa; Murta Junior, Luiz Otavio

    2015-03-01

    Physiologic complexity is an important concept to characterize time series from biological systems, which associated to multiscale analysis can contribute to comprehension of many complex phenomena. Although multiscale entropy has been applied to physiological time series, it measures irregularity as function of scale. In this study we purpose and evaluate a set of three complexity metrics as function of time scales. Complexity metrics are derived from nonadditive entropy supported by generation of surrogate data, i.e. SDiffqmax, qmax and qzero. In order to access accuracy of proposed complexity metrics, receiver operating characteristic (ROC) curves were built and area under the curves was computed for three physiological situations. Heart rate variability (HRV) time series in normal sinus rhythm, atrial fibrillation, and congestive heart failure data set were analyzed. Results show that proposed metric for complexity is accurate and robust when compared to classic entropic irregularity metrics. Furthermore, SDiffqmax is the most accurate for lower scales, whereas qmax and qzero are the most accurate when higher time scales are considered. Multiscale complexity analysis described here showed potential to assess complex physiological time series and deserves further investigation in wide context.

  10. Application of a force field algorithm for creating strongly correlated multiscale sphere packings

    NASA Astrophysics Data System (ADS)

    Zauner, Thomas

    2016-05-01

    This work presents a protocol driven force field algorithm, used to create multiscale correlated dense sphere packings. It was developed as part of a tool chain for the reconstruction of realistic multiscale porous rock samples. It overcomes limitations of Monte-Carlo or deposition based approaches, that are quite common in this field and were used previously. The new algorithm can create large, low porosity sphere packings with radius distributions covering two decades. Highly correlated structures that model pore clogging and sedimentation can be generated. To achieve this, an adequate force field and proper termination strategies are necessary. By changing the algorithm parameters in a controlled way during the simulation, a complex protocol driven process can be established. The implementation of the algorithm targets large parallel computer platforms to perform simulations with more than 10 million spheres. This article includes an application of the algorithm used to generate a highly polydisperse sphere packing with roughly 106 spheres and radii from 1 to 100 μm. The continuum description of this packing is discretized at resolutions from 0.25 to 1 μm and investigated using geometric and statistical characterizations and results from Lattice-Boltzmann flow simulations. These resolution dependent results affirm that reliable, predictive calculations for multiscale porous microstructures depend on the availability of large realistic continuum models. To obtain such models the algorithm presented herein can be used as a starting point.

  11. Multiscale metrologies for process optimization of carbon nanotube polymer composites

    DOE PAGES

    Natarajan, Bharath; Orloff, Nathan D.; Ashkar, Rana; Doshi, Sagar; Twedt, Kevin; Krishnamurthy, Ajay; Davis, Chelsea; Forster, Aaron M.; Thostenson, Erik; Obrzut, Jan; et al

    2016-07-18

    Carbon nanotube (CNT) polymer nanocomposites are attractive multifunctional materials with a growing range of commercial applications. With the increasing demand for these materials, it is imperative to develop and validate methods for on-line quality control and process monitoring during production. In this work, a novel combination of characterization techniques is utilized, that facilitates the non-invasive assessment of CNT dispersion in epoxy produced by the scalable process of calendering. First, the structural parameters of these nanocomposites are evaluated across multiple length scales (10-10 m to 10-3 m) using scanning gallium-ion microscopy, transmission electron microscopy and small-angle neutron scattering. Then, a non-contactmore » resonant microwave cavity perturbation (RCP) technique is employed to accurately measure the AC electrical conductivity of the nanocomposites. Quantitative correlations between the conductivity and structural parameters find the RCP measurements to be sensitive to CNT mass fraction, spatial organization and, therefore, the processing parameters. These results, and the non-contact nature and speed of RCP measurements identify this technique as being ideally suited for quality control of CNT nanocomposites in a nanomanufacturing environment. In conclusion, when validated by the multiscale characterization suite, RCP may be broadly applicable in the production of hybrid functional materials, such as graphene, gold nanorod, and carbon black nanocomposites.« less

  12. A Multiscale Dynamo Model Driven by Quasi-geostrophic Convection

    NASA Astrophysics Data System (ADS)

    Calkins, M. A.; Julien, K. A.; Aurnou, J. M.; Tobias, S.; Marti, P.

    2015-12-01

    A geostrophically balanced, convection-driven multiscale dynamo model is developed for the plane layer geometry. The small-scale fluctuating dynamics are described by a magnetically-modified quasi-geostrophic equation set, and the large-scale mean dynamics are governed by a diagnostic thermal wind balance. The model utilizes three timescales that respectively characterize the convective timescale, the large-scale magnetic evolution timescale, and the large-scale thermal evolution timescale. Distinct equations are derived for the cases of order one and low magnetic Prandtl number. It is shown that the low magnetic Prandtl number model is characterized by a magnetic to kinetic energy ratio that is asymptotically large, with ohmic dissipation dominating viscous dissipation on the large-scales. For the order one magnetic Prandtl number model the magnetic and kinetic energies are equipartitioned and both ohmic and viscous dissipation are weak on the large-scales; large-scale ohmic dissipation occurs in thin magnetic boundary layers adjacent to the horizontal boundaries. The new models provide a new theoretical framework for understanding the dynamics of convection-driven dynamos in regimes that are only just becoming accessible to direct numerical simulations.

  13. A Multiscale Dynamo Model Driven by Quasi-geostrophic Convection

    NASA Astrophysics Data System (ADS)

    Julien, Keith; Calkins, Michael; Tobias, Steve; Aurnou, Jonathan

    2015-11-01

    A convection-driven multiscale dynamo model is discussed for the plane layer geometry in the limit of low Rossby number. The small-scale fluctuating dynamics are described by a magnetically-modified quasi-geostrophic equation set, and the large-scale mean dynamics are governed by a diagnostic thermal wind balance. The model utilizes three timescales that respectively characterize the convective timescale, the large-scale magnetic diffusion timescale, and the large-scale thermal diffusion timescale. It is shown that in limit of low magnetic Prandtl number the model is characterized by a magnetic to kinetic energy ratio that is asymptotically large, with ohmic dissipation dominating viscous dissipation on the large-scales. For the order one magnetic Prandtl number model the magnetic and kinetic energies are equipartitioned and both ohmic and viscous dissipation are weak on the large-scales. For both cases the Elsasser number is small. The new models can be considered fully nonlinear, generalized versions of the dynamo model originally developed by Childress and Soward. These models may be useful for understanding the dynamics of convection-driven dynamos in regimes that are only just becoming accessible to simulations of the full set of governing equations. NSF EAR #1320991, NSF EAR CSEDI 1067944.

  14. A Multiscale Progressive Failure Modeling Methodology for Composites that Includes Fiber Strength Stochastics

    NASA Technical Reports Server (NTRS)

    Ricks, Trenton M.; Lacy, Thomas E., Jr.; Bednarcyk, Brett A.; Arnold, Steven M.; Hutchins, John W.

    2014-01-01

    A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/finite element (FE) analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a unidirectional SCS-6/TIMETAL 21S metal matrix composite tensile dogbone specimen at 650 degC. Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite strengths and distribution of failure locations (predominately within the gage section) reasonably matched the experimentally observed failure behavior. The predicted composite failure behavior suggests that use of macroscale models that exploit global geometric symmetries are inappropriate for cases where the actual distribution of local fiber strengths displays no such symmetries. This issue has not received much attention in the literature. Moreover, the model discretization at a specific length scale can have a profound effect on the computational costs associated with multiscale simulations.models that yield accurate yet tractable results.

  15. Multiscale tumor spatiokinetic model for intraperitoneal therapy.

    PubMed

    Au, Jessie L-S; Guo, Peng; Gao, Yue; Lu, Ze; Wientjes, Michael G; Tsai, Max; Wientjes, M Guillaume

    2014-05-01

    This study established a multiscale computational model for intraperitoneal (IP) chemotherapy, to depict the time-dependent and spatial-dependent drug concentrations in peritoneal tumors as functions of drug properties (size, binding, diffusivity, permeability), transport mechanisms (diffusion, convection), spatial-dependent tumor heterogeneities (vessel density, cell density, pressure gradient), and physiological properties (peritoneal pressure, peritoneal fluid volume). Equations linked drug transport and clearance on three scales (tumor, IP cavity, whole organism). Paclitaxel was the test compound. The required model parameters (tumor diffusivity, tumor hydraulic conductivity, vessel permeability and surface area, microvascular hydrostatic pressure, drug association with cells) were obtained from literature reports, calculation, and/or experimental measurements. Drug concentration-time profiles in peritoneal fluid and plasma were the boundary conditions for tumor domain and blood vessels, respectively. The finite element method was used to numerically solve the nonlinear partial differential equations for fluid and solute transport. The resulting multiscale model accounted for intratumoral spatial heterogeneity, depicted diffusive and convective drug transport in tumor interstitium and across blood vessels, and provided drug flux and concentration as a function of time and spatial position in the tumor. Comparison of model-predicted tumor spatiokinetics with experimental results (autoradiographic data of 3H-paclitaxel in IP ovarian tumors in mice, 6 h posttreatment) showed good agreement (1% deviation for area under curve and 23% deviations for individual data points, which were several-fold lower compared to the experimental intertumor variations). The computational multiscale model provides a tool to quantify the effects of drug-, tumor-, and host-dependent variables on the concentrations and residence time of IP therapeutics in tumors.

  16. Multiscale simulation of soft matter systems.

    PubMed

    Peter, Christine; Kremer, Kurt

    2010-01-01

    This paper gives a short introduction to multiscale simulation approaches in soft matter science. This paper is based on and extended from a previous review. (1. C. Peter and K. Kremer, Soft Matter, 2009, DOI:10.1039/b912027k.) It also includes a discussion of aspects of soft matter in general and a short account of one of the historically underlying concepts, namely renormalization group theory. Some different concepts and several typical problems are shortly addressed, including a (more personal) view on challenges and chances.

  17. Modelling multiscale aspects of colorectal cancer

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Ingeborg M. M.; Byrne, Helen M.; Johnston, Matthew D.; Edwards, Carina M.; Chapman, S. Jonathan; Bodmer, Walter F.; Maini, Philip K.

    2008-01-01

    Colorectal cancer (CRC) is responsible for nearly half a million deaths annually world-wide [11]. We present a series of mathematical models describing the dynamics of the intestinal epithelium and the kinetics of the molecular pathway most commonly mutated in CRC, the Wnt signalling network. We also discuss how we are coupling such models to build a multiscale model of normal and aberrant guts. This will enable us to combine disparate experimental and clinical data, to investigate interactions between phenomena taking place at different levels of organisation and, eventually, to test the efficacy of new drugs on the system as a whole.

  18. Multiscale Features of Large Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    De Michelis, P.; Consolini, G.

    2011-12-01

    The present study is focused on the analysis of the multiscale features of four large geomagnetic storms that occurred from 2000 to 2003. In particular, we analyse the fluctuations of these extreme events as recorded along the horizontal component of the geomagnetic field in seven different canadian geomagnetic observatories, by decomposing the signal via the Hilbert-Huang transform (HHT). This empirical method, that is alternative to traditional data-analysis methods, consists in an empirical mode decomposition (EMD) and in the Hilbert spectral analysis, and it is designed specifically for analyzing nonlinear and nonstationary data. The features of the intrinsic mode functions (IMFs) are studied as a function of the magnetic latitude.

  19. Time-parallel multiscale/multiphysics framework

    SciTech Connect

    Frantziskonis, G.; Muralidharan, Krishna; Deymier, Pierre; Simunovic, Srdjan; Nukala, Phani K; Pannala, Sreekanth

    2009-01-01

    We introduce the time-parallel compound wavelet matrix method (tpCWM) for modeling the temporal evolution of multiscale and multiphysics systems. The method couples time parallel (TP) and CWM methods operating at different spatial and temporal scales. We demonstrate the efficiency of our approach on two examples: a chemical reaction kinetic system and a non-linear predator prey system. Our results indicate that the tpCWM technique is capable of accelerating time-to-solution by 2 3-orders of magnitude and is amenable to efficient parallel implementation.

  20. Landform Mapping Using Multiscale Topographic Analysis

    NASA Astrophysics Data System (ADS)

    Bliss, N. B.

    2008-12-01

    Many ecological and agricultural processes depend on topographic relationships. Topography strongly influences microclimate, the types and productivity of plants, biomass, evapotranspiration rates, carbon storage rates, and fire fuel accumulation. These factors in turn influence the water cycle, stream flow, water quality, and soil formation. Most previous topographic analysis methods have focused on the elevation of a given grid cell (pixel) and very localized measures of slope and aspect (e.g., computed from elevation in a 3x3 window). Some measures have moved beyond a strictly local relationship, such as the compound topographic index, which can be used as a soil wetness index. I introduce a new method of multiscale topographic analysis which can be applied to digital elevation model (DEM) data of any resolution. The method calculates slope and curvature (change of slope) of the land not only in relation to adjacent grid cells but also for much larger distances downstream. The algorithm uses a flow direction grid to create a synthetic stream network as a set of connected line segments (a vector dataset). The multiscale measures are stored on a node attribute table, where the nodes are the endpoints of line segments connecting the original DEM grid cells. A pointer is computed for directly accessing data for nodes at selected distances down the stream network. Baseline distances are selected by counting cells down the flow path by each power of two (1, 2, 4, 8, ... cells downstream). Slope and curvature measures are defined for each of these baselines and are queried to distinguish multiscale topographic characteristics. Several applications of these methods have been tested. A floodplain measure identifies areas that are relatively low on the landscape, even as elevation changes while moving from plains into hills or mountains (study area: South Dakota). The landscape may be partitioned to provide zones for ecological analysis, including selection of field