Science.gov

Sample records for ball-milling multiscale characterizations

  1. Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Yu, Wen; Chai, Tianyou; Liu, Zhuo; Zhou, Xiaojie

    2016-01-01

    It is difficult to model multi-frequency signal, such as mechanical vibration and acoustic signals of wet ball mill in the mineral grinding process. In this paper, these signals are decomposed into multi-scale intrinsic mode functions (IMFs) by the empirical mode decomposition (EMD) technique. A new adaptive multi-scale spectral features selection approach based on sphere criterion (SC) is applied to these IMFs frequency spectra. The candidate sub-models are constructed by the partial least squares (PLS) with the selected features. Finally, the branch and bound based selective ensemble (BBSEN) algorithm is applied to select and combine these ensemble sub-models. This method can be easily extended to regression and classification problems with multi-time scale signal. We successfully apply this approach to a laboratory-scale ball mill. The shell vibration and acoustic signals are used to model mill load parameters. The experimental results demonstrate that this novel approach is more effective than the other modeling methods based on multi-scale frequency spectral features.

  2. Preparation, characterization and optoelectronic properties of nanodiamonds doped zinc oxide nanomaterials by a ball milling technique

    NASA Astrophysics Data System (ADS)

    Ullah, Hameed; Sohail, Muhammad; Malik, Uzma; Ali, Naveed; Bangash, Masroor Ahmad; Nawaz, Mohsan

    2016-07-01

    Zinc oxide (ZnO) is one of the very important metal oxides (MOs) for applications in optoelectronic devices which work in the blue and UV regions. However, to meet the challenges of obtaining ZnO nanomaterials suitable for practical applications, various modifications in physico-chemical properties are highly desirable. One of the ways adopted for altering the properties is to synthesize composite(s) of ZnO with various reinforcements. Here we report on the tuning of optoelectronic properties of ZnO upon doping by nanodiamonds (NDs) using the ball milling technique. A varying weight percent (wt.%) of NDs were ball milled for 2 h with ZnO nanoparticles prepared by a simple precipitation method. The effects of different parameters, the calcination temperature of ZnO, wt.% of NDs and mechanical milling upon the optoelectronic properties of the resulting ZnO-NDs nanocomposites have been investigated. The ZnO-NDs nanocomposites were characterized by IR spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The UV-vis spectroscopy revealed the alteration in the bandgap energy (Eg ) of ZnO as a function of the calcination temperature of ZnO, changing the concentration of NDs, and mechanical milling of the resulting nanocomposites. The photoluminescence (PL) spectroscopy showed a decrease in the deep level emission (DLE) peaks and an increase in near-band-edge transition peaks as a result of the increasing concentration of NDs. The decrease in DLE and increase in band to band transition peaks were due to the strong interaction between the NDs and the Zn+; consequently, the Zn+ concentration decreased on the interstitial sites.

  3. Characterization of prealloyed copper powders treated in high energy ball mill

    SciTech Connect

    Rajkovic, Viseslava . E-mail: visnja@vin.bg.ac.yu; Bozic, Dusan; Jovanovic, Milan T.

    2006-08-15

    The inert gas atomised prealloyed copper powders containing 3.5 wt.% Al were milled up to 20 h in the planetary ball mill in order to oxidize aluminium in situ with oxygen from the air. In the next procedure compacts from milled powder were synthesized by hot-pressing in argon atmosphere. Compacts from as-received Cu-3.5 wt.% Al powder and electrolytic copper powder were also prepared under the same conditions. Microstructural and morphological changes of high energy milled powder as well as changes of thermal stability and electrical conductivity of compacts were studied as a function of milling time and high temperature exposure at 800 deg. C. Optical, scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for microstructural characterization, whereas thermal stability and electrical conductivity were evaluated by microhardness measurements and conductometer Sigmatest, respectively. The prealloyed 5 h-milled and compacted powder showed a significant increase in microhardness reaching the value of 2600 MPa, about 4 times greater than that of compacts synthesized from as-received electrolytic copper powder (670 MPa). The electrical conductivity of compacts from 5 h-milled powder was 52% IACS. The results were discussed in terms of the effect of small grain size and finely distributed alumina dispersoids on hardening and thermal stability of compacts.

  4. Characterization of cationic starch flocculants synthesized by dry process with ball milling activating method.

    PubMed

    Su, Yuting; Du, Hongying; Huo, Yinqiang; Xu, Yongliang; Wang, Jie; Wang, Liying; Zhao, Siming; Xiong, Shanbai

    2016-06-01

    The cationic starch flocculants were synthesized by the reaction of maize starch which was activated by a ball-milling treatment with 2,3-epoxypropyl trimethyl ammonium chlorides (ETMAC) using the dry method. The cationic starches were characterized by several approaches including scanning electron microscope (SEM), degree of substitution (DS), infrared spectrum (IR), X-ray diffraction (XRD), flocculating activity, electron spin resonance (ESR), and solid-state nuclear magnetic resonance (NMR). The effect of mechanical activation on starch etherifying modification was investigated. The mechanical activation cracked starch granules and destructed their crystal structures. This resulted in enhancements to the reaction activity and reaction efficiency, which was approved by ESR and solid state NMR. The starch flocculants, synthesized by the reaction of mechanically activated starches at 90°C for 2.5h with ETMAC at molar ratio of 0.40:1.00, showed good flocculation activity. The substitution degree (0.300) and reaction efficiency (75.06%) of starch flocculants synthesized with mechanically activated starches were significantly greater than those of starch flocculants with native starches (P<0.05).

  5. Highly Al-doped TiO{sub 2} nanoparticles produced by Ball Mill Method: structural and electronic characterization

    SciTech Connect

    Santos, Desireé M. de los Navas, Javier Sánchez-Coronilla, Antonio; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2015-10-15

    Highlights: • Highly Al-doped TiO{sub 2} nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO{sub 2} nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy. The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti{sup 4+} ions by Al{sup 3+} in the TiO{sub 2} lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature.

  6. Preparation of bismuth telluride based thermoelectric nanomaterials via low-energy ball milling and their property characterizations

    NASA Astrophysics Data System (ADS)

    Robinson, Christopher A.

    Thermoelectric materials are able to convert energy between heat and electricity with no moving parts, making them very appealing for power generation purposes. This is particularly appealing since many forms of energy generation lose energy to waste heat. The Livermore National Laboratory estimates that up to 55% of the energy created in traditional power plants is lost through heat generation [1]. As greenhouse gas emissions become a more important issue, large sources of waste like this will need to be harnessed. Adoption of these materials has been limited due to the cost and efficiency of current technology. Bismuth telluride based alloys have a dimensionless figure of merit, a measure of efficiency, near one at room temperature, which makes it the best current material. In order to compete with other forms of energy generation, this needs to be increased to three or higher [2]. Recently, improvements in performance have come in the form of random nanostructured materials [3]. Bulk bismuth telluride is subjected to particle size reduction via high-energy ball milling in order to scatter phonons between grains. This reduces the lattice thermal conductivity which in turn increases the performance of the material. In this work, we investigate the use of low-energy ball milling as a method of creating nanoparticles of n-type and p-type Bi2Te3 alloys for thermoelectric applications. Optimization of parameters such as milling containers, milling media, contamination and milling time has resulted in creating 15nm particles of bismuth telluride alloys. After creating solid pellets of the resulting powders via hot pressing, the material's thermal and electrical conductivities as well as Seebeck coefficients were measured. The ZT of n-type Bi2Te2.7Se3 created using this method is 0.32, while the p-type Bi0.5Sb1.5Te3 exhibits a higher ZT of 1.24, both at room temperature.

  7. Synthesis, characterization and performance of high energy ball milled meso-scale zero valent iron in Fenton reaction.

    PubMed

    Ambika, Selvaraj; Devasena, M; Nambi, Indumathi Manivannan

    2016-10-01

    Understanding contaminant degradation by different sized zero valent iron (ZVI) particles is one important aspect in addressing the long-term stability of these particles in field studies. In this study, meso zero valent iron (mZVI) particles were synthesised in a milling time of 10 h using ball milling technique. The efficacy of mZVI particles for removal of phenol was quantitatively evaluated in comparison with coarse zero valent iron (cZVI) and nano zero valent iron (nZVI) particles. Phenol degradation experiments were carried out in sacrificial batch mode at room temperature independently with cZVI, nZVI and mZVI under varied pH conditions of 3, 4, 6, 7, 8 and 10. Batch experiments substantiating the reactivity of mZVI under unbuffered pH system were also carried out and compared with buffered and poorly buffered pH systems. mZVI particles showed consistent phenol degradation at circum-neutral pH with efficiency of 44%, 67%, and 89% in a span of 5, 10 and 20 min respectively. The dissolved iron species and residual iron formation were also measured as a function of pH. Unbuffered systems at circum-neutral pH produced less residual iron when compared to buffered and poorly buffered systems. At this pH, oxidation of Fe(2+) produced a different oxidant Ferryl ion, which was found to effectively participate in phenol degradation.

  8. Preparation and characterization of nanocrystalline ZrO2-7%Y2O3 powders for thermal barrier coatings by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Bobzin, Kirsten; Zhao, Lidong; Schlaefer, Thomas; Warda, Thomas

    2011-06-01

    High-energy ball milling is an effective method to produce nanocrystalline oxides. In this study, a conventional ZrO2-7%Y2O3 spray powder was ball-milled to produce nanocrystalline powders with high levels of crystalline disorders for deposition of thermal barrier coatings. The powder was milled both with 100Cr6 steel balls and with ZrO2-3%Y2O3 ceramic balls as grinding media. The milling time was varied in order to investigate the effect of the milling time on the crystallite size. The powders were investigated in terms of their crystallite sizes and morphologies by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that under given milling conditions the powder was already nanostructured after 40 min milling. The crystallite size decreased significantly with increasing milling time within first 120 min. After that, a further increase of milling time did not lead to a significant reduction of the crystallite size. Ball-milling led to lattice microstrains. Milling with the steel balls resulted in finer nano-sized crystal grains, but caused the contamination of the powder. The nano-sized crystal grains coarsened during the heat-treatment at 1250°C.

  9. The Key Role of Ball Milling Time in the Microstructure and Mechanical Property of Ni-TiCNP Composites

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoling; Huang, Hefei; Xie, Ruobing; Yang, Chao; Li, Zhijun; Jiang, Li; Ye, Xiangxi; Xu, Hongjie

    2016-12-01

    Titanium carbide nanoparticle-reinforced nickel-based alloys (Ni-TiCNP composites) with ball milling time ranging from 8 to 72 h were prepared by ball milling and spark plasma sintering. Transmission electron microscopy (TEM) and scanning electron microscopy equipped with electron backscatter diffraction were used to characterize the microstructures. Their hardness and tensile properties were measured using the Vickers pyramid method and tensile tests. TEM results showed that a slight coarsening of TiCNP occurred during the ball milling process. The grain sizes of the Ni-TiCNP composites with various ball milling times were different, but they were all much smaller than those of the pure Ni. In all cases, the Ni-TiCNP composites showed higher strengths and hardness values than the unreinforced pure nickel. Furthermore, the strength of the Ni-TiCNP composites increased initially and then decreased as a function of ball milling time. The maximum strengths occurred in the 24-h ball milling sample, which presented the lowest average grain size. The Hall-Petch strengthening was suggested to be the main reason responsible for such variations in mechanical properties. Additionally, the elongation percentage of the Ni-TiCNP composites decreased gradually with ball milling time. This may be caused by the change of microvoids in the composite as the ball milling time varies, which is also related to their fracture behavior.

  10. Multifractal properties of ball milling dynamics

    SciTech Connect

    Budroni, M. A. Pilosu, V.; Rustici, M.; Delogu, F.

    2014-06-15

    This work focuses on the dynamics of a ball inside the reactor of a ball mill. We show that the distribution of collisions at the reactor walls exhibits multifractal properties in a wide region of the parameter space defining the geometrical characteristics of the reactor and the collision elasticity. This feature points to the presence of restricted self-organized zones of the reactor walls where the ball preferentially collides and the mechanical energy is mainly dissipated.

  11. DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, AND ORE BIN CHUTE, LOOKING EAST NORTHEAST. CRUSHED ORE FROM THE SECONDARY ORE BIN WAS INTRODUCED INTO THE FEED TROUGH VIA A CHUTE. AS THE BALL MILL TURNED, THE ROUND SCOOP ALSO TURNED IN THE TROUGH TO CHANNEL ORE INTO THE BALL MILL. SEE CA-292-20 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  12. DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, AND ORE BIN CHUTE, LOOKING EAST NORTHEAST. CRUSHED ORE FROM THE SECONDARY ORE BIN WAS INTRODUCED INTO THE FEED TROUGH VIA A CHUTE. AS THE BALL MILL TURNED, THE ROUND SCOOP ALSO TURNED IN THE TROUGH TO CHANNEL ORE INTO THE BALL MILL. SEE CA-292-14 FOR IDENTICAL B&W NEGATIVE. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  13. Local structure of ball-milled LaNi{sub 5} hydrogen storage material by Ni K-edge EXAFS

    SciTech Connect

    Joseph, B.; Iadecola, A.; Schiavo, B.; Cognigni, A.; Olivi, L.; D'Ali Staiti, G.; Saini, N.L.

    2010-07-15

    Local structure of the nanostructured LaNi{sub 5} hydrogen storage alloys, prepared by ball-milling, has been studied using Ni K-edge extended X-ray absorption fine structure spectroscopy. Results indicate that the ball-milling up to 100 h results in the production of nanoparticles characterized by large atomic disorder and slightly reduced unit-cell volume, compared to the bulk LaNi{sub 5}. High temperature annealing appears to help in partial recovery of atomic order in the ball-milled samples; however, long-time ball-milled samples retain large disorder even after the high temperature annealing. The results suggest that the large disorder and the reduced unit-cell volume might be causing a higher energy-barrier for the hydride-phase formation in the long time ball-milled LaNi{sub 5} powders. - Graphical Abstract: X-ray diffraction (XRD) pattern (left panel) and Fourier transforms of the Ni K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy (right panel) of bulk LaNi{sub 5} hydrogen storage material (structure model is given in the middle) together with the same after 100 h ball-milling. Milled samples show a remarkable reduction intensity and broadening of the XRD peaks. Substantial damping of the amplitude and a slight shrinkage of the profile are observed in the EXAFS spectrum. These results indicate that the ball-milling up to 100 h results in the production of nanoparticles characterized by slightly reduced unit-cell volume and substantial atomic disorder compared to the bulk LaNi5. High temperature annealing appears to help in partial recovery of atomic order in the ball-milled samples; however, long-time ball-milled samples retain the disorder even after the high temperature annealing. The results suggest that the large disorder and the reduced unit-cell volume might be causing a higher energy-barrier for the hydride-phase formation in the long-time ball-milled LaNi{sub 5} powders.

  14. Removal of hexavalent chromium from contaminated waters by ultrasound-assisted aqueous solution ball milling.

    PubMed

    Chen, Lin; Chen, Zhenhua; Chen, Ding; Xiong, Wei

    2017-02-01

    Batch mode experiments were conducted to study the removal of hexavalent chromium (Cr(VI)) from aqueous solutions using ultrasound-assisted aqueous solution ball milling. The results show that the reduction rate of Cr(VI) by ultrasound-assisted aqueous solution ball milling was significantly faster than that by ball milling or ultrasound treatment alone, and an initial Cr(VI) concentration of 166mg/L could be decreased to 0.35mg/L at 120min. The decisive factors, including initial concentration of Cr(VI), pH value, ultrasonic frequency and filling gas, were studied. It was found that the optimal ultrasonic frequency for ultrasound-assisted aqueous solution ball milling device was 20kHz, and the rate of Cr(VI) reduction as a function of filling gas followed the order: Ar>air>N2>O2. Samples were characterized by X-ray diffraction, fluorescence measurements, atomic absorption and the diphenylcarbazide colorimetric method. The Cr(VI) transformed into a precipitate that could be removed from the contaminated water, after which the water could be reused.

  15. Synthesis of aluminum nitride powders from a plasma-assisted ball milled precursor through carbothermal reaction

    SciTech Connect

    Liu, Zhi-jie; Dai, Le-yang; Yang, De-zheng; Wang, Sen; Zhang, Bao-jian; Wang, Wen-chun; Cheng, Tie-han

    2015-01-15

    Highlights: • A novel and high efficiency synthesizing AlN powders method combining mechanical ball milling and DBDP has been developed. • The particle size, the crystallite size, the lattice distortion, the morphology of Al{sub 2}O{sub 3} powders, and the AlN conversion rate are investigated and compared under the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP. • The ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermal temperature. - Abstract: In this paper, aluminum nitride (AlN) powers have been produced with a novel and high efficiency method by thermal annealing at 1100–1600 °C of alumina (Al{sub 2}O{sub 3}) powders which were previously ball milled for various time up to 40 h with and without the assistant of dielectric barrier discharge plasma (DBDP). The ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP and the corresponding synthesized AlN powers are characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscopy. From the characteristics of the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP, it can be seen that the ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermal temperature. Meanwhile, the synthesized AlN powders can be known as hexagonal AlN with fine crystal morphology and irregular lump-like structure, and have uniform distribution with the average particle size of about between 500 nm and 1000 nm. This provides an important method for fabricating ultra fine powders and synthesizing nitrogen compounds.

  16. 7. Ball mill area and second level entry with overhead ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Ball mill area and second level entry with overhead crane in background - Bureau of Mines Boulder City Experimental Station, Ore Dressing Pilot Plant, Date Street north of U.S. Highway 93, Boulder City, Clark County, NV

  17. DETAIL OF CYCLONE CLASSIFIER, WITH MARCY NO. 86 BALL MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CYCLONE CLASSIFIER, WITH MARCY NO. 86 BALL MILL BELOW AND BEHIND IT. STRAIGHT HORIZONTAL PIPE IS SLIME FEED FROM ROD MILL. PIPE OUT TOP OF CYCLONE AND CURVING AT LOWER RIGHT CARRIED FINELY GROUND SLIME TO FLOTATION CONDITIONER TANK. PIPE NOT VISIBLE OUT BOTTOM OF CYCLONE CONVEYED COARSER SLIME TO BALL MILL. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  18. Effect of expansion temperature of expandable graphite on microstructure evolution of expanded graphite during high-energy ball-milling

    SciTech Connect

    Yue Xueqing; Li Liang; Zhang Ruijun; Zhang Fucheng

    2009-12-15

    Two expanded graphites (EG), marked as EG-1 and EG-2, were prepared by rapid heating of expandable graphite to 600 and 1000 deg. C, respectively, and ball milled in a high-energy mill (planetary-type) under air atmosphere. The microstructure evolution of the ball-milled samples was characterized by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD analysis shows that the evolution degree of the average crystallite thickness along the c-axis (L{sub c}) of EG-2 is lower than that of EG-1 during the milling process. From the HRTEM images of the samples after 100 h ball-milling, slightly curved graphene planes can be frequently observed both in the two EGs, however, EG-1 and EG-2 exhibit sharply curved graphene planes and smoothly curved graphene planes with high bending angles, respectively.

  19. High-frequency induction heated sintering of ball milled Fe-WC nanocomposites

    NASA Astrophysics Data System (ADS)

    Zakeri, M.; Zanganeh, T.; Najafi, A.

    2013-07-01

    Fe-WC nanocomposites were successfully fabricated by high-frequency induction heated sintering of ball milled nanostructure powders. The ball milled powders were characterized by X-ray diffraction. Density measurements by the Archimedes method show that all sintered samples have the relative density higher than 95%. Studies on the effects of WC content, milling speed, and milling time indicate that a higher milling speed and a more WC content lead to the improvement of mechanical properties. There is a very good distribution of WC particles in the Fe matrix at the milling speed of 650 r/min. For the sintered sample 20-5-650 (20wt% WC, milling time of 5 h, and milled speed of 650 r/min), the maximum Brinell hardness and yield stress are obtained to be 3.25 GPa and 858 MPa, respectively. All sintered samples have brittle fracture during compression test except the sample 20-5-650.

  20. Powder properties of hydrogenated ball-milled graphite

    SciTech Connect

    Zhang, Y.; Wedderburn, J.; Harris, R.; Book, D.

    2014-12-15

    Ball milling is an effective way of producing defective and nanostructured graphite. In this work, the hydrogen storage properties of graphite, ball-milled in a tungsten carbide milling pot under 3 bar hydrogen for various times (0–40 h), were investigated by TGA-Mass Spectrometry, XRD, SEM and laser diffraction particle size analysis. For the conditions used in this study, 10 h is the optimum milling time resulting in desorption of 5.5 wt% hydrogen upon heating under argon to 990 °C. After milling for 40 h, the graphite became significantly more disordered, and the amount of desorbed hydrogen decreased. After milling up to 10 h, the BET surface area increased while particle size decreased; however, there is no apparent correlation between these parameters, and the hydrogen storage properties of the hydrogenated ball-milled graphite.

  1. Magnetic properties of ball milled Fe-40Al at.% alloys

    SciTech Connect

    Amils, X.; Nogues, J.; Surinach, S.; Baro, M.D.; Munoz, J.S.

    1998-07-01

    A direct correlation between the lattice parameter and the saturation magnetization, during the disordering (ball milling) and posterior reordering (annealing) processes, has been found in Fe-40Al At.% compounds. These results indicate that the paramagnetic-ferromagnetic-paramagnetic transitions induced by ball milling and subsequent annealing could be related to the changes in volume, and not only to nearest neighbors effects as is commonly assumed. Moreover, these alloys have been found to become spin glass at low temperatures, independently of their structural state (ordered or disordered).

  2. 6. FF coal pulverizer (ball mill inside). GG building in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FF coal pulverizer (ball mill inside). GG building in background did preliminary crushing; pulverizer to left, coal conveyor and air cleaning towers to right; conveyor on left brought crushed coal to FF. Looking north/northeast - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  3. Generation of drugs coated iron nanoparticles through high energy ball milling

    NASA Astrophysics Data System (ADS)

    Radhika Devi, A.; Chelvane, J. A.; Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh; Murty, B. S.

    2014-03-01

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  4. Generation of drugs coated iron nanoparticles through high energy ball milling

    SciTech Connect

    Radhika Devi, A.; Murty, B. S.; Chelvane, J. A.; Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh

    2014-03-28

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  5. Processing of nanostructured nickel by severe plastic deformation consolidation of ball-milled powder

    SciTech Connect

    Valiev, R.Z. |; Mishral, R.S.; Grozal, J.; Mukherjee, A.K.

    1996-05-01

    Severe plastic deformation consolidation process of the ball-milled powder has been able to produce fully dense nanocrystalline nickel with a grain size of {approximately}20 nm. The processed samples are characterized by very high elastic strains, very likely caused by a presence of high density of extrinsic grain boundary dislocations. The combined effect of the smallest nanoscale grain size in nickel, as obtained in this study, along with the effect of high elastic strains, resulted in the high level of hardness and also the lower experimentally measured density of these severe plastic deformation consolidation samples.

  6. Ball-milled sulfur-doped graphene materials contain metallic impurities originating from ball-milling apparatus: their influence on the catalytic properties.

    PubMed

    Chua, Chun Kiang; Sofer, Zdeněk; Khezri, Bahareh; Webster, Richard D; Pumera, Martin

    2016-07-21

    Graphene materials have found applications in a wide range of devices over the past decade. In order to meet the demand for graphene materials, various synthesis methods are constantly being improved or invented. Ball-milling of graphite to obtain graphene materials is one of the many versatile methods to easily obtain bulk quantities. In this work, we show that the graphene materials produced by ball-milling are spontaneously contaminated with metallic impurities originating from the grinding bowls and balls. Ball-milled sulfur-doped graphene materials obtained from two types of ball-milling apparatus, specifically made up of stainless steel and zirconium dioxide, were investigated. Zirconium dioxide-based ball-milled sulfur-doped graphene materials contain a drastically lower amount of metallic impurities than stainless steel-based ball-milled sulfur-doped graphene materials. The presence of metallic impurities is demonstrated by their catalytic effects toward the electrochemical catalysis of hydrazine and cumene hydroperoxide. The general impression toward ball-milling of graphite as a versatile method for the bulk production of 'metal-free' graphene materials without the need for post-processing and the selection of ball-milling tools should be cautioned. These findings would have wide-reaching implications for graphene research.

  7. Ball Mill Synthesis of Bulk Quaternary Cu2ZnSnSe4 and Thermoelectric Studies

    NASA Astrophysics Data System (ADS)

    Tiwari, Kunal J.; Prem Kumar, D. S.; Mallik, Ramesh Chandra; Malar, P.

    2017-01-01

    In this work, quaternary chalcogenide Cu2ZnSnSe4 (CZTSe) was synthesized using a mechanochemical ball milling process and its thermoelectric properties were studied by electrical resistivity, Seebeck coefficient, and thermal conductivity measurements. The synthesis process comprises three steps viz., wet ball milling of the elemental precursors, vacuum annealing, and densification by hot pressing. The purpose of this is to evaluate the feasibility of introducing wet milling in place of vacuum melting in solid state synthesis for the reaction of starting elements. We report the structural characterization and thermoelectric studies conducted on samples that were milled at 300 rpm and 500 rpm. X-ray diffraction (XRD) analysis showed the existence of multiple phases in the as-milled samples, indicating the requirement for heat treatment. Therefore, the ball milled powders were cold pressed and vacuum annealed to eliminate the secondary phases. Annealed samples were hot pressed and made into dense pellets for further investigations. In addition to XRD, energy dispersive spectroscopy (EDS) studies were performed on hot pressed samples to study the composition. XRD and EDS studies confirm CZTSe phase formation along with ZnSe secondary phase. Electrical resistivity and Seebeck coefficient measurements were done on the hot pressed samples in the temperature range 340-670 K to understand the thermoelectric behaviour. Thermal conductivity was calculated from the specific heat capacity and thermal diffusivity values. The thermoelectric figure of merit zT values for samples milled at 300 rpm and 500 rpm are ˜0.15 and ˜0.16, respectively, at 630 K, which is in good agreement with the values reported for solid state synthesized compounds.

  8. Facile and Cost-Effective Synthesis and Deposition of a YBCO Superconductor on Copper Substrates by High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    Alami, Abdul Hai; Assad, Mhd Adel; Aokal, Camilia

    2016-12-01

    The article investigates the synthesis and deposition of YBCO on a copper substrate for various functional purposes. The superconductor is first prepared by mechanically alloying elemental components (yttrium, barium, and copper) for 50 hours in a high-energy ball mill with subsequent protocol of heat treatment in an oxygen-rich atmosphere to arrive at stoichiometric ratios of YBa2Cu3O7. The material is then deposited on a thin copper substrate also by ball milling under various parameters of rotational speed and deposition time to select the best and most homogenous substrate coverage. Atomic force microscopy has confirmed the desired results, and other microstructural, thermal, and electrical techniques are used to characterize the obtained material. High-energy ball milling proved to be a versatile means to synthesize and deposit the material in a straightforward manner and controllable parameters for different deposit thicknesses and coverages.

  9. Iron nanoparticles produced by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Muñoz, Jorge E.; Cervantes, Janeth; Esparza, Rodrigo; Rosas, Gerardo

    2007-10-01

    In this investigation, the chemical and structural characteristics of Fe nanoparticles synthesized by high-energy ball milling have been explored. After the milling process the nanoparticles were collected using a magnetic field. The structure, morphology and composition of the powders were obtained using high-resolution electron microscopy. HREM images confirmed the nanoparticles' presence with approximately 2-4 nm in size. It was found that using this method allowed the formation of nanoparticles in a smaller size range than other synthesis methods. Also, it was confirmed by HREM images that the obtained nanoparticles were mainly of the fcc nature and some of them of the MTP type.

  10. Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Eom, JiYong; Kim, DongYung; Kwon, HyukSang

    The effects of ball-milling on Li insertion into multi-walled carbon nanotubes (MWNTs) are presented. The MWNTs are synthesized on supported catalysts by thermal chemical vapour deposition, purified, and mechanically ball-milled by the high energy ball-milling. The purified MWNTs and the ball-milled MWNTs were electrochemically inserted with Li. Structural and chemical modifications in the ball-milled MWNTs change the insertion-extraction properties of Li ions into/from the ball-milled MWNTs. The reversible capacity (C rev) increases with increasing ball-milling time, namely, from 351 mAh g -1 (Li 0.9C 6) for the purified MWNTs to 641 mAh g -1 (Li 1.7C 6) for the ball-milled MWNTs. The undesirable irreversible capacity (C irr) decreases continuously with increase in the ball-milling time, namely, from 1012 mAh g -1 (Li 2.7C 6) for the purified MWNTs to 518 mAh g -1 (Li 1.4C 6) for the ball-milled MWNTs. The decrease in C irr of the ball-milled samples results in an increase in the coulombic efficiency from 25% for the purified samples to 50% for the ball-milled samples. In addition, the ball-milled samples maintain a more stable capacity than the purified samples during charge-discharge cycling.

  11. Edge-carboxylated graphene nanosheets via ball milling

    PubMed Central

    Jeon, In-Yup; Shin, Yeon-Ran; Sohn, Gyung-Joo; Choi, Hyun-Jung; Bae, Seo-Yoon; Mahmood, Javeed; Jung, Sun-Min; Seo, Jeong-Min; Kim, Min-Jung; Wook Chang, Dong; Dai, Liming; Baek, Jong-Beom

    2012-01-01

    Low-cost, high-yield production of graphene nanosheets (GNs) is essential for practical applications. We have achieved high yield of edge-selectively carboxylated graphite (ECG) by a simple ball milling of pristine graphite in the presence of dry ice. The resultant ECG is highly dispersable in various solvents to self-exfoliate into single- and few-layer (≤ 5 layers) GNs. These stable ECG (or GN) dispersions have been used for solution processing, coupled with thermal decarboxylation, to produce large-area GN films for many potential applications ranging from electronic materials to chemical catalysts. The electrical conductivity of a thermally decarboxylated ECG film was found to be as high as 1214 S/cm, which is superior to its GO counterparts. Ball milling can thus provide simple, but efficient and versatile, and eco-friendly (CO2-capturing) approaches to low-cost mass production of high-quality GNs for applications where GOs have been exploited and beyond. PMID:22454492

  12. Effects and mechanism of ball milling on torrefaction of pine sawdust.

    PubMed

    Gong, Chunxiao; Huang, Jing; Feng, Chen; Wang, Guanghui; Tabil, Lope; Wang, Decheng

    2016-08-01

    The effects and mechanism of ball milling on the torrefaction process were studied. Ball- and hammer-milled (screen size 1mm) pine sawdust samples were torrefied at three temperatures (230, 260, and 290°C) and two durations (30 and 60min) to investigate into their torrefaction behavior and physicochemical properties. The results showed that, under identical torrefaction conditions, torrefied ball-milled pine sawdust had a higher carbon content and fixed carbon, and lower hydrogen and oxygen contents than torrefied hammer-milled pine sawdust. Torrefied ball-milled pine sawdust produced lower mass and energy yields, but higher heating values than torrefied hammer-milled pine sawdust. Ball milling destroyed the crystalline structure of cellulose and thus reduced the thermal stability of hemicellulose, cellulose, and lignin, causing them to degrade at relatively lower temperatures. In conclusion, biomass pretreated with a combination of ball milling and torrefaction has the potential to produce an alternative fuel to coal.

  13. Ball-milled CuPc/TiO{sub 2} hybrid nanocomposite and its photocatalytic degradation of aqueous Rhodamine B

    SciTech Connect

    Mekprasart, W.; Vittayakorn, N.; Pecharapa, W.

    2012-11-15

    Graphical abstract: This work reports on the synthesis of hybrid composites of titanium dioxide and copper phthalocyanine via ball-milling assisted process in combination with mechanical mixing process. Their structural properties and photocatalytic degradation of aqueous RhB were investigated. The significant enhancement of the photocatalytic performance of the composite may be related to the charge recombination suppression guiding to the increase of free functional radicals participated in degradation process. Highlights: ► CuPc/TiO{sub 2} nanocomposite was synthesized by ball-milling assisted process and mechanical mixing method. ► Ball milling process can reduce CuPc size and assist the formation of well-dispersed composite. ► Loaded CuPc has inconsiderable influence on basic crystal structure of TiO{sub 2} matrix. ► The optical absorption properties of TiO{sub 2} in UV and visible light is improved with the existence of CuPc. ► CuPc/TiO{sub 2} nanocomposite can efficiently heighten the catalytic performance of TiO{sub 2} in the photodegradation of RhB. -- Abstract: Hybrid composites of titanium dioxide and copper phthalocyanine were synthesized by ball-milling assisted process in combination with mechanically stirring method. Structural properties of as-synthesized composites were characterized by X-ray diffraction (XRD), X-ray absorption fine structure (XANES) and scanning electron microscope (SEM). The optical absorbance of as-prepared composites and their photocatalytic activities were investigated by UV–vis spectroscopy. XRD and XANES results confirm that CuPc/TiO{sub 2} nanocomposite is still in the same structure of TiO{sub 2} and CuPc. SEM result reveals that the decreasing particle size of ball-milled CuPc has good dispersion on the surface of TiO{sub 2}. Absorptivity in UV region of the composites is heightened and shifted to visible light due to strong absorbance in blue-green spectrum of CuPc. The photocatalytic degradation of Rhodamine

  14. Hydrogen storage materials discovery via high throughput ball milling and gas sorption.

    PubMed

    Li, Bin; Kaye, Steven S; Riley, Conor; Greenberg, Doron; Galang, Daniel; Bailey, Mark S

    2012-06-11

    The lack of a high capacity hydrogen storage material is a major barrier to the implementation of the hydrogen economy. To accelerate discovery of such materials, we have developed a high-throughput workflow for screening of hydrogen storage materials in which candidate materials are synthesized and characterized via highly parallel ball mills and volumetric gas sorption instruments, respectively. The workflow was used to identify mixed imides with significantly enhanced absorption rates relative to Li2Mg(NH)2. The most promising material, 2LiNH2:MgH2 + 5 atom % LiBH4 + 0.5 atom % La, exhibits the best balance of absorption rate, capacity, and cycle-life, absorbing >4 wt % H2 in 1 h at 120 °C after 11 absorption-desorption cycles.

  15. 130-fold enhancement of TiO2 photocatalytic activities by ball milling

    NASA Astrophysics Data System (ADS)

    Saitow, Ken-ichi; Wakamiya, Tomoji

    2013-07-01

    Submicrometer TiO2 particles were prepared by changing the mechanochemical parameters in planetary ball milling. The TiO2 particles before and after milling were characterized by five experimental methods. The photocatalytic activities of the TiO2 particles were evaluated by the photoreduction of an aqueous solution of methylene blue. The activity of milled TiO2 was 136 times that of TiO2 (anatase) before milling and 62 times that of commercial available TiO2 photocatalyst (P25). In addition to the reduction in particle size and increase in specific surface area due to milling, the disorder TiO2, involving amorphous and srilankite phases, significantly increased the catalytic performance.

  16. ELECTROMAGNETIC MICROWAVE PROPERTIES OF Fe82B17Cu1 BALL MILLED ALLOY

    NASA Astrophysics Data System (ADS)

    Tian, N.; Fan, X. D.; Wang, J. W.; You, C. Y.; Lu, Z. X.; Ge, L. L.

    2013-07-01

    High saturation magnetization and magnetic anisotropy are helpful for getting a high frequency electromagnetic microwave absorption performance. The α-Fe possesses a high saturation magnetization. Fe-B phases exhibit a relatively higher magnetic anisotropy and higher resistivity than α-Fe simultaneously. In this work, we made nanocrystalline powders of Fe82B17Cu1, mainly consisting of α-Fe and Fe2B phases, by ball milling and post-annealing. Electromagnetic microwave characterization shows that Fe82B17Cu1 powders possess a relative high permeability and considerable permittivity. Due to a good electromagnetic impedance matching, a good electromagnetic microwave absorption property (RL < -35 dB) has been achieved at 3.6 GHz. The experimental frequency and the matching thickness are coincident with the quarter wavelength matching condition.

  17. Influence of milling time on fineness of Centella Asiatica particle size produced using planetary ball mill

    NASA Astrophysics Data System (ADS)

    Borhan, M. Z.; Ahmad, R.; Rusop, M.; Abdullah, S.

    2012-11-01

    Centella Asiatica (C. Asiatica)contains asiaticoside as bioactive constituent which can be potentially used in skin healing process. Unfortunately, the normal powders are difficult to be absorbed by the body effectively. In order to improve the value of use, nano C. Asiatica powder was prepared. The influence of milling time was carried out at 0.5, 2, 4, 6, 8 hours and 10 hours. The effect of ball milling at different times was characterized using particles size analysis and FTIR Spectroscopy. The fineness of ground product was evaluated by recording the z-Average (nm), undersize distribution and polydispersity index (PdI). The results show that the smallest size particles by mean is 233 nm while FTIR spectra shows that there is no changing in the major component in the C. Asiatica powders with milling time.

  18. Ball-milling of graphite and muilti-wall carbon nanotubes.

    PubMed

    Nam, Hye Rim; Kim, Young Jin; Yang, Sang Sun; Ahn, Jung-Ho

    2014-12-01

    The structural modification of graphite and multi-wall carbon nanotubes (MWCNTs) during ball-milling was examined. A comparison of structures after ball-milling was made between graphite and MWCNTs. The ball milling parameters were also examined: milling atmospheres, milling methods, milling mode and the addition of additive materials. In some experiments, hard materials such as alumina or silica were added to graphite and MWCNTs as additives to see whether graphite and MWCTs were shortened by ball-milling. The ball-milling of graphite and MWCNTs with liquid additives reduced the agglomeration of MWCNT and transformed graphite to graphenes. The ball-milling of MWCNTs under impact mode usually resulted in the formation of an amorphous phase, whereas that under friction mode induced the fattening of nanotubes. The results showed that a variety of carbon nanomaterials could be obtained by the proper controlling of ball milling. The structurally modified graphite and MWSNTs are expected to be utilized for energy storage application.

  19. Investigation of the effect of intensive ball milling in a planetary ball mill on the thermal decomposition of cadmium carbonate and basic zinc carbonate

    NASA Astrophysics Data System (ADS)

    Ksiadot zek, K.; Wacke, S.; Górecki, T.; Górecki, Cz

    2007-08-01

    The kinetics of thermal decomposition of cadmium carbonate CdCO3 and basic zinc carbonate ZnCO3·nZn(OH)2 and the effect of intensive milling in a planetary ball mill on its parameters, have been investigated. The values of the reaction heat and of the activation energies of thermal decomposition have been determined for both the compounds. Investigations of the thermal decomposition of the products of ball milling of investigated compounds revealed a slight effect of milling conditions on the reaction temperature and heat consumed during the thermal decomposition of ZnCO3·nZn(OH)2. No effect of ball milling on the thermal decomposition of CdCO3 has been found.

  20. Preferential Carbon Monoxide Oxidation over Copper-Based Catalysts under In Situ Ball Milling.

    PubMed

    Eckert, Rene; Felderhoff, Michael; Schüth, Ferdi

    2017-02-20

    In situ ball milling of solid catalysts is a promising yet almost unexplored concept for boosting catalytic performance. The continuous preferential oxidation of CO (CO-PROX) under in situ ball milling of Cu-based catalysts such as Cu/Cr2 O3 is presented. At temperatures as low as -40 °C, considerable activity and more than 95 % selectivity were achieved. A negative apparent activation energy was observed, which is attributed to the mechanically induced generation and subsequent thermal healing of short-lived surface defects. In situ ball milling at sub-zero temperatures resulted in an increase of the CO oxidation rate by roughly 4 orders of magnitude. This drastic and highly selective enhancement of CO oxidation showcases the potential of in situ ball milling in heterogeneous catalysis.

  1. Processing of magnetically anisotropic MnBi particles by surfactant assisted ball milling

    NASA Astrophysics Data System (ADS)

    Kanari, K.; Sarafidis, C.; Gjoka, M.; Niarchos, D.; Kalogirou, O.

    2017-03-01

    MnBi particles are obtained from bulk MnBi using mechanochemical processing. The structure and magnetic properties of the MnBi particles are investigated by means of X-ray diffraction analysis, scanning electron microscopy and magnetometry. Surfactant assisted high energy ball milling results to the samples' degradation even after one hour of milling. In the case of surfactant assisted low energy ball milling the increase of ball milling duration decreases the average particle size while the particles seem to be more separated. The saturation magnetization (Ms) was found to decrease for large milling times beginning from 61 Am2/kg, while the coercivity (μ0Hc) increases with the increase of ball milling duration up to 35 min where it reaches 1.62 T and thereafter it decreases.

  2. Crystal structure of ball-milled mixture of sodium chloride and magnesium chloride-ethanol adduct

    SciTech Connect

    Jiang Xue; Tian Xiuzhi; Fan Zhiqiang

    2008-02-05

    NaCl doped MgCl{sub 2}.nEtOH adducts were prepared by ball-milling MgCl{sub 2}.2.5EtOH with NaCl. Both the ball-milled MgCl{sub 2}.nEtOH/NaCl mixture and pure MgCl{sub 2}.2.5EtOH adducts were analyzed by X-ray diffraction (XRD), transmission electron microscope (TEM), thermogravimetry (TG) and differencial scanning calorimetry (DSC). A simple MgCl{sub 2}.nEtOH/NaCl mixture without ball-milling treatment was also studied for comparison. Two kinds of mixed crystals, Na{sub 2}MgCl{sub 4} and NaMgCl{sub 3}, were found to be formed in a ball-milled mixture that contained 16 mol.% NaCl. TG and DSC analysis of the samples also provided indirect evidences supporting the presence of the mixed crystals in the ball-milled mixture. Adding certain amounts of NaCl in MgCl{sub 2}.2.5EtOH adduct, either by co-milling or by simple mixing, greatly increased the thermal stability of the adduct, but thermal decomposition behaviour of the ball-milled mixture was still different from that of a simple mixture.

  3. Response to Thermal Exposure of Ball-Milled Aluminum-Borax Powder Blends

    NASA Astrophysics Data System (ADS)

    Birol, Yucel

    2013-04-01

    Aluminum-borax powder mixtures were ball milled and heated above 873 K (600 °C) to produce Al-B master alloys. Ball-milled powder blends reveal interpenetrating layers of deformed aluminum and borax grains that are increasingly refined with increasing milling time. Thermal exposure of the ball-milled powder blends facilitates a series of thermite reactions between these layers. Borax, dehydrated during heating, is reduced by Al, and B thus generated reacts with excess Al to produce AlB2 particles dispersed across the aluminum grains starting at 873 K (600 °C). AlB2 particles start to form along the interface of the aluminum and borax layers. Once nucleated, these particles grow readily to become hexagonal-shaped crystals that traverse the aluminum grains with increasing temperatures as evidenced by the increase in the size as well as in the number of the AlB2 particles. Ball milling for 1 hour suffices to achieve a thermite reaction between borax and aluminum. Ball milling further does not impact the response of the powder blend to thermal exposure. The nucleation-reaction sites are multiplied, however, with increasing milling time and thus insure a higher number of smaller AlB2 particles. The size of the AlB2 platelets may be adjusted with the ball milling time.

  4. On the amorphization behavior and hydrogenation performance of high-energy ball-milled Mg{sub 2}Ni alloys

    SciTech Connect

    Kou, Hongchao; Hou, Xiaojiang; Zhang, Tiebang Hu, Rui; Li, Jinshan; Xue, Xiangyi

    2013-06-15

    Amorphous Mg{sub 2}Ni alloy was prepared by high energy ball-milling starting with polycrystalline Mg{sub 2}Ni which was prepared with the help of a metallurgy method by using a SPEX 8000D mill. The microstructural and phase structure characterization of the prepared materials was performed via scanning electron microscopy, transition electron microscope and X-ray diffraction. The thermal stabilities were investigated by differential scanning calorimetry. The apparent activation energies were determined by means of the Kissinger method. The first and second crystallization reactions take place at ∼ 255 °C and ∼ 410 °C, and the corresponding activation energy of crystallization is E{sub a1} = 276.9 and E{sub a2} = 382.4 kJ/mol, respectively. At 3 MPa hydrogen pressure and 250 °C, the hydrogen absorption capacities of crystalline, partially and fully amorphous Mg{sub 2}Ni alloy are 2.0 wt.%, 3.2 wt.% and 3.5 wt.% within 30 min, respectively. - Graphical Abstract: We mainly focus on the amorphization behavior of crystalline Mg{sub 2}Ni alloy in the high energy ball-milling process and the crystallization behavior of the amorphous Mg{sub 2}Ni alloy in a follow-up heating process. The relationship of milling, microstructure and hydrogenation properties is established and explained by models. - Highlights: • Amorphous Mg{sub 2}Ni has been obtained by high energy ball milling the as-cast alloy. • The amorphization behavior of polycrystalline Mg{sub 2}Ni is presented. • The crystallization behavior of the amorphous Mg{sub 2}Ni alloy is illustrated. • Establish the relationship of milling, microstructure and hydrogenation properties.

  5. Impact of high energy ball milling on the nanostructure of magnetite–graphite and magnetite–graphite–molybdenum disulphide blends

    SciTech Connect

    Österle, W.; Orts-Gil, G.; Gross, T.; Deutsch, C.; Hinrichs, R.; Vasconcellos, M.A.Z.; Zoz, H.; Yigit, D.; Sun, X.

    2013-12-15

    Different, partly complementary and partly redundant characterization methods were applied to study the transition of magnetite, graphite and MoS{sub 2} powders to mechanically alloyed nanostructures. The applied methods were: Transmission electron microscopy (TEM), Mössbauer spectroscopy (MS), Raman spectroscopy (RS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The main objective was to prepare a model material providing the essential features of a typical tribofilm forming during automotive braking, and to assess the impact of different constituents on sliding behaviour and friction level. Irrespective of the initial grain size, the raw materials were transferred to a nanocrystalline structure and mixed on a nanoscopic scale during high energy ball milling. Whereas magnetite remained almost unchanged, graphite and molybdenum disulphide were transformed to a nanocrystalline and highly disordered structure. The observed increase of the coefficient of friction was attributed to a loss of lubricity of the latter ingredient due to this transformation and subsequent oxidation. - Highlights: • Characterization of microstructural changes induced by high energy ball milling • Assessment of the potential of different characterization methods • Impact of mechanical alloying on tribological performance revealed by tests • Preparation of an artificial third body resembling the one formed during braking.

  6. Effects of ball milling and sintering on alumina and alumina-boron compounds

    NASA Astrophysics Data System (ADS)

    Cross, Thomas

    Alumina has a wide variety of applications, but the processing of alumina based materials can be costly. Mechanically milling alumina has been shown to enhance the sintering properties while decreasing the sintering temperature. Additions of boron have also proven to increase sintering properties of alumina. These two processes, mechanical milling and boron additions, will be combined to test the sintering properties and determine if they are improved upon even further compared to the individual processes. Multiple samples of pure alumina, 0.2 weight percent boron, and 1.0 weight percent boron are batched and processed in a ball mill for different time intervals. These samples are then characterized to observe the structure and properties of the samples after milling but before sintering. Pellets are dry pressed from the milled powders, sintered at 1200°C for one to 10 hours, and characterized to determine the impact of processing. X-ray diffractometry (XRD) was used on each sample to determine crystallite size and lattice parameters at different stages throughout the experiment. XRD was also used to identify any samples with an aluminum borate phase. Scanning electron microscopy (SEM) was used to observe the powder and pellet morphology and to measure bulk chemical composition. Samples were sputter coated with an Au-Pd coating observed in the SEM to characterize the topography as a function of variables such as milling time, boron composition, and sintering time. Additionally, porosity and change in diameter were measured to track the sintering process. Milling sample for longer periods of time would be unnecessary due to the crystallite size leveling off between 10 and 12 hours of milling time. Samples of alumina with 0.2 weight percent boron prove to have very little effect on the sintering properties. At 1.0 weight percent boron, there are changes in diffraction patterns and topography after being sintered for one hour. The porosities of all of the sintered

  7. Ball milled h-BN: an efficient holes transfer promoter to enhance the photocatalytic performance of TiO2.

    PubMed

    Fu, Xianliang; Hu, Yingfei; Yang, Yunguang; Liu, We; Chen, Shifu

    2013-01-15

    High activity hexagonal-BN (h-BN)/TiO(2) composite photocatalysts were prepared by ball milling method. The structural and optical properties of the samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS), and fluorescence emission spectra. The effect of the loading amount of h-BN and the ball milling time on the photocatalytic degradation of Rhodamine B (RhB) and methylene blue (MB) was investigated. The results indicated that the photocatalytic activity of TiO(2) could be improved substantially by coupling with a proper amount of milled h-BN. The optimal loading amount of h-BN was found to be 0.5 wt% and the milling time was 30 min. Under this condition, the photocatalytic removal efficiencies of TiO(2) for RhB and MB could be increased as high as 15 and 8 times. The role of the milling process and the mechanism for the enhancements was finally discussed in terms of creation of negatively charged h-BN surface and promotion the separation of photoinduced holes, respectively.

  8. Synthesis of Nano-Size AlN Powders by Carbothermal Reduction from Plasma-Assisted Ball Milling Precursor

    NASA Astrophysics Data System (ADS)

    Liu, Zhijie; Wang, Wenchun; Yang, Dezheng; Wang, Sen; Dai, Leyang

    2016-07-01

    Nano-size aluminum nitride (AlN) powders have been successfully synthesized with a high efficiency method through annealing from milling assisted by discharge plasma (p-milling) alumina (Al2O3) precursors. The characterization of the p-milling Al2O3 powders and the synthesized AlN are investigated. Compared to conventional ball milling (c-milling), it can be found that the precursors by p-milling have a finer grain size with a higher specific surface area, which lead to a faster reaction efficiency and higher conversion to AlN at lower temperatures. The activation energy of p-milling Al2O3 is found to be 371.5 kJ/mol, a value that is much less than the reported value of the unmilled and the conventional milled Al2O3. Meanwhile, the synthesized AlN powders have unique features, such as an irregular lamp-like morphology with uniform particle distribution and fine average particle size. The results are attributed to the unique synergistic effect of p-milling, which is the effect of deformation, fracture, and cold welding of Al2O3 powders resulting from ball milling, that will be enhanced due to the introduction of discharge plasma. supported by National Natural Science Foundation of China (No. 51177008)

  9. The effects of attrition and ball milling on the properties of magnesium diboride

    NASA Astrophysics Data System (ADS)

    Dancer, C. E. J.; Prabhakaran, D.; Crossley, A.; Todd, R. I.; Grovenor, C. R. M.

    2010-06-01

    Commercially produced magnesium diboride powder was modified by attrition milling and ball milling in propan-2-ol for various durations. These powders were characterized by means of particle size distribution measurements using laser diffraction, impurity analysis using x-ray diffraction, energy dispersive spectroscopy and x-ray photoelectron spectroscopy, and scanning electron microscopy, and were then used to produce magnesium diboride samples through pressureless heat treatment at peak temperatures up to 1100 °C. X-ray diffraction, scanning electron microscopy, Vickers hardness measurements, and density measurements using the Archimedes method were used to characterize the properties of the samples, and a determination of their superconducting properties using the magnetization method was carried out. Magnesium diboride produced from powder milled under certain conditions had a higher Jc, mag than samples produced from as-purchased powder, but the relationship between the milling duration or energy and the superconducting performance is a complex one, affected by both the particle size and the impurity content of the starting powder.

  10. Ball milling synthesis of silica nanoparticle from rice husk ash for drug delivery application.

    PubMed

    Salavati-Niasari, Masoud; Javidi, Jaber; Dadkhah, Mahnaz

    2013-07-01

    Silica nanoparticles were synthesized from rice husk ash at room temperature by using high energy planetary ball mill. The milling time and mill rotational speed were varied in four levels. The morphology of the synthesized powders was investigated by the FE-SEM and TEM image as well as XRD patterns. The results have revealed that the nano-sized amorphous silica particles are formed after about 6 h ball milling and they are spherical in shape. The average particle size of the silica powders is found to be around 70 nm which decreases with increasing ball milling time or mill rotational speed. The as-synthesized silica nanoparticles were subsequently employed as drug carrier to investigate in vitro release behavior of Penicillin-G in simulated body fluid. UV-Vis spectroscopy was used to determine the amount of Penicillin-G released from the carrier. Penicillin-G release profile from silica nanoparticles exhibited a delayed release effect.

  11. Ferromagnetic behavior of nanocrystalline Cu-Mn alloy prepared by ball milling

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Sardar, G.; Nath, D. N.; Chattopadhyay, P. P.

    2014-12-01

    50Cu-50Mn (wt%) alloy was produced by ball milling. The milling was continued up to 30 h followed by isothermal annealing over a four interval of temperature from 350 to 650 °C held for 1 h. Crystallite size, lattice strain, lattice parameter were determined by Rietveld refinement structure analysis of X-ray diffraction data. The amount of dissolved/precipitated Mn (wt%) after ball milling/milling followed by annealing was calculated by quantative phase analysis (QPA). The increase of coercivity could be attributed to the introduction of lattice strain and reduction of crystallite size as a function of milling time. Electron paramagnetic resonance and superconducting quantum interface device analysis indicate that soft ferromagnetic behavior has been achieved by ball milled and annealed Cu-Mn alloy. The maximum coercivity value of Cu-Mn alloy obtained after annealing at 350 °C for 1 h is 277 Oe.

  12. Structural and magnetic stability of high energy ball milled Co2MnSi

    NASA Astrophysics Data System (ADS)

    Vinesh, A.; Sudheesh, V. D.; Sebastian, Varkey; Lakshmi, N.; Venugopalan, K.

    2015-07-01

    Structural and magnetic properties of ball milled Co2MnSi have been studied and compared with that of ordered bulk sample. The milled sample (with average size determined using the Williamson-Hall method) shows that the chemical ordering for this sample is very stable and is little effected by high energy ball milling. However, the reduction in the saturation magnetic moment of the milled sample shows that there is spin disordering induced on ball milling - attributable to the formation of a magnetically dead layer at the surface of the nano-sized samples. The ordered sample (unmilled) has a saturation moment value of 4.4 μB per formula unit at room temperature and is in agreement with the prediction of Slater Pauling curve. On milling it reduces to ~3 μB per formula unit at room temperature with an accompanying increase in the coercivity, retentivity and squareness factor.

  13. Preparation of magnesium ferrite nanoparticles by ultrasonic wave-assisted aqueous solution ball milling.

    PubMed

    Chen, Ding; Li, Dian-yi; Zhang, Ying-zhe; Kang, Zhi-tao

    2013-11-01

    Magnesium ferrite, MgFe2O4 nanoparticles with high saturation magnetization were successfully synthesized using ultrasonic wave-assisted ball milling. In this study, the raw materials were 4MgCO3·Mg(OH)2·5H2O and Fe2O3 powders and the grinding media was stainless steel ball. The average particle diameter of the product MgFe2O4 powders was 20 nm and the saturation magnetization of them reached 54.8 emu/g. The different results of aqueous solution ball milling with and without ultrasonic wave revealed that it was the coupling effect of ultrasonic wave and mechanical force that played an important role during the synthesis of MgFe2O4. In addition, the effect of the frequency of the ultrasonic wave on the ball milling process was investigated.

  14. Remediation of oil-contaminated sand by coal agglomeration using ball milling.

    PubMed

    Shin, Yu-Jen; Shen, Yun-Hwei

    2011-10-01

    The mechanical shear force provided by a less energy intensive device (usually operating at 20-200 rpm), a ball mill, was used toperform coal agglomeration and its effects on remediation of a model fuel oil-contaminated sand were evaluated. Important process parameters such as the amount of coal added, milling time, milling speed and the size of milling elements are discussed. The results suggested that highly hydrophobic oil-coal agglomerates, formed by adding suitable amounts of coal into the oil-contaminated sand, could be mechanically liberated from cleaned sand during ball milling and recovered as a surface coating on the steel balls. Over 90% removal of oil from oil-contaminated sand was achieved with 6 wt% of coal addition and an optimum ball milling time of 20 min and speed of 200 rpm. This novel process has considerable potential for cleaning oil-contaminated sands.

  15. Efficient destruction of hexachlorobenzene by calcium carbide through mechanochemical reaction in a planetary ball mill.

    PubMed

    Li, Yingjie; Liu, Qingnan; Li, Wenfeng; Lu, Yingzhou; Meng, Hong; Li, Chunxi

    2017-01-01

    Mechanochemical destruction (MCD) is a good alternative to traditional incineration for the destruction of persistent organic pollutants (POPs), like hexachlorobenzene (HCB), and the key is to find an efficient co-milling reagent. Toward this aim, HCB was milled with various reagents in a planetary ball mill at room temperature, and CaC2 was found to be the best one. HCB can be destroyed completely within 20 min at a mass ratio of CaC2/HCB = 0.9 and a rotation speed of 300 rpm. The ground samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The results show that the destruction products are nonhazardous CaCl2 and carbon material with both crystalline and amorphous structures. On these bases, possible reaction pathways were proposed. Considering its excellent efficiency and safety, CaC2 may be the most feasible co-milling regent for MCD treatment of HCB. Further, the results are instructive for the destruction of other POPs.

  16. Effect of ball milling and heat treatment process on MnBi powders magnetic properties

    SciTech Connect

    Xie, Wei; Polikarpov, Evgueni; Choi, Jung-Pyung; Bowden, Mark E.; Sun, Kewei; Cui, Jun

    2016-09-01

    The metallic compound MnBi has high intrinsic coercivity with large positive temperature coefficient. The coercivity of MnBi exceeds 12 kOe and 26 kOe at 300 K and 523 K, respectively. Hence MnBi is a good candidate for the hard phase in exchange coupled nanocomposite magnets. In order to maximize the loading of the soft phase, the size of the MnBi particle has to be close to 500 nm, the size of single magnetic domain. Low energy milling is the common method to reduce MnBi particle size. However, only 3-7 mu m size particle can be achieved without significant decomposition. Here, we report our effort on preparing submicron MnBi powders using traditional powder metallurgy methods. Mn55Bi45 magnetic powders were prepared using arc melting method, followed by a series of thermal-mechanical treatment to improve purity, and finished with low energy ball milling at cryogenic temperature to achieve submicron particle size. The Mn55Bi45 powders were decomposed during ball milling process and recovered during 24 h 290 degrees C annealing process. With increasing ball-milling time, the saturation magnetization of MnBi decreases, while the coercivity increases. Annealing after ball milling recovers some of the magnetization, indicating the decomposition occurred during the ball-milling process can be reversed. The coercivity of Mn55Bi45 powders are also improved as a result of the heat treatment at 290 degrees C for 24 h. The world record magnetization 71.2 emu/g measured applying a field of 23 kOe has been achieved via low energy ball mill at room temperature

  17. Factors influencing the ball milling of Si3N4 in water

    NASA Technical Reports Server (NTRS)

    Freedman, M. R.; Kiser, J. D.; Herbell, T. P.

    1985-01-01

    A statistical study of the ball milling of Si3N4 powder in Si3N4 hardware was undertaken to understand how the resulting increase in specific surface area is related to solids loading and mill speed. An attempt was made to optimize milling conditions. The degree of communication was more dependent upon solids loading than mill speed. A practical grinding limit between 0.5 and 0.75 microns was achieved in 144 hr independent of solids loading. Ball mill wear and media wear were independent of both solids loading and mill speed.

  18. Effects of ball-milling on PLGA polymer and its implication on lansoprazole-loaded nanoparticles

    PubMed Central

    Shabir, Anjumn; Alhusban, Farhan; Perrie, Yvonne; Mohammed, Afzal R.

    2011-01-01

    PLGA is a biodegradable polymer utilised widely in pharmaceutical research for the encapsulation of a wide range of drugs as nano particulate systems. This study investigates the impact of rotary ball milling on the physical properties of PLGA and its influence on nanoparticle formation prepared using the solvent displacement technique. By applying mechanical stress to the polymer and altering its physical appearance and molecular weight, the loading of lansoprazole within the nanoparticles was increased to 96%, with a reduction in particle size. The results indicate that rotary ball milling significantly reduces particle size, increases lansoprazole loading and improves the release profile for lansoprazole loaded PLGA nanoparticles PMID:24826005

  19. Structural and microstructural changes in monoclinic ZrO{sub 2} during the ball-milling with stainless steel assembly

    SciTech Connect

    Stefanic, G. . E-mail: stefanic@irb.hr; Music, S.; Gajovic, A.

    2006-04-13

    High-energy ball-milling of monoclinic ZrO{sub 2} was performed in air using the planetary ball mill with a stainless steel milling assembly. Structural and microstructural changes during the ball-milling were monitored using X-ray powder diffraction, Raman spectroscopy, Moessbauer spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectrometry. The results of line broadening analysis indicated a decrease in the crystallite size and an increase in the microstrains with the ball-milling time increased up to {approx}150 min. The results of quantitative phase analysis indicated the presence of a very small amount of tetragonal ZrO{sub 2} phase in this early stage of ball-milling. The onset of m-ZrO{sub 2} {sup {yields}} t-ZrO{sub 2} transition occurred between 10 and 15 h of ball-milling, which resulted in a complete transition after 20 h of ball-milling. Further ball-milling caused a decrease of the t-ZrO{sub 2} lattice parameters followed by a probable transition into c-ZrO{sub 2}. It was concluded that the stabilization of t- and c-ZrO{sub 2} polymorphs at RT can be attributed to the incorporation of aliovalent cations (Fe{sup 2+}, Fe{sup 3+} and Cr{sup 3+}) introduced into the sample due to the wear and oxidation of the milling media.

  20. Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis.

    PubMed

    Zakaria, Mohd Rafein; Fujimoto, Shinji; Hirata, Satoshi; Hassan, Mohd Ali

    2014-08-01

    Oil palm biomass, namely empty fruit bunch and frond fiber, were pretreated using a planetary ball mill. Particle sizes and crystallinity index values of the oil palm biomass were significantly reduced with extended ball mill processing time. The treatment efficiency was evaluated by the generation of glucose, xylose, and total sugar conversion yields from the pretreatment process compared to the amount of sugars from raw materials. Glucose and xylose contents were determined using high-performance liquid chromatography. An increasing trend in glucose and xylose yield as well as total sugar conversion yield was observed with decreasing particle size and crystallinity index. Oil palm frond fiber exhibited the best material yields using ball milling pretreatment with generated glucose, xylose, and total sugar conversion yields of 87.0, 81.6, and 85.4%, respectively. In contrast, oil palm empty fruit bunch afforded glucose and xylose of 70.0 and 82.3%, respectively. The results obtained in this study showed that ball mill-treated oil palm biomass is a suitable pretreatment method for high conversion of glucose and xylose.

  1. Electric modulus formalism and electrical transport property of ball mill synthesized nanocrystalline Mn doped ZrO2 solid solution

    NASA Astrophysics Data System (ADS)

    Saha, S.; Nandy, A.; Meikap, A. K.; Pradhan, S. K.

    2015-12-01

    Here we report the formation of Mn doped nanocrystalline ZrO2 solid solution synthesized by high energy ball-milling method and the transport mechanism in the temperature range 298 Kcharacterization of different phases and relative phase abundances using XRD patterns. The electrical study shows the dc conductivity enhances as the doping percentage increases. Complex electric modulus study shows low frequency region approaches to ideal Debye type behaviour while the high frequency side deviates. Alternating current conductivity is found to follow the power law σ'(f,T)∝fsTn. A transformation from small polaron hopping to correlated barrier hopping has been observed from the temperature dependence frequency exponent study. The contribution of grain boundary resistance is found to be dominating over the grain resistance in the ac conduction process.

  2. Investigation of griseofulvin and hydroxypropylmethyl cellulose acetate succinate miscibility in ball milled solid dispersions.

    PubMed

    Al-Obaidi, Hisham; Lawrence, M Jayne; Al-Saden, Noor; Ke, Peng

    2013-02-25

    Solid dispersions of varying weight ratios compositions of the nonionic drug, griseofulvin and the hydrophilic, anionic polymer, hydroxylpropylmethyl cellulose acetate succinate, have been prepared by ball milling and the resulting samples characterized using a combination of Fourier transform infra-red spectroscopy, X-ray powder diffraction and differential scanning calorimetry. The results suggest that griseofulvin forms hydrogen bonds with the hydroxylpropylmethyl cellulose acetate succinate polymer when prepared in the form of a solid dispersion but not when prepared in a physical mixture of the same composition. As anticipated, the actual measured glass transition temperature of the solid dispersions displayed a linear relationship between that predicted using the Gordon-Taylor and Fox equations assuming ideal mixing, but interestingly only at griseofulvin contents less than 50 wt%. At griseofulvin concentrations greater than this, the measured glass transition temperature of the solid dispersions was almost constant. Furthermore, the crystalline content of the solid dispersions, as determined by differential scanning calorimetry and X-ray powder diffraction followed a similar trend in that the crystalline content significantly decreased at ratios less than 50 wt% of griseofulvin. When the physical mixtures of griseofulvin and the hydroxylpropylmethyl cellulose acetate succinate polymer were analyzed using the Flory-Huggins model, a negative free energy of mixing with an interaction parameter of -0.23 were obtained. Taken together these results suggest that anionic hydrophilic hydroxylpropylmethyl cellulose acetate succinate polymer is a good solvent for crystalline nonionic griseofulvin with the solubility of griseofulvin in the solid dispersion being was estimated to be within the range 40-50 wt%. Below this solubility limit, the amorphous drug exists as amorphous glassy solution while above these values the system is supersaturated and glassy suspension and

  3. Study of the nanocrystalline ball-milled Cu80(Fe0.3Co0.7)20 compound

    NASA Astrophysics Data System (ADS)

    Galdeano, S.; Mathon, M. H.; Chaffron, L.; André, G.; Vincent, E.; Traverse, A.; de Novion, C. H.

    The influence of the ball-milling temperature and intensity has been studied on the nanostructure of the Cu80(Fe0.3Co0.7)20 compound. The ball milling of mixed powders of Cu-Fe and Cu-Co supersaturated solid solutions allows the formation of a very fine Fe30Co70 precipitation in the Cu matrix, interesting for its magnetoresistive properties. Powder neutron diffraction and SANS, coupled to magnetic measurements and EXAFS experiments, allowed us to correlate the ball-milling conditions to the nanostructure and the magnetic properties of the ternary compound.

  4. Atomic scale study of ball milled Ni-Fe2O3 using Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Yadav, Ravi Kumar; Govindaraj, R.; Vinod, K.; Kumar, P. A. Manoj; Amarendra, G.

    2016-05-01

    Evolution of hyperfine fields at Fe atoms has been studied in a detailed manner in a mixture of Ni and α-Fe2O3 subjected to high energy ball milling using Mossbauer spectroscopy. Mossbauer results indicate the dispersion of α-Fe2O3 particles in Ni matrix in the as ball milled condition. Evolution of α-Fe2O3 due to ball milling, reduction of the valence of associated Fe and possible interaction between the oxide particles with Ni in the matrix due to annealing treatments has been elucidated in the present study.

  5. Microstructural evolution of nanostructured Ti{sub 0.7}Ni{sub 0.3}N prepared by reactive ball-milling

    SciTech Connect

    Bhaskar, Ujjwal Kumar; Pradhan, S.K.

    2013-09-01

    Graphical abstract: - Highlights: • α-Ti to β-Ti phase conversion is observed during 1 h of milling. • Ti{sub 0.7}Ni{sub 0.3}N (fcc) phase is noticed to form after 1 h of milling. • Formation time of Ti(Ni,N) phase is same as TiN phase. • Both X-ray and HRTEM microstructure characterization revealed similar results. - Abstract: Nanocrystalline stoichiometric Ti{sub 0.7}Ni{sub 0.3}N powder has been synthesized by ball-milling the α-Ti (hcp) and Ni (fcc) powders under N{sub 2} gas at room temperature. The α-Ti phase partially transforms to the transient (-Ti phase after 1 h of milling. After 5.5 h of milling, very broad reflections of Ti{sub 0.7}Ni{sub 0.3}N phase is noticed. Complete formation of Ti{sub 0.7}Ni{sub 0.3}N phase is observed after 9 h of milling. Microstructure in terms of lattice imperfections of unmilled and all ball-milled powder mixtures are primarily characterized by analyzing the X-ray powder diffraction patterns employing the Rietveld structure refinement procedure. It clearly reveals the presence of Ti{sub 0.7}Ni{sub 0.3}N phase and inclusion of nitrogen atoms into the α-Ti–Ni matrix on the way to formation of nitride phase. Microstructure of the ball milled nitride powders is also characterized by HRTEM. Particle size of Ti{sub 0.7}Ni{sub 0.3}N phase obtained from XRD method of characterization is ∼5 nm which is very close to that obtained from HRTEM.

  6. Magnetic properties of ball-milled SrFe12O19 particles consolidated by Spark-Plasma Sintering

    PubMed Central

    Stingaciu, Marian; Topole, Martin; McGuiness, Paul; Christensen, Mogens

    2015-01-01

    The room-temperature magnetic properties of ball-milled strontium hexaferrite particles consolidated by spark-plasma sintering are strongly influenced by the milling time. Scanning electron microscopy revealed the ball-milled SrFe12O19 particles to have sizes varying over several hundred nanometers. X-Ray powder-diffraction studies performed on the ball-milled particles before sintering clearly demonstrate the occurrence of a pronounced amorphization process. During sintering at 950 oC, re-crystallization takes place, even for short sintering times of only 2 minutes and transformation of the amorphous phase into a secondary phase is unavoidable. The concentration of this secondary phase increases with increasing ball-milling time. The remanence and maximum magnetization values at 1T are weakly influenced, while the coercivity drops dramatically from 2340 Oe to 1100 Oe for the consolidated sample containing the largest amount of secondary phase. PMID:26369360

  7. Magnetic properties of ball-milled SrFe12O19 particles consolidated by Spark-Plasma Sintering.

    PubMed

    Stingaciu, Marian; Topole, Martin; McGuiness, Paul; Christensen, Mogens

    2015-09-15

    The room-temperature magnetic properties of ball-milled strontium hexaferrite particles consolidated by spark-plasma sintering are strongly influenced by the milling time. Scanning electron microscopy revealed the ball-milled SrFe12O19 particles to have sizes varying over several hundred nanometers. X-Ray powder-diffraction studies performed on the ball-milled particles before sintering clearly demonstrate the occurrence of a pronounced amorphization process. During sintering at 950 °C, re-crystallization takes place, even for short sintering times of only 2 minutes and transformation of the amorphous phase into a secondary phase is unavoidable. The concentration of this secondary phase increases with increasing ball-milling time. The remanence and maximum magnetization values at 1T are weakly influenced, while the coercivity drops dramatically from 2340 Oe to 1100 Oe for the consolidated sample containing the largest amount of secondary phase.

  8. Comparative Study by MS and XRD of Fe50Al50 Alloys Produced by Mechanical Alloying, Using Different Ball Mills

    NASA Astrophysics Data System (ADS)

    Rojas Martínez, Y.; Pérez Alcázar, G. A.; Bustos Rodríguez, H.; Oyola Lozano, D.

    2005-02-01

    In this work we report a comparative study of the magnetic and structural properties of Fe50Al50 alloys produced by mechanical alloying using two different planetary ball mills with the same ball mass to powder mass relation. The Fe50Al50 sample milled during 48 h using the Fritsch planetary ball mill pulverisette 5 and balls of 20 mm, presents only a bcc alloy phase with a majority of paramagnetic sites, whereas that sample milled during the same time using the Fritsch planetary ball mill pulverisette 7 with balls of 15 mm, presents a bcc alloy phase with paramagnetic site (doublet) and a majority of ferromagnetic sites which include pure Fe. However for 72 h of milling this sample presents a bcc paramagnetic phase, very similar to that prepared with the first system during 48 h. These results show that the conditions used in the first ball mill equipment make more efficient the milling process.

  9. Electromagnetic properties of Co flaky particles prepared via ball-milling method

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Jiang, Jian-Tang; Yuan, Yong; Gong, Yuan-Xun; Zhen, Liang

    2016-10-01

    Flaky cobalt particles with different aspect ratio were produced with ball-milling method. The phase structure and morphology of the particles were identified by XRD analysis and SEM observation. The static magnetic and electromagnetic properties of the particles were measured and effects of shape, microstructure and filling fraction were investigated. Phase transition from fcc lattice to hcp lattice occur due to the drive of ball-milling is responsible for the largely increased coercivity. Particles with high aspect ratio are found to possess high permittivity and permeability, compelling the frequency of absorption peak to shift to low frequency. Coatings using cobalt particles milled for 20 h as fillers present a RL peak of -33 dB at 8 GHz at the thickness of 2.5 mm together with a broad effective absorbing (RL below -10 dB) bandwidth covering 6-10 GHz.

  10. Magnetic properties of TbFe2 particles prepared by magnetic field assisted ball milling

    NASA Astrophysics Data System (ADS)

    Arout Chelvane, J.; Palit, Mithun; Basumatary, Himalay; Pandian, S.

    2013-10-01

    The alloy of TbFe2 was studied by ball milling with and without the presence of external magnetic field. While the structure and powder morphology of the alloy were investigated using scanning electron microscope and X-ray diffraction, the magnetization was investigated using vibrating sample and superconducting quantum interference device magnetometers. The rate of particle reduction with ball milling is comparatively higher in the presence of external magnetic field than without it. Consequently, owing to a large fraction of particles acquiring near single domain configuration under the field assisted milling condition, the coercivity derived from these particles are as high as 6500 Oe than that of particles obtained without the aid of external magnetic field which is around 3850 Oe. The field cooled low temperature magnetization exhibits a large coercivity and skew in the shape of the magnetization curve due to the large anisotropy.

  11. Excess lithium storage in LiFePO4-Carbon interface by ball-milling

    NASA Astrophysics Data System (ADS)

    Guo, Hua; Song, Xiaohe; Zheng, Jiaxin; Pan, Feng

    2016-07-01

    As one of the most popular cathode materials for high power lithium ion batteries (LIBs) of the electrical-vehicle (EV), lithium iron phosphate (LiFePO4 (LFP)) is limited to its relatively lower theoretical specific capacity of 170mAh g-1. To break the limits and further improve the capacity of LFP is promising but challenging. In this study, the ball-milling method is applied to the mixture of LFP and carbon, and the effective capacity larger than the theoretical one by 30mAh g-1 is achieved. It is demonstrated that ball-milling leads to the LFP-Carbon interface to store the excess Li-ions.

  12. Microstructure and martensitic transformation in Si-coated TiNi powders prepared by ball milling

    SciTech Connect

    Kim, Jae-hyun; Cho, Gyu-bong; Im, Yeon-min; Chun, Byong-sun; Kim, Yeon-wook; Nam, Tae-hyun

    2013-12-15

    Graphical abstract: - Highlights: • Amorphous Si-coated TiNi powders were prepared successfully by ball milling. • Ti{sub 4}Ni{sub 4}Si{sub 7} was formed at the interface between Si and TiNi after annealing. • Si-coated Ti–Ni powders displayed the R phase after annealing. - Abstract: Si was coated on the surface of Ti–49Ni (at%) alloy powders by ball milling in order to improve the electrochemical properties of the Si electrodes of secondary Li ion batteries and then the microstructure and martensitic transformation behavior were investigated by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Ti–Ni powders coated with Si were fabricated successfully by ball milling. As-milled powders consisted of highly deformed Ti–Ni powders with the B2 phase and amorphous Si layers. The thickness of the Si layer coated on the surface of the Ti–Ni powders increased from 3–5 μm to 10–15 μm by extending the milling time from 3 h to 48 h. However, severe contamination from the grinding media, ZrO{sub 2} occurred when the ball milling time was as long as 48 h. By heating as-milled powders to various temperatures in the range of 673–873 K, the highly deformed Ti–Ni powders were recovered and Ti{sub 4}Ni{sub 4}Si{sub 7} was formed. Two-stage B2–R–B19′ transformation occurred when as-milled Si-coated Ti–49Ni alloy powders were heated to temperatures below 873 K, above this temperature one-stage B2–B19′ transformation occurred.

  13. High energy ball milling study of Fe{sub 2}MnSn Heusler alloy

    SciTech Connect

    Jain, Vivek Kumar Lakshmi, N.; Jain, Vishal; Sijo, A. K.; Venugopalan, K.

    2015-06-24

    The structural and magnetic properties of as-melted and high energy ball milled alloy samples have been studied by X-ray diffraction, DC magnetization and electronic structure calculations by means of density functional theory. The observed properties are compared to that of the bulk sample. There is a very good enhancement of saturation magnetization and coercivity in the nano-sized samples as compared to bulk which is explained in terms of structural disordering and size effect.

  14. Effect of Surfactant Molecular Weight on Particle Morphology of SmCo5 Prepared by High Energy Ball Milling

    DTIC Science & Technology

    2014-04-01

    ball milling (HEBM) is a widely used technique for producing nanostructured magnetic materials with oleic acid (OA) being the most commonly utilized...2012) Surfactant-assisted high energy ball milling (HEBM) is a widely used technique for producing nanostructured magnetic materials with oleic acid ...nanostructured powders to the high temperatures required for surfactant removal is known to result in grain growth and oxi- dation.7,8 Oleic acid (OA) is the

  15. High-performance ball-milled SiOx anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Junying; Zhang, Chunqian; Liu, Zhi; Zheng, Jun; Zuo, Yuhua; Xue, Chunlai; Li, Chuanbo; Cheng, Buwen

    2017-01-01

    High-performance SiOx was scalable synthesized by means of simple high-energy ball-milling method, and used as anode materials for lithium ion batteries. The electrochemical performance of SiOx electrode after high-energy ball-milling is improved effectively compared to raw SiOx. That is benefit for the reduced size of SiOx powder. By changing the species of conductive agents, improved cyclic performance and excellent rate capability were achieved. Under galvanostatic mode with current density of 0.3 A/g, SiOx electrode after high-energy ball-milling with optimized conductive agents delivers a reversible capacity of 1416.8 mAh/g with coulombic efficiency as high as 99.8% and capacity retention of 83.6% (1184.8 mAh/g) even after 100 cycles. The approach is simple and can be adopted for large scale production of high performance SiOx anode materials.

  16. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling.

    PubMed

    Lee, Dongju; Lee, Bin; Park, Kwang Hyun; Ryu, Ho Jin; Jeon, Seokwoo; Hong, Soon Hyung

    2015-02-11

    The scalable preparation of two-dimensional hexagonal boron nitride (h-BN) is essential for practical applications. Despite intense research in this area, high-yield production of two-dimensional h-BN with large-size and high solubility remains a key challenge. In the present work, we propose a scalable exfoliation process for hydroxyl-functionalized BN nanoplatelets (OH-BNNPs) by a simple ball milling of BN powders in the presence of sodium hydroxide via the synergetic effect of chemical peeling and mechanical shear forces. The hydroxide-assisted ball milling process results in relatively large flakes with an average size of 1.5 μm with little damage to the in-plane structure of the OH-BNNP and high yields of 18%. The resultant OH-BNNP samples can be redispersed in various solvents and form stable dispersions that can be used for multiple purposes. The incorporation of the BNNPs into the polyethylene matrix effectively enhanced the barrier properties of the polyethylene due to increased tortuosity of the diffusion path of the gas molecules. Hydroxide-assisted ball milling process can thus provide simple and efficient approaches to scalable preparation of large-size and highly soluble BNNPs. Moreover, this exfoliation process is not only easily scalable but also applicable to other layered materials.

  17. Microstructure and Physical Properties of Tb2TiO5 Neutron Absorber Synthesized by Ball Milling and Sintering

    NASA Astrophysics Data System (ADS)

    Huang, Jinghua; Ran, Guang; Liu, Tengjiao; Shen, Qiang; Li, Ning

    2016-10-01

    Tb2TiO5 neutron absorber was synthesized by ball milling and sintering. Microstructure character of ball-milled Tb4O7-17.605%TiO2 (mass fraction, %) powders and sintered bulks was analyzed using XRD, SEM and TEM. The microhardness, coefficient of thermal expansion and thermal conductivity of sintered bulks were measured. The experiment results showed that the nanocrystalline solid solution was obtained during ball milling. After 96 h of ball milling, TiO2 was completely solved in Tb4O7 and the crystal size of Tb4O7 was up to 37 nm. The bulk materials prepared by cold isostatic pressing were sintered at 1300 °C. Tb2TiO5 bulks with an orthorhombic structure were obtained. The microhardness of sintered bulks, as well as the thermal conductivity, increased firstly with increasing ball milling time and then decreased. The coefficient of thermal expansion decreased initially and then increased with increasing ball milling time. For the sintered bulk with powder milled for 48 h, the highest values of both microhardness and thermal conductivity were observed, whereas the lowest coefficient of thermal expansion was exhibited. In addition, with increasing testing temperature, the thermal conductivity of sintered bulks initially fell and then rebounded while an opposite trend was found in the coefficient of thermal expansion.

  18. Transformations in oxides induced by high-energy ball-milling.

    PubMed

    Šepelák, Vladimir; Bégin-Colin, Sylvie; Le Caër, Gérard

    2012-10-21

    This paper, by no means exhaustive, focuses on high-energy ball-milling of oxides, on their mechanically induced changes and on the consequences of such changes on their physical and chemical properties. High-energy ball-milling offers a fortunate combination of technical simplicity and of complexity both of physical mechanisms which act during milling and of mechanosynthesized materials. Its basic interest, which stems from the large diversity of routes it offers to prepare oxides either directly or indirectly, is illustrated with various families of oxides. The direct path is to be favoured when as-milled oxides are of interest per se because of their nanocrystalline characteristics, their defects or their modified structures which result from mechanically driven phase transformations. The indirect path consists of a sequence of steps starting with mechanically activated oxides which may be subsequently just annealed or submitted to a combination of thermal treatments, with the possible occurrence of various chemical reactions, to prepare the sought-after materials with potential gains in processing temperatures and times. High energy ball-milling of oxides is more and more currently used to activate powders and to prepare nano-oxides at moderate temperatures. The interest of an activation step is well illustrated by the broad development of doped titania powders, synthesized by heat treatment of pre-ground reactants, for photocatalytic applications or to develop antibacterial materials. Another important class of applications of high-energy ball-milling is the formation of composites. It is exemplified here with the case of oxide-dispersed strengthened alloys whose properties are considerably improved by a dispersion of ultra-stable nanosized oxides whose formation mechanisms were recently described. The basic understanding of the mechanisms by which oxides or oxide mixtures evolve by high-energy ball-milling appears to be less advanced than it is for metallic

  19. Synthesis of Fe/SiO{sub 2} and iron oxides/SiO{sub 2} nanocomposites by long-term ball milling

    SciTech Connect

    Pozo López, G.; Condó, A.M.; Urreta, S.E.; Silvetti, S.P.

    2014-01-01

    Graphical abstract: - Highlights: • Iron–iron oxides/silica composites are synthesized by long term dry ball-milling. • Bcc iron and α-quartz powders are used as precursors. • Surface effects enhance coercivity in iron/silica nanocomposites. • In spite of their small size, about 10 nm, iron particles are ferromagnetic. • Ferro and superparamagnetic particles are found in maghemite/silica composites. - Abstract: Iron oxide/SiO{sub 2} nanocomposites are synthesized by dry ball-milling a mixture of bcc Fe and α-quartz powders for prolonged times. A sequence of nanocomposites is obtained, with small magnetic particles dispersed in a non magnetic, amorphous matrix. The powders are characterized by X-ray diffraction and transmission electron microscopy. The magnetic hysteresis properties are investigated in the range 50–300 K. After 120 h milling, deformed, non-spherical, α-Fe nanocrystallites of about 10 nm in size and very few small (<10 nm) maghemite particles are found. At room temperature, iron particles are ferromagnetic and a large effective magnetic anisotropy is estimated, which is mainly attributed to surface effects. Between 160 and 200 h milling, maghemite nanoparticles are observed while after 220 h grinding, hematite phase appears; after 340 h milling, the sample consists of ferromagnetic hematite particles with a broad size distribution (5–50 nm) embedded in an amorphous matrix.

  20. The Effect of High-energy Ball Milling on the Microstructure and Properties of Ti-doped MgB2 Bulks and Wires

    NASA Astrophysics Data System (ADS)

    Yang, F.; Yan, G.; Wang, Q. Y.; Xiong, X. M.; Li, S. Q.; liu, G. Q.; Feng, J. Q.; Pang, Y. C.; Li, C. S.; Feng, Y.; Zhang, P. X.

    MgB2 bulks were prepared by high-energy ball milling of Mg, B and Ti powders at ambient temperatures. The mixed powders were ball-milled for 0-10 h using a ball-to-powder mass ratio of 10 and sintered at 750 °C for 2 h. The phase and microstructure of MgB2 were characterized by means of X-ray diffraction (XRD) and Scanning electron microscope (SEM). XRD results reveal the appearance of a small amount of MgO impurity, and the relative percentage composition of MgO phase is gradually increased with prolonged the milling time. It proved that the sample milled 5 h has the best homogeneity in grain size. The milled 5 h powders were further processed to wires. The wire samples were fabricated by the in-situ powder-in-tube (PIT) method. The mechanical properties were analyzed by stress-strain measurements at room temperature and the superconducting behaviors are investigated by electrical tests at 4.2 K. The critical engineering current Ic reaches above 330 A (Jce exceeding 2.2×104 A/cm2) at 4.2 K and 2 T.

  1. Heterogeneous sono-Fenton-like process using martite nanocatalyst prepared by high energy planetary ball milling for treatment of a textile dye.

    PubMed

    Dindarsafa, Mahsa; Khataee, Alireza; Kaymak, Baris; Vahid, Behrouz; Karimi, Atefeh; Rahmani, Amir

    2017-01-01

    High energy planetary ball milling was applied to prepare sono-Fenton nanocatalyst from natural martite (NM). The NM samples were milled for 2-6h at the speed of 320rpm for production of various ball milled martite (BMM) samples. The catalytic performance of the BMMs was greater than the NM for treatment of Acid Blue 92 (AB92) in heterogeneous sono-Fenton-like process. The NM and the BMM samples were characterized by XRD, FT-IR, SEM, EDX and BET analyses. The particle size distribution of the 6h-milled martite (BMM3) was in the range of 10-90nm, which had the highest surface area compared to the other samples. Then, the impact of main operational parameters was investigated on the process. Complete removal of the dye was obtained at the desired conditions including initial pH 7, 2.5g/L BMM3 dosage, 10mg/L AB92 concentration, and 150W ultrasonic power after 30min of treatment. The treatment process followed pseudo-first order kinetic. Environmentally-friendly modification of the NM, low leached iron amount and repeated application at milder pH were the significant benefits of the BMM3. The GC-MS was successfully used to identify the generated intermediates. Eventually, an artificial neural network (ANN) was applied to predict the AB92 removal efficiency based upon the experimental data with a proper correlation coefficient (R(2)=0.9836).

  2. Size effect on the melting temperature depression of Al12Mg17 complex metallic alloy nanoparticles prepared by planetary ball milling

    NASA Astrophysics Data System (ADS)

    Zolriasatein, Ashkan; Shokuhfar, Ali

    2015-11-01

    This research investigates the synthesis and size-dependent melting point depression of complex metallic alloy (CMA) nanoparticles. Al12Mg17 which belongs to this new category of intermetallic materials was initially produced as pre-alloyed ingot, then homogenized to achieve single phase compound and crushed into small size powder and finally, mechanically milled in a planetary ball mill to synthesize nanoparticles. Phase and microstructural characterizations of the as-crushed and milled powders were performed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Effects of the mechanical milling on thermal behavior of the Al12Mg17 nanoparticles in comparison with as-cast Al12Mg17 ingot has been investigated by differential scanning calorimetry (DSC) measurement. It was found that an average particle size of 24 nm with crystallite size of 16 nm was achieved after 20 h of ball milling process. The size- dependent melting point depression of the Al12Mg17 nanoparticles has been experimentally observed and also comparison of the obtained results with theoretical models was carried out.

  3. Preparation of Nb3Al by high-energy ball milling and superconductivity

    NASA Astrophysics Data System (ADS)

    Chen, Yongliang; Liu, Zhao; Li, Pingyuan; Zhang, Xiaolan; Yang, Suhua; Yang, Dawei; Du, Lupeng; Cui, Yajing; Pan, Xifeng; Yan, Guo; Zhao, Yong

    2014-05-01

    The A15 phase superconductor Nb3Al has been considered as an alternative to Nb3Sn for high field and large scale applications. However, to prepare a stoichiometric Nb3Al with fine grain structures is very difficult. High-energy ball milling is a solid state powder processing technique and is a very useful for preparing Nb-Al alloys (Nb3Al). The effects of ball milling time and annealing temperature on the formation of Nb3Al superconducting phase have been studied. Pure Nb and Al powders with stoichiometric ratio of Nb3Al were mixed and milled, and the charging and milling were performed in an inert atmosphere. Phase formation and structural evolution during high-energy ball milling have been examined by X-ray diffraction. Al disappeared and Nb peaks broadened after about one hour of milling. With increasing milling time, the peaks of Nb became considerably broader and intensities decreased, the Nb-Al solid solution phase was extensive when milled about 3 hours. In order to obtain Nb3Al superconducting phase, a subsequent anneal was required. We have annealed the as-milled powders at 800-900°C for different times to prepared Nb3Al superconducting alloy. The results indicated that Nb3Al with small amount of impurity phase can be obtained on annealing the Nb-Al solid solution phase and the superconducting transition temperature was about 15K, but it is difficult to obtain a homogeneous Nb3Al phase by annealing the amorphous powder.

  4. Following mechanical activation of salbutamol sulphate during ball-milling with isothermal calorimetry.

    PubMed

    Gaisford, Simon; Dennison, Mansa; Tawfik, Mahmoud; Jones, Matthew D

    2010-06-30

    Formulation of actives for pulmonary delivery with dry powder inhaler devices frequently requires a particle size reduction step. The high-energy forces imparted to a material during milling, as well as reducing particle size, can cause a significant change in physicochemical properties, in particular mechanical activation of the surface (manifested as generation of amorphous regions) which can affect formulated product performance. It is not clear whether particle size reduction occurs prior to, or concomitantly with, generation of amorphous content. In this study the formation of amorphous content with time in crystalline salbutamol sulphate was quantified with isothermal gas perfusion calorimetry as the sample was ball-milled. The data showed that the most particle size reduction occurred initially (d(0.5) dropping from 12.83+/-0.4 to 4.2+/-0.4 within 5 min). During this time period, no detectable amorphous content was observed. Between 5 and 15 min milling time the particle size distribution remained relatively constant but the amorphous content increased non-linearly with time. After 20 min milling time the particle size increased slightly. The data suggest that particle size reduction occurs initially upon application of a force to the crystal. Once maximum particle size reduction has occurred the crystal absorbs the force being applied and the crystal lattice becomes disordered. After extended milling the conditions in the ball mill (heat and/or humidity) may cause crystallisation of some of the amorphous material resulting in particle-particle fusion. It would appear that the ball-milling process could be optimised to achieve the desired particle size distribution but without any loss of crystalline structure.

  5. Improvement on ball-milling composite process of metal matrix micro-nanometer powder using nanosuspension as the precursor

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Zhou, Jianzhong; Li, Xiangfeng; Shen, Qing; Cheng, Man

    2014-12-01

    The wet ball-milling preparation of metal matrix micro-nanometer powder using nanosuspension as the precursor can well solve the agglomeration of nanoscale component, but the micro-nanometer powder prepared by the method can hardly meet the requirement of powder feeding in laser cladding process and its composite effect is still not desirable enough. Aiming at the problem, the ball-milling composite process of metal matrix micro-nanometer powder using nanosuspension as the precursor was analyzed. It has been found that the morphological diversity of original micron powder is the main influencing factor of the deliverability and the composite effect of micro-nanometer powder. In addition, the deposition of the compounding powder in the bottom of ball-milling tank also has some negative influences on the composite effect. Accordingly, two improving measures namely the micron powder pretreatment with Ball Mill Reshaping + Screening and the additional stirring during ball-milling process are proposed and experimented. Results show that the micron powder pretreatment could significantly improve the composite effect and the deliverability of micro-nanometer powder, and the additional stirring could further improve the composite effect of micro-nanometer powder.

  6. Nucleophilic displacement reactions of 5′-derivatised nucleosides in a vibration ball mill

    PubMed Central

    Eguaogie, Olga; Conlon, Patrick F; Ravalico, Francesco; Sweet, Jamie S T; Elder, Thomas B; Conway, Louis P; Lennon, Marc E; Hodgson, David R W

    2017-01-01

    Vibration ball-milling in a zirconia-lined vessel afforded clean and quantitative nucleophilic displacement reactions between 4-methoxybenzylthiolate salts and nucleoside 5′-halides or 5′-tosylates in five to 60 minutes. Under these conditions, commonly-encountered nucleoside cyclisation byproducts (especially of purine nucleosides) were not observed. Liquid-assisted grinding of the same 5'-iodide and 5′-tosylate substrates with potassium selenocyanate in the presence of DMF produced the corresponding 5′-selenocyanates in variable yields over the course of between one and eleven hours thereby avoiding the preparation and use of hygroscopic tetrabutylammonium salts. PMID:28179952

  7. Ball Milling Assisted Solvent and Catalyst Free Synthesis of Benzimidazoles and Their Derivatives.

    PubMed

    El-Sayed, Taghreed H; Aboelnaga, Asmaa; Hagar, Mohamed

    2016-08-24

    Benzoic acid and o-phenylenediamine efficiently reacted under the green solvent-free Ball Milling method. Several reaction parameters were investigated such as rotation frequency; milling balls weight and milling time. The optimum reaction condition was milling with 56.6 g weight of balls at 20 Hz frequency for one hour milling time. The study was extended for synthesis of a series of benzimidazol-2-one or benzimidazol-2-thione using different aldehydes; carboxylic acids; urea; thiourea or ammonium thiocyanate with o-phenylenediamine. Moreover; the alkylation of benzimidazolone or benzimidazolthione using ethyl chloroacetate was also studied.

  8. Enhanced Oxidative Reactivity for Anthracite Coal via a Reactive Ball Milling Pretreatment Step

    SciTech Connect

    Angela D. Lueking; Apurba Sakti; Dania Alvarez-Fonseca; Nichole Wonderling

    2009-09-15

    Reactive ball milling in a cyclohexene solvent significantly increases the oxidative reactivity of an anthracite coal, due to the combined effects of particle size reduction, metal introduction, introduction of volatile matter, and changes in carbon structure. Metals introduced during milling can be easily removed via a subsequent demineralization process, and the increased reactivity is retained. Solvent addition alters the morphological changes that occur during pyrolysis and leads to a char with significantly increased reactivity. When the solvent is omitted, similar effects are seen for the milled product, but a significant fraction of the char is resistant to oxidation. 33 refs., 3 figs., 1 tab.

  9. Parametric evaluation of ball milling of SiC in water

    NASA Technical Reports Server (NTRS)

    Kiser, J. D.; Herbell, T. P.; Freedman, M. R.

    1985-01-01

    A statistically designed experiment was conducted to determine optimum conditions for ball milling alpha-SiC in water. The influence of pH adjustment, volume percent solids loading, and mill rotational speed on grinding effectiveness was examined. An equation defining the effect of those milling variables on specific surface area was obtained. The volume percent solids loading of the slurry had the greatest influence on the grinding effectiveness in terms of increase in specific surface area. As grinding effectiveness improved, mill and media wear also increased. Contamination was minimized by use of sintered alpha-SiC milling hardware.

  10. Magnetic hardening of high-energy ball-milled nanocrystalline LaMn 2Si 2

    NASA Astrophysics Data System (ADS)

    Elmali, Ayhan; Tekerek, Simsek; Dincer, Ilker; Elerman, Yalcin; Theissmann, Ralf; Ehrenberg, Helmut; Fuess, Hartmut

    Nanocrystalline LaMn 2Si 2 powders have been obtained by high-energy ball milling for 30 min from bulk alloys. After milling a high coercivity about 6 kOe is observed at 10 K in contrast to neglectable coercivity for the bulk LaMn 2Si 2 at 5 K. The average grain size of the optimum particles which is obtained from X-ray diffraction pattern and HRTEM picture is about 20 nm. The magnetic hardening is observed for the nanocrystalline LaMn 2Si 2, reflected in the coercivity field strength of 6 kOe at 10 K.

  11. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Effects of Raw Material Content on Efficiency of TiN Synthesized by Reactive Ball Milling Ti and Urea

    NASA Astrophysics Data System (ADS)

    Sun, Jin-Feng; Li, Xiao-Pu; Liang, Bao-Yan; Zhao, Yu-Cheng; Wang, Ming-Zhi

    2009-07-01

    Ti and urea mixed according to the molar ratios of 2:1, 3:1 and 4:1 are milled under the same condition. The structures of the as-synthesized powders are analyzed by an x-ray diffractometer (XRD). The decomposed temperature of the urea and the products decomposed are characterized by differential scanning calorimetry (DSC) and thermogravimetry analysis-Fourier transform infrared (TG-FTIR) spectrometry. The results show that the reaction progress is a diffusion reaction. The efficiency of TiN synthesized by reactive ball milling can be increased by increasing the content of Ti. The reactive ball milling time decreases from more than 90 h to 40 h corresponding to the content ratio between Ti and urea increasing from 2:1 to 4:1. Ammonia gas (NH3) and cyanic acid (HNCO), the decomposed products of urea, react with the refined Ti to form TiN. The grain refinement of Ti has a significant effect on the efficiency of reactive ball milling.

  12. Strong textured SmCo5 nanoflakes with ultrahigh coercivity prepared by multistep (three steps) surfactant-assisted ball milling.

    PubMed

    Zuo, Wen-Liang; Zhao, Xin; Xiong, Jie-Fu; Zhang, Ming; Zhao, Tong-Yun; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2015-08-14

    The high coercivity of 26.2 kOe for SmCo5 nanoflakes are obtained by multistep (three steps) surfactant-assisted ball milling. The magnetic properties, phase structure and morphology are studied by VSM, XRD and SEM, respectively. The results demonstrate that the three step ball-milling can keep more complete crystallinity (relatively less defects) during the process of milling compared with one step high energy ball-milling, which enhances the texture degree and coercivity. In addition, the mechanism of coercivity are also studied by the temperature dependence of demagnetization curves for aligned SmCo5 nanoflakes/resin composite, the result indicates that the magnetization reversal could be controlled by co-existed mechanisms of pinning and nucleation.

  13. Role of Ball Milling of Aluminum Powders in Promotion of Aluminum-Water Reaction to Generate Hydrogen

    NASA Astrophysics Data System (ADS)

    Razavi-Tousi, S. S.; Szpunar, J. A.

    2014-09-01

    Effect of ball milling (BM) of an aluminum powder on hydrogen generation through a reaction with hot water was investigated. BM increased surface area of the aluminum particles, increased crystalline imperfections in the aluminum lattice, and removed a native oxide film on surface of the particles. The increase in surface area of the particles was studied by measurement of particle size and examination of cross section of the particles. The effect of crystalline imperfections was studied by room temperature recovery and high temperature annealing of the ball-milled particles. The effect of the native oxide film and its thickness was studied by exposing ball-milled aluminum particles to air for different durations. Hydrogen production capability of different aluminum powders after each of the above mentioned treatments was tested and correlated to microstructural changes.

  14. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill

    NASA Astrophysics Data System (ADS)

    Cai, Huimei; Xu, Lingyun; Chen, Guijie; Peng, Chuanyi; Ke, Fei; Liu, Zhengquan; Li, Daxiang; Zhang, Zhengzhu; Wan, Xiaochun

    2016-07-01

    A low-cost and highly efficient biosorbent was prepared by loading zirconium(IV) onto ball-milled, ultrafine tea powder (UTP-Zr) for removal of fluoride from drinking water. To evaluate the fluoride adsorption capacity of UTP-Zr over a wide range of conditions, the biosorbent dosage, contact time, initial pH, initial fluoride concentration and presence of other ions were varied. UTP-Zr performed well over the considerably wide pH range of 3-10. The residual concentration of Zr in the treated water was below the limit of detection (0.01 mg/L). Fluoride adsorption by the UTP-Zr biosorbent followed the Langmuir model, with a maximum adsorption capacity of 12.43 mgF/g at room temperature. The fluoride adsorption kinetics fit the pseudo-second-order kinetic model. The synthesized biosorbent was characterized by BET, SEM, EDS, XRD and XPS to reveal how UTP-Zr interacts with fluoride. Results from this study demonstrated that UTP-based biosorbents will be useful and safe for the removal of fluoride from drinking water.

  15. Ball-milled solid dispersions of BCS Class IV drugs: Impact on the dissolution rate and intestinal permeability of acyclovir.

    PubMed

    Nart, Viviane; França, Maria Terezinha; Anzilaggo, Daiane; Riekes, Manoela Klüppel; Kratz, Jadel Müller; de Campos, Carlos Eduardo Maduro; Simões, Cláudia Maria Oliveira; Stulzer, Hellen Karine

    2015-08-01

    Acyclovir, an analog of 2'-deoxyguanosine, is one of the most important drugs in the current approved antiviral treatment. However, it's biopharmaceutical properties, contribute to acyclovir's poor oral bioavailability, which restricts the clinical use of the drug. In this view, the aim of this work was to improve the dissolution rate and intestinal permeability of acyclovir through the development of ball milling solid dispersions with the hydrophilic carriers Pluronic F68®, hydroxypropylmethyl cellulose K100M® and chitosan. Solid dispersions were obtained and completely characterized through different solid state techniques. The solid state data demonstrated a decrease in the crystallinity (amorphous phase and defects) and the presence of hydrogen bonds for SD HPMC and SD CTS. The enhancement of dissolution rates was observed for all SDs developed. In addition, no detrimental effects over the in vitro antiviral activity were detected. The solid dispersions with Pluronic F68® significantly improved the intestinal permeability of acyclovir across Caco-2 cells. In summary, the SDs developed in this study could be considered as potential systems for solid dosage forms containing acyclovir with superior biopharmaceutical properties.

  16. Phase evolution in carbide dispersion strengthened nanostructured copper composite by high energy ball milling

    SciTech Connect

    Hussain, Zuhailawati; Nur Hawadah, M. S.

    2012-09-06

    In this study, high-energy ball milling was applied to synthesis in situ nanostructured copper based composite reinforced with metal carbides. Cu, M (M=W or Ti) and graphite powder mixture were mechanically alloyed for various milling time in a planetary ball mill with composition of Cu-20vol%WC and Cu-20vol%TiC. Then the as-milled powder were compacted at 200 to 400 MPa and sintered in a vacuum furnace at 900 Degree-Sign C. The results of X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analysis showed that formation of tungsten carbides (W{sub 2}C and WC phases) was observed after sintering of Cu-W-C mixture while TiC precipitated in as-milled powder of Cu-Ti-C composite after 5 h and become amorphous with longer milling. Mechanism of MA explained the cold welding and fracturing event during milling. Cu-W-C system shows fracturing event is more dominant at early stage of milling and W particle still existed after milling up to 60 h. While in Cu-Ti-C system, cold welding is more dominant and all Ti particles dissolved into Cu matrix.

  17. Ball mill assisted rapid mechanochemical extraction method for natural products from plants.

    PubMed

    Wang, Man; Bi, Wentao; Huang, Xiaohua; Chen, David Da Yong

    2016-06-03

    A ball mill assisted mechanochemical extraction method was developed to extract compounds of natural product (NP) from plant using ionic liquid (IL). A small volume ball mill, also known as PastPrep(®) Homogenizer, which is often used for high-speed lysis of biological samples and for other applications, was used to dramatically increase the speed, completeness and reproducibility of the extraction process at room temperature to preserve the chemical integrity of the extracted compounds. In this study, tanshinones were selected as target compounds to evaluate the performance of this extraction method. Factors affecting the extraction efficiency, such as the duration, IL concentration and solid/liquid ratio were systematically optimized using the response surface methodology. Under the optimized conditions, the described method was more efficient and much faster than the conventional extraction methods such as methanol based ultrasound assisted extraction (UAE) and heat reflux extraction (HRE) that consumes a lot more organic solvent. In addition, the natural products of interest were enriched by anion metathesis of ionic liquids, combining extraction and preconcentration in the same process. The extractant was analyzed by HPLC and LC-MS. The reproducibility (RSD, n=5), correlation coefficient (r(2)) of the calibration curve, and the limit of detection, were determined to be in the range of 4.7-5.2%, 0.9992-0.9995, and 20-51ng/mL, respectively.

  18. Defect induced electronic states and magnetism in ball-milled graphite.

    PubMed

    Milev, Adriyan; Dissanayake, D M A S; Kannangara, G S K; Kumarasinghe, A R

    2013-10-14

    The electronic structure and magnetism of nanocrystalline graphite prepared by ball milling of graphite in an inert atmosphere have been investigated using valence band spectroscopy (VB), core level near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and magnetic measurements as a function of the milling time. The NEXAFS spectroscopy of graphite milled for 30 hours shows simultaneous evolution of new states at ~284.0 eV and at ~290.5 eV superimposed upon the characteristic transitions at 285.4 eV and 291.6 eV, respectively. The modulation of the density of states is explained by evolution of discontinuities within the sheets and along the fracture lines in the milled graphite. The magnetic measurements in the temperature interval 2-300-2 K at constant magnetic field strength show a correlation between magnetic properties and evolution of the new electronic states. With the reduction of the crystallite sizes of the graphite fragments, the milled material progressively changes its magnetic properties from diamagnetic to paramagnetic with contributions from both Pauli and Curie paramagnetism due to the evolution of new states at ~284 and ~290.5 eV, respectively. These results indicate that the magnetic behaviour of ball-milled graphite can be manipulated by changing the milling conditions.

  19. Homogeneity of ball milled ceramic powders: Effect of jar shape and milling conditions.

    PubMed

    Broseghini, M; D'Incau, M; Gelisio, L; Pugno, N M; Scardi, P

    2017-02-01

    This paper contains data and supporting information of and complementary to the research article entitled "Effect of jar shape on high-energy planetary ball milling efficiency: simulations and experiments" (Broseghini et al.,) [1]. Calcium fluoride (CaF2) was ground using two jars of different shape (cylindrical and half-moon) installed on a planetary ball-mill, exploring different operating conditions (jar-to-plate angular velocity ratio and milling time). Scanning Electron Microscopy (SEM) images and X-Ray Powder Diffraction data (XRPD) were collected to assess the effect of milling conditions on the end-product crystallite size. Due to the inhomogeneity of the end product, the Whole Powder Pattern Model (WPPM, (Scardi, 2008) [2]) analysis of XRPD data required the hypothesis of a bimodal distribution of sizes - respectively ground (fine fraction) and less-to-not ground (coarse fraction) - confirmed by SEM images and suggested by the previous literature (Abdellatief et al., 2013) [3,4]. Predominance of fine fraction clearly indicates optimal milling conditions.

  20. Dissipation mechanisms in polycrystalline YBCO prepared by sintering of ball-milled precursor powder

    NASA Astrophysics Data System (ADS)

    Hannachi, E.; Ben Salem, M. K.; Slimani, Y.; Hamrita, A.; Zouaoui, M.; Ben Azzouz, F.; Ben Salem, M.

    2013-12-01

    Magnetoresistivity (ρ(T,H)) measurements of polycrystalline YBa2Cu3Oy (Y-123) and YBa2Cu3Oy embedded with nanoparticles of Y-deficient Y-123, generated by the planetary ball milling, have been compared and analyzed by the Ambegaokar and Halperin phase slip model (AH) and thermally activated flux creep (TAFC). Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDXS), were carried out. SEM analyses show that nanoparticles of Y-deficient Y-123, generated by ball milling, are embedded in the superconducting matrix. The broadening of the resistive transition under magnetic field is found to possess two distinct regions, which suggests that dissipation phenomenon in milled and unmilled samples is caused by two mechanisms: the order parameter fluctuations and the vortex-dynamics separated by a crossover temperature T. The critical current Jc(0) at zero temperature in the grain boundaries decreases as a power law, H, which is an indication of the sensitivity of a single junction between the superconducting grains to the applied magnetic field. Jc(0) of the milled material is higher than the one of the unmilled and the activation energies of vortex flux motion U(H) behavior in the applied magnetic field is enhanced by the presence of the nanoparticles embedded in the matrix.

  1. Microwave absorption properties of FeSi flaky particles prepared via a ball-milling process

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Yuan, Yong; Jiang, Jian-tang; Gong, Yuan-xun; Zhen, Liang

    2015-12-01

    Flaky FeSi alloy particles with different aspect ratio were produced via ball-milling and a subsequent annealing. The microstructure and the morphology of the particles were examined by XRD and SEM. The dc resistivity, the static magnetization properties and electromagnetic properties were measured. Particles with high aspect ratio were found possess high permittivity and permeability. On the other hand, the variation of grain size and defects density was found influence the permittivity and permeability. High specific area was believed contribute to the intense dielectric loss and the high shape magnetic anisotropy lead to high permeability in the target band. Increased electromagnetic parameters compel the absorption peak's shift to lower frequency. Coating using flaky FeSi particles milled for 12 h as fillers presented a reflection loss of -10 dB at 2 GHz and a matching thickness of 1.88 mm. The flaky FeSi alloy particles prepared through ball-milling and annealing can be promising candidates for EMA application at 1-4 GHz band.

  2. Experimental and Modeling Study of the Regular Polygon Angle-spiral Liner in Ball Mills

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Liang, Man; Jin, Xiaohang; Ji, Pengpeng; Shan, Jihong

    2017-03-01

    Load behavior is one of the most critical factors affecting mills' energy consumption and grinding efficiency, and is greatly affected by the liner profiles. Generally, as liner profiles vary, the ball mill performances are extremely different. In order to study the performance of the ball mill with regular polygon angle-spiral liners(RPASLs), experimental and numerical studies on three types of RPASLs, including regular quadrilateral, pentagonal and hexagonal, are carried out. For the fine product of desired size, two critical parameters are analyzed: the energy input to the mill per unit mass of the fine product, E^{*} , and the rate of production of the fine product, F^{*} . Results show that the optimal structure of RPASLs is Quadrilateral ASL with an assembled angle of 50°. Under this condition, the specific energy consumption E^{*} has the minimum value of 303 J per fine product and the production rate F^{*} has the maximum value of 0.323. The production rate F^{*} in the experimental result is consistent with the specific collision energy intensity to total collision energy intensity ratio E_s/E_t in the simulation. The relations between the production rate F^{*} and the specific energy consumption E^{*} with collision energy intensity E_s and E_t are obtained. The simulation result reveals the essential reason for the experimental phenomenon and correlates the mill performance parameter to the collision energy between balls, which could guide the practical application for Quadrilateral ASL.

  3. Phase evolution in carbide dispersion strengthened nanostructured copper composite by high energy ball milling

    NASA Astrophysics Data System (ADS)

    Hussain, Zuhailawati; Nur Hawadah, M. S.

    2012-09-01

    In this study, high-energy ball milling was applied to synthesis in situ nanostructured copper based composite reinforced with metal carbides. Cu, M (M=W or Ti) and graphite powder mixture were mechanically alloyed for various milling time in a planetary ball mill with composition of Cu-20vol%WC and Cu-20vol%TiC. Then the as-milled powder were compacted at 200 to 400 MPa and sintered in a vacuum furnace at 900°C. The results of X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analysis showed that formation of tungsten carbides (W2C and WC phases) was observed after sintering of Cu-W-C mixture while TiC precipitated in as-milled powder of Cu-Ti-C composite after 5 h and become amorphous with longer milling. Mechanism of MA explained the cold welding and fracturing event during milling. Cu-W-C system shows fracturing event is more dominant at early stage of milling and W particle still existed after milling up to 60 h. While in Cu-Ti-C system, cold welding is more dominant and all Ti particles dissolved into Cu matrix.

  4. Influence of Iron Oxide Particles on the Strength of Ball-Milled Iron

    SciTech Connect

    Lesuer, D R; Syn, C K; Sherby, O D

    2005-12-07

    Detailed microstructural and mechanical property studies of ball-milled iron, in the powder and consolidated states, are reviewed and assessed. The analyses cover three and one-half orders of magnitude of grain size (from 6 nm to 20 mm) and focus on the influence of oxide particles on the strength. The study includes the early work of Koch and Yang, Kimura and Takaki and continues with the more recent work of Umemoto et al and Belyakov, Sakai et al. It is shown that the major contributors to strength are the nanooxide particles. These particles are created by adiabatic shear banding during ball-milling leading to a bimodal distribution of particles. The predicted strength from particles, {sigma}{sub p}, is given by {sigma}{sub p} = B {center_dot} (D*{sub S}){sup -1/2} where D*{sub S} is the surface-to-surface interparticle spacing, and B = 395 MPa {center_dot} {micro}m{sup -1/2}. A model is proposed that accounts for the influence of the bimodal particle size distribution on strength.

  5. Hydrogen generation by the hydrolysis reaction of ball-milled aluminium-lithium alloys

    NASA Astrophysics Data System (ADS)

    Chen, Xingyu; Zhao, Zhongwei; Liu, Xuheng; Hao, Mingming; Chen, Ailiang; Tang, Zhongyang

    2014-05-01

    The addition of Li can prevent an inert alumina film from forming on the surface of Al alloy particles, allowing the rapid hydrogen generation of Al alloys to be achieved. However, because the Li content is less than 10%, the hydrogen generation rate and hydrogen yield of Al-Li alloys are significantly decreased. In this work, NaCl is introduced to prepare Al-Li alloys with low Li contents by ball milling. The research results show that by increasing the amount of NaCl added, the ball milling time and Li content can effectively improve the hydrogen generation of the alloys. Under optimal preparation conditions, the ultimate hydrogen yield of Al-Li alloys can reach 100%. The initial water temperature has almost no effect on the generation of hydrogen, even at 0 °C. Ca2+ and Mg2+ can combine with OH- to form the insoluble compounds Ca(OH)2 and Mg(OH)2, which can prevent hydrogen generation. NO3- reacts with Al to form ammonia and reduce the hydrogen yield of the alloys. Therefore, Al-Li alloys should be prevented from reacting with water containing Ca2+, Mg2+ and NO3-. Al-Li alloys must be stored in isolation from air to maintain good hydrogen-generation performances.

  6. Effect of ball milling energy on rheological and thermal properties of amaranth flour.

    PubMed

    Roa, Diego F; Baeza, Rosa I; Tolaba, Marcela P

    2015-12-01

    Pearled amaranth grains obtained by abrasive milling were processed by planetary ball milling to produce amaranth flours. The influence of milling energy on rheological and thermal behavior of amaranth flour dispersions and stability during 24 h storage at 4 °C were investigated based on a factorial design. The rheological behavior of flour dispersions (4 % and 8 % w/v) was determined using a rotational viscometer, while gelatinization degree was determined by differential scanning calorimetry as a measure of structural changes.The power law model was found to be suitable in expressing the relationship between shear stress and shear rate. Flour dispersions showed a pseudoplastic behavior. However this character decreased with the storage being dependent on flour concentration and milling energy. A decrease of the consistency index and an increase of the flow behavior index were observed as a result of the increasing milling energy. Gelatinization enthalpy decrease showed the loss of crystalline structure due to ball milling. Amaranth flour dispersions presented increasing stability during storage. It was observed, that the stability changed with the concentration of amaranth flours.Thus, more stable dispersions were obtained as the flour concentration increased. The highly milled sample was the most stable sample during the storage.

  7. Investigation of the effect of intensive milling in a planetary ball mill on the thermal decomposition of basic nickel carbonate

    NASA Astrophysics Data System (ADS)

    Książek, K.; Wacke, S.; Górecki, T.; Górecki, Cz

    2011-04-01

    The kinetics of thermal decomposition of basic nickel carbonate NiCO3Ni·(OH)2·nH2O and the effect of intensive milling in a planetary ball mill on its parameters, have been investigated. The values of the reaction heat and of the activation energy of thermal decomposition have been determined. Investigations of the thermal decomposition of the products of ball milling of investigated compound revealed a distinct effect of milling on the reaction temperature and heat consumed during the thermal decomposition of investigated compound.

  8. HRTEM and Nanoindentation Studies of Bulk WC Nanocrystalline Materials Prepared by Spark Plasma Sintering of Ball-Milled Powders

    NASA Astrophysics Data System (ADS)

    Sherif El-Eskandarany, M.; Al-Hazza, Abdulsalam; Al-Hajji, L. A.

    2016-11-01

    In the present work, mechanical milling technique using a high-energy ball mill was employed for preparing of nanoscaled WC grains powders with an average grain size of 7 nm in diameters of WC. The present study demonstrates a successful consolidation process achieved at 1250 °C for sintering of ball-milled WC powders into full dense bulk buttons (above 99.6%), using SPS technique. The as-consolidated WC bulk nanocrystalline buttons revealed high hardness value ( 24 GPa) with low elastic modulus ( 332 GPa). Moreover, they possessed a high fracture toughness (15 MPa m1/2) that has never been reported for pure WC.

  9. HRTEM and Nanoindentation Studies of Bulk WC Nanocrystalline Materials Prepared by Spark Plasma Sintering of Ball-Milled Powders

    NASA Astrophysics Data System (ADS)

    Sherif El-Eskandarany, M.; Al-Hazza, Abdulsalam; Al-Hajji, L. A.

    2017-01-01

    In the present work, mechanical milling technique using a high-energy ball mill was employed for preparing of nanoscaled WC grains powders with an average grain size of 7 nm in diameters of WC. The present study demonstrates a successful consolidation process achieved at 1250 °C for sintering of ball-milled WC powders into full dense bulk buttons (above 99.6%), using SPS technique. The as-consolidated WC bulk nanocrystalline buttons revealed high hardness value ( 24 GPa) with low elastic modulus ( 332 GPa). Moreover, they possessed a high fracture toughness (15 MPa m1/2) that has never been reported for pure WC.

  10. Discrete element method based scale-up model for material synthesis using ball milling

    NASA Astrophysics Data System (ADS)

    Santhanam, Priya Radhi

    Mechanical milling is a widely used technique for powder processing in various areas. In this work, a scale-up model for describing this ball milling process is developed. The thesis is a combination of experimental and modeling efforts. Initially, Discrete Element Model (DEM) is used to describe energy transfer from milling tools to the milled powder for shaker, planetary, and attritor mills. The rolling and static friction coefficients are determined experimentally. Computations predict a quasisteady rate of energy dissipation, E d, for each experimental configuration. It is proposed that the milling dose defined as a product of Ed and milling time, t, divided by the mass of milled powder, mp characterizes the milling progress independently of the milling device or milling conditions used. Once the milling dose is determined for one experimental configuration, it can be used to predict the milling time required to prepare the same material in any milling configuration, for which Ed is calculated. The concept is validated experimentally for DEM describing planetary and shaker mills. For attritor, the predicted Ed includes substantial contribution from milling tool interaction events with abnormally high forces (>103 N). The energy in such events is likely dissipated to heat or plastically deform milling tools rather than refine material. Indeed, DEM predictions for the attritor correlate with experiments when such events are ignored in the analysis. With an objective of obtaining real-time indicators of milling progress, power, torque, and rotation speed of the impeller of an attritor mill are measured during preparation of metal matrix composite powders in the subsequent portion of this thesis. Two material systems are selected and comparisons made between in-situ parameters and experimental milling progress indicators. It is established that real-time measurements can certainly be used to describe milling progress. However, they need to be interpreted carefully

  11. Multiscale experimental characterization of solar cell defects

    NASA Astrophysics Data System (ADS)

    Škarvada, Pavel; Škvarenina, Lubomír.; Tománek, Pavel; Sobola, Dinara; Macků, Robert; Brüstlová, Jitka; Grmela, Lubomír.; Smith, Steve

    2016-12-01

    The search for alternative sources of renewable energy, including novel photovoltaics structures, is one of the principal tasks of 21th century development. In the field of photovoltaics there are three generations of solar cells of different structures going from monocrystalline silicon through thin-films to hybrid and organic cells, moreover using nanostructure details. Due to the diversity of these structures, their complex study requires the multiscale interpretations which common core includes an integrated approach bridging not only the length scales from macroscale to the atomistic, but also multispectral investigation under different working temperatures. The multiscale study is generally applied to theoretical aspects, but is also applied to experimental characterization. We investigate multiscale aspects of electrical, optical and thermal properties of solar cells under illumination and in dark conditions when an external bias is applied. We present the results of a research of the micron and sub-micron defects in a crystalline solar cell structure utilizing scanning probe microscopy and electric noise measurement.

  12. Fabrication of lanthanum-doped thorium dioxide by high-energy ball milling and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Scott, Spencer M.; Yao, Tiankai; Lu, Fengyuan; Xin, Guoqing; Zhu, Weiguang; Lian, Jie

    2017-03-01

    High-energy ball milling was used to synthesize Th1-xLaxO2-0.5x (x = 0.09, 0.23) solid solutions, as well as improve the sinterability of ThO2 powders. Dense La-doped ThO2 pellets with theoretical density above 94% were consolidated by spark plasma sintering at temperatures above 1400 °C for 20 min, and the densification behavior and the non-equilibrium effects on phase and structure were investigated. A lattice contraction of the SPS-densified pellets occurred with increasing ball milling duration, and a secondary phase with increased La-content was observed in La-doped pellets. A dependence on the La-content and sintering duration for the onset of localized phase segregation has been proposed. The effects of high-energy ball milling, La-content, and phase formation on the thermal diffusivity were also studied for La-doped ThO2 pellets by laser flash measurement. Increasing La-content and high energy ball milling time decreases thermal diffusivity; while the sintering peak temperature and holding time beyond 1600 °C dramatically altered the temperature dependence of the thermal diffusivity beyond 600 °C.

  13. One step conversion of wheat straw to sugars by simultaneous ball milling, mild acid, and fungus Penicillium simplicissimum treatment.

    PubMed

    Yuan, Li; Chen, Zhenhua; Zhu, Yonghua; Liu, Xuanming; Liao, Hongdong; Chen, Ding

    2012-05-01

    Wheat straw is one of the major lignocellulosic plant residues in many countries including China. An attractive alternative is the utilization of wheat straw for bioethanol production. This article mainly studies a simple one-step wet milling with Penicillium simplicissimum and weak acid to hydrolysis of wheat straw. The optimal condition for hydrolysis was ball milling 48 h in citrate solvent (pH = 4) with P. simplicissimum H5 at the speed of 500 rpm and the yield of sugar increased with increased milling time. Corresponding structure transformations before and after milling analyzed by X-ray diffraction, transmission Fourier transform infrared spectroscopy, and environmental scanning electron microscopy clearly indicated that this combined treatment could be attributed to the crystalline and chemical structure changes of cellulose in wheat straw during ball milling. This combined treatment of ball milling, mild acid, and fungus hydrolysis enabled the conversion of the wheat straw. Compared with traditional method of ball milling, this work showed a more simple, novel, and environmentally friendly way in mechanochemical treatment of wheat straw.

  14. Effect of ball-milling surfactants on the interface chemistry in hot-compacted SmCo5 magnets

    SciTech Connect

    Li, WF; Sepehri-Amin, H; Zheng, LY; Cui, BZ; Gabay, AM; Hono, K; Huang, WJ; Ni, C; Hadjipanayis, GC

    2012-11-01

    Anisotropic SmCo5 nanoflakes prepared by high-energy ball-milling with surfactants have great potential in applications for high-performance nanocomposite magnets. For such "nanocomposite" applications, the surface structure and chemistry of nanoflakes are crucial for achieving high coercivity. In this study, hot-pressed samples from anisotropic SmCo5 nanoflakes, ball-milled with different surfactants, oleic acid (OA) and oleylamine (OY), were investigated. Interface layers between the SmCo5 nanoflakes were found to consist of samarium oxides and a soft magnetic Co phase. These surface layers contribute to the degradation of hard magnetic performance, which is confirmed by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy analysis of the cross-section of a single flake ball-milled with OA. Samples milled with OY show a much thinner interface layer in compacted samples, which means that the surface degradation during ball-milling with OY is much less than that with OA. The results show clearly that the choice of proper surfactant and the control of processing parameters are the key factors for improving the surface condition of the nanoflakes and the resulting hard magnetic properties. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Solid acid-catalyzed depolymerization of barley straw driven by ball milling.

    PubMed

    Schneider, Laura; Haverinen, Jasmiina; Jaakkola, Mari; Lassi, Ulla

    2016-04-01

    This study describes a time and energy saving, solvent-free procedure for the conversion of lignocellulosic barley straw into reducing sugars by mechanocatalytical pretreatment. The catalytic conversion efficiency of several solid acids was tested which revealed oxalic acid dihydrate as a potential catalyst with high conversion rate. Samples were mechanically treated by ball milling and subsequently hydrolyzed at different temperatures. The parameters of the mechanical treatment were optimized in order to obtain sufficient amount of total reducing sugar (TRS) which was determined following the DNS assay. Additionally, capillary electrophoresis (CE) and Fourier transform infrared spectrometry (FT-IR) were carried out. Under optimal conditions TRS 42% was released using oxalic acid dihydrate as a catalyst. This study revealed that the acid strength plays an important role in the depolymerization of barley straw and in addition, showed, that the oxalic acid-catalyzed reaction generates low level of the degradation product 5-hydroxymethylfurfural (HMF).

  16. Production of chromium base alloys by ball milling in hydrogen iodide

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1975-01-01

    The effects of processing variables on the tensile properties and ductile-to-brittle transition temperature (DBTT) of Cr + 4 vol% ThO2 alloys and of pure Cr produced by ball milling in hydrogen iodide were investigated. Hot rolled Cr + ThO2 was stronger than either hot pressed Cr + ThO2 or pure Cr at temperatures up to 1540 C. Hot pressed Cr + ThO2 had a DBTT of 500 C as compared with -8 to 24 C for the hot rolled Cr + ThO2 and with 140 C for pure Cr. It is postulated that the dispersoid in the hot rolled alloys lowers the DBTT by inhibiting recovery and recrystallization of the strained structure.

  17. Modeling High-Energy Ball Milling in the Alumina-Yttria System

    NASA Astrophysics Data System (ADS)

    Alkebro, J.; Bégin-Colin, S.; Mocellin, A.; Warren, R.

    2002-02-01

    Experimental results from high-energy ball milling of alumina-yttria powder mixtures have been analyzed with models collected from the literature. Depending on the milling conditions, either there is formation of an intermediate phase in the alumina-yttria system (yttrium aluminum perovskite, YAP), or the sample becomes mostly amorphous. Variations due to milling tool material can be accounted for by local models based on the Hertzian theory of elastic bodies, but the effects of changing mills are poorly accounted for by published models. Therefore, the concept of an impact frequency distribution over the energy spectrum is introduced as a tool for studying the characteristics of the mills. The pressure on the powder trapped between two colliding bodies has been found to be the factor deciding the outcome of the process. The threshold behavior of the system yields an amorphous structure for low pressures, and formation of YAP when impact pressures exceed the threshold value.

  18. Microwave Absorption Properties of Iron Nanoparticles Prepared by Ball-Milling

    NASA Astrophysics Data System (ADS)

    Chu, Xuan T. A.; Ta, Bach N.; Ngo, Le T. H.; Do, Manh H.; Nguyen, Phuc X.; Nam, Dao N. H.

    2016-05-01

    A nanopowder of iron was prepared using a high-energy ball milling method, which is capable of producing nanoparticles at a reasonably larger scale compared to conventional chemical methods. Analyses using x-ray diffraction and magnetic measurements indicate that the iron nanoparticles are a single phase of a body-centered cubic structure and have quite stable magnetic characteristics in the air. The iron nanoparticles were then mixed with paraffin and pressed into flat square plates for free-space microwave transmission and reflection measurements in the 4-8 GHz range. Without an Al backing plate, the Fe nanoparticles seem to only weakly absorb microwave radiation. The reflected signal S 11 drops to zero and a very large negative value of reflection loss ( RL) are observed for Al-backed samples, suggesting the existence of a phase matching resonance near frequency f ˜ 6 GHz.

  19. Cross-Coupling Biarylation of Nitroaryl Chlorides Through High Speed Ball Milling

    PubMed Central

    Lam, Solita; Puplampu-Dove, Yvonne; Morris, Adrienne; Epps, Ayunna; Mandouma, Ghislain

    2016-01-01

    Solvent-free reaction using a high-speed ball milling technique has been applied to the classical Ullmann coupling reaction. Cross-coupling biarylation of several nitroaryl chlorides was achieved in good yields when performed in custom-made copper vials through continuous shaking without additional copper or solvent. Cross-coupling products were obtained almost pure and NMR-ready. These reactions were cleaner than solution phase coupling which require longer reaction time in high boiling solvents, and added catalysts as well as lengthy extraction and purification steps. Gram quantities of cross biaryl compounds have been synthesized with larger copper vials, a proof that this method can be used to reduce industrial waste and for sustainability. PMID:27294205

  20. Substructure of Titanium Dioxide Agglomerates from Dry Ball-milling Experiments

    NASA Astrophysics Data System (ADS)

    Gesenhues, Ulrich

    1999-06-01

    The calciner discharge of TiO2 white pigments from the sulphate process is ground batchwise in a planetary ball mill, varying the energy of comminution between 0 and 5.1 times the earth's gravitational constant. Particle sizes and specific surfaces of the ground products reveal that the calciner discharge consists of aggregates of 430 nm diameter built from 160-210 nm TiO2 crystals. The contact area of a primary particle in an aggregate is about 15% of its surface. The success in comminution of aggregates as a function of grinding energy follows Kick's law. The theory by Rose and Weichert is used to quantify the mechanical strength of the aggregates. Ca. 20% of the aggregates are further agglomerated to granules of ca. 35 µm. At all energy levels above a certain threshold, agglomerates break directly into aggregates.

  1. Effects of concurrent ball milling and octenyl succinylation on structure and physicochemical properties of starch.

    PubMed

    Li, Nannan; Niu, Meng; Zhang, Binjia; Zhao, Siming; Xiong, Shanbai; Xie, Fengwei

    2017-01-02

    This work concerns the effects of concurrent ball milling (BM) and octenyl succinic anhydride (OSA) modification on the starch microstructure and physicochemical properties (swelling, emulsifying, and rheological). Unlike normal OSA-modified starches, the BM/OSA-modified starch displayed new features such as reduced viscosity and rigidity but increased paste stability during shearing, heating and cooling, regardless of the substitution degree. More interestingly, while the physicochemical properties could be regulated by simply altering the BM treatment time, BM/OSA was more efficient and effective at modulating starch properties during the initial period (approx. 10h), as seen by the rapid evolutions in starch structural disruption and OSA esterification. Thus, the BM/OSA modification can serve as a viable and cost-effective approach for producing octenyl succinate starches where low viscosity (at relatively high concentrations) and high paste stability are desired.

  2. High-Energy Ball Milling as Green Process To Vitrify Tadalafil and Improve Bioavailability.

    PubMed

    Krupa, Anna; Descamps, Marc; Willart, Jean-François; Strach, Beata; Wyska, Elżbieta; Jachowicz, Renata; Danède, Florence

    2016-11-07

    In this study, the suitability of high-energy ball milling was investigated with the aim to vitrify tadalafil (TD) and improve its bioavailability. To achieve this goal, pure TD as well as binary mixtures composed of the drug and Soluplus (SL) were coprocessed by high-energy ball milling. Modulated differential scanning calorimetry (MDSC) and X-ray powder diffraction (XRD) demonstrated that after such coprocessing, the crystalline form of TD was transformed into an amorphous form. The presence of a single glass transition (Tg) for all the comilled formulations indicated that TD was dispersed into SL at the molecular level, forming amorphous molecular alloys, regardless of the drug concentration. The high values of Tg determined for amorphous formulations, ranging from 70 to 147 °C, foreshow their high stability during storage at room temperature, which was verified by XRD and MDSC studies. The stabilizing effect of SL on the amorphous form of TD in comilled formulations was confirmed. Dissolution tests showed immediate drug release with sustained supersaturation in either simulated gastric fluid of pH 1.2 or in phosphate buffer of pH 7.2. The beneficial effect of both amorphization and coamorphization on the bioavailability of TD was found. In comparison to aqueous suspension, the relative bioavailability of TD was only 11% for its crystalline form and 53% for the crystalline physical mixture, whereas the bioavailability of milled amorphous TD and the comilled solid dispersion was 128% and 289%, respectively. Thus, the results provide evidence that not only the presence of polymeric surfactant but also the vitrification of TD is necessary to improve bioavailability.

  3. Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling.

    PubMed

    Mais, Ursula; Esteghlalian, Ali R; Saddler, John N; Mansfield, Shawn D

    2002-01-01

    One of the limiting factors restricting the effective and efficient bioconversion of softwood-derived lignocellulosic residues is the recalcitrance of the substrate following pretreatment. Consequently, the ensuing enzymatic process requires relatively high enzyme loadings to produce monomeric carbohydrates that are readily fermentable by ethanologenic microorganisms. In an attempt to circumvent the need for larger enzyme loadings, a simultaneous physical and enzymatic hydrolysis treatment was evaluated. A ball-mill reactor was used as the digestion vessel, and the extent and rate of hydrolysis were monitored. Concurrently, enzyme adsorption profiles and the rate of conversion during the course of hydrolysis were monitored. alpha-Cellulose, employed as a model substrate, and SO2-impregnated steam-exploded Douglas-fir wood chips were assessed as the cellulosic substrates. The softwood-derived substrate was further posttreated with water and hot alkaline hydrogen peroxide to remove >90% of the original lignin. Experiments at different reaction conditions were evaluated, including substrate concentration, enzyme loading, reaction volumes, and number of ball beads employed during mechanical milling. It was apparent that the best conditions for the enzymatic hydrolysis of alpha-cellulose were attained using a higher number of beads, while the presence of air-liquid interface did not seem to affect the rate of saccharification. Similarly, when employing the lignocellulosic substrate, up to 100% hydrolysis could be achieved with a minimum enzyme loading (10 filter paper units/g of cellulose), at lower substrate concentrations and with a greater number of reaction beads during milling. It was apparent that the combined strategy of simultaneous ball milling and enzymatic hydrolysis could improve the rate of saccharification and/or reduce the enzyme loading required to attain total hydrolysis of the carbohydrate moieties.

  4. The effect of ball milling grinding pathways on the bulk and reactivity properties of calcium phosphate cements.

    PubMed

    Lopez-Heredia, M A; Bohner, M; Zhou, W; Winnubst, A J A; Wolke, J G C; Jansen, J A

    2011-07-01

    Calcium phosphate cements (CPCs) are significant alternatives to autologous bone grafting. CPCs can be composed of biphasic or multiphase calcium phosphate (CaP) compounds. A common way to process CPCs is by ball milling. Ball milling can be used for grinding or mechanosynthesis. The aim of this study was to determine the effect of well-defined ball milling grinding parameters, applied via different milling pathways, on the properties of CPCs. Starting CaP compounds used included α-tricalcium phosphate, dicalcium phosphate anhydrous and precipitated hydroxyapatite. Scanning electron microscopy showed changes in the powder morphology, which were related to the behavior of the starting CaP materials. Specific surface area (SSA) and particle size (PS) measurements exposed the effect of ball milling on the CaP compounds and CPC powders. X-ray diffraction revealed no effect of ball milling pathways or milling time on the composition of CPCs or the starting materials, but affected their crystallographic properties. No contamination of the milling media or transformation into an amorphous calcium phosphate compound was found. The milling pathways affected setting and cohesion. Fourier transform infrared spectroscopy (FTIR) revealed differences on the CPC v₄-PO₄³⁻ bands according to the interaction, created between the CaP compounds by the milling pathways. FTIR confirmed that the milling pathways changed the crystallographic properties. This study demonstrates that the pathways used for milling grinding modify the PS, SSA, and crystallographic properties of the powders, without affecting their composition. These modifications affected the bulk and reactivity properties of the CPCs by creating different setting and cohesion behaviors.

  5. Production of pyrite nanoparticles using high energy planetary ball milling for sonocatalytic degradation of sulfasalazine.

    PubMed

    Khataee, Alireza; Fathinia, Siavash; Fathinia, Mehrangiz

    2017-01-01

    Sonocatalytic performance of pyrite nanoparticles was evaluated by the degradation of sulfasalazine (SSZ). Pyrite nanoparticles were produced via a high energy mechanical ball milling (MBM) in different processing time from 2h to 6h, in the constant milling speed of 320rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer-Emmett-Teller (BET) confirmed the production of pyrite nanoparticles during 6h of ball milling with the average size distribution of 20-80nm. The effects of various operational parameters including pH value, catalyst amount (mg/L), SSZ concentration (mg/L), ultrasonic frequency (kHz) and reaction time on the SSZ removal efficiency were examined. The obtained results showed that the maximum removal efficiency of 97.00% was obtained at pH value of 4, catalyst dosage of 0.5g/L, SSZ concentration of 10mg/L and reaction time of 30min. Experimental results demonstrated that the kinetic of the degradation process can be demonstrated using Langmuir-Hinshelwood (L-H) kinetic model. The effect of different inorganic ions such as Cl(-), CO3(2-) and SO4(2-) was investigated on the L-H reaction rate (kr) and adsorption (Ks) constants. Results showed that the presence of the mentioned ions significantly influenced the L-H constants. The impact of ethanol as a OH radical scavenger and some enhancers including H2O2 and K2S2O8 was investigated on the SSZ removal efficiency. Accordingly, the presence of ethanol suppressed SSZ degradation due to the quenching of OH radicals and the addition of K2S2O8 and H2O2 increased the SSZ removal efficiency, due to the formation of SO4(-) and additional OH radicals, respectively. Under the identical conditions of operating parameters, pyrite nanoparticles maintained their catalytic activity during four consecutive runs.

  6. Acid-Assisted Ball Milling of Cellulose as an Efficient Pretreatment Process for the Production of Butyl Glycosides.

    PubMed

    Boissou, Florent; Sayoud, Nassim; De Oliveira Vigier, Karine; Barakat, Abdellatif; Marinkovic, Sinisa; Estrine, Boris; Jérôme, François

    2015-10-12

    Ball milling of cellulose in the presence of a catalytic amount of H2SO4 was found to be a promising pre-treatment process to produce butyl glycosides in high yields. Conversely to the case of water, n-butanol has only a slight effect on the recrystallization of ball-milled cellulose. As a result, thorough depolymerization of cellulose prior the glycosylation step is no longer required, which is a pivotal aspect with respect to energy consumption. This process was successfully transposed to wheat straw from which butyl glycosides and xylosides were produced in good yields. Butyl glycosides and xylosides are important chemicals as they can be used as hydrotropes but also as intermediates in the production of valuable amphiphilic alkyl glycosides.

  7. Combined pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarp fiber.

    PubMed

    Zakaria, Mohd Rafein; Hirata, Satoshi; Hassan, Mohd Ali

    2014-10-01

    Hydrothermal pretreatment of oil palm mesocarp fiber was conducted in tube reactor at treatment severity ranges of log Ro = 3.66-4.83 and partial removal of hemicellulose with migration of lignin was obtained. Concerning maximal recovery of glucose and xylose, 1.5% NaOH was impregnated in the system and subsequent ball milling treatment was employed to improve the conversion yield. The effects of combined hydrothermal and ball milling pretreatments were evaluated by chemical composition changes by using FT-IR, WAXD and morphological alterations by SEM. The successful of pretreatments were assessed by the degree of enzymatic digestibility of treated samples. The highest xylose and glucose yields obtained were 63.2% and 97.3% respectively at cellulase loadings of 10 FPU/g-substrate which is the highest conversion from OPMF ever reported.

  8. Synthesis of stoichiometric Ca2Fe2O5 nanoparticles by high-energy ball milling and thermal annealing

    NASA Astrophysics Data System (ADS)

    Amorim, B. F.; Morales, M. A.; Bohn, F.; Carriço, A. S.; de Medeiros, S. N.; Dantas, A. L.

    2016-05-01

    We report the synthesis of Ca2Fe2O5 nanoparticles by high-energy ball milling and thermal annealing from α-Fe2O3 and CaCO3. Magnetization measurements, Mössbauer and X-ray spectra reveal that annealing at high temperatures leads to better quality samples. Our results indicate nanoparticles produced by 10 h high-energy ball milling and thermal annealing for 2 h at 1100 °C achieve improved stoichiometry and the full weak ferromagnetic signal of Ca2Fe2O5. Samples annealed at lower temperatures show departure from stoichiometry, with a higher occupancy of Fe3+ in octahedral sites, and a reduced magnetization. Thermal relaxation for temperatures in the 700-1100 °C range is well represented by a Néel model, assuming a random orientation of the weak ferromagnetic moment of the Ca2Fe2O5 nanoparticles.

  9. Enhancement of thermoelectric performance of ball-milled bismuth due to spark-plasma-sintering-induced interface modifications.

    PubMed

    Puneet, Pooja; Podila, Ramakrishna; Zhu, Song; Skove, Malcolm J; Tritt, Terry M; He, Jian; Rao, Apparao M

    2013-02-20

    Interface modification in transport properties of single elemental polycrystalline Bi via spark plasma sintering results in 'double-decoupling' (simultaneous decoupling of thermopower, electrical, and thermal conductivity) of otherwise coupled entities. In spark plasma sintering, the DC pulse current helps in controlling the nature and extent of surfaces of ball-milled Bi and hence results in six-fold improvement in the dimensionless figure of merit (ZT) relative to as-purchased samples.

  10. Noble-Metal-Free Photocatalytic Hydrogen Evolution Activity: The Impact of Ball Milling Anatase Nanopowders with TiH2.

    PubMed

    Zhou, Xuemei; Liu, Ning; Schmidt, Jochen; Kahnt, Axel; Osvet, Andres; Romeis, Stefan; Zolnhofer, Eva M; Marthala, Venkata Ramana Reddy; Guldi, Dirk M; Peukert, Wolfgang; Hartmann, Martin; Meyer, Karsten; Schmuki, Patrik

    2017-02-01

    Ball milling TiO2 anatase together with TiH2 can create an effective photocatalyst. The process changes the lattice and electronic structure of anatase. Lattice deformation created by mechanical impact combined with hydride incorporation yield electronic gap-states close to the conduction band of anatase. These provide longer lifetimes of photogenerated charge carriers and lead to an intrinsic cocatalytic activation of anatase for H2 evolution.

  11. Study on preparation of the core-nanoshell composite absorbers by high-energy ball milling at room temperature.

    PubMed

    Che, Ruxin; Gao, Hong; Yu, Bing; Wang, Shuo; Wang, Chunxia

    2012-02-01

    Electromagnetic (EM) wave pollution has become the chief physical pollution for environment. In recent years, some researches have been focused on the preparation of nano-composite absorbers at low temperatures or even at room temperature. In this letter, preparation of nanocomposite by using high-energy ball milling at room temperature is reported. The core-nanoshell composite absorbers with magnetic fly-ash hollow cenosphere (MFHC) as nuclear and nanocrystalline magnetic material as shell were prepared by high-energy ball milling and vacuum-sintering in this paper. The pre-treatment of MFHC, the sintering process and the mol ratio of starting chemicals had a significant impact for property of composite absorbers. The results of X-ray diffraction analysis (XRD), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and vector network analyzer (VNA) analysis indicated that perfect-crystalline nanomagnetic material coating was gotten with a particle size of 12 nm after ball milling. The results show the MFHC is dielectric loss and magnetic loss too; the exchange-coupling interaction happened between ferrite of the MFHC and nanocrystalline magnetic material coating. The exchange-coupling interaction enhances magnetic loss of composite absorbers. They have a perfect EM parameters at low microwave frequency. The core-nanoshell composite absorbers have a higher magnetic loss at low frequencies, and it is consistent with requirements of the microwave absorbing material at the low-frequency absorption. The microwave absorptivity of the core-nanoshell composite absorbers is better than single material.

  12. High energy ball-milled Ti{sub 2}RuFe electrocatalyst for hydrogen evolution in the chlorate industry

    SciTech Connect

    Blouin, M.; Guay, D.; Huot, J.; Schulz, R.

    1997-06-01

    The high energy mechanical alloying of a Ti{endash}Ru{endash}Fe powder mixture (atomic ratio 2:1:1) has been performed by extensive ball-milling in a steel crucible. The structural evolution of the resulting materials has been studied by x-ray powder diffraction analysis. The identification of the various phases present in the materials, as well as the crystallite size and strain, has been performed by Rietveld refinement analysis. In the first stage of the material transformation, Ru or Fe atoms dissolved into Ti to yield to the formation of {beta}{minus}Ti. Upon further ball-milling, almost all the original constituents of the powder mixture have disappeared and a new simple cubic Ti{sub 2}RuFe phase is formed, with a crystallite size as small as 8 nm. The electrochemical properties of these materials have been tested in a typical chlorate electrolyte by cold-pressing the powders into disk electrodes. At 20 h of ball-milling, where the phase concentration of Ti{sub 2}RuFe reaches 96{percent}, a reduction of the activation overpotential at 250 mA cm{sup {minus}2} of nearly 250 mV is observed when compared to that of a pure iron electrode. {copyright} {ital 1997 Materials Research Society.}

  13. Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling

    NASA Astrophysics Data System (ADS)

    Cagnetta, Giovanni; Hassan, Mohammed Mansour; Huang, Jun; Yu, Gang; Weber, Roland

    2016-03-01

    Secondary copper recovery is attracting increasing interest because of the growth of copper containing waste including e-waste. The pyrometallurgical treatment in smelters is widely utilized, but it is known to produce waste fluxes containing a number of toxic pollutants due to the large amount of copper involved, which catalyses the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (“dioxins”). Dioxins are generated in secondary copper smelters on fly ash as their major source, resulting in highly contaminated residues. In order to assess the toxicity of this waste, an analysis of dioxin-like compounds was carried out. High levels were detected (79,090 ng TEQ kg‑1) in the ash, above the Basel Convention low POPs content (15,000 ng TEQ kg‑1) highlighting the hazardousness of this waste. Experimental tests of high energy ball milling with calcium oxide and silica were executed to assess its effectiveness to detoxify such fly ash. Mechanochemical treatment obtained 76% dioxins reduction in 4 h, but longer milling time induced a partial de novo formation of dioxins catalysed by copper. Nevertheless, after 12 h treatment the dioxin content was substantially decreased (85% reduction) and the copper, thanks to the phenomena of incorporation and amorphization that occur during milling, was almost inactivated.

  14. Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling

    PubMed Central

    Cagnetta, Giovanni; Hassan, Mohammed Mansour; Huang, Jun; Yu, Gang; Weber, Roland

    2016-01-01

    Secondary copper recovery is attracting increasing interest because of the growth of copper containing waste including e-waste. The pyrometallurgical treatment in smelters is widely utilized, but it is known to produce waste fluxes containing a number of toxic pollutants due to the large amount of copper involved, which catalyses the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (“dioxins”). Dioxins are generated in secondary copper smelters on fly ash as their major source, resulting in highly contaminated residues. In order to assess the toxicity of this waste, an analysis of dioxin-like compounds was carried out. High levels were detected (79,090 ng TEQ kg−1) in the ash, above the Basel Convention low POPs content (15,000 ng TEQ kg−1) highlighting the hazardousness of this waste. Experimental tests of high energy ball milling with calcium oxide and silica were executed to assess its effectiveness to detoxify such fly ash. Mechanochemical treatment obtained 76% dioxins reduction in 4 h, but longer milling time induced a partial de novo formation of dioxins catalysed by copper. Nevertheless, after 12 h treatment the dioxin content was substantially decreased (85% reduction) and the copper, thanks to the phenomena of incorporation and amorphization that occur during milling, was almost inactivated. PMID:26975802

  15. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries.

    PubMed

    Zhang, Biao; Dugas, Romain; Rousse, Gwenaelle; Rozier, Patrick; Abakumov, Artem M; Tarascon, Jean-Marie

    2016-01-18

    Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)2F3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P'2-Na1[Fe0.5Mn0.5]O2 and C/'Na3+xV2(PO4)2F3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology.

  16. Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method

    NASA Astrophysics Data System (ADS)

    Chen, Daming; Harward, Ian; Baptist, Joshua; Goldman, Sara; Celinski, Zbigniew

    2015-12-01

    Barium ferrite has attracted considerable interest in the fields of permanent magnets and perpendicular magnetic recording due to its strong uniaxial anisotropy and high Curie temperature (Tc). We prepared aluminum doped barium ferrite ceramics (BaAlxFe12-xO19, 0≤x≤6) by the ball mill method. The powder was milled for 96 h, and after forming pellets, annealed for 48 h in air at 1000 °C. The X-ray diffraction (XRD) data show that there are only single hexagonal phases in the samples without any impurity phase. The crystal lattice constants, a and c, were calculated by Cohen's method. Both a and c decrease with increasing x, ranging from 0.588 nm and 2.318 nm to 0.573 nm and 2.294 nm, respectively. A Vibrating Sample Magnetometer (VSM) and Superconducting Quantum Interference Device (SQUID) were used to investigate Tc and magnetic properties of BaFe12-xAlxO19. It is found that Tc decreases with increasing x, from 425 °C to 298 °C. It is also found that the saturated magnetization (4πMs) decreases with increasing x, while the coercivity (Hc) increases with the increase in x. The anisotropy field was also determined from the SQUID measurement.

  17. The coercivity mechanism of Pr-Fe-B nanoflakes prepared by surfactant-assisted ball milling

    NASA Astrophysics Data System (ADS)

    Zuo, Wen-Liang; Zhang, Ming; Niu, E.; Shao, Xiao-Ping; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2015-09-01

    The strong (00l) textured Pr12+xFe82-xB6 (x=0, 1, 2, 3, 4) nanoflakes with high coercivity were prepared by surfactant-assisted ball milling (SABM). The thickness and length of the flakes are mainly in the range of 50-200 nm and 0.5-2 μm, respectively. A coercivity of 4.16 kOe for Pr15Fe79B6 nanoflakes was obtained, which is the maximum coercivity of R2Fe14B (R=Pr, Nd) nanoflakes or nanoparticles reported up to now. The results of XRD and SEM for the aligned Pr15Fe79B6 nanoflakes indicate that a strong (00l) texture is obtained and the easy magnetization direction is parallel to the surface of the flakes. The angular dependence of coercivity for aligned sample indicates that the coercivity mechanism of the as-milled nanoflakes is mainly dominated by domain wall pinning. Meanwhile, the field dependence of coercivity, isothermal (IRM) and dc demagnetizing (DCD) remanence curves also indicate that the coercivity is mainly determined by domain wall pinning, and nucleation also has an important effect. In addition, the mainly interaction of flakes is dipolar coupling. The research of coercivity mechanism for Pr15Fe79B6 nanoflakes is important for guidance the further increase its value, and is useful for the future development of the high performance nanocomposite magnets and soft/hard exchange spring magnets.

  18. Electromagnetic properties of flake-shaped Fe-Si alloy particles prepared by ball milling

    NASA Astrophysics Data System (ADS)

    Cao, Lei; Jiang, Jian-Tang; Wang, Zeng-Quan; Gong, Yuan-Xun; Liu, Chao; Zhen, Liang

    2014-11-01

    Flake-shaped Fe-Si alloy particles with high aspect ratios were fabricated by ball milling commercially available Fe-Si powder, aiming to fabricate high-performance microwave absorbing fillers for coatings applied in 1-4 GHz range. To compare with spherical particles, higher permittivity and permeability was observed by using flaky particles as fillers. High aspect ratios contributed to an enhanced dielectric relaxation in the 1-4 GHz band, resulting in an increased permittivity. The thin thickness together with the high resistivity of Fe-Si flakes was believed to be helpful for suppressing the effect of eddy current and thus lead to an increase in the permeability. The electromagnetic wave absorbing (EMA) performances were observed to be enhanced. With a thin thickness of 2 mm, a wide absorption band with a minimum reflection loss of -12 dB was achieved in 1-4 GHz range, when using 75 wt% of flaky Fe-Si particles as fillers. The study indicated that flake-shaped Fe-Si particles were a promising candidate for EMA materials in L and S bands.

  19. Combined pretreatment using ozonolysis and ball milling to improve enzymatic saccharification of corn straw.

    PubMed

    Shi, Feng; Xiang, Heji; Li, Yongfu

    2015-03-01

    Two clean pretreatments, ozonolysis (OZ) and planetary ball milling (BM) were applied separately and in combination to improve the enzymatic hydrolysis of corn straw. Pretreatment of corn straw by OZ and BM alone improved the enzymatic hydrolysis significantly, primarily through delignification and decrystallization of cellulose, respectively. When combined, OZ-BM and BM-OZ pretreatments made the enzymatic hydrolysis more efficient. The glucose and xylose yield of corn straw treated with OZ for 90 min followed by BM for 8 min (OZ90-BM8) reached to 407.8 and 101.9 mg/g-straw, respectively under cellulase loading of 15 FPU/g-straw, which was fivefold more than that of untreated straw. Under much lower cellulase loading of 1.5 FPU/g-straw, the glucose and xylose yield of treated straw OZ90-BM8 remained at 416.0 and 108.4 mg/g-straw, respectively, while the yield of untreated straw decreased. These findings indicate that the combined OZ-BM can be used as a promising pretreatment for corn straw.

  20. Iron Nanoparticles Fabricated by High-Energy Ball Milling for Magnetic Hyperthermia

    NASA Astrophysics Data System (ADS)

    Tung, D. K.; Manh, D. H.; Phong, L. T. H.; Nam, P. H.; Nam, D. N. H.; Anh, N. T. N.; Nong, H. T. T.; Phan, M. H.; Phuc, N. X.

    2016-05-01

    Iron nanoparticles (FeNPs) have been successfully prepared by high-energy ball milling in air for various milling times from 1 h to 32 h. Their structure, particle size, elemental composition, magnetic, and inductive heating properties were investigated by means of x-ray diffraction (XRD) analysis, field-emission scanning electron microscopy, energy-dispersive x-ray (EDX) spectroscopy, vibrating-sample magnetometry, and magnetic induction heating, respectively. XRD analysis showed that the average crystallite size decreased to 11 nm after 10 h of milling, then remained almost unchanged for longer milling times. Coexistence of iron (Fe) and iron oxide (FeO) phases was detected after 12 h of milling. EDX analysis also confirmed the occurrence of oxidation, which can be reconciled with the corresponding decrease and increase in saturation magnetization ( M s) with milling time when exposed to oxygen and when annealed under H2 ambient due to oxygen reduction. The time-dependent magnetic and inductive heating responses of the FeNPs were investigated for prospective application in magnetic hyperthermia. The effect of varying the alternating-current (AC) magnetic field strength on the saturation heating temperature and specific loss power of FeNP-containing ferrofluid with concentration of 4 mg/mL was also studied and is discussed.

  1. Catalytic hydrodechlorination of monochloroacetic acid in wastewater using Ni-Fe bimetal prepared by ball milling.

    PubMed

    Zhu, Hong; Xu, Fuyuan; Zhao, Jianzhuang; Jia, Linfang; Wu, Kunming

    2015-09-01

    Monochloroacetic acid (MCA) is a chemically stable and biologically toxic pollutant. It is often generated during the production of the pesticide dimethoate. Conventional wastewater treatment processes have difficulty degrading it. In this work, the dechlorination effects of Ni-Fe bimetal prepared using ball milling (BM) technology for the high concentrations of MCA in wastewater were examined. The MCA in aqueous solution was found to be degraded efficiently by the Ni-Fe bimetal. However, S-(methoxycarbonyl) methyl O, O-dimethyl phosphorodithioate (SMOPD) in wastewater, a by-product of the dimethoate production process, significantly inhibited the reductive dechlorination activity of Ni-Fe bimetal. Increasing the reaction temperature in the MCA wastewater enhanced the reduction activity of the Ni-Fe bimetal effectively. Oxygen was found to be unfavorable to dechlorination. Sealing the reaction to prevent oxidation was found to render the degradation process more efficient. The process retained over 88% efficiency after 10 treatment cycles with 50 g/L of Ni-Fe bimetal under field conditions.

  2. Fluid mechanics of slurry flow through the grinding media in ball mills

    SciTech Connect

    Songfack, P.K.; Rajamani, R.K.

    1995-12-31

    The slurry transport within the ball mill greatly influences the mill holdup, residence time, breakage rate, and hence the power draw and the particle size distribution of the mill product. However, residence-time distribution and holdup in industrial mills could not be predicted a priori. Indeed, it is impossible to determine the slurry loading in continuously operating mills by direct measurement, especially in industrial mills. In this paper, the slurry transport problem is solved using the principles of fluid mechanics. First, the motion of the ball charge and its expansion are predicted by a technique called discrete element method. Then the slurry flow through the porous ball charge is tackled with a fluid-flow technique called the marker and cell method. This may be the only numerical technique capable of tracking the slurry free surface as it fluctuates with the motion of the ball charge. The result is a prediction of the slurry profile in both the radial and axial directions. Hence, it leads to the detailed description of slurry mass and ball charge within the mill. The model predictions are verified with pilot-scale experimental work. This novel approach based on the physics of fluid flow is devoid of any empiricism. It is shown that the holdup of industrial mills at a given feed percent solids can be predicted successfully.

  3. TEM and HRTEM studies of ball milled 6061 aluminium alloy powder with Zr addition.

    PubMed

    Lityńska-Dobrzyńska, L; Dutkiewicz, J; Maziarz, W; Rogal, Ł

    2010-03-01

    The effect of mechanical alloying on the microstructure of atomized 6061 aluminium alloy powder and 6061 powder with a zirconium addition was studied in the work. The atomized 6061 aluminium alloy powder and 6061 powder with addition of 2 wt.% Zr were milled in a planetary ball mill and investigated using X-ray diffraction measurements, conventional and high-resolution electron microscopy (TEM/HRTEM) and high-angle annular dark field scanning transmission electron microscopy combined with energy dispersive X-ray microanalysis. An increase of stresses was observed in milled powders after the refinement of crystallites beyond 100 nm. In the powder with zirconium addition, some part of the Zr atoms diffused in aluminium forming a solid solution containing up to 0.5 wt.% Zr. The remaining was found to form Zr-rich particles containing up to 88 wt.% Zr and were identified as face centred cubic (fcc) phase with lattice constant a= 0.48 nm. That fcc phase partially transformed into the L1(2) ordered phase. Eighty-hour milling brought an increase of microhardness (measured with Vickers method) from about 50 HV (168 MPa) for the initial 6061 powder to about 170 HV (552 MPa). The addition of zirconium had no influence on the microhardness.

  4. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries

    PubMed Central

    Zhang, Biao; Dugas, Romain; Rousse, Gwenaelle; Rozier, Patrick; Abakumov, Artem M.; Tarascon, Jean-Marie

    2016-01-01

    Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)2F3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P′2-Na1[Fe0.5Mn0.5]O2 and C/‘Na3+xV2(PO4)2F3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology. PMID:26777573

  5. Surface hardening of Al alloys through controlled ball-milling and sintering.

    PubMed

    Kim, Seek Hyeoun; Kim, Yong Jin; Ahn, Jung-Ho

    2012-07-01

    One of the drawbacks of aluminum and its alloys is the lack of proper heat-treatment for surface-hardening. In the present work, a new and simple method of hardening the surface of aluminum and its alloys was developed. Low-energy ball-milling using specific process control agents (PCAs) was employed, using subsequent sintering in a controlled atmosphere. The PCAs in the present work were very effective both for milling and the formation of hard nanocrystalline dispersoids during sintering. The residual oxygen in a sintering atmosphere also played an important role in the formation of AIN or Al-O-N dispersoids. Through the proper control of the processing atmosphere and PCAs, the hardness and thickness of the hardened layers could be adjusted. The results of the wear test showed that the present aluminum alloys can be effectively utilized as light-weight components with a good wear resistance. Furthermore, the present method involves a simple forming process of die-compaction and sintering.

  6. Anisotropic SmCo{sub 5} nanoflakes by surfactant-assisted high energy ball milling

    SciTech Connect

    Cui, B. Z.; Gabay, A. M.; Li, W. F.; Hadjipanayis, G. C.; Marinescu, M.; Liu, J. F.

    2010-05-15

    Crystallographically anisotropic SmCo{sub 5} nanoflakes were fabricated directly by one-step surfactant-assisted high energy ball milling (HEBM) of Sm{sub 17}Co{sub 83} ingot powders for 5 h in heptane and oleic acid (OA) without preprocessing or further annealing. The SmCo{sub 5} nanoflakes have a strong [001] out-of-plane texture. The thickness of nanoflakes is in the range of 8-80 nm while their length is 0.5-8 {mu}m. The surfactant OA plays an important role in the formation of SmCo{sub 5} nanoflakes. HEBM of SmCo{sub 5} ingots in heptane without OA resulted in the formation of magnetically isotropic more or less equiaxed SmCo{sub 5} particles with a size of 2-30 {mu}m. Closely packed 'kebablike' SmCo{sub 5} nanoflakes were formed by HEBM in heptane with 15 wt % OA. HEBM in 150 wt % OA led to well-separated nanoflakes instead of the closely packed kebablike nanostructure. This resulted in the enhanced [001] out-of-plane texture. In-plane transmission electron microscope examination showed that the SmCo{sub 5} nanoflakes were composed of grains with sizes in the range of 4-8 nm. Coercivities of about 18.0 kOe were obtained for the anisotropic SmCo{sub 5} nanoflakes.

  7. Structural Investigations of Nanocrystalline Cu-Cr-Mo Alloy Prepared by High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    Kumar, Avanish; Pradhan, Sunil Kumar; Jayasankar, Kalidoss; Debata, Mayadhar; Sharma, Rajendra Kumar; Mandal, Animesh

    2017-02-01

    Cu-Cr-Mo alloy could be a suitable candidate material for collector electrodes in high-power microwave tube devices. An attempt has been made to synthesize ternary Cu-Cr-Mo alloys by mechanical alloying of elemental Cu, Cr, and Mo powders, to extend the solid solubility of Cr and Mo in Cu, using a commercial planetary ball mill. For the first ternary alloy, a mixture of 80 wt.% Cu, 10 wt.% Cr, and 10 wt.% Mo was mechanically milled for 50 h. For the second ternary alloy, a mixture of 50 wt.% Cr and 50 wt.% Mo was mechanically milled for 50 h to obtain nanocrystalline Cr(Mo) alloy, which was later added to Cu powder and milled for 40 h to obtain Cu-20 wt.%Cr(Mo) alloy. Both nanocrystalline Cu-Cr-Mo ternary alloys exhibited crystallite size below 20 nm. It was concluded that, with addition of nanocrystalline Cr(Mo) to Cu, it was possible to extend the solid solubility of Cr and Mo in Cu, which otherwise was not possible by mechanical alloying of elemental powders. The resulting microstructure of the Cu-20 wt.%Cr(Mo) alloy comprised a homogeneous distribution of fine and hard (Cr, Mo) particles in a copper matrix. Furthermore, Cu-20 wt.%Cr(Mo) alloy showed better densification compared with Cu-10 wt.%Cr-10 wt.%Mo alloy.

  8. Electrochemical and interfacial properties of (PEO)10LiCF3SO3-Al2O3 nanocomposite polymer electrolytes using ball milling

    NASA Astrophysics Data System (ADS)

    Shin, J. H.; Jung, B. S.; Jeong, S. S.; Kim, K. W.; Ahn, H. J.; Cho, K. K.; Ahn, J. H.

    2004-04-01

    Electrochemical and interfacial properties of (PEO)10LiCF3SO3-Al2O3 composite polymer electrolytes (CPEs) prepared by either ball milling or stirring are reported. Ball milling was introduced into a slurry preparative technique utilizing PEO, lithium salt and Al2O3 powder ranging from 5 to 15 wt.%. The ionic conductivity was increased by ball milling over a range of temperatures. In particular, a significant increase at low temperature below the melting point of crystalline PEO was observed. Interfacial stability between lithium electrode and CPE was significantly improved by the addition of alumina as well as by ball milling. The electrochemical stability window produced by (PEO)10LiCF3SO3-Al2O3 ball milling was higher than that of stirring, which was about 4.4 V. Charge/discharge performance of Li/CPE/S cells with (PEO)10LiCF3SO3-Al2O3-12 hr ball milling was superior to that of a pristine polymer electrolyte due to the low interface resistance and high ionic conductivity.

  9. Amorphous solid dispersions of sulfonamide/Soluplus® and sulfonamide/PVP prepared by ball milling.

    PubMed

    Caron, Vincent; Hu, Yun; Tajber, Lidia; Erxleben, Andrea; Corrigan, Owen I; McArdle, Patrick; Healy, Anne Marie

    2013-03-01

    The aim of this paper is to investigate the physicochemical properties of binary amorphous dispersions of poorly soluble sulfonamide/polymeric excipient prepared by ball milling. The sulfonamides selected were sulfathiazole (STZ), sulfadimidine (SDM), sulfamerazine (SMZ) and sulfadiazine (SDZ). The excipients were polyvinylpyrrolidone (PVP) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer, commercially known as Soluplus®. Co-milled systems were characterised by powder X-ray diffraction and differential scanning calorimetry. PVP was shown to form amorphous dispersions over a wider composition range than Soluplus® for the four sulfonamides tested. Moreover, amorphous dispersions made with PVP were homogeneous [single glass transition (Tg)], while amorphous dispersions made from Soluplus® were heterogeneous (two Tgs). This behaviour is consistent with the fact that all the sulfonamides tested presented a lower solubility in Soluplus® than in PVP, as evidenced by Flory-Huggins parameters determined. Amorphous dispersions of SDM with Soluplus® could be produced even though SDM does not amorphise alone upon milling and Soluplus® presents Tg at a lower temperature than SDM. Amorphous dispersions of SMZ could be prepared with a lower excipient concentration compared to STZ, SDM and SDZ, which may reflect the one-dimensional H-bonding network in SMZ compared to the 2D or 3D H-bonding network found in the other sulfonamides. Stability tests (60% RH/25°C) revealed that dispersions made with Soluplus® remained dry and powdery compared to those made with PVP that formed a sticky paste in less than 2 weeks, indicating a possible advantage of using Soluplus® in terms of increased physical stability under high humidity storage conditions.

  10. Study of morphology and magnetic properties of the HoNi{sub 3} crystalline and ball-milled compound

    SciTech Connect

    Bajorek, Anna; Skornia, Paweł; Prusik, Krystian; Wojtyniak, Marcin; Chełkowska, Grażyna

    2015-03-15

    The morphology and magnetic properties of the HoNi{sub 3} crystalline and ball-milled intermetallic compounds are presented. The polycrystalline HoNi{sub 3} bulk compound crystallizes in the rhombohedral PuNi{sub 3} — type of crystal structure and indicates ferrimagnetic arrangement with the Curie temperature of T{sub C} = 57 ± 2 K, the helimagnetic temperature T{sub h} = 23 ± 2 K with the total saturation magnetic moment of 6.84 μ{sub B}/f.u. at 2 K. The use of the ball-milling method leads to the formation of HoNi{sub 3} nanoflakes with typical thickness of less than 100 nm prone to agglomeration upon milling. The increase of grinding duration leads to the reduction in crystallite size, which was confirmed by various complementary microscopical and diffraction studies. Moreover, the increase in milling duration results in the emergence of the relatively small coercivity (H{sub C}), remanence (M{sub r}) and a variation of the saturation magnetization (M{sub S}). - Graphical abstract: Display Omitted - Highlights: • The ball-milling method exhibits significant potential for producing RT{sub 3} nanopowders. • The AFM method was used for the first time in analysis of R–T nanoflakes morphology. • HoNi{sub 3} compound forms polycrystalline and textured nanoflakes evolving upon milling. • The decrease in crystallite size via grinding is confirmed by XRD, TEM and AFM. • The magnetic parameters were sensitive to the extension of pulverization b.

  11. Mechanochemical Rhodium(III)-Catalyzed C-H Bond Functionalization of Acetanilides under Solventless Conditions in a Ball Mill.

    PubMed

    Hermann, Gary N; Becker, Peter; Bolm, Carsten

    2015-06-15

    In a proof-of-principle study, a planetary ball mill was applied to rhodium(III)-catalyzed C-H bond functionalization. Under solventless conditions and in the presence of a minute amount of Cu(OAc)2, the mechanochemical activation led to the formation of an active rhodium species, thus enabling an oxidative Heck-type cross-coupling reaction with dioxygen as the terminal oxidant. The absence of an organic solvent, the avoidance of a high reaction temperature, the possibility of minimizing the amount of the metallic mediator, and the simplicity of the protocol result in a powerful and environmentally benign alternative to the common solution-based standard protocol.

  12. Micromorphological changes and mechanism associated with wet ball milling of Pinus radiata substrate and consequences for saccharification at low enzyme loading.

    PubMed

    Vaidya, Alankar A; Donaldson, Lloyd A; Newman, Roger H; Suckling, Ian D; Campion, Sylke H; Lloyd, John A; Murton, Karl D

    2016-08-01

    In this work, substrates prepared from thermo-mechanical treatment of Pinus radiata chips were vibratory ball milled for different times. In subsequent enzymatic hydrolysis, percent glucan conversion passed through a maximum value at a milling time of around 120min and then declined. Scanning electron microscopy revealed breakage of fibers to porous fragments in which lamellae and fibrils were exposed during ball milling. Over-milling caused compression of the porous fragments to compact globular particles with a granular texture, decreasing accessibility to enzymes. Carbon-13 NMR spectroscopy showed partial loss of interior cellulose in crystallites, leveling off once fiber breakage was complete. A mathematical model based on observed micromorphological changes supports ball milling mechanism. At a low enzyme loading of 2FPU/g of substrate and milling time of 120min gave a total monomeric sugar yield of 306g/kg of pulp which is higher than conventional pretreatment method such as steam exploded wood.

  13. Influence of Ball-Milling Treatment of B Original Powder on the Phase Formation and Critical Current Density of Graphite Doped MgB

    NASA Astrophysics Data System (ADS)

    Su, Xiaocheng; Jiang, Qingguo; Zuo, Anying

    2014-10-01

    In present work, the sintering process and superconducting properties of graphite doped MgB prepared with milled B original powder were investigated. It is found that ball milling treatment of B original powder obviously suppresses the solid-solid reaction between Mg and B, whereas it enhances their liquid-solid reaction during the subsequent sintering process of these graphite doped MgB bulks. Ball milling treatment of B original powder can also promote C substitution for B sites in MgB crystal lattice in the graphite-doped samples, and thus obviously increase their values of at high fields. Moreover, ball milling also refines MgB grains, enhancing grain boundary pinning and at high fields.

  14. Preparation of Si nano-crystals with controlled oxidation state from SiO disproportionated by ZrO2 ball-milling

    NASA Astrophysics Data System (ADS)

    Okamoto, Yuji; Harada, Yoshitomo; Ohta, Narumi; Takada, Kazunori; Sumiya, Masatomo

    2016-09-01

    We demonstrate that a SiO disproportionation reaction can be achieved simply by high energy mechanochemical milling. The planetary ball-milling of ZrO2 for a few minutes generated Si nano-crystals. Milling conditions including rotation speed, ball number, milling time, and type of ball material were able to control the oxidation states of Si. The ball-milled SiO powder was tested as an anode of a lithium battery. ZrO2 contamination from the vial and balls was eliminated by dipping the ball-milled SiO powder in (NH4)HSO4 molten salt and heating for 5 min. The disproportionated SiO powder showed characteristics comparable to those of a powder prepared by a conventional heating process taking several hours.

  15. Effect of ball milling and dynamic compaction on magnetic properties of Al{sub 2}O{sub 3}/Co(P) composite particles

    SciTech Connect

    Denisova, E. A.; Kuzovnikova, L. A.; Iskhakov, R. S. Eremin, E. V.; Bukaemskiy, A. A.; Nemtsev, I. V.

    2014-05-07

    The evolution of the magnetic properties of composite Al{sub 2}O{sub 3}/Co(P) particles during ball milling and dynamic compaction is investigated. To prepare starting composite particles, the Al{sub 2}O{sub 3} granules were coated with a Co{sub 95}P{sub 5} shell by electroless plating. The magnetic and structural properties of the composite particles are characterized by scanning electron microscopy, X-ray diffraction, and the use of the Physical Property Measurement System. The use of composite core-shell particles as starting powder for mechanoactivation allows to decrease treatment duration to 1 h and to produce a more homogeneous bulk sample than in the case of the mixture of Co and Al{sub 2}O{sub 3} powders. The magnetic properties of the milled composite particles are correlated with changes in the microstructure. Reduction in grain size of Co during milling leads to an increase of the volume fraction of superparamagnetic particles and to a decrease of the saturation magnetization. The local magnetic anisotropy field depends on the amount of hcp-Co phase in sample. The anisotropy field value decreases from 8.4 kOe to 3.8 kOe with an increase in milling duration up to 75 min. The regimes of dynamic compaction were selected so that the magnetic characteristics—saturation magnetization and coercive field—remained unchanged.

  16. Textured Pr{sub 2}Fe{sub 14}B flakes with submicron or nanosize thickness prepared by surfactant-assisted ball milling

    SciTech Connect

    Zuo, Wen-Liang E-mail: shenbg@aphy.iphy.ac.cn; Liu, Rong-Ming; Zheng, Xin-Qi; Wu, Rong-Rong; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen E-mail: shenbg@aphy.iphy.ac.cn

    2014-05-07

    The textured Pr{sub 2}Fe{sub 14}B nanoflakes were produced by surfactant-assisted ball milling (SABM). Single phase tetragonal structure was characterized for the samples before and after SABM by X-ray diffraction (XRD). The thickness and length of the as-milled flakes are mainly in the range of 50–150 nm and 0.5–2 μm, respectively. For the field-aligned Pr{sub 2}Fe{sub 14}B nanoflakes, the out-of-plane texture (the easy magnetization direction (EMD) along the c-axis) is indicated from the increasing (00l) peaks in the XRD patterns. SEM image demonstrates that the EMD is parallel to flaky surface, which is different from the RCo{sub 5} (R = rare earth) system with EMD perpendicular to the surface. We propose a hypothesis that the easy glide planes are related with the area of crystal planes. In addition, a large coercivity H{sub c} = 3.9 kOe is observed in the Pr{sub 2}Fe{sub 14}B flakes with strong texture.

  17. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods

    NASA Astrophysics Data System (ADS)

    Rahimi Kord Sofla, M.; Brown, R. J.; Tsuzuki, T.; Rainey, T. J.

    2016-09-01

    This study compared the fundamental properties of cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) extracted from sugarcane bagasse. Conventional hydrolysis was used to extract CNC while ball milling was used to extract CNF. Images generated by scanning electron microscope and transmission electron microscope showed CNC was needle-like with relatively lower aspect ratio and CNF was rope-like in structure with higher aspect ratio. Fourier-transformed infrared spectra showed that the chemical composition of nanocellulose and extracted cellulose were identical and quite different from bagasse. Dynamic light scattering studies showed that CNC had uniform particle size distribution with a median size of 148 nm while CNF had a bimodal size distribution with median size 240 ± 12 nm and 10 μm. X-ray diffraction showed that the amorphous portion was removed during hydrolysis; this resulted in an increase in the crystalline portion of CNC compared to CNF. Thermal degradation of cellulose initiated at a much lower temperature, in the case of the nanocrystals while the CNF prepared by ball milling were not affected, indicating higher thermal stability.

  18. Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process

    NASA Astrophysics Data System (ADS)

    Fathinia, Siavash; Fathinia, Mehrangiz; Rahmani, Ali Akbar; Khataee, Alireza

    2015-02-01

    In the present study pyrite nanoparticles were prepared by high energy mechanical ball milling utilizing a planetary ball mill. Various pyrite samples were produced by changing the milling time from 2 h to 6 h, in the constant milling speed of 320 rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) linked with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer-Emmett-Teller (BET) were performed to explain the characteristics of primary (unmilled) and milled pyrite samples. The average particle size distribution of the produced pyrite during 6 h milling was found to be between 20 nm and 100 nm. The catalytic performance of the different pyrite samples was examined in the heterogeneous Fenton process for degradation of C.I. Acid Orange 7 (AO7) solution. Results showed that the decolorization efficiency of AO7 in the presence of 6 h-milled pyrite sample was the highest. The impact of key parameters on the degradation efficiency of AO7 by pyrite nanoparticles catalyzed Fenton process was modeled using central composite design (CCD). Accordingly, the maximum removal efficiency of 96.30% was achieved at initial AO7 concentration of 16 mg/L, H2O2 concentration of 5 mmol/L, catalyst amount of 0.5 g/L and reaction time of 25 min.

  19. Effects of process control agent on the synthesis of AIN-carbon nanotube by ball-milling.

    PubMed

    Nam, Hye Rim; Kim, Young Jin; Ahn, Jung-Ho

    2013-09-01

    Aluminum and its alloy are of importance due to high specific strength. In particular, aluminum matrix composites have good corrosion resistance and mechanical property at high temperatures. However, enhanced mechanical strength and wear resistance via proper heat treatments are strongly required for many structural applications. For this purpose, we synthesized carbon nanotube (CNT)-reinforced aluminum matrix composites by employing a new method. We employed controlled ball-milling and sintering: the use of some specific process control agents (PCAs) for ball-milling and sintering in a specific atmosphere. The use of our PCAs was beneficial both for homogeneous mixing and for the formation of hard dispersoids. Hardened layers was formed at the surface of the present aluminum-CNT composites as a result of reaction of aluminum with PCAs and nitrogen in the processing atmosphere. The resulting materials after sintering showed interesting mechanical properties, combined with surface hardening. The hardening mainly stems from the formation of Al-N-O phase at the surface of specimens.

  20. Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol.

    PubMed

    Xu, Fuyuan; Deng, Shubo; Xu, Jie; Zhang, Wang; Wu, Min; Wang, Bin; Huang, Jun; Yu, Gang

    2012-04-17

    A novel Ni-Fe bimetal with high dechlorination activity for 4-chlorophenol (4-CP) was prepared by ball milling (BM) in this study. Increasing Ni content and milling time greatly enhanced the dechlorination activity, which was mainly attributed to the homogeneous distribution of Ni nanoparticles (50-100 nm) in bulk Fe visualized by scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) with image mapping. In comparison with the Ni-Fe bimetal prepared by a chemical solution deposition (CSD) process, the ball milled Ni-Fe bimetal possessed high dechlorination activity and stability before being used up. Dechlorination kinetics indicated that the dechlorination rates of 4-CP increased with increasing Ni-Fe dose but decreased with increasing solution pH. Solution pH had a significant effect on the dechlorination of 4-CP and the passivation of the Ni-Fe bimetal. The enhanced pH during the dechlorination process significantly accelerated the formation of passivating film on the bimetallic surface. The Ni-Fe bimetal at the dose of 60 g/L was reused 10 times without losing dechlorination activity for 4-CP at initial pH less than 6.0, but the gradual passivation was observed at initial pH above 7.0.

  1. Synthesis and Characterization of Aluminum-Nanodiamond Composite Powders by High Energy Ball Milling

    DTIC Science & Technology

    2011-12-01

    Niobium , milled at the same parameters developed only 4.03 wt% Fe contamination [10]. The weight of the milling media to the powder, also known...111> ND peak was illustrated because due to the small size of the ND particles and grains, the higher order peaks signals are too weak for such...REFERENCES [1] J. Montgomery, et al, “Low-cost titanium armors for combat vehicles,” JOM, vol. 49, no. 5, pp. 45–47, 1997. [2] M. Myers and K. Chawla

  2. High energy ball milling and supercritical carbon dioxide impregnation as co-processing methods to improve dissolution of tadalafil.

    PubMed

    Krupa, Anna; Descamps, Marc; Willart, Jean-François; Jachowicz, Renata; Danède, Florence

    2016-12-01

    Tadalafil (TD) is a crystalline drug of a high melting point (Tm=299°C) and limited solubility in water (<5μg/mL). These properties may result in reduced and variable bioavailability after oral administration. Since the melting of TD is followed by its decomposition, the drug processing at high temperatures is limited. The aim of the research is, therefore, to improve the dissolution of TD by its co-processing with the hydrophilic polymer Soluplus® (SL) at temperatures below 40°C. In this study, two methods, i.e. high energy ball-milling and supercritical carbon dioxide impregnation (scCO2) are compared, with the aim to predict their suitability for the vitrification of TD. The influence of the amount of SL and the kind of co-processing method on TD thermal properties is analyzed. The results show that only the high energy ball milling process makes it possible to obtain a completely amorphous form of TD, with the characteristic X-ray 'halo' pattern. The intensity of the Bragg peaks diminishes for all the formulations treated with scCO2, but these samples remain crystalline. The MDSC results show that high energy ball milling is capable of forcing the mixing of TD and SL at a molecular level, providing a homogeneous amorphous solid solution. The glass transition temperatures (Tg), determined for the co-milled formulations, range from 79°C to 139°C and they are higher than Tg of pure SL (ca. 70°C) and lower than Tg of pure TD (ca. 149°C). In contrast to the co-milled formulations which are in the form of powder, all the formulations after scCO2 impregnation form a hard residue, sticking to the reaction vessel, which needs to be ground before analysis or further processing. Finally, the dissolution studies show that not only has SL a beneficial effect on the amount of TD dissolved, but also both co-processing methods make the dissolution enhancement of TD possible. After co-processing by scCO2, the amount of TD dissolved increases with the decreasing amount

  3. Multiscale Fractal Characterization of Hierarchical Heterogeneity in Sandstone Reservoirs

    NASA Astrophysics Data System (ADS)

    Liu, Yanfeng; Liu, Yuetian; Sun, Lu; Liu, Jian

    2016-07-01

    Heterogeneities affecting reservoirs often develop at different scales. Previous studies have described these heterogeneities using different parameters depending on their size, and there is no one comprehensive method of reservoir evaluation that considers every scale. This paper introduces a multiscale fractal approach to quantify consistently the hierarchical heterogeneities of sandstone reservoirs. Materials taken from typical depositional pattern and aerial photography are used to represent three main types of sandstone reservoir: turbidite, braided, and meandering river system. Subsequent multiscale fractal dimension analysis using the Bouligand-Minkowski method characterizes well the hierarchical heterogeneity of the sandstone reservoirs. The multiscale fractal dimension provides a curve function that describes the heterogeneity at different scales. The heterogeneity of a reservoir’s internal structure decreases as the observational scale increases. The shape of a deposit’s facies is vital for quantitative determination of the sedimentation type, and thus enhanced oil recovery. Characterization of hierarchical heterogeneity by multiscale fractal dimension can assist reservoir evaluation, geological modeling, and even the design of well patterns.

  4. High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization

    NASA Astrophysics Data System (ADS)

    Wang, Dingsheng; Gao, Mingxia; Pan, Hongge; Wang, Junhua; Liu, Yongfeng

    2014-06-01

    Amorphous-Si@SiOx/C composites with amorphous Si particles as core and coated with a double layer of SiOx and carbon are prepared by ball-milling crystal micron-sized silicon powders and carbonization of the citric acid intruded in the ball-milled Si. Different ratios of Si to citric acid are used in order to optimize the electrochemical performance. It is found that SiOx exists naturally at the surfaces of raw Si particles and its content increases to ca. 24 wt.% after ball-milling. With an optimized Si to citric acid weight ratio of 1/2.5, corresponding to 8.4 wt.% C in the composite, a thin carbon layer is coated on the surfaces of a-Si@SiOx particles, moreover, floc-like carbon also forms and connects the carbon coated a-Si@SiOx particles. The composite provides a capacity of 1450 mA h g-1 after 100 cycles at a current density of 100 mA g1, and a capacity of 1230 mA h g-1 after 100 cycles at 500 mA g1 as anode material for lithium-ion batteries. Effects of ball-milling and the addition of citric acid on the microstructure and electrochemical properties of the composites are revealed and the mechanism of the improvement in electrochemical properties is discussed.

  5. GEL-STATE NMR OF BALL-MILLED WHOLE CELL WALLS IN DMSO-d6 USING 2D SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls were used for obtaining 2D solution-state NMR spectra without actual solubilization or structural modification. Ball-milled whole cell walls were swelled directly in the NMR tube with DMSO-d6 where they formed a gel. There are relatively few gel-state NMR studies. Most have involved...

  6. Multiscale characterization and analysis of shapes

    DOEpatents

    Prasad, Lakshman; Rao, Ramana

    2002-01-01

    An adaptive multiscale method approximates shapes with continuous or uniformly and densely sampled contours, with the purpose of sparsely and nonuniformly discretizing the boundaries of shapes at any prescribed resolution, while at the same time retaining the salient shape features at that resolution. In another aspect, a fundamental geometric filtering scheme using the Constrained Delaunay Triangulation (CDT) of polygonized shapes creates an efficient parsing of shapes into components that have semantic significance dependent only on the shapes' structure and not on their representations per se. A shape skeletonization process generalizes to sparsely discretized shapes, with the additional benefit of prunability to filter out irrelevant and morphologically insignificant features. The skeletal representation of characters of varying thickness and the elimination of insignificant and noisy spurs and branches from the skeleton greatly increases the robustness, reliability and recognition rates of character recognition algorithms.

  7. Properties of dispersion-strengthened chromium - 4-volume-percent-thoria alloys produced by ball milling in hydrogen iodide

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1974-01-01

    The effects of processing variables on the tensile properties and ductile-to-brittle transition temperature (DBTT) of Cr + 4 vol. %ThO2 alloys and of pure Cr produced by ball milling in hydrogen iodide were investigated. Hot rolled Cr + ThO2 was stronger than either hot pressed Cr + ThO2 or pure Cr at temperatures up to 1537 C. Hot pressed Cr + ThO2 had a DBTT of 501 C as compared with minus 8 to 24 C for the hot rolled Cr + ThO2 and with 139 C for pure Cr. It is postulated that the dispersoid in the hot rolled alloys lowers the DBTT by inhibiting recovery and recrystallization of the strained structure.

  8. The structure and magnetic properties of Sm-Fe-N powders prepared by ball milling at low temperature

    NASA Astrophysics Data System (ADS)

    Fang, Qiuli; An, Xiaoxin; Wang, Fang; Li, Ying; Du, Juan; Xia, Weixing; Yan, Aru; Liu, J. Ping; Zhang, Jian

    2016-07-01

    Sm-Fe-N powders have great potential to be used for preparing high-performance bonded permanent magnets because of their high anisotropy field and large saturation magnetization. In this work, we report the morphology, structure, oxygen content and magnetic properties of the Sm-Fe-N powders prepared by high energy ball milling at low temperature. Compared with the samples milled at room temperature, the Sm-Fe-N powders prepared at low temperature display more homogeneous morphology, less decomposition, lower oxygen content, and therefore enhanced magnetic performance. Our experimental results indicate that the low temperature milling will be a promising method for fabricating Sm-Fe-N bonded magnets with high-performance.

  9. High trapped fields in bulk MgB2 prepared by hot-pressing of ball-milled precursor powder

    NASA Astrophysics Data System (ADS)

    Fuchs, G.; Häßler, W.; Nenkov, K.; Scheiter, J.; Perner, O.; Handstein, A.; Kanai, T.; Schultz, L.; Holzapfel, B.

    2013-12-01

    Bulk superconducting MgB2 samples, 20 mm in diameter, were prepared by hot-pressing of ball-milled Mg and B powders using fine-grained boron powders. High maximum trapped fields of B0 = 5.4 T were obtained at 12 K in one of the investigated trapped field magnets (height 8 mm) at the centre of the bulk surface. Investigating the temperature dependence of the trapped field for short MgB2 samples (height ≤1.6 mm), trapped fields of up to B0 = 3.2 T at 15 K were achieved. These high trapped fields are related to extremely high critical current densities of up to 106 A cm-2 at 15 K, indicating strong pinning due to nanocrystalline MgB2 grains. Expected trapped field data for long trapped field magnets prepared from the available MgB2 material are estimated.

  10. Role of carbon order in structural transformations and hydrogen evolution induced by reactive ball milling in cyclohexene

    SciTech Connect

    Sakti, A.; Wonderling, N.M.; Clifford, C.E.B.; Badding, J.V.; Lueking, A.D.

    2008-11-15

    Demineralized Summit (DS) anthracite, DS annealed at 1673 K, and graphite are used to explore the effect of precursor order on structural transformations and H{sub 2} evolution that result during reactive ball milling. Carbon structure was assessed before and after milling with temperature-programmed oxidation, X-ray diffraction (XRD), ultraviolet Raman spectroscopy, N{sub 2} adsorption, He density, and solvent swelling. Graphite milled in cyclohexene is primarily nanocrystalline graphite, with 8 wt % amorphous content leading to low-temperature oxidation, swelling, increased surface area, and mesoporosity. Milling the disordered DS leads to signs of increased sp{sup 2} clustering, increased cross-linking, a significant ultramicroporosity with pores less than 8 angstrom, and low-temperature H{sub 2} evolution. The carbon fraction of annealed DS behaves similarly to graphite in the mill.

  11. Kinetics and Mechanisms of Phase Transformations Induced by Ball-Milling in Anatase TiO 2

    NASA Astrophysics Data System (ADS)

    Bégin-Colin, S.; Girot, T.; Le Caër, G.; Mocellin, A.

    2000-01-01

    Ball-milling is a way of inducing phase transformations, chemical reactions, and changes in the reactivity of solids. It is a complex process for which several models have been developed to predict the evolution of systems and to describe its physics. These models sometimes empirically need experimental data to be ascertained and to confirm general theories of system evolutions. In this work, we investigate the effect of two milling parameters, the powder to ball weight ratio R and the nature of the grinding media, on the kinetics of phase transformations in anatase TiO2 powder. These experiments established that R affects only the reaction rate. The kinetics are faster with alumina than with steel grinding tools for a given R, specific injected powers being similar. It has been demonstrated that the phase transformations induced by grinding TiO2 occur without fracturing of particles and mechanisms are commented upon.

  12. Superthermostability of nanoscale TIC-reinforced copper alloys manufactured by a two-step ball-milling process

    NASA Astrophysics Data System (ADS)

    Wang, Fenglin; Li, Yunping; Xu, Xiandong; Koizumi, Yuichiro; Yamanaka, Kenta; Bian, Huakang; Chiba, Akihiko

    2015-12-01

    A Cu-TiC alloy, with nanoscale TiC particles highly dispersed in the submicron-grained Cu matrix, was manufactured by a self-developed two-step ball-milling process on Cu, Ti and C powders. The thermostability of the composite was evaluated by high-temperature isothermal annealing treatments, with temperatures ranging from 727 to 1273 K. The semicoherent nanoscale TiC particles with Cu matrix, mainly located along the grain boundaries, were found to exhibit the promising trait of blocking grain boundary migrations, which leads to a super-stabilized microstructures up to approximately the melting point of copper (1223 K). Furthermore, the Cu-TiC alloys after annealing at 1323 K showed a slight decrease in Vickers hardness as well as the duplex microstructure due to selective grain growth, which were discussed in terms of hardness contributions from various mechanisms.

  13. Inkjet-printed flexible organic thin-film thermoelectric devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s/polymer composites through ball-milling

    PubMed Central

    Jiao, Fei; Di, Chong-an; Sun, Yimeng; Sheng, Peng; Xu, Wei; Zhu, Daoben

    2014-01-01

    In this article, we put forward a simple method for the synthesis of thermoelectric (TE) composite materials. Both n- and p-type composites were obtained by ball-milling the insoluble and infusible metal coordination polymers with other polymer solutions. The particle size, film morphology and composition were characterized by dynamic light scattering, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. The TE properties of the drop-cast composite film were measured at different temperatures. An inkjet-printed flexible device was fabricated and the output voltage and short-circuit current at various hot-side temperatures (Thot) and temperature gradients (ΔT) were tested. The composite material not only highly maintained the TE properties of the pristine material but also greatly improved its processability. This method can be extended to other insoluble and infusible TE materials for solution-processed flexible TE devices. PMID:24615147

  14. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries.

    PubMed

    Xu, Jiantie; Shui, Jianglan; Wang, Jianli; Wang, Min; Liu, Hua-Kun; Dou, Shi Xue; Jeon, In-Yup; Seo, Jeong-Min; Baek, Jong-Beom; Dai, Liming

    2014-10-28

    Although much progress has been made to develop high-performance lithium-sulfur batteries (LSBs), the reported physical or chemical routes to sulfur cathode materials are often multistep/complex and even involve environmentally hazardous reagents, and hence are infeasible for mass production. Here, we report a simple ball-milling technique to combine both the physical and chemical routes into a one-step process for low-cost, scalable, and eco-friendly production of graphene nanoplatelets (GnPs) edge-functionalized with sulfur (S-GnPs) as highly efficient LSB cathode materials of practical significance. LSBs based on the S-GnP cathode materials, produced by ball-milling 70 wt % sulfur and 30 wt % graphite, delivered a high initial reversible capacity of 1265.3 mAh g(-1) at 0.1 C in the voltage range of 1.5-3.0 V with an excellent rate capability, followed by a high reversible capacity of 966.1 mAh g(-1) at 2 C with a low capacity decay rate of 0.099% per cycle over 500 cycles, outperformed the current state-of-the-art cathode materials for LSBs. The observed excellent electrochemical performance can be attributed to a 3D "sandwich-like" structure of S-GnPs with an enhanced ionic conductivity and lithium insertion/extraction capacity during the discharge-charge process. Furthermore, a low-cost porous carbon paper pyrolyzed from common filter paper was inserted between the 0.7S-0.3GnP electrode and porous polypropylene film separator to reduce/eliminate the dissolution of physically adsorbed polysulfide into the electrolyte and subsequent cross-deposition on the anode, leading to further improved capacity and cycling stability.

  15. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling.

    PubMed

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Wang, Bin; Wang, Yujue; Huang, Jun; Yu, Gang; Winglee, Judy; Wiesner, Mark R

    2016-03-15

    Ball milling was used to prepare two ultrafine magnetic biochar/Fe3O4 and activated carbon (AC)/Fe3O4 hybrid materials targeted for use in pharmaceutical removal by adsorption and mechanochemical degradation of pharmaceutical compounds. Both hybrid adsorbents prepared after 2h milling exhibited high removal of carbamazepine (CBZ), and were easily separated magnetically. These adsorbents exhibited fast adsorption of CBZ and tetracycline (TC) in the initial 1h. The biochar/Fe3O4 had a maximum adsorption capacity of 62.7mg/g for CBZ and 94.2mg/g for TC, while values obtained for AC/Fe3O4 were 135.1mg/g for CBZ and 45.3mg/g for TC respectively when data were fitted using the Langmuir expression. Solution pH values slightly affected the sorption of TC on the adsorbents, while CBZ sorption was almost pH-independent. The spent adsorbents with adsorbed CBZ and TC were milled to degrade the adsorbed pollutants. The adsorbed TC itself was over 97% degraded after 3h of milling, while about half of adsorbed CBZ were remained. The addition of quartz sand was found to improve the mechanochemical degradation of CBZ on biochar/Fe3O4, and its degradation percent was up to 98.4% at the dose of 0.3g quarts sand/g adsorbent. This research provided an easy method to prepare ultrafine magnetic adsorbents for the effective removal of typical pharmaceuticals from water or wastewater and degrade them using ball milling.

  16. Significantly improved dehydrogenation of ball-milled MgH2 doped with CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Shan, Jiawei; Li, Ping; Wan, Qi; Zhai, Fuqiang; Zhang, Jun; Li, Ziliang; Liu, Zhaojiang; Volinsky, Alex A.; Qu, Xuanhui

    2014-12-01

    CoFe2O4 nanoparticles are added to magnesium hydride (MgH2) by high-energy ball milling in order to improve its hydriding properties. The hydrogen storage properties and catalytic mechanism are investigated by pressure-composition-temperature (PCT), differential thermal analysis (DTA), X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The nonisothermal desorption results show that the onset desorption temperature of the MgH2 + 7 mol% CoFe2O4 is 160 °C, which is 200 °C lower than of the as-received MgH2. The dehydrogenation process of the MgH2 doped with the CoFe2O4 nanoparticles includes two steps. DTA curves and XRD patterns reveal that a chemical reaction happens between MgH2 and CoFe2O4, forming the final products of the ternary combination, corresponding to Co3Fe7, MgO and Co. The onset desorption temperature of the ball-milled MgH2 doped with Co3Fe7, MgO and Co is about 260 °C, approximately 100 °C lower than the un-doped MgH2, demonstrating that the ternary combination (Co3Fe7, MgO, and Co) also has a great catalytic effect on the MgH2 hydrogen storage properties. It is also confirmed that the various methods of adding the ternary combination have different effects on the MgH2 hydriding-dehydriding process.

  17. Dielectric and photocatalytic properties of sulfur doped TiO{sub 2} nanoparticles prepared by ball milling

    SciTech Connect

    Jalalah, Mohammed; Faisal, M.; Bouzid, Houcine; Ismail, Adel A.; Al-Sayari, Saleh A.

    2013-09-01

    Graphical abstract: - Highlights: • Designing of visible light responsive photocatalyst utilizing ball milling. • Sulphur used as dopant in commercial TiO{sub 2} P25 at different atomic percentage. • S doping resulted in an intense increase in absorption in the visible light region. • Newly design photocatalyst exhibited excellent photocatalytic performance. • 0.11 at.% S-doped TiO{sub 2} shows 3-times higher activity than that of TiO{sub 2} P25. - Abstract: Sulfur (S) doped commercial TiO{sub 2} P-25 has been achieved by changing the amount of thiourea using ball milling technique. The results of XRD clearly reveal biphasial anatase and rutile mixtures for all prepared samples and doping of S does not change the morphology of the TiO{sub 2}. The optical absorption edge of S-doped TiO{sub 2} was red shifted with indirect bandgap energy of 2.8 eV. The dielectric studies confirm that the dielectric constant of TiO{sub 2} increases after doping, however it becomes more conductive. Newly designed S-doped TiO{sub 2} photocatalysts exhibited excellent photocatalytic performance for the degradation of methylene blue (MB) under visible light. The overall photocatalytic activity of 0.11 at.% S-doped TiO{sub 2} was significantly 3-times higher than that of commercial TiO{sub 2} P-25 and complete degradation of MB has taken place after 90 min of irradiation under visible light while only 35% dye degraded when the reaction has been carried out in the presence of undoped TiO{sub 2}.

  18. C, N co-doped TiO2/TiC0.7N0.3 composite coatings prepared from TiC0.7N0.3 powder using ball milling followed by oxidation

    NASA Astrophysics Data System (ADS)

    Hao, Liang; Wang, Zhenwei; Zheng, Yaoqing; Li, Qianqian; Guan, Sujun; Zhao, Qian; Cheng, Lijun; Lu, Yun; Liu, Jizi

    2017-01-01

    Ball milling followed by heat oxidation was used to prepared C, N co-doped TiO2 coatings on the surfaces of Al2O3 balls from TiC0.7N0.3 powder. The as-prepared coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrophotometer (UV-vis). The results show that continuous TiC0.7N0.3 coatings were formed after ball milling. C, N co-doped TiO2/TiC0.7N0.3 composite coatings were prepared after the direct oxidization of TiC0.7N0.3 coatings in the atmosphere. However, TiO2 was hardly formed in the surface layer of TiC0.7N0.3 coatings within a depth less than 10 nm during the heat oxidation of TiC0.7N0.3 coatings in carbon powder. Meanwhile, the photocatalytic activity evaluation of these coatings was conducted under the irradiation of UV and visible light. All the coatings showed photocatalytic activity in the degradation of MB no matter under the irradiation of UV or visible light. The C, N co-doped TiO2/TiC0.7N0.3 composite coatings showed the most excellent performance. The enhancement under visible light irradiation should attribute to the co-doping of carbon and nitrogen, which enhances the absorption of visible light. The improvement of photocatalytic activity under UV irradiation should attribute to the synergistic effect of C, N co-doping, the formation of rutile-anatase mixed phases and the TiO2/TiC0.7N0.3 composite microstructure.

  19. Phase development during high-energy ball-milling of zinc oxide and iron - the impact of grain size on the source and the degree of contamination.

    PubMed

    Štefanić, G; Krehula, S; Štefanić, I

    2015-11-21

    High-energy ball-milling of powder mixtures of zincite (ZnO) and iron (α-Fe) at different weight ratios was performed in air using a planetary ball mill with a stainless steel milling assembly. Structural and microstructural changes during the ball-milling (up to 30 h) were monitored using X-ray powder diffraction, field emission scanning electron microscopy (FE-SEM) and UV-Vis diffuse reflectance spectroscopy. The mechanism of iron oxidation was determined from the results of Mössbauer spectroscopy. It was found that an early phase of ball-milling caused the oxidation of iron from Fe(0) to Fe(2+) followed by the formation of a solid solution structurally similar to wüstite. The wüstite-type phase rapidly disappeared upon prolonged milling, which was accompanied by further oxidation of iron from Fe(2+) to Fe(3+) and the formation of spinel-type ferrite structurally similar to franklinite (ZnFe2O4) in the products with a high zinc content, or magnetite (Fe3O4) in the products with a high iron content. Further milling or annealing had a low impact on the franklinite-type phase, but caused the transition of the magnetite-type phase to the phase structurally similar to hematite (α-Fe2O3). The results of energy dispersive X-ray spectrometry (EDS) showed a dramatic increase in the degree of contamination with the increase in the proportion of the starting iron (∼9 times higher contamination during the milling of pure iron compared with pure zincite). It was shown that the source of contamination (balls or vial) strongly depends on the type of milled sample. Ball-milling of relatively big and heavy grains (starting iron) caused preferential contamination from the vial whereas ball-milling of smaller and lighter grains (products obtained after prolonged milling) caused preferential contamination from the balls. After prolonged milling the contamination due to wear of the balls was dominant in all the products. An explanation for the observed impact of grain size on

  20. Agile Thermal Management STT-RX. Catalytic Influence of Ni-based Additives on the Dehydrogentation Properties of Ball Milled MgH2 (PREPRINT)

    DTIC Science & Technology

    2011-12-01

    whereas the clamp speed is 1060 cycles per minute. The hydrides were milled in a 65-cm3 stainless steel vial using 15 stainless steel grinding balls ... balls in the high-energy vibratory mill combines strong shearing and impact forces in various proportions to increase the free energy of the system by...the dehydrogentation properties of ball milled MgH2 (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F

  1. Synthesis of Nd2Fe14C compound by high-energy ball-milling Nd-Fe alloy in heptane and annealing under vacuum

    NASA Astrophysics Data System (ADS)

    Geng, H. M.; Ji, Y.; Feng, X. Y.; Zhang, J. J.; Ran, Z.; Yan, Y.; Wang, W. Q.; Su, F.; Du, X. B.

    2016-06-01

    A simple synthesis route for the Nd2Fe14C compound with good permanent magnetic properties is presented. Being high-energy ball-milled in heptane (C7H16) for 8 h, the NdFe3.5 alloy consisting of Nd2Fe17 and Nd phases disproportionates into NdH2+δ and α-Fe. Subsequently, NdH2+δ decomposes when annealed from room temperature to 900 °C under vacuum, and H2 is released. Meanwhile Nd2Fe14C, NdC and little α-Fe phases are formed in the final product. H and C atoms come from the decomposition of heptane. Coercivity of 1.39 T and maximum magnetic energy product of 62.7 kJ m-3 have been achieved. Too short a ball-milling time results in the insufficient disproportionation of NdFe3.5 alloy and the residue of Nd2Fe17 phase in the final product. Too long a ball-milling time results in the appearance of NdC2 and more α-Fe phases besides Nd2Fe14C and NdC phases. Hexane (C6H14), octane (C8H18) and nonane (C9H20) have been proved to have a similar effect to heptane.

  2. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon

    2015-04-01

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na2CO3, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na2CO3, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4M HCl, 100°C and pulp density of 20g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching.

  3. Solid-state synthesis of Mg{sub 2}Si via short-duration ball-milling and low-temperature annealing

    SciTech Connect

    Ioannou, M.; Chrissafis, K.; Pavlidou, E.; Gascoin, F.; Kyratsi, Th.

    2013-01-15

    In this work, a short duration ball-milling of elemental Mg and Si followed by a thermal treatment is suggested in order to synthesize magnesium silicide via solid-state reaction. The formation of magnesium silicide was studied in terms of its structure and thermal characteristics by powder X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and differential scanning calorimetry. Pure Mg{sub 2}Si was formed after short milling and heating at temperatures as low as 280 Degree-Sign C. Differential scanning calorimetry analysis was performed to study the kinetics of the reaction. The activation energy of the reaction was calculated using the Ozawa-Flynn-Wall and Friedman methods. The thermoelectric properties suggested semiconducting behavior whereas thermal conductivity values of highly dense hot-pressed pellets are consistent with the literature. - Graphical abstract: Thermographs of ball-milled Mg and Si powders (1 and 2) show exothermic areas suggesting Mg{sub 2}Si formation at low temperatures. Unmilled Mg and Si mixture (3) forms Mg{sub 2}Si at higher temperatures. Highlights: Black-Right-Pointing-Pointer Ball-milling process is crucial for the formation of pure Mg{sub 2}Si at low temperatures. Black-Right-Pointing-Pointer Synthesis profiles based on different temperature settings and duration are suggested. Black-Right-Pointing-Pointer Thermal analysis confirms the shift of the Mg{sub 2}Si formation at low temperatures.

  4. Preparation of an additive-free sample with a MgH2 phase by planetary ball milling of Mg with10 wt% MgH2

    NASA Astrophysics Data System (ADS)

    Hong, Seong-Hyeon; Song, Myoung Youp

    2016-11-01

    In order to prepare an additive-free sample with a MgH2 phase, 90 wt% Mg+10 wt% MgH2 (named Mg-10MgH2) was milled under hydrogen atmosphere in a planetary ball mill for different durations (2 h, 5 h, and 10 h). The hydrogen absorption and release properties of the prepared samples were investigated and compared with those of purchased pure MgH2 samples. Mg-10MgH2 milled for 5 h had the largest quantity of hydrogen released at 648 K for 100 min of 5.96 wt%. Mg-10MgH2 milled for 5 h released 0.11 wt% H for 10 min, 4.85 wt% H for 30 min, and 5.83 wt% H for 60 min at 648 K at the first cycle. Mg-10MgH2 milled for 5 h absorbed 5.39 wt% H for 5 min and 5.92 wt% H for 60 min at 648 K at the second cycle. Dehydriding curves were also obtained at the first cycle of Mg-10MgH2 samples milled for 5 h using Mg powder with or without sieving (200 mesh). The dehydriding curve at 648 K of a Mg-10MgH2 sample milled for 5 h in the planetary ball mill was compared with that of the sample milled for 24 h in a horizontal ball mill.

  5. High-Efficient Production of Boron Nitride Nanosheets via an Optimized Ball Milling Process for Lubrication in Oil

    PubMed Central

    Deepika, D; Li, Lu Hua; Glushenkov, Alexey M.; Hait, Samik K.; Hodgson, Peter; Chen, Ying

    2014-01-01

    Although tailored wet ball milling can be an efficient method to produce a large quantity of two-dimensional nanomaterials, such as boron nitride (BN) nanosheets, milling parameters including milling speed, ball-to-powder ratio, milling ball size and milling agent, are important for optimization of exfoliation efficiency and production yield. In this report, we systematically investigate the effects of different milling parameters on the production of BN nanosheets with benzyl benzoate being used as the milling agent. It is found that small balls of 0.1–0.2 mm in diameter are much more effective in exfoliating BN particles to BN nanosheets. Under the optimum condition, the production yield can be as high as 13.8% and the BN nanosheets are 0.5–1.5 μm in diameter and a few nanometers thick and of relative high crystallinity and chemical purity. The lubrication properties of the BN nanosheets in base oil have also been studied. The tribological tests show that the BN nanosheets can greatly reduce the friction coefficient and wear scar diameter of the base oil. PMID:25470295

  6. Spark plasma sintered Sm(2)Co(17)-FeCo nanocomposite permanent magnets synthesized by high energy ball milling.

    PubMed

    Sreenivasulu, G; Gopalan, R; Chandrasekaran, V; Markandeyulu, G; Suresh, K G; Murty, B S

    2008-08-20

    Nanocomposite Sm(2)Co(17)-5 wt% FeCo magnets were synthesized by high energy ball milling followed by consolidation into bulk shape by the spark plasma sintering technique. The evolution of magnetic properties was systematically investigated in milled powders as well as in spark plasma sintered samples. A high energy product of 10.2 MGOe and the other magnetic properties of M(s) = 107 emu g(-1), M(r) = 59 emu g(-1), M(r)/M(s) = 0.55 and H(c) = 6.4 kOe were achieved in a 5 h milled and spark plasma sintered Sm(2)Co(17)-5 wt% FeCo nanocomposite magnet. The spark plasma sintering was carried out at 700 °C for 5 min with a pressure of 70 MPa. The nanocomposite showed a higher Curie temperature of 955 °C for the Sm(2)Co(17) phase in comparison to its bulk Curie temperature for the Sm(2)Co(17) phase (920 °C). This higher Curie temperature can improve the performance of the magnet at higher temperatures.

  7. Grinding Wear Behaviour of Stepped Austempered Ductile Iron as Media Material During Comminution of Iron Ore in Ball Mills

    SciTech Connect

    Raghavendra, H.; Bhat, K. L.; Udupa, K. Rajendra; Hegde, M. M. Rajath

    2011-01-17

    An attempt has been made to evaluate the suitability of austempered ductile iron (ADI) as media material for grinding iron ore in a ball mill. Spheroidal graphite (S.G) iron balls are austenitised at 900 deg. C for 60 minutes and given stepped austempering treatment at 280 deg. C for 30 minutes and 60 minutes followed by 380 deg. C for 60 minutes in each case. These materials are characterised by measuring hardness, analysing X-ray diffraction (X-RD), studying microstructure using optical and scanning electron microscope (SEM). Grinding wear behaviour of these materials was assessed for wear loss in wet condition at different pH value of the mineral slurry and found that the wear rate of grinding media material decreases with increase in pH of the slurry. The wear resistance of ADI balls were compared with forged En31 steel balls and found that the stepped austempered ductile iron is superior to forged En31 steel balls.

  8. Preparation of CNT/AlSi10Mg composite powders by high-energy ball milling and their physical properties

    NASA Astrophysics Data System (ADS)

    Wang, Lin-zhi; Liu, Ying; Wei, Wen-hou; An, Xu-guang; Zhang, Tao; Pu, Ya-yun

    2016-03-01

    This study investigated the effects of carbon nanotube (CNT) concentration on the micro-morphologies and laser absorption properties of CNT/AlSi10Mg composite powders produced by high-energy ball milling. A scanning electron microscope, X-ray diffractometer, laser particle size analyzer, high-temperature synchronous thermal analyzer, and UV/VIS/NIR spectrophotometer were used for the analysis of micrographs, phases, granulometric parameters, thermal properties, and laser absorption properties of the composite powders, respectively. The results showed that the powders gradually changed from flake- to granule-like morphology and the average particle size sharply decreased with increases in milling rotational speed and milling time. Moreover, a uniform dispersion of CNTs in AlSi10Mg powders was achieved only for a CNT content of 1.5wt%. Laser absorption values of the composite powders were also observed to gradually increase with the increase of CNT concentration, and different spectra displayed characteristic absorption peaks at a wavelength of approximately 826 nm.

  9. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    PubMed

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  10. Nanocrystalline Nd2Fe17 synthesized by high-energy ball milling: crystal structure, microstructure and magnetic properties.

    PubMed

    Álvarez, Pablo; Gorria, Pedro; Franco, Victorino; Sánchez Marcos, Jorge; Pérez, María J; Sánchez Llamazares, José L; Puente Orench, Inés; Blanco, Jesús A

    2010-06-02

    Nanocrystalline Nd(2)Fe(17) powders have been obtained by means of high-energy ball milling from nearly single-phase bulk alloys produced by arc melting and high temperature homogenization annealing. The rhombohedral Th(2)Zn(17)-type crystal structure of the bulk alloy remains unaltered after the milling process, with almost unchanged values for the cell parameters. However, the severe mechanical processing induces drastic microstructural changes. A decrease of the mean crystalline size down to around 10 nm is observed, giving rise to a considerable augmentation of the disordered inter-grain boundaries. This modification of the microstructure affects the magnetic behaviour of the milled powders, although the magnetic structure remains collinear ferromagnetic. While a unique ferro-to-paramagnetic transition temperature, T(C) = 339 ± 2 K, is observed in the bulk alloy, the nanocrystalline samples exhibit a more likely distribution of T(C) values. The latter seems to be responsible for the significant broadening of the temperature range in which magneto-caloric effect is observed, and the lowering of the maximum value of the magnetic entropy change.

  11. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil.

    PubMed

    Deepika; Li, Lu Hua; Glushenkov, Alexey M; Hait, Samik K; Hodgson, Peter; Chen, Ying

    2014-12-03

    Although tailored wet ball milling can be an efficient method to produce a large quantity of two-dimensional nanomaterials, such as boron nitride (BN) nanosheets, milling parameters including milling speed, ball-to-powder ratio, milling ball size and milling agent, are important for optimization of exfoliation efficiency and production yield. In this report, we systematically investigate the effects of different milling parameters on the production of BN nanosheets with benzyl benzoate being used as the milling agent. It is found that small balls of 0.1-0.2 mm in diameter are much more effective in exfoliating BN particles to BN nanosheets. Under the optimum condition, the production yield can be as high as 13.8% and the BN nanosheets are 0.5-1.5 μm in diameter and a few nanometers thick and of relative high crystallinity and chemical purity. The lubrication properties of the BN nanosheets in base oil have also been studied. The tribological tests show that the BN nanosheets can greatly reduce the friction coefficient and wear scar diameter of the base oil.

  12. High-Efficient Production of Boron Nitride Nanosheets via an Optimized Ball Milling Process for Lubrication in Oil

    NASA Astrophysics Data System (ADS)

    Deepika; Li, Lu Hua; Glushenkov, Alexey M.; Hait, Samik K.; Hodgson, Peter; Chen, Ying

    2014-12-01

    Although tailored wet ball milling can be an efficient method to produce a large quantity of two-dimensional nanomaterials, such as boron nitride (BN) nanosheets, milling parameters including milling speed, ball-to-powder ratio, milling ball size and milling agent, are important for optimization of exfoliation efficiency and production yield. In this report, we systematically investigate the effects of different milling parameters on the production of BN nanosheets with benzyl benzoate being used as the milling agent. It is found that small balls of 0.1-0.2 mm in diameter are much more effective in exfoliating BN particles to BN nanosheets. Under the optimum condition, the production yield can be as high as 13.8% and the BN nanosheets are 0.5-1.5 μm in diameter and a few nanometers thick and of relative high crystallinity and chemical purity. The lubrication properties of the BN nanosheets in base oil have also been studied. The tribological tests show that the BN nanosheets can greatly reduce the friction coefficient and wear scar diameter of the base oil.

  13. Textured PrCo{sub 5} nanoflakes with large coercivity prepared by low power surfactant-assisted ball milling

    SciTech Connect

    Zuo, Wen-Liang Liu, Rong-Ming; Zheng, Xin-Qi; Wu, Rong-Rong; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2014-05-07

    The effect of the milling time on the structure, morphology, coercivity, and remanence ratio of textured PrCo{sub 5} nanoflakes produced by low power surfactant-assisted ball milling (SABM) was investigated. The X-ray powder diffraction (XRD) patterns indicate that the SABM PrCo{sub 5} samples are all CaCu{sub 5}-type hexagonal structure. The average grain size is smaller than 10 nm when the SABM time is equal to or longer than 5.5 h. The thickness of nanoflakes is mainly in the range of 50−100 nm while the length is 0.5−5 μm when the SABM time reaches 8 h. For the field-aligned PrCo{sub 5} nanoflakes, the out-of-plane texture is indicated from the increasing (0 0 l) peaks in the XRD patterns, and the easy magnetization direction is perpendicular to the flake surface. The strong texture of PrCo{sub 5} nanoflakes leads to a large coercivity H{sub c} (7.8 kOe) and obvious anisotropic magnetic behaviors for the aligned samples.

  14. Pretreatment of eucalyptus wood chips for enzymatic saccharification using combined sulfuric acid-free ethanol cooking and ball milling.

    PubMed

    Teramoto, Yoshikuni; Tanaka, Noriko; Lee, Seung-Hwan; Endo, Takashi

    2008-01-01

    A combined sulfuric acid-free ethanol cooking and pulverization process was developed in order to achieve the complete saccharification of the cellulosic component of woody biomass, thereby avoiding the problems associated with the use of strong acid catalysts. Eucalyptus wood chips were used as a raw material and exposed to an ethanol/water/acetic acid mixed solvent in an autoclave. This process can cause the fibrillation of wood chips. During the process, the production of furfural due to an excessive degradation of polysaccharide components was extremely low and delignification was insignificant. Therefore, the cooking process is regarded not as a delignification but as an activation of the original wood. Subsequently, the activated solid products were pulverized by ball-milling in order to improve their enzymatic digestibility. Enzymatic hydrolysis experiments demonstrated that the conversion of the cellulosic components into glucose attained 100% under optimal conditions. Wide-angle X-ray diffractometry and particle size distribution analysis revealed that the scale affecting the improvement of enzymatic digestibility ranged from 10 nm to 1 microm. Field emission scanning electron microscopy depicted that the sulfuric acid-free ethanol cooking induced a pore formation by the removal of part of the lignin and hemicellulose fractions in the size range from a few of tens nanometers to several hundred nanometers.

  15. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling

    PubMed Central

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-01-01

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase. PMID:24763088

  16. Preparation of Mg-MgH2 flakes by planetary ball milling with stearic acid and their hydrogen storage properties

    NASA Astrophysics Data System (ADS)

    Hong, Seong-Hyeon; Song, Myoung Youp

    2016-05-01

    Many studies preparing magnesium hydride using catalyst addition were performed, resulting in the preparation of additive-containing magnesium hydride. Preparation of a sample with a MgH2 phase without additives requires high pressure and high temperature and is time-demanding. In order to prepare an additive-free sample with a MgH2 phase, 90 wt% Mg+10 wt% MgH2 (named 90Mg+10MgH2) was milled under a hydrogen atmosphere with 6 wt% stearic acid as a process-controlling agent, which led to a formation of Mg-MgH2 flakes. The hydrogen storing and releasing properties of the prepared flakes were investigated and compared with those of purchased MgH2. A sample with a majority fraction of MgH2 phase was prepared by planetary ball milling of 90 Mg+10 MgH2 with 6 wt% stearic acid. The resultant particles of 90 Mg+10 MgH2 obtained after hydridingdehydriding cycling were much smaller and had significantly more cracks and defects than those of MgH2 after hydriding-dehydriding cycling. 90 Mg+10 MgH2 released 0.12 wt% hydrogen for 4 min, 3.70 wt% for 20 min, and 5.30 wt% for 60 min at 648 K at the first cycle.

  17. A novel combined pretreatment of ball milling and microwave irradiation for enhancing enzymatic hydrolysis of microcrystalline cellulose.

    PubMed

    Peng, Huadong; Li, Hongqiang; Luo, Hao; Xu, Jian

    2013-02-01

    Microcrystalline cellulose (MCC) was performed as a mode substrate to investigate its potential ability of bioconversion in a novel combined pretreatment of ball milling (BM) and/or microwave irradiation (MWI). The variation of structure characteristics of MCC before/after pretreatment were investigated, including crystallinity index (CrI), size of crystal (S(C)), specific surface area (SSA) and degree of polymerization (DP). Their correlation with the rate of enzymatic hydrolysis was differentiated by an optimized equation which indicated the rate of hydrolysis was much more sensitive to CrI than SSA and DP. To achieve the same or higher glucose yield of BM for 3h and 6h, BM for 1h with MWI for 20min could save 54.8% and 77.40% energy consumption, respectively. Moreover, chemicals were not required in this process. It is concluded that the combination of BM and short time MWI is an environment-friendly, economical and effective approach to treat biomass.

  18. Microstructure-Property Correlation in Magnesium-based Hydrogen Storage Systems: The Case for Ball-milled Magnesium Hydride Powder and Magnesium-based Multilayered Composites

    NASA Astrophysics Data System (ADS)

    Danaie, Mohsen

    The main focus of this thesis is the characterization of defects and microstructure in high-energy ball milled magnesium hydride powder and magnesium-based multilayered composites. Enhancement in kinetics of hydrogen cycling in magnesium can be achieved by applying severe plastic deformation. A literature survey reveals that, due to extreme instability of alpha-MgH 2 in transmission electron microscope (TEM), the physical parameters that researchers have studied are limited to particle size and grain size. By utilizing a cryogenic TEM sample holder, we extended the stability time of the hydride phase during TEM characterization. Milling for only 30 minutes resulted in a significant enhancement in desorption kinetics. A subsequent annealing cycle under pressurized hydrogen reverted the kinetics to its initial sluggish state. Cryo-TEM analysis of the milled hydride revealed that mechanical milling induces deformation twinning in the hydride microstructure. Milling did not alter the thermodynamics of desorption. Twins can enhance the kinetics by acting as preferential locations for the heterogeneous nucleation of metallic magnesium. We also looked at the phase transformation characteristics of desorption in MgH2. By using energy-filtered TEM, we investigated the morphology of the phases in a partially desorbed state. Our observations prove that desorption phase transformation in MgH2 is of "nucleation and growth" type, with a substantial energy barrier for nucleation. This is contrary to the generally assumed "core-shell" structure in most of the simulation models for this system. We also tested the hydrogen storage cycling behavior of bulk centimeter-scale Mg-Ti and Mg-SS multilayer composites synthesized by accumulative roll-bonding. Addition of either phase (Ti or SS) allows the reversible hydrogen sorption at 350°C, whereas identically roll-bonded pure magnesium cannot be absorbed. In the composites the first cycle of absorption (also called "activation

  19. Multiscale characterization and representation of composite materials during processing.

    PubMed

    Zobeiry, Navid; Forghani, Alireza; Li, Chao; Gordnian, Kamyar; Thorpe, Ryan; Vaziri, Reza; Fernlund, Goran; Poursartip, Anoush

    2016-07-13

    Given the importance of residual stresses and dimensional changes in composites manufacturing, process simulation has been the focus of many studies in recent years. Consequently, various constitutive models and simulation approaches have been developed and implemented for composites process simulation. In this paper, various constitutive models, ranging from elastic to nonlinear viscoelastic; and simulation approaches ranging from separated flow/solid phases to multiscale integrated phases are presented and their applicability for process simulation is discussed. Attention has been paid to practical aspects of the problem where the complexity of the model coupled with the complexity and size scaling of the structure increases the characterization and simulation costs. Two specific approaches and their application are presented in detail: the pseudo-viscoelastic cure hardening instantaneously linear elastic (CHILE) and linear viscoelastic (VE). It is shown that CHILE can predict the residual stress formation in simple cure cycles such as the one-hold cycle for HEXCEL AS4/8552 where the material does not devitrify during processing. It is also shown that using this simple approach, the cure cycle can be modified to lower the residual stress level and therefore increase the mechanical performance of the composite laminate. For a more complex cure cycle where the material is devitrified during a post-cure, it is shown that a more complex model such as VE is required. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'.

  20. Mechanical ball-milling preparation of fullerene/cobalt core/shell nanocomposites with high electrochemical hydrogen storage ability.

    PubMed

    Bao, Di; Gao, Peng; Shen, Xiande; Chang, Cheng; Wang, Longqiang; Wang, Ying; Chen, Yujin; Zhou, Xiaoming; Sun, Shuchao; Li, Guobao; Yang, Piaoping

    2014-02-26

    The design and synthesis of new hydrogen storage nanomaterials with high capacity at low cost is extremely desirable but remains challenging for today's development of hydrogen economy. Because of the special honeycomb structures and excellent physical and chemical characters, fullerenes have been extensively considered as ideal materials for hydrogen storage materials. To take the most advantage of its distinctive symmetrical carbon cage structure, we have uniformly coated C60's surface with metal cobalt in nanoscale to form a core/shell structure through a simple ball-milling process in this work. The X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectra, high-solution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDX) elemental mappings, and X-ray photoelectron spectroscopy (XPS) measurements have been conducted to evaluate the size and the composition of the composites. In addition, the blue shift of C60 pentagonal pinch mode demonstrates the formation of Co-C chemical bond, and which enhances the stability of the as-obtained nanocomposites. And their electrochemical experimental results demonstrate that the as-obtained C60/Co composites have excellent electrochemical hydrogen storage cycle reversibility and considerably high hydrogen storage capacities of 907 mAh/g (3.32 wt % hydrogen) under room temperature and ambient pressure, which is very close to the theoretical hydrogen storage capacities of individual metal Co (3.33 wt % hydrogen). Furthermore, their hydrogen storage processes and the mechanism have also been investigated, in which the quasi-reversible C60/Co↔C60/Co-Hx reaction is the dominant cycle process.

  1. Multiscale characterization of dislocation processes in Al 5754

    NASA Astrophysics Data System (ADS)

    Kacher, Josh; Mishra, Raja K.; Minor, Andrew M.

    2015-07-01

    Multiscale characterization was performed on an Al-Mg alloy, Al 5754 O-temper, including in situ mechanical deformation in both the scanning electron microscope and the transmission electron microscope. Scanning electron microscopy characterization showed corresponding inhomogeneity in the dislocation and Mg distribution, with higher levels of Mg correlating with elevated levels of dislocation density. At the nanoscale, in situ transmission electron microscopy straining experiments showed that dislocation propagation through the Al matrix is characterized by frequent interactions with obstacles smaller than the imaging resolution that resulted in the formation of dislocation debris in the form of dislocation loops. Post-mortem chemical characterization and comparison to dislocation loop behaviour in an Al-Cr alloy suggests that these obstacles are small Mg clusters. Previous theoretical work and indirect experimental evidence have suggested that these Mg nanoclusters are important factors contributing to strain instabilities in Al-Mg alloys. This study provides direct experimental characterization of the interaction of glissile dislocations with these nanoclusters and the stress needed for dislocations to overcome them.

  2. Evolution of in Fe-doped manganites synthesized by the ball-milling method

    NASA Astrophysics Data System (ADS)

    Cherif, W.; Alonso, J. A.; Elhalouani, F.

    2017-01-01

    Manganites-based perovskites, having the general formula Ln0.67A0.33Mn1- x M x O3 where Ln is a rare earth element (Ln = Pr, La, ldots) and A is an alkaline earth element (A = Sr, Ba, Ca, ldots), were the center of interest of many studies because of their outstanding physicochemical properties and because they can play an important role in various applications. The aim of this work is the development with mechanical alloying method and study of physicochemical properties of new manganites. This work focuses on the development and characterization of series La0.67Ca0.11Sr0.22Mn1- x Fe x O3 ( 0≤ x≤ 0.3. The structural study showed that the cell parameters of the samples increase with the increase in the rate of iron and causing the expansion of the orthorhombic distortion. This result is confirmed by the tolerance factor tg (0.75 < tg < 0.95: orthorhombic structure). The magnetic study showed that the substitution of Mn by Fe in these series indicates a ferromagnetic-paramagnetic transition. This transition accompanied with a decrease in the Curie temperature (T_C).

  3. Degradation of trichloroethene with a noval ball milled Fe-C nanocomposite

    DOE PAGES

    Gao, Jie; Wang, Wei; Rondinone, Adam Justin; ...

    2015-07-18

    Nanoscale zero-valent iron (NZVI) is effective in reductively degrading dense non-aqueous phase liquids (DNAPLs), such as trichloroethene (TCE), in groundwater (i.e., dechlorination) although the NZVI technology itself still suffers from high material costs and inability to target hydrophobic contaminants in source zones. To address these problems, we developed a novel, inexpensive iron-carbon (Fe-C) nanocomposite material by simultaneously milling micron-size iron and activated carbon powder. Microscopic and X-ray diffraction (XRD) characterization of the composite material revealed that nanoparticles of Fe were dispersed in activated carbon and a new iron carbide phase was formed. Bench-scale studies showed that this material instantaneously sorbedmore » >90% of TCE from aqueous solutions and subsequently decomposed TCE into non-chlorinated products. Compared to milled Fe, Fe-C nanocomposite dechlorinated TCE at a slightly slower rate and favored the production of ethene over other TCE degradation products such as C3-C6 compounds. When placed in hexane-water mixture, the Fe-C nanocomposite materials are preferentially partitioned into the organic phase, indicating the ability of the composite materials to target DNAPL during remediation.« less

  4. Degradation of trichloroethene with a noval ball milled Fe-C nanocomposite

    SciTech Connect

    Gao, Jie; Wang, Wei; Rondinone, Adam Justin; He, Feng; Liang, Liyuan

    2015-07-18

    Nanoscale zero-valent iron (NZVI) is effective in reductively degrading dense non-aqueous phase liquids (DNAPLs), such as trichloroethene (TCE), in groundwater (i.e., dechlorination) although the NZVI technology itself still suffers from high material costs and inability to target hydrophobic contaminants in source zones. To address these problems, we developed a novel, inexpensive iron-carbon (Fe-C) nanocomposite material by simultaneously milling micron-size iron and activated carbon powder. Microscopic and X-ray diffraction (XRD) characterization of the composite material revealed that nanoparticles of Fe were dispersed in activated carbon and a new iron carbide phase was formed. Bench-scale studies showed that this material instantaneously sorbed >90% of TCE from aqueous solutions and subsequently decomposed TCE into non-chlorinated products. Compared to milled Fe, Fe-C nanocomposite dechlorinated TCE at a slightly slower rate and favored the production of ethene over other TCE degradation products such as C3-C6 compounds. When placed in hexane-water mixture, the Fe-C nanocomposite materials are preferentially partitioned into the organic phase, indicating the ability of the composite materials to target DNAPL during remediation.

  5. Studies on copper-yttria nanocomposites: high-energy ball milling versus chemical reduction method.

    PubMed

    Joshi, P B; Rehani, Bharati; Naik, Palak; Patel, Swati; Khanna, P K

    2012-03-01

    Oxide dispersion-strengthened copper-base composites are widely used for applications demanding high tensile strength, high hardness along with good electrical and thermal conductivity. Oxides of metals like aluminium, cerium, yttrium and zirconium are often used for this purpose as fine and uniformly distributed dispersoid particles in soft and ductile copper matrix. Such composites find applications as electrical contacts, resistance-welding tips, lead wires, continuous casting moulds, etc. In this investigation an attempt has been made to produce copper-yttria nanocomposites using two different morphologies of copper powder and two different processing routes namely, high-energy milling and in-situ chemical reduction. The synthesized powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) for their phase identification and morphological study. The nanocomposite powders in each case were subsequently processed to obtain bulk solids by classical powder metallurgy route of press-sinter-repress. The resultant bulk solid compacts were subjected to property evaluation. The study revealed that the properties of Cu-Y2O3 nanocomposites depend on the processing route used and in turn on the resultant powder morphology.

  6. Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Choi, Young In; Jung, Hye Jin; Shin, Weon Gyu; Sohn, Youngku

    2015-11-01

    The hybridization of ZnO with Ag has been performed extensively to increase the efficiency of ZnO in various applications, including catalysis. In this study, a wet (w) and dry (d) ball-milling method was used to hybridize Ag with ZnO nanoparticles, and their physicochemical properties were examined. Visible light absorption was enhanced and the band gap was engineered by ball-milling and Ag hybridization. Their photocatalytic activities were tested with rhodamine B (RhB) and a mixed dye (methyl orange + RhB + methylene blue) under visible light irradiation. For pure RhB, the photocatalytic activity was decreased by ball-milling and was observed in the order of ZnO(d) < Ag/ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). For the degradation of RhB and methylene blue (MB) in the mixed dye (or the simulated real contaminated water), the photocatalytic activity was observed in the order of Ag/ZnO(d) < ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). When the photodegradation tested with H2O2 addition, however, the Fenton-like photocatalytic activity was reversed and the ZnO(ref) showed the poorest activity for the degradation of RhB and methylene blue (MB). In the mixed dye over all the catalysts, methyl orange (MO) was degraded most rapidly. The relative degradation rates of RhB and MB were found to be dependent on the catalyst and reaction conditions.

  7. Influence of ball milling on atomic structure and magnetic properties of Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} glassy alloy

    SciTech Connect

    Taghvaei, Amir Hossein; Stoica, Mihai; Bednarčik, Jozef; Kaban, Ivan; Shahabi, Hamed Shakur; Khoshkhoo, Mohsen Samadi; Janghorban, Kamal; Eckert, Jürgen

    2014-06-01

    The influence of ball milling on the atomic structure and magnetic properties of the Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} metallic glass with a high thermal stability and excellent soft magnetic properties has been investigated. After 14 h of milling, the obtained powders were found to consist mainly of an amorphous phase and a small fraction of the (Co,Fe){sub 21}Ta{sub 2}B{sub 6} nanocrystals. The changes in the reduced pair correlation functions suggest noticeable changes in the atomic structure of the amorphous upon ball milling. Furthermore, it has been shown that milling is accompanied by introduction of compressive and dilatational sites in the glassy phase and increasing the fluctuation of the atomic-level hydrostatic stress without affecting the coordination number of the nearest neighbors. Ball milling has decreased the thermal stability and significantly affected the magnetic properties through increasing the saturation magnetization, Curie temperature of the amorphous phase and coercivity. - Highlights: • Ball milling affected the atomic structure of Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} metallic glass. • Mechanically-induced crystallization started after 4 h milling. • Milling increased the fluctuation of the atomic-level hydrostatic stress in glass. • Ball milling influenced the thermal stability and magnetic properties.

  8. Multiscale study for stochastic characterization of shale samples

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman; Javadpour, Farzam; Sahimi, Muhammad; Piri, Mohammad

    2016-03-01

    Characterization of shale reservoirs, which are typically of low permeability, is very difficult because of the presence of multiscale structures. While three-dimensional (3D) imaging can be an ultimate solution for revealing important complexities of such reservoirs, acquiring such images is costly and time consuming. On the other hand, high-quality 2D images, which are widely available, also reveal useful information about shales' pore connectivity and size. Most of the current modeling methods that are based on 2D images use limited and insufficient extracted information. One remedy to the shortcoming is direct use of qualitative images, a concept that we introduce in this paper. We demonstrate that higher-order statistics (as opposed to the traditional two-point statistics, such as variograms) are necessary for developing an accurate model of shales, and describe an efficient method for using 2D images that is capable of utilizing qualitative and physical information within an image and generating stochastic realizations of shales. We then further refine the model by describing and utilizing several techniques, including an iterative framework, for removing some possible artifacts and better pattern reproduction. Next, we introduce a new histogram-matching algorithm that accounts for concealed nanostructures in shale samples. We also present two new multiresolution and multiscale approaches for dealing with distinct pore structures that are common in shale reservoirs. In the multiresolution method, the original high-quality image is upscaled in a pyramid-like manner in order to achieve more accurate global and long-range structures. The multiscale approach integrates two images, each containing diverse pore networks - the nano- and microscale pores - using a high-resolution image representing small-scale pores and, at the same time, reconstructing large pores using a low-quality image. Eventually, the results are integrated to generate a 3D model. The methods

  9. Solvent-free and time-efficient Suzuki–Miyaura reaction in a ball mill: the solid reagent system KF–Al2O3 under inspection

    PubMed Central

    Bernhardt, Franziska; Trotzki, Ronald; Szuppa, Tony; Ondruschka, Bernd

    2010-01-01

    Summary Although a plethora of synthetic procedures mediated by KF-loaded aluminas is available in the literature, there is almost no data concerning the influence of parameters such as alumina modification or KF-loading on experimental results. Hence, the Pd-catalyzed, solvent-free Suzuki–Miyaura reaction was chosen as model reaction to investigate the effect of the above mentioned parameters on the results of coupling reactions. The results from ball milling experiments led to the conclusion that self-prepared and commercially available KF–Al2O3 differ in water content. The higher the residual water content, the higher are the product yields. PMID:20485589

  10. Mechanical and Microstructure Study of Nickel-Based ODS Alloys Processed by Mechano-Chemical Bonding and Ball Milling

    NASA Astrophysics Data System (ADS)

    Amare, Belachew N.

    Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural

  11. Detailed Investigation of Ion Exchange in Ball Milled LiH+MgB2 System using Ultra-High Field NMR Spectroscopy

    SciTech Connect

    Hu, Jian Z.; Kwak, Ja Hun; Yang, Zhenguo; Wan, Xiufeng; Shaw, Leonard D.

    2010-06-01

    The present study with the detailed 1H-6Li cross polarization NMR analysis confirms the formation of a ternary compound, (Mg1-xLi2x)B2, during ball milling of LiH + ½ MgB2 at room temperature. The 6Li sites in (Mg1-xLi2x)B2 exhibit spinning sidebands (SSBs), whereas the 6Li sites in LiH do not. The SSBs and the very short spin-lattice relaxation time manifested by the 6Li sites in (Mg1-xLi2x)B2 indicate that the Li ions in (Mg1-xLi2x)B2 are located between the layered boron structures and close to Mg ions. The formation of (Mg1-xLi2x)B2 explains the previous observation that the LiH + ½ MgB2 mixture ball milled effectively has a greatly enhanced hydriding kinetics at temperatures below the melting point of LiBH4.

  12. Structural; magnetic and catalytic properties of nanocrystalline Cu0.5Zn0.5Fe2O4 synthesized by microwave combustion and ball milling methods

    NASA Astrophysics Data System (ADS)

    Mahmoud, M. H.; Hassan, Azza M.; Said, Abd El-Aziz A.; Hamdeh, H. H.

    2016-06-01

    Effects of high energy ball-milling on nanosized Cu0.5Zn0.5Fe2O4 powders were studied at 30 and 330 min of milling. The powders were initially synthesized from its stoichiometric metal nitrates and urea mixtures, using a microwave assisted combustion method. Ball-milling induced electromechanical reaction was examined by XRD, TEM, Mössbauer spectroscopy, magnetization, and catalytic performance by exploring potential changes in size, phases and chemical structure. Before Milling, the as-prepared powders were comprised of small grains of poor spinel crystallinity and very small crystallite size, and a minor α-Fe2O3 phase. Progressive milling significantly reduced the grain size, increased chemical disorder, and reduced the hematite phase. These changes are also manifested in the magnetization measurements. The Catalytic activity performance was carried out using dehydrogenation of isopropyl alcohol. The observed activity was correlated to the presence of Cu2+ and Fe3+ catalysts at octahedral sites before and after milling.

  13. Improved critical current density in ex situ processed MgB2 tapes by the size reduction of grains and crystallites by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Fujii, Hiroki; Ishitoya, Akira; Itoh, Shinji; Ozawa, Kiyoshi; Kitaguchi, Hitoshi

    2017-03-01

    We have fabricated Fe-sheathed MgB2 tapes through an ex situ process in a powder-in-tube (PIT) technique using powders ball milled under various conditions. Although the ex situ processed wires and tapes using the high-energy ball milled MgB2 powders have been studied and the decrease of grain and crystallite sizes of MgB2 and the critical current density (Jc) improvement of those conductors were reported so far, the use of filling powders milled at a higher rotation speed than previously reported further decreases the crystallite size and improves the Jc properties. The improved Jc values at 4.2 K and 10 T were nearly twice as large as those previously reported. Those milled powders and hence as-rolled tapes easily receive contamination in air. Thus, the transport Jc properties are easily deteriorated and scattered unless the samples are handled with care. The optimized heat treatment temperature (Topt) of those tape samples at which best performance in the Jc property is obtained decreases by more than 100 °C, compared with that of tapes using the as-received MgB2 powder.

  14. Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Liu, Xingang; Tan, Jiang; Wang, Qingfu; Wen, Hao; Zhang, Chuhong

    2017-02-01

    Nitrogen-doped graphene nanosheets (NGNS) are prepared by a novel mechanochemical method via all-solid-state ball-milling graphite with urea. The ball-milling process does not only successfully exfoliate the graphite into multi-layer (<10 layers) graphene nanosheets, but at the same time, enables the N element to be doped onto the graphene. Urea, acting as a new solid doping and assist-grinding agents, has the advantages of low cost and good water solubility that can simplify the fabrication process. The as-prepared NGNS are investigated in detail by XRD, SEM, HRTEM, TGA, XPS and Raman spectroscopy. The doping nitrogens are around 3.15% and dominated (>94%) by pyrindic-N and pyrrolic-N which facilitates the NGNS with enhanced electronic conductivity and Li-ion storage capability. For the first time, we demonstrate that the all-solid-state prepared NGNS exhibits, especially at high currents, enhanced cycling stability and rate capability as Lithium ion battery (LIB) anode active material when compared to pristine graphite and undoped graphene in half-cell configuration. The method presented in this article may provide a simple, clean, economical and scalable strategy for preparation of NGNS as a feasible and promising anode material for LIBs.

  15. Formation of nanostructures in Ni-22Cr-11Fe-1X (X = Y2O3, TiO2) alloys by high-energy ball-milling.

    PubMed

    Park, Jiwhan; Jang, Jinsung; Kim, Tae Kyu; Kim, Sung-Jin; Ahn, Jung-Ho

    2011-07-01

    Powder mixtures of Ni, Cr, Fe and Y2O3 were high-energy ball-milled and subsequently sintered to fabricate Ni-based oxide-dispersion strengthened (ODS) alloys. Nano-sized Y2O3 and/or TiO2 seem to be dissolved in the Ni matrix forming a metastable solid solution during high-energy ball-milling or mechanical alloying (MA) process. The finely grained MA powders with high dislocation density facilitated the decomposition of oxides. The MA powders were consolidated to near-full density by spark plasma sintering at 1100 degrees C for 5 minutes in an Ar atmosphere. The Cr oxides as well as decomposed Y- and Ti-oxides thermally precipitated as oxide particles of several tens nanometers at this temperature, although sintering was carried out during a short time. The SPSed specimen showed a near full densification with almost pore-free microstructures. Examination of fractured surface showed a typical dimple rupture with fine and homogeneous distribution of dispersoids, indicating non-negligible room temperature ductility combined with high mechanical strength.

  16. Multiscale characterization of a heterogeneous aquifer using an ASR operation.

    PubMed

    Pavelic, Paul; Dillon, Peter J; Simmons, Craig T

    2006-01-01

    Heterogeneity in the physical properties of an aquifer can significantly affect the viability of aquifer storage and recovery (ASR) by reducing the recoverable proportion of low-salinity water where the ambient ground water is brackish or saline. This study investigated the relationship between knowledge of heterogeneity and predictions of solute transport and recovery efficiency by combining permeability and ASR-based tracer testing with modeling. Multiscale permeability testing of a sandy limestone aquifer at an ASR trial site showed that small-scale core data give lower-bound estimates of aquifer hydraulic conductivity (K), intermediate-scale downhole flowmeter data offer valuable information on variations in K with depth, and large-scale pumping test data provide an integrated measure of the effective K that is useful to constrain ground water models. Chloride breakthrough and thermal profiling data measured during two cycles of ASR showed that the movement of injected water is predominantly within two stratigraphic layers identified from the flowmeter data. The behavior of the injectant was reasonably well simulated with a four-layer numerical model that required minimal calibration. Verification in the second cycle achieved acceptable results given the model's simplicity. Without accounting for the aquifer's layered structure, high precision could be achieved on either piezometer breakthrough or recovered water quality, but not both. This study demonstrates the merit of an integrated approach to characterizing aquifers targeted for ASR.

  17. Multi-scale characterization of nanostructured sodium aluminum hydride

    NASA Astrophysics Data System (ADS)

    NaraseGowda, Shathabish

    Complex metal hydrides are the most promising candidate materials for onboard hydrogen storage. The practicality of this class of materials is counter-poised on three critical attributes: reversible hydrogen storage capacity, high hydrogen uptake/release kinetics, and favorable hydrogen uptake/release thermodynamics. While a majority of modern metallic hydrides that are being considered are those that meet the criteria of high theoretical storage capacity, the challenges lie in addressing poor kinetics, thermodynamics, and reversibility. One emerging strategy to resolve these issues is via nanostructuring or nano-confinement of complex hydrides. By down-sizing and scaffolding them to retain their nano-dimensions, these materials are expected to improve in performance and reversibility. This area of research has garnered immense interest lately and there is active research being pursued to address various aspects of nanostructured complex hydrides. The research effort documented here is focused on a detailed investigation of the effects of nano-confinement on aspects such as the long range atomic hydrogen diffusivities, localized hydrogen dynamics, microstructure, and dehydrogenation mechanism of sodium alanate. A wide variety of microporous and mesoporous materials (metal organic frameworks, porous silica and alumina) were investigated as scaffolds and the synthesis routes to achieve maximum pore-loading are discussed. Wet solution infiltration technique was adopted using tetrahydrofuran as the medium and the precursor concentrations were found to have a major role in achieving maximum pore loading. These concentrations were optimized for each scaffold with varying pore sizes and confinement was quantitatively characterized by measuring the loss in specific surface area. This work is also aimed at utilizing neutron and synchrotron x-ray characterization techniques to study and correlate multi-scale material properties and phenomena. Some of the most advanced

  18. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching

    SciTech Connect

    Swain, Basudev Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo Lee, Chan Gi; Hong, Hyun Seon

    2015-04-15

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na{sub 2}CO{sub 3}, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na{sub 2}CO{sub 3}, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4 M HCl, 100 °C and pulp density of 20 g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. - Highlights: • Simplest process for treatment of GaN an LED industry waste developed. • The process developed recovers gallium from waste LED waste dust. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} revealed. • Solid-state chemistry involved in this process reported. • Quantitative leaching of the GaN was achieved.

  19. Structure-Property Correlation in Fe-Al2O3 In Situ Nanocomposite Synthesized by High-Energy Ball Milling and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Udhayabanu, V.; Ravi, K. R.; Murty, B. S.

    2016-10-01

    In the present study, Fe-10 vol pct Al2O3 in situ nanocomposite has been derived by high-energy ball milling of Fe2O3-Fe-Al powder mixture followed by the consolidation using spark plasma sintering (SPS). The consolidated nanocomposite has bimodal-grained structure consisting of nanometer- and submicron-sized Fe grains along with nanometer-sized Al2O3, and Fe3O4 particles. The mechanical property analysis reveals that compressive yield strength of Fe-10 vol pct Al2O3 nanocomposite is 2100 MPa which is nearly two times higher than that of monolithic Fe processed by Mechanical Milling and SPS. The strengthening contributions obtained from matrix, grain size, and particles in the synthesized nanocomposite have been calculated theoretically, and are found to be matching well with the experimental strength levels.

  20. Ultrathin SmCo5 nanoflakes with high-coercivity prepared by solid particle (NaCl) and surfactant co-assisted ball milling

    NASA Astrophysics Data System (ADS)

    Zuo, Wen-Liang; Zhao, Xin; Zhao, Tong-Yun; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2016-05-01

    The ultrathin SmCo5 nanoflakes with average thickness smaller than 50 nm are prepared by a novel method of solid particle (NaCl) and surfactant co-assisted ball milling. The as-prepared nanoflakes exhibit a narrower thickness distribution of 10–50 nm and high coercivity of 23 kOe. The possible formation mechanism of nanoflakes are proposed. Temperature dependence of demagnetization curves indicate that the magnetization reversal may be controlled by both nucleation and pinning. The results of X-ray powder diffraction and magnetic measurement for aligned SmCo5 nanoflakes resin composite indicate that the nanoflakes have a high texture degree. The ultrathin thickness and high coercivity are beneficial for preparing the high performance soft/hard coupling magnets and nanocomposite magnets.

  1. Effect of Ball Size and Ball to Powder Ratio Variation on Crystallite Size and Formation of Nanocrystalline Materials in Planetary Ball Mill

    NASA Astrophysics Data System (ADS)

    Salili, S. M.; Ataie, A.; Sadighi, Z.

    2011-12-01

    The variation of ball size in a planetary ball mill (PBM) was studied in terms of its effect on the specific impact energy of balls as a result of ball to ball and ball to vial collision calculated through a computer simulation. The mean crystallite size of calcium carbonate in the course of milling as well as the required time for obtaining a thoroughly formed calcium carbonate was also analyzed with variation in ball size and ball to powder mass ratio (BPR). The crystallite size and formation time of calcium carbonate changed as ball size and BPR varied. Based on XRD results it was found that a ball to powder mass ratio of 20:1 required a shorter time for the formation of nano-crystalline calcium carbonate. Moreover, it has been seen that the presence of randomness in choosing ball sizes leads to finer crystallite sizes.

  2. Use of cellobiohydrolase-free cellulase blends for the hydrolysis of microcrystalline cellulose and sugarcane bagasse pretreated by either ball milling or ionic liquid [Emim][Ac].

    PubMed

    Teixeira, Ricardo Sposina Sobral; da Silva, Ayla Sant'Ana; Kim, Han-Woo; Ishikawa, Kazuhiko; Endo, Takashi; Lee, Seung-Hwan; Bon, Elba P S

    2013-12-01

    This study investigated the requirement of cellobiohydrolases (CBH) for saccharification of microcrystalline cellulose and sugarcane bagasse pretreated either by ball milling (BM) or by ionic liquid (IL) [Emim][Ac]. Hydrolysis was done using CBH-free blends of Pyrococcus horikoshii endoglucanase (EG) plus Pyrococcus furiosus β-glucosidase (EGPh/BGPf) or Optimash™ BG while Acremonium Cellulase was used as control. IL-pretreated substrates were hydrolyzed more effectively by CBH-free enzymes than were the BM-pretreated substrates. IL-treatment decreased the crystallinity and increased the specific surface area (SSA), whereas BM-treatment decreased the crystallinity without increasing the SSA. The hydrolysis of IL-treated cellulose by EGPh/BGPf showed a saccharification rate of 3.92 g/Lh and a glucose yield of 81% within 9h. These results indicate the efficiency of CBH-free enzymes for the hydrolysis of IL-treated substrates.

  3. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.

    PubMed

    Buaban, Benchaporn; Inoue, Hiroyuki; Yano, Shinichi; Tanapongpipat, Sutipa; Ruanglek, Vasimon; Champreda, Verawat; Pichyangkura, Rath; Rengpipat, Sirirat; Eurwilaichitr, Lily

    2010-07-01

    Sugarcane bagasse is one of the most promising agricultural by-products for conversion to biofuels. Here, ethanol fermentation from bagasse has been achieved using an integrated process combining mechanical pretreatment by ball milling, with enzymatic hydrolysis and fermentation. Ball milling for 2 h was sufficient for nearly complete cellulose structural transformation to an accessible amorphous form. The pretreated cellulosic residues were hydrolyzed by a crude enzyme preparation from Penicillium chrysogenum BCC4504 containing cellulase activity combined with Aspergillus flavus BCC7179 preparation containing complementary beta-glucosidase activity. Saccharification yields of 84.0% and 70.4% for glucose and xylose, respectively, were obtained after hydrolysis at 45 degrees C, pH 5 for 72 h, which were slightly higher than those obtained with a commercial enzyme mixture containing Acremonium cellulase and Optimash BG. A high conversion yield of undetoxified pretreated bagasse (5%, w/v) hydrolysate to ethanol was attained by separate hydrolysis and fermentation processes using Pichia stipitis BCC15191, at pH 5.5, 30 degrees C for 24 h resulting in an ethanol concentration of 8.4 g/l, corresponding to a conversion yield of 0.29 g ethanol/g available fermentable sugars. Comparable ethanol conversion efficiency was obtained by a simultaneous saccharification and fermentation process which led to production of 8.0 g/l ethanol after 72 h fermentation under the same conditions. This study thus demonstrated the potential use of a simple integrated process with minimal environmental impact with the use of promising alternative on-site enzymes and yeast for the production of ethanol from this potent lignocellulosic biomass.

  4. Diamagnetic, paramagnetic, and ferromagnetic properties of ball milled Bi_{1.65}Pb_{0.35}Sr2Ca2Cu3O_{10+δ } powders

    NASA Astrophysics Data System (ADS)

    Govea-Alcaide, E.; Pérez-Acosta, L.; Kiyohara, P. K.; Jardim, R. F.

    2015-11-01

    We have performed a systematic study of the general physical properties of (Bi,Pb)_2Sr_2Ca_2Cu_{10+y} (Bi-2223) powders that were ball milled for time intervals of up to tm = 210 min. X-ray powder diffraction diagrams indicate that the phase composition of the samples seems to be preserved after the ball milling process, but the average grain size of the samples decreases appreciably with increasing milling time tm. For tm = 120 min, the transmission electron microscopy (TEM) images revealed the presence of Bi-2223 grains in the form of nanorods with a mean diameter of dg ˜ 20 nm. The temperature dependence of the magnetic susceptibility, χ (T), showed the occurrence of superconductivity below Tc ˜ 108 K in all samples studied and a progressive decrease of the diamagnetic contribution to χ (T) with increasing tm. Such a decrease in the diamagnetic contribution to χ (T) is accompanied by an increase of a paramagnetic contribution that has its origin in a disordered shell of the milled grains. Increasing tm results in a progressive increase of the width of disordered shell further increasing the paramagnetic contribution to χ (T) that shows a very small diamagnetic component in samples subjected to large milling times. We have also found that the occurrence of oxygen vacancies in the disordered shell is responsible for a ferromagnetic contribution to χ (T) at high temperatures. Such a shell-core morphology of the milled grains, comprising a superconducting and diamagnetic core and a disordered and paramagnetic shell, is sufficient for interpreting the magnetic properties of the samples.

  5. Layered-Layered-Spinel Cathode Materials Prepared by a High-Energy Ball-Milling Process for Lithium-ion Batteries.

    PubMed

    Kim, Soo; Noh, Jae-Kyo; Aykol, Muratahan; Lu, Zhi; Kim, Haesik; Choi, Wonchang; Kim, Chunjoong; Chung, Kyung Yoon; Wolverton, Chris; Cho, Byung-Won

    2016-01-13

    In this work, we report the electrochemical properties of 0.5Li2MnO3·0.25LiNi0.5Co0.2Mn0.3O2·0.25LiNi0.5Mn1.5O4 and 0.333Li2MnO3·0.333LiNi0.5Co0.2Mn0.3O2·0.333LiNi0.5Mn1.5O4 layered-layered-spinel (L*LS) cathode materials prepared by a high-energy ball-milling process. Our L*LS cathode materials can deliver a large and stable capacity of ∼200 mAh g(-1) at high voltages up to 4.9 V, and do not show the anomalous capacity increase upon cycling observed in previously reported three-component cathode materials synthesized with different routes. Furthermore, we have performed synchrotron-based in situ X-ray diffraction measurements and found that there are no significant structural distortions during charge/discharge runs. Lastly, we carry out (opt-type) van der Waals-corrected density functional theory (DFT) calculations to explain the enhanced cycle characteristics and reduced phase transformations in our ball-milled L*LS cathode materials. Our simple synthesis method brings a new perspective on the use of the high-power L*LS cathodes in practical devices.

  6. Effect of ball-milling and Fe-/Al-doping on the structural aspect and visible light photocatalytic activity of TiO2 towards Escherichia coli bacteria abatement.

    PubMed

    Schlur, Laurent; Begin-Colin, Sylvie; Gilliot, Pierre; Gallart, Mathieu; Carré, Gaëlle; Zafeiratos, Spiros; Keller, Nicolas; Keller, Valérie; André, Philippe; Greneche, Jean-Marc; Hezard, Bernard; Desmonts, Marie-Hélène; Pourroy, Geneviève

    2014-05-01

    Escherichia coli abatement was studied in liquid phase under visible light in the presence of two commercial titania photocatalysts, and of Fe- and Al-doped titania samples prepared by high energy ball-milling. The two commercial titania photocatalysts, Aeroxide P25 (Evonik industries) exhibiting both rutile and anatase structures and MPT625 (Ishihara Sangyo Kaisha), a Fe-, Al-, P- and S-doped titania exhibiting only the rutile phase, are active suggesting that neither the structure nor the doping is the driving parameter. Although the MPT625 UV-visible spectrum is shifted towards the visible domain with respect to the P25 one, the effect on bacteria is not increased. On the other hand, the ball milled iron-doped P25 samples exhibit low activities in bacteria abatement under visible light due to charge recombinations unfavorable to catalysis as shown by photoluminescence measurements. While doping elements are in interstitial positions within the rutile structure in MPT625 sample, they are located at the surface in ball milled samples and in isolated octahedral units according to (57)Fe Mössbauer spectrometry. The location of doping elements at the surface is suggested to be responsible for the sample cytotoxicity observed in the dark.

  7. Binding of carbon coated nano-silicon in graphene sheets by wet ball-milling and pyrolysis as high performance anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Hu, Renzong; Zhang, Miao; Liu, Jiangwen; Zhu, Min

    2016-06-01

    A novel approach has been developed to prepare silicon@carbon/graphene sheets (Si@C/G) composite with a unique structure, in which carbon coated Si nanoparticles are uniformly dispersed in a matrix of graphene sheets, to enhance the cycleability and electronic conductivity of Si-based anodes for Li-ion batteries. In this study, Si nanoparticles and expanded graphite (EG) are treated by combining high-energy wet ball-milling in sucrose solution with subsequent pyrolysis treatment to produce this Si@C/G composite. To achieve better overall electrochemical performance, the carbon content of the composites is also studied systematically. The as-designed Si30@C40/G30 (Si:C:G = 30:40:30, by weight) composite exhibits a high Li-storage capacity of 1259 mAh g-1 at a current density of 0.2 A g-1 in the first cycle. Further, a stable cycleability with 99.1/88.2% capacity retention from initial reversible charge capacity can be achieved over 100/300 cycles, showing great promise for batteries applications. This good electrochemical performance can be attributed to the uniform coating and binding effect of pyrolytic carbon as well as the network of graphene sheets, which increase the electronic conductivity and Li+ diffusion in the composite, and effectively accommodated the volume change of Si nanoparticles during the Li+ alloying and dealloying processes.

  8. Influence of ball milling and annealing conditions on the properties of L10 FePt nanoparticles fabricated by a new green chemical synthesis method

    NASA Astrophysics Data System (ADS)

    Hu, X. C.; Capobianchi, A.; Gallagher, R.; Hadjipanayis, G. C.

    2014-05-01

    In this work, a new green chemical strategy for the synthesis of L10 FePt alloy nanoparticles is reported. The precursor is a polycrystalline molecular complex (Fe(H2O)6PtCl6), in which Fe and Pt atoms are arranged on alternating planes and milled with NaCl to form nanocrystals. Then the mixture was annealed under reducing atmosphere (5% H2 and 95% Ar) at temperatures varying from 350 °C to 500 °C for 2 h with a heating rate of 5 °C/min. After the reduction, the mixture was washed with water to remove the NaCl and L10 FePt nanoparticles were obtained. The X-Ray Diffraction pattern showed the presence of the characteristic peaks of the fct phase of FePt nanoparticles. Influence of precursor/NaCl ratio and ball milling time on particle size was investigated. Transmission electron microscopy images revealed that smaller precursor/NaCl ratio (10 mg/20 g) and longer milling time (15 h) lead to smaller particle size and narrower size distribution. Milling time does not influence the coercivity much but the decrease of the amount of precursor leads to a decrease of coercivity from 10.8 kOe to 4.8 kOe.

  9. Enhanced coercivity and remanence of PrCo5 nanoflakes prepared by surfactant-assisted ball milling with heat-treated starting powder

    NASA Astrophysics Data System (ADS)

    Zuo, Wen-Liang; Zhao, Xin; Xiong, Jie-Fu; Shang, Rong-Xiang; Zhang, Ming; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen

    2015-07-01

    PrCo5 nanoflakes with strong texture and high coercivity of 8.15 kOe were prepared by surfactant-assisted ball milling with heat-treated starting powder. The thickness and length of the as-milled nanoflakes are mainly in the ranges of 50-100 nm and 0.5-3 μm, respectively. The x-ray diffraction patterns demonstrate that the heat treatment can increase the single phase and crystallinity of the PrCo5 compound, and combined with the demagnetization curves, indicate that the single phase and crystallinity are important for preparing high-coercivity and strong-textured rare earth permanent magnetic nanoflakes. In addition, the coercivity mechanism of the as-milled PrCo5 nanoflakes is studied by the angle dependence of coercivity for an aligned sample and the field dependence of coercivity, isothermal (IRM) and dc demagnetizing (DCD) remanence curves for an unaligned sample. The results indicate that the coercivity is dominated by co-existing mechanisms of pinning and nucleation. Furthermore, exchange coupling and dipolar coupling also co-exist in the sample. Project supported by the National Basic Research Program of China (Grant No. 2014CB643702), the National Natural Science Foundation of China (Grant No. 51401235), and Beijing Natural Science Foundation, China (Grant No. 2152034).

  10. Influence of ball milling and annealing conditions on the properties of L1{sub 0} FePt nanoparticles fabricated by a new green chemical synthesis method

    SciTech Connect

    Hu, X. C.; Capobianchi, A.; Gallagher, R.; Hadjipanayis, G. C.

    2014-05-07

    In this work, a new green chemical strategy for the synthesis of L1{sub 0} FePt alloy nanoparticles is reported. The precursor is a polycrystalline molecular complex (Fe(H{sub 2}O){sub 6}PtCl{sub 6}), in which Fe and Pt atoms are arranged on alternating planes and milled with NaCl to form nanocrystals. Then the mixture was annealed under reducing atmosphere (5% H{sub 2} and 95% Ar) at temperatures varying from 350 °C to 500 °C for 2 h with a heating rate of 5 °C/min. After the reduction, the mixture was washed with water to remove the NaCl and L1{sub 0} FePt nanoparticles were obtained. The X-Ray Diffraction pattern showed the presence of the characteristic peaks of the fct phase of FePt nanoparticles. Influence of precursor/NaCl ratio and ball milling time on particle size was investigated. Transmission electron microscopy images revealed that smaller precursor/NaCl ratio (10 mg/20 g) and longer milling time (15 h) lead to smaller particle size and narrower size distribution. Milling time does not influence the coercivity much but the decrease of the amount of precursor leads to a decrease of coercivity from 10.8 kOe to 4.8 kOe.

  11. Facile solid state ball milling as a green strategy to prepare 2-(2,4-dichlorophenoxy)-N‧-(2-hydroxybenzylidene)acetohydrazide complexes

    NASA Astrophysics Data System (ADS)

    Fekri, Ahmed; Zaky, Rania

    2014-11-01

    2-(2,4-Dichlorophenoxy)-N‧-(2-hydroxybenzylidene)acetohydrazide (H2L) complexes were prepared by ball milling involving the reaction of ligand with Ni(II), Co(II), Cu(II) and VO(II) salts (mechanochemical syntheses). The compounds were elucidated by elemental analysis, spectroscopy (1H NMR, IR, UV-visible, MS spectra), and physical measurements (magnetic susceptibility and molar conductance). IR spectra suggested that the H2L behaved as a monodentate and/or bidentate ligand coordinating via azomethine nitrogen and/or deprotonated enolized carbonyl oxygen. The electronic spectra of the complexes and their magnetic moments provided information about geometries. The antimicrobial activities of the ligand and its complexes were studied against gram positive bacteria; Staphylococcus aureus, gram-negative bacteria; Escherichia coli and pathogenic fungi; Candida albicans by using minimum inhibition concentrations method (MIC). Also, the antioxidant (ABTS-derived free radical method) and cytotoxic (in vitro Ehrlich Ascites) activities of the isolated compounds were evaluated.

  12. Effect of the method of introduction of Y2O3 into NiAl-based powder alloys on their structure: I. Agitation in a ball mill

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Vershinina, T. N.; Skachkov, O. A.; Drozdov, A. A.; Morozov, A. E.; Pozharov, S. V.

    2012-09-01

    The effect of the sintering temperature (1100-1400°C) of NiAl alloy samples with oxide Y2O3 produced by hydrostatic pressing on their structure and phase composition and the distribution of oxide particles in a NiAl-based intermetallic matrix alloyed with ˜0.5 at % Fe is considered. It is found that dispersed oxide particles in the compact material prepared from a mixture of oxide Y2O3 powder and a NiAl alloy (produced by calcium hydride reduction of a mixture of nickel and aluminum oxides) powder in a standard ball mill are nonuniformly distributed in the volume. The morphology of oxides changes during sintering: sintered samples contain rounded particles, which differ strongly from the clearly faceted angular particles of oxide Y2O3 added to a mixture (they represent conglomerates of single crystals). In the sintered samples, large aggregates of oxides are revealed along grain boundaries. Mass transfer is possible at the NiAl/Y2O3 interface in the system: it leads to partial substitution of aluminum and/or iron atoms for yttrium atoms in the Y2O3 lattice and to the formation of submicroscopic particles of (Fe,Al)5Y3O12-type oxides.

  13. Magnetization reversal behavior of SmCo6.6Nb0.4 nanoflakes prepared by surfactant-assisted ball milling

    NASA Astrophysics Data System (ADS)

    Li, Y. Q.; Yue, M.; Wu, Q.; Liu, W. Q.; Zhang, D. T.; Lu, Q. M.

    2016-05-01

    In this paper, the recoil loops of SmCo6.6Nb0.4 nanoflakes prepared by the surfactant-assisted high energy ball milling (SA-HEBM) were systematically studied. The recoil loop openness was observed in both the aligned and non-aligned samples. Reversible and irreversible portions of the demagnetization process derived from the recoil loop were also investigated. For both the aligned and non-aligned samples, reversible portion (▵mrev) is too small to determine the coercivity. Irreversible portion (▵mirrev) shows similar tendency, i.e. increasing slowly at low reverse field and then growing up rapidly after a critical field (nucleation field Hno). The demagnetization process can be described as following: the reversible demagnetization is dominant when the applied reverse field is lower than 8 kOe, under which the irreversible nucleation also occurs. The reverse domain walls are pinned by the grain boundaries until the reverse field is larger than 8 kOe. With increasing field, the pinning effects are weakened and the rapid reversible demagnetization starts. Finally, the demagnetization process is accomplished. The values of ΔM in the Henkel plots are totally opposite for the aligned and non-aligned SmCo6.6Nb0.4 nanoflakes.

  14. Magnetic properties and coercivity mechanism of Sm1-xPrxCo5 (x=0-0.6) nanoflakes prepared by surfactant-assisted ball milling

    NASA Astrophysics Data System (ADS)

    Xu, M. L.; Yue, M.; Wu, Q.; Li, Y. Q.; Lu, Q. M.

    2016-05-01

    Sm1-xPrxCo5 (x=0-0.6) nanoflakes with CaCu5 structure were successfully prepared by surfactant-assisted high-energy ball milling (SAHEBM). The crystal structure and magnetic properties of Sm1-xPrxCo5 (x=0-0.6) nanoflakes were studied by X-ray diffraction and vibrating sample magnetometer. Effects of Pr addition on the structure, magnetic properties and coercivity mechanism of Sm1-xPrxCo5 nanoflakes were systematically investigated. XRD results show that all the nanoflakes have a hexagonal CaCu5-type (Sm, Pr)1Co5 main phase and the (Sm, Pr)2Co7 impurity phase, and all of the samples exhibit a strong (00l) texture after magnetic alignment. As the Pr content increases, remanence firstly increases, then slightly reduced, while anisotropy field (HA) and Hci of decrease monotonically. Maximum energy product [(BH)max] of the flakes increases first, peaks at 24.4 MGOe with Pr content of x = 0.4, then drops again. Magnetization behavior analysis indicate that the coercivity mechanism is mainly controlled by inhomogeneous domain wall pinning, and the pinning strength weakens with the increased Pr content, suggesting the great influence of HA on the coercivity of flakes.

  15. Performance enhancement of NdFeB nanoflakes prepared by surfactant-assisted ball milling at low temperature by using different surfactants

    NASA Astrophysics Data System (ADS)

    An, Xiaoxin; Jin, Kunpeng; Wang, Fang; Fang, Qiuli; Du, Juan; Xia, Weixing; Yan, Aru; Liu, J. Ping; Zhang, Jian

    2017-02-01

    Hard magnetic NdFeB submicron and nanoflakes were successfully prepared by surfactant-assisted ball milling at room temperature (SABMRT) and low temperature (SABMLT) by using oleic acid (OA), oleylamine (OLA) and trioctylamine (TOA) as surfactant, respectively. Among the surfactants used, OA and OLA have similar effects on the morphology of the NdFeB nanoflakes milled at both room and low temperature. In the case of TOA, irregular micron-sized particles and submirco/nanoflakes were obtained for the NdFeB powders prepared by SABMRT and SABMLT, respectively. Samples prepared by SABMLT show better crystallinity and better degree of grain alignment than that prepared by SABMRT with the same surfactant. Comparing with the samples milled at RT, higher coercivity and larger remanence ratio were achieved in the NdFeB samples prepared at LT. The amounts of residual surfactants in final NdFeB powders were also calculated, which reveals that the final NdFeB powders milled at LT possess lower amount of residual surfactants than those milled at RT. It was found that lowering milling temperature of SABM would be a promising way for fabricating permanent magnetic materials with better hard magnetic properties.

  16. The grinding behavior of ground copper powder for Cu/CNT nanocomposite fabrication by using the dry grinding process with a high-speed planetary ball mill

    NASA Astrophysics Data System (ADS)

    Choi, Heekyu; Bor, Amgalan; Sakuragi, Shiori; Lee, Jehyun; Lim, Hyung-Tae

    2016-01-01

    The behavior of ground copper powder for copper-carbon nanotube (copper-CNT) nanocomposite fabrication during high-speed planetary ball milling was investigated because the study of the behavior characteristics of copper powder has recently gained scientific interest. Also, studies of Cu/CNT composites have widely been done due to their useful applications to enhanced, advanced nano materials and components, which would significantly improve the properties of new mechatronics-integrated materials and components. This study varied experimental conditions such as the rotation speed and the grinding time with and without CNTs, and the particle size distribution, median diameter, crystal structure and size, and particle morphology were monitored for a given grinding time. We observed that pure copper powders agglomerated and that the morphology changed with changing rotation speed. The particle agglomerations were observed with maximum experiment conditions (700 rpm, 60 min) in this study of the grinding process for mechanical alloys in the case of pure copper powders because the grinding behavior of Cu/CNT agglomerations was affected by the addition of CNTs. Indeed, the powder morphology and the crystal size of the composite powder could be changed by increasing the grinding time and the rotation speed.

  17. Resolving Nuclear Reactor Lifetime Extension Questions: A Combined Multiscale Modeling and Positron Characterization approach

    SciTech Connect

    Wirth, B; Asoka-Kumar, P; Denison, A; Glade, S; Howell, R; Marian, J; Odette, G; Sterne, P

    2004-04-06

    The objective of this work is to determine the chemical composition of nanometer precipitates responsible for irradiation hardening and embrittlement of reactor pressure vessel steels, which threaten to limit the operating lifetime of nuclear power plants worldwide. The scientific approach incorporates computational multiscale modeling of radiation damage and microstructural evolution in Fe-Cu-Ni-Mn alloys, and experimental characterization by positron annihilation spectroscopy and small angle neutron scattering. The modeling and experimental results are

  18. M{umlt o}ssbauer investigation of intermixing during ball milling of Fe{sub 0.3}Cr{sub 0.7} and Fe{sub 0.5}W{sub 0.5} powder mixtures

    SciTech Connect

    Le Caeer, G.; Delcroix, P.; Shen, T.D.; Malaman, B.

    1996-11-01

    Intermixing of Fe and T (T=Cr,W) during ball milling of elemental powder mixtures Fe{sub 1{minus}x}T{sub x}, with x=0.70 for T=Cr and x=0.50 for T=W, has been followed by {sup 57}Fe M{umlt o}ssbauer spectroscopy at room temperature (RT) and by magnetization measurements for T=W. The chemical compositions have been chosen to yield final alloys or compounds which are nonmagnetic at RT to better follow the evolution of magnetic phases with milling times. For a long period of milling time t{sub m} before reaching the final stationary state, the hyperfine magnetic field distributions remain stationary in shape for both T=Cr and T=W. Only the relative weight of the magnetic contribution decreases with t{sub m}. For T=W, the average moment of magnetic Fe atoms is further shown to remain constant with t{sub m}. Stationary hyperfine field distribution shapes are found to be similar not only for {ital T}=Cr and W but also for T=Si (x=0.50) while published spectra suggest to add T=Al, Ti, V, Ta, Re to the latter nonexhaustive list. The stationary shape is characterized by a narrow peak located at a field close to the field of alpha iron at RT (330 kG) and by a broad, almost featureless, band from 50-100 kG to 300-320 kG. The broad band represents about 2/3 of the normalized field distribution. We deduce that the interpretation which consists in attributing the x-ray diffraction peaks of Fe-based bcc solid solutions to a single Fe-rich homogeneous solid solution must be done with care for intermediate milling times. We cannot infer from such hyperfine measurements a detailed description of the regions of the powders which are responsible for such magnetic features. We argue however that irregular interfaces between nanometer-sized Fe-rich zones and {ital T}-rich zones may play a role to explain the observed shape of the hyperfine field distributions.

  19. Enhanced magnetic properties of NiO powders by the mechanical activation of aluminothermic reduction of NiO prepared by a ball milling process

    NASA Astrophysics Data System (ADS)

    Padhan, Aneeta Manjari; Ravikumar, P.; Saravanan, P.; Alagarsamy, Perumal

    2016-11-01

    We report the effect of mechanical activation on NiO-Al (x wt%) reduction reaction and resulting structural and magnetic properties by carrying out high-energy planetary ball milling. The pure NiO (un-milled) and milled NiO-Al (x≤2.5) powders exhibit face centered cubic structure, but the antiferromagnetic nature of pure NiO powder shows significant room temperature ferromagnetism with moderate moment and coercivity after milling due to non-stoichiometry in NiO caused by the defects, size reduction and oxidation of Ni. On the other hand, the addition of Al between 2.5 and 10% in NiO forms solid solution of NiO-Al with considerable reduction in the moment due to the atomic disorder. With increasing Al above 10%, NiO reduction reaction progresses gradually and as a result, the average magnetization increases from 0.57 to 4.3 emu/g with increasing Al up to 25%. A maximum of 91% reduction was observed for NiO-Al (40%) powders in 30 h of milling with a large increase in magnetization (~24 emu/g) along with the development of α-Al2O3. Thermomagnetization data reveal the presence of mixed magnetic phases in milled NiO powders and the component of induced ferromagnetic phase fades out with increasing Al due to the formation of Ni from the NiO-Al reduction reaction. The changes in the structural and magnetic properties are discussed on the basis of mechanical activation on the reduction of NiO by Al. The controlled reduction reaction with different Al content in NiO-Al is encouraging for the applications in catalysis and process of ore reduction.

  20. Effect of Gd-substitution on the ferroelectric and magnetic properties of BiFeO3 processed by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Sharma, Shiwani; Mishra, Alok; Saravanan, P.; Pandey, O. P.; Sharma, Puneet

    2016-11-01

    Multiferroic BiFeO3 was synthesized by means of high-energy ball milling (HEBM) followed by thermal annealing at various temperatures and the effect of Gd3+ substitution (x=0.0-0.20) at Bi3+ site was investigated in this study. It is found that the Gd-substitution tends to decrease the impurity phases and the crystallization of single phase BiFeO3 is observed at x=0.1. Scanning electron micrograph of Bi1-xGdxFeO3 sintered sample indicated a decrease in particle size and change in shape with increasing x. For all the studied samples, the measured dielectric constant values tend to increase from 110 (x=0.0) to 250 (x=0.10). The dielectric loss is found to be more for the pure BiFeO3 as compared to the Bi1-xGdxFeO3. Ferroelectric loops show a maximum polarization of 1.63 μC/cm2 for the Bi0.9Gd0.1FeO3. Magnetization (M) versus magnetic field (H) hysteresis loops at 300 K BiFeO3 and Bi0.9Gd0.1FeO3 demonstrated non-saturated loops, suggesting the antiferromagnetic nature of the samples. The M-H behavior of the Bi1-xGdxFeO3 at 300 K shows the antiferromagnetic nature of the samples. The estimated magnetization value at 10 kOe for the Bi0.9Gd0.1FeO3 sample (0.23 emu/g) is found to be higher than that of the pure BiFeO3 (0.037 emu/g).

  1. EXAFS Studies and Microwave Magnetic Properties of FeGaB Thin Films and FeCuZr Ball-Milled Alloys

    NASA Astrophysics Data System (ADS)

    Gao, Jinsheng

    X-ray absorption fine structure (XAFS) is a spectroscopic technique which can investigate the physical and chemical structure of materials at the atomic scale. X-rays are applied in this technique to be near and above the binding energy of a particular core electronic level of a particular atomic species. Over the last decades, XAFS has emerged as a highly informative probe of the local structure around selected atomic species in solids, liquids, and molecular gases. It offers both element specificity and local structure sensitivity. Foremost among its strengths are its ability to probe the local atomic environments of different elements in the sample by selecting the corresponding incident X-ray energy. In the first part of this thesis, FeGaB alloys, which are of value as soft magnetic materials having relatively large magnetostriction coefficient, were fabricated in which varying amounts of boron were added to the host FeGa alloy to investigate its impact upon local atomic structure and magnetic and microwave properties. The impact of B upon the local atomic structure in FeGaB films were investigated by extended X-ray absorption fine structure (EXAFS) analysis. EXAFS fitting results revealed a contraction of lattice parameters with the introduction of B. The Debye-Waller factor determined from EXAFS fitting gradually increases as a function of boron addition and abruptly increases during the structural evolution from crystalline to amorphous. Upon the onset of this transition the static and microwave magnetic properties became exceptionally softer, with values of coercivity and ferromagnetic linewidth reducing dramatically. In the second part of this thesis, metastable alloys of the composition FeCuZr were synthesized by high energy ball milling and measured by EXAFS . The fitting results demonstrate that nanocrystalline or amorphous alloys have been obtained depending on the Zr content.

  2. Multiscale Characterization of bcc Crystals Deformed to Large Extents of Strain

    SciTech Connect

    Florando, J; LeBlanc, M; Lassila, D; Bulatov, V; Rhee, M; Arsenlis, A; Becker, R; Jr., J M; Magid, K

    2007-02-20

    In an effort to help advance the predictive capability of LLNL's multiscale modeling program a new experimental technique has been developed to provide high fidelity data on metallic single crystals out to relatively large extents of strain. The technique uses a '6 Degrees of Freedom' testing apparatus in conjunction with a 3-D image correlation system. Utilizing this technique, a series of experiments have been performed that reveal unexpected behavior which cannot be explained using traditional crystal plasticity theory. In addition, analysis and characterization techniques have also been developed to help quantify the unexpected behavior. Interactions with multiscale modelers include the development of a possible mechanism that might explain the anomalous behavior, as well as the discovery of a new 4-node dislocation junction.

  3. Controlling the number of walls in multi walled carbon nanotubes/alumina hybrid compound via ball milling of precipitate catalyst

    NASA Astrophysics Data System (ADS)

    Nosbi, Norlin; Akil, Hazizan Md

    2015-06-01

    This paper reports the influence of milling time on the structure and properties of the precipitate catalyst of multi walled carbon nanotubes (MWCNT)/alumina hybrid compound, produced through the chemical vapour deposition (CVD) process. For this purpose, light green precipitate consisted of aluminium, nickel(II) nitrate hexahydrate and sodium hydroxide mixture was placed in a planetary mill equipped with alumina vials using alumina balls at 300 rpm rotation speed for various milling time (5-15 h) prior to calcinations and CVD process. The compound was characterized using various techniques. Based on high-resolution transmission electron microscopy analysis, increasing the milling time up to 15 h decreased the diameter of MWCNT from 32.3 to 13.1 nm. It was noticed that the milling time had a significant effect on MWCNT wall thickness, whereby increasing the milling time from 0 to 15 h reduced the number of walls from 29 to 12. It was also interesting to note that the carbon content increased from 23.29 wt.% to 36.37 wt.% with increasing milling time.

  4. Multiscale analysis of replication technique efficiency for 3D roughness characterization of manufactured surfaces

    NASA Astrophysics Data System (ADS)

    Jolivet, S.; Mezghani, S.; El Mansori, M.

    2016-09-01

    The replication of topography has been generally restricted to optimizing material processing technologies in terms of statistical and single-scale features such as roughness. By contrast, manufactured surface topography is highly complex, irregular, and multiscale. In this work, we have demonstrated the use of multiscale analysis on replicates of surface finish to assess the precise control of the finished replica. Five commercial resins used for surface replication were compared. The topography of five standard surfaces representative of common finishing processes were acquired both directly and by a replication technique. Then, they were characterized using the ISO 25178 standard and multiscale decomposition based on a continuous wavelet transform, to compare the roughness transfer quality at different scales. Additionally, atomic force microscope force modulation mode was used in order to compare the resins’ stiffness properties. The results showed that less stiff resins are able to replicate the surface finish along a larger wavelength band. The method was then tested for non-destructive quality control of automotive gear tooth surfaces.

  5. Multi-scale Characterization of Cellulose TEMPO-Nanofiber Suspension

    NASA Astrophysics Data System (ADS)

    Mao, Yimin; Liu, Kai; Hsiao, Benjamin

    Cellulose nanofiber (CNF) suspensions were characterized at multiple length scales. CNF suspension was prepared by applying 2,2,6,6-tetramethyl-1- piperidinyloxy (TEMPO) oxidation method to dry wood pulp. TEMPO method was able to produce fine fibers with a cross section dimension being in the order of magnitude of several nanometers, and length being several hundred nanometers. The surface was negatively charged. Charge density was characterized by Zeta-potential measurement. Both small-angle X-ray (SAXS) and small-angle neutron (SANS) methods were employed to examine fiber dimensions in solution. Data fitting indicated that newly-developed ribbon model was able to capture the essence of CNF's geometry, which is also computationally economic. The rectangular-shaped cross section was consistent to cellulose's crystal structure; and was able to provide insights into how cellulose crystals were biologically synthesized and packed in nature. Multi-angle dynamic light scattering (DLS) was used to study CNF's diffusion properties. A strong scattering-angle dependence of auto-correlation function was observed. The characterization is useful to understanding suspension quality of CNF, and can provide guideline for follow-up research aimed for a variety of applications.

  6. Multiscale Characterization of Geological Properties of Oil Shale

    NASA Astrophysics Data System (ADS)

    Mehmani, Y.; Burnham, A. K.; Vanden Berg, M. D.; Tchelepi, H.

    2015-12-01

    Detailed characterization of geologic properties of oil shale is important for predictive modeling of geomechanics as well as heat and mass transfer in these geomaterials. Specifically, quantitative knowledge of the spatial distribution of thermal, hydraulic, and mechanical properties is requisite. The primary parameter upon which these properties strongly depend is kerogen content. We have developed a simple but accurate method for quantifying the spatial distribution of kerogen content, spanning scales from a few microns to a hundred feet. Our approach is based on analyzing raw optical images. Promising results regarding the viability of this approach, based on comparison with lab measurements, are presented for the well-known Mahogany Zone of the Green River Formation, Utah. A combination of Scanning Electron Microscopy (SEM) and appropriately chosen mixing rules allows for the quantification of thermal, hydraulic, and mechanical properties with micron-scale resolution. Numerical upscaling can subsequently produce averaged properties at the scale of individual grid blocks in field-scale simulators.

  7. A Multi-Scale Approach for fracture characterization

    NASA Astrophysics Data System (ADS)

    Collombin, Maxime; Derron, Marc-Henri; Sartori, Mario; Jaboyedoff, Michel; Matasci, Battista; Humair, Florian

    2016-04-01

    The study of fractured reservoirs is of primary importance for hydrocarbons, water and geothermal exploration. The investigation of natural fracture networks affecting potential reservoir is a key point in the present field of research since fracturing may constitute preferential flow paths for fluids consequently to an increase of the secondary permeability. Performed in the context of a geothermal project in the Western Alps of Switzerland, the present work focuses on the characterization of the fracturing pattern in order to better understand water circulations affecting a gneissic geology (tectonic unit of the "Aiguilles Rouges Massif"). The fracturing interpretation is here mainly based on a terrestrial LiDAR survey of outcrops close to (future) production wells as well as on discrete fracture network (DFN) modelling. The different sets of fractures are characterized in terms of orientation, spacing and trace length. In addition, traditional field survey observations and measurements from outcrops allow documenting the fracture aperture, types of fillings and the evidences of past and present-day fluid circulations. Fracturing patterns from outcrops and LIDAR analysis are then compared to regional structures observed on a DEM. Main objectives of this study are: (1) to compare and check the consistence of various sets of fracturing data, acquired by various methods at different scales; (2) to develop the most representative fracture model (DFN), taking into account these datasets. Once a DFN model established, each of the different fracture sets will be associated with permeability values in order to get a preliminary hydrodynamic model that will be confronted to borehole tests data and eventually used as inputs for flow simulation. Keywords: Fracturing analysis, LiDAR, borehole, Discrete Fracture Network, Flow simulation

  8. Membrane Characterization by Microscopic and Scattering Methods: Multiscale Structure

    PubMed Central

    Tamime, Rahma; Wyart, Yvan; Siozade, Laure; Baudin, Isabelle; Deumie, Carole; Glucina, Karl; Moulin, Philippe

    2011-01-01

    Several microscopic and scattering techniques at different observation scales (from atomic to macroscopic) were used to characterize both surface and bulk properties of four new flat-sheet polyethersulfone (PES) membranes (10, 30, 100 and 300 kDa) and new 100 kDa hollow fibers (PVDF). Scanning Electron Microscopy (SEM) with “in lens” detection was used to obtain information on the pore sizes of the skin layers at the atomic scale. White Light Interferometry (WLI) and Atomic Force Microscopy (AFM) using different scales (for WLI: windows: 900 × 900 μm2 and 360 × 360 μm2; number of points: 1024; for AFM: windows: 50 × 50 μm2 and 5 × 5 μm2; number of points: 512) showed that the membrane roughness increases markedly with the observation scale and that there is a continuity between the different scan sizes for the determination of the RMS roughness. High angular resolution ellipsometric measurements were used to obtain the signature of each cut-off and the origin of the scattering was identified as coming from the membrane bulk. PMID:24957612

  9. Membrane characterization by microscopic and scattering methods: multiscale structure.

    PubMed

    Tamime, Rahma; Wyart, Yvan; Siozade, Laure; Baudin, Isabelle; Deumie, Carole; Glucina, Karl; Moulin, Philippe

    2011-04-13

    Several microscopic and scattering techniques at different observation scales (from atomic to macroscopic) were used to characterize both surface and bulk properties of four new flat-sheet polyethersulfone (PES) membranes (10, 30, 100 and 300 kDa) and new 100 kDa hollow fibers (PVDF). Scanning Electron Microscopy (SEM) with "in lens" detection was used to obtain information on the pore sizes of the skin layers at the atomic scale. White Light Interferometry (WLI) and Atomic Force Microscopy (AFM) using different scales (for WLI: windows: 900 × 900 µm2 and 360 × 360 µm2; number of points: 1024; for AFM: windows: 50 × 50 µm2 and 5 × 5 µm2; number of points: 512) showed that the membrane roughness increases markedly with the observation scale and that there is a continuity between the different scan sizes for the determination of the RMS roughness. High angular resolution ellipsometric measurements were used to obtain the signature of each cut-off and the origin of the scattering was identified as coming from the membrane bulk.

  10. Effects of processing parameters on the synthesis of (K0.5Na0.5)NbO3 nanopowders by reactive high-energy ball milling method.

    PubMed

    Nguyen, Duc Van

    2014-01-01

    The effects of ball milling parameters, namely, the ball-to-powder mass ratio and milling speed, on the synthesis of (K0.5Na0.5)NbO3 nanopowders by high-energy ball milling method from a stoichiometric mixture containing Na2CO3, K2CO3, and Nb2O5 were investigated in this paper. The results indicated that the single crystalline phase of (K0.5Na0.5)NbO3 was received in as-milled samples synthesized using optimized ball-to-powder mass ratio of 35 : 1 and at a milling speed of 600 rpm for 5 h. In the optimized as-milled samples, no remaining alkali carbonates that can provide the volatilizable potassium-containing species were found and (K0.5Na0.5)NbO3 nanopowders were readily obtained via the formation of an intermediate carbonato complex. This complex was mostly transformed into (K0.5Na0.5)NbO3 at temperature as low as 350°C and its existence was no longer detected at spectroscopic level when calcination temperature crossed over 700°C.

  11. Effects of Processing Parameters on the Synthesis of (K0.5Na0.5)NbO3 Nanopowders by Reactive High-Energy Ball Milling Method

    PubMed Central

    Duc Van, Nguyen

    2014-01-01

    The effects of ball milling parameters, namely, the ball-to-powder mass ratio and milling speed, on the synthesis of (K0.5Na0.5)NbO3 nanopowders by high-energy ball milling method from a stoichiometric mixture containing Na2CO3, K2CO3, and Nb2O5 were investigated in this paper. The results indicated that the single crystalline phase of (K0.5Na0.5)NbO3 was received in as-milled samples synthesized using optimized ball-to-powder mass ratio of 35 : 1 and at a milling speed of 600 rpm for 5 h. In the optimized as-milled samples, no remaining alkali carbonates that can provide the volatilizable potassium-containing species were found and (K0.5Na0.5)NbO3 nanopowders were readily obtained via the formation of an intermediate carbonato complex. This complex was mostly transformed into (K0.5Na0.5)NbO3 at temperature as low as 350°C and its existence was no longer detected at spectroscopic level when calcination temperature crossed over 700°C. PMID:24592146

  12. Multiscale Characterization of Nickel Titanium Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Gall, Keith

    Shape memory alloys were characterized by a variety of methods to investigate the relationship between microstructural phase transformation, macroscale deformation due to mechanical loading, material geometry, and initial material state. The major portion of the work is application of digital image correlation at several length scales to SMAs under mechanical loading. In addition, the connection between electrical resistance, stress, and strain was studied in NiTi wires. Finally, a new processing method was investigated to develop porous NiTi samples, which can be examined under DIC in future work. The phase transformation temperatures of a Nickel-Titanium based shape memory alloy (SMA) were initially evaluated under stress-free conditions by the differential scanning calorimetric (DSC) technique. Results show that the phase transformation temperature is significantly higher for transition from de-twinned martensite to austenite than from twinned martensite or R phase to austenite. To further examine transformation temperatures as a function of initial state a tensile test apparatus with in-situ electrical resistance (ER) measurements was used to evaluate the transformation properties of SMAs at a variety of stress levels and initial compositions. The results show that stress has a significant influence on the transformation of detwinned martensite, but a small influence on R phase and twinned martensite transformations. Electrical resistance changes linearly with strain during the transformations from both kinds of martensite to austenite. The linearity between ER and strain during the transformation from de-twinned martensite to austenite is not affected by the stress, facilitating application to control algorithms. A revised phase diagram is drawn to express these results. To better understand the nature of the local and global strain fields that accompany phase transformation in shape memory alloys (SMAs), here we use high resolution imaging together with image

  13. Towards Characterization, Modeling, and Uncertainty Quantification in Multi-scale Mechanics of Oragnic-rich Shales

    NASA Astrophysics Data System (ADS)

    Abedi, S.; Mashhadian, M.; Noshadravan, A.

    2015-12-01

    Increasing the efficiency and sustainability in operation of hydrocarbon recovery from organic-rich shales requires a fundamental understanding of chemomechanical properties of organic-rich shales. This understanding is manifested in form of physics-bases predictive models capable of capturing highly heterogeneous and multi-scale structure of organic-rich shale materials. In this work we present a framework of experimental characterization, micromechanical modeling, and uncertainty quantification that spans from nanoscale to macroscale. Application of experiments such as coupled grid nano-indentation and energy dispersive x-ray spectroscopy and micromechanical modeling attributing the role of organic maturity to the texture of the material, allow us to identify unique clay mechanical properties among different samples that are independent of maturity of shale formations and total organic content. The results can then be used to inform the physically-based multiscale model for organic rich shales consisting of three levels that spans from the scale of elementary building blocks (e.g. clay minerals in clay-dominated formations) of organic rich shales to the scale of the macroscopic inorganic/organic hard/soft inclusion composite. Although this approach is powerful in capturing the effective properties of organic-rich shale in an average sense, it does not account for the uncertainty in compositional and mechanical model parameters. Thus, we take this model one step forward by systematically incorporating the main sources of uncertainty in modeling multiscale behavior of organic-rich shales. In particular we account for the uncertainty in main model parameters at different scales such as porosity, elastic properties and mineralogy mass percent. To that end, we use Maximum Entropy Principle and random matrix theory to construct probabilistic descriptions of model inputs based on available information. The Monte Carlo simulation is then carried out to propagate the

  14. Multi-scale mechanical characterization of scaffolds for heart valve tissue engineering.

    PubMed

    Argento, G; Simonet, M; Oomens, C W J; Baaijens, F P T

    2012-11-15

    Electrospinning is a promising technology to produce scaffolds for cardiovascular tissue engineering. Each electrospun scaffold is characterized by a complex micro-scale structure that is responsible for its macroscopic mechanical behavior. In this study, we focus on the development and the validation of a computational micro-scale model that takes into account the structural features of the electrospun material, and is suitable for studying the multi-scale scaffold mechanics. We show that the computational tool developed is able to describe and predict the mechanical behavior of electrospun scaffolds characterized by different microstructures. Moreover, we explore the global mechanical properties of valve-shaped scaffolds with different microstructural features, and compare the deformation of these scaffolds when submitted to diastolic pressures with a tissue engineered and a native valve. It is shown that a pronounced degree of anisotropy is necessary to reproduce the deformation patterns observed in the native heart valve.

  15. Advanced in situ multi-scale characterization of hardness of carbon-fiber-reinforced plastic

    NASA Astrophysics Data System (ADS)

    Wang, Hongxin; Masuda, Hideki; Kitazawa, Hideaki; Onishi, Keiko; Kawai, Masamichi; Fujita, Daisuke

    2016-10-01

    In situ multi-scale characterization of hardness of carbon-fiber-reinforced plastic (CFRP) is demonstrated by a traditional hardness tester, instrumented indentation tester and atomic-force-microscope (AFM)-based nanoindentation. In particular, due to the large residual indentation and nonuniform distribution of the microscale carbon fibers, the Vickers hardness could not be calculated by the traditional hardness tester. In addition, the clear residual microindentation could not be formed on the CFRP by instrumented indentation tester because of the large tip half angle of the Berkovich indenter. Therefore, an efficient technique for characterizing the true nanoscale hardness of CFRP was proposed and evaluated. The local hardness of the carbon fibers or plastic matrix on the nanoscale did not vary with nanoindentation location. The Vickers hardnesses of the carbon fiber and plastic matrix determined by AFM-based nanoindentation were 340 ± 30 and 40 ± 2 kgf/mm2, respectively.

  16. Direct three-dimensional characterization and multiscale visualization of wheat straw deconstruction by white rot fungus.

    PubMed

    Liu, Li; Qian, Chen; Jiang, Lei; Yu, Han-Qing

    2014-08-19

    Microbial degradation of lignocellulose for resource and energy recovery has received increasing interest. Despite its obvious importance, the mechanism behind the biodegradation, especially the changes of morphological structure and surface characteristics, has not been fully understood. Here, we used three-dimensional (3D) characterization and multiscale visualization methods, in combination with chemical compositional analyses, to elucidate the degradation process of wheat straw by a white rot fungus, Phanerochaete chrysosporium. It was found that the fungal attack initiated from stomata. Lignin of the straw decayed in both size and quantity, and heterogeneity in the biodegradation was observed. After treatment with the fungus, the straw surface turned from hydrophobic to hydrophilic, and the adhesion of the straw surface increased in the fungal degradation. The morphology of the straw outer layer became heterogeneous and loose with the formation of many holes with various sizes. The wasp-tunnels-like structure of the collenchyma and parenchyma of the straw as well as the fungal hyphae interspersed inside the straw structure were clearly visualized in the 3D reconstruction structure. This work offers a new insight into the mechanism of lignocellulose biodegradation and demonstrates that multiscale visualization methods could be a useful tool to explore such complex processes.

  17. Multiscale characterization method for line edge roughness based on redundant second generation wavelet transform

    SciTech Connect

    Wang Fei; Zhao Xuezeng; Li Ning

    2010-10-15

    We introduce a multiscale characterization method for line edge roughness (LER) based on redundant second generation wavelet transform. This method involves decomposing LER characteristics into independent bands with different spatial frequency components at different scales, and analyzing the reconstructed signals to work out the roughness exponent, the spatial frequency distribution characteristics, as well as the rms value. The effect of noise can be predicted using detailed signals in the minimum space of scale. This method was applied to numerical profiles for validation. Results show that according to the line edge profiles with similar amplitudes, the roughness exponent R can effectively reflect the degree of irregularity of LER and intuitively provide information on LER spatial frequency distribution.

  18. Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Schneider, Simon; Eppler, Florian; Weber, Marco; Olowojoba, Ganiu; Weiss, Patrick; Hübner, Christof; Mikonsaari, Irma; Freude, Wolfgang; Koos, Christian

    2016-08-01

    Nanocomposite materials represent a success story of nanotechnology. However, development of nanomaterial fabrication still suffers from the lack of adequate analysis tools. In particular, achieving and maintaining well-dispersed particle distributions is a key challenge, both in material development and industrial production. Conventional methods like optical or electron microscopy need laborious, costly sample preparation and do not permit fast extraction of nanoscale structural information from statistically relevant sample volumes. Here we show that optical coherence tomography (OCT) represents a versatile tool for nanomaterial characterization, both in a laboratory and in a production environment. The technique does not require sample preparation and is applicable to a wide range of solid and liquid material systems. Large particle agglomerates can be directly found by OCT imaging, whereas dispersed nanoparticles are detected by model-based analysis of depth-dependent backscattering. Using a model system of polystyrene nanoparticles, we demonstrate nanoparticle sizing with high accuracy. We further prove the viability of the approach by characterizing highly relevant material systems based on nanoclays or carbon nanotubes. The technique is perfectly suited for in-line metrology in a production environment, which is demonstrated using a state-of-the-art compounding extruder. These experiments represent the first demonstration of multiscale nanomaterial characterization using OCT.

  19. Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography

    PubMed Central

    Schneider, Simon; Eppler, Florian; Weber, Marco; Olowojoba, Ganiu; Weiss, Patrick; Hübner, Christof; Mikonsaari, Irma; Freude, Wolfgang; Koos, Christian

    2016-01-01

    Nanocomposite materials represent a success story of nanotechnology. However, development of nanomaterial fabrication still suffers from the lack of adequate analysis tools. In particular, achieving and maintaining well-dispersed particle distributions is a key challenge, both in material development and industrial production. Conventional methods like optical or electron microscopy need laborious, costly sample preparation and do not permit fast extraction of nanoscale structural information from statistically relevant sample volumes. Here we show that optical coherence tomography (OCT) represents a versatile tool for nanomaterial characterization, both in a laboratory and in a production environment. The technique does not require sample preparation and is applicable to a wide range of solid and liquid material systems. Large particle agglomerates can be directly found by OCT imaging, whereas dispersed nanoparticles are detected by model-based analysis of depth-dependent backscattering. Using a model system of polystyrene nanoparticles, we demonstrate nanoparticle sizing with high accuracy. We further prove the viability of the approach by characterizing highly relevant material systems based on nanoclays or carbon nanotubes. The technique is perfectly suited for in-line metrology in a production environment, which is demonstrated using a state-of-the-art compounding extruder. These experiments represent the first demonstration of multiscale nanomaterial characterization using OCT. PMID:27557544

  20. Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components.

    PubMed

    Cavalli, M C; Griffa, M; Bressi, S; Partl, M N; Tebaldi, G; Poulikakos, L D

    2016-10-01

    When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured. It was shown that at higher mixing temperatures this film thickness was reduced. The reduction in film thickness can be attributed to the loss of volatiles as well as the mixing of RAP binder with virgin binder at higher temperatures. X-ray computer tomography was used to characterize statistically the distribution of the RAP and virgin aggregates geometric features: volume, width and shape anisotropy. In addition using X-ray computer tomography, the packing and spatial distribution of the RAP and virgin aggregates was characterized using the nearest neighbour metric. It was shown that mixing temperature may have a positive effect on the spatial distribution of the aggregates but did not affect the packing. The study shows a tendency for the RAP aggregates to be more likely distributed in clusters at lower mixing temperatures. At higher temperatures, they were more homogeneously distributed. This indicates a higher degree of blending both at microscale (binder film) and macroscale (spatial distribution) between RAP and virgin aggregates as a result of increasing mixing temperatures and the ability to quantify this using various imaging techniques.

  1. A Multiscale Vibrational Spectroscopic Approach for Identification and Biochemical Characterization of Pollen

    PubMed Central

    Bağcıoğlu, Murat; Zimmermann, Boris; Kohler, Achim

    2015-01-01

    Background Analysis of pollen grains reveals valuable information on biology, ecology, forensics, climate change, insect migration, food sources and aeroallergens. Vibrational (infrared and Raman) spectroscopies offer chemical characterization of pollen via identifiable spectral features without any sample pretreatment. We have compared the level of chemical information that can be obtained by different multiscale vibrational spectroscopic techniques. Methodology Pollen from 15 different species of Pinales (conifers) were measured by seven infrared and Raman methodologies. In order to obtain infrared spectra, both reflectance and transmission measurements were performed on ground and intact pollen grains (bulk measurements), in addition, infrared spectra were obtained by microspectroscopy of multigrain and single pollen grain measurements. For Raman microspectroscopy measurements, spectra were obtained from the same pollen grains by focusing two different substructures of pollen grain. The spectral data from the seven methodologies were integrated into one data model by the Consensus Principal Component Analysis, in order to obtain the relations between the molecular signatures traced by different techniques. Results The vibrational spectroscopy enabled biochemical characterization of pollen and detection of phylogenetic variation. The spectral differences were clearly connected to specific chemical constituents, such as lipids, carbohydrates, carotenoids and sporopollenins. The extensive differences between pollen of Cedrus and the rest of Pinaceae family were unambiguously connected with molecular composition of sporopollenins in pollen grain wall, while pollen of Picea has apparently higher concentration of carotenoids than the rest of the family. It is shown that vibrational methodologies have great potential for systematic collection of data on ecosystems and that the obtained phylogenetic variation can be well explained by the biochemical composition of

  2. Preparation of Mo-Re-C samples containing Mo7Re13C with the β-Mn-type structure by solid state reaction of planetary-ball-milled powder mixtures of Mo, Re and C, and their crystal structures and superconductivity

    NASA Astrophysics Data System (ADS)

    Oh-ishi, Katsuyoshi; Nagumo, Kenta; Tateishi, Kazuya; Takafumi, Ohnishi; Yoshikane, Kenta; Sugiyama, Machiko; Oka, Kengo; Kobayashi, Ryota

    2017-01-01

    Mo-Re-C compounds containing Mo7Re13C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo7Re13C with the β-Mn structure using the solid state method. Almost single-phase Mo7Re13C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with a pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K.

  3. Electrical and dielectric properties of Na1/2La1/2Cu3Ti4O12 ceramics prepared by high energy ball-milling and conventional sintering

    NASA Astrophysics Data System (ADS)

    Mahfoz Kotb, H.; Ahmad, Mohamad M.

    2016-12-01

    We report on the measurements of the electrical and dielectric properties of Na1/2La1/2Cu3Ti4O12 (NLCTO) ceramics prepared by high energy ball-milling and conventional sintering without any calcination steps. The x-ray powder diffraction analysis shows that pure perovskite-like CCTO phase is obtained after sintering at 1025 °C-1075 °C. Higher sintering temperatures result in multi-phase ceramics due to thermal decomposition. Scanning electron microscope observations reveal that the grain size is in a range of ˜3 μm-5μm for these ceramics. Impedance spectroscopy measurements performed in a wide frequency range (1 Hz-10 MHz) and at various temperatures (120 K-470 K) are used to study the dielectric and electrical properties of NLCTO ceramics. A good compromise between high ɛ‧ (5.7 × 103 and 4.1 × 103 at 1.1 kHz and 96 kHz, respectively) and low tan δ (0.161 and 0.126 at 1.1 kHz and 96 kHz, respectively) is obtained for the ceramic sintered at 1050 °C. The observed high dielectric constant behavior is explained in terms of the internal barrier layer capacitance effect.

  4. Coexistence of short- and long-range ferromagnetic order in nanocrystalline Fe2Mn1-xCuxAl (x=0.0, 0.1 and 0.3) synthesized by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Thanh, Tran Dang; Nanto, Dwi; Tuyen, Ngo Thi Uyen; Nan, Wen-Zhe; Yu, YiKyung; Tartakovsky, Daniel M.; Yu, S. C.

    2015-11-01

    In this work, we prepared nanocrystalline Fe2Mn1-xCuxAl (x=0.0, 0.1 and 0.3) powders by the high energy ball milling technique, and then studied their critical properties. Our analysis reveals that the increase of Cu-doping concentration (up to x=0.3) in these powders leads to a gradual increase of the ferromagnetic-paramagnetic transition temperature from 406 to 452 K. The Banerjee criterion suggests that all the samples considered undergo a second-order phase transition. A modified Arrott plot and scaling analysis indicate that the critical exponents (β=0.419 and 0.442, γ=1.082 and 1.116 for x=0.0 and 0.1, respectively) are located in between those expected for the 3D-Heisenberg and the mean-field models; the values of β=0.495 and γ=1.046 for x=0.3 sample are very close to those of the mean-field model. These features reveal the coexistence of the short- and long-range ferromagnetic order in the nanocrystalline Fe2Mn1-xCuxAl powders. Particularly, as the concentration of Cu increases, values of the critical exponent shift towards those of the mean-field model. Such results prove the Cu doping favors establishing a long-range ferromagnetic order.

  5. An x-ray photoemission electron microscopy study of the formation of Ti-Al phases in 4 mol% TiCl3 catalyzed NaAlH4 during high energy ball milling

    NASA Astrophysics Data System (ADS)

    Dobbins, Tabbetha; Abrecht, Mike; Uprety, Youaraj; Moore, Kristan

    2009-05-01

    This study reports reaction pathways to form TiAlx metallic complexes during the high energy ball milling of 4 mol% TiCl3 with NaAlH4 powders determined using local structure analysis of Tix+ and Alx+ species. Using x-ray photoemission electron microscopy (XPEEM) and x-ray diffraction (XRD), the oxidation state of Alx+ and Tix+ and the crystalline compounds existing in equilibrium with NaAlH4 were tracked for samples milled for times of 0 (i.e. mixing), 5, and 25 min. XPEEM analysis of the Al K edge after 5 min of milling reveals that Al remains in the 3+ oxidation state (i.e. in NaAlH4) around Ti0-rich regions of the sample. After 25 min of high energy milling, Ti0 has reacted with Al3+ (in nearby NaAlH4) to form TiAlx complexes. This study reports the pathway for TiAlx complex formation during milling of 4 mol% TiCl3 catalyzed NaAlH4 to be as follows: (1) Ti3+ reduces to Ti0 (with Al3+ near Ti0 regions) and (2) Ti0 reacts with Al3+ in NaAlH4 to form TiAlx complexes.

  6. Multi-scale characterization of surface blistering morphology of helium irradiated W thin films

    NASA Astrophysics Data System (ADS)

    Yang, J. J.; Zhu, H. L.; Wan, Q.; Peng, M. J.; Ran, G.; Tang, J.; Yang, Y. Y.; Liao, J. L.; Liu, N.

    2015-09-01

    Surface blistering morphologies of W thin films irradiated by 30 keV He ion beam were studied quantitatively. It was found that the blistering morphology strongly depends on He fluence. For lower He fluence, the accumulation and growth of He bubbles induce the intrinsic surface blisters with mono-modal size distribution feature. When the He fluence is higher, the film surface morphology exhibits a multi-scale property, including two kinds of surface blisters with different characteristic sizes. In addition to the intrinsic He blisters, film/substrate interface delamination also induces large-sized surface blisters. A strategy based on wavelet transform approach was proposed to distinguish and extract the multi-scale surface blistering morphologies. Then the density, the lateral size and the height of these different blisters were estimated quantitatively, and the effect of He fluence on these geometrical parameters was investigated. Our method could provide a potential tool to describe the irradiation induced surface damage morphology with a multi-scale property.

  7. Synthesis and characterization of xTiO{sub 2}{center_dot}(1 - x){alpha}-Fe{sub 2}O{sub 3} magnetic ceramic nanostructure system

    SciTech Connect

    Sorescu, Monica; Xu, Tianhong; Diamandescu, Lucian

    2010-11-15

    Rutile-doped hematite xTiO{sub 2}{center_dot}(1 - x){alpha}-Fe{sub 2}O{sub 3} (x = 0.0-1.0) nanostructures were synthesized using mechanochemical activation by ball milling. Their complex structural, magnetic and thermal properties were characterized by X-ray diffraction, Moessbauer spectroscopy and simultaneous DSC-TGA. XRD patterns yielded the dependence of lattice parameters and grain size as a function of ball milling time. For the molar concentrations x = 0.1 and 0.3, the Moessbauer spectra were fitted with one, two, three or four sextets, corresponding to the degree of Ti ion substitution of Fe ions in hematite lattice. After 12 h of ball milling, the completion of Ti ion substitution of Fe ions in hematite lattice occurs for x = 0.1 and 0.3. For x = 0.5 and 0.7, Moessbauer spectra fitting required sextets and a quadrupole-split doublet, representing Fe ions substituting Ti ions in the rutile lattice. The completion of Fe ion substitution of Ti ions in rutile lattice was not observed, as indicated by XRD patterns and Moessbauer spectra for these two molar concentrations. Simultaneous DSC-TGA measurements revealed that the mechanochemical activation by ball milling has a strong effect on the thermal behavior of this nanostructure system. The enthalpy dropped dramatically after 2 h of milling time, indicating the strong solid-solid interactions between TiO{sub 2} and {alpha}-Fe{sub 2}O{sub 3} after ball milling. The change in weight loss of hematite was caused by the decrease of grain size and ion substitutions between Fe and Ti after mechanochemical activation.

  8. Evaluation the Impact of Annealing on Phase Evolution, Microstructure, and Magnetic Properties of Nanocrystalline Ball-Milled LiSm Ferrite

    NASA Astrophysics Data System (ADS)

    Mahmoudi, M.; Kavanlouei, M.; Maleki-Ghaleh, H.

    2014-09-01

    The impact of milling and subsequent annealing on the phase evolution, microstructure and magnetic properties of Li0.5Sm x Fe2.5- x O4 ( x = 0, 0.05, 0.1, 0.2) ferrite prepared by mechanical alloying was investigated. X-ray diffraction (XRD), scanning electron microscope, Fourier transform infrared spectroscopy, laser particle size analysis, and vibrating sample magnetometry were employed to characterize the prepared LiSm compound. The structure was evaluated by XRD, confirmed the formation of its single-phase spinel structure. The magnetic properties of the milled nanostructured powder were extensively affected by the annealing temperature. The substitution of samarium significantly influences the magnetic characteristics, proved by magnetization measurements at room temperature.

  9. Multiscale multimodal fusion of histological and MRI volumes for characterization of lung inflammation

    NASA Astrophysics Data System (ADS)

    Rusu, Mirabela; Wang, Haibo; Golden, Thea; Gow, Andrew; Madabhushi, Anant

    2013-03-01

    Mouse lung models facilitate the investigation of conditions such as chronic inflammation which are associated with common lung diseases. The multi-scale manifestation of lung inflammation prompted us to use multi-scale imaging - both in vivo, ex vivo MRI along with ex vivo histology, for its study in a new quantitative way. Some imaging modalities, such as MRI, are non-invasive and capture macroscopic features of the pathology, while others, e.g. ex vivo histology, depict detailed structures. Registering such multi-modal data to the same spatial coordinates will allow the construction of a comprehensive 3D model to enable the multi-scale study of diseases. Moreover, it may facilitate the identification and definition of quantitative of in vivo imaging signatures for diseases and pathologic processes. We introduce a quantitative, image analytic framework to integrate in vivo MR images of the entire mouse with ex vivo histology of the lung alone, using lung ex vivo MRI as conduit to facilitate their co-registration. In our framework, we first align the MR images by registering the in vivo and ex vivo MRI of the lung using an interactive rigid registration approach. Then we reconstruct the 3D volume of the ex vivo histological specimen by efficient group wise registration of the 2D slices. The resulting 3D histologic volume is subsequently registered to the MRI volumes by interactive rigid registration, directly to the ex vivo MRI, and implicitly to in vivo MRI. Qualitative evaluation of the registration framework was performed by comparing airway tree structures in ex vivo MRI and ex vivo histology where airways are visible and may be annotated. We present a use case for evaluation of our co-registration framework in the context of studying chronic inammation in a diseased mouse.

  10. Using a multiscale image processing method to characterize the periodic growth patterns on scallop shells.

    PubMed

    Xing, Qiang; Wei, Tengda; Chen, Zhihui; Wang, Yangfan; Lu, Yuan; Wang, Shi; Zhang, Lingling; Bao, Zhenmin

    2017-03-01

    The fine periodic growth patterns on shell surfaces have been widely used for studies in the ecology and evolution of scallops. Modern X-ray CT scanners and digital cameras can provide high-resolution image data that contain abundant information such as the shell formation rate, ontogenetic age, and life span of shellfish organisms. We introduced a novel multiscale image processing method based on matched filters with Gaussian kernels and partial differential equation (PDE) multiscale hierarchical decomposition to segment the small tubular and periodic structures in scallop shell images. The periodic patterns of structures (consisting of bifurcation points, crossover points of the rings and ribs, and the connected lines) could be found by our Space-based Depth-First Search (SDFS) algorithm. We created a MATLAB package to implement our method of periodic pattern extraction and pattern matching on the CT and digital scallop images available in this study. The results confirmed the hypothesis that the shell cyclic structure patterns encompass genetically specific information that can be used as an effective invariable biomarker for biological individual recognition. The package is available with a quick-start guide and includes three examples: http://mgb.ouc.edu.cn/novegene/html/code.php.

  11. Metal powder reactions in ball milling

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1976-01-01

    On milling chromium powder in three metal chlorides and either chromium or nickel powders in ten organic liquids representative of nine different functional groups, the powders always reacted with the liquids and became contaminated with elements from them. The milled powders had specific surface areas ranging from 0.14 to 37 sq m/g, and the total contamination with elements from the milling liquid ranged from 0.01 to 56 wt%. In most milling runs, compounds resulting from substitution, addition, or elimination reactions formed in or from the milling liquid, and in most runs with organic liquids H2, CH4, and CO2 were generated.

  12. Microstructural Characterization of Aluminum-Carbon Nanotube Nanocomposites Produced Using Different Dispersion Methods.

    PubMed

    Simões, Sónia; Viana, Filomena; Reis, Marcos A L; Vieira, Manuel F

    2016-06-01

    This research focuses on characterization of the impact of dispersion methods on aluminum-carbon nanotubes (Al-CNTs) nanocomposite structure. Nanocomposites were produced by a conventional powder metallurgy process after the dispersion of the CNTs on the Al powders, using two approaches: (1) the dispersion of CNTs and mixture with Al powders were performed in a single step by ultrasonication; and (2) the CNTs were previously untangled by ultrasonication and then mixed with Al powders by ball milling. Microstructural characterization of Al-CNT nanocomposites was performed by optical microscopy, scanning and transmission electron microscopy, electron backscatter diffraction, and high-resolution transmission electron microscopy (HRTEM). Microstructural characterization revealed that the use of ball milling for mixing CNTs with Al powders promoted the formation of CNT clusters of reduced size, more uniformly dispersed in the matrix, and a nanocomposite of smaller grain size. However, the results of HRTEM and Raman spectroscopy show that ball milling causes higher damage to the CNT structure. The strengthening effect of the CNT is attested by the increase in hardness and tensile strength of the nanocomposites.

  13. Multi-scale mechanical characterization of highly swollen photo-activated collagen hydrogels

    PubMed Central

    Tronci, Giuseppe; Grant, Colin A.; Thomson, Neil H.; Russell, Stephen J.; Wood, David J.

    2015-01-01

    Biological hydrogels have been increasingly sought after as wound dressings or scaffolds for regenerative medicine, owing to their inherent biofunctionality in biological environments. Especially in moist wound healing, the ideal material should absorb large amounts of wound exudate while remaining mechanically competent in situ. Despite their large hydration, however, current biological hydrogels still leave much to be desired in terms of mechanical properties in physiological conditions. To address this challenge, a multi-scale approach is presented for the synthetic design of cyto-compatible collagen hydrogels with tunable mechanical properties (from the nano- up to the macro-scale), uniquely high swelling ratios and retained (more than 70%) triple helical features. Type I collagen was covalently functionalized with three different monomers, i.e. 4-vinylbenzyl chloride, glycidyl methacrylate and methacrylic anhydride, respectively. Backbone rigidity, hydrogen-bonding capability and degree of functionalization (F: 16 ± 12–91 ± 7 mol%) of introduced moieties governed the structure–property relationships in resulting collagen networks, so that the swelling ratio (SR: 707 ± 51–1996 ± 182 wt%), bulk compressive modulus (Ec: 30 ± 7–168 ± 40 kPa) and atomic force microscopy elastic modulus (EAFM: 16 ± 2–387 ± 66 kPa) were readily adjusted. Because of their remarkably high swelling and mechanical properties, these tunable collagen hydrogels may be further exploited for the design of advanced dressings for chronic wound care. PMID:25411409

  14. Dark-field X-ray microscopy for multiscale structural characterization

    PubMed Central

    Simons, H.; King, A.; Ludwig, W.; Detlefs, C.; Pantleon, W.; Schmidt, S.; Snigireva, I.; Snigirev, A.; Poulsen, H. F.

    2015-01-01

    Many physical and mechanical properties of crystalline materials depend strongly on their internal structure, which is typically organized into grains and domains on several length scales. Here we present dark-field X-ray microscopy; a non-destructive microscopy technique for the three-dimensional mapping of orientations and stresses on lengths scales from 100 nm to 1 mm within embedded sampling volumes. The technique, which allows ‘zooming’ in and out in both direct and angular space, is demonstrated by an annealing study of plastically deformed aluminium. Facilitating the direct study of the interactions between crystalline elements is a key step towards the formulation and validation of multiscale models that account for the entire heterogeneity of a material. Furthermore, dark-field X-ray microscopy is well suited to applied topics, where the structural evolution of internal nanoscale elements (for example, positioned at interfaces) is crucial to the performance and lifetime of macro-scale devices and components thereof. PMID:25586429

  15. Multi-scale mechanical characterization of highly swollen photo-activated collagen hydrogels.

    PubMed

    Tronci, Giuseppe; Grant, Colin A; Thomson, Neil H; Russell, Stephen J; Wood, David J

    2015-01-06

    Biological hydrogels have been increasingly sought after as wound dressings or scaffolds for regenerative medicine, owing to their inherent biofunctionality in biological environments. Especially in moist wound healing, the ideal material should absorb large amounts of wound exudate while remaining mechanically competent in situ. Despite their large hydration, however, current biological hydrogels still leave much to be desired in terms of mechanical properties in physiological conditions. To address this challenge, a multi-scale approach is presented for the synthetic design of cyto-compatible collagen hydrogels with tunable mechanical properties (from the nano- up to the macro-scale), uniquely high swelling ratios and retained (more than 70%) triple helical features. Type I collagen was covalently functionalized with three different monomers, i.e. 4-vinylbenzyl chloride, glycidyl methacrylate and methacrylic anhydride, respectively. Backbone rigidity, hydrogen-bonding capability and degree of functionalization (F: 16 ± 12-91 ± 7 mol%) of introduced moieties governed the structure-property relationships in resulting collagen networks, so that the swelling ratio (SR: 707 ± 51-1996 ± 182 wt%), bulk compressive modulus (Ec: 30 ± 7-168 ± 40 kPa) and atomic force microscopy elastic modulus (EAFM: 16 ± 2-387 ± 66 kPa) were readily adjusted. Because of their remarkably high swelling and mechanical properties, these tunable collagen hydrogels may be further exploited for the design of advanced dressings for chronic wound care.

  16. Development and Characterization of Embedded Sensory Particles Using Multi-Scale 3D Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.

    2014-01-01

    A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.

  17. Ground motions characterized by a multi-scale heterogeneous earthquake model

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Ide, Satoshi

    2014-12-01

    We have carried out numerical simulations of seismic ground motion radiating from a mega-earthquake whose rupture process is governed by a multi-scale heterogeneous distribution of fracture energy. The observed complexity of the Mw 9.0 2011 Tohoku-Oki earthquake can be explained by such heterogeneities with fractal patches (size and number), even without introducing any heterogeneity in the stress state. In our model, scale dependency in fracture energy (i.e., the slip-weakening distance D c) on patch size is essential. Our results indicate that wave radiation is generally governed by the largest patch at each moment and that the contribution from small patches is minor. We then conducted parametric studies on the frictional parameters of peak ( τ p) and residual ( τ r) friction to produce the case where the effect of the small patches is evident during the progress of the main rupture. We found that heterogeneity in τ r has a greater influence on the ground motions than does heterogeneity in τ p. As such, local heterogeneity in the static stress drop (Δ τ) influences the rupture process more than that in the stress excess (Δ τ excess). The effect of small patches is particularly evident when these are almost geometrically isolated and not simultaneously involved in the rupture of larger patches. In other cases, the wave radiation from small patches is probably hidden by the major contributions from large patches. Small patches may play a role in strong motion generation areas with low τ r (high Δ τ), particularly during slow average rupture propagation. This effect can be identified from the differences in the spatial distributions of peak ground velocities for different frequency ranges.

  18. Microstructure and optical characterizations of mechanosynthesized nanocrystalline semiconducting ZrTiO4 compound

    NASA Astrophysics Data System (ADS)

    Dutta, Hema; Nandy, Anshuman; Pradhan, S. K.

    2016-08-01

    A ZrO2-TiO2 solid solution is obtained by high energy ball milling of equimolar mixture of monoclinic (m) ZrO2 and anatase (a) TiO2. Nanocrystalline orthorhombic ZrTiO4 compound is initiated from the nucleation of TiO2-ZrO2 solid solution with isostructural s-TiO2 (srilankite) base after 30 min of milling. After 12 h of milling, 95 mol% non-stoichiometric ZrTiO4 phase is formed. Post-annealing of 12 h ball-milled powder mixture at 1073 K for 1 h in open air results in complete formation of stoichiometric ZrTiO4 compound. Microstructures of all powder mixtures milled for different durations have been characterized by Rietveld's structure and microstructure refinement method using X-ray powder diffraction data. HRTEM images of 12 h milled and annealed samples provide direct evidence of the results obtained from the Rietveld analysis. Optical bandgaps of ball milled and annealed ZrTiO4 compounds lie within the semiconducting region (~2.0 eV) and increases with increase in milling time.

  19. High spatial resolution PEELS characterization of FeAl nanograins prepared by mechanical alloying

    SciTech Connect

    Valdre, G. |; Botton, G.A.; Brown, L.M.

    1999-05-28

    The authors investigate the nanograin ``chemical`` structure in a nanostructured material of possible industrial application (Fe-Al system) prepared by conventional mechanical alloying via ball milling in argon atmosphere. They restrict themselves to the structural and nanochemical behavior of ball-milled nanocrystalline Fe-Al powders with atomic composition Fe{sub 3}Al, corresponding to a well-known intermetallic compound of the Fe-Al system. Scanning transmission electron microscopy (STEM) equipped with a parallel detection electron energy loss spectrometer (PEELS) has provided an insight on the ``chemical`` structure of both nanograins and their surface at a spatial resolution of better than 1 nm. The energy loss near edge structure of the Al L loss reveals that the Al coordination is similar to a B2 compound and the oxidation of the powder during processing may play a significant role in the stabilization of the intermetallic phases. Conventional transmission electron microscopy (TEM) was used for the structural characterization of the material after the ball milling; powder X-ray diffraction (XRD) aided the investigation.

  20. Formation mechanism of calcified roots in terrestrial sediments: insights from a multitechnique and multiscale characterization strategy

    NASA Astrophysics Data System (ADS)

    El Khatib, Rime; Huguet, Arnaud; Bernard, Sylvain; Gocke, Martina; Wiesenberg, Guido; Derenne, Sylvie

    2015-04-01

    Root remains encrusted by secondary carbonates, e.g. carbonated rhizoliths, are common in many soils and terrestrial sediments from various environmental settings. Rhizoliths usually exhibit a cylindrical shape and may have different sizes (from a few µm up to several cm). These objects have been known for ages and intensively used as proxies for paleoenvironmental reconstruction. It is generally assumed that such encrustation is controlled or induced by complex organic-mineral interactions at the plant tissue scale, even though this has never been investigated in detail. The aim of this work was to better constrain the mechanisms of rhizolith formation, which remain unclear so far. Rhizoliths at different stages of encrustation and surrounding sediment were sampled at different depths from a loess-paleosol sequence (Nussloch, SW Germany). They were characterised using a multi-scale and multi-technique approach. The use of SEM and TEM to investigate rhizolith samples has offered a unique combination of chemical and structural information with submicrometer spatial resolution, while solid-state 13C NMR of decarbonated rhizoliths along with liquid and gas chromatography analyses of organic extracts have provided information at a molecular level. SEM and TEM reveal that the precipitation of secondary carbonates does not only occur around, but also within the plant root cells and evidence the close relationship existing between organic and inorganic phases within these complex systems. The fine-scale preservation of root cellular ultrastructure with remarkable integrity observed for samples at all stages of encrustation has likely been promoted by this intra-cellular carbonate precipitation. In parallel, gas and liquid chromatography analyses showed that microbial biomarkers were predominant in the former roots, in contrast with the surrounding sediment, dominated by plant biomarkers. This suggests that the molecular signatures of the organic matter differ between

  1. Multiscale Structure of UXO Site Characterization: Spatial Estimation and Uncertainty Quantification

    SciTech Connect

    Ostrouchov, George; Doll, William E.; Beard, Les P.; Morris, Max D.; Wolf, Dennis A

    2009-01-01

    Unexploded ordnance (UXO) site characterization must consider both how the contamination is generated and how we observe that contamination. Within the generation and observation processes, dependence structures can be exploited at multiple scales. We describe a conceptual site characterization process, the dependence structures available at several scales, and consider their statistical estimation aspects. It is evident that most of the statistical methods that are needed to address the estimation problems are known but their application-specific implementation may not be available. We demonstrate estimation at one scale and propose a representation for site contamination intensity that takes full account of uncertainty, is flexible enough to answer regulatory requirements, and is a practical tool for managing detailed spatial site characterization and remediation. The representation is based on point process spatial estimation methods that require modern computational resources for practical application. These methods have provisions for including prior and covariate information.

  2. Synthesization and characterization of FeS2 by mechanical alloying for Na/FeS2 cell.

    PubMed

    Liu, Xiaojing; Kang, Sang-Dae; Kim, Jong-Seon; Ahn, In-Shup; Ahn, Hyo-Jun

    2012-02-01

    In this study, the FeS2 fine compound powders were synthesized by mechanical alloying (MA) for 15 hrs and stearic acid was added as PCA (Process Control Agent) to prevent the excessive cold welding and agglomeration. For the purpose of ulteriorly reducing the particle size to improve the contact areas between the active materials and conducting agents, the wet ball milling process was applied by employing normal hexane (C6H14) as the milling solvent. The mean particle size of FeS2 powders about 1.14 microm were obtained after 24 hrs wet ball milling. The powders were characterized by FE-SEM, XRD, TEM and EDS. To compare the influence of particle size on the properties of charge/discharge, the same electrolyte was employed for both tests by dissolving 1M NaCF3SO3 (sodium trifluoromethanesulfonate) in a liquid of TEGDME (tetraethylene glycol dimethylether). The first discharge capacity of Na/FeS2 cell made by dry ball milled powders was 440 mAh/g with a plateau potential at approximately 1.25 V versus Na/Na+ and 260 mAh/g at the 25th cycle at room temperature. Meanwhile, the initial discharge capacity of Na/FeS2 cell made by wet ball milled powders was 614 mAh/g with the same discharge plateau potential and retained 385 mAh/g at the 25th cycle. And the discharge capacity for wet milled system decreased continuously by repeated charge/discharge cycling in the first 20 cycles and has little change after 60 cycles, which means the good cycling properties, remaining half of its initial discharge capacity of 320 mAh/g even after 100 cycles.

  3. Multi-scale Characterization and Modeling of Surface Slope Probability Distribution for ~20-km Diameter Lunar Craters

    NASA Astrophysics Data System (ADS)

    Mahanti, P.; Robinson, M. S.; Boyd, A. K.

    2013-12-01

    Craters ~20-km diameter and above significantly shaped the lunar landscape. The statistical nature of the slope distribution on their walls and floors dominate the overall slope distribution statistics for the lunar surface. Slope statistics are inherently useful for characterizing the current topography of the surface, determining accurate photometric and surface scattering properties, and in defining lunar surface trafficability [1-4]. Earlier experimental studies on the statistical nature of lunar surface slopes were restricted either by resolution limits (Apollo era photogrammetric studies) or by model error considerations (photoclinometric and radar scattering studies) where the true nature of slope probability distribution was not discernible at baselines smaller than a kilometer[2,3,5]. Accordingly, historical modeling of lunar surface slopes probability distributions for applications such as in scattering theory development or rover traversability assessment is more general in nature (use of simple statistical models such as the Gaussian distribution[1,2,5,6]). With the advent of high resolution, high precision topographic models of the Moon[7,8], slopes in lunar craters can now be obtained at baselines as low as 6-meters allowing unprecedented multi-scale (multiple baselines) modeling possibilities for slope probability distributions. Topographic analysis (Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) 2-m digital elevation models (DEM)) of ~20-km diameter Copernican lunar craters revealed generally steep slopes on interior walls (30° to 36°, locally exceeding 40°) over 15-meter baselines[9]. In this work, we extend the analysis from a probability distribution modeling point-of-view with NAC DEMs to characterize the slope statistics for the floors and walls for the same ~20-km Copernican lunar craters. The difference in slope standard deviations between the Gaussian approximation and the actual distribution (2-meter sampling) was

  4. Solid-state characterization and dissolution properties of meloxicam-moringa coagulant-PVP ternary solid dispersions.

    PubMed

    Noolkar, Suhail B; Jadhav, Namdeo R; Bhende, Santosh A; Killedar, Suresh G

    2013-06-01

    The effect of ternary solid dispersions of poor water-soluble NSAID meloxicam with moringa coagulant (obtained by salt extraction of moringa seeds) and polyvinylpyrrolidone on the in vitro dissolution properties has been investigated. Binary (meloxicam-moringa and meloxicam-polyvinylpyrrolidone (PVP)) and ternary (meloxicam-moringa-PVP) systems were prepared by physical kneading and ball milling and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffractometry. The in vitro dissolution behavior of meloxicam from the different products was evaluated by means of United States Pharmacopeia type II dissolution apparatus. The results of solid-state studies indicated the presence of strong interactions between meloxicam, moringa, and PVP which were of totally amorphous nature. All ternary combinations were significantly more effective than the corresponding binary systems in improving the dissolution rate of meloxicam. The best performance in this respect was given by the ternary combination employing meloxicam-moringa-PVP ratio of [1:(3:1)] prepared by ball milling, with about six times increase in percent dissolution rate, whereas meloxicam-moringa (1:3) and meloxicam-PVP (1:4) prepared by ball milling improved dissolution of meloxicam by almost 3- and 2.5-folds, respectively. The achieved excellent dissolution enhancement of meloxicam in the ternary systems was attributed to the combined effects of impartation of hydrophilic characteristic by PVP, as well as to the synergistic interaction between moringa and PVP.

  5. Characterization of Piezoelectric PDMS-Nanoparticle Composites

    NASA Astrophysics Data System (ADS)

    Borsa, C. J.; Mionic Ebersold, M.; Bowen, P.; Farine, P.-A.; Briand, D.

    2015-12-01

    In this work, the novel fabrication and characterization of elastomeric piezoelectric nanocomposites are explored. Fabrication methods explored herein utilize ball milled barium titanate powder dispersions, along with double walled carbon nanotubes which are dispersed in toluene though the use of an ultrasonic probe. Test devices are then constructed with electrodes made from evaporated gold on polyimide foils and protective dielectrics of pristine PDMS. Two different device construction methods are explored utilizing both direct contact bonding and plasma bonding of the active composite layers to the dielectric/electrode. Test samples are evaluated through the use of a dedicated Berlincourt type piezoelectric d33 meter.

  6. Multiscale microstructural characterization of Sn-rich alloys by three dimensional (3D) X-ray synchrotron tomography and focused ion beam (FIB) tomography

    SciTech Connect

    Yazzie, K.E.; Williams, J.J.; Phillips, N.C.; De Carlo, F.; Chawla, N.

    2012-08-15

    Sn-rich (Pb-free) alloys serve as electrical and mechanical interconnects in electronic packaging. It is critical to quantify the microstructures of Sn-rich alloys to obtain a fundamental understanding of their properties. In this work, the intermetallic precipitates in Sn-3.5Ag and Sn-0.7Cu, and globular lamellae in Sn-37Pb solder joints were visualized and quantified using 3D X-ray synchrotron tomography and focused ion beam (FIB) tomography. 3D reconstructions were analyzed to extract statistics on particle size and spatial distribution. In the Sn-Pb alloy the interconnectivity of Sn-rich and Pb-rich constituents was quantified. It will be shown that multiscale characterization using 3D X-ray and FIB tomography enabled the characterization of the complex morphology, distribution, and statistics of precipitates and contiguous phases over a range of length scales. - Highlights: Black-Right-Pointing-Pointer Multiscale characterization by X-ray synchrotron and focused ion beam tomography. Black-Right-Pointing-Pointer Characterized microstructural features in several Sn-based alloys. Black-Right-Pointing-Pointer Quantified size, fraction, and clustering of microstructural features.

  7. Spark Plasma Sintering and Multi-scale Characterization of Mesoporous Silica Disks

    NASA Astrophysics Data System (ADS)

    Maheshwari, Harsh

    Oil from shale and tight formations has helped the United States produce close to 10 million barrels of oil per day, a 40-year high. Well characterized sintered nano materials will serve as calibration materials for understanding important thermodynamic and flow properties of fluids in similar formations. To this effect, sintered mesoporous silica monoliths containing micro- and nano-porosity are characterized across multiple length scales at various processing temperatures using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers hardness tests, and Brunauer-Emmett-Teller (BET) gas adsorption measurements. Results show that the mesoporosity in raw SBA-15 silica powders can be retained during spark-plasma sintering (SPS) up to 850 ºC which is lower than those achieved by conventional sintering techniques (>1050 ºC). Details of micro- and meso-porosity were revealed by studying the internal structure through SEM and in-situ TEM tomography of the sintered specimens in comparison to the pristine silica powder. The microporosity is retained up to 950°C under the same pressure, and the degree of microporosity increases when the mesopores collapse due to individual nanoparticle shrinkage. In situ TEM characterization of mesoporosity in the absence of applied pressure reveal pore collapse above 1050°C, which is considerably above the temperatures observed under applied pressures during SPS processing. The degree of microporosity, obtained under different processing conditions, is correlated to the mechanical properties, available surface area and pore morphology. In spite of the unique synthesis process, sintered mesoporous silica satisfies the Ryshkewitch relationship -- the correlation of mechanical properties to porosity. Subsequently, in-situ TEM nanoindentation was conducted to investigate the mechanical properties of individual mesoporous silica nanoparticles. The ability to control the micro- and meso-porosity of these

  8. Multiscale characterization of chemical–mechanical interactions between polymer fibers and cementitious matrix

    SciTech Connect

    Hernández-Cruz, Daniel; Hargis, Craig W.; Bae, Sungchul; Itty, Pierre A.; Meral, Cagla; Dominowski, Jolee; Radler, Michael J.; Kilcoyne, David A.; Monteiro, Paulo J. M.

    2014-04-01

    Together with a series of mechanical tests, the interactions and potential bonding between polymeric fibers and cementitious materials were studied using scanning transmission X-ray microscopy (STXM) and microtomography (lCT). Experimental results showed that these techniques have great potential to characterize the polymer fiber-hydrated cement-paste matrix interface, as well as differentiating the chemistry of the two components of a bi-polymer (hybrid) fiber the polypropylene core and the ethylene acrylic acid copolymer sheath. Similarly, chemical interactions between the hybrid fiber and the cement hydration products were observed, indicating the chemical bonding between the sheath and the hardened cement paste matrix. Microtomography allowed visualization of the performance of the samples, and the distribution and orientation of the two types of fiber in mortar. Beam flexure tests confirmed improved tensile strength of mixes containing hybrid fibers, and expansion bar tests showed similar reductions in expansion for the polypropylene and hybrid fiber mortar bars.

  9. Fabrication and characterization of multi-scale microlens arrays with anti-reflection and diffusion properties

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Pin; Lee, Chih-Hsien; Wang, Lon A.

    2011-05-01

    In this paper, an effective method for fabricating artificial compound-eye structures is demonstrated. The fabrication of high fill factor microlens arrays (MLAs) with sub-wavelength structures (SWSs) on a polycarbonate (PC) substrate involves nanoimprint and thermo-extrusion techniques by using two different scales of nano/micromolds. In addition, the MLAs with SWSs on the PC substrate would be replicated on a polymethylmethacrylate (PMMA) millimeter concave surface by hot-embossing, forming three-level compound-eye structures. The optical properties of these samples are characterized. The transmittances of two-level PC and three-level PMMA compound structures are increased by 2.5% and 2%, and the uniformities are enhanced by 18% and 24%, respectively.

  10. Characterization of alluvial aquifers by multiscale hydrostratigraphic interpretation of DC resistivity data

    NASA Astrophysics Data System (ADS)

    Mele, Mauro; Bersezio, Riccardo; Giudici, Mauro

    2010-05-01

    The characterization of aquifer heterogeneity plays a key role for the 3-D modelling of conductivity (K) distribution in the subsurface of alluvial plains. DC methods such as Vertical Electrical Soundings (VES) and Electrical Resistivity Ground Imaging (ERGI) yield respectively the 1-D and 2-D resistivity (ρ) distribution in the ground and are often applied in hydrogeology because ρ is controlled by the prevailing process of current conduction ('shale' vs. electrolytic conduction) determined by the occurrence of fine-grained sediments and saline groundwater. Assuming that the sedimentary heterogeneity can be described with hierarchical elements at different scales (from hydrofacies to hydrostratigraphic systems) and recalling that the resolution of DC surveys decreases with depth, we propose an interpretation of the subsurface ρ distribution as a function of the hierarchical properties of aquifers (i.e., the vertical trends of facies with prevailing 'shale' or electrolytic conduction) with hydrostratigraphic constrains. A correlation between ρ and pore-fluid saturation and chemistry permits the use of resistivity as a 'proxy' of facies stacking. Our case-study is the Quaternary valley of palaeo-Sillaro extinct meandering river (Po plain, Italy). The local stratigraphy up to 80 m below ground surface consists of LGM sand-gravel point bar and channel bodies overlying: i) clay to fine sand aquitard of an Upper Pleistocene flood plain, ii) alternating gravel-sand aquifer bodies and fine sand to silty-clay drapes formed by Middle-Upper Pleistocene braiding to meandering depositional systems that developed above iii) a basal aquiclude of silty-clays. To interpret 1-D resistivity models obtained by 89 VES collected with Schlumberger array (maximum half-spacing 300 m) over an area of 30 km2, a Coarse-to-Fine (C/F) litho-textural ratio (particle size cut-off=0.30 mm) was used to classify hydrofacies. The variability of C/F was compared with the K and ρ values of

  11. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    SciTech Connect

    Pannala, S. Turner, J. A.; Allu, S.; Elwasif, W. R.; Kalnaus, S.; Simunovic, S.; Kumar, A.; Billings, J. J.; Wang, H.; Nanda, J.

    2015-08-21

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. Gaining an understanding of the role of these processes as well as development of predictive capabilities for design of better performing batteries requires synergy between theory, modeling, and simulation, and fundamental experimental work to support the models. This paper presents the overview of the work performed by the authors aligned with both experimental and computational efforts. In this paper, we describe a new, open source computational environment for battery simulations with an initial focus on lithium-ion systems but designed to support a variety of model types and formulations. This system has been used to create a three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. This paper also provides an overview of the experimental techniques to obtain crucial validation data to benchmark the simulations at various scales for performance as well as abuse. We detail some initial validation using characterization experiments such as infrared and neutron imaging and micro-Raman mapping. In addition, we identify opportunities for future integration of theory, modeling, and experiments.

  12. Multi-scale characterization of thermoresponsive dendritic elastin-like peptides.

    PubMed

    Zhou, Mingjun; Shmidov, Yulia; Matson, John B; Bitton, Ronit

    2017-02-16

    Elastin like peptides (ELPs)-polypeptides based on the protein elastin-are used widely as thermoresponsive components in biomaterials due to the presence of a sharp soluble-to-insoluble phase change at a characteristic transition temperature (Tt). While linear ELPs have been thoroughly studied, few investigations into branched ELPs have been carried out. Using lysine amino acids as branching and terminal units with 1-3 pentameric repeats between each branch, ELP dendrimers were prepared by solid-phase peptide synthesis with molecular weights as high as 14kDa. A conformation change from random coil to β-turn upon heating through the Tt, typical of ELPs, was observed by circular dichroism spectroscopy for all peptides. The high molecular weights of these peptides enabled the use of characterization techniques typically reserved for polymers. Variable-temperature small-angle X-ray scattering measurements in dilute solution revealed an increase in size and fractal dimension upon heating, even well below the Tt. These results were corroborated by cryogenic transmission electron microscopy, which confirmed the presence of aggregates below the Tt, and micro differential scanning calorimetry, which showed a broad endothermic peak below the Tt. These results collectively indicate the presence of a pre-coacervation step in the phase transition of ELP dendrimers.

  13. Multiscale Characterization of Porosity, Permeability and reactive Surface Changes During Dissolution.

    NASA Astrophysics Data System (ADS)

    Gouze, P.; Sadhukhan, S.; Dentz, M.; Luquot, L.; Dweik, J.

    2011-12-01

    Meshed models in which equations are solved assuming that constant macroscopic properties can be defined in each cells are essential tools for predicting reservoir properties changes triggered by dissolution and precipitation. However, the parameterization of the dissolution-precipitation problem and their feedback effects on the flow field are still challenging. The problem arises from the mismatch between the scales at which averaged parameters and parameters relationships (such as the porosity-permeability heuristic relation) are defined and the scale at which chemical reactions occur according to the pore scale fluid concentration and flow heterogeneities and modify the pore network geometry. Here, we investigate the links between the dissolution mechanisms that control the porosity changes and the related changes of the reactive surface area and of the permeability. We used X-ray microtomography data obtained before and after a set of dissolution experiments of pure calcite rocks using distinctly different brine- CO2 mixtures. The objective is to characterize pore scale changes and constrain the macroscale relationships between permeability, porosity and reactive surface area by introducing parameters that can be computed from the X-ray microtomography images, e.g. pore size distribution, pore network and surface tortuosity and multifractal properties. For instance it is shown that depending on the initial heterogeneity and the dissolution capacity of the inlet fluid (here CO2 concentration) permeability increase is due to distinctly combinations of tortuosity decrease and hydraulic radius increase. Such changes can be investigated using pore scale modeling for simple pore network geometries and chemical systems for which reactions can be linked to pore scale and sample scale mixing mechanisms.

  14. Multiscale characterization of pyritized plant tissues in blueschist facies metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Bernard, Sylvain; Benzerara, Karim; Beyssac, Olivier; Brown, Gordon E., Jr.

    2010-09-01

    Pyritized plant tissues with well-preserved morphology were studied in rocks from Vanoise (western Alps, France) that experienced high-pressure, low-temperature metamorphic conditions in the blueschist facies during the Alpine orogeny. Organic and inorganic phases composing these fossils were characterized down to the nanometer scale by Raman microspectroscopy, scanning transmission X-ray microscopy and transmission electron microscopy. The graphitic but disordered organic matter composing these fossils is chemically and structurally homogeneous and mostly contains aromatic functional groups. Its original chemistry remains undefined likely because it was significantly transformed by diagenetic processes and/or thermal degradation during metamorphism. Various mineral phases are closely associated with this organic matter, including sulphides such as pyrite and pyrrhotite, carbonates such as ankerite and calcite, and iron oxides. A tentative time sequence of formation of these diverse mineral phases relative to organic matter decay is proposed. The absence of traces of organic matter sulphurization, the pervasive pyritization of the vascular tissues and the presence of ankerite suggest that the depositional/diagenetic environment of these metasediments was likely rich in reactive iron. Fe-sulphides and ankerite likely precipitated early and might have promoted the preservation of the fossilized biological soft tissues by providing mechanical resistance to compaction during diagenesis and subsequent metamorphism. In contrast, iron oxides which form rims of 100-nm in thickness at the interface between organic matter and Fe-sulphides may result from metamorphic processes. This study illustrates that it may be possible in some instances to deconvolve metamorphic from diagenetic imprints and opens new avenues to better constrain processes that may allow the preservation of organic fossils during diagenesis and metamorphism.

  15. Multiscale characterization of pore size distributions using mercury porosimetry and nitrogen adsorption

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, J.; Tarquis, A. M.; Miranda, J. G. V.; Vidal Vázquez, E.

    2009-04-01

    The soil pore space is a continuum extremely variable in size, including structures smaller than nanometres and as large as macropores or cracks with millimetres or even centimetres size. Pore size distributions (PSDs) affects important soil functions, such as those related with transmission and storage of water, and root growth. Direct and indirect measurements of PSDs are becoming increasingly used to characterize soil structure. Mercury injection porosimetry and nitrogen adsorption isotherms are techniques commonly employed for assessing equivalent pore size diameters in the range from about 50 nm to 100 m and 2 to 500 nm, respectively. The multifractal formalism was used to describe Hg injection curves and N2 adsorption isotherms from two series of a Mollisol cultivated under no tillage and minimum tillage. Soil samples were taken from 0-10, 10-20 and 20-30 cm depths in two experimental fields located in the north of Buenos Aires and South of Santa Fe provinces, Argentina. All the data sets analyzed from the two studied soil attributes showed remarkably good scaling trends as assessed by singularity spectrum and generalized dimension spectrum. Both, experimental Hg injection curves and N2 adsorption isotherms could be fitted reasonably well with multifractal models. A wide variety of singularity and generalized dimension spectra was found for the variables. The capacity dimensions, D0, for both Hg injection and N2 adsorption data were not significantly different from the Euclidean dimension. However, the entropy dimension, D1, and correlation dimension, D2, obtained from mercury injection and nitrogen adsorption data showed significant differences. So, D1 values were on average 0.868 and varied from 0.787 to 0.925 for Hg intrusion curves. Entropy dimension, D1, values for N2 adsorption isotherms were on average 0.582 significantly lower than those obtained when using the former technique. Twenty-three out of twenty-four N2 isotherms had D1 values in a

  16. Multi-scale lidar-based approaches to characterizing stream networks, surface roughness and landforms of forest watersheds

    NASA Astrophysics Data System (ADS)

    Brubaker, Kristen M.

    these formations, there was a difference in both vegetation community and structure based on formation. Similar formations were calculated for a broader region of the Ridge and Valley Province and vegetation communities on formations were identified. There was association between the identified vegetation community and the delineated formation. Overall, methodologies were developed to explore properties of forested ecosystems in the Ridge and Valley Province. Using lidar elevation data, delineation of the stream network and characterization of terrain and micro-topography were all improved, and curvature was utilized to help classify the landforms in watershed. Further research should attempt to validate these results across a broader area, as well as work to develop techniques to use together to create a multi-scale, hierarchical classification system incorporating hydrologic data, surface roughness, and landscape level terrain data.

  17. Multi-scale 3D characterization of long period stacking ordered structure in Mg-Zn-Gd cast alloys.

    PubMed

    Ishida, Masahiro; Yoshioka, Satoru; Yamamoto, Tomokazu; Yasuda, Kazuhiro; Matsumura, Syo

    2014-11-01

    Magnesium alloys containing rare earth elements are attractive as lightweight structural materials due to their low density, high-specific strength and recycling efficiency. Mg-Zn-Gd system is one of promising systems because of their high creep-resistant property[1]. It is reported that the coherent precipitation formation of the 14H long period stacking ordered structure (LPSO) in Mg-Zn-Gd system at temperatures higher than 623 K[2,3]. In this study, the 14H LPSO phase formed in Mg-Zn-Gd alloys were investigated by multi-scale characterization with X-ray computer tomography (X-CT), focused ion beam (FIB) tomography and aberration-corrected STEM observation for further understanding of the LPSO formation mechanism.The Mg89.5 Zn4.5 Gd6 alloy ingots were cast using high-frequency induction heating in argon atmosphere. The specimens were aged at 753 K for 24 h in air. The aged specimen were cut and polished mechanically for microstructural analysis. The micrometer resolution X-CT observation was performed by conventional scaner (Bruker SKY- SCAN1172) at 80 kV. The FIB tomography and energy dispersive x-ray spectroscopy (EDS) were carried out by a dual beam FIB-SEM system (Hitachi MI-4000L) with silicon drift detector (SDD) (Oxford X-Max(N)). The electron acceleration voltages were used with 3 kV for SEM observation and 10 kV for EDX spectroscopy. The 3D reconstruction from image series was performed by Avizo Fire 8.0 software (FEI). TEM/STEM observations were also performed by transmission electron microscopes (JEOL JEM 2100, JEM-ARM 200F) at the acceleration voltage of 200 keV.The LPSO phase was observed clearly in SEM image of the Mg89.5Zn4.5Gd6 alloy at 753 K for 2h (Fig.1 (a)). The atomic structure of LPSO phase observed as white gray region of SEM image was also confirmed as 14H LPSO structure by using selected electron diffraction patterns and high-resolution STEM observations. The elemental composition of LPSO phase was determined as Mg97Zn1Gd2 by EDS analyses

  18. Multi-scale brain networks.

    PubMed

    Betzel, Richard F; Bassett, Danielle S

    2016-11-11

    The network architecture of the human brain has become a feature of increasing interest to the neuroscientific community, largely because of its potential to illuminate human cognition, its variation over development and aging, and its alteration in disease or injury. Traditional tools and approaches to study this architecture have largely focused on single scales-of topology, time, and space. Expanding beyond this narrow view, we focus this review on pertinent questions and novel methodological advances for the multi-scale brain. We separate our exposition into content related to multi-scale topological structure, multi-scale temporal structure, and multi-scale spatial structure. In each case, we recount empirical evidence for such structures, survey network-based methodological approaches to reveal these structures, and outline current frontiers and open questions. Although predominantly peppered with examples from human neuroimaging, we hope that this account will offer an accessible guide to any neuroscientist aiming to measure, characterize, and understand the full richness of the brain's multiscale network structure-irrespective of species, imaging modality, or spatial resolution.

  19. The multiscale analysis between stock market time series

    NASA Astrophysics Data System (ADS)

    Shi, Wenbin; Shang, Pengjian

    2015-11-01

    This paper is devoted to multiscale cross-correlation analysis on stock market time series, where multiscale DCCA cross-correlation coefficient as well as multiscale cross-sample entropy (MSCE) is applied. Multiscale DCCA cross-correlation coefficient is a realization of DCCA cross-correlation coefficient on multiple scales. The results of this method present a good scaling characterization. More significantly, this method is able to group stock markets by areas. Compared to multiscale DCCA cross-correlation coefficient, MSCE presents a more remarkable scaling characterization and the value of each log return of financial time series decreases with the increasing of scale factor. But the results of grouping is not as good as multiscale DCCA cross-correlation coefficient.

  20. A multi-scale approach to characterize pure CH4, CF4, and CH4/CF4 mixtures.

    PubMed

    Chattoraj, Joyjit; Risthaus, Tobias; Rubner, Oliver; Heuer, Andreas; Grimme, Stefan

    2015-04-28

    In this study, we develop three intermolecular potentials for methane (CH4), tetrafluoromethane (CF4), and CH4/CF4 dimers using a novel ab initio method. The ultimate goal is to understand microscopically the phase-separation in CH4/CF4 systems, which takes place in the liquid states near their freezing points. Monte-Carlo (MC) simulations of the pure CH4 system are performed using the ab initio energies to verify the potential. The simulations reproduce quite well the experimentally known liquid densities, the internal energies, the second virial coefficients, and the radial distribution function. The essentially six-dimensional (6D) ab initio potential is then reduced to a one-dimensional (1D) effective potential using the inverse Monte-Carlo technique. This potential, too, successfully reproduces the experimental results. Interestingly, the MC study cannot be extended to the pure CF4 system and the CH4/CF4 mixed system because the two respective ab initio potentials present very rough potential landscapes. This renders the interpolation of energies for the MC simulations and thus the multi-scale approach unreliable. It suggests, however, a possible driving force for the experimentally observed phase separation of the CH4/CF4 system at low temperatures. Furthermore, we carefully study the determination of 1D effective potentials via inverse MC techniques. We argue that to a good approximation the temperature dependence of the 1D potentials can be estimated via reweighting techniques for a fixed temperature.

  1. A multi-scale approach to characterize pure CH4, CF4, and CH4/CF4 mixtures

    NASA Astrophysics Data System (ADS)

    Chattoraj, Joyjit; Risthaus, Tobias; Rubner, Oliver; Heuer, Andreas; Grimme, Stefan

    2015-04-01

    In this study, we develop three intermolecular potentials for methane (CH4), tetrafluoromethane (CF4), and CH4/CF4 dimers using a novel ab initio method. The ultimate goal is to understand microscopically the phase-separation in CH4/CF4 systems, which takes place in the liquid states near their freezing points. Monte-Carlo (MC) simulations of the pure CH4 system are performed using the ab initio energies to verify the potential. The simulations reproduce quite well the experimentally known liquid densities, the internal energies, the second virial coefficients, and the radial distribution function. The essentially six-dimensional (6D) ab initio potential is then reduced to a one-dimensional (1D) effective potential using the inverse Monte-Carlo technique. This potential, too, successfully reproduces the experimental results. Interestingly, the MC study cannot be extended to the pure CF4 system and the CH4/CF4 mixed system because the two respective ab initio potentials present very rough potential landscapes. This renders the interpolation of energies for the MC simulations and thus the multi-scale approach unreliable. It suggests, however, a possible driving force for the experimentally observed phase separation of the CH4/CF4 system at low temperatures. Furthermore, we carefully study the determination of 1D effective potentials via inverse MC techniques. We argue that to a good approximation the temperature dependence of the 1D potentials can be estimated via reweighting techniques for a fixed temperature.

  2. Characterization of flow pattern transitions for horizontal liquid-liquid pipe flows by using multi-scale distribution entropy in coupled 3D phase space

    NASA Astrophysics Data System (ADS)

    Zhai, Lu-Sheng; Zong, Yan-Bo; Wang, Hong-Mei; Yan, Cong; Gao, Zhong-Ke; Jin, Ning-De

    2017-03-01

    Horizontal oil-water two-phase flows often exist in many industrial processes. Uncovering the dynamic mechanism of the flow pattern transition is of great significance for modeling the flow parameters. In this study we propose a method called multi-scale distribution entropy (MSDE) in a coupled 3D phase space, and use it to characterize the flow pattern transitions in horizontal oil-water two-phase flows. Firstly, the proposed MSDE is validated with Lorenz system and ARFIMA processes. Interestingly, it is found that the MSDE is dramatically associated with the cross-correlations of the coupled time series. Then, through conducting the experiment of horizontal oil-water two-phase flows, the upstream and downstream flow information is collected using a conductance cross-correlation velocity probe. The coupled cross-correlated signals are investigated using the MSDE method, and the results indicate that the MSDE is an effective tool uncovering the complex dynamic behaviors of flow pattern transitions.

  3. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams

    PubMed Central

    Niklas, Martin; Zimmermann, Ferdinand; Chaudhri, Naved; Krunic, Damir; Tessonnier, Thomas; Ferrari, Alfredo; Parodi, Katia; Jäkel, Oliver; Debus, Jürgen; Haberer, Thomas; Abdollahi, Amir

    2016-01-01

    The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break (DSB) formation and repair kinetic. The size and the number of residual nuclear γ-H2AX foci increased as a function of linear energy transfer (LET) and RBE, reminiscent of enhanced DNA-damage complexity and accumulation of non-repairable DSB. These data confirm the high relevance of complex DSB formation as a central determinant of cell fate and reliable biological surrogates for cell survival/RBE. The multi-scale simulation, physical and radiobiological characterization of novel clinical quality beams presented here constitutes a first step towards development of high precision biologically individualized radiotherapy. PMID:27494855

  4. Carbon nanotube integrated multifunctional multiscale composites

    NASA Astrophysics Data System (ADS)

    Qiu, Jingjing; Zhang, Chuck; Wang, Ben; Liang, Richard

    2007-07-01

    Carbon nanotubes (CNTs) demonstrate extraordinary properties and show great promise in enhancing out-of-plane properties of traditional polymer composites and enabling functionality, but current manufacturing challenges hinder the realization of their potential. This paper presents a method to fabricate multifunctional multiscale composites through an effective infiltration-based vacuum-assisted resin transfer moulding (VARTM) process. Multi-walled carbon nanotubes (MWNTs) were infused through and between glass-fibre tows along the through-thickness direction. Both pristine and functionalized MWNTs were used in fabricating multiscale glass-fibre-reinforced epoxy composites. It was demonstrated that the mechanical properties of multiscale composites were remarkably enhanced, especially in the functionalized MWNT multiscale composites. With only 1 wt% loading of functionalized MWNTs, tensile strength was increased by 14% and Young's modulus by 20%, in comparison with conventional fibre-reinforced composites. Moreover, the shear strength and short-beam modulus were increased by 5% and 8%, respectively, indicating the improved inter-laminar properties. The strain-stress tests also suggested noticeable enhancement in toughness. Scanning electron microscopy (SEM) characterization confirmed an enhanced interfacial bonding when functionalized MWNTs were integrated into epoxy/glass-fibre composites. The coefficient thermal expansion (CTE) of functionalized nanocomposites indicated a reduction of 25.2% compared with epoxy/glass-fibre composites. The desired improvement of electrical conductivities was also achieved. The multiscale composites indicated a way to leverage the benefits of CNTs and opened up new opportunities for high-performance multifunctional multiscale composites.

  5. Magnetospheric Multiscale (MMS) Orbit

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS) mission, a Solar-Terrestrial Probe mission comprising of four identically instrumented spacecraft that will study the Earth's magn...

  6. Synthesis and characterization of actinide nitrides

    SciTech Connect

    Jaques, Brian; Butt, Darryl P.; Marx, Brian M.; Hamdy, A.S.; Osterberg, Daniel; Balfour, Gordon

    2007-07-01

    A carbothermic reduction of the metal oxides in a hydrogen/nitrogen mixed gas stream prior to nitriding in a nitrogen gas stream was used to synthesize uranium nitride at 1500 deg. C, cerium nitride at 1400 deg. C, and dysprosium nitride at 1500 deg. C. Cerium nitride and dysprosium nitride were also synthesized via hydriding and nitriding the metal shavings at 900 deg. C and 1500 deg. C, respectively. Also, a novel ball-milling synthesis route was used to produce cerium nitride and dysprosium nitride from the metal shavings at room temperature. Dysprosium nitride was also produced by reacting the metal shavings in a high purity nitrogen gas stream at 1300 deg. C. All materials were characterized by phase analysis via X-ray diffraction. Only the high purity materials were further analyzed via chemical analysis to characterize the trace oxygen concentration. (authors)

  7. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: laying a foundation for monitoring

    USGS Publications Warehouse

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2012-01-01

    agebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change – adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilitate ecosystem-wide characterization, monitoring, and analysis; however, approaches that characterize sagebrush with sufficient and accurate local detail across large enough areas to support this paradigm are unavailable. We describe the development of a new remote sensing sagebrush characterization approach for the state of Wyoming, U.S.A. This approach integrates 2.4 m QuickBird, 30 m Landsat TM, and 56 m AWiFS imagery into the characterization of four primary continuous field components including percent bare ground, percent herbaceous cover, percent litter, and percent shrub, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata Wyomingensis), and shrub height using a regression tree. According to an independent accuracy assessment, primary component root mean square error (RMSE) values ranged from 4.90 to 10.16 for 2.4 m QuickBird, 6.01 to 15.54 for 30 m Landsat, and 6.97 to 16.14 for 56 m AWiFS. Shrub and herbaceous components outperformed the current data standard called LANDFIRE, with a shrub RMSE value of 6.04 versus 12.64 and a herbaceous component RMSE value of 12.89 versus 14.63. This approach offers new advancements in sagebrush characterization from remote sensing and provides a foundation to quantitatively monitor these components into the future.

  8. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: Laying a foundation for monitoring

    NASA Astrophysics Data System (ADS)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2012-02-01

    Sagebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change - adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilitate ecosystem-wide characterization, monitoring, and analysis; however, approaches that characterize sagebrush with sufficient and accurate local detail across large enough areas to support this paradigm are unavailable. We describe the development of a new remote sensing sagebrush characterization approach for the state of Wyoming, U.S.A. This approach integrates 2.4 m QuickBird, 30 m Landsat TM, and 56 m AWiFS imagery into the characterization of four primary continuous field components including percent bare ground, percent herbaceous cover, percent litter, and percent shrub, and four secondary components including percent sagebrush ( Artemisia spp.), percent big sagebrush ( Artemisia tridentata), percent Wyoming sagebrush ( Artemisia tridentata Wyomingensis), and shrub height using a regression tree. According to an independent accuracy assessment, primary component root mean square error (RMSE) values ranged from 4.90 to 10.16 for 2.4 m QuickBird, 6.01 to 15.54 for 30 m Landsat, and 6.97 to 16.14 for 56 m AWiFS. Shrub and herbaceous components outperformed the current data standard called LANDFIRE, with a shrub RMSE value of 6.04 versus 12.64 and a herbaceous component RMSE value of 12.89 versus 14.63. This approach offers new advancements in sagebrush characterization from remote sensing and provides a foundation to quantitatively monitor these components into the future.

  9. Integrated, Multi-Scale Characterization of Imbibition and Wettability Phenomena Using Magnetic Resonance and Wide-Band Dielectric Measurements

    SciTech Connect

    Mukul M. Sharma; Steven L. Bryant; Carlos Torres-Verdin; George Hirasaki

    2007-09-30

    The petrophysical properties of rocks, particularly their relative permeability and wettability, strongly influence the efficiency and the time-scale of all hydrocarbon recovery processes. However, the quantitative relationships needed to account for the influence of wettability and pore structure on multi-phase flow are not yet available, largely due to the complexity of the phenomena controlling wettability and the difficulty of characterizing rock properties at the relevant length scales. This project brings together several advanced technologies to characterize pore structure and wettability. Grain-scale models are developed that help to better interpret the electric and dielectric response of rocks. These studies allow the computation of realistic configurations of two immiscible fluids as a function of wettability and geologic characteristics. These fluid configurations form a basis for predicting and explaining macroscopic behavior, including the relationship between relative permeability, wettability and laboratory and wireline log measurements of NMR and dielectric response. Dielectric and NMR measurements have been made show that the response of the rocks depends on the wetting and flow properties of the rock. The theoretical models can be used for a better interpretation and inversion of standard well logs to obtain accurate and reliable estimates of fluid saturation and of their producibility. The ultimate benefit of this combined theoretical/empirical approach for reservoir characterization is that rather than reproducing the behavior of any particular sample or set of samples, it can explain and predict trends in behavior that can be applied at a range of length scales, including correlation with wireline logs, seismic, and geologic units and strata. This approach can substantially enhance wireline log interpretation for reservoir characterization and provide better descriptions, at several scales, of crucial reservoir flow properties that govern oil

  10. Chemical pretreatment of coal in a stirred ball mill

    SciTech Connect

    Birlingmair, D.; Chmielewski, T.; Pollard, J.

    1989-10-01

    Present studies on the electrochemical aspects of pyrite flotation in the presence of reducing agents were conducted to explain the effects observed during flotation of the separated organic and mineral-rich fractions of coal independently when sodium dithionite was used as an additive during and after grinding. In addition, the electrochemical phenomena occurring on the surface of pyrites of different origin was studied to aid in explaining the differences observed in the flotation of various coal-derived pyrite samples. Potentiometric and voltametric measurements have been conducted on electrodes prepared from natural pyrite samples of mineral and coal origin. Voltametric curves recorded on FeS{sub 2} electrodes indicate the presence of elemental sulfur, iron-oxy, and iron-hydroxy compounds, even on the freshly prepared surfaces. Comparison of voltametric curves with results of potentiometric measurements show that in the presence of dithionite several electrochemical processes are expected to take place on the pyrite surface. Voltametric curves recorded in solutions of different pH with and without sodium dithionite demonstrate that pyrite is a very good electrocatalyst in the anodic oxidation of dithionite. 13 refs., 12 figs.

  11. Increasing biochar surface area: Optimization of ball milling parameters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar produced from corn stover is a renewable, plentiful source of carbon that is a potential substitute for carbon black as rubber composite filler and also as binder/filter media for water or beverage purification applications. However, to be successful in these applications, the surface area o...

  12. Multi-scale characterization of the seismogenic Gole Larghe Fault Zone (Southern Alps, Italy): methodology and results

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Smith, S. A.; Di Toro, G.; Jones, R.; Griffith, W. A.; Mittempergher, S.; Mitchell, T. M.; Spagnuolo, E.; Rempe, M.; Nielsen, S.; Niemeijer, A.

    2012-04-01

    The Gole Larghe Fault Zone (GLFZ) in the Italian Southern Alps is characterized by the occurrence of cataclasites and pseudotachylytes (solidified frictional melts) formed along pre-existing magmatic cooling joints over a fault zone width of ca. 500 m, under ambient conditions of 9-11 km depth and 250-300°C (the "base" of the seismogenic zone in the crust). The fault zone is seamlessly exposed in glacier-polished outcrops both parallel and perpendicular to fault strike. We have studied in a very detailed way these outcrops, which are considered as a world-class natural laboratory for seismic faulting, combining two complementary strategies: (1) areal imaging/mapping and (2) linear transects. A considerable attention has been paid in order to make the results of these different strategies always coherent and consistent, thanks to a 3D spatial database where the entire dataset is stored. Areal imaging and mapping of structures like individual fault traces was performed over almost five orders of magnitude (from km to mm scale) using high-resolution orthophotos, aerial and terrestrial laser-scanning, photogrammetry and 3D mosaics of high-resolution rectified digital photographs. LIDAR scans and imagery were georeferenced in 3D using a Differential Global Positioning System (DGPS), allowing centimetric precision. The analysis of these data has been performed in 3D with Gocad® and custom Matlab® toolboxes. DGPS has been also used to collect linear transects across the fault zone, along which conventional structural measurements have been carried out. The particularity of these transects is that they allow an unprecedented > 100% coverage of the fault zone. In other words, each individual structure (visible with naked eyes), occurring along a continuous transect across the fault zone, has been measured, geolocated, and recorded in the database. In addition, 44 samples collected along the linear transect have been characterized for petrophysical parameters and much

  13. Environmental Assessment and Monitoring with ICAMS (Image Characterization and Modeling System) Using Multiscale Remote-Sensing Data

    NASA Technical Reports Server (NTRS)

    Lam, N.; Qiu, H.-I.; Quattrochi, Dale A.; Zhao, Wei

    1997-01-01

    With the rapid increase in spatial data, especially in the NASA-EOS (Earth Observing System) era, it is necessary to develop efficient and innovative tools to handle and analyze these data so that environmental conditions can be assessed and monitored. A main difficulty facing geographers and environmental scientists in environmental assessment and measurement is that spatial analytical tools are not easily accessible. We have recently developed a remote sensing/GIS software module called Image Characterization and Modeling System (ICAMS) to provide specialized spatial analytical tools for the measurement and characterization of satellite and other forms of spatial data. ICAMS runs on both the Intergraph-MGE and Arc/info UNIX and Windows-NT platforms. The main techniques in ICAMS include fractal measurement methods, variogram analysis, spatial autocorrelation statistics, textural measures, aggregation techniques, normalized difference vegetation index (NDVI), and delineation of land/water and vegetated/non-vegetated boundaries. In this paper, we demonstrate the main applications of ICAMS on the Intergraph-MGE platform using Landsat Thematic Mapper images from the city of Lake Charles, Louisiana. While the utilities of ICAMS' spatial measurement methods (e.g., fractal indices) in assessing environmental conditions remain to be researched, making the software available to a wider scientific community can permit the techniques in ICAMS to be evaluated and used for a diversity of applications. The findings from these various studies should lead to improved algorithms and more reliable models for environmental assessment and monitoring.

  14. Multi-scale characterization of rock mass discontinuities and rock slope geometry using terrestrial remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Sturzenegger, Matthieu

    Terrestrial remote sensing techniques including both digital photogrammetry and laser scanning, represent useful complements to conventional field mapping and rock mass discontinuity characterization. Several studies have highlighted practical advantages at close-range (< 300 m), including the ability to map inaccessible rock exposures and hazard reduction related to both traffic and rockfall along investigated outcrops. In addition, several authors have demonstrated their potential to provide adequate quantification of discontinuity parameters. Consequently, their incorporation into rock slope stability investigations and design projects has grown substantially over recent years. As these techniques are increasingly applied by geologists and geological engineers, it is important that their use be properly evaluated. Furthermore, guidelines to optimize their application are required in a similar manner to standardization of conventional discontinuity mapping techniques. An important thesis objective is to develop recommendations for optimal applications of terrestrial remote sensing techniques for discontinuity characterization, based on a quantitative evaluation of various registration approaches, sampling bias and extended manual mapping of 3D digital models. It is shown that simple registration networks can provide adequate measurement of discontinuity geometry for engineering purposes. The bias associated with remote sensing mapping is described. The advantages of these techniques over conventional mapping are demonstrated, including reliable discontinuity orientation measurements. Persistence can be precisely quantified instead of approximately estimated, resulting in a new class for extremely persistent discontinuities being suggested. Secondary roughness and curvature can also be considered at larger scales. The techniques are suitable for the definition of discontinuity sets, and the estimation of both trace intensity and block size/shape, if sampling bias

  15. Corrosion chemistry closing comments: opportunities in corrosion science facilitated by operando experimental characterization combined with multi-scale computational modelling.

    PubMed

    Scully, John R

    2015-01-01

    Recent advances in characterization tools, computational capabilities, and theories have created opportunities for advancement in understanding of solid-fluid interfaces at the nanoscale in corroding metallic systems. The Faraday Discussion on Corrosion Chemistry in 2015 highlighted some of the current needs, gaps and opportunities in corrosion science. Themes were organized into several hierarchical categories that provide an organizational framework for corrosion. Opportunities to develop fundamental physical and chemical data which will enable further progress in thermodynamic and kinetic modelling of corrosion were discussed. These will enable new and better understanding of unit processes that govern corrosion at the nanoscale. Additional topics discussed included scales, films and oxides, fluid-surface and molecular-surface interactions, selected topics in corrosion science and engineering as well as corrosion control. Corrosion science and engineering topics included complex alloy dissolution, local corrosion, and modelling of specific corrosion processes that are made up of collections of temporally and spatially varying unit processes such as oxidation, ion transport, and competitive adsorption. Corrosion control and mitigation topics covered some new insights on coatings and inhibitors. Further advances in operando or in situ experimental characterization strategies at the nanoscale combined with computational modelling will enhance progress in the field, especially if coupling across length and time scales can be achieved incorporating the various phenomena encountered in corrosion. Readers are encouraged to not only to use this ad hoc organizational scheme to guide their immersion into the current opportunities in corrosion chemistry, but also to find value in the information presented in their own ways.

  16. Facile synthesis and characterization of hexagonal NbSe{sub 2} nanoplates

    SciTech Connect

    Zhang, Xianghua; Zhang, Du; Tang, Hua; Ji, Xiaorui; Zhang, Yi; Tang, Guogang; Li, Changsheng

    2014-05-01

    Graphical abstract: - Highlights: • Uniform hexagonal NbSe{sub 2} nanoplates were prepared by a simple solid state reaction. • The possible formation mechanism of the NbSe{sub 2} nanoplates was discussed. • The formation of NbSe{sub 2} nanoplates undergoes a series of phase transition. - Abstract: The NbSe{sub 2} nanoplates with hexagonal morphology have been successfully prepared by a facile, environmentally friendly reaction in closed reactor at moderate temperature. The thermal (750 °C) solid-state reaction between the ball-milled mixture of micro-sized Nb and Se yielded a high yield of NbSe{sub 2} nanoplates. The as-prepared products were characterized by XRD, EDS, and SEM. The results showed that the as-prepared products were hexagonal phase NbSe{sub 2} nanoplates with uniform sizes and the formation of NbSe{sub 2} nanoplates underwent a series of phase transition. On the basis of experimental results obtained at different temperatures, a reasonable reaction process and a formation mechanism were proposed. Moreover, the ball milling time played a crucial role in acquiring the homogeneous distribution nanoplates.

  17. Synthesis and characterization of noble metal borides: RuB{sub x}(x > 1)

    SciTech Connect

    Li, Zhifang; Zheng, Dafang; Ding, Zhanhui; Li, Yongfeng; Yao, Bin; Li, Yongsheng; Zhao, Xudong; Yu, Guichuan; Tang, Yang; Zheng, Weitao; Liu, Xiaoyang

    2016-02-15

    Highlights: • Hexagonal RuB{sub 1.1} were synthesized using ruthenium and boron powders as raw materials during ball milling process. • Orthorhombic RuB{sub 2} were synthesized under high pressure (5 GPa) and high temperature (1000 °C) conditions. • Hexagonal Ru{sub 2}B{sub 3} have been synthesized under 5 GPa and 1200 °C. - Abstract: Noble metal borides RuB{sub 1.1}, RuB{sub 2} and Ru{sub 2}B{sub 3} have been synthesized by mechanical alloying and high pressure sintering methods using ruthenium (Ru) and boron (B) powders as raw materials. The crystal structures of borides were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results shown that only RuB{sub 1.1} with hexagonal crystal structure was synthesized during the ball milling process, the orthorhombic RuB{sub 2} was synthesized under high pressure (5 GPa) and high temperature (1000 °C) conditions, while the hexagonal Ru{sub 2}B{sub 3} can be synthesized under 5 GPa and 1200 °C. The mechanism of synthesis for the ruthenium borides (RuB{sub x}) are discussed in details.

  18. Development of a multi-scale and multi-modality imaging system to characterize tumours and their microenvironment in vivo

    NASA Astrophysics Data System (ADS)

    Rouffiac, Valérie; Ser-Leroux, Karine; Dugon, Emilie; Leguerney, Ingrid; Polrot, Mélanie; Robin, Sandra; Salomé-Desnoulez, Sophie; Ginefri, Jean-Christophe; Sebrié, Catherine; Laplace-Builhé, Corinne

    2015-03-01

    In vivo high-resolution imaging of tumor development is possible through dorsal skinfold chamber implantable on mice model. However, current intravital imaging systems are weakly tolerated along time by mice and do not allow multimodality imaging. Our project aims to develop a new chamber for: 1- long-term micro/macroscopic visualization of tumor (vascular and cellular compartments) and tissue microenvironment; and 2- multimodality imaging (photonic, MRI and sonography). Our new experimental device was patented in March 2014 and was primarily assessed on 75 mouse engrafted with 4T1-Luc tumor cell line, and validated in confocal and multiphoton imaging after staining the mice vasculature using Dextran 155KDa-TRITC or Dextran 2000kDa-FITC. Simultaneously, a universal stage was designed for optimal removal of respiratory and cardiac artifacts during microscopy assays. Experimental results from optical, ultrasound (Bmode and pulse subtraction mode) and MRI imaging (anatomic sequences) showed that our patented design, unlike commercial devices, improves longitudinal monitoring over several weeks (35 days on average against 12 for the commercial chamber) and allows for a better characterization of the early and late tissue alterations due to tumour development. We also demonstrated the compatibility for multimodality imaging and the increase of mice survival was by a factor of 2.9, with our new skinfold chamber. Current developments include: 1- defining new procedures for multi-labelling of cells and tissue (screening of fluorescent molecules and imaging protocols); 2- developing ultrasound and MRI imaging procedures with specific probes; 3- correlating optical/ultrasound/MRI data for a complete mapping of tumour development and microenvironment.

  19. Characterization of Multi-Scale Atmospheric Conditions Associated with Extreme Precipitation in the Transverse Ranges of Southern California

    NASA Astrophysics Data System (ADS)

    Oakley, N.; Kaplan, M.; Ralph, F. M.

    2015-12-01

    The east-west oriented Transverse Ranges of Southern California have historically experienced shallow landslides and debris flows that threaten life and property. Steep topography, soil composition, and frequent wildfires make this area susceptible to mass wasting. Extreme rainfall often acts as a trigger for these events. This work characterizes atmospheric conditions at multiple scales during extreme (>99th percentile) 1-day precipitation events in the major sub-ranges of the Transverse Ranges. Totals from these 1-day events generally exceed the established sub-daily intensity-duration thresholds for shallow landslides and debris flows in this region. Daily extreme precipitation values are derived from both gridded and station-based datasets over the period 1958-2014. For each major sub-range, extreme events are clustered by atmospheric feature and direction of moisture transport. A composite analysis of synoptic conditions is produced for each cluster to create a conceptual model of atmospheric conditions favoring extreme precipitation. The vertical structure of the atmosphere during these extreme events is also examined using observed and modeled soundings. Preliminary results show two atmospheric features to be of importance: 1) closed and cutoff low-pressure systems, areas of counter-clockwise circulation that can produce southerly flow orthogonal to the Transverse Range ridge axes; and 2) atmospheric rivers that transport large quantities of water vapor into the region. In some cases, the closed lows and atmospheric rivers work in concert with each other to produce extreme precipitation. Additionally, there is a notable east-west dipole of precipitation totals during some extreme events between the San Gabriel and Santa Ynez Mountains where extreme values are observed in one range and not the other. The cause of this relationship is explored. The results of this work can help forecasters and emergency responders determine the likelihood that an event will

  20. Multi-scale analysis in carbonates by X-ray microtomography: Characterization of the porosity and pore size distribution

    NASA Astrophysics Data System (ADS)

    Fernandes, Jaquiel S.; Nagata, Rodrigo; Moreira, Anderson C.; Fernandes, Celso P.; Appoloni, Carlos R.

    2013-05-01

    The porous systems of reservoir rocks present a complex geometry, involving aspects of shape of pores (morphology) and connectivity between the pores (topology). The macroscopic physical properties of these materials are strongly dependent of their microstructures. Based on these aspects, the present study has as main objective the characterization of the porous system geometry and computational determination of petrophysics properties of carbonate reservoir rocks through the X-ray microtomography methodology. Samples were microtomographed with the microtomographs Skyscan model 1172, installed at the PETROBRAS Research and Development Center (CENPES), Rio de Janeiro-RJ, Brazil and model 1173, installed at Sedimentary Geology Laboratory (LAGESD) in the Federal University of Rio de Janeiro (UFRJ). Two samples of carbonates were measured, Travertine and Dolomite, with spatial resolutions of 7 μm and 9.8 μm and 1.3 μm, 7 μm and 17 μm, respectively for the travertine and dolomite. With the data collected in the acquisitions, 900 transversal sections were reconstructed for each one of the referred resolutions. For the sample of dolomite, the average porosity found was 21.64%, 20.92% and 15.97% for resolutions of 1.3 μm, 7 μm and 17 μm, respectively. For the sample of travertine, the average porosity was 7.80 % and 7.52 % for resolutions of 7 μm and 9.8 μm, respectively. For the sample of dolomite, the pore size distribution showed that 50 % of the porous phase has pores with radius up to 37.6 μm, 84.6 μm and 84.4 μm, for the spatial resolutions of 1.3 μm, 7 μm and 17 μm, respectively. For the sample of travertine, 50 % of the pores have radius up to 148.1 μm and 158.1 μm, for the spatial resolutions of 7 μm and 9.8 μm.

  1. Experimental characterization of multiscale and multifield turbulence as a critical gradient threshold is surpassed in the DIII-D tokamak

    SciTech Connect

    Hillesheim, J. C.; Peebles, W. A.; Carter, T. A.; Wang, G.; Rhodes, T. L.; Schmitz, L.; Doyle, E. J.; Zeng, L.; DeBoo, J. C.; Staebler, G. M.; Burrell, K. H.; Petty, C. C.; Smith, S. P.; McKee, G. R.; Yan, Z.; Holland, C.; White, A. E.

    2013-05-15

    A critical gradient for long wavelength (k{sub θ}ρ{sub s}≲0.4) electron temperature fluctuations has been observed in an experiment in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], where below a threshold value of L{sub T{sub e}{sup −1}}=|∇T{sub e}|/T{sub e} electron temperature fluctuations are constant and above they steadily increase. Above the critical gradient, the electron heat flux inferred by power balance also increases rapidly. Critical gradients are a predicted attribute of turbulence arising from linear instabilities and are thought to be related to transport stiffness. The presented results are the first direct, systematic demonstration of critical gradient behavior in turbulence measurements in a tokamak. The experiment was performed by changing the deposition location of electron cyclotron heating shot-to-shot to locally scan L{sub T{sub e}{sup −1}} at r/a = 0.6 in L-mode plasmas; rotation was also varied by changing the momentum input from neutral beam injection. Temperature fluctuations were measured with a correlation electron cyclotron emission (CECE) radiometry system. In addition to the CECE measurements, an array of turbulence measurements were acquired to characterize fluctuations in multiple fields and at multiple scales as L{sub T{sub e}{sup −1}} and rotation were modified: long wavelength (k{sub θ}ρ{sub s}≲0.5) density fluctuations were acquired with beam emission spectroscopy, the phase angle between electron temperature and density fluctuations was measured by coupling the CECE system and a reflectometer, intermediate scale (k{sub θ}ρ{sub s}∼0.8) density fluctuations were measured with a Doppler backscattering (DBS) system, and low frequency flows were also measured with DBS. The accumulated measurements and trends constrain identification of the instability responsible for the observed critical gradient to the ∇T{sub e}-driven trapped electron mode.

  2. An Analysis Platform for Multiscale Hydrogeologic Modeling with Emphasis on Hybrid Multiscale Methods

    SciTech Connect

    Scheibe, Timothy D.; Murphy, Ellyn M.; Chen, Xingyuan; Rice, Amy K.; Carroll, Kenneth C.; Palmer, Bruce J.; Tartakovsky, Alexandre M.; Battiato, Ilenia; Wood, Brian D.

    2015-01-01

    One of the most significant challenges facing hydrogeologic modelers is the disparity between those spatial and temporal scales at which fundamental flow, transport and reaction processes can best be understood and quantified (e.g., microscopic to pore scales, seconds to days) and those at which practical model predictions are needed (e.g., plume to aquifer scales, years to centuries). While the multiscale nature of hydrogeologic problems is widely recognized, technological limitations in computational and characterization restrict most practical modeling efforts to fairly coarse representations of heterogeneous properties and processes. For some modern problems, the necessary level of simplification is such that model parameters may lose physical meaning and model predictive ability is questionable for any conditions other than those to which the model was calibrated. Recently, there has been broad interest across a wide range of scientific and engineering disciplines in simulation approaches that more rigorously account for the multiscale nature of systems of interest. In this paper, we review a number of such approaches and propose a classification scheme for defining different types of multiscale simulation methods and those classes of problems to which they are most applicable. Our classification scheme is presented in terms of a flow chart (Multiscale Analysis Platform or MAP), and defines several different motifs of multiscale simulation. Within each motif, the member methods are reviewed and example applications are discussed. We focus attention on hybrid multiscale methods, in which two or more models with different physics described at fundamentally different scales are directly coupled within a single simulation. Very recently these methods have begun to be applied to groundwater flow and transport simulations, and we discuss these applications in the context of our classification scheme. As computational and characterization capabilities continue to

  3. Characterization of Nanocomposites in Flyash for Possible Pesticide Application

    NASA Astrophysics Data System (ADS)

    Patra, Prasun; Roy, Indrani; Kumar, Rajesh; Gopal, Madhuban; Devakumar, C.; Gogoi, Robin; Srivastava, Chitra; Subramanium, B. S.; Goswami, Arunava

    2010-10-01

    Fly ash composed of crystalline abrasive silica alumina etc is a major source of pollution in and around Kolaghat thermal power plant, West Bengal. In an attempt to find ecofriendly use of fly ash, 300 kg of fly ash was taken to size range of 20-100 nm by (a) sieving, filtration followed by sonication and (b) long time low speed ball milling. Resultant slurry containing polydisperse naked nanoparticle mix was characterized using DLS, SEM, EDAX, and TEM etc. We hypothesized that immobilization of nanoflyash on solid matrix, and as a support for slow release of fumigants/fungicides/bactericides would usher in a variety of usages as value added low cost tiles in bathrooms and similar public utilities in India. Accordingly, we report here the preparation of metal and clay tiles with nanocomposite and nanoflyash. These tiles were impregnated with a number of other nanoparticles of choice.

  4. Synthesis and Characterization of Aluminum-Carbon Nanotube Composite by Cryogenic Milling

    DTIC Science & Technology

    2012-03-01

    Energy Ball Mill ..............................................................9  b.  Planetary Mill...10  Figure 4.  Planetary ball mill grinding motion from Suryanarayana [21] ........................11...applications range from corrosion protection coatings, to repair of damaged parts (such as repairing ground out cracks in engine or gear casings). Some

  5. A mathematical framework for multiscale science and engineering : the variational multiscale method and interscale transfer operators.

    SciTech Connect

    Shadid, John Nicolas; Lehoucq, Richard B.; Christon, Mark Allen; Slepoy, Alexander; Bochev, Pavel Blagoveston; Collis, Samuel Scott; Wagner, Gregory John

    2004-05-01

    Existing approaches in multiscale science and engineering have evolved from a range of ideas and solutions that are reflective of their original problem domains. As a result, research in multiscale science has followed widely diverse and disjoint paths, which presents a barrier to cross pollination of ideas and application of methods outside their application domains. The status of the research environment calls for an abstract mathematical framework that can provide a common language to formulate and analyze multiscale problems across a range of scientific and engineering disciplines. In such a framework, critical common issues arising in multiscale problems can be identified, explored and characterized in an abstract setting. This type of overarching approach would allow categorization and clarification of existing models and approximations in a landscape of seemingly disjoint, mutually exclusive and ad hoc methods. More importantly, such an approach can provide context for both the development of new techniques and their critical examination. As with any new mathematical framework, it is necessary to demonstrate its viability on problems of practical importance. At Sandia, lab-centric, prototype application problems in fluid mechanics, reacting flows, magnetohydrodynamics (MHD), shock hydrodynamics and materials science span an important subset of DOE Office of Science applications and form an ideal proving ground for new approaches in multiscale science.

  6. Scalable preparation, characterization, and application of alkali-treated starch as a new organic base catalyst.

    PubMed

    Tamaddon, Fatemeh; KazemiVarnamkhasti, MohammadTaghi

    2017-01-02

    Preparation, characterization, and application of alkali starch (AS) given by dry co-grinding of starch and alkali is described in this work. Grinding using a mortar (agate) and pestle or, more conveniently, a ball mill has been found to be satisfactory for the preparation of the AS. The AS products were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) and x-ray fluorescence (XRF) analyses. The base capacities of ASs were 4.25-4.45 mmol/g, respectively. AS is a low cost and easy to handle base catalyst that showed promising catalytic performance in the synthesis of a dihydroquinazoline-based antibacterial drug that involves tandem hydration or decarboxylative amidation, imination, and Aza-Michael reactions.

  7. Sample preparation for thermo-gravimetric determination and thermo-gravimetric characterization of refuse derived fuel.

    PubMed

    Robinson, T; Bronson, B; Gogolek, P; Mehrani, P

    2016-02-01

    Thermo-gravimetric analysis (TGA) is a useful method for characterizing fuels. In the past it has been applied to the study of refuse derived fuel (RDF) and related materials. However, the heterogeneity of RDF makes the preparation of small representative samples very difficult and this difficulty has limited the effectiveness of TGA for characterization of RDF. A TGA method was applied to a variety of materials prepared from a commercially available RDF using a variety of procedures. Applicability of TGA method to the determination of the renewable content of RDF was considered. Cryogenic ball milling was found to be an effective means of preparing RDF samples for TGA. When combined with an effective sample preparation, TGA could be used as an alternative method for assessing the renewable content of RDF.

  8. Engineering Digestion: Multiscale Processes of Food Digestion.

    PubMed

    Bornhorst, Gail M; Gouseti, Ourania; Wickham, Martin S J; Bakalis, Serafim

    2016-03-01

    Food digestion is a complex, multiscale process that has recently become of interest to the food industry due to the developing links between food and health or disease. Food digestion can be studied by using either in vitro or in vivo models, each having certain advantages or disadvantages. The recent interest in food digestion has resulted in a large number of studies in this area, yet few have provided an in-depth, quantitative description of digestion processes. To provide a framework to develop these quantitative comparisons, a summary is given here between digestion processes and parallel unit operations in the food and chemical industry. Characterization parameters and phenomena are suggested for each step of digestion. In addition to the quantitative characterization of digestion processes, the multiscale aspect of digestion must also be considered. In both food systems and the gastrointestinal tract, multiple length scales are involved in food breakdown, mixing, absorption. These different length scales influence digestion processes independently as well as through interrelated mechanisms. To facilitate optimized development of functional food products, a multiscale, engineering approach may be taken to describe food digestion processes. A framework for this approach is described in this review, as well as examples that demonstrate the importance of process characterization as well as the multiple, interrelated length scales in the digestion process.

  9. Multiscale Representation of Genomic Signals

    PubMed Central

    Knijnenburg, Theo A.; Ramsey, Stephen A.; Berman, Benjamin P.; Kennedy, Kathleen A.; Smit, Arian F.A.; Wessels, Lodewyk F.A.; Laird, Peter W.; Aderem, Alan; Shmulevich, Ilya

    2014-01-01

    Genomic information is encoded on a wide range of distance scales, ranging from tens of base pairs to megabases. We developed a multiscale framework to analyze and visualize the information content of genomic signals. Different types of signals, such as GC content or DNA methylation, are characterized by distinct patterns of signal enrichment or depletion across scales spanning several orders of magnitude. These patterns are associated with a variety of genomic annotations, including genes, nuclear lamina associated domains, and repeat elements. By integrating the information across all scales, as compared to using any single scale, we demonstrate improved prediction of gene expression from Polymerase II chromatin immunoprecipitation sequencing (ChIP-seq) measurements and we observed that gene expression differences in colorectal cancer are not most strongly related to gene body methylation, but rather to methylation patterns that extend beyond the single-gene scale. PMID:24727652

  10. Synthesis and characterization of barium ferrite–silica nanocomposites

    SciTech Connect

    Aguilar-González, M.A.; Mendoza-Suárez, G.; Padmasree, K.P.

    2013-10-15

    In this work, we prepared barium ferrite-silica (BaM-SiO{sub 2}) nanocomposites of different molar ratios by high-energy ball milling, followed by heat-treatment at different temperatures. The microstructure, morphology and magnetic properties were characterized for different synthesis conditions by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). The results indicate that 15 h of milling was enough to avoid the generation of hematite phase and to get a good dispersion of barium ferrite particles in the ceramic matrix. For milling periods beyond 15 h and heat treatment above 900 °C, the XRD patterns showed the presence of hematite phase caused by the decomposition of BaM. The agglomerate size observed through SEM analysis was around 150 nm with a good BaM dispersion into the SiO{sub 2} matrix. The highest saturation magnetization (Ms) value obtained was 43 emu/g and the corresponding coercivity (Hc) value of 3.4 kOe for the composition 60BaM-40SiO{sub 2} milled for 15 h and heat treated at 900 °C. This coercivity value is acceptable for the application in magnetic recording media. Highlights: • Barium ferrite–silica nanocomposites were prepared by high energy ball milling. • Optimal processing time is 15 h milling and heat treatment at 900 °C. • This is enough to avoid the generation of hematite phase. • Obtain good dispersion of barium ferrite particles in the ceramic matrix • Above this processing time shows the presence of increased amount of hematite.

  11. Multiscale phenomena in the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Surjalal Sharma, A.

    The multiscale phenomena in the Earth's magnetosphere have been studied using data from ground-based and space-borne measurements. The ground-based observations provide data over decades and are suitable for characterizing the inherent nature of the multiscale behavior and for studying the dynamical and statistical features. On the other hand, the spacecraft data provide in-situ observations of the processes. The multipoint measurements by Cluster have provided a new understanding of the plasma processes at microand meso-scales and the cross-scale coupling among them. The role of cross-scale coupling is evident in phenomena such as bursty bulk flows, flux ropes, and reconnection. The characteristic scales of the processes range from electron skin depth to MHD scales and the modeling of these processes need different physical models, such as kinetic, EMHD, Hall MHD, and MHD. The ground-based data have been used to develop models based on techniques of nonlinear science and yield predictive models which can be used for forecasting. These models characterize the magnetospheric dynaics and yield its global and multiscale aspects. The distribution of scales in the magnetosphere is studied using an extensive database of the solar wind and the magnetosphere. The distributions of the waiting times deviate significantly from a power law as well as stretched exponential distributions, and show a scaling with respect to the mean, indicating a limited role of long-term correlations in the magnetospheric dynamics.

  12. Multiscale Data Assimilation

    DTIC Science & Technology

    2014-09-30

    were developed. Two of them include non-hydrostatic flows behind a seamount (Fig. 1) and non-hydrostatic bottom gravity currents (Fig. 2). In the... seamount test case, flows with varying Reynolds number were studied. The resulting different parameter regimes highlight different multiscale physics at...the seamount including vortex generation, lee waves and unstable flows (to name a few). These different flow regimes are currently being used to

  13. Multiscale Fluctuation Analysis Revisited

    NASA Astrophysics Data System (ADS)

    Struzik, Zbigniew R.; Kiyono, Ken; Yamamoto, Yoshiharu

    2007-07-01

    Ubiquitous non-Gaussianity of the probability density of (time-series) fluctuations in many real world phenomena has been known and modelled extensively in recent years. Similarly, the analysis of (multi)scaling properties of (fluctuations in) complex systems has become a standard way of addressing unknown complexity. Yet the combined analysis and modelling of multiscale behaviour of probability density — multiscale PDF analysis — has only recently been proposed for the analysis of time series arising in complex systems, such as the cardiac neuro-regulatory system, financial markets or hydrodynamic turbulence. This relatively new technique has helped significantly to expand the previously obtained insights into the phenomena addressed. In particular, it has helped to identify a novel class of scale invariant behaviour of the multiscale PDF in healthy heart rate regulation during daily activity and in a market system undergoing crash dynamics. This kind of invariance reflects invariance of the system under renormalisation and resembles behaviour at criticality of a system undergoing continuous phase transition — indeed in both phenomena, such phase transition behaviour has been revealed. While the precise mechanism underlying invariance of the PDF under system renormalisation of both systems discussed is not to date understood, there is an intimate link between the non-Gaussian PDF characteristics and the persistent invariant correlation structure emerging between fluctuations across scale and time.

  14. Microwave assisted synthesis and characterization of barium titanate nanoparticles for multi layered ceramic capacitor applications.

    PubMed

    Thirumalai, Sundararajan; Shanmugavel, Balasivanandha Prabu

    2011-01-01

    Barium titanate is a common ferroelectric electro-ceramic material having high dielectric constant, with photorefractive effect and piezoelectric properties. In this research work, nano-scale barium titanate powders were synthesized by microwave assisted mechano-chemical route. Suitable precursors were ball milled for 20 hours. TGA studies were performed to study the thermal stability of the powders. The powders were characterized by XRD, SEM and EDX Analysis. Microwave and Conventional heating were performed at 1000 degrees C. The overall heating schedule was reduced by 8 hours in microwave heating thereby reducing the energy and time requirement. The nano-scale, impurity-free and defect-free microstructure was clearly evident from the SEM micrograph and EDX patterns. LCR meter was used to measure the dielectric constant and dielectric loss values at various frequencies. Microwave heated powders showed superior dielectric constant value with low dielectric loss which is highly essential for the fabrication of Multi Layered Ceramic Capacitors.

  15. Synthesis and Characterization of In-situ Copper-Niobium Carbide Composite

    NASA Astrophysics Data System (ADS)

    Zuhailawati, H.; Othman, R.; Bui, D. L.; Umemoto, M.

    2008-03-01

    In this work, synthesis of copper matrix composite powder reinforced by in situ niobium carbide particle was prepared by mechanical alloying of elemental powder and subsequent heat treatment. Elemental powders of Cu-Nb-C correspond to Cu-40wt%Nb-10%wtC composition was milled for 54 hours at room temperature in a planetary ball mill. The effect of heat treatment temperature on the formation of niobium carbide was analyzed. Characterization by X-ray diffraction was done on the milled powder and heat-treated powder in order to investigate NbC formation. Results indicate that NbC began to precipitate after mechanical alloying for about 54h with heat treatment temperature of 900 °C and 1000 °C.

  16. Synthesis and Characterization of In-situ Copper-Niobium Carbide Composite

    SciTech Connect

    Zuhailawati, H.; Othman, R.; Bui, D. L.; Umemoto, M

    2008-03-17

    In this work, synthesis of copper matrix composite powder reinforced by in situ niobium carbide particle was prepared by mechanical alloying of elemental powder and subsequent heat treatment. Elemental powders of Cu-Nb-C correspond to Cu-40wt%Nb-10%wtC composition was milled for 54 hours at room temperature in a planetary ball mill. The effect of heat treatment temperature on the formation of niobium carbide was analyzed. Characterization by X-ray diffraction was done on the milled powder and heat-treated powder in order to investigate NbC formation. Results indicate that NbC began to precipitate after mechanical alloying for about 54h with heat treatment temperature of 900 deg. C and 1000 deg. C.

  17. Massive Preparation of Reduced-Sensitivity Nano CL-20 and Its Characterization

    NASA Astrophysics Data System (ADS)

    Guo, Xiaode; Ouyang, Gang; Liu, Jie; Li, Qing; Wang, Longxiang; Gu, Zhiming; Li, Fengsheng

    2015-01-01

    Nano 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) was produced massively by ball milling. One thousand grams of the raw CL-20 were used per batch. The product was characterized using laser granularity measurement, scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The results show that the pulverized particles were pseudo-spheres with an average particle size (d50) of 200 nm, and the thermal decomposition peak temperature of the nano CL-20 was 239.61°C lower than that of the micrometer-sized CL-20 at a heating rate of 15°C . min-1. Furthermore, compared with the raw CL-20, the impact and friction sensitivities of the nano CL-20 were considerably reduced by 116.2 and 22%, respectively, indicating the great improvement in safety of CL-20.

  18. Multiscale macromolecular simulation: role of evolving ensembles.

    PubMed

    Singharoy, A; Joshi, H; Ortoleva, P J

    2012-10-22

    Multiscale analysis provides an algorithm for the efficient simulation of macromolecular assemblies. This algorithm involves the coevolution of a quasiequilibrium probability density of atomic configurations and the Langevin dynamics of spatial coarse-grained variables denoted order parameters (OPs) characterizing nanoscale system features. In practice, implementation of the probability density involves the generation of constant OP ensembles of atomic configurations. Such ensembles are used to construct thermal forces and diffusion factors that mediate the stochastic OP dynamics. Generation of all-atom ensembles at every Langevin time step is computationally expensive. Here, multiscale computation for macromolecular systems is made more efficient by a method that self-consistently folds in ensembles of all-atom configurations constructed in an earlier step, history, of the Langevin evolution. This procedure accounts for the temporal evolution of these ensembles, accurately providing thermal forces and diffusions. It is shown that efficiency and accuracy of the OP-based simulations is increased via the integration of this historical information. Accuracy improves with the square root of the number of historical timesteps included in the calculation. As a result, CPU usage can be decreased by a factor of 3-8 without loss of accuracy. The algorithm is implemented into our existing force-field based multiscale simulation platform and demonstrated via the structural dynamics of viral capsomers.

  19. Multi-scale petrophysical and geomechanical characterization of full core from the Groningen Field to understand mechanical stratigraphy and compaction behavior

    NASA Astrophysics Data System (ADS)

    van Eijs, Rob; Hol, Sander; Marcelis, Fons; Ishmukhametova, Gulfiia; van der Linden, Arjan; Zuiderwijk, Pedro; Makurat, Axel

    2016-04-01

    The Groningen gas field in The Netherlands is one of the largest onshore gas reserves known. Advancing production from the field has resulted in field-scale deformation with surface subsidence and accompanied local seismicity. Part of the deformation is associated with compaction of the Permian reservoir. While depletion-induced reservoir compaction is expected to be controlled locally by grain-scale physical mechanisms such as sub-critical cracking or particle re-arrangement and intergranular pressure solution creep, understanding of the intra-reservoir variability of these mechanisms is still limited, though crucial for predicting the coupling between production, rock deformation, and surface effects. To aid an improved understanding of fundamental processes and scaling effects, approximately 200 meters of core over the reservoir section was taken from a well in the Groningen Field, drilled in July 2015 close to the village of Zeerijp. Using this material, we have performed detailed laboratory investigations and will continue to do so in significant numbers, to compare the results obtained with well- and field-scale observations. In this contribution, we present several exemplary mechanical data sets for the reservoir and caprock, and compare these data with well-scale petrophysical and mechanical information, notably sonic, scratch and visual geological details with the aim to arrive at a multi-scale description of petrophysical and geomechanical rock properties. Our first comparison reveals a strong contrast in compressibility and strength between the reservoir and caprock, as well as a contribution of inelastic strain to the total strain response of the tested rock samples. We will discuss the observed mechanical stratigraphy in considering regional and field scale deformation patterns.

  20. Multiscale Simulation of Microbe Structure and Dynamics

    PubMed Central

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V.; Cheluvaraja, Srinath C.; Ortoleva, Peter J.

    2012-01-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin. PMID:21802438

  1. Multiscale simulation of microbe structure and dynamics.

    PubMed

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V; Cheluvaraja, Srinath C; Ortoleva, Peter J

    2011-10-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin.

  2. Structural and statistical characterization of joints and multi-scale faults in an alternating sandstone and shale turbidite sequence at the Santa Susana Field Laboratory: Implications for their effects on groundwater flow and contaminant transport

    NASA Astrophysics Data System (ADS)

    Cilona, Antonino; Aydin, Atilla; Likerman, Jeremias; Parker, Beth; Cherry, John

    2016-04-01

    This paper describes the properties of faults and fractures in the Upper Cretaceous Chatsworth Formation exposed at Santa Susana Field Laboratory and its surroundings (Simi Hills, California), where groundwater flow and contamination have been studied for over three decades. The complex depositional architecture of this turbidite consisting of alternating sandstones and shales, interacting with formative stress conditions are responsible for multi-scale fault hierarchies and permeable fractures in which nearly all groundwater flow occurs. Intensity and distribution of background fractures and their relation to bedding thickness are established for sandstones, the dominant lithology. The architecture of faults with increasing displacement is described, and relationships among fault dimensional parameters captured. Data from ∼400 boreholes and piezometers reveal the effect of faults and fractures on groundwater flow. Large hydraulic head differences, observed across fault zones with shale-rich cores, indicate these structures as cross-flow barriers. Moreover, hydraulic head profiles under ambient conditions, and pumping tests suggest strong hydraulic connectivity in all directions to depth of hundreds of meters. This outcrop-based structural characterization relates the horizontal hydraulic conductivity to the observed well-connected fracture network, and explains the strong vertical connectivity across low-hydraulic conductivity shales as faults and sheared fractures provide flow pathways.

  3. Preparation and characterization of a BisGMA-resin dental restorative composites with glass, silica and titania fillers.

    PubMed

    Thorat, Sanjay; Patra, Niranjan; Ruffilli, Roberta; Diaspro, Alberto; Salerno, Marco

    2012-01-01

    A photo-polymerizable Bisphenol-A diglycidylether methacrylate resin was characterized by Fourier transform infrared spectroscopy after its irradiation under different conditions to identify the best curing. Bonding-agent free composites with particles of ball-milled glass, silica and titania at loading of 10 and 50%wt were prepared, and their viscoelastic properties investigated by dynamic mechanical analysis, in experimental conditions close to the working environment in the mouth. All composites showed good stability at the considered conditions. The stiffest composite was the silica one, which was based on the smallest primary particles. The storage moduli close to room temperature (25°C) and mastication frequency (1 Hz) were extracted as reference bending moduli for the materials, and compared to static compressive moduli measured by nanoindentation performed by atomic force microscopy.Nanoindentation showed qualitative results in agreement with dynamic mechanical analysis as to the ranking of different materials, while resulting in approximately two-fold elastic modulus.

  4. Multiscale Cloud System Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell W.

    2009-01-01

    The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.

  5. Multiscale reactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-12-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system.

  6. Multiscale finite-element method for linear elastic geomechanics

    NASA Astrophysics Data System (ADS)

    Castelletto, Nicola; Hajibeygi, Hadi; Tchelepi, Hamdi A.

    2017-02-01

    The demand for accurate and efficient simulation of geomechanical effects is widely increasing in the geoscience community. High resolution characterizations of the mechanical properties of subsurface formations are essential for improving modeling predictions. Such detailed descriptions impose severe computational challenges and motivate the development of multiscale solution strategies. We propose a multiscale solution framework for the geomechanical equilibrium problem of heterogeneous porous media based on the finite-element method. After imposing a coarse-scale grid on the given fine-scale problem, the coarse-scale basis functions are obtained by solving local equilibrium problems within coarse elements. These basis functions form the restriction and prolongation operators used to obtain the coarse-scale system for the displacement-vector. Then, a two-stage preconditioner that couples the multiscale system with a smoother is derived for the iterative solution of the fine-scale linear system. Various numerical experiments are presented to demonstrate accuracy and robustness of the method.

  7. Multiscale Analysis of Photon-Limited Astronomical Images

    NASA Astrophysics Data System (ADS)

    Willett, R.

    2007-11-01

    Many astronomical studies rely upon the accurate reconstruction of spatially distributed phenomena from photon-limited data. These measurements are inherently ``noisy'' due to low photon counts. In addition, the behavior of the underlying photon intensity functions can be very rich and complex, and consequently difficult to model a priori. Nonparametric multiscale reconstruction methods overcome these challenges and facilitate characterization of fundamental performance limits. In this paper, we review several multiscale approaches to photon-limited image reconstruction, including wavelets combined with variance stabilizing transforms, corrected Haar wavelet transforms, multiplicative multiscale innovations, platelets, and the à trous wavelet transform. We discuss the performance of these methods in simulation studies, and describe statistical analyses of their performances.

  8. Multiscale modeling of proteins.

    PubMed

    Tozzini, Valentina

    2010-02-16

    The activity within a living cell is based on a complex network of interactions among biomolecules, exchanging information and energy through biochemical processes. These events occur on different scales, from the nano- to the macroscale, spanning about 10 orders of magnitude in the space domain and 15 orders of magnitude in the time domain. Consequently, many different modeling techniques, each proper for a particular time or space scale, are commonly used. In addition, a single process often spans more than a single time or space scale. Thus, the necessity arises for combining the modeling techniques in multiscale approaches. In this Account, I first review the different modeling methods for bio-systems, from quantum mechanics to the coarse-grained and continuum-like descriptions, passing through the atomistic force field simulations. Special attention is devoted to their combination in different possible multiscale approaches and to the questions and problems related to their coherent matching in the space and time domains. These aspects are often considered secondary, but in fact, they have primary relevance when the aim is the coherent and complete description of bioprocesses. Subsequently, applications are illustrated by means of two paradigmatic examples: (i) the green fluorescent protein (GFP) family and (ii) the proteins involved in the human immunodeficiency virus (HIV) replication cycle. The GFPs are currently one of the most frequently used markers for monitoring protein trafficking within living cells; nanobiotechnology and cell biology strongly rely on their use in fluorescence microscopy techniques. A detailed knowledge of the actions of the virus-specific enzymes of HIV (specifically HIV protease and integrase) is necessary to study novel therapeutic strategies against this disease. Thus, the insight accumulated over years of intense study is an excellent framework for this Account. The foremost relevance of these two biomolecular systems was

  9. Performance of distributed multiscale simulations

    PubMed Central

    Borgdorff, J.; Ben Belgacem, M.; Bona-Casas, C.; Fazendeiro, L.; Groen, D.; Hoenen, O.; Mizeranschi, A.; Suter, J. L.; Coster, D.; Coveney, P. V.; Dubitzky, W.; Hoekstra, A. G.; Strand, P.; Chopard, B.

    2014-01-01

    Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption. PMID:24982258

  10. The Magnetospheric Multiscale Constellation

    NASA Astrophysics Data System (ADS)

    Tooley, C. R.; Black, R. K.; Robertson, B. P.; Stone, J. M.; Pope, S. E.; Davis, G. T.

    2016-03-01

    The Magnetospheric Multiscale (MMS) mission is the fourth mission of the Solar Terrestrial Probe (STP) program of the National Aeronautics and Space Administration (NASA). The MMS mission was launched on March 12, 2015. The MMS mission consists of four identically instrumented spin-stabilized observatories which are flown in formation to perform the first definitive study of magnetic reconnection in space. The MMS mission was presented with numerous technical challenges, including the simultaneous construction and launch of four identical large spacecraft with 100 instruments total, stringent electromagnetic cleanliness requirements, closed-loop precision maneuvering and pointing of spinning flexible spacecraft, on-board GPS based orbit determination far above the GPS constellation, and a flight dynamics design that enables formation flying with separation distances as small as 10 km. This paper describes the overall mission design and presents an overview of the design, testing, and early on-orbit operation of the spacecraft systems and instrument suite.

  11. The Magentospheric Multiscale Constellation

    NASA Technical Reports Server (NTRS)

    Tooley, C. R.; Black, R. K.; Robertson, B. P.; Stone, J. M.; Pope, S. E.; Davis, G. T.

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission is the fourth mission of the Solar Terrestrial Probe (STP) program of the National Aeronautics and Space Administration (NASA). The MMS mission was launched on March 12, 2015. The MMS mission consists of four identically instrumented spin-stabilized observatories which are flown in formation to perform the first definitive study of magnetic reconnection in space. The MMS mission was presented with numerous technical challenges, including the simultaneous construction and launch of four identical large spacecraft with 100 instruments total, stringent electromagnetic cleanliness requirements, closed-loop precision maneuvering and pointing of spinning flexible spacecraft, on-board GPS based orbit determination far above the GPS constellation, and a flight dynamics design that enables formation flying with separation distances as small as 10 km. This paper describes the overall mission design and presents an overview of the design, testing, and early on-orbit operation of the spacecraft systems and instrument suite.

  12. MULTISCALE THERMOHYDROLOGIC MODEL

    SciTech Connect

    T.A. Buscheck

    2001-12-21

    The purpose of the Multiscale Thermohydrologic Model (MSTHM) is to describe the thermohydrologic evolution of the near-field environment (NFE) and engineered barrier system (EBS) throughout the potential high-level nuclear waste repository at Yucca Mountain for a particular engineering design (CRWMS M&O 2000c). The process-level model will provide thermohydrologic (TH) information and data (such as in-drift temperature, relative humidity, liquid saturation, etc.) for use in other technical products. This data is provided throughout the entire repository area as a function of time. The MSTHM couples the Smeared-heat-source Drift-scale Thermal-conduction (SDT), Line-average-heat-source Drift-scale Thermohydrologic (LDTH), Discrete-heat-source Drift-scale Thermal-conduction (DDT), and Smeared-heat-source Mountain-scale Thermal-conduction (SMT) submodels such that the flow of water and water vapor through partially-saturated fractured rock is considered. The MSTHM accounts for 3-D drift-scale and mountain-scale heat flow, repository-scale variability of stratigraphy and infiltration flux, and waste package (WP)-to-WP variability in heat output from WPs. All submodels use the nonisothermal unsaturated-saturated flow and transport (NUFT) simulation code. The MSTHM is implemented in several data-processing steps. The four major steps are: (1) submodel input-file preparation, (2) execution of the four submodel families with the use of the NUFT code, (3) execution of the multiscale thermohydrologic abstraction code (MSTHAC), and (4) binning and post-processing (i.e., graphics preparation) of the output from MSTHAC. Section 6 describes the MSTHM in detail. The objectives of this Analyses and Model Report (AMR) are to investigate near field (NF) and EBS thermohydrologic environments throughout the repository area at various evolution periods, and to provide TH data that may be used in other process model reports.

  13. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-ZnO/n-TiO 2

    NASA Astrophysics Data System (ADS)

    Chen, Shifu; Zhao, Wei; Liu, Wei; Zhang, Sujuan

    2008-12-01

    In this paper, p-type ZnO powder was prepared by decomposition of zinc nitrate at 350 °C for 1 h. p-n junction photocatalyst p-ZnO/TiO 2 was prepared by ball milling of TiO 2 in H 2O solution doped with p-ZnO. The p-n junction photocatalyst p-ZnO/TiO 2 was characterized by UV-vis diffuse reflection spectrum, scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and the fluorescence emission spectra. The photocatalytic activity of the photocatalyst was evaluated by photocatalytic reduction of Cr 2O 72- and photocatalytic oxidation of methyl orange (MO). The results showed that the photocatalytic activity of the p-n junction p-ZnO/TiO 2 is much higher than that of TiO 2 on the photocatalytic reduction of Cr 2O 72-. However, the photocatalytic activity of the photocatalyst is much lower than that of TiO 2 on the photocatalytic oxidation of methyl orange. Namely, the p-n junction photocatalyst p-ZnO/TiO 2 has higher photocatalytic reduction activity, but lower photocatalytic oxidation activity. When the amounts of doped p-ZnO are 0.0 and 2.0 wt.%, illumination for 20 min, the photoreduction efficiencies are 15.7 and 42.8%, and the photooxidation efficiencies are 68.1 and 26.1%, respectively. Effect of ball milling time on the photocatalytic activity of the photocatalyst was also investigated. The mechanisms of influence on the photocatalytic activity were also discussed by the p-n junction principle.

  14. Demonstration of a Novel, Integrated, Multi-Scale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit

    SciTech Connect

    Scott R. Reeves

    2007-09-30

    The primary goal of this project was to demonstrate a new and novel approach for high resolution, 3D reservoir characterization that can enable better management of CO{sub 2} enhanced oil recovery (EOR) projects and, looking to the future, carbon sequestration projects. The approach adopted has been the subject of previous research by the DOE and others, and relies primarily upon data-mining and advanced pattern recognition approaches. This approach honors all reservoir characterization data collected, but accepts that our understanding of how these measurements relate to the information of most interest, such as how porosity and permeability vary over a reservoir volume, is imperfect. Ideally the data needed for such an approach includes surface seismic to provide the greatest amount of data over the entire reservoir volume of interest, crosswell seismic to fill the resolution gap between surface seismic and wellbore-scale measurements, geophysical well logs to provide the vertical resolution sought, and core data to provide the tie to the information of most interest. These data are combined via a series of one or more relational models to enable, in its most successful application, the prediction of porosity and permeability on a vertical resolution similar to logs at each surface seismic trace location. In this project, the procedure was applied to the giant (and highly complex) SACROC unit of the Permian basin in West Texas, one of the world's largest CO{sub 2}-EOR projects and a potentially world-class geologic sequestration site. Due to operational scheduling considerations on the part of the operator of the field, the crosswell data was not obtained during the period of project performance (it is currently being collected however as part of another DOE project). This compromised the utility of the surface seismic data for the project due to the resolution gap between it and the geophysical well logs. An alternative approach was adopted that utilized a

  15. A Liver-centric Multiscale Modeling Framework for Xenobiotics ...

    EPA Pesticide Factsheets

    We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study focuses on developing a multi-scale computational model to characterize both phase I and phase II metabolism of acetaminophen, by bridging Physiologically Based Pharmacokinetic (PBPK) modeling at the whole body level, cell movement and blood flow at the tissue level and cell signaling and drug metabolism at the sub-cellular level. To validate the model, we estimated our model parameters by fi?tting serum concentrations of acetaminophen and its glucuronide and sulfate metabolites to experiments, and carried out sensitivity analysis on 35 parameters selected from three modules. Our study focuses on developing a multi-scale computational model to characterize both phase I and phase II metabolism of acetaminophen, by bridging Physiologically Based Pharmacokinetic (PBPK) modeling at the whole body level, cell movement and blood flow at the tissue level and cell signaling and drug metabolism at the sub-cellular level. This multiscale model bridges the CompuCell3D tool used by the Virtual Tissue project with the httk tool developed by the Rapid Exposure and Dosimetry project.

  16. A Multiscale Approach to Characterize the Early Aggregation Steps of the Amyloid-Forming Peptide GNNQQNY from the Yeast Prion Sup-35

    PubMed Central

    Nasica-Labouze, Jessica; Meli, Massimiliano; Derreumaux, Philippe; Colombo, Giorgio; Mousseau, Normand

    2011-01-01

    The self-organization of peptides into amyloidogenic oligomers is one of the key events for a wide range of molecular and degenerative diseases. Atomic-resolution characterization of the mechanisms responsible for the aggregation process and the resulting structures is thus a necessary step to improve our understanding of the determinants of these pathologies. To address this issue, we combine the accelerated sampling properties of replica exchange molecular dynamics simulations based on the OPEP coarse-grained potential with the atomic resolution description of interactions provided by all-atom MD simulations, and investigate the oligomerization process of the GNNQQNY for three system sizes: 3-mers, 12-mers and 20-mers. Results for our integrated simulations show a rich variety of structural arrangements for aggregates of all sizes. Elongated fibril-like structures can form transiently in the 20-mer case, but they are not stable and easily interconvert in more globular and disordered forms. Our extensive characterization of the intermediate structures and their physico-chemical determinants points to a high degree of polymorphism for the GNNQQNY sequence that can be reflected at the macroscopic scale. Detailed mechanisms and structures that underlie amyloid aggregation are also provided. PMID:21625573

  17. A multiscale approach to characterize the early aggregation steps of the amyloid-forming peptide GNNQQNY from the yeast prion sup-35.

    PubMed

    Nasica-Labouze, Jessica; Meli, Massimiliano; Derreumaux, Philippe; Colombo, Giorgio; Mousseau, Normand

    2011-05-01

    The self-organization of peptides into amyloidogenic oligomers is one of the key events for a wide range of molecular and degenerative diseases. Atomic-resolution characterization of the mechanisms responsible for the aggregation process and the resulting structures is thus a necessary step to improve our understanding of the determinants of these pathologies. To address this issue, we combine the accelerated sampling properties of replica exchange molecular dynamics simulations based on the OPEP coarse-grained potential with the atomic resolution description of interactions provided by all-atom MD simulations, and investigate the oligomerization process of the GNNQQNY for three system sizes: 3-mers, 12-mers and 20-mers. Results for our integrated simulations show a rich variety of structural arrangements for aggregates of all sizes. Elongated fibril-like structures can form transiently in the 20-mer case, but they are not stable and easily interconvert in more globular and disordered forms. Our extensive characterization of the intermediate structures and their physico-chemical determinants points to a high degree of polymorphism for the GNNQQNY sequence that can be reflected at the macroscopic scale. Detailed mechanisms and structures that underlie amyloid aggregation are also provided.

  18. Dynamic Multiscale Simulation of Polyelectrolyte Nanoassemblies

    DTIC Science & Technology

    2008-08-21

    REPORT Dynamic Multiscale Simulation of Polyelectrolyte Nanoassemblies 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The goal of this project is to...Std. Z39.18 - 31-May-2008 Dynamic Multiscale Simulation of Polyelectrolyte Nanoassemblies Report Title ABSTRACT The goal of this project is to...Total Number: Sub Contractors (DD882) Inventions (DD882) Final Progress Report Dynamic Multiscale Simulation of Polyelectrolyte Nanoassemblies

  19. Multiscale image blind denoising.

    PubMed

    Lebrun, Marc; Colom, Miguel; Morel, Jean-Michel

    2015-10-01

    Arguably several thousands papers are dedicated to image denoising. Most papers assume a fixed noise model, mainly white Gaussian or Poissonian. This assumption is only valid for raw images. Yet, in most images handled by the public and even by scientists, the noise model is imperfectly known or unknown. End users only dispose the result of a complex image processing chain effectuated by uncontrolled hardware and software (and sometimes by chemical means). For such images, recent progress in noise estimation permits to estimate from a single image a noise model, which is simultaneously signal and frequency dependent. We propose here a multiscale denoising algorithm adapted to this broad noise model. This leads to a blind denoising algorithm which we demonstrate on real JPEG images and on scans of old photographs for which the formation model is unknown. The consistency of this algorithm is also verified on simulated distorted images. This algorithm is finally compared with the unique state of the art previous blind denoising method.

  20. The Magnetospheric Multiscale Magnetometers

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Dearborn, D.; Fischer, D.; Le, G.; Leinweber, H. K.; Leneman, D.; Magnes, W.; Means, J. D.; Moldwin, M. B.; Nakamura, R.; Pierce, D.; Plaschke, F.; Rowe, K. M.; Slavin, J. A.; Strangeway, R. J.; Torbert, R.; Hagen, C.; Jernej, I.; Valavanoglou, A.; Richter, I.

    2016-03-01

    The success of the Magnetospheric Multiscale mission depends on the accurate measurement of the magnetic field on all four spacecraft. To ensure this success, two independently designed and built fluxgate magnetometers were developed, avoiding single-point failures. The magnetometers were dubbed the digital fluxgate (DFG), which uses an ASIC implementation and was supplied by the Space Research Institute of the Austrian Academy of Sciences and the analogue magnetometer (AFG) with a more traditional circuit board design supplied by the University of California, Los Angeles. A stringent magnetic cleanliness program was executed under the supervision of the Johns Hopkins University's Applied Physics Laboratory. To achieve mission objectives, the calibration determined on the ground will be refined in space to ensure all eight magnetometers are precisely inter-calibrated. Near real-time data plays a key role in the transmission of high-resolution observations stored on board so rapid processing of the low-resolution data is required. This article describes these instruments, the magnetic cleanliness program, and the instrument pre-launch calibrations, the planned in-flight calibration program, and the information flow that provides the data on the rapid time scale needed for mission success.

  1. Preparation and Characterization of PETI-330/Multiwalled Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.

    2005-01-01

    As part of an ongoing effort to incorporate multifunctionality into advanced composites, blends of PETI-330 and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to 300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were made by injecting the mixtures at 260-280 C into an Invar tool followed by curing for 1 h at 371 C. The tool was designed to impart shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Good quality moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of the MWCNTs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed. Keywords: phenylethynyl terminated imides, high temperature polymers, nanocomposites, moldings

  2. Characterization of multi-scale porous structure of fly ash/phosphate geopolymer hollow sphere structures: from submillimeter to nano-scale.

    PubMed

    Li, Ruifeng; Wu, Gaohui; Jiang, Longtao; Sun, Dongli

    2015-01-01

    In the present work, the porous structure of fly ash/phosphate geopolymer hollow sphere structures (FPGHSS), prepared by pre-bonding and curing technology, has been characterized by multi-resolution methods from sub-millimeter to nano-scale. Micro-CT and confocal microscopy could provide the macroscopic distribution of porous structure on sub-millimeter scale, and hollow fly ashes with sphere shape and several sub-millimeter open cells with irregular shape were identified. SEM is more suitable to illustrate the distribution of micro-sized open and closed cells, and it was found that the open cells of FPGHSS were mainly formed in the interstitial porosity between fly ashes. Mercury porosimeter measurement showed that the micro-sized open cell of FPGHSS demonstrated a normal/bimodal distribution, and the peaks of pore size distribution were mainly around 100 and 10 μm. TEM observation revealed that the phosphate geopolymer was mainly composed of the porous area with nano-pores and dense areas, which were amorphous Al-O-P phase and α-Al2O3 respectively. The pore size of nano-pores demonstrated a quasi-normal distribution from about 10 to 100 nm. Therefore, detailed information of the porous structure of FPGHSS could be revealed using multiple methods.

  3. Electrochemical characterization of monoclinic and orthorhombic Li3CrF6 as positive electrodes in lithium-ion batteries synthesized by a sol-gel process with environmentally benign chemicals

    NASA Astrophysics Data System (ADS)

    Lieser, Georg; Winkler, Volker; Geßwein, Holger; de Biasi, Lea; Glatthaar, Sven; Hoffmann, M. J.; Ehrenberg, Helmut; Binder, Joachim R.

    2015-10-01

    Lithium transition metal fluorides (Li3MF6; M = Fe, V) with cryolite structure are investigated as positive electrode materials for lithium-ion batteries. A novel sol-gel process with trifluoroacetic acid as fluorine source was used to synthesize monoclinic and orthorhombic Li3CrF6. A ball milling process with Li3CrF6, binder, and conductive agent was applied to form a Li3CrF6 composite, which was electrochemically characterized against lithium metal for the first time. The electrochemical properties of two different modifications are quite similar, with a reversible specific capacity of 111 mAhg-1 for monoclinic Li3CrF6 and 106 mAhg-1 for orthorhombic Li3CrF6 (1 eq. Li ≙ 143 mAhg-1). The electrochemically active redox couple CrIII/CrII was confirmed by X-ray photoelectron spectroscopy.

  4. A multiscale discontinuous Galerkin method.

    SciTech Connect

    Bochev, Pavel Blagoveston; Scovazzi, Guglielmo; Hughes, Thomas J. R.

    2005-04-01

    We propose a new class of Discontinuous Galerkin (DG) methods based on variational multiscale ideas. Our approach begins with an additive decomposition of the discontinuous finite element space into continuous (coarse) and discontinuous (fine) components. Variational multiscale analysis is used to define an interscale transfer operator that associates coarse and fine scale functions. Composition of this operator with a donor DG method yields a new formulation that combines the advantages of DG methods with the attractive and more efficient computational structure of a continuous Galerkin method. The new class of DG methods is illustrated for a scalar advection-diffusion problem.

  5. Multi-scale characterization of pore evolution in a combustion metamorphic complex, Hatrurim basin, Israel: Combining (ultra) small-angle neutron scattering and image analysis

    SciTech Connect

    Wang, Hsiu-Wen; Anovitz, Lawrence {Larry} M; Burg, Avihu; Cole, David; Allard Jr, Lawrence Frederick; Jackson, Andrew J; Stack, Andrew G; Rother, Gernot; Ciarlette, Diane D

    2013-01-01

    Backscattered scanning electron micrograph and ultra small- and small-angle neutron scattering data have been combined to provide statistically meaningful data on the pore/grain structure and pore evolution of combustion metamorphic complexes from the Hatrurim basin, Israel. Three processes, anti-sintering roughening, alteration of protolith (dehydration, decarbonation, and oxidation) and crystallization of high-temperature minerals, occurred simultaneously, leading to significant changes in observed pore/grain structures. Pore structures in the protoliths, and in lowand high-grade metamorphic rocks show surface (Ds) and mass (Dm) pore fractal geometries with gradual increases in both Ds and Dm values as a function of metamorphic grade. This suggests that increases in pore volume and formation of less branching pore networks are accompanied by a roughening of pore/grain interfaces. Additionally, pore evolution during combustion metamorphism is also characterized by reduced contributions from small-scale pores to the cumulative porosity in the high-grade rocks. At high temperatures, small-scale pores may be preferentially closed by the formation of high-temperature minerals, producing a rougher morphology with increasing temperature. Alternatively, large-scale pores may develop at the expense of small-scale pores. These observations (pore fractal geometry and cumulative porosity) indicate that the evolution of pore/grain structures is correlated with the growth of high-temperature phases and is a consequence of the energy balance between pore/grain surface energy and energy arising from heterogeneous phase contacts. The apparent pore volume density further suggests that the localized time/temperature development of the high-grade Hatrurim rocks is not simply an extension of that of the low-grade rocks. The former likely represents the "hot spots (burning foci)" in the overall metamorphic terrain while the latter may represent contact aureoles.

  6. Multiscale FE method for analysis of bone micro-structures.

    PubMed

    Podshivalov, L; Fischer, A; Bar-Yoseph, P Z

    2011-08-01

    Bones are composed of hierarchical bio-composite materials characterized by complex multiscale structural geometry and behavior. The architecture and the mechanical properties of bone tissue differ at each level of hierarchy. Thus, a multiscale approach for mechanical analysis of bone is imperative. This paper proposes a new approach for 3D multiscale finite element analysis of trabecular bone that can offer physicians a "digital magnifying glass" to facilitate continuous transition between macro- and micro-scales. The approach imitates the human ability to perceive details. That is, zooming-out from an object causes fewer details to be visible. As a result, the material appears to be smoother and more homogeneous. Zooming-in, in contrast, reveals additional details and material heterogeneity. Realization of the proposed approach requires synergy between a hierarchical geometric model for representing intermediate scales and a mechanical model for local material properties of bone tissue for each scale. The geometric model facilitates seamless and continuous bi-directional transition between macro- and micro-scales, while the mechanical model preserves the effective material properties. A 2D model of a simplified trabecular structure was implemented and analyzed in order to assess the feasibility of the proposed multiscale approach. The successful results of this model led to extending the method into 3D and analyzing real trabecular structures.

  7. Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential.

    PubMed

    Ahmad, Munir; Ahmad, Mahtab; Usman, Adel R A; Al-Faraj, Abdullah S; Abduljabbar, Adel; Ok, Yong Sik; Al-Wabel, Mohammad I

    2017-03-23

    Engineered organo-mineral composites were synthesized from date palm waste biochar and silica or zeolite via mechanochemical treatments. Date palm tree rachis (leaves) waste biomass was pre-treated with silica or zeolite minerals via ball milling and sonication prior to pyrolysis at 600 °C. The resultant organo-mineral composites and pristine materials were characterized using X-ray diffraction, thermogravimetric-differential thermal (TG-DTA), Fourier transform infrared, scanning electron microscope analyses and surface area and porosity analyzer to investigate the variations in physiochemical and structural characteristics. Compared to the resultant composites derived from non-milled date palm biomass, ball milling increased surface area, while decreased crystallinity index and effective particle size of the biochar composites. Silica composited biochars were located near origin in the van Krevelen diagram indicating lowest H/C and O/C molar ratios, thus suggesting higher aromaticity and lower polarity compared to other biochars. TGA thermograms indicated highest thermal stability of silica composited biochars. Ash and moisture corrected TGA thermograms were used to calculate recalcitrance index (R 50) of the materials, which speculated high degradability of biomass (R 50 < 0.4), minimal degradability of biochars and zeolite composited biochars (0.5 < R 50 < 0.7) and high recalcitrant nature of silica composited biochars (R 50 > 0.7). Silica composited biochars exhibited highest carbon sequestration potential (64.17-95.59%) compared to other biochars. Highest recalcitrance and carbon sequestration potential of silica composited biochars may be attributed to changes in structural arrangements in the silica-biochar complex. Encapsulations of biochar particles with amorphous silica via Si-C bonding may have prevented thermal degradation, subsequently increasing recalcitrance potential of silica composited biochars.

  8. Multiscale Thermohydrologic Model

    SciTech Connect

    T. Buscheck

    2004-10-12

    The purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. Thus, the goal is to predict the range of possible thermal-hydrologic conditions across the repository; this is quite different from predicting a single expected thermal-hydrologic response. The MSTHM calculates the following thermal-hydrologic parameters: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes (Table 1-1). These thermal-hydrologic parameters are required to support ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]). The thermal-hydrologic parameters are determined as a function of position along each of the emplacement drifts and as a function of waste package type. These parameters are determined at various reference locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert. The parameters are also determined at various defined locations in the adjoining host rock. The MSTHM uses data obtained from the data tracking numbers (DTNs) listed in Table 4.1-1. The majority of those DTNs were generated from the following analyses and model reports: (1) ''UZ Flow Model and Submodels'' (BSC 2004 [DIRS 169861]); (2) ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004); (3) ''Calibrated Properties Model'' (BSC 2004 [DIRS 169857]); (4) ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]); (5) ''Thermal Conductivity of the Non-Repository Lithostratigraphic Layers'' (BSC 2004 [DIRS 170033]); (6) ''Ventilation Model and Analysis Report'' (BSC 2004 [DIRS 169862]); (7) ''Heat Capacity

  9. Multi-Scale Infrastructure Assessment

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA) multi-scale infrastructure assessment project supports both water resource adaptation to climate change and the rehabilitation of the nation’s aging water infrastructure by providing tools, scientific data and information to progra...

  10. PECASE - Multi-Scale Experiments and Modeling in Wall Turbulence

    DTIC Science & Technology

    2014-12-23

    characterizing the three-dimensional spectrum of the streamwise velocity fluctuations using time-resolved particle image velocimetry at a range of...spectrum of the streamwise velocity fluctuations using time-resolved particle image velocimetry at a range of wall-normal locations, and extending a two...in canonical and non-canonical turbulent boundary layers using fast Particle Image Velocimetry in order to identify the influence of multi-scale

  11. Multiscale modeling methods in biomechanics.

    PubMed

    Bhattacharya, Pinaki; Viceconti, Marco

    2017-01-19

    More and more frequently, computational biomechanics deals with problems where the portion of physical reality to be modeled spans over such a large range of spatial and temporal dimensions, that it is impossible to represent it as a single space-time continuum. We are forced to consider multiple space-time continua, each representing the phenomenon of interest at a characteristic space-time scale. Multiscale models describe a complex process across multiple scales, and account for how quantities transform as we move from one scale to another. This review offers a set of definitions for this emerging field, and provides a brief summary of the most recent developments on multiscale modeling in biomechanics. Of all possible perspectives, we chose that of the modeling intent, which vastly affect the nature and the structure of each research activity. To the purpose we organized all papers reviewed in three categories: 'causal confirmation,' where multiscale models are used as materializations of the causation theories; 'predictive accuracy,' where multiscale modeling is aimed to improve the predictive accuracy; and 'determination of effect,' where multiscale modeling is used to model how a change at one scale manifests in an effect at another radically different space-time scale. Consistent with how the volume of computational biomechanics research is distributed across application targets, we extensively reviewed papers targeting the musculoskeletal and the cardiovascular systems, and covered only a few exemplary papers targeting other organ systems. The review shows a research subdomain still in its infancy, where causal confirmation papers remain the most common. For further resources related to this article, please visit the WIREs website.

  12. Multi-scale forest landscape pattern characterization

    NASA Astrophysics Data System (ADS)

    Wang, Jialing

    The purpose of this dissertation is to examine several important issues in landscape pattern analysis, including the identification of important landscape metrics, the impact of the modifiable areal unit problem (MAUP) in landscape pattern analysis, the linkage between pattern and process, and the application of landscape pattern analysis. A theoretical framework of hierarchical patch dynamics paradigm and a technical framework of GIS and remote sensing integration are employed to address these questions. The Red Hills region of southwestern Georgia and northern Florida is chosen as the study area. Land use/cover (LULC) and longleaf pine distribution maps were generated through satellite image classification. Sub-watersheds were used as the main analysis units. Principal component analysis (PCA) was conducted on 43 sub-watersheds at three hierarchical LULC levels to identify important landscape metrics. At both landscape- and class-levels, the measurement of fragmentation was identified as the most important landscape dimension. Other dimensions and important metrics varied with different scales. Hexagons were used as an alternative zoning system to examine the MAUP impact in landscape pattern analysis. The results indicated that landscape pattern analyses at class level and at broader scales were more sensitive to MAUP than at landscape level and at finer scales. Local-scale pattern analysis based on moving window analysis greatly reduced the impact of MAUP at class level, but had little effects at landscape level. An examination of the relationship between landscape pattern variables and biophysical/socio-economic variables was undertaken by using statistical analysis. The biophysical variables of soil drainage and mean slope and the socio-economic variables of road density, population density, distance to Tallahassee, Florida, and plantation amount were found to be closely correlated to the landscape patterns in this region. However, a large amount of variation in the landscape patterns remained unexplainable, suggesting that additional factors should be considered in the analysis of pattern and process relationship. The important landscape metrics identified by PCA were used in landscape classification and evaluation. Nine core longleaf pine patches were identified as having the first conservation priority. Eight sub-watersheds and thirteen plantations were considered the most important in management.

  13. The Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Burch, James

    Magnetospheric Multiscale (MMS), a NASA four-spacecraft mission scheduled for launch in November 2014, will investigate magnetic reconnection in the boundary regions of the Earth’s magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. Among the important questions about reconnection that will be addressed are the following: Under what conditions can magnetic-field energy be converted to plasma energy by the annihilation of magnetic field through reconnection? How does reconnection vary with time, and what factors influence its temporal behavior? What microscale processes are responsible for reconnection? What determines the rate of reconnection?
In order to accomplish its goals the MMS spacecraft must probe both those regions in which the magnetic fields are very nearly antiparallel and regions where a significant guide field exists. From previous missions we know the approximate speeds with which reconnection layers move through space to be from tens to hundreds of km/s. For electron skin depths of 5 to 10 km, the full 3D electron population (10 eV to above 20 keV) has to be sampled at rates greater than 10/s. The MMS Fast-Plasma Instrument (FPI) will sample electrons at greater than 30/s. Because the ion skin depth is larger, FPI will make full ion measurements at rates of greater than 6/s. 3D E-field measurements will be made by MMS once every ms. MMS will use an Active Spacecraft Potential Control device (ASPOC), which emits indium ions to neutralize the photoelectron current and keep the spacecraft from charging to more than +4 V. Because ion dynamics in Hall reconnection depend sensitively on ion mass, MMS includes a new-generation Hot Plasma Composition Analyzer (HPCA) that corrects problems with high proton fluxes that have prevented accurate ion-composition measurements near the dayside magnetospheric boundary. Finally, Energetic Particle Detector (EPD) measurements of electrons and

  14. MULTISCALE THERMOHYDROLOGIC MODEL

    SciTech Connect

    T. Buscheck

    2005-07-07

    The intended purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. The goal of the MSTHM is to predict a reasonable range of possible thermal-hydrologic conditions within the emplacement drift. To be reasonable, this range includes the influence of waste-package-to-waste-package heat output variability relevant to the license application design, as well as the influence of uncertainty and variability in the geologic and hydrologic conditions relevant to predicting the thermal-hydrologic response in emplacement drifts. This goal is quite different from the goal of a model to predict a single expected thermal-hydrologic response. As a result, the development and validation of the MSTHM and the associated analyses using this model are focused on the goal of predicting a reasonable range of thermal-hydrologic conditions resulting from parametric uncertainty and waste-package-to-waste-package heat-output variability. Thermal-hydrologic conditions within emplacement drifts depend primarily on thermal-hydrologic conditions in the host rock at the drift wall and on the temperature difference between the drift wall and the drip-shield and waste-package surfaces. Thus, the ability to predict a reasonable range of relevant in-drift MSTHM output parameters (e.g., temperature and relative humidity) is based on valid predictions of thermal-hydrologic processes in the host rock, as well as valid predictions of heat-transfer processes between the drift wall and the drip-shield and waste-package surfaces. Because the invert contains crushed gravel derived from the host rock, the invert is, in effect, an extension of the host rock, with thermal and hydrologic properties that have been modified by virtue of the crushing (and the resulting

  15. Spatially Extended Networks with Singular Multi-scale Connectivity Patterns

    NASA Astrophysics Data System (ADS)

    Touboul, Jonathan

    2014-08-01

    The cortex is a very large network characterized by a complex connectivity including at least two scales: a microscopic scale at which the interconnections are non-specific and very dense, while macroscopic connectivity patterns connecting different regions of the brain at larger scale are extremely sparse. This motivates to analyze the behavior of networks with multiscale coupling, in which a neuron is connected to its nearest-neighbors where , and in which the probability of macroscopic connection between two neurons vanishes. These are called singular multi-scale connectivity patterns. We introduce a class of such networks and derive their continuum limit. We show convergence in law and propagation of chaos in the thermodynamic limit. The limit equation obtained is an intricate non-local McKean-Vlasov equation with delays which is universal with respect to the type of micro-circuits and macro-circuits involved.

  16. Simulating and mapping spatial complexity using multi-scale techniques

    USGS Publications Warehouse

    De Cola, L.

    1994-01-01

    A central problem in spatial analysis is the mapping of data for complex spatial fields using relatively simple data structures, such as those of a conventional GIS. This complexity can be measured using such indices as multi-scale variance, which reflects spatial autocorrelation, and multi-fractal dimension, which characterizes the values of fields. These indices are computed for three spatial processes: Gaussian noise, a simple mathematical function, and data for a random walk. Fractal analysis is then used to produce a vegetation map of the central region of California based on a satellite image. This analysis suggests that real world data lie on a continuum between the simple and the random, and that a major GIS challenge is the scientific representation and understanding of rapidly changing multi-scale fields. -Author

  17. Drug silica nanocomposite: preparation, characterization and skin permeation studies.

    PubMed

    Pilloni, Martina; Ennas, Guido; Casu, Mariano; Fadda, Anna Maria; Frongia, Francesca; Marongiu, Francesca; Sanna, Roberta; Scano, Alessandra; Valenti, Donatella; Sinico, Chiara

    2013-01-01

    The aim of this work was to evaluate silica nanocomposites as topical drug delivery systems for the model drug, caffeine. Preparation, characterization, and skin permeation properties of caffeine-silica nanocomposites are described. Caffeine was loaded into the nanocomposites by grinding the drug with mesoporous silica in a ball mill up to 10 h and the efficiency of the process was studied by XRPD. Formulations were characterized by several methods that include FTIR, XRPD, SEM and TEM. The successful loading of caffeine was demonstrated by XRPD and FTIR. Morphology was studied by SEM that showed particle size reduction while TEM demonstrated formation of both core-shell and multilayered caffeine-silica structures. Solid-state NMR spectra excluded chemical interactions between caffeine and silica matrix, thus confirming that no solid state reactions occurred during the grinding process. Influence of drug inclusion in silica nanocomposite on the in vitro caffeine diffusion into and through the skin was investigated in comparison with a caffeine gel formulation (reference), using newborn pig skin and vertical Franz diffusion cells. Results from the in vitro skin permeation experiments showed that inclusion into the nanocomposite reduced and delayed caffeine permeation from the silica nanocomposite in comparison with the reference, independently from the amount of the tested formulation.

  18. Multiscale Modeling and Multifunctional Composites

    DTIC Science & Technology

    2013-07-17

    8) Here, Frs and Drs represent stress and the strain influence functions. The phase transformation fields, ,λ µ , appearing in Eqs...concentration factors Ar , Br , and influence functions Drs , Frs , , 1,=r s Q . Two applications are presented; one is a benchmark, classical...Journal for Multiscale Computational Engineering 8, 69-80. Berger, H., Kari S., Gabbert U., Rodriguez- Ramos , R., Guinovart, R., Otero, J.A., Bravo

  19. Multiscale vulnerability of complex networks.

    PubMed

    Boccaletti, Stefano; Buldú, Javier; Criado, Regino; Flores, Julio; Latora, Vito; Pello, Javier; Romance, Miguel

    2007-12-01

    We present a novel approach to quantify the vulnerability of a complex network, i.e., the capacity of a graph to maintain its functional performance under random damages or malicious attacks. The proposed measure represents a multiscale evaluation of vulnerability, and makes use of combined powers of the links' betweenness. We show that the proposed approach is able to properly describe some cases for which earlier measures of vulnerability fail. The relevant applications of our method for technological network design are outlined.

  20. Multi-Scale Autoregressive Processes

    DTIC Science & Technology

    1989-06-01

    rationnelles et leurs langages," Mas- son 1984, Collection "Etudes et Recherches en Informatique". [12] J.L. DUNAU, "Etude d’une classe de marches...June 1989 LIDS-P-1880 Multi-Scale Autoregressive Processes Michele Basseville’ Albert Benveniste’ Institut de Recherche en Informatique et Systemes...Centre National de la Recherche Scientifique (CNRS) and A.B. is also with Institut National de Recherche en Informatique et en Automatique (INRIA). The

  1. Multiscale Dynamics of Solar Magnetic Structures

    NASA Technical Reports Server (NTRS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-01-01

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries.We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  2. Differential Geometry Based Multiscale Models

    PubMed Central

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that

  3. Differential geometry based multiscale models.

    PubMed

    Wei, Guo-Wei

    2010-08-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are

  4. Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling

    SciTech Connect

    Du, Qiang

    2014-11-12

    generation atomistic-to-continuum multiscale simulations. In addition, a rigorous studyof nite element discretizations of peridynamics will be considered. Using the fact that peridynamics is spatially derivative free, we will also characterize the space of admissible peridynamic solutions and carry out systematic analyses of the models, in particular rigorously showing how peridynamics encompasses fracture and other failure phenomena. Additional aspects of the project include the mathematical and numerical analysis of peridynamics applied to stochastic peridynamics models. In summary, the project will make feasible mathematically consistent multiscale models for the analysis and design of advanced materials.

  5. Multiscale simulations of thin-film growth

    NASA Astrophysics Data System (ADS)

    Yu, Jianguo

    In this thesis, the results of multiscale simulations and theoretical calculations carried out in order to understand the morphology and evolution of the surface in thin-film growth are presented. In particular, this dissertation consists of two parts: multiscale simulations of 2D and 3D polycrystalline growth using simple models and multiscale simulations of metal epitaxial growth. In Part I, we first study the effects of shadowing on the surface morphology in sputter deposition using a simple model (ballistic deposition) of low-temperature thin-film growth in two-dimensions. The dynamical scaling behavior is studied as a function of the angular distribution of incoming particles and of the underlying lattice structure. Using a novel dynamical scaling form, results for the scaling of the surface fractal dimension are also presented. Our results indicate that, in addition to the usual self-affine universality class corresponding to vertical deposition, there exist at least two additional universality classes characterized by distinct values of the coarsening and roughening exponents describing the evolution of the lateral feature size and surface roughness with film thickness, as well as of the surface fractal dimension Df. An analysis which clarifies the relationship between the launch angle distribution used in the simulations and the flux distribution is also presented. In Part II, we carry out multiscale simulations of metal epitaxial growth, in order to understand the effects of short-range attraction during deposition on the surface morphology. Our molecular dynamics (MD) simulations indicate that even at normal incidence, the short-range attraction of depositing atoms to step-edges can significantly increase the selected mound angle and surface roughness for typical energies used in epitaxial growth. Our results also lead to a new picture of the process of deposition near step-edges which is quite different from the standard downward funneling picture

  6. Acoustic Target Classification Using Multiscale Methods

    DTIC Science & Technology

    1998-01-01

    other vehicular activities well; because it represents dominant spectral peaks better than a short time Fourier transform. In the wavelet transform based...approach; multiscale features are obtained with a wavelet transform . Multiscale classification methods were applied to acoustic data collected at...This study considers the classification of acoustic signatures using features extracted at multiple scales from hierarchical models and a wavelet

  7. The Adaptive Multi-scale Simulation Infrastructure

    SciTech Connect

    Tobin, William R.

    2015-09-01

    The Adaptive Multi-scale Simulation Infrastructure (AMSI) is a set of libraries and tools developed to support the development, implementation, and execution of general multimodel simulations. Using a minimal set of simulation meta-data AMSI allows for minimally intrusive work to adapt existent single-scale simulations for use in multi-scale simulations. Support for dynamic runtime operations such as single- and multi-scale adaptive properties is a key focus of AMSI. Particular focus has been spent on the development on scale-sensitive load balancing operations to allow single-scale simulations incorporated into a multi-scale simulation using AMSI to use standard load-balancing operations without affecting the integrity of the overall multi-scale simulation.

  8. Multiscale Modeling of Irradiation effects in Fusion Materials

    SciTech Connect

    Hussein Zbib

    2004-12-23

    The aim of this collaborative research work was to apply predictive, physically based multiscale modeling to improve understanding of the underlying mechanisms of material changes in the fusion environment, with the ultimate objective to aid development of advanced materials. The multiscale modeling methodology involved a hierarchical approach, integrating ab initio electronic structure calculations, molecular dynamics (MD) simulations, kinetic Monte Carlo (KMC), and three dimensional dislocation dynamics (DD) simulations, over the relevant length and time scales to model the fates of defects and solutes (including hydrogen and helium) and thus, predict microstructural evolution in ferritic/martensitic and vanadium based alloys. The main task at WSU was to investigate changes in mechanical properties as a result of the production of a varied population of nanostructural features and to be obtained from three dimensional dislocation dynamics simulation (DD). The initial dislocation structure and microstructure could be obtained from electron microscopy characterization and the appropriate nanostructural features produced during irradiation are introduced from predictions of the multiscale modeling. The dislocation structure was then allowed to evolve under an applied load, taking into account all possible forces and reactions between the dislocations with the radiation induced nanostructure as well as network dislocations. In this manner, quantitative predictions of irradiation hardening would result without the use of empirical constants within the framework of dispersed barrier hardening models.

  9. Multiscale geometric modeling of macromolecules II: Lagrangian representation

    PubMed Central

    Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599

  10. The phase analysis of spark plasma sintered MgB2 after ball milling.

    PubMed

    Kang, Deuk-Kyun; Kim, Dong-Woong; Kim, Cheol-Jin; Ahn, In-Shup

    2010-01-01

    Mg and amorphous B powders below 10 and 3 micro meter were used as raw materials, and mixed by planetary-mill for 9 hours at argon atmosphere. MgB2 bulk was fabricated at the various temperatures by Spark Plasma Sintering. In the sintering process, mixed powders were sintered in graphite mold, at the pressure of 55 Mpa. The fabricated MgB2 samples were evaluated with XRD, EDS, FE-SEM, PPMS. MgB2, MgO and Fe phases were observed from XRD result. In the results, MgO and Fe were impurity which may affect superconducting properties of MgB2 samples, and it's distribution could be confirmed from EDS mapping result. In order to confirm the formation of MgB2 phase, DTA was used as heating rate of 10 degrees C/min at Ar atmosphere from room temperature to 1200 degrees C. In the PPMS result, the Tc (critical temperature) was about 21 K, and the density of spark plasma sintered samples increased to 1.87 g/cm3 by increasing sintering temperature.

  11. Chemical reactions of metal powders with organic and inorganic liquids during ball milling

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1975-01-01

    Chromium and/or nickel powders were milled in metal chlorides and in organic liquids representative of various functional groups. The powders always reacted with the liquid and became contaminated with elements from them. The milled powders had specific surface areas ranging from 0.14 to 37 sq m/g, and the total contamination with elements from the milling liquid ranged from 0.01 to 56 weight percent. Compounds resulting from substitution, addition, or elimination reactions formed in or from the milling liquid.

  12. Warming up for mechanosynthesis - temperature development in ball mills during synthesis.

    PubMed

    Kulla, Hannes; Wilke, Manuel; Fischer, Franziska; Röllig, Mathias; Maierhofer, Christiane; Emmerling, Franziska

    2017-02-04

    We present a first direct measurement of the temperature during milling combined with in situ Raman spectroscopy monitoring. The data reveal a low temperature increase due to the mechanical impact and clear temperature increases as a consequence of the reaction heat. Based on the data, temperature rises as postulated in the magma plasma and hot spot theory can be excluded for soft matter milling syntheses.

  13. Polymorphic form of piroxicam influences the performance of amorphous material prepared by ball-milling.

    PubMed

    Naelapää, Kaisa; Boetker, Johan Peter; Veski, Peep; Rantanen, Jukka; Rades, Thomas; Kogermann, Karin

    2012-06-15

    The objective of this study was to investigate the influence of the starting solid state form of piroxicam (anhydrate form I: PRXAH I vs form II: PRXAH II) on the properties of the resulting amorphous material. The second objective was to obtain further insight into the impact of critical factors like thermal stress, dissolution medium and storage conditions on the thermal behavior, solid state transformations and physical stability of amorphous materials. For analysis differential scanning calorimetry (DSC), Raman spectroscopy and X-ray powder diffractometry (XRPD) were used. Pair-wise distribution function (PDF) analysis of the XRPD data was performed. PDF analysis indicated that the recrystallization behavior of amorphous samples was influenced by the amount of residual order in the samples. The recrystallization behavior of amorphous samples prepared from PRXAH I showed similarity to the starting material, whereas the recrystallization behavior of amorphous samples prepared from PRXAH II resembled to that of the PRX form III (PRXAH III). Multivariate data analysis (MVDA) helped to identify that the influence of storage time and temperature was more pronounced in the case of amorphous PRX prepared from PRXAH I. Furthermore, the wet slurry experiments with amorphous materials revealed the recrystallization of amorphous material as PRXMH in the biorelevant medium.

  14. Optimizing particle size reduction of biochar using a planetary ball mill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With world demand for fossil fuels consistently growing, reducing our dependence on petroleum products is a necessary strategy. Our research group is currently studying the feasibility of biochar as rubber composite filler. If biochar can be used as a partial or complete substitute for carbon black ...

  15. Magnetism and structure of Fe Cu binary solid solutions obtained by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Gorria, P.; Martínez-Blanco, D.; Blanco, J. A.; Pérez, M. J.; González, M. A.; Campo, J.

    2006-10-01

    Martensitic phase transformation is found in various metals, alloys, ceramics and even biological systems. This paper reports on the Fe segregated anomalous α- γ martensitic transformation observed in Fe xCu 100-x binary solid solutions ( x=25 and 50) after subsequent heating-cooling processes. A characteristic observable feature of a martensitic transformation is the microstructure it produces, thermal hysteresis, evolution and metastability. We have analysed the microstructure using neutron thermo-diffraction experiments up to 1100 K. The structural changes of the Fe segregated phase, from bcc to fcc crystal structures, have been followed in detail. The most relevant feature is that the onset of martensite transformation is observed, on heating, more than 100 K below the expected temperature for pure bcc-Fe (1183 K), while the reverse transformation occurs below 900 K on cooling. This anomalous behaviour for the α- γ transformation depends on sample composition, being more important for low Fe contents. Besides that, magnetisation vs. temperature measurements show a clear correlation with structure changes, thus exhibiting thermal hysteresis on heating-cooling cycles. Moreover, a magnetisation enhancement above 550 K is observed on heating, this fact can be attributed to thermal-induced ferromagnetism on isolated γ-Fe precipitates via strong magneto-volume coupling.

  16. Synthesis of Binary Nanocrystalline Aluminum Alloys through High Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    Schwab, Lacey L.

    Nanocrystalline metals have useful mechanical properties such as high strength, improved wear resistance, and longer fatigue life; however, they are relatively unstable--grain boundary doping is a viable method towards stabilization [1-3]. After comparing the work of Murdoch and Schuh, that used a thermodynamic model to estimate grain boundary segregation enthalpy to the experimental work of Umbrajkar et al., it was realized that mechanical alloying is a processing route for grain boundary stabilization [10,11]. Whether or not chemical mixing has occurred is a good indicator of a powder system's potential for grain boundary doping. 99Al1Si, 99Al1Mg, 99Al1Zr, and 99Al11Zn were mechanically alloyed with a Retch 100 Planetary Bal Mill. The samples were then analyzed with a Rigaku Ultima III X-ray Diffractometer to determine whether or not these powder systems have chemically mixed. It was found that the 99Al1Mg powder system chemically mixed during the 8Hr, 8mL run and during the 16Hr, 16.5mL run, and the 99Al1Zr powder system chemically mixed during the 4Hr, 16.5mL run. The enthalpy of segregation values for each binary powder system correlated to the chemical mixing shown in these results.

  17. Corrosion behavior of magnesium powder fabricated by high-energy ball milling and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Kim, Ka Ram; Ahn, Jin Woo; Kim, Gyeung-Ho; Han, Jun Hyun; Cho, Kwon Koo; Roh, Jae-Seung; Kim, Woo Jin; Kim, Hye Sung

    2014-11-01

    Microstructural changes and corrosion behavior of pure magnesium for different milling times were investigated. The samples with a finer grain size showed poor corrosion resistance because of unstable or metastable protective film formation after immersion in 0.8 wt% NaCl solution. The corrosion resistance did not improve despite the strong (0002) texture of the sample prepared by spark plasma sintering at 500 °C for 0.3 Ks and milling for 2 h. By studying the microstructural changes and texture development, we concluded that the deformation-dependent grain size is the dominant factor controlling the corrosion properties of mechanically milled magnesium. Increased grain boundary densities lead to an enhancement of the overall surface reactivity and, consequently, the corrosion rate.

  18. Effects of ball milling parameters on microstructural evolution and mechanical properties of W-3% Y composites

    NASA Astrophysics Data System (ADS)

    Zhao, Mingyue; Zhou, Zhangjian; Tan, Jun; Ding, Qingming; Zhong, Ming

    2015-10-01

    The W-3 Y composites were successfully prepared by spark plasma sintering of milled W-3 Y powders with different milling times (0 h, 5 h, 15 h, 30 h). X-ray diffraction (XRD), scanning electron microscope (SEM), and laser particle size analysis were used to study the microstructural evolution and morphological change during the milling process. The crystallite sizes exhibited a continuous refinement along with the increased milling time. The median particle sizes, measured by the laser diffraction method, showed a similar change tendency. Due to the existence of Y particles, the W-Y milled powders exhibited spherical-like morphology while pure tungsten milled powders exhibited lamellar morphology at the early milling stage (5-15 h). The microhardness of W-3 Y compacts showed a slight increase with the increase of milling time. The maximum bending strength of 795 MPa was obtained by sintering W-3 Y powders milled for 15 h. As the milling time was prolonged to 30 h, the increased oxygen impurity resulted in a slight decrease of density as well as the degradation of bending strength.

  19. Dependence of milling time on electrochemical properties of nano Si electrodes prepared by ball-milling.

    PubMed

    Cho, G B; Choi, S Y; Noh, J P; Jeon, Y M; Jung, K T; Nam, T H

    2011-07-01

    Morphology, crystallinity and electrochemical properties of Si powders fabricated by a mechanical milling process with milling time of 6-40 h were investigated by means of FESEM, XRD, Raman, TEM and cell test. Average size of Si powders was reduced to sub-micrometer scale after 10 h-milling and 40 nm-Si powders could be obtained at 48 h-milling. With increasing milling time, Si powders mostly changes from crystalline Si to amorphous one and the content of amorphous Si was increased. TEM result showed that a negligiable amount of crystalline Si remained even after 48 h-milling. Si electrode with 48 h-milled Si powders exhibited the best electrochemical properties in terms of capacity, efficiency and cycle performance: initial capacity of 3025 mAh g(-1), coulrombic efficiency of 79.4% and the capacity retention of 1000 mAh g(-1) (at 130 cycles). The good electrochemical properties of nano- and amorphous-Si are due to the high resistance against volume change and good reversibility of Li ion.

  20. A Mössbauer effect study of ball-milled strontium ferrite

    NASA Astrophysics Data System (ADS)

    Wu, E.; Campbell, S. J.; Kaczmarek, W. A.

    1998-01-01

    The effects of milling SrFe 12O 19 in air and vacuum for 800 h have been investigated by X-ray diffraction and Mössbauer effect spectroscopy measurements. Different levels of structural disorder along with partial decomposition of SrFe 12O 19 to nanocrystalline grains of haematite, α-Fe 2O 3, and magnetite, Fe 3O 4, are obtained for the air and vacuum milling. Superparamagnetic relaxation effects due to the fine particles produced on milling are observed for a significant fraction ( ˜ 10% air milled, ˜ 30% vacuum milled) of the milled samples.

  1. Structural, magnetic and electrical properties of the lithium ferrite obtained by ball milling and heat treatment

    NASA Astrophysics Data System (ADS)

    Mazen, S. A.; Abu-Elsaad, N. I.

    2015-01-01

    The physical properties of ferrites are very sensitive to microstructure, which in turn critically depends on the manufacturing process. Lithium ferrite is synthesized by milling process. The powder was annealed at four different temperatures 600, 800, 1,000 and 1,200 °C. The powder annealed at 600 °C has the spinel structure with some of α-Fe2O3, while the powders annealed at ≥800 °C formed in single-phase cubic spinel structure. Particle size of lithium ferrite is in the range of 26-70 nm, and is dependent on the annealing temperature. The saturation magnetization increased from 22 to 85 emu/g and the coercivity decreases from 124 to 4 Oe with increase in the annealing temperature. The dielectric constant ( ɛ'), dielectric loss (tan δ) and ac conductivity ( σ ac) were measured at room temperature as a function of frequency. The results of dielectric properties were explained in terms of Koops phenomenological theory.

  2. Processing and Characterization of Sol-Gel Cerium Oxide Microspheres

    SciTech Connect

    McClure, Zachary D.; Padilla Cintron, Cristina

    2016-09-27

    Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology creates monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.

  3. Mechanochemically synthesized cobalt monoselenide: structural characterization and optical properties

    NASA Astrophysics Data System (ADS)

    Achimovičová, Marcela; Daneu, Nina; Dutková, Erika; Zorkovská, Anna

    2017-03-01

    Chalcogenide semiconductor cobalt monoselenide, CoSe, was prepared from metallic cobalt and selenium powders in stoichiometric ratio by simple and fast mechanochemical synthesis after 120 min of milling in a planetary ball mill Pulverisette 6 (Fritsch, Germany) in an argon atmosphere. Crystal structure and morphology of the product were characterized by X-ray diffraction, specific surface area measurements, and transmission electron microscopy. X-ray diffraction analysis confirmed the hexagonal crystal structure of the product-CoSe (freboldite) with the average size of the crystallites 26 nm. Transmission electron microscopy analysis has revealed that CoSe nanostructures are composed of agglomerated and randomly oriented nanoparticles. The optical properties were studied using UV-Vis and photoluminescence spectroscopy. Mechanochemically synthesized CoSe nanostructures showed higher absorption in whole UV-Vis optical region and the determined band-gap energy 1.70 eV is blue-shifted relative to the bulk CoSe. Both UV-Vis and photoluminescence spectra indicate quantum size effect of CoSe nanocrystals.

  4. Peridynamic Multiscale Finite Element Methods

    SciTech Connect

    Costa, Timothy; Bond, Stephen D.; Littlewood, David John; Moore, Stan Gerald

    2015-12-01

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the

  5. Implementing Multiscale Fluid Simulations using Multiscale Universal Interface

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Hang; Kudo, Shuhei; Bian, Xin; Li, Zhen; Karniadakis, George; Crunch Team

    2015-11-01

    The power of multiscale fluid simulations lies in its ability to recover a hierarchical levels of details by choreographing multiple solvers, thus extending the length and time scale accessible given a fixed amount of computing power. However, practical difficulties frequently arise when stitching together solvers which were not designed to be coupled, and would often result in tedious and unsustainable coding effort. The Multiscale Universal Interface (MUI) aims to solve this problem by exposing a small set of generalized programming interfaces that can be dropped into existing solvers with minimal intrusion. Three deployment cases will be given for demonstrating real-world applications of MUI. In the first case we used MUI to implement simulations of polymer-grafted surface in flow using Smoothed Particle Hydrodynamics/Dissipative Particle Dynamics (SPH/DPD) and state variable coupling. In the second case we constructed coupled DPD/Finite Element Method (FEM) simulation of conjugate heat transfer in heterogeneous coolant. In the third case we built hybrid DPD/molecular dynamics (MD) simulations by blending the forces on atoms at interface regions. Supported by the DOE Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) and AFOSR FA9550-12-1-0463. Computer hours at ORNL allocated through INCITE BIP118 and DD102.

  6. Initial characterization of a highly contaminated high explosives outfall in preparation for in situ bioremediation

    SciTech Connect

    Betty A. Strietelmeier; Patrick J. Coyne; Patricia A. Leonard; W. Lamar Miller; Jerry R. Brian

    1999-12-01

    In situ bioremediation is a viable, cost-effective treatment for environmental contamination of many kinds. The feasibility of using biological techniques to remediate soils contaminated with high explosives (HE) requires laboratory evaluation before proceeding to a larger scale field operation. Laboratory investigations have been conducted at pilot scale which indicate that an anaerobic process could be successful at reducing levels of HE, primarily HMX, RDX and TNT, in contaminated soils. A field demonstration project has been designed to create an anaerobic environment for the degradation of HE materials. The first step in this project, initial characterization of the test area, was conducted and is the subject of this report. The levels of HE compounds found in the samples from the test area were higher than the EPA Method 8330 was able to extract without subsequent re-precipitation; therefore, a new method was developed using a superior extractant system. The test area sampling design was relatively simple as one might expect in an initial characterization. A total of 60 samples were each removed to a depth of 4 inches using a 1 inch diameter corer. The samples were spaced at relatively even intervals across a 20 foot cross-section through the middle of four 7-foot-long adjacent plots which are designed to be a part of an in situ bioremediation experiment. Duplicate cores were taken from each location for HE extraction and analysis in order to demonstrate and measure the heterogeneity of the contamination. Each soil sample was air dried and ball-milled to provide a homogeneous solid for extraction and analysis. Several samples had large consolidated pieces of what appeared to be solid HE. These were not ball-milled due to safety concerns, but were dissolved and the solutions were analyzed. The new extraction method was superior in that results obtained for several of the contaminants were up to 20 times those obtained with the EPA extraction method. The

  7. Towards a Multiscale Approach to Cybersecurity Modeling

    SciTech Connect

    Hogan, Emilie A.; Hui, Peter SY; Choudhury, Sutanay; Halappanavar, Mahantesh; Oler, Kiri J.; Joslyn, Cliff A.

    2013-11-12

    We propose a multiscale approach to modeling cyber networks, with the goal of capturing a view of the network and overall situational awareness with respect to a few key properties--- connectivity, distance, and centrality--- for a system under an active attack. We focus on theoretical and algorithmic foundations of multiscale graphs, coming from an algorithmic perspective, with the goal of modeling cyber system defense as a specific use case scenario. We first define a notion of \\emph{multiscale} graphs, in contrast with their well-studied single-scale counterparts. We develop multiscale analogs of paths and distance metrics. As a simple, motivating example of a common metric, we present a multiscale analog of the all-pairs shortest-path problem, along with a multiscale analog of a well-known algorithm which solves it. From a cyber defense perspective, this metric might be used to model the distance from an attacker's position in the network to a sensitive machine. In addition, we investigate probabilistic models of connectivity. These models exploit the hierarchy to quantify the likelihood that sensitive targets might be reachable from compromised nodes. We believe that our novel multiscale approach to modeling cyber-physical systems will advance several aspects of cyber defense, specifically allowing for a more efficient and agile approach to defending these systems.

  8. Multiscale analysis of neural spike trains.

    PubMed

    Ramezan, Reza; Marriott, Paul; Chenouri, Shojaeddin

    2014-01-30

    This paper studies the multiscale analysis of neural spike trains, through both graphical and Poisson process approaches. We introduce the interspike interval plot, which simultaneously visualizes characteristics of neural spiking activity at different time scales. Using an inhomogeneous Poisson process framework, we discuss multiscale estimates of the intensity functions of spike trains. We also introduce the windowing effect for two multiscale methods. Using quasi-likelihood, we develop bootstrap confidence intervals for the multiscale intensity function. We provide a cross-validation scheme, to choose the tuning parameters, and study its unbiasedness. Studying the relationship between the spike rate and the stimulus signal, we observe that adjusting for the first spike latency is important in cross-validation. We show, through examples, that the correlation between spike trains and spike count variability can be multiscale phenomena. Furthermore, we address the modeling of the periodicity of the spike trains caused by a stimulus signal or by brain rhythms. Within the multiscale framework, we introduce intensity functions for spike trains with multiplicative and additive periodic components. Analyzing a dataset from the retinogeniculate synapse, we compare the fit of these models with the Bayesian adaptive regression splines method and discuss the limitations of the methodology. Computational efficiency, which is usually a challenge in the analysis of spike trains, is one of the highlights of these new models. In an example, we show that the reconstruction quality of a complex intensity function demonstrates the ability of the multiscale methodology to crack the neural code.

  9. NOVEL PREPARATION AND MAGNETO CHEMICAL CHARACTERIZATION OF NANOPARTICLE MIXED ALCOHOL CATALYSTS

    SciTech Connect

    Seetala V. Naidu; Upali Siriwardane

    2005-05-24

    We have developed and streamlined the experimental systems: (a) Laser-induced solution deposition (LISD) photosynthesis, ball-milling, and chemical synthesis of Fe, Co, and Cu nanoparticle catalysts; (b) Sol-gel method for mesoporous {gamma}-Al{sub 2}O{sub 3}, SiO{sub 2}, hybrid alumina/silica granular supports; (c) Three sol-gel/oil-drop catalyst preparation methods to incorporate metal nanoparticles into mesoporous 1 mm granular supports; (d) Low-cost GC-TCD system with hydrogen as carrier gas for the determination of wide spectrum of alkanes produced during the F-T reactions; and (e) Gas-flow reactor and microchannel reactor for fast screening of catalysts. The LISD method could produce Co, Cu, and Fe (5 nm) nanoparticles, but in milligram quantities. We could produce nanoparticles in gram quantities using high-energy ball milling and chemical synthesis methods. Ball milling gave wide particle size distribution compared to the chemical synthesis method that gave almost uniform size ({approx}5 nm) particles. Metal nanoparticles Cu, Co, Fe, Cu/Co, Cu/Fe and Co/Fe were loaded (2-12 wt%) uniformly into {gamma}-Al{sub 2}O{sub 3}, SiO{sub 2}, or alumina/silica hybrid supports by combined sol-gel/oil-drop methods followed by calcination and hydrogenation steps, prior to syngas FT reaction studies. The properties of metal loaded {gamma}-Al{sub 2}O{sub 3} granules were compared for the two precursors: aluminum tri-sec-butoxide (ALTSB) and aluminum tri-iso-propoxide (ALTIP). The effect of solgel supports alumina, silica, and alumina/silica hybrid were examined on catalytic properties. Metal loading efficiencies for pure metal catalysts increased in the order Co, Cu and Fe in agreement with solubility of metal hydroxides. In case of mixed metals, Co and Cu seams to interfere and reduce Fe metal loading when metal nitrate solutions are used. The solubility differences of metal hydroxides would not allow precise control of metal loading. We have overcome this problem by

  10. Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale

    SciTech Connect

    Zabaras, Nicolas J.

    2016-11-08

    Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.

  11. Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Olson, Corwin; Wright, Cinnamon; Long, Anne

    2012-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.

  12. Multi-scale statistical analysis of coronal solar activity

    DOE PAGES

    Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.

    2016-07-08

    Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.

  13. The Total Variation Regularized L1 Model for Multiscale Decomposition

    DTIC Science & Technology

    2006-01-01

    measure theory approach, and Vixie and Esedoglu’s [43] work on characterizing the solutions of (1.2) below. In this paper we extend the existing...no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control ...2r . THE TV-L1 MODEL FOR MULTISCALE DECOMPOSITION 5 In general the minimizer of the TV-L1 is nonunique . In the above disk example, if λ = 2/r

  14. A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control

    PubMed Central

    Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  15. A Posteriori Analysis of Adaptive Multiscale Operator Decomposition Methods for Multiphysics Problems

    SciTech Connect

    Donald Estep; Michael Holst; Simon Tavener

    2010-02-08

    This project was concerned with the accurate computational error estimation for numerical solutions of multiphysics, multiscale systems that couple different physical processes acting across a large range of scales relevant to the interests of the DOE. Multiscale, multiphysics models are characterized by intimate interactions between different physics across a wide range of scales. This poses significant computational challenges addressed by the proposal, including: (1) Accurate and efficient computation; (2) Complex stability; and (3) Linking different physics. The research in this project focused on Multiscale Operator Decomposition methods for solving multiphysics problems. The general approach is to decompose a multiphysics problem into components involving simpler physics over a relatively limited range of scales, and then to seek the solution of the entire system through some sort of iterative procedure involving solutions of the individual components. MOD is a very widely used technique for solving multiphysics, multiscale problems; it is heavily used throughout the DOE computational landscape. This project made a major advance in the analysis of the solution of multiscale, multiphysics problems.

  16. Multiscale and cross entropy analysis of auroral and polar cap indices during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Gopinath, Sumesh; Prince, P. R.

    2016-01-01

    In order to improve general monoscale information entropy methods like permutation and sample entropy in characterizing the irregularity of complex magnetospheric system, it is necessary to extend these entropy metrics to a multiscale paradigm. We propose novel multiscale and cross entropy method for the analysis of magnetospheric proxies such as auroral and polar cap indices during geomagnetic disturbance times. Such modified entropy metrics are certainly advantageous in classifying subsystems such as individual contributions of auroral electrojets and field aligned currents to high latitude magnetic perturbations during magnetic storm and polar substorm periods. We show that the multiscale entropy/cross entropy of geomagnetic indices vary with scale factor. These variations can be attributed to changes in multiscale dynamical complexity of non-equilibrium states present in the magnetospheric system. These types of features arise due to imbalance in injection and dissipation rates of energy with variations in magnetospheric response to solar wind. We also show that the multiscale entropy values of time series decrease during geomagnetic storm times which reveals an increase in temporal correlations as the system gradually shifts to a more orderly state. Such variations in entropy values can be interpreted as the signature of dynamical phase transitions which arise at the periods of geomagnetic storms and substorms that confirms several previously found results regarding emergence of cooperative dynamics, self-organization and non-Markovian nature of magnetosphere during disturbed periods.

  17. A multi-scale micromechanical investigation on thermal conductivity of cement-based composites

    NASA Astrophysics Data System (ADS)

    Liu, Jiahan; Xu, Shilang; Zeng, Qiang

    2017-01-01

    Cement-based composites (CBCs) are one of the most widely used materials in construction. An appealing characterization of thermal conductivity of CBCs plays an essential role to evaluate the energy consumption in buildings and to facilitate the development of novel thermal insulation materials. Based on Eshelby equivalent inclusion principle and multi-scale methodology, this paper attempted to present a generalized multi-scale micromechanical model in terms of thermal performance of the CBCs, which covers some classic models for thermal conductivity estimation. A Mori-Tanaka homogenization method was applied to investigate the thermal conductivity of the CBCs of different compounds, water-to-cement ratios and curing ages. In addition, saturation degree factor was considered. The results of this model are in good agreement with the experimental value, showing that the multi-scale model developed in this paper is able to evaluate the thermal conductivity of the CBCs in different conditions.

  18. Magnetotellurics as a multiscale geophysical exploration method

    NASA Astrophysics Data System (ADS)

    Carbonari, Rolando; D'Auria, Luca; Di Maio, Rosa; Petrillo, Zaccaria

    2016-04-01

    Magnetotellurics (MT) is a geophysical method based on the use of natural electromagnetic signals to define subsurface electrical resistivity structure through electromagnetic induction. MT waves are generated in the Earth's atmosphere and magnetosphere by a range of physical processes, such as magnetic storms, micropulsations, lightning activity. Since the underground MT wave propagation is of diffusive type, the longer is the wavelength (i.e. the lower the wave frequency) the deeper will be the propagation depth. Considering the frequency band commonly used in MT prospecting (10-4 Hz to 104 Hz), the investigation depth ranges from few hundred meters to hundreds of kilometers. This means that magnetotellurics is inherently a multiscale method and, thus, appropriate for applications at different scale ranging from aquifer system characterization to petroleum and geothermal research. In this perspective, the application of the Wavelet transform to the MT data analysis could represent an excellent tool to emphasize characteristics of the MT signal at different scales. In this note, the potentiality of such an approach is studied. In particular, we show that the use of a Discrete Wavelet (DW) decomposition of measured MT time-series data allows to retrieve robust information about the subsoil resistivity over a wide range of spatial (depth) scales, spanning up to 5 orders of magnitude. Furthermore, the application of DWs to MT data analysis has proven to be a flexible tool for advanced data processing (e.g. non-linear filtering, denoising and clustering).

  19. Microfluidic assembly of multiscale soft materials

    NASA Astrophysics Data System (ADS)

    Leng, Lian; Guenther, Axel

    2010-11-01

    The vast majority of materials found in nature are characterized by length scales that span several orders of magnitude. Material properties such as porosity, permeability and elasticity are therefore locally and directionally tuned to their (biological) function and adapted to local environmental conditions. We use a massively scaled microfluidic approach to synthetically define multiscale complex fluids and soft materials with precisely tunable, non-isentropic bulk properties. Two or more fluids are separately introduced to the device that consists of fifteen vertically bonded and fluidically connected substrate layers, and guided to an exit section that either consists of 23 equidistantly spaced channels or a 23 x 15 channel array. The flow rates through individual channels are computer-controlled. Upon entering a reservoir in a flow-focusing configuration, a spatially organized fluid with characteristic length scales of 250 microns and 10 mm was defined, and retained via a chemical reaction. To illustrate different soft material morphologies in one, two or three directions, we demonstrate the formation of isolated fibers (1D); planar graded and barcoded materials (2D); graded bulk materials and perfusable matrices (3D).

  20. Multiscale Modeling of UHTC: Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  1. Multiscale modeling of polyisoprene on graphite

    SciTech Connect

    Pandey, Yogendra Narayan; Brayton, Alexander; Doxastakis, Manolis; Burkhart, Craig; Papakonstantopoulos, George J.

    2014-02-07

    The local dynamics and the conformational properties of polyisoprene next to a smooth graphite surface constructed by graphene layers are studied by a multiscale methodology. First, fully atomistic molecular dynamics simulations of oligomers next to the surface are performed. Subsequently, Monte Carlo simulations of a systematically derived coarse-grained model generate numerous uncorrelated structures for polymer systems. A new reverse backmapping strategy is presented that reintroduces atomistic detail. Finally, multiple extensive fully atomistic simulations with large systems of long macromolecules are employed to examine local dynamics in proximity to graphite. Polyisoprene repeat units arrange close to a parallel configuration with chains exhibiting a distribution of contact lengths. Efficient Monte Carlo algorithms with the coarse-grain model are capable of sampling these distributions for any molecular weight in quantitative agreement with predictions from atomistic models. Furthermore, molecular dynamics simulations with well-equilibrated systems at all length-scales support an increased dynamic heterogeneity that is emerging from both intermolecular interactions with the flat surface and intramolecular cooperativity. This study provides a detailed comprehensive picture of polyisoprene on a flat surface and consists of an effort to characterize such systems in atomistic detail.

  2. Sublimation-Condensation of Multiscale Tellurium Structures

    SciTech Connect

    Riley, Brian J.; Johnson, Bradley R.; Schaef, Herbert T.; Sundaram, S. K.

    2013-03-11

    This paper presents a simple technique for making tellurium (Te) nano and microtubes of widely varying dimensions with Multi-Scale Processing (MSP). In this process, the Te metal is placed in a reaction vessel (e.g., borosilicate or fused quartz), the vessel is evacuated, and then sealed under vacuum with a torch. The vessel is heat-treated in a temperature gradient where a portion of the tube that can also contain an additional substrate, is under a decreasing temperature gradient. Scanning and transmission electron microscopies have shown that multifaceted crystalline tubes have been formed extending from nano- up to micron-scale with diameters ranging from 51.2 ± 5.9 to 1042 ± 134 nm between temperatures of 157 and 224 °C, respectively. One-dimensional tubular features are seen at lower temperatures, while three-dimensional features, at the higher temperatures. These features have been characterized with X-ray diffraction and found to be trigonal Te with space group P3121. Our results show that the MSP can adequately be described using a simple Arrhenius equation.

  3. Multiscale Simulations of Energy Storage in Polymers

    NASA Astrophysics Data System (ADS)

    Ranjan, V.; van Duin, A.; Buongiorno Nardelli, M.; Bernholc, J.

    2012-02-01

    Polypropelene is the most used capacitor dielectric for high energy density storage. However, exotic materials such as copolymerized PVDF and, more recently, polythiourea, could potentially lead to an order of magnitude increase in the stored energy density [1,2]. In our previous investigations we demonstrated that PVDF-CTFE possesses non-linear dielectric properties under applied electric field. These are characterized by transitions from non-polar to polar phases that lead enhanced energy density. Recent experiments [3] have also suggested that polythiourea may be another potential system with high energy-density storage and low loss. However, the characteristics of this emerging material are not yet understood and even its preferred crystalline phases are not known. We have developed a multiscale approach to predicting polymer self-organization using the REAX force field and molecular dynamics simulations. We find that polythiourea chains tend to coalesce in nanoribbon-type structures and prefer an anti-polar interchain ordering similar to PVDF. These results suggest a possible role of topological phase transitions in shaping energy storage in this system.[4pt] [1] B. Chu et al, Science 313, 334 (2006).[0pt] [2] V. Ranjan et al., PRL 99, 047801 (2007).[0pt] [3] Q. Zhang, private communication

  4. On multiscale entropy analysis for physiological data

    NASA Astrophysics Data System (ADS)

    Thuraisingham, Ranjit A.; Gottwald, Georg A.

    2006-07-01

    We perform an analysis of cardiac data using multiscale entropy as proposed in Costa et al. [Multiscale entropy analysis of complex physiological time series, Phys. Rev. Lett. 89 (2002) 068102]. We reproduce the signatures of the multiscale entropy for the three cases of young healthy hearts, atrial fibrillation and congestive heart failure. We show that one has to be cautious how to interpret these signatures in terms of the underlying dynamics. In particular, we show that different dynamical systems can exhibit the same signatures depending on the sampling time, and that similar systems may have different signatures depending on the time scales involved. Besides the total amount of data we identify the sampling time, the correlation time and the period of possible nonlinear oscillations as important time scales which have to be involved in a detailed analysis of the signatures of multiscale entropies. We illustrate our ideas with the Lorenz equation as a simple deterministic chaotic system.

  5. Collaborating for Multi-Scale Chemical Science

    SciTech Connect

    William H. Green

    2006-07-14

    Advanced model reduction methods were developed and integrated into the CMCS multiscale chemical science simulation software. The new technologies were used to simulate HCCI engines and burner flames with exceptional fidelity.

  6. A framework for multi-scale modelling

    PubMed Central

    Chopard, B.; Borgdorff, Joris; Hoekstra, A. G.

    2014-01-01

    We review a methodology to design, implement and execute multi-scale and multi-science numerical simulations. We identify important ingredients of multi-scale modelling and give a precise definition of them. Our framework assumes that a multi-scale model can be formulated in terms of a collection of coupled single-scale submodels. With concepts such as the scale separation map, the generic submodel execution loop (SEL) and the coupling templates, one can define a multi-scale modelling language which is a bridge between the application design and the computer implementation. Our approach has been successfully applied to an increasing number of applications from different fields of science and technology. PMID:24982249

  7. Characterization of natural nanostructured hydroxyapatite obtained from the bones of Brazilian river fish

    NASA Astrophysics Data System (ADS)

    Coelho, T. M.; Nogueira, E. S.; Steimacher, A.; Medina, A. N.; Weinand, W. R.; Lima, W. M.; Baesso, M. L.; Bento, A. C.

    2006-11-01

    In this study, the characterization of the optical properties of natural hydroxyapatite (HAp) [Ca10(PO4)6(OH)2] is discussed. In the first stage of the experiment, natural HAp was processed from the bones of Brazilian river fish such as pintado (Pseudoplatystoma corruscans), jaú (Paulicea lutkeni), and cachara (Pseudoplatystoma fasciatum). The bones were calcined at 900°C for different amounts of time (4-12h) and reduced to powder using two different milling times (2 and 4h) in a high-energy ball mill, in order to determine the best procedure for obtaining natural nanostructured HAp powder for the study. In the second stage, material calcined for 8h was milled for 2, 4, 8, and 16h. The techniques of photoacoustic spectroscopy, scanning electron microscopy, and flame atomic absorption spectrometry were applied to characterize these samples. The O-H stretching shown by photoacoustic spectroscopy was correlated to the HAp nanostructure. Structural analysis indicated a Ca /P ratio close to 1.67 (˜1.64±0.04) and the presence of morphology and particle phase structure in the nanostructured HAp powder.

  8. MULTISCALE MODELING OF POLYMER NANOCOMPOSITES

    SciTech Connect

    Maiti, A

    2007-07-16

    Polymer Nanocomposites are an important class of nanomaterials with potential applications including but not limited to structural and cushion materials, electromagnetic and heat shields, conducting plastics, sensors, and catalysts for various chemical and bio processes. Success in most such applications hinges on molecular-level control of structure and assembly, and a deep understanding of how the overall morphology of various components and the interfaces between them affect the composite properties at the macroscale. The length and time-scales associated with such assemblies are prohibitively large for a full atomistic modeling. Instead we adopt a multiscale methodology in which atomic-level interactions between different components of a composite are incorporated into a coarse-grained simulation of the mesoscale morphology, which is then represented on a numerical grid and the macroscopic properties computed using a finite-elements method.

  9. Multiscale dynamics in relaxor ferroelectrics

    SciTech Connect

    Toulouse, J.; Cai, L; Pattnaik, R. K.; Boatner, Lynn A

    2014-01-01

    The multiscale dynamics of complex oxides is illustrated by pairs of mechanical resonances that are excited in the relaxor ferroelectric K1 xLixTaO3 (KLT). These macroscopic resonances are shown to originate in the collective dynamics of piezoelectric polar nanodomains (PND) interacting with the surrounding lattice. Their characteristic Fano lineshapes and rapid evolution with temperature reveal the coherent interplay between the piezoelectric oscillations and orientational relaxations of the PNDs at higher temperature and the contribution of heterophase oscillations near the phase transition. A theoretical model is presented, that describes the evolution of the resonances over the entire temperature range. Similar resonances are observed in other relaxors and must therefore be a common characteristics of these systems.

  10. Multiscale Theory of Dislocation Climb.

    PubMed

    Geslin, Pierre-Antoine; Appolaire, Benoît; Finel, Alphonse

    2015-12-31

    Dislocation climb is a ubiquitous mechanism playing a major role in the plastic deformation of crystals at high temperature. We propose a multiscale approach to model quantitatively this mechanism at mesoscopic length and time scales. First, we analyze climb at a nanoscopic scale and derive an analytical expression of the climb rate of a jogged dislocation. Next, we deduce from this expression the activation energy of the process, bringing valuable insights to experimental studies. Finally, we show how to rigorously upscale the climb rate to a mesoscopic phase-field model of dislocation climb. This upscaling procedure opens the way to large scale simulations where climb processes are quantitatively reproduced even though the mesoscopic length scale of the simulation is orders of magnitude larger than the atomic one.

  11. Multiscale modelling of DNA mechanics

    NASA Astrophysics Data System (ADS)

    Dršata, Tomáš; Lankaš, Filip

    2015-08-01

    Mechanical properties of DNA are important not only in a wide range of biological processes but also in the emerging field of DNA nanotechnology. We review some of the recent developments in modeling these properties, emphasizing the multiscale nature of the problem. Modern atomic resolution, explicit solvent molecular dynamics simulations have contributed to our understanding of DNA fine structure and conformational polymorphism. These simulations may serve as data sources to parameterize rigid base models which themselves have undergone major development. A consistent buildup of larger entities involving multiple rigid bases enables us to describe DNA at more global scales. Free energy methods to impose large strains on DNA, as well as bead models and other approaches, are also briefly discussed.

  12. Nanomechanics and Multiscale Modeling of Sustainable Concretes

    NASA Astrophysics Data System (ADS)

    Zanjani Zadeh, Vahid

    The work presented in this dissertation is aimed to implement and further develop the recent advances in material characterization for porous and heterogeneous materials and apply these advances to sustainable concretes. The studied sustainable concretes were concrete containing fly ash and slag, Kenaf fiber reinforced concrete, and lightweight aggregate concrete. All these cement-based materials can be categorized as sustainable concrete, by achieving concrete with high strength while reducing cement consumption. The nanoindentation technique was used to infer the nanomechanical properties of the active hydration phases in bulk cement paste. Moreover, the interfacial transition zone (ITZ) of lightweight aggregate, normal aggregate, and Kenaf fibers were investigated using nanoindentation and imagine techniques, despite difficulties regarding characterizing this region. Samples were also tested after exposure to high temperature to evaluate the damage mechanics of sustainable concretes. It has been shown that there is a direct correlation between the nature of the nanoscale structure of a cement-based material with its macroscopic properties. This was addressed in two steps in this dissertation: (i) Nanoscale characterization of sustainable cementitious materials to understand the different role of fly ash, slag, lightweight aggregate, and Kenaf fibers on nanoscale (ii) Link the nanoscale mechanical properties to macroscale ones with multiscale modeling. The grid indentation technique originally developed for normal concrete was extended to sustainable concretes with more complex microstructure. The relation between morphology of cement paste materials and submicron mechanical properties, indentation modulus, hardness, and dissipated energy is explained in detail. Extensive experimental and analytical approaches were focused on description of the materials' heterogeneous microstructure as function of their composition and physical phenomenon. Quantitative

  13. A mathematical framework for multiscale science and engineering : the variational multiscale method and interscale transfer operators.

    SciTech Connect

    Wagner, Gregory John; Collis, Samuel Scott; Templeton, Jeremy Alan; Lehoucq, Richard B.; Parks, Michael L.; Jones, Reese E.; Silling, Stewart Andrew; Scovazzi, Guglielmo; Bochev, Pavel B.

    2007-10-01

    This report is a collection of documents written as part of the Laboratory Directed Research and Development (LDRD) project A Mathematical Framework for Multiscale Science and Engineering: The Variational Multiscale Method and Interscale Transfer Operators. We present developments in two categories of multiscale mathematics and analysis. The first, continuum-to-continuum (CtC) multiscale, includes problems that allow application of the same continuum model at all scales with the primary barrier to simulation being computing resources. The second, atomistic-to-continuum (AtC) multiscale, represents applications where detailed physics at the atomistic or molecular level must be simulated to resolve the small scales, but the effect on and coupling to the continuum level is frequently unclear.

  14. Multiscale modeling of bone tissue with surface and permeability control.

    PubMed

    Gonçalves Coelho, Pedro; Rui Fernandes, Paulo; Carriço Rodrigues, Helder

    2011-01-11

    Natural biological materials usually present a hierarchical arrangement with various structural levels. The biomechanical behavior of the complex hierarchical structure of bone is investigated with models that address the various levels corresponding to different scales. Models that simulate the bone remodeling process concurrently at different scales are in development. We present a multiscale model for bone tissue adaptation that considers the two top levels, whole bone and trabecular architecture. The bone density distribution is calculated at the macroscale (whole bone) level, and the trabecular structure at the microscale level takes into account its mechanical properties as well as surface density and permeability. The bone remodeling process is thus formulated as a material distribution problem at both scales. At the local level, the biologically driven information of surface density and permeability characterizes the trabecular structure. The model is tested by a three-dimensional simulation of bone tissue adaptation for the human femur. The density distribution of the model shows good agreement with the actual bone density distribution. Permeability at the microstructural level assures interconnectivity of pores, which mimics the interconnectivity of trabecular bone essential for vascularization and transport of nutrients. The importance of this multiscale model relays on the flexibility to control the morphometric parameters that characterize the trabecular structure. Therefore, the presented model can be a valuable tool to define bone quality, to assist with diagnosis of osteoporosis, and to support the development of bone substitutes.

  15. Multi-scale curvature tensor analysis of machined surfaces

    NASA Astrophysics Data System (ADS)

    Bartkowiak, Tomasz; Brown, Christopher

    2016-12-01

    This paper demonstrates the use of multi-scale curvature analysis, an areal new surface characterization technique for better understanding topographies, for analyzing surfaces created by conventional machining and grinding. Curvature, like slope and area, changes with scale of observation, or calculation, on irregular surfaces, therefore it can be used for multi-scale geometric analysis. Curvatures on a surface should be indicative of topographically dependent behavior of a surface and curvatures are, in turn, influenced by the processing and use of the surface. Curvatures have not been well characterized previously. Curvature has been used for calculations in contact mechanics and for the evaluation of cutting edges. In the current work two parts were machined and then one of them was ground. The surface topographies were measured with a scanning laser confocal microscope. Plots of curvatures as a function of position and scale are presented, and the means and standard deviations of principal curvatures are plotted as a function of scale. Statistical analyses show the relations between curvature and these two manufacturing processes at multiple scales.

  16. Multi-element least square HDMR methods and their applications for stochastic multiscale model reduction

    SciTech Connect

    Jiang, Lijian Li, Xinping

    2015-08-01

    Stochastic multiscale modeling has become a necessary approach to quantify uncertainty and characterize multiscale phenomena for many practical problems such as flows in stochastic porous media. The numerical treatment of the stochastic multiscale models can be very challengeable as the existence of complex uncertainty and multiple physical scales in the models. To efficiently take care of the difficulty, we construct a computational reduced model. To this end, we propose a multi-element least square high-dimensional model representation (HDMR) method, through which the random domain is adaptively decomposed into a few subdomains, and a local least square HDMR is constructed in each subdomain. These local HDMRs are represented by a finite number of orthogonal basis functions defined in low-dimensional random spaces. The coefficients in the local HDMRs are determined using least square methods. We paste all the local HDMR approximations together to form a global HDMR approximation. To further reduce computational cost, we present a multi-element reduced least-square HDMR, which improves both efficiency and approximation accuracy in certain conditions. To effectively treat heterogeneity properties and multiscale features in the models, we integrate multiscale finite element methods with multi-element least-square HDMR for stochastic multiscale model reduction. This approach significantly reduces the original model's complexity in both the resolution of the physical space and the high-dimensional stochastic space. We analyze the proposed approach, and provide a set of numerical experiments to demonstrate the performance of the presented model reduction techniques. - Highlights: • Multi-element least square HDMR is proposed to treat stochastic models. • Random domain is adaptively decomposed into some subdomains to obtain adaptive multi-element HDMR. • Least-square reduced HDMR is proposed to enhance computation efficiency and approximation accuracy in certain

  17. Simulated shift work in rats perturbs multiscale regulation of locomotor activity

    PubMed Central

    Hsieh, Wan-Hsin; Escobar, Carolina; Yugay, Tatiana; Lo, Men-Tzung; Pittman-Polletta, Benjamin; Salgado-Delgado, Roberto; Scheer, Frank A. J. L.; Shea, Steven A.; Buijs, Ruud M.; Hu, Kun

    2014-01-01

    Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation. PMID:24829282

  18. Simulated shift work in rats perturbs multiscale regulation of locomotor activity.

    PubMed

    Hsieh, Wan-Hsin; Escobar, Carolina; Yugay, Tatiana; Lo, Men-Tzung; Pittman-Polletta, Benjamin; Salgado-Delgado, Roberto; Scheer, Frank A J L; Shea, Steven A; Buijs, Ruud M; Hu, Kun

    2014-07-06

    Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation.

  19. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation

    SciTech Connect

    Hou, Thomas; Efendiev, Yalchin; Tchelepi, Hamdi; Durlofsky, Louis

    2016-05-24

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics.

  20. Multiscale analysis and computation for flows in heterogeneous media

    SciTech Connect

    Efendiev, Yalchin; Hou, T. Y.; Durlofsky, L. J.; Tchelepi, H.

    2016-08-04

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics. Below, we present a brief overview of each of these contributions.

  1. Multiscale geometric modeling of macromolecules I: Cartesian representation

    NASA Astrophysics Data System (ADS)

    Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2014-01-01

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the

  2. LLNL's program on multiscale modeling of polycrystal plasticity

    SciTech Connect

    Diaz De La Rubia, T.; Holmes, N. H.; King, W. E.; Lassila, D. H.; Moriarty, J. A.; Nikkel, D. J.

    1998-04-27

    At LLNL a multiscale modeling program based on information-passing has been established for modeling the strength properties of a body-centered-cubic metal (tantalum) ,. under conditions of extreme plastic deformation. The plastic deformation experienced by an explosively-formed shaped-charge jet is an example of "extreme deformation". The shaped charge liner material undergoes high strain rate deformation at high hydrostatic pressure. The constitutive model for flow stress, which describes the deformation, is highly dependent on pressure, temperature, and strain-rate. Current material models can not be extrapolated to these extreme conditions because the underlying mechanisms of plastic deformation are poorly reflected in the models and laboratory experiments are limited to pressures orders of magnitude less than actual pressures. This disparity between actual deformation conditions and those that can be attained in laboratory experiments is the principle motivation behind the multiscale modeling program. The fundamental elements of LLNL's multiscale modeling program are distinct models at the atomistic, microscale and mesoscale/continuum length scales. The information that needs to be passed from the lower to higher length scales has been carefully defined to bound the levels of effort required to ''bridge'' length scales. Information that needs to be generated by the different simulations has been specified by a multidisciplinary steering group comprised of physicists, materials scientists and engineers. The ultimate goal of the program is to provide critical information on strength properties to be used in continuum computer code simulations. The technical work-plan involves three principle areas which are highly coupled: 1) simulation development, 2) deformation experiments and 3) characterizations of deformed crystals. The three work areas are presented which provide examples of the progress of LLNL's program.

  3. Local variance for multi-scale analysis in geomorphometry

    PubMed Central

    Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas

    2011-01-01

    Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements. PMID:21779138

  4. Multiscale geometric modeling of macromolecules I: Cartesian representation

    PubMed Central

    Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo Wei

    2013-01-01

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the

  5. Preparation and Characterization of Bi2Te3/Graphite/Polythiophene Thermoelectric Composites

    NASA Astrophysics Data System (ADS)

    Lai, Chunhua; Li, Junjie; Pan, Chengjun; Wang, Lei; Bai, Xiaojun

    2016-10-01

    The Bi2Te3/graphite/polythiophene composites were prepared by solution mixing, mechanical ball milling, cold pressing and spark plasma sintering (SPS) in order to utilize and integrate the high Seebeck coefficient of Bi2Te3, high electrical conductivity of graphite (G) and low thermal conductivity of polythiophene (PTh). The structures and properties of the composites were characterized by scanning electron microscope, thermo gravimetric analyzer, x-ray diffraction and ULVAC ZEM-2 Seebeck coefficient measurement. The results showed that the related components were uniformly dispersed in the composites, and the electrical conductivity of the composites increased significantly with increasing G content. A small addition of Bi2Te3 to the matrix contributed to an increase in Seebeck coefficient and the thermal conductivity of the composites stayed at a low level owing to the low thermal conductivity of PTh. These composites prepared by SPS show an increase in Seebeck coefficient but a decrease in electrical conductivity as compared to corresponding composites prepared by cold pressing.

  6. Synthesis and characterization of AA 6061- Graphene - SiC hybrid nanocomposites processed through microwave sintering

    NASA Astrophysics Data System (ADS)

    Jauhari, Siddhartha; Prashantha Kumar, H. G.; Xavior, . M. Anthony

    2016-09-01

    As one of the most essential industrial and engineering materials, Aluminum alloy 6061 have been extensively used in automobile industries and many engineering applications due to its impending properties like low density, good structural rigidity, feasibility to incorporate and enhance the strength by addition of various reinforcing materials. The essential criteria in enhancing the properties without sacrificing the ductility is always challenging in Aluminum and its alloys based composites. In the recent years, enormous research has been carried on ceramic based and carbon based reinforcement materials used in Aluminum metal matrix composites. But the combination of both is never tried so far due to lack of processing methods. The current research work is carried out to process, synthesize and perform the characterization of Al 6061 matrix nanocomposites with Graphene of flake size 10 μm and SiC of particle size 10 pm as reinforcement combinations in various proportions (weight percentage) which are carried out through powder metallurgy (PM) approach. The powders are processed through ultrasonic liquid processing method and the mixtures were ball milled by adding SiC particles followed by uniaxial hot compaction. Thus prepared compacts are sintered (conventional and microwave) and mechanical properties like hardness, density are investigated as a function of Graphene and SiC concentrations (weight fraction). Relevant strengthening mechanism involved in the Al6061 - Graphene -SiC composites in comparison with monolithic Al 6061 alloy were discussed.

  7. Structural characterization of mechanically milled ZnO: influence of zirconia milling media

    NASA Astrophysics Data System (ADS)

    Vojisavljević, K.; Šćepanović, M.; Srećković, T.; Grujić-Brojčin, M.; Branković, Z.; Branković, G.

    2008-11-01

    Zinc oxide nanoparticles were obtained by milling in a planetary ball mill with a zirconia milling assembly for up to 5 h in air. The samples were characterized by scanning electron microscopy, x-ray diffraction (XRD) and Raman spectroscopy methods. The deviation of the lattice parameters from single crystal values was related to defect creation and increase of strain inside the hexagonal lattice of milled ZnO nanoparticles. The observed redshift and peak broadening of the major first-order Raman modes were ascribed to the formation of intrinsic defects by mechanical milling combined with the effects of phonon confinement in nanosized powders. To investigate the type of intrinsic defects and impurities introduced during milling, it was necessary to analyze both milled and thermally treated ZnO. After thermal treatment, the intensity of the Raman spectra increased and the peak positions reverted to values similar to those in unmilled ZnO powder, pointing to defect annihilation. XRD patterns of sintered samples confirmed the existence of zirconia impurities and the Rietveld analysis revealed a small amount of zirconium introduced in the ZnO crystal lattice on the Zn sites or interstitial sites. The large influence of those impurities on the micro-Raman spectra of thermally treated samples was observed in this study.

  8. Preparation and characterization of physically modified glass beads used as model carriers in dry powder inhalers.

    PubMed

    Zellnitz, Sarah; Redlinger-Pohn, Jakob Dominik; Kappl, Michael; Schroettner, Hartmuth; Urbanetz, Nora Anne

    2013-04-15

    The aim of this work is the physical modification and characterization of the surface topography of glass beads used as model carriers in dry powder inhalers (DPIs). By surface modification the contact area between drug and carrier and thereby interparticle forces may be modified. Thus the performance of DPIs that relies on interparticle interactions may be improved. Glass beads were chosen as model carriers because various prospects of physical surface modification may be applied without affecting other factors also impacting interparticle interactions like particle size and shape. To generate rough surfaces glass beads were processed mechanically by friction and impaction in a ball mill with different grinding materials that were smaller and harder with respect to the glass beads. By varying the grinding time (4 h, 8 h) and by using different grinding media (tungsten carbide, quartz) surfaces with different shades of roughness were generated. Depending on the hardness of the grinding material and the grinding time the surface roughness was more or less pronounced. Surface roughness parameters and specific surface area were determined via several complementary techniques in order to get an enhanced understanding of the impact of the modifying procedure on the surface properties of the glass beads.

  9. Physico-chemical characterization and biological response of Labeo rohita-derived hydroxyapatite scaffold.

    PubMed

    Mondal, S; Mondal, A; Mandal, N; Mondal, B; Mukhopadhyay, S S; Dey, A; Singh, S

    2014-07-01

    The chemically treated Labeo rohita scale is used for synthesizing hydroxyapatite (HAp) biomaterials. Thermogravimetric and differential thermal analyses of fish scale materials reveal the different phase changes with temperature and find out the suitable calcination temperatures. The composition and structures of wet ball-milled calcined HAp powders are characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray analysis (EDX). The EDX as well as chemical analysis of fish scale-derived apatite materials confirms that the Ca/P ratio is 1.71. The compressive stress, hardness and porosity have been evaluated on sintered HAp biomaterials. The cell attachment on HAp surfaces, cytotoxicity evaluation and MTT assay, which are carried out in RAW macrophage-like cell line media demonstrate good biocompatibility. The histological analysis also supports the bioaffinity of processed HAp biomaterials in Wistar rat model for investigating the contact reaction and stability at the artificial or natural prosthesis interface.

  10. Growth and characterization of boron nitride nanotubes having novel morphologies using mechanothermal process

    NASA Astrophysics Data System (ADS)

    Singhal, Sunil Kumar; Srivastava, Avanish Kumar; Dilawar, Nita; Gupta, Anil Kumar

    2010-08-01

    We report an effective approach to synthesize boron nitride (BN) nanotubes having novel morphologies employing a mechanothermal process. In this process, a precursor containing B-N-O-Fe was first synthesized by ball milling a 1:1 mixture of elemental boron (B) and hexagonal boron nitride (hBN) and iron oxide (about 6 wt%) for about 36 h in the presence of ammonia gas. BN nanotubes were grown by annealing this precursor in ammonia gas atmosphere at 1,250-1,350 °C for about 3 h. The nanotubes produced using this technique were found to evolve structures having Y-junctions and bamboo-like morphology with an average diameter of about 30-100 nm and length several microns. A few nanotubes with partially folded in diameter were also found to co-exist along with other nanotubes. These nanotubes were characterized using various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. The growth mechanism for the formation of these novel morphologies in BN nanotubes is also discussed.

  11. Multiscale model approach for magnetization dynamics simulations

    NASA Astrophysics Data System (ADS)

    De Lucia, Andrea; Krüger, Benjamin; Tretiakov, Oleg A.; Kläui, Mathias

    2016-11-01

    Simulations of magnetization dynamics in a multiscale environment enable the rapid evaluation of the Landau-Lifshitz-Gilbert equation in a mesoscopic sample with nanoscopic accuracy in areas where such accuracy is required. We have developed a multiscale magnetization dynamics simulation approach that can be applied to large systems with spin structures that vary locally on small length scales. To implement this, the conventional micromagnetic simulation framework has been expanded to include a multiscale solving routine. The software selectively simulates different regions of a ferromagnetic sample according to the spin structures located within in order to employ a suitable discretization and use either a micromagnetic or an atomistic model. To demonstrate the validity of the multiscale approach, we simulate the spin wave transmission across the regions simulated with the two different models and different discretizations. We find that the interface between the regions is fully transparent for spin waves with frequency lower than a certain threshold set by the coarse scale micromagnetic model with no noticeable attenuation due to the interface between the models. As a comparison to exact analytical theory, we show that in a system with a Dzyaloshinskii-Moriya interaction leading to spin spirals, the simulated multiscale result is in good quantitative agreement with the analytical calculation.

  12. Multiscale Modeling of Hematologic Disorders

    SciTech Connect

    Fedosov, Dmitry A.; Pivkin, Igor; Pan, Wenxiao; Dao, Ming; Caswell, Bruce; Karniadakis, George E.

    2012-01-28

    Parasitic infectious diseases and other hereditary hematologic disorders are often associated with major changes in the shape and viscoelastic properties of red blood cells (RBCs). Such changes can disrupt blood flow and even brain perfusion, as in the case of cerebral malaria. Modeling of these hematologic disorders requires a seamless multiscale approach, where blood cells and blood flow in the entire arterial tree are represented accurately using physiologically consistent parameters. In this chapter, we present a computational methodology based on dissipative particle dynamics (DPD) which models RBCs as well as whole blood in health and disease. DPD is a Lagrangian method that can be derived from systematic coarse-graining of molecular dynamics but can scale efficiently up to small arteries and can also be used to model RBCs down to spectrin level. To this end, we present two complementary mathematical models for RBCs and describe a systematic procedure on extracting the relevant input parameters from optical tweezers and microfluidic experiments for single RBCs. We then use these validated RBC models to predict the behavior of whole healthy blood and compare with experimental results. The same procedure is applied to modeling malaria, and results for infected single RBCs and whole blood are presented.

  13. MULTISCALE DISCRETIZATION OF SHAPE CONTOURS

    SciTech Connect

    Prasad, L.; Rao, R.

    2000-09-01

    We present an efficient multi-scale scheme to adaptively approximate the continuous (or densely sampled) contour of a planar shape at varying resolutions. The notion of shape is intimately related to the notion of contour, and the efficient representation of the contour of a shape is vital to a computational understanding of the shape. Any polygonal approximation of a planar smooth curve is equivalent to a piecewise constant approximation of the parameterized X and Y coordinate functions of a discrete point set obtained by densely sampling the curve. Using the Haar wavelet transform for the piecewise approximation yields a hierarchical scheme in which the size of the approximating point set is traded off against the morphological accuracy of the approximation. Our algorithm compresses the representation of the initial shape contour to a sparse sequence of points in the plane defining the vertices of the shape's polygonal approximation. Furthermore, it is possible to control the overall resolution of the approximation by a single, scale-independent parameter.

  14. Multiscale modelling of evolving foams

    NASA Astrophysics Data System (ADS)

    Saye, R. I.; Sethian, J. A.

    2016-06-01

    We present a set of multi-scale interlinked algorithms to model the dynamics of evolving foams. These algorithms couple the key effects of macroscopic bubble rearrangement, thin film drainage, and membrane rupture. For each of the mechanisms, we construct consistent and accurate algorithms, and couple them together to work across the wide range of space and time scales that occur in foam dynamics. These algorithms include second order finite difference projection methods for computing incompressible fluid flow on the macroscale, second order finite element methods to solve thin film drainage equations in the lamellae and Plateau borders, multiphase Voronoi Implicit Interface Methods to track interconnected membrane boundaries and capture topological changes, and Lagrangian particle methods for conservative liquid redistribution during rearrangement and rupture. We derive a full set of numerical approximations that are coupled via interface jump conditions and flux boundary conditions, and show convergence for the individual mechanisms. We demonstrate our approach by computing a variety of foam dynamics, including coupled evolution of three-dimensional bubble clusters attached to an anchored membrane and collapse of a foam cluster.

  15. Stochastic multiscale modeling of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Wen, Bin

    Mechanical properties of engineering materials are sensitive to the underlying random microstructure. Quantification of mechanical property variability induced by microstructure variation is essential for the prediction of extreme properties and microstructure-sensitive design of materials. Recent advances in high throughput characterization of polycrystalline microstructures have resulted in huge data sets of microstructural descriptors and image snapshots. To utilize these large scale experimental data for computing the resulting variability of macroscopic properties, appropriate mathematical representation of microstructures is needed. By exploring the space containing all admissible microstructures that are statistically similar to the available data, one can estimate the distribution/envelope of possible properties by employing efficient stochastic simulation methodologies along with robust physics-based deterministic simulators. The focus of this thesis is on the construction of low-dimensional representations of random microstructures and the development of efficient physics-based simulators for polycrystalline materials. By adopting appropriate stochastic methods, such as Monte Carlo and Adaptive Sparse Grid Collocation methods, the variability of microstructure-sensitive properties of polycrystalline materials is investigated. The primary outcomes of this thesis include: (1) Development of data-driven reduced-order representations of microstructure variations to construct the admissible space of random polycrystalline microstructures. (2) Development of accurate and efficient physics-based simulators for the estimation of material properties based on mesoscale microstructures. (3) Investigating property variability of polycrystalline materials using efficient stochastic simulation methods in combination with the above two developments. The uncertainty quantification framework developed in this work integrates information science and materials science, and

  16. Prediction of hydraulic and electrical transport properties of sandstone with multiscale lattice Boltzmann/finite element simulation on microtomographic images

    NASA Astrophysics Data System (ADS)

    Wong, T.; Sun, W.

    2012-12-01

    Microcomputed tomography can be used to characterize the geometry of the pore space of a sedimentary rock, with resolution that is sufficiently refined for the realistic simulation of physical properties based on the 3D image. Significant advances have been made on the characterization of pore size distribution and connectivity, development of techniques such as lattice Boltzmann method to simulate permeability, and its upscaling. Sun, Andrade and Rudnicki (2011) recently introduced a multiscale method that dynamically links these three aspects, which were often treated separately in previous computational schemes. In this study, we improve the efficiency of this multiscale method by introducing a flood-fill algorithm to determine connectivity of the pores, followed by a multiscale lattice Boltzmann/finite element calculation to obtain homogenized effective anisotropic permeability. The improved multiscale method also includes new capacity to consistently determine electrical conductivity and formation factor from CT images. Furthermore, we also introduce a level set based method that transforms pore geometry to finite element mesh and thus enables direct simulation of pore-scale flow with finite element method. When applied to the microCT data acquired by Lindquist et al. (2000) for four Fontainebleau sandstone samples with porosities ranging from 7.5% to 22%, this multiscale method has proved to be computationally efficient and our simulations has provided new insights into the relation among permeability, pore geometry and connectivity.

  17. A Hybrid Multiscale Framework for Subsurface Flow and Transport Simulations

    SciTech Connect

    Scheibe, Timothy D.; Yang, Xiaofan; Chen, Xingyuan; Hammond, Glenn E.

    2015-06-01

    Extensive research efforts have been invested in reducing model errors to improve the predictive ability of biogeochemical earth and environmental system simulators, with applications ranging from contaminant transport and remediation to impacts of biogeochemical elemental cycling (e.g., carbon and nitrogen) on local ecosystems and regional to global climate. While the bulk of this research has focused on improving model parameterizations in the face of observational limitations, the more challenging type of model error/uncertainty to identify and quantify is model structural error which arises from incorrect mathematical representations of (or failure to consider) important physical, chemical, or biological processes, properties, or system states in model formulations. While improved process understanding can be achieved through scientific study, such understanding is usually developed at small scales. Process-based numerical models are typically designed for a particular characteristic length and time scale. For application-relevant scales, it is generally necessary to introduce approximations and empirical parameterizations to describe complex systems or processes. This single-scale approach has been the best available to date because of limited understanding of process coupling combined with practical limitations on system characterization and computation. While computational power is increasing significantly and our understanding of biological and environmental processes at fundamental scales is accelerating, using this information to advance our knowledge of the larger system behavior requires the development of multiscale simulators. Accordingly there has been much recent interest in novel multiscale methods in which microscale and macroscale models are explicitly coupled in a single hybrid multiscale simulation. A limited number of hybrid multiscale simulations have been developed for biogeochemical earth systems, but they mostly utilize application

  18. A Hybrid Multiscale Framework for Subsurface Flow and Transport Simulations

    DOE PAGES

    Scheibe, Timothy D.; Yang, Xiaofan; Chen, Xingyuan; ...

    2015-06-01

    Extensive research efforts have been invested in reducing model errors to improve the predictive ability of biogeochemical earth and environmental system simulators, with applications ranging from contaminant transport and remediation to impacts of biogeochemical elemental cycling (e.g., carbon and nitrogen) on local ecosystems and regional to global climate. While the bulk of this research has focused on improving model parameterizations in the face of observational limitations, the more challenging type of model error/uncertainty to identify and quantify is model structural error which arises from incorrect mathematical representations of (or failure to consider) important physical, chemical, or biological processes, properties, ormore » system states in model formulations. While improved process understanding can be achieved through scientific study, such understanding is usually developed at small scales. Process-based numerical models are typically designed for a particular characteristic length and time scale. For application-relevant scales, it is generally necessary to introduce approximations and empirical parameterizations to describe complex systems or processes. This single-scale approach has been the best available to date because of limited understanding of process coupling combined with practical limitations on system characterization and computation. While computational power is increasing significantly and our understanding of biological and environmental processes at fundamental scales is accelerating, using this information to advance our knowledge of the larger system behavior requires the development of multiscale simulators. Accordingly there has been much recent interest in novel multiscale methods in which microscale and macroscale models are explicitly coupled in a single hybrid multiscale simulation. A limited number of hybrid multiscale simulations have been developed for biogeochemical earth systems, but they mostly utilize application

  19. The center for multiscale plasma dynamics

    SciTech Connect

    Kevrekidis, Yannis G

    2015-01-20

    This final report describes research performed in Princeton University, led by Professor Yannis G. Kevrekidis, over a period of six years (August 1, 2014 to July 31, 2010, including a one-year, no-cost extension) as part of the Center for Multiscale Plasma Dynamics led by the University of Maryland. The work resulted in the development and implementation of several multiscale algorithms based on the equation-free approach pioneered by the PI, including its applications in plasma dynamics problems. These algoriithms include coarse projective integration and coarse stability/bifurcation computations. In the later stages of the work, new links were made between this multiscale, coarse-graining approach and advances in data mining/machine learning algorithms.

  20. Multiscale Computational Models of Complex Biological Systems

    PubMed Central

    Walpole, Joseph; Papin, Jason A.; Peirce, Shayn M.

    2014-01-01

    Integration of data across spatial, temporal, and functional scales is a primary focus of biomedical engineering efforts. The advent of powerful computing platforms, coupled with quantitative data from high-throughput experimental platforms, has allowed multiscale modeling to expand as a means to more comprehensively investigate biological phenomena in experimentally relevant ways. This review aims to highlight recently published multiscale models of biological systems while using their successes to propose the best practices for future model development. We demonstrate that coupling continuous and discrete systems best captures biological information across spatial scales by selecting modeling techniques that are suited to the task. Further, we suggest how to best leverage these multiscale models to gain insight into biological systems using quantitative, biomedical engineering methods to analyze data in non-intuitive ways. These topics are discussed with a focus on the future of the field, the current challenges encountered, and opportunities yet to be realized. PMID:23642247

  1. Liquid crystal lens focusing in monocentric multiscale imagers

    NASA Astrophysics Data System (ADS)

    Stamenov, Igor; Tremblay, Eric; Baker, Katherine A.; McLaughlin, Paul; Ford, Joseph E.

    2012-10-01

    In multiscale imagers a single objective lens is shared by multiple secondary optical systems, so that a high-resolution wide-angle image is acquired in overlapping fields sensed by multiple conventional focal planes. In the "AWARE2" 2 Gigapixel imager, F/2.4 optics cover a 120 degree field of view using a monocentric glass primary lens shared by 221 molded plastic subimagers, each with a 14 Megapixel focal plane. Such imagers can independently focus parts of the image field, allowing wide-angle imaging over relatively close and deep image fields. However, providing hundreds of independent mechanical focus adjustments has a significant system impact in terms of complexity, bulk, and cost. In this paper we explore the use of an electronically controlled liquid crystal lens for focus of multiscale imagers in general, and demonstrate use with the AWARE2 imager optics. The Lens Vector Auto Focus (LVAF) liquid crystal lens provides up to 5 diopters of optical power over a 2.2mm aperture diameter, the maximum currently available aperture. However, a custom lens using the same materials and basic structure can provide the 5 diopters power and 6.4 mm aperture required to obtain full resolution overlapping image fields in the AWARE2 imager. We characterize the LVAF lens and the optical performance of the LVAF lens in the current AWARE2 prototype, comparing the measured and optically modeled resolution, and demonstrating software control of focus from infinity to an 2m object distance.

  2. Dynamics of a neural system with a multiscale architecture

    PubMed Central

    Breakspear, Michael; Stam, Cornelis J

    2005-01-01

    The architecture of the brain is characterized by a modular organization repeated across a hierarchy of spatial scales—neurons, minicolumns, cortical columns, functional brain regions, and so on. It is important to consider that the processes governing neural dynamics at any given scale are not only determined by the behaviour of other neural structures at that scale, but also by the emergent behaviour of smaller scales, and the constraining influence of activity at larger scales. In this paper, we introduce a theoretical framework for neural systems in which the dynamics are nested within a multiscale architecture. In essence, the dynamics at each scale are determined by a coupled ensemble of nonlinear oscillators, which embody the principle scale-specific neurobiological processes. The dynamics at larger scales are ‘slaved’ to the emergent behaviour of smaller scales through a coupling function that depends on a multiscale wavelet decomposition. The approach is first explicated mathematically. Numerical examples are then given to illustrate phenomena such as between-scale bifurcations, and how synchronization in small-scale structures influences the dynamics in larger structures in an intuitive manner that cannot be captured by existing modelling approaches. A framework for relating the dynamical behaviour of the system to measured observables is presented and further extensions to capture wave phenomena and mode coupling are suggested. PMID:16087448

  3. Multiscale Modeling of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  4. Physicochemical characterizations of nano-palm oil fuel ash

    SciTech Connect

    Rajak, Mohd Azrul Abdul; Majid, Zaiton Abdul; Ismail, Mohammad

    2015-07-22

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m{sup 2}/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.

  5. Multiscale information modelling for heart morphogenesis

    NASA Astrophysics Data System (ADS)

    Abdulla, T.; Imms, R.; Schleich, J. M.; Summers, R.

    2010-07-01

    Science is made feasible by the adoption of common systems of units. As research has become more data intensive, especially in the biomedical domain, it requires the adoption of a common system of information models, to make explicit the relationship between one set of data and another, regardless of format. This is being realised through the OBO Foundry to develop a suite of reference ontologies, and NCBO Bioportal to provide services to integrate biomedical resources and functionality to visualise and create mappings between ontology terms. Biomedical experts tend to be focused at one level of spatial scale, be it biochemistry, cell biology, or anatomy. Likewise, the ontologies they use tend to be focused at a particular level of scale. There is increasing interest in a multiscale systems approach, which attempts to integrate between different levels of scale to gain understanding of emergent effects. This is a return to physiological medicine with a computational emphasis, exemplified by the worldwide Physiome initiative, and the European Union funded Network of Excellence in the Virtual Physiological Human. However, little work has been done on how information modelling itself may be tailored to a multiscale systems approach. We demonstrate how this can be done for the complex process of heart morphogenesis, which requires multiscale understanding in both time and spatial domains. Such an effort enables the integration of multiscale metrology.

  6. Single image defogging by multiscale depth fusion.

    PubMed

    Wang, Yuan-Kai; Fan, Ching-Tang

    2014-11-01

    Restoration of fog images is important for the deweathering issue in computer vision. The problem is ill-posed and can be regularized within a Bayesian context using a probabilistic fusion model. This paper presents a multiscale depth fusion (MDF) method for defog from a single image. A linear model representing the stochastic residual of nonlinear filtering is first proposed. Multiscale filtering results are probabilistically blended into a fused depth map based on the model. The fusion is formulated as an energy minimization problem that incorporates spatial Markov dependence. An inhomogeneous Laplacian-Markov random field for the multiscale fusion regularized with smoothing and edge-preserving constraints is developed. A nonconvex potential, adaptive truncated Laplacian, is devised to account for spatially variant characteristics such as edge and depth discontinuity. Defog is solved by an alternate optimization algorithm searching for solutions of depth map by minimizing the nonconvex potential in the random field. The MDF method is experimentally verified by real-world fog images including cluttered-depth scene that is challenging for defogging at finer details. The fog-free images are restored with improving contrast and vivid colors but without over-saturation. Quantitative assessment of image quality is applied to compare various defog methods. Experimental results demonstrate that the accurate estimation of depth map by the proposed edge-preserved multiscale fusion should recover high-quality images with sharp details.

  7. Multiscale mapping: Physical concepts and mathematical techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is an introductory summary for papers either invited or a part of a symposium at the 18th World Congress of Soil Science, July 2006 in Philadelphia. The symposium, titled "Multiscale Mapping of Soil Properties for Environmental Studies, Agriculture, and Decision Making," focused on techniques u...

  8. Collaboratory for Multiscale Chemical Science (CMCS)

    SciTech Connect

    Allison, Thomas C

    2012-07-03

    This document provides details of the contributions made by NIST to the Collaboratory for Multiscale Chemical Science (CMCS) project. In particular, efforts related to the provision of data (and software in support of that data) relevant to the combustion pilot project are described.

  9. Effect of milling conditions on solid-state amorphization of glipizide, and characterization and stability of solid forms.

    PubMed

    Xu, Kailin; Xiong, Xinnuo; Zhai, Yuanming; Wang, Lili; Li, Shanshan; Yan, Jin; Wu, Di; Ma, Xiaoli; Li, Hui

    2016-09-10

    In this study, the amorphization of glipizide was systematically investigated through high-energy ball milling at different temperatures. The results of solid-state amorphization through milling indicated that glipizide underwent direct crystal-to-glass transformation at 15 and 25°C and crystal-to-glass-to-crystal conversion at 35°C; hence, milling time and temperature had significant effects on the amorphization of glipizide, which should be effectively controlled to obtain totally amorphous glipizide. Solid forms of glipizide were detailedly characterized through analyses of X-ray powder diffraction, morphology, thermal curves, vibrational spectra, and solid-state nuclear magnetic resonance. The physical stability of solid forms was investigated under different levels of relative humidity (RH) at 25°C. Forms I and III are kinetically stable and do not form any new solid-state forms at various RH levels. By contrast, Form II is kinetically unstable, undergoing direct glass-to-crystal transformation when RH levels higher than 32.8%. Therefore, stability investigation indicated that Form II should be stored under relatively dry conditions to prevent rapid crystallization. High temperatures can also induce the solid-state transformation of Form II; the conversion rate increased with increasing temperature.

  10. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    SciTech Connect

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; Chung, Eric T.; Efendiev, Yalchin

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.

  11. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    SciTech Connect

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; Chung, Eric T.; Efendiev, Yalchin

    2015-08-15

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.

  12. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE PAGES

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; ...

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  13. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe

    PubMed Central

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-01-01

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow. PMID:26833427

  14. Fast Translation Invariant Multiscale Image Denoising.

    PubMed

    Li, Meng; Ghosal, Subhashis

    2015-12-01

    Translation invariant (TI) cycle spinning is an effective method for removing artifacts from images. However, for a method using O(n) time, the exact TI cycle spinning by averaging all possible circulant shifts requires O(n(2)) time where n is the number of pixels, and therefore is not feasible in practice. Existing literature has investigated efficient algorithms to calculate TI version of some denoising approaches such as Haar wavelet. Multiscale methods, especially those based on likelihood decomposition, such as penalized likelihood estimator and Bayesian methods, have become popular in image processing because of their effectiveness in denoising images. As far as we know, there is no systematic investigation of the TI calculation corresponding to general multiscale approaches. In this paper, we propose a fast TI (FTI) algorithm and a more general k-TI (k-TI) algorithm allowing TI for the last k scales of the image, which are applicable to general d-dimensional images (d = 2, 3, …) with either Gaussian or Poisson noise. The proposed FTI leads to the exact TI estimation but only requires O(n log2 n) time. The proposed k-TI can achieve almost the same performance as the exact TI estimation, but requires even less time. We achieve this by exploiting the regularity present in the multiscale structure, which is justified theoretically. The proposed FTI and k-TI are generic in that they are applicable on any smoothing techniques based on the multiscale structure. We demonstrate the FTI and k-TI algorithms on some recently proposed state-of-the-art methods for both Poisson and Gaussian noised images. Both simulations and real data application confirm the appealing performance of the proposed algorithms. MATLAB toolboxes are online accessible to reproduce the results and be implemented for general multiscale denoising approaches provided by the users.

  15. Effect of Clay Amounts on Morphology and Mechanical Performances in Multiscale PET Composites

    NASA Astrophysics Data System (ADS)

    Barbosa, C. N.; Chabert, F.; Nassiet, V.; Viana, J. C.; Pereira, P.

    2011-05-01

    This work presents an investigation of the properties of poly(ethylene terephthalate)/glass fibres/nanoclay multiscale composites. The aim is to demonstrate the effect of adding various clay amounts on the morphology and mechanical performance of multiscale PET composites. Multiscale composites were prepared by adding 0.5, 1.0, 3.0, and 5.0 wt% of Cloisite15A montmorillonite: Initially, a masterbatch of pure PET blended with 10 wt% of Cloisite15A was obtained in a co-rotating twin screw extruder. The multiscale composites were then blended, via mechanical mixing, and injection moulded by adding the masterbatch to the glass fibre reinforced matrix. The morphological and mechanical characterizations of all compounds are discussed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that the characteristic (001) peak of the nanocomposite obtained by extrusion (masterbatch) shifted to the lower angle region stating an intercalated structure. However, the subsequent injection moulding process changed the morphological structure of the multiscale nanocomposites reducing the basal distance mostly for small loadings of nanoclay. The addition of nanoclay to PET matrices increases the degree of crystallinity, the clay platelets possibly playing the role of nucleating agent, as revealed by DSC and FTIR. The time relaxation spectra broaden as seen by DMA, as the ratio of clay/polymer interfaces increases. The yield stress of composites with 0.5 and 1 wt% of C15A content are enhanced. For more than 3% of nanoclay, the yield stress decreases. The Young's modulus is increased when adding C15 nanoclay. Indeed, clay exfoliation was not attained, but the intercalated particle dispersion improved the stiffness properties of PET/glass fibres/nanoclay composites.

  16. Management of Hard Tissue Avulsive Wounds and Management of Orofacial Fractures.

    DTIC Science & Technology

    2014-09-26

    a polyethylene container with *. aluminum oxide balls. To convert the hydroxyl-apatite to whitlockite, the * powder was calcined for 3-1/2 hours at...agglomerates, the calcined powder was ball milled with hexane for 12 hours in a polyethylene jar with aluminum oxide balls. The following characterization was...performed on the powder. TABLE 1. POWDER CHARACTERIZATION Ball Milled Calcined at 155OF As Produced 2 Hours HexaneBalIMilled Bulk density percent

  17. Synthesis and structural characterization of zinc titanates

    NASA Astrophysics Data System (ADS)

    Akgül, Güvenç

    2013-04-01

    The aim of this study is to accurately obtain of local atomic structures of zinc titanates (ZnTiO3 and Zn2TiO4). Samples have been synthesized by the ball milling method using mixture of high purity ZnO and TiO2 powders. X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) techniques have been used to probe crystal and local structures of the synthesized powders. They have been found to exhibit very high crystallinity. In addition, the EXAFS results have showed that the ball milling is a quite effective method to fabricate highly crystalline nanosized powders. The obtained results are presented in detail.

  18. Magnetic characterization of nanocrystalline Fe80-xCrxCo20 (15≤x≤35) alloys during milling and subsequent annealing

    NASA Astrophysics Data System (ADS)

    Rastabi, Reza Amini; Ghasemi, Ali; Tavoosi, Majid; Sodaee, Tahmineh

    2016-10-01

    Magnetic characterization of nanocrystalline Fe-Cr-Co alloys during milling and annealing process was the goal of this study. To formation of Fe80-xCrxCo20 (15≤x≤35) solid solution, different powder mixtures of Fe, Cr and Co elements were mechanically milled in a planetary ball mill. The annealing process was done in as-milled samples at different temperature in the range of 500-640 °C for 2 h. The produced samples were characterized using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and vibrating sample magnetometer. Performed mechanical alloying in different powder mixtures lead to the formation of Fe-Cr-Co α-phase solid solution with average crystallite sizes of about 10 nm. The produced nanocrystalline alloys exhibit magnetic properties with the coercivity and saturation of magnetization in the range of 110-200 Oe and 150-220 emu/g, respectively. The coercivity of produced alloys after annealing process decreased and reached to about 40-150 Oe. The highest value of coercivity in as-milled and annealed samples was achieved in alloys with higher Cr contents.

  19. Full-wave multiscale anisotropy tomography in Southern California

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Pin; Zhao, Li; Hung, Shu-Huei

    2014-12-01

    Understanding the spatial variation of anisotropy in the upper mantle is important for characterizing the lithospheric deformation and mantle flow dynamics. In this study, we apply a full-wave approach to image the upper-mantle anisotropy in Southern California using 5954 SKS splitting data. Three-dimensional sensitivity kernels combined with a wavelet-based model parameterization are adopted in a multiscale inversion. Spatial resolution lengths are estimated based on a statistical resolution matrix approach, showing a finest resolution length of ~25 km in regions with densely distributed stations. The anisotropic model displays structural fabric in relation to surface geologic features such as the Salton Trough, the Transverse Ranges, and the San Andreas Fault. The depth variation of anisotropy does not suggest a lithosphere-asthenosphere decoupling. At long wavelengths, the fast directions of anisotropy are aligned with the absolute plate motion inside the Pacific and North American plates.

  20. Multiscale Simulations of ALD in Cross Flow Reactors

    DOE PAGES

    Yanguas-Gil, Angel; Libera, Joseph A.; Elam, Jeffrey W.

    2014-08-13

    In this study, we have developed a multiscale simulation code that allows us to study the impact of surface chemistry on the coating of large area substrates with high surface area/high aspect-ratio features. Our code, based on open-source libraries, takes advantage of the ALD surface chemistry to achieve an extremely efficient two-way coupling between reactor and feature length scales, and it can provide simulated quartz crystal microbalance and mass spectrometry data at any point of the reactor. By combining experimental surface characterization with simple analysis of growth profiles in a tubular cross flow reactor, we are able to extract amore » minimal set of reactions to effectively model the surface chemistry, including the presence of spurious CVD, to evaluate the impact of surface chemistry on the coating of large, high surface area substrates.« less

  1. Multiscale Simulations of ALD in Cross Flow Reactors

    SciTech Connect

    Yanguas-Gil, Angel; Libera, Joseph A.; Elam, Jeffrey W.

    2014-08-13

    In this study, we have developed a multiscale simulation code that allows us to study the impact of surface chemistry on the coating of large area substrates with high surface area/high aspect-ratio features. Our code, based on open-source libraries, takes advantage of the ALD surface chemistry to achieve an extremely efficient two-way coupling between reactor and feature length scales, and it can provide simulated quartz crystal microbalance and mass spectrometry data at any point of the reactor. By combining experimental surface characterization with simple analysis of growth profiles in a tubular cross flow reactor, we are able to extract a minimal set of reactions to effectively model the surface chemistry, including the presence of spurious CVD, to evaluate the impact of surface chemistry on the coating of large, high surface area substrates.

  2. Multiscale modeling of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Sheidaei, Azadeh

    In recent years, polymer nano-composites (PNCs) have increasingly gained more attention due to their improved mechanical, barrier, thermal, optical, electrical and biodegradable properties in comparison with the conventional micro-composites or pristine polymer. With a modest addition of nanoparticles (usually less than 5wt. %), PNCs offer a wide range of improvements in moduli, strength, heat resistance, biodegradability, as well as decrease in gas permeability and flammability. Although PNCs offer enormous opportunities to design novel material systems, development of an effective numerical modeling approach to predict their properties based on their complex multi-phase and multiscale structure is still at an early stage. Developing a computational framework to predict the mechanical properties of PNC is the focus of this dissertation. A computational framework has been developed to predict mechanical properties of polymer nano-composites. In chapter 1, a microstructure inspired material model has been developed based on statistical technique and this technique has been used to reconstruct the microstructure of Halloysite nanotube (HNT) polypropylene composite. This technique also has been used to reconstruct exfoliated Graphene nanoplatelet (xGnP) polymer composite. The model was able to successfully predict the material behavior obtained from experiment. Chapter 2 is the summary of the experimental work to support the numerical work. First, different processing techniques to make the polymer nanocomposites have been reviewed. Among them, melt extrusion followed by injection molding was used to manufacture high density polyethylene (HDPE)---xGnP nanocomposties. Scanning electron microscopy (SEM) also was performed to determine particle size and distribution and to examine fracture surfaces. Particle size was measured from these images and has been used for calculating the probability density function for GNPs in chapter 1. A series of nanoindentation tests have

  3. International Conference on Multiscale Methods and Partial Differential Equations.

    SciTech Connect

    Thomas Hou

    2006-12-12

    The International Conference on Multiscale Methods and Partial Differential Equations (ICMMPDE for short) was held at IPAM, UCLA on August 26-27, 2005. The conference brought together researchers, students and practitioners with interest in the theoretical, computational and practical aspects of multiscale problems and related partial differential equations. The conference provided a forum to exchange and stimulate new ideas from different disciplines, and to formulate new challenging multiscale problems that will have impact in applications.

  4. On the multiscale modeling of heart valve biomechanics in health and disease.

    PubMed

    Weinberg, Eli J; Shahmirzadi, Danial; Mofrad, Mohammad Reza Kaazempur

    2010-08-01

    Theoretical models of the human heart valves are useful tools for understanding and characterizing the dynamics of healthy and diseased valves. Enabled by advances in numerical modeling and in a range of disciplines within experimental biomechanics, recent models of the heart valves have become increasingly comprehensive and accurate. In this paper, we first review the fundamentals of native heart valve physiology, composition and mechanics in health and disease. We will then furnish an overview of the development of theoretical and experimental methods in modeling heart valve biomechanics over the past three decades. Next, we will emphasize the necessity of using multiscale modeling approaches in order to provide a comprehensive description of heart valve biomechanics able to capture general heart valve behavior. Finally, we will offer an outlook for the future of valve multiscale modeling, the potential directions for further developments and the challenges involved.

  5. Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach

    NASA Astrophysics Data System (ADS)

    Upadhyay, M. V.; Capek, J.; Van Petegem, S.; Lebensohn, R. A.; Van Swygenhoven, H.

    2017-03-01

    Predicting the macroscopic and microscopic mechanical response of metals and alloys subjected to complex loading conditions necessarily requires a synergistic combination of multiscale material models and characterization techniques. This article focuses on the use of a multiscale approach to study the difference between intergranular lattice strain evolution for various grain families measured during in situ neutron diffraction on dog bone and cruciform 316L samples. At the macroscale, finite element simulations capture the complex coupling between applied forces and gauge stresses in cruciform geometries. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale full-field elasto-viscoplastic fast Fourier transform crystal plasticity model. The results highlight the role of grain neighborhood on the intergranular strain evolution under uniaxial and equibiaxial loading.

  6. Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong; Zhang, Shan-Shan

    2016-10-01

    Visibility graph has established itself as a powerful tool for analyzing time series. We in this paper develop a novel multiscale limited penetrable horizontal visibility graph (MLPHVG). We use nonlinear time series from two typical complex systems, i.e., EEG signals and two-phase flow signals, to demonstrate the effectiveness of our method. Combining MLPHVG and support vector machine, we detect epileptic seizures from the EEG signals recorded from healthy subjects and epilepsy patients and the classification accuracy is 100%. In addition, we derive MLPHVGs from oil-water two-phase flow signals and find that the average clustering coefficient at different scales allows faithfully identifying and characterizing three typical oil-water flow patterns. These findings render our MLPHVG method particularly useful for analyzing nonlinear time series from the perspective of multiscale network analysis.

  7. Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series

    PubMed Central

    Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong; Zhang, Shan-Shan

    2016-01-01

    Visibility graph has established itself as a powerful tool for analyzing time series. We in this paper develop a novel multiscale limited penetrable horizontal visibility graph (MLPHVG). We use nonlinear time series from two typical complex systems, i.e., EEG signals and two-phase flow signals, to demonstrate the effectiveness of our method. Combining MLPHVG and support vector machine, we detect epileptic seizures from the EEG signals recorded from healthy subjects and epilepsy patients and the classification accuracy is 100%. In addition, we derive MLPHVGs from oil-water two-phase flow signals and find that the average clustering coefficient at different scales allows faithfully identifying and characterizing three typical oil-water flow patterns. These findings render our MLPHVG method particularly useful for analyzing nonlinear time series from the perspective of multiscale network analysis. PMID:27759088

  8. Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2002-01-01

    This document contains the proceedings of the Training Workshop on Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems held at NASA Langley Research Center, Hampton, Virginia, March 5 - 6, 2002. The workshop was jointly sponsored by Old Dominion University's Center for Advanced Engineering Environments and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objectives of the workshop were to give overviews of the diverse activities in hierarchical approach to material modeling from continuum to atomistics; applications of multiscale modeling to advanced and improved material synthesis; defects, dislocations, and material deformation; fracture and friction; thin-film growth; characterization at nano and micro scales; and, verification and validation of numerical simulations, and to identify their potential for future aerospace systems.

  9. Multiscale Community Blockmodel for Network Exploration

    PubMed Central

    Ho, Qirong; Parikh, Ankur P.; Xing, Eric P.

    2013-01-01

    Real world networks exhibit a complex set of phenomena such as underlying hierarchical organization, multiscale interaction, and varying topologies of communities. Most existing methods do not adequately capture the intrinsic interplay among such phenomena. We propose a nonparametric Multiscale Community Blockmodel (MSCB) to model the generation of hierarchies in social communities, selective membership of actors to subsets of these communities, and the resultant networks due to within- and cross-community interactions. By using the nested Chinese Restaurant Process, our model automatically infers the hierarchy structure from the data. We develop a collapsed Gibbs sampling algorithm for posterior inference, conduct extensive validation using synthetic networks, and demonstrate the utility of our model in real-world datasets such as predator-prey networks and citation networks. PMID:24288419

  10. Tracking magnetogram proper motions by multiscale regularization

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.

    1995-01-01

    Long uninterrupted sequences of solar magnetograms from the global oscillations network group (GONG) network and from the solar and heliospheric observatory (SOHO) satellite will provide the opportunity to study the proper motions of magnetic features. The possible use of multiscale regularization, a scale-recursive estimation technique which begins with a prior model of how state variables and their statistical properties propagate over scale. Short magnetogram sequences are analyzed with the multiscale regularization algorithm as applied to optical flow. This algorithm is found to be efficient, provides results for all the spatial scales spanned by the data and provides error estimates for the solutions. It is found that the algorithm is less sensitive to evolutionary changes than correlation tracking.

  11. Towards multiscale modeling of influenza infection

    PubMed Central

    Murillo, Lisa N.; Murillo, Michael S.; Perelson, Alan S.

    2013-01-01

    Aided by recent advances in computational power, algorithms, and higher fidelity data, increasingly detailed theoretical models of infection with influenza A virus are being developed. We review single scale models as they describe influenza infection from intracellular to global scales, and, in particular, we consider those models that capture details specific to influenza and can be used to link different scales. We discuss the few multiscale models of influenza infection that have been developed in this emerging field. In addition to discussing modeling approaches, we also survey biological data on influenza infection and transmission that is relevant for constructing influenza infection models. We envision that, in the future, multiscale models that capitalize on technical advances in experimental biology and high performance computing could be used to describe the large spatial scale epidemiology of influenza infection, evolution of the virus, and transmission between hosts more accurately. PMID:23608630

  12. Multiscale Simulation of Hot Spot Ignition

    NASA Astrophysics Data System (ADS)

    Fried, Laurence; Najjar, Fady; Howard, W. Michael; Manaa, M. Riad; Bastea, Sorin

    2011-06-01

    High explosive shock sensitivity is controlled by a combination of mechanical response, thermal properties, and chemical properties. How these properties interplay in realistic condensed energetic materials is not well understood. In this paper, we use a multiscale approach to achieve a realistic simulation of hot spot (void) ignition in a single crystal of the explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). The smallest length scale (<10 nm) of the multiscale model was treated quantum mechanically. We have conducted multiple simulations of the decomposition of the explosive TATB using density functional tight binding molecular dynamics (DFTB-MD). Nanoscale continuum simulations were performed of void ignition using the ALE3D hydrodynamic/thermal/chemical code. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Multiscale Cues Drive Collective Cell Migration

    PubMed Central

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-01-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation. PMID:27460294

  14. Concurrent Multiscale Modeling of Embedded Nanomechanics

    SciTech Connect

    Rudd, R E

    2001-04-13

    We discuss concurrent multiscale simulations of dynamic and temperature-dependent processes found in nanomechanical systems coupled to larger scale surroundings. We focus on the behavior of sub-micron Micro-Electro-Mechanical Systems (MEMS), especially micro-resonators. The coupling of length scales methodology we have developed for MEMS employs an atomistic description of small but key regions of the system, consisting of millions of atoms, coupled concurrently to a finite element model of the periphery. The result is a model that accurately describes the behavior of the mechanical components of MEMS down to the atomic scale. This paper reviews some of the general issues involved in concurrent multiscale simulation, extends the methodology to metallic systems and describes how it has been used to identify atomistic effects in sub-micron resonators.

  15. Multi-scale modeling in cell biology

    PubMed Central

    Meier-Schellersheim, Martin; Fraser, Iain D. C.; Klauschen, Frederick

    2009-01-01

    Biomedical research frequently involves performing experiments and developing hypotheses that link different scales of biological systems such as, for instance, the scales of intracellular molecular interactions to the scale of cellular behavior and beyond to the behavior of cell populations. Computational modeling efforts that aim at exploring such multi-scale systems quantitatively with the help of simulations have to incorporate several different simulation techniques due to the different time and space scales involved. Here, we provide a non-technical overview of how different scales of experimental research can be combined with the appropriate computational modeling techniques. We also show that current modeling software permits building and simulating multi-scale models without having to become involved with the underlying technical details of computational modeling. PMID:20448808

  16. Multiscale simulation of red blood cell aggregation

    NASA Astrophysics Data System (ADS)

    Bagchi, P.; Popel, A. S.

    2004-11-01

    In humans and other mammals, aggregation of red blood cells (RBC) is a major determinant to blood viscosity in microcirculation under physiological and pathological conditions. Elevated levels of aggregation are often related to cardiovascular diseases, bacterial infection, diabetes, and obesity. Aggregation is a multiscale phenomenon that is governed by the molecular bond formation between adjacent cells, morphological and rheological properties of the cells, and the motion of the extra-cellular fluid in which the cells circulate. We have developed a simulation technique using front tracking methods for multiple fluids that includes the multiscale characteristics of aggregation. We will report the first-ever direct computer simulation of aggregation of deformable cells in shear flows. We will present results on the effect of shear rate, strength of the cross-bridging bonds, and the cell rheological properties on the rolling motion, deformation and subsequent breakage of an aggregate.

  17. Multiscale tissue engineering for liver reconstruction.

    PubMed

    Sudo, Ryo

    2014-01-01

    The liver is a target of in vitro tissue engineering despite its capability to regenerate in vivo. The construction of liver tissues in vitro remains challenging. In this review, conventional 3D cultures of hepatocytes are first discussed. Recent advances in the 3D culturing of liver cells are then summarized in the context of in vitro liver tissue reconstruction at the micro- and macroscales. The application of microfluidics technology to liver tissue engineering has been introduced as a bottom-up approach performed at the microscale, whereas whole-organ bioengineering technology was introduced as a top-down approach performed at the macroscale. Mesoscale approaches are also discussed in considering the integration of micro- and macroscale approaches. Multiple parallel multiscale liver tissue engineering studies are ongoing; however, no tissue-engineered liver that is appropriate for clinical use has yet been realized. The integration of multiscale tissue engineering studies is essential for further understanding of liver reconstruction strategies.

  18. Multiscale perspectives of virus entry via endocytosis.

    PubMed

    Barrow, Eric; Nicola, Anthony V; Liu, Jin

    2013-06-05

    Most viruses take advantage of endocytic pathways to gain entry into host cells and initiate infections. Understanding of virus entry via endocytosis is critically important for the design of antiviral strategies. Virus entry via endocytosis is a complex process involving hundreds of cellular proteins. The entire process is dictated by events occurring at multiple time and length scales. In this review, we discuss and evaluate the available means to investigate virus endocytic entry, from both experimental and theoretical/numerical modeling fronts, and highlight the importance of multiscale features. The complexity of the process requires investigations at a systems biology level, which involves the combination of different experimental approaches, the collaboration of experimentalists and theorists across different disciplines, and the development of novel multiscale models.

  19. Multiscale Cues Drive Collective Cell Migration

    NASA Astrophysics Data System (ADS)

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-07-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation.

  20. Stochastic multiscale model for carbonate rocks.

    PubMed

    Biswal, B; Oren, P-E; Held, R J; Bakke, S; Hilfer, R

    2007-06-01

    A multiscale model for the diagenesis of carbonate rocks is proposed. It captures important pore scale characteristics of carbonate rocks: wide range of length scales in the pore diameters; large variability in the permeability; and strong dependence of the geometrical and transport parameters on the resolution. A pore scale microstructure of an oolithic dolostone with generic diagenetic features is successfully generated. The continuum representation of a reconstructed cubic sample of side length 2mm contains roughly 42 x 10{6} crystallites and pore diameters varying over many decades. Petrophysical parameters are computed on discretized samples of sizes up to 1000{3}. The model can be easily adapted to represent the multiscale microstructure of a wide variety of carbonate rocks.