Advances in the Remote Monitoring of Balloon Flights
NASA Astrophysics Data System (ADS)
Breeding, S.
At the National Scientific Balloon Facility (NSBF), we must staff the Long Duration Balloon (LDB) control center 24 hours a day during LDB flights. This requires three daily shifts of two operators (balloon control and tdrss scheduling). In addition to this we also have one engineer on-call as LDB Lead to resolve technical issues and one manager on-call for flight management. These on-call periods are typically 48 to 72 hours in length. In the past the on-call staff had to travel to the LDB control center in order to monitor the status of a flight in any detail. This becomes problematic as flight durations push out beyond 20 to 30 day lengths, as these staff members are not available for business travel during these periods. This paper describes recent advances which allow for the remote monitoring of scientific balloon flight ground station computer displays. This allows balloon flight managers and lead engineers to check flight status and performance from any location with a network or telephone connection. This capability frees key personnel from the NSBF base during flights. It also allows other interested parties to check on the flight status at their convenience.
NASA Astrophysics Data System (ADS)
Orr, Dwayne
CSBF Engineering Overview Dwayne Orr (Presenting Author) Columbia Scientific Balloon Facility, Palestine, Texas (USA) Dwayne.Orr@csbf.nasa.gov The Columbia Scientific Balloon Facility (CSBF) at Palestine, Texas provides operational and engineering support for the launch of NASA Scientific Balloons. Over the years with the support of the NASA Balloon Program Office, CSBF has developed unique flight systems with the focus of providing a highly reliable, cost effective medium for giving Scientist’s access to a near space environment. This paper will provide an overview of the CSBF flight systems with an emphasis on recent developments and plans for the future.
NASA Astrophysics Data System (ADS)
Orr, Dwayne
The Columbia Scientific Balloon Facility (CSBF) at Palestine, Texas provides operational and engineering support for the launch of NASA Scientific Balloons. Over the years with the support of the NASA Balloon Program Office, CSBF has developed unique flight systems with the focus of providing a highly reliable, cost effective medium for giving Scientist's access to a near space environment. This paper will provide an overview of the CSBF flight systems with an emphasis on recent developments and plans for the future including: RIP Stitch -Parachute Shock Attenuation system, MIP -Micro Instrumentation Package, GAPR -Gondola Automatic Parachute Release system, NASA TDRSS High Gain Antenna system, Superpressure flight video systems
Gamma Ray Large Area Space Telescope (GLAST) Balloon Flight Engineering Model: Overview
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Godfrey, G.; Williams, S. M.; Grove, J. E.; Mizuno, T.; Sadrozinski, H. F.-W.; Kamae, T.; Ampe, J.; Briber, Stuart; Dann, James;
2001-01-01
The Gamma Ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) is a pair-production high-energy (greater than 20 MeV) gamma-ray telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006, designed to study a wide variety of high-energy astrophysical phenomena. As part of the development effort, the collaboration has built a Balloon Flight Engineering Model (BFEM) for flight on a high-altitude scientific balloon. The BFEM is approximately the size of one of the 16 GLAST-LAT towers and contains all the components of the full instrument: plastic scintillator anticoincidence system (ACD), high-Z foil/Si strip pair-conversion tracker (TKR), CsI hodoscopic calorimeter (CAL), triggering and data acquisition electronics (DAQ), commanding system, power distribution, telemetry, real-time data display, and ground data processing system. The principal goal of the balloon flight was to demonstrate the performance of this instrument configuration under conditions similar to those expected in orbit. Results from a balloon flight from Palestine, Texas, on August 4, 2001, show that the BFEM successfully obtained gamma-ray data in this high-background environment.
NASA Astrophysics Data System (ADS)
Yoshida, Tetsuya; Fuke, Hideyuki; Shoji, Yasuhiro; Iijima, Issei; Izutsu, Naoki; Kato, Yoichi; Matsuzaka, Yukihiko; Mizuta, Eiichi; Sato, Takatoshi; Tamura, Keisuke; Saito, Yoshitaka; Kakehashi, Yuya
2012-07-01
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency conducts domestic balloon campaigns at Taiki Aerospace Research Field (TARF) in Hokkaido since 2008. The ballooning at TARF becomes stable after four year operation. Because the field faces to the Pacific Ocean, heavy balloons and payloads can be launched safely using a very unique sliding launcher. Recoveries at the inshore along the Tokachi coast can be done very quickly and smoothly. Unfortunately, flight opportunities are recently limited due to unfriendly weather condition. Unstable Jet stream also prevents us to have so-called `boomerang flight' to achieve long flight duration more than several hours. Six balloon-borne experiments were carried out in 2010 and 2011. Three of them were demonstrations of challenges of space engineering, two were in-situ atmospheric observation, and one was the technical flight of new high-resolution γ-ray telescope. In addition to these flights, we carried out two launches for next generation balloons: one for Tawara-shaped superpressure balloon and the other for ultra-thin high-altitude balloon. In this paper, recent activities of the Japanese scientific balloon program will be introduced. On-going development of the balloon system will also be presented.
Absorption spectrometer balloon flight and iodine investigations
NASA Technical Reports Server (NTRS)
1970-01-01
A high altitude balloon flight experiment to determine the technical feasibility of employing absorption spectroscopy to measure SO2 and NO2 gases in the earth's atmosphere from above the atmospheric ozone layer is discussed. In addition to the balloon experiment the contract includes a ground-based survey of natural I emissions from geological sources and studies of the feasibility of mapping I2 from spacecraft. This report is divided into three major sections as follows: (1) the planning engineering and execution of the balloon experiment, (2) data reduction and analysis of the balloon data, and (3) the results of the I2 phase of the contract.
Recent Results and Near Term Outlook for the NASA Balloon Science Program
NASA Astrophysics Data System (ADS)
Jones, William Vernon
Long-duration and conventional balloon flights in the traditional Astrophysics, Solar and Heliophysics, and Earth Science disciplines have continued in both polar and non-polar regions since the 39th COSPAR Assembly in Mysore, India. One of these established a new flight record of 55 days over Antarctica during the 2012-2013 austral season. That Super-TIGER science flight broke both the 42-day record of the CREAM science flight during the 2004-2005 season and the 54-day super pressure balloon test flight in 2008-2009. With two comets approaching the sun in 2013-2014, the Planetary Science community has shown increased interest in remote observations of comets, planets, and other objects in the Solar System. All of the above science disciplines are interested in super pressure balloon (SPB) flights, which have been under development by NASA, and which were strongly supported by the Astro2010 Decadal Study. A 532,152 m3 (18.8 MCF) SPB with a major gamma ray astrophysics payload is planned for an ultra-long duration balloon (ULDB) test flight around and from Antarctica during the upcoming 2014-2015 season. Flights for SPB qualification to support 1000 kg science instruments to 33 km altitude have proceeded in parallel with planning for options to increase the altitude for less massive instruments that require less atmospheric overburden. The nearly constant SPB volume will provide stable altitude long-duration flights at non-polar latitudes, thereby supporting a much broader range of scientific investigations. Scientific ballooning continues to complement and enable space missions, while training young scientists and systems engineers for the workforce needed to conduct future missions. Highlights of results from past balloon-borne measurements and expected results from ongoing and planned balloon-borne experiments will be presented.
SoRa first flight. Summer 2009
NASA Astrophysics Data System (ADS)
Pirrotta, S.; Flamini, E.
The SoRa (Sounding Radar) experiment was successfully launched from Longyearbyen (Svalbard, Norway) during the summer 2009 campaign managed by the Italian/Norwegian "Nobile Amundsen / Stratospheric Balloon Centre" (NA/SBC). SoRa is part of the Italian Space Agency (ASI) programs for Long Duration Balloon Flights. Carried by the biggest balloon (800.000 m3) ever launched in polar regions, SoRa main experiment and its three piggyback payloads (DUSTER, ISA and SIDERALE) performed a nominal flight of almost 4 days over the North Sea and Greenland, until the separation, landing and recovery in Baffin Island (Canada). Despite the final destructive event that compromise the scientific main goal of SoRa, the 2009 ASI balloon campaign can be considered an important milestone, because of the obtained scientific and technical results but also for the lesson learned by the science, engineering and managerial teams looking at the future ASI scientific balloon-born activities.
Status report on the activities of National Balloon Facility at Hyderabad
NASA Astrophysics Data System (ADS)
Shankarnarayan, Sreenivasan; S, Sreenivasan; Shankarnarayan, Sreenivasan; Manchanda, R. K.; Subba Rao Jonnalagadda, Venkata; Buduru, Suneelkumar
National balloon facility at Hyderabad has been mandated to provide launch support for Indian and International scientific balloon experiments and also perform the necessary research and development in the design and fabrication of plastic balloons. In the last 4 years, since our last report, NBF has launched many successful balloon flights for the astronomy payloads and a large number of high altitude GPS Sonde flights at different places in the country. We have also continued our efforts on qualification of raw materials for zero-failure performance of our balloons and major focus on upgrading of various facilities and load-line instrumentation for launching from remote sites. We foresee a surge of balloon based experimental activity for in-situ measurements in atmospheric sciences and concept validation payloads for future space based instruments. A new centre for research in Environmental Sciences and Payload Engineering (ESPE) has also been set up at the National Balloon Facility campus to develop and conduct research in various aspects of Environmental sciences in collaboration with other groups, with a specific goal to identify, development of advanced technologies leading to an improved understanding of the earth system. The Payload Engineering facility is geared to the Design and Fabrication of Micro and Nano Satellites and will act as Inter -University Centre for payload fabrication. In this paper we present an overview of the present and planned activities in scientific ballooning at National Balloon Facility Hyderabad.
NASA Technical Reports Server (NTRS)
Tarbell, Theodore D.; Topka, Kenneth P.
1992-01-01
The definition phase of a scientific study of active regions on the sun by balloon flight of a former Spacelab instrument, the Solar Optical Universal Polarimeter (SOUP) is described. SOUP is an optical telescope with image stabilization, tunable filter and various cameras. After the flight phase of the program was cancelled due to budgetary problems, scientific and engineering studies relevant to future balloon experiments of this type were completed. High resolution observations of the sun were obtained using SOUP components at the Swedish Solar Observatory in the Canary Islands. These were analyzed and published in studies of solar magnetic fields and active regions. In addition, testing of low-voltage piezoelectric transducers was performed, which showed they were appropriate for use in image stabilization on a balloon.
Code of Federal Regulations, 2014 CFR
2014-07-01
... GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.4..., helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices or..., material or equipment by parachute, balloon, helicopter or other means onto or from project lands or waters...
Code of Federal Regulations, 2012 CFR
2012-07-01
... GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.4..., helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices or..., material or equipment by parachute, balloon, helicopter or other means onto or from project lands or waters...
Code of Federal Regulations, 2011 CFR
2011-07-01
... GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.4..., helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices or..., material or equipment by parachute, balloon, helicopter or other means onto or from project lands or waters...
High Energy Replicated Optics to Explore the Sun Balloon-Borne Telescope: Astrophysical Pointing
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; Wilson-Hodge, Colleen; Ramsey, Brian; Apple, Jeff; Kurt, Dietz; Tennant, Allyn; Swartz, Douglas; Christe, Steven D.; Shih, Albert
2014-01-01
On September 21, 2013, the High Energy Replicated Optics to Explore the Sun, or HEROES, balloon-borne x-ray telescope launched from the Columbia Scientific Balloon Facility's site in Ft. Summer, NM. The flight lasted for approximately 27 hours and the observational targets included the Sun and astrophysical sources GRS 1915+105 and the Crab Nebula. Over the past year, the HEROES team upgraded the existing High Energy Replicated Optics (HERO) balloon-borne telescope to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES Project is a multi-NASA Center effort with team members at both Marshall Space Flight Center (MSFC) and Goddard Space Flight Center (GSFC), and is led by Co-PIs (one at each Center). The HEROES payload consists of the hard X-ray telescope HERO, developed at MSFC, combined with several new systems. To allow the HEROES telescope to make observations of the Sun, a new solar aspect system was added to supplement the existing star camera for fine pointing during both the day and night. A mechanical shutter was added to the star camera to protect it during solar observations and two alignment monitoring systems were added for improved pointing and post-flight data reconstruction. This mission was funded by the NASA HOPE (Hands-On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist.
NASA Technical Reports Server (NTRS)
Winterton, Joyce L.
2016-01-01
A 50 minute-workshop based on NASA publicly available information will be conducted at the International Technology and Engineering Educator Association annual conference. Attendees will include middle and high school teachers and university teacher educators. Engineering and technology are essential to NASA's suborbital missions including sounding rockets, scientific balloon and airborne science. The attendees will learn how to include NASA information on these missions in their teaching.
NASA Astrophysics Data System (ADS)
Buduru, Suneel Kumar
2016-07-01
The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) is a unique center of expertise working throughout the year to design, fabricate and launch scientific balloons mainly for space astronomy, atmospheric science and engineering experiments. Recently TIFR-BF extended its support to new user scientists for conducting balloon launches for biological and middle atmospheric sciences. For the first time two balloon launches conducted for sending live lab rats to upper stratosphere and provided launch support for different balloon campaigns such as Tropical Tropopause Dynamics (TTD) to study water vapour content in upper tropospheric and lower stratospheric regions over Hyderabad and the other balloon campaign to study the Asian Tropopause Aerosol Layer (BATAL) during the Indian summer monsoon season. BATAL is the first campaign to conduct balloon launches during active (South-West) monsoon season using zero pressure balloons of different volumes. TIFR-BF also provided zero pressure and sounding balloon support to various research institutes and organizations in India and for several international space projects. In this paper, we present details on our increased capability of balloon fabrication for carrying heavier payloads, development of high strength balloon load tapes and recent developments of flight control and safety systems. A summary of the various flights conducted in two years will be presented along with the future ballooning plans.
High Altitude Balloons as a Platform for Space Radiation Belt Science
NASA Astrophysics Data System (ADS)
Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)
2011-12-01
The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana Space Consortium (LaSpace), and sponsored by NASA. The HASP platform was launched from Fort Sumner, New Mexico, and to an altitude of about 36kilometers with flight durations of 15 to 20 hours using a small volume, low pressure balloon. The main objectives of the program, the challenges involved in developing it, and the major achievements and outcomes will be discussed. Future opportunities for the use of high altitude balloons for solar-terrestrial science, such as the diagnosis of radiation belt loss through the flight of alternative X-ray scintillator payloads, on short duration weather balloon flights will also be discussed. The UA-HAB project is undertaken with the financial support of the Canadian Space Agency.
The 1991 research and technology report, Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Soffen, Gerald (Editor); Ottenstein, Howard (Editor); Montgomery, Harry (Editor); Truszkowski, Walter (Editor); Frost, Kenneth (Editor); Sullivan, Walter (Editor); Boyle, Charles (Editor)
1991-01-01
The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test.
Flight Qualification of the NASA's Super Pressure Balloon
NASA Astrophysics Data System (ADS)
Cathey, Henry; Said, Magdi; Fairbrother, Debora
Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test flight by successfully demonstrated balloon vehicle performance, obtained a large amount of videos, measured balloon differential pressure, obtained temperature and altitude data, assessed structure strength through pressurization, and demonstrated the balloon vehicles altitude stability. This flight was the first of several to qualify this design for the science community. Results of the most recent flights will be presented. Some of the related material characterization testing which is vital to the balloon design development for the balloon will also be presented. Additionally, this paper will provide a current overview of the development and qualification approach pursued for the NASA’s Super Pressure Balloon. Future plans and goals of future test flights will also be presented. This will include the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.
NASA Technical Reports Server (NTRS)
Sullivan, Steven J.
2014-01-01
"Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.
NASA Technical Reports Server (NTRS)
Deshler, T.; Snider, J. R.; Vali, G.
1998-01-01
Under the support of this grant a balloon-borne gondola containing a variety of aerosol instruments was developed and flown from Laramie, Wyoming, (41 deg N, 105 deg W) and from Lauder, New Zealand (45 deg S, 170 deg E). The gondola includes instruments to measure the concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), optically detectable aerosol (OA.) (r greater than or equal to 0.15 - 2.0 microns), and optical scattering properties using a nephelometer (lambda = 530 microns). All instruments sampled from a common inlet which was heated to 40 C on ascent and to 160 C on descent. Flights with the CN counter, OA counter, and nephelometer began in July 1994. The CCN counter was added in November 1994, and the engineering problems were solved by June 1995. Since then the flights have included all four instruments, and were completed in January 1998. Altogether there were 20 flights from Laramie, approximately 5 per year, and 2 from Lauder. Of these there were one or more engineering problems on 6 of the flights from Laramie, hence the data are somewhat limited on those 6 flights, while a complete data set was obtained from the other 14 flights. Good CCN data are available from 12 of the Laramie flights. The two flights from Lauder in January 1998 were successful for all measurements. The results from these flights, and the development of the balloon-bome CCN counter have formed the basis for five conference presentations. The heated and unheated CN and OA measurements have been used to estimate the mass fraction of the aerosol volatile, while comparisons of the nephelometer measurements were used to estimate the light scattering, associated with the volatile aerosol. These estimates were calculated for 0.5 km averages of the ascent and descent data between 2.5 km and the tropopause, near 11.5 km.
Esrange Space Center, a Gate to Space
NASA Astrophysics Data System (ADS)
Widell, Ola
Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.
The NASA super pressure balloon - A path to flight
NASA Astrophysics Data System (ADS)
Cathey, H. M.
2009-07-01
The National Aeronautics and Space Administration's Balloon Program Office has invested significant time and effort in extensive ground testing of model super pressure balloons. The testing path has been developed as an outgrowth of the results of the super pressure balloon test flight in 2006. Summary results of the June 2006 super pressure test flight from Kiruna, Sweden are presented including the balloon performance and "lessons learned". This balloons flight performance exceeded expectations, but did not fully deploy. The flight was safely terminated by command. The results of this test flight refocused the project's efforts toward additional ground testing and analysis; a path to flight. A series of small 4 m diameter models were made and tested to further explore the deployment and structural capabilities of the balloons and materials. A series of ˜27 m model balloons were successfully tested indoors. These balloons successfully replicated the cleft seen in the Sweden flight, explored the deployment trade space to help characterize better design approaches, and demonstrated an acceptable fix to the deployment issue. Photogrammetry was employed during these ˜27 m model tests to help characterize both the balloon and gore shape evolution under pressurization. A ˜8.5 m ground model was used to explore the design and materials performance. Results of these tests will be presented. A general overview of some of the other project advancements made related to demonstrating the strain arresting nature of the proposed design, materials and analysis work will also be presented. All of this work has prepared a clear path toward a renewed round of test flights. This paper will give an overview of the development approach pursued for this super pressure balloon development. A description of the balloon design, including the modifications made as a result of the lessons learned, is presented. A short deployment test flight of the National Aeronautics and Space Administration's super pressure balloon took place in June 2008. This flight was from Ft. Sumner, New Mexico. Preliminary results of this flight are presented. Future plans for both ground testing and additional test flights are also presented. Goals of the future test flights, which are staged in increments of increasing suspended load and altitude, are presented. This includes the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.
Balloon launched decelerator test program: Post-test test report
NASA Technical Reports Server (NTRS)
Dickinson, D.; Schlemmer, J.; Hicks, F.; Michel, F.; Moog, R. D.
1972-01-01
Balloon Launched Decelerator Test (BLDT) flights were conducted during the summer of 1972 over the White Sands Missile Range. The purpose of these tests was to qualify the Viking disk-gap band parachute system behind a full-scale simulator of the Viking Entry Vehicle over the maximum range of entry conditions anticipated in the Viking '75 soft landing on Mars. Test concerns centered on the ability of a minimum weight parachute system to operate without structural damage in the turbulent wake of the blunt-body entry vehicle (140 deg, 11.5 diameter cone). This is the first known instance of parachute operation at supersonic speeds in the wake of such a large blunt body. The flight tests utilized the largest successful balloon-payload weight combination known to get to high altitude (120kft) where rocket engines were employed to boost the test vehicle to supersonic speeds and dynamic pressures simulating the range of conditions on Mars.
The FIREBall fiber-fed UV spectrograph
NASA Astrophysics Data System (ADS)
Tuttle, Sarah E.; Schiminovich, David; Milliard, Bruno; Grange, Robert; Martin, D. Christopher; Rahman, Shahinur; Deharveng, Jean-Michel; McLean, Ryan; Tajiri, Gordon; Matuszewski, M.
2008-07-01
FIREBall (Faint Intergalactic Redshifted Emission Balloon) had a successful first engineering flight in July of 2007 from Palestine, Texas. Here we detail the design and construction of the spectrograph. FIREBall consists of a 1m telescope coupled to a fiber-fed ultraviolet spectrograph flown on a short duration balloon. The spectrograph is designed to map hydrogen and metal line emission from the intergalactic medium at several redshifts below z=1, exploiting a small window in atmospheric oxygen absorption at balloon altitudes. The instrument is a wide-field IFU fed by almost 400 fibers. The Offner mount spectrograph is designed to be sensitive in the 195-215nm window accessible at our altitudes of 35-40km. We are able to observe Lyα, as well as OVI and CIV doublets, from 0.3 < z < 0.9. Observations of UV bright B stars and background measurements allow characterization of throughput for the entire system and will inform future flights.
Stratospheric Balloon Platforms for Near Space Access
NASA Astrophysics Data System (ADS)
Dewey, R. G.
2012-12-01
For over five decades, high altitude aerospace balloon platforms have provided a unique vantage point for space and geophysical research by exposing scientific instrument packages and experiments to space-like conditions above 99% of Earth's atmosphere. Reaching altitudes in excess of 30 km for durations ranging from hours to weeks, high altitude balloons offer longer flight durations than both traditional sounding rockets and emerging suborbital reusable launch vehicles. For instruments and experiments requiring access to high altitudes, engineered balloon systems provide a timely, responsive, flexible, and cost-effective vehicle for reaching near space conditions. Moreover, high altitude balloon platforms serve as an early means of testing and validating hardware bound for suborbital or orbital space without imposing space vehicle qualifications and certification requirements on hardware in development. From float altitudes above 30 km visible obscuration of the sky is greatly reduced and telescopes and other sensors function in an orbit-like environment, but in 1g. Down-facing sensors can take long-exposure atmospheric measurements and images of Earth's surface from oblique and nadir perspectives. Payload support subsystems such as telemetry equipment and command, control, and communication (C3) interfaces can also be tested and operationally verified in this space-analog environment. For scientific payloads requiring over-flight of specific areas of interests, such as an active volcano or forest region, advanced mission planning software allows flight trajectories to be accurately modeled. Using both line-of-sight and satellite-based communication systems, payloads can be tracked and controlled throughout the entire mission duration. Under NASA's Flight Opportunities Program, NSC can provide a range of high altitude flight options to support space and geophysical research: High Altitude Shuttle System (HASS) - A balloon-borne semi-autonomous glider carries payloads to high altitude and returns them safely to pre-selected landing sites, supporting quick recovery, refurbishment, and re-flight. Small Balloon System (SBS) - Controls payload interfaces via a standardized avionics system. Using a parachute for recovery, the SBS is well suited for small satellite and spacecraft subsystem developers wanting to raise their Technology Readiness Level (TRL) in an operationally relevant environment. Provides flexibility for scientific payloads requiring externally mounted equipment, such as telescopes and antennas. Nano Balloon System (NBS) - For smaller payloads (~CubeSats) with minimal C3 requirements, the Nano Balloon System (NBS) operates under less restrictive flight regulations with increased operational flexibility. The NBS is well suited for payload providers seeking a quick, simple, and cost effective solution for operating small ~passive payloads in near space. High altitude balloon systems offer the payload provider and experimenter a unique and flexible platform for geophysical and space research. Though new launch vehicles continue to expand access to suborbital and orbital space, recent improvements in high altitude balloon technology and operations provide a cost effective alternative to access space-like conditions.
NASA Astrophysics Data System (ADS)
Schoenmaker, Annelie
2014-07-01
High-altitude balloons typically fly between 25 and 50 km in altitude, which, while below the Karman line of 100 km, is yet far above the altitudes typically flown by aircraft. For example, the highest-flying commercial aircraft - the Concorde - had a maximum cruising altitude of only 18 km. zero2infinity, a Spanish company, is currently developing a pressurized pod named “bloon” which will be capable of lifting six people, including two pilot crew members and four paying passengers, to an altitude of 36 km through the use of high-altitude balloons. The boundary between Airspace and Outer Space has never been legally defined, mostly because of the lack of activities taking place between the altitude where airplanes fly and the lowest orbiting spacecraft. High-altitude balloons do fly at these in-between altitudes and the prospect of commercializing access to these parts of the stratosphere poses some questions in a new light. Given the relatively low altitude at which they fly, it may well be that these types of balloons would be considered to operate exclusively within air space. However, given the technology involved in crewed high altitude balloon flights, which is more similar to spacecraft engineering than to traditional hot-air or gas ballooning, it is necessary to evaluate the various legal regimes, codes, and regulations that would apply to such flights, especially regarding licenses and liabilities. For high altitude balloon flights commencing in Europe, the European Aviation Safety Agency (EASA) would very likely be the competent certification or licensing agency for these flights, although there would likely be input from various national aviation authorities as well. However, because the European Commission (EC) has not yet issued regulations regarding commercial spaceflight, particularly the use of high altitude balloons, new rules and regulations governing such flights may still need to be drafted and promulgated. With the development of suborbital passenger vehicles such as bloon, Spaceplane as well as SpaceShipTwo (which is British-owned) this is clearly the appropriate time for the EC or other competent institutions to issue regulations regarding suborbital passenger flight. Rules and regulations regarding suborbital passenger transport such as liability and waivers to protect third parties, governments, and operators, need to be addressed by the European Union (EU) as a whole or at least by national or regional governments wishing to attract suborbital passenger flights to their territory. After all, it would be in Europe's financial and other interests to create and foster a favorable legal and commercial environment for the aerospace business within the borders of the EU.
Balloon stratospheric research flights, November 1974 to January 1976
NASA Technical Reports Server (NTRS)
Allen, N. C.
1976-01-01
These flights were designed to measure the vertical concentration profile of trace stratospheric species which form major links in the photochemical system of the upper atmosphere. An overview of the specific goals of the program, a statement of program management and support functions, a brief description of the instrumentation flown, pertinent engineering and payload operations data, and a summary of the scientific data obtained for each of the last five flights during this period are presented.
Crest - A Balloon-borne Instrument To Measure Cosmic-ray Electrons Above TeV Energies.
NASA Astrophysics Data System (ADS)
Schubnell, Michael; Anderson, T.; Bower, C.; Coutu, S.; Geske, M.; Müller, D.; Musser, J.; Nutter, S.; Park, N.; Tarlé, G.; Wakely, S.; Yagi, A.
2009-01-01
The observation of high energy (E > 1 TeV) electrons in the cosmic radiation provides important information on the distribution and energetics of local cosmic-ray sources. Galactic cosmic-ray electrons are thought to be shock accelerated in supernova remnants as evident from observations of non-thermal X-rays and TeV gamma rays. Their locally observed energy spectrum above 1 TeV is expected to reflect the distribution and abundance of nearby acceleration sites. However, the rates at these energies are low and the direct detection would require unfeasibly large balloons or satellite born detectors. CREST, a balloon-borne detector array of 1024 BaF2 crystals, overcomes this hurdle: it will measure the intensity and spectrum of multi-TeV electrons by detecting synchrotron photons emitted from electrons passing through the earth's magnetic field. Thus CREST's acceptance is several times its geometric area providing sensitivity up to about 50 TeV. Following an engineering flight in spring of 2009, CREST will be flown in a circumpolar orbit on an upcoming Antarctic long-duration balloon flight. This work is supported by NASA and CSBF.
Bringing Space Science to the Undergraduate Classroom: NASA's USIP Mission
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Christian, J. A.; Keesee, A. M.; Spencer, E. A.; Gross, J.; Lusk, G. D.
2015-12-01
As part of its participation in NASA's Undergraduate Student Instrument Project (USIP), a team of engineering and physics students at West Virginia University (WVU) built a series of sounding rocket and balloon missions. The first rocket and balloon missions were flown near-simultaneously in a campaign on June 26, 2014 (image). The second sounding rocket mission is scheduled for October 5, 2015. Students took a course on space science in spring 2014, and followup courses in physics and aerospace engineering departments have been developed since then. Guest payloads were flown from students affiliated with WV Wesleyan College, NASA's IV&V Facility, and the University of South Alabama. Students specialized in electrical and aerospace engineering, and space physics topics. They interacted regularly with NASA engineers, presented at telecons, and prepared reports. A number of students decided to pursue internships and/or jobs related to space science and technology. Outreach to the campus and broader community included demos and flight projects. The physics payload includes plasma density and temperature measurements using a Langmuir and a triple probe; plasma frequency measurements using a radio sounder (WVU) and an impedance probe (U.S.A); and a magnetometer (WVWC). The aerospace payload includes an IMU swarm, a GPS experiment (with TEC capability); a cubesat communications module (NASA IV&V), and basic flight dynamics. Acknowledgments: staff members at NASA Wallops Flight Facility, and at the Orbital-ATK Rocket Center, WV.
Scientific Balloons for Venus Exploration
NASA Astrophysics Data System (ADS)
Cutts, James; Yavrouian, Andre; Nott, Julian; Baines, Kevin; Limaye, Sanjay; Wilson, Colin; Kerzhanovich, Viktor; Voss, Paul; Hall, Jeffery
Almost 30 years ago, two balloons were successfully deployed into the atmosphere of Venus as an element of the VeGa - Venus Halley mission conducted by the Soviet Union. As interest in further Venus exploration grows among the established planetary exploration agencies - in Europe, Japan, Russia and the United States, use of balloons is emerging as an essential part of that investigative program. Venus balloons have been proposed in NASA’s Discovery program and ESA’s cosmic vision program and are a key element in NASA’s strategic plan for Venus exploration. At JPL, the focus for the last decade has been on the development of a 7m diameter superpressure pressure(twice that of VeGa) capable of carrying a 100 kg payload (14 times that of VeGA balloons), operating for more than 30 days (15 times the 2 day flight duration of the VeGa balloons) and transmitting up to 20 Mbit of data (300 times that of VeGa balloons). This new generation of balloons must tolerate day night transitions on Venus as well as extended exposure to the sulfuric acid environment. These constant altitude balloons operating at an altitude of about 55 km on Venus where temperatures are benign can also deploy sondes to sound the atmosphere beneath the probe and deliver deep sondes equipped to survive and operate down to the surface. The technology for these balloons is now maturing rapidly and we are now looking forward to the prospects for altitude control balloons that can cycle repeatedly through the Venus cloud region. One concept, which has been used for tropospheric profiling in Antarctica, is the pumped-helium balloon, with heritage to the anchor balloon, and would be best adapted for flight above the 55 km level. Phase change balloons, which use the atmosphere as a heat engine, can be used to investigate the lower cloud region down to 30 km. Progress in components for high temperature operation may also enable investigation of the deep atmosphere of Venus with metal-based balloons.
Power supplies for long duration balloon flights
NASA Astrophysics Data System (ADS)
Lichfield, Ernest W.
Long duration balloon flights require more electrical power than can be carried in primary batteries. This paper provides design information for selecting rechargeable batteries and charging systems. Solar panels for recharging batteries are discussed, with particular emphasis on cells mounting suitable for balloon flights and panel orientation for maximum power collection. Since efficient utilization of power is so important, modern DC to DC power conversion techniques are presented. On short flights of 1 day or less, system designers have not been greatly concerned with battery weight. But, with the advent of long duration balloon flights using superpressure balloons, anchor balloon systems, and RACOON balloon techniques, power supplies and their weight become of prime importance. The criteria for evaluating power systems for long duration balloon flights is performance per unit weight. Instrumented balloon systems have flown 44 days. For these very long duration flights, batteries recharged from solar cells are the only solution. For intermediate flight duration, say less than 10 days, the system designer should seriously consider using primary cells. The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.
2012-07-24
CAPE CANAVERAL, Fla. – Rocket University participants launch a high-altitude balloon flight and instrument package. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
1996-01-01
NASA needed a way to make high-resolution measurements of the wind profile before launching Saturn vehicles. The standard smooth-surface weather balloons zigzagged or spiraled as they ascended due to air vortices that shed off the surface at various positions, which made accurate radar-tracking measurement impossible. A Marshall Space Flight Center engineer modified the surface of the balloons with conical dixie cups, which stabilized them. Now produced by Orbital Sciences Corporation, the Jimsphere is the standard device at all U.S. missile/launch vehicle ranges.
Development Overview of the Revised NASA Ultra Long Duration Balloon
NASA Technical Reports Server (NTRS)
Cathey, H. M.; Gregory, D; Young, L.; Pierce, D.
2006-01-01
The development of the National Aeronautics and Space Administration s (NASA) Ultra Long Duration Balloon (ULDB) has made significant strides in addressing the deployment issues experienced in the scaling up of the balloon structure. This paper concentrates on the super-pressure balloon developments that have been, and are currently being planned by the NASA Balloon Program Office at Goddard Space Flight Center s Wallops Flight Facility. The goal of the NASA ULDB development project is to attempt to extend the potential flight durations for large scientific balloon payloads. A summary of the February 2005 test flight from Ft. Sumner, New Mexico will be presented. This test flight spurred a number of investigations and advancements for this project. The development path has pursued some new approaches in the design, analysis, and testing of the balloons. New issues have been ideEti6ed throu& both analysis md testing. These have been addressed in the design stage before the next balloon construction was begun. This paper will give an overview of the recent history for this effort and the development approach pursued for ULDB. A description of the balloon design, including the modifications made as a result of the lessons learned, will be presented. Areas to be presented include the design approach, deployment issues that have been encountered and the proposed solutions, ground testing, photogrammetry, and an analysis overview. Test flight planning and considerations will be presented including test flight safety. An extended duration test flight of the National Aeronautics and Space Administration s Ultra Long Duration Balloon is planned for the May/June 2006 time frame. This flight is expected to fly from Sweden to either Canada or Alaska. Preliminary results of this flight will be presented as available. Future plans for both ground testing and additional test flights will also be presented. Goals of the future test flights, which are staged in increments of increasing suspended load and altitude, will be presented. This will include the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.
Modular and Reusable Power System Design for the BRRISON Balloon Telescope
NASA Astrophysics Data System (ADS)
Truesdale, Nicholas A.
High altitude balloons are emerging as low-cost alternatives to orbital satellites in the field of telescopic observation. The near-space environment of balloons allows optics to perform near their diffraction limit. In practice, this implies that a telescope similar to the Hubble Space Telescope could be flown for a cost of tens of millions as opposed to billions. While highly feasible, the design of a balloon telescope to rival Hubble is limited by funding. Until a prototype is proven and more support for balloon science is gained, projects remain limited in both hardware costs and man hours. Thus, to effectively create and support balloon payloads, engineering designs must be efficient, modular, and if possible reusable. This thesis focuses specifically on a modular power system design for the BRRISON comet-observing balloon telescope. Time- and cost-saving techniques are developed that can be used for future missions. A modular design process is achieved through the development of individual circuit elements that span a wide range of capabilities. Circuits for power conversion, switching and sensing are designed to be combined in any configuration. These include DC-DC regulators, MOSFET drivers for switching, isolated switches, current sensors and voltage sensing ADCs. Emphasis is also given to commercially available hardware. Pre-fabricated DC-DC converters and an Arduino microcontroller simplify the design process and offer proven, cost-effective performance. The design of the BRRISON power system is developed from these low-level circuits elements. A board for main power distribution supports the majority of flight electronics, and is extensible to additional hardware in future applications. An ATX computer power supply is developed, allowing the use of a commercial ATX motherboard as the flight computer. The addition of new capabilities is explored in the form of a heater control board. Finally, the power system as a whole is described, and its overall performance analyzed. The success of the BRRISON power system during testing and flight proves its utility, both for BRRISON and for future balloon telescopes.
NASA Technical Reports Server (NTRS)
Barbier, Louis M.; Smith, Robert; Murphy, Scott; Christian, Eric R.; Farley, Rodger; Krizmanic, John F.; Mitchell, John W.; Streitmatter, Robert E.; Loh, Eugene C.; Stochaj, Stephen
2004-01-01
We have designed and built an instrument to measure and monitor the "nightglow" of the Earth's atmosphere in the near ultraviolet (NUV). In this paper we describe the design of this instrument, called NIGHTGLOW. NIGHTGLOW is designed to be flown-from a high altitude research balloon, and circumnavigate the globe. NIGHTGLOW is a NASA, University of Utah, and New Mexico State University project. A test flight took place from Palestine, Texas on July 5, 2000, lasting about 8 hours. The instrument performed well and landed safely in Stiles, Texas with little damage. The resulting measurements of the NUV nightglow are consistent with previous measurements from sounding rockets and balloons. The results will be presented and discussed.
2017-12-08
Matthew Mullin and Bobby Meazell, Orbital ATK/Columbia Scientific Balloon Facility technicians, conduct compatibility testing on NASA Langley Research Center’s Radiation Dosimetry Experiment payload Wednesday, Sept. 9, at Fort Sumner, N.M. The successful compatibility test was a key milestone in ensuring the flight readiness of RaD-X, which is scheduled to launch on an 11-million-cubic-foot NASA scientific balloon no earlier than Friday, Sept. 11, from the agency’s balloon launching facility in Fort Sumner. RaD-X will measure cosmic ray energy at two separate altitude regions in the stratosphere—above 110,000 feet and between 69,000 to 88,500 feet. The data is key to confirming Langley’s Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model, which is a physics-based model that determines solar radiation and galactic cosmic ray exposure globally in real-time. The NAIRAS modeling tool will be used to help enhance aircraft safety as well as safety procedures for the International Space Station. In addition to the primary payload, 100 small student experiments will fly on the RaD-X mission as part of the Cubes in Space program. The program provides 11- to 18-year-old middle and high school students a no-cost opportunity to design and compete to launch an experiment into space or into the near-space environment. The cubes measure just 4 centimeters by 4 centimeters. NASA’s scientific balloons offer low-cost, near-space access for scientific payloads weighing up to 8,000 pounds for conducting scientific investigations in fields such as astrophysics, heliophysics and atmospheric research. NASA’s Wallops Flight Facility in Virginia manages the agency’s scientific balloon program with 10 to 15 flights each year from launch sites worldwide. Orbital ATK provides program management, mission planning, engineering services and field operations for NASA’s scientific balloon program. The program is executed from the Columbia Scientific Balloon Facility in Palestine, Texas. The Columbia team has launched more than 1,700 scientific balloons in over 35 years of operation. Anyone may track the progress of the Fort Sumner flights, which includes a map showing the balloon’s real-time location, at: towerfts.csbf.nasa.gov/ For more information on the balloon program, see: www.nasa.gov/scientificballoons NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2012-07-24
CAPE CANAVERAL, Fla. – The instrument package and capsule built by Rocket University participants for a high-altitude balloon flight. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – Rocket University participants inspect a capsule that is being prepared for a high-altitude balloon flight. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – Rocket University participants prepare to launch a high-altitude balloon flight and instrument package. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – Rocket University participants prepare to launch a high-altitude balloon flight and instrument package. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – The instrument package built by Rocket University participants for a high-altitude balloon flight. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – Rocket University participants prepare to launch a high-altitude balloon flight and instrument package. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – The instrument package built by Rocket University participants for a high-altitude balloon flight. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – The instrument package built by Rocket University participants for a high-altitude balloon flight. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – Rocket University participants prepare to launch a high-altitude balloon flight and instrument package. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
X-Ray Astronomy Research at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Austin, Robert A.
1999-01-01
For at least twenty years, NASA's Marshall Space Flight Center (MSFC) has played a major role in the development of X-ray astronomy in the United States. MSFC scientists and engineers are currently involved in a wide range of programs which will contribute to the growth of X-ray astronomy well into the next century. Areas of activity include calibration of X-ray astronomy instrumentation using Marshall's world-class X-ray Calibration Facility (XRCF), development of high-throughput, replicated X-ray optics, X-ray detector development, balloon-based X-ray astronomy, and analysis of Active Galactic Nuclei (AGNs) and clusters of galaxies. Recent milestones include the successful calibration of NASA's premier X-ray Astronomy Satellite - AXAF (recently renamed Chandra), a balloon flight of a large area (1000 sq cm) micro-strip proportional counter, and work on a hard X-ray (30-100 keV) telescope called HERO, capable of high quality spectroscopy and imaging through the use of grazing incidence optics and an Imaging Gas Scintillation Proportional Counter (IGSPC). In my presentation, I will provide a general overview of our research and facilities. I will conclude with a more detailed discussion of our High Energy Replicated Optics (HERO) program and plans for long duration (>100 days) balloon flights which will take place in the near future.
NASA Astrophysics Data System (ADS)
Verner, E.; Bruhweiler, F. C.; Abot, J.; Casarotto, V.; Dichoso, J.; Doody, E.; Esteves, F.; Morsch Filho, E.; Gonteski, D.; Lamos, M.; Leo, A.; Mulder, N.; Matubara, F.; Schramm, P.; Silva, R.; Quisberth, J.; Uritsky, G.; Kogut, A.; Lowe, L.; Mirel, P.; Lazear, J.
2014-12-01
In this project a multi-disciplinary undergraduate team from CUA, comprising majors in Physics, Mechanical Engineering, Electrical Engineering, and Biology, design, build, test, fly, and analyze the data from a prototype attitude determination system (PADS). The goal of the experiment is to determine if an inexpensive attitude determination system could be built for high altitude research balloons using MEMS gyros. PADS is a NASA funded project, built by students with the cooperation of CUA faculty, Verner, Bruhweiler, and Abot, along with the contributed expertise of researchers and engineers at NASA/GSFC, Kogut, Lowe, Mirel, and Lazear. The project was initiated through a course taught in CUA's School of Engineering, which was followed by a devoted effort by students during the summer of 2014. The project is an experiment to use 18 MEMS gyros, similar to those used in many smartphones, to produce an averaged positional error signal that could be compared with the motion of the fixed optical system as recorded through a string of optical images of stellar fields to be stored on a hard drive flown with the experiment. The optical system, camera microprocessor, and hard drive are enclosed in a pressure vessel, which maintains approximately atmospheric pressure throughout the balloon flight. The experiment uses multiple microprocessors to control the camera exposures, record gyro data, and provide thermal control. CUA students also participated in NASA-led design reviews. Four students traveled to NASA's Columbia Scientific Balloon Facility in Palestine, Texas to integrate PADS into a large balloon gondola containing other experiments, before being shipped, then launched in mid-August at Ft. Sumner, New Mexico. The payload is to fly at a float altitude of 40-45,000 m, and the flight last approximately 15 hours. The payload is to return to earth by parachute and the retrieved data are to be analyzed by CUA undergraduates. A description of the instrument is presented here as well as a preliminary analysis of the anticipated data, which were not available at the time of abstract submission. Acknowledgements: NASA grant NNX13AR61 under NASA's Undergraduate Student Instrument Program (USIP). Participating Brazilian students acknowledge support through Brazil's "Science without Borders" program.
JACEE long duration balloon flights. [Japanese-American Cooperative Emulsion Experiment
NASA Technical Reports Server (NTRS)
Burnett, T.; Iwai, J.; Dake, S.; Derrickson, J.; Fountain, W.; Fuki, M.; Gregory, J.; Hayashi, T.; Holynski, R.; Jones, W. V.
1989-01-01
JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1 to 100A TeV. Experiments with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed.
NASA Technical Reports Server (NTRS)
Lundstrom, R. R.; Raper, J. L.; Bendura, R. J.; Shields, E. W.
1974-01-01
Flight qualifications for parachutes were tested on full-scale simulated Viking spacecraft at entry conditions for the Viking 1975 mission to Mars. The vehicle was carried to an altitude of 36.6 km for the supersonic and transonic tests by a 980.000 cu m balloon. The vehicles were released and propelled to test conditions with rocket engines. A 117,940 cu m balloon carried the test vehicle to an altitude of 27.5 km and the conditions for the subsonic tests were achieved in free fall. Aeroshell separation occurred on all test vehicles from 8 to 14 seconds after parachute deployment. This report describes: (1) the test vehicle; (2) methods used to insure that the test conditions were achieved; and (3) the balloon system design and operations. The report also presents the performance data from onboard and ground based instruments and the results from a statistical trajectory program which gives a continuous history of test-vehicle motions.
Sounding rocket and balloon flight safety philosophy and methodologies
NASA Technical Reports Server (NTRS)
Beyma, R. J.
1986-01-01
NASA's sounding rocket and balloon goal is to successfully and safely perform scientific research. This is reflected in the design, planning, and conduct of sounding rocket and balloon operations. The purpose of this paper is to acquaint the sounding rocket and balloon scientific community with flight safety philosophy and methodologies, and how range safety affects their programs. This paper presents the flight safety philosophy for protecting the public against the risk created by the conduct of sounding rocket and balloon operations. The flight safety criteria used to implement this philosophy are defined and the methodologies used to calculate mission risk are described.
Some special sub-systems for stratospheric balloon flights in India
NASA Astrophysics Data System (ADS)
Damle, S. V.; Gokhale, G. S.; Kundapurkar, R. U.
During last few years several new sub-systems for balloon were developed and are being regularly used in the balloon flights. Some of these sub-systems are i) positive monitor for magnetic ballast release using an opto-electronic device ii) one-way pressure switch to terminate flight for runaway balloon iii) in-flight payload reel down system for atmospheric science experiment. The design, usage and performance of these and other sub-systems will be presented.
2012-07-24
CAPE CANAVERAL, Fla. – Alejandro Azocar, a Rocket University participant, prepares an instrument package to launch on a high-altitude balloon flight. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
Overview of the Scientific Balloon Activity in Sweden
NASA Astrophysics Data System (ADS)
Abrahamsson, Mattias; Kemi, Stig; Lockowandt, Christian; Andersson, Kent
SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from ESC since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times are very beneficial for astronomical payloads, such as telescopes that need long observation times. In 2013 two such payloads were flown, the first called SUNRISE was a German/US solar telescope, and the other called PoGOLite with a Swedish gamma-ray telescope. In 14 days PoGOLite, which had permission to fly over Russia, made an almost complete circumpolar flight. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. University students from all over Europe are involved in flights from Esrange under a Swedish/German programme called BEXUS. Two stratospheric balloons are flown with student payloads yearly, with the goal to introduce students in ballooning. Over the next couple of years the plan is to make a re-flight of the PoGOLite payload, fly two Japanese balloon payloads for planetary science missions, fly four student balloons, three balloons for technical studies of re-entry vehicles, and a balloon with a payload studying aerodynamic behaviour of a falling body.
NASA balloon design and flight - Philosophy and criteria
NASA Technical Reports Server (NTRS)
Smith, I. S., Jr.
1993-01-01
The NASA philosophy and criteria for the design and flight of scientific balloons are set forth and discussed. The thickness of balloon films is standardized at 20.3 microns to isolate potential film problems, and design equations are given for specific balloon parameters. Expressions are given for: flight-stress index, total required thickness, cap length, load-tape rating, and venting-duct area. The balloon design criteria were used in the design of scientific balloons under NASA auspices since 1986, and the resulting designs are shown to be 95 percent effective. These results represent a significant increase in the effectiveness of the balloons and therefore indicate that the design criteria are valuable. The criteria are applicable to four balloon volume classes in combination with seven payload ranges.
Gondola development for CNES stratospheric balloons
NASA Astrophysics Data System (ADS)
Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.
The CNES has been supporting scientific ballooning since its establishment in 1962. The two main parts of the balloon system or aerostat are the balloon itself and the flight train, comprising the house-keeping gondola, for the control of balloon flight (localization and operational telemetry & telecommand - TM/TC), and the scientific gondola with its dedicated telecommunication system. For zero pressure balloon, the development of new TM/TC system for the housekeeping and science data transmission are going on from 1999. The main concepts are : - for balloon house-keeping and low rate scientific telemetry, the ELITE system, which is based on single I2C bus standardizing communication between the different components of the system : trajectography, balloon control, power supply, scientific TM/TC, .... In this concept, Radio Frequency links are developed between the house keeping gondola and the components of the aerostat (balloon valve, ballast machine, balloon gas temperature measurements, ...). The main objectives are to simplify the flight train preparation in term of gondola testing before flight, and also by reducing the number of long electrical cables integrated in the balloon and the flight train; - for high rate scientific telemetry, the use of functional interconnection Internet Protocol (IP) in interface with the Radio Frequency link. The main idea is to use off-the-shelf IP hardware products (routers, industrial PC, ...) and IP software (Telnet, FTP, Web-HTTP, ...) to reduce the development costs; - for safety increase, the adding, in the flight train, of a totally independent house keeping gondola based on the satellite Inmarsat M and Iridium telecommunication systems, which permits to get real time communications between the on-board data mobile and the ground station, reduced to a PC computer with modem connected to the phone network. These GEO and LEO telecommunication systems give also the capability to operate balloon flights over longer distance (over the line of sight) than with dedicated RF system, which requires balloon visibility from the ground station. For long duration flights (3 months) of Infra Red Montgolfieres, a house keeping gondola has been developed, using the Inmarsat C standard to have communication all around the world (up to N or S 80 ° latitude) with an automatic switching between the 4 geostationnary Inmarsat satellites. After validation flights performed from Bauru / Brazil. (2000 & 2001) and Kiruna/Sweden (2002), the first operational flights took place from Bauru in February 2003 during ENVISAT validation campaign. The next flights will be realized in the framework of the Hibiscus campaign planned in February 2004 in Bauru.. The Balloon Division was involved in the Franco / Japanese HSFD II project which consists to drop a mock-up of the Japanese HOPE-X space shuttle from a stratospheric balloon to validate its flight from the altitude of 30 km. We developed a specific gondola as a service module for the HOPE-X shuttle, providing power and GPS radio-frequency signal during the balloon flight phase, telemetry end remote control radio frequency links and separation system with pyrotechnic cutters for the drop of the shuttle. A successful flight was performed at Kiruna in July 2003. Concerning gondola with pointing system, the study of a big g-ray telescope (8 m of focal length), started by the end of 2002. For this 1 ton gondola, the telescope stabilization system will be based on control moment gyro (CMG). The CMG system has been designed and will be manufactured and validated during 2004. The first flight of this g-ray gondola is planned for 2006. The progress, status and future plans concerning these gondola developments will be presented.
Balloon stratospheric research flights, April 1976 to December 1976
NASA Technical Reports Server (NTRS)
Allen, N. C.
1977-01-01
These flights were designed to measure the vertical concentration profile of trace stratospheric species which form major links in the chlorine photochemical system of the upper atmosphere, to measure the vertical concentration profiles of atomic oxygen, the hydroxyl radical and ozone in the stratosphere. An overview of the scientific goals of the program, a statement of program management and support functions, a brief description of the instrumentation flown, pertinent engineering and payload operations data, and a summary of the scientific data obtained for four flights are presented.
Planetary Balloon-Based Science Platform Evaluation and Program Implementation
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob
2016-01-01
This report describes a study evaluating the potential for a balloon-based optical telescope as a planetary science asset to achieve decadal class science. The study considered potential science achievable and science traceability relative to the most recent planetary science decadal survey, potential platform features, and demonstration flights in the evaluation process. Science Potential and Benefits: This study confirms the cost the-benefit value for planetary science purposes. Forty-four (44) important questions of the decadal survey are at least partially addressable through balloon based capabilities. Planetary science through balloon observations can provide significant science through observations in the 300 nm to 5 m range and at longer wavelengths as well. Additionally, balloon missions have demonstrated the ability to progress from concept to observation to publication much faster than a space mission increasing the speed of science return. Planetary science from a balloon-borne platform is a relatively low-cost approach to new science measurements. This is particularly relevant within a cost-constrained planetary science budget. Repeated flights further reduce the cost of the per unit science data. Such flights offer observing time at a very competitive cost. Another advantage for planetary scientists is that a dedicated asset could provide significant new viewing opportunities not possible from the ground and allow unprecedented access to observations that cannot be realized with the time allocation pressures faced by current observing assets. In addition, flight systems that have a relatively short life cycle and where hardware is generally recovered, are excellent opportunities to train early career scientists, engineers, and project managers. The fact that balloon-borne payloads, unlike space missions, are generally recovered offers an excellent tool to test and mature instruments and other space craft systems. Desired Gondola Features: Potential gondola characteristics are assessed in this study and a concept is recommended, the Gondola for High-Altitude Planetary Science (GHAPS). This first generation platform is designed around a 1 m or larger aperture, narrow-field telescope with pointing accuracies better than one arc-second. A classical Cassegrain, or variant like Ritchey-Chretien, telescope is recommended for the primary telescope. The gondola should be designed for multiple flights so it must be robust and readily processed at recovery. It must be light-weighted to the extent possible to allow for long-duration flights on super-pressure balloons. Demonstration Flights: Recent demonstration flights achieved several significant accomplishments that can feed forward to a GHAPS gondola project. Science results included the first ever Earth-based measurements for CO2 in a comet, first measurements for CO2 and H2O in an Oort cloud comet, and the first measurement of 1 Ceres at 2.73 m to refine the shape of the infrared water absorption feature. The performance of the Fine Steering Mirror (FSM) was also demonstrated. The BOPPS platform can continue to be leveraged on future flights even as GHAPS is being developed. The study affirms the planetary decadal recommendations, and shows that a number of Top Priority science questions can be achieved. A combination GHAPS and BOPPS would provide the best value for PSD for realizing that science.
Balloon Program Wraps up in Antarctica, Heading to New Zealand
2015-02-02
Caption: A NASA Super Pressure Balloon with the COSI payload is ready for launch from McMurdo, Antarctica. Credit: NASA More info: NASA’s globetrotting Balloon Program Office is wrapping up its 2014-2015 Antarctic campaign while prepping for an around-the-world flight launching out of Wanaka, New Zealand, in March. After 16 days, 12 hours, and 56 minutes of flight, operators successfully conducted a planned flight termination of the Suborbital Polarimeter for Inflation Dust and the Epoch of Reionization (SPIDER) mission Saturday, Jan. 18, the final mission of the campaign. Other flights in the 2014-2015 Antarctic campaign included the Antarctic Impulsive Transient Antenna (ANITA-III) mission as well as the Compton Spectrometer and Imager (COSI) payload flown on the developmental Super Pressure Balloon (SPB). ANITA-III successfully wrapped up Jan. 9 after 22 days, 9 hours, and 14 minutes of flight. Flight controllers terminated the COSI flight 43 hours into the mission after detecting a small gas leak in the balloon. Crews are now working to recover all three instruments from different locations across the continent. The 6,480-pound SPIDER payload is stationary at a position about 290 miles from the United Kingdom’s Sky Blu Logistics Facility in Antarctica. The 4,601 pound ANITA-III payload, located about 100 miles from Australia’s Davis Station, and the 2,866 pound COSI payload, located about 340 miles from the United States McMurdo Station both had numerous key components recovered in the past few days. Beginning in late January, the Balloon Program Office will deploy a team to Wanaka, New Zealand, to begin preparations for an SPB flight, scheduled to launch in March. The Program Office seeks to fly the SPB more than 100 days, which would shatter the current flight duration record of 55 days, 1 hour, and 34 minutes for a large scientific balloon. “We’re looking forward to the New Zealand campaign and hopefully a history-making flight with the Super Pressure Balloon,” said Debbie Fairbrother, NASA’s Balloon Program Office Chief. Most scientific balloons see altitude variances based on temperature changes in the atmosphere at night and during the day. The SPB is capable of missions on the order of 100 days or more at constant float altitudes due to the pressurization of the balloon. “Stable, long-duration flights at near-space altitudes above more than 99 percent of the atmosphere are highly desirable in the science community, and we’re ready to deliver,” said Fairbrother. In addition to the SPB flight in March, the Balloon Program Office has 10 more balloon missions planned through September 2015 to include scheduled test flights of the Low-Density Supersonic Decelerator, which is testing new technologies for landing larger, heavier payloads on Mars. NASA’s Wallops Flight Facility manages the agency’s Scientific Balloon Program with 10 to 15 flights each year from launch sites worldwide. The balloons are massive in volume; the average-sized balloon could hold the volume of nearly 200 blimps. Previous work on balloons have contributed to confirming the Big Bang Theory. For more information on NASA’s Scientific Balloon Program, see: sites.wff.nasa.gov/code820/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Recent Developments in Balloon Support Instrumentation at TIFR Balloon Facility, Hyderabad.
NASA Astrophysics Data System (ADS)
Vasudevan, Rajagopalan
2012-07-01
The Balloon Facility of Tata Institute of Fundamental Research has been conducting stratospheric balloon flights regularly for various experiments in Space Astronomy and Atmospheric Sciences. A continuous improvement in Balloon flight Support instrumentation by the Control Instrumentation Group to keep in space with the growing complexities of the scientific payloads have contributed to the total success of balloon flights conducted recently. Recent improvements in display of Balloon position during balloon flight by showing on real time the balloon GPS position against Google TM maps is of immense help in selecting the right spot for payload landing and safe recovery . For further speeding up the payload recovery process, a new GPS-GSM payload system has been developed which gives SMS of the payload position information to the recovery team on their cell phones. On parallel footing, a new GPS- VHF system has been developed using GPS and Radio Modems for Balloon Tracking and also for obtaining the payload impact point. On the Telecommand side, a single board Telecommand/ Timer weighing less than 2 Kg has been specially developed for use in the mesosphere balloon test flight. The interference on the existing Short Range Telemetry System has been eliminated by introducing a Band Pass Filter and LNA in the Receiving system of the modules, thereby enhancing its reliability. In this paper , we present the details of the above mentioned developments.
NASA Astrophysics Data System (ADS)
Bowman, D. C.; Albert, S.; Dexheimer, D.; Murphy, S.; Mullen, M.
2017-12-01
Existing scientific ballooning solutions for multi hour flights in the upper troposphere/lower stratosphere are expensive and/or technically challenging. In contrast, solar hot air balloons are inexpensive and simple to construct. These balloons, which rely solely on sunlight striking a darkened envelope, can deliver payloads to 22 km altitude and maintain level flight until sunset. We describe an experimental campaign in which five solar hot air balloons launched in 45 minutes created a free flying infrasound (low frequency sound) microphone network that remained in the air for over 12 hours. We discuss the balloons' trajectory, maximum altitude, and stability as well as present results from the infrasound observations. We assess the performance and limitations of this design for lightweight atmospheric instrumentation deployments that require multi-hour flight times. Finally, we address the possibilities of multi day flights during the polar summer and on other planets.
The Latest Developments in NASA's Long Duration Balloon Systems
NASA Astrophysics Data System (ADS)
Stilwell, Bryan D.
The Latest Developments in NASA’s Long Duration Balloon Systems Bryan D. Stilwell, bryan.stilwell@csbf.nasa.gov Columbia Scientific Balloon Facility, Palestine, Texas, USA The Columbia Scientific Balloon Facility, located in Palestine, Texas offers the scientific community a high altitude balloon based communications platform. Scientific payload mass can exceed 2722 kg with balloon float altitudes on average of 40000 km and flight duration of up to 100 days. Many developments in electrical systems have occurred over the more than 25 years of long duration flights. This paper will discuss the latest developments in electronic systems related to long duration flights. Over the years, the long duration flights have increased in durations exceeding 56 days. In order to support these longer flights, the systems have had to increase in complexity and reliability. Several different systems that have been upgraded and/or enhanced will be discussed.
High altitude flights in equatorial regions
NASA Astrophysics Data System (ADS)
Redkar, R. T.
A thorough analysis of balloon flights made from Hyderabad, India (Latitude 17°28'N, Longitude 78°35'E), and other equatorial sites has been made. It has been shown that limited success is expected for flights made from equatorial latitudes with balloons made out of natural colour polyethylene film, since the best known balloon film in the world today viz. Winzen Stratofilm is tested for low temperature brittleness only at -80°C., whereas the tropopause temperatures over equatorial latitudes vary between -80°C and -90°C. The success becomes even more critical when flights are made with heavy payloads and larger balloons particularly at night when in the absence of solar radiation the balloon film becomes more susceptible to low temperature brittle failure. It is recommended that in case of capped balloons longer caps should be used to fully cover the inflated protion of the balloon at the higher level equatorial tropopause. It is also advised that the conditions such as wind shears in the tropopause should be critically studied before launching and a day with the tropopause temperature nearer to -80°C should be chosen. Special care also should be taken while handling the balloon on ground and during launching phase. Properties of Winzen Stratofilm have been critically studied and fresh mandates have been recommended on the basis of limiting values of film stresses which caused balloon failures in the equatorial tropopause. It is also emphasized that the data on such flights is still meagre especially for flights with heavy payloads and larger balloons. It has been also shown that it is safest to use balloons made out of grey coloured film which retains its flexibility with the absorption of solar radiation, the success obtained with such balloons so far being 100%. The drawback, however, is that these balloons cannot be used for night flights. Stratospheric wind regimes over Hyderabad are also discussed with a view to determine the period over which long duration flights can be made. The data available, however, is meagre and it is recommended that more frequent special wind ascents be made to collect adequate statistical data from which reliable conclusions could be drawn through critical analysis.
Technologies developed by CNES balloon team
NASA Astrophysics Data System (ADS)
Sosa-Sesma, Sergio; Charbonnier, Jean-Marc; Deramecourt, Arnaud
CNES balloon team develops and operates all the components of this kind of vehicle: it means envelope and gondola. This abstract will point out only developments done for envelope. Nowadays CNES offers to scientists four types of envelops that cover a large range of mission demands. These envelops are: 1. Zero pressure balloons: Size going from 3,000m3 to 600,000m3, this kind of envelop is ideal for short duration flights (a few hours) but if we use an intelligent management of ballast consumption and if we chose the best launch site, it is possible to perform medium duration flights (10/20 days depending on the ballast on board). Flight train mass starts at 50kg for small balloons and reach 1000kg for larger ones. Zero pressure balloons are inflated with helium gas. 2. Super pressure balloons: Diameter going from 2.5m to 12m, this kind of envelop is ideal for long duration flights (1 to 6 months). Flight train is inside the envelop for small balloons, it means 2.5 diameter meters which is usually called BPCL (Super pressure balloon for Earth boundary layer) and it is about 3kg of mass. Larger ones could lift external flight trains about 50kg of mass. Super pressure balloons are inflated with helium gas. 3. MIR balloons: Size going from 36,000m3 to 46,000m3. Ceiling is reach with helium gas but after three days helium is no longer present inside and lift force is produced by difference of temperature between air inside and air of atmosphere. Flight trains must not be over 50kg. 4. Aero Clipper balloons: A concept to correlate measurements done in oceans and in nearest layers of atmosphere simultaneously. Flight train is made by a "fish" that drags inside water and an atmospheric gondola few meters above "fish", both pushed by a balloon which profits of the wind force. Materials used for construction and assembling depend on balloon type; they are usually made of polyester or polyethylene. Thickness varies from 12 micrometers to 120 micrometers. Balloon assembling is made at ZODIAC site (near Toulouse) by Zodiac teams although all mechanical machines belong to CNES. These machines had been developed by CNES to cut, to weld and to thermo-joint the different parts of the balloon.
2012-07-24
CAPE CANAVERAL, Fla. – Karl Stolleis prepares an instrument package for testing as part of a high-altitude balloon flight for the Rocket University program. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – Alejandro Azocar, foreground, and Page Attany, Rocket University participants, prepare an instrument package to launch on a high-altitude balloon flight. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – Ron Sterick, a participant in the Rocket University program, inspects a capsule and parachute that are being prepared for a high-altitude balloon flight. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – Karl Stolleis prepares an instrument package for testing as part of a high-altitude balloon flight for the Rocket University program. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – The instrument package built by Rocket University participants for a high-altitude balloon flight sits on the ground moments before launch. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – Leandro James, left to right, Alejandro Azocar, Ron Sterick and Chris Iannello discuss a high-altitude balloon flight for the Rocket University program. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
Middle atmospheric electric fields over thunderstorms
NASA Technical Reports Server (NTRS)
Holzworth, Robert H.
1992-01-01
This grant has supported a variety of investigations all having to do with the external electrodynamics of thunderstorms. The grant was a continuation of work begun while the PI was at the Aerospace Corporation (under NASA Grant NAS6-3109) and the general line of investigation continues today under NASA Grants NAG5-685 and NAG6-111. This report will briefly identify the subject areas of the research and associated results. The period actually covered by the grant NAG5-604 included the following analysis and flights: (1) analysis of five successful balloon flights in 1980 and 1981 (under the predecessor NASA grant) in the stratosphere over thunderstorms; (2) development and flight of the Hy-wire tethered balloon system for direct measurement of the atmospheric potential to 250 kV (this involved multiple tethered balloon flight periods from 1981 through 1986 from several locations including Wallops Island, VA, Poker Flat and Ft. Greely, AK and Holloman AFB, NM.); (3) balloon flights in the stratosphere over thunderstorms to measure vector electric fields and associated parameters in 1986 (2 flights), 1987 (4 flights), and 1988 (2 flights); and (4) rocket-borne optical lightning flash detectors on two rocket flights (1987 and 1988) (the same detector design that was used for the balloon flights listed under #3). In summary this grant supported 8 stratospheric zero-pressure balloon flights, tethered aerostat flights every year between 1982-1985, instruments on 2 rockets, and analysis of data from 6 stratospheric flights in 1980/81.
Evolution of scientific ballooning and its impact on astrophysics research
NASA Astrophysics Data System (ADS)
Jones, William Vernon
2014-05-01
As we celebrate the centennial year of the discovery of cosmic rays on a manned balloon, it seems appropriate to reflect on the evolution of ballooning and its scientific impact. Balloons have been used for scientific research since they were invented in France more than 200 years ago. Ballooning was revolutionized in 1950 with the introduction of the so-called natural shape balloon with integral load tapes. This basic design has been used with more or less continuously improved materials for scientific balloon flights for more than a half century, including long-duration balloon (LDB) flights around Antarctica for the past two decades. The U.S. National Aeronautics and Space Administration (NASA) is currently developing the next generation super-pressure balloon that would enable extended duration missions above 99.5% of the Earth's atmosphere at any latitude. The Astro2010 Decadal Survey report supports super-pressure balloon development and the giant step forward it offers with ultra-long-duration balloon (ULDB) flights at constant altitudes for about 100 days.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuno, T
2004-09-03
Cosmic-ray background fluxes were modeled based on existing measurements and theories and are presented here. The model, originally developed for the Gamma-ray Large Area Space Telescope (GLAST) Balloon Experiment, covers the entire solid angle (4{pi} sr), the sensitive energy range of the instrument ({approx} 10 MeV to 100 GeV) and abundant components (proton, alpha, e{sup -}, e{sup +}, {mu}{sup -}, {mu}{sup +} and gamma). It is expressed in analytic functions in which modulations due to the solar activity and the Earth geomagnetism are parameterized. Although the model is intended to be used primarily for the GLAST Balloon Experiment, model functionsmore » in low-Earth orbit are also presented and can be used for other high energy astrophysical missions. The model has been validated via comparison with the data of the GLAST Balloon Experiment.« less
A verified technique for calibrating space solar cells
NASA Technical Reports Server (NTRS)
Anspaugh, Bruce
1987-01-01
Solar cells have been flown on high-altitude balloons for over 24 years, to produce solar cell standards that can be used to set the intensity of solar simulators. The events of a typical balloon calibration flight are reported. These are: the preflight events, including the preflight cell measurements and the assembly of the flight cells onto the solar tracker; the activities at the National Scientific Balloon Facility in Palestine, Texas, including the preflight calibrations, the mating of the tracker and cells onto the balloon, preparations for launch, and the launch; the payload recovery, which includes tracking the balloon by aircraft, terminating the flight, and retrieving the payload. In 1985, the cells flow on the balloon were also flown on a shuttle flight and measured independently. The two measurement methods are compared and shown to agree within 1 percent.
Location and data collection for long stratospheric balloon flights
NASA Astrophysics Data System (ADS)
Malaterre, P.
Stratospheric balloons capable of taking a 30 kg scientific payload to an altitude of 22 to 30 km for 1 month or more were developed. In-flight experiments were used to qualify the designs of a pumpkin shaped superpressure balloon and an infrared hot air balloon. Tracking of the flights (location and transmission of the parameters measured on board) was achieved using a telemetry gondola including an ARGOS beacon adapted for operation in the low temperatures encountered.
The E and B EXperiment: Implementation and Analysis of the 2009 Engineering Flight
NASA Astrophysics Data System (ADS)
Milligan, Michael Bryce
The E and B EXperiment (EBEX) is a balloon-borne telescope designed to map the polarization of the cosmic microwave background (CMB) and emission from galactic dust at millimeter wavelengths from 150 to 410 GHz. The primary science objectives of EBEX are to: detect or constrain the primordial B-mode polarization of the CMB predicted by inflationary cosmology; measure the CMB B-mode signal induced by gravitational lensing; and characterize the polarized thermal emission from interstellar dust. EBEX will observe a 420 square degree patch of the sky at high galactic latitude with a telescope and camera that provide an 8 arcminute beam at three observing bands (150, 250, and 410 GHz) and a 6.2 degree diffraction limited field of view to two large-format bolometer array focal planes. Polarimetry is achieved via a continuously rotating half-wave plate (HWP), and the optical system is designed from the ground up for control of sidelobe response and polarization systematic errors. EBEX is intended to execute fly or more Antarctic long duration balloon campaigns. In June 2009 EBEX completed a North American engineering flight launched from NASA's Columbia Scientific Ballooning Facility (CSBF) in Ft. Sumner, NM and operated in the stratosphere above 30 km altitude for ˜10 hours. During flight EBEX must be largely autonomous as it conducts pointed, scheduled observations; tunes and operates 1432 TES bolometers via 28 embedded Digital frequency-domain multiplexing (DfMux) computers; logs over 3 GiB/hour of science and housekeeping data to onboard redundant disk storage arrays; manages and dispatches jobs over a fault-tolerant onboard Ethernet network; and feeds a complex real-time data processing infrastructure on the ground via satellite and line-of-sight (LOS) downlinks. In this thesis we review the EBEX instrument, present the optical design and the computational architecture for in-flight control and data handling, and the quick-look software stack. Finally we describe the 2009 North American test flight and present analysis of data collected at the end of that flight that characterizes scan-synchronous signals and the expected response to emission from thermal dust in our galaxy.
2012-07-24
CAPE CANAVERAL, Fla. – Mike Lane, left, and Paul Paulick, both participants in the Rocket University program, inspect a capsule that is being prepared for a high-altitude balloon flight. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – Paul Paulick, left, and Ron Sterick, both participants in the Rocket University program, inspect a capsule and parachute that are being prepared for a high-altitude balloon flight. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – Ron Sterick, left to right, Nicole Otermat and Page Attany, participants in the Rocket University program, prepare an instrument package to launch on a high-altitude balloon flight. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – Karl Stolleis, left and Nick Pack prepare an instrument package for testing as part of a high-altitude balloon flight for the Rocket University program. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
2012-07-24
CAPE CANAVERAL, Fla. – Karl Stolleis, kneeling, and Nick Pack prepare an instrument package for testing as part of a high-altitude balloon flight for the Rocket University program. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann
Results of the 1974 through 1977 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Sidwell, L. B.
1978-01-01
From 1974 through 1977, seven solar cell calibration flights and two R&D flights with a spectroradiometer as a payload were attempted. There were two R&D flights, and one calibration flight that failed. Each calibration flight balloon was designed to carry its payload to an altitude of 36.6 km (120 kft). The R&D flight balloons were designed for a payload altitude of 47.5 km (150 kft). At the end of the flight period, the upper (solar cell calibration system) and lower (consolidated instrument package (DIP) payloads were separated from the balloon and descend via parachutes. The calibrated solar cells recovered in this manner were used as primary intensity reference standards during solar simulator testing of solar cells and solar arrays with similar spectral response characteristics. This method of calibration has become the most widely accepted technique for developing space standard solar cells.
Ballooning in the constant sun of the South Pole summer
2014-04-24
Recovery of a BARREL balloon payload after its flight. The recovery was carried out by helicopter. This area is known to be heavily crevassed so the base mountaineer is seen here with a safety rope. Credit: NASA/Goddard/BARREL/Brett Anderson Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
LISA: a java API for performing simulations of trajectories for all types of balloons
NASA Astrophysics Data System (ADS)
Conessa, Huguette
2016-07-01
LISA (LIbrarie de Simulation pour les Aerostats) is a java API for performing simulations of trajectories for all types of balloons (Zero Pressure Balloons, Pressurized Balloons, Infrared Montgolfier), and for all phases of flight (ascent, ceiling, descent). This library has for goals to establish a reliable repository of Balloons flight physics models, to capitalize developments and control models used in different tools. It is already used for flight physics study software in CNES, to understand and reproduce the behavior of balloons, observed during real flights. It will be used operationally for the ground segment of the STRATEOLE2 mission. It was developed with quality rules of "critical software." It is based on fundamental generic concepts, linking the simulation state variables to interchangeable calculation models. Each LISA model defines how to calculate a consistent set of state variables combining validity checks. To perform a simulation for a type of balloon and a phase of flight, it is necessary to select or create a macro-model that is to say, a consistent set of models to choose from among those offered by LISA, defining the behavior of the environment and the balloon. The purpose of this presentation is to introduce the main concepts of LISA, and the new perspectives offered by this library.
Microgravity experiment system utilizing a balloon
NASA Astrophysics Data System (ADS)
Namiki, M.; Ohta, S.; Yamagami, T.; Koma, Y.; Akiyama, H.; Hirosawa, H.; Nishimura, J.
A system for microgravity experiments by using a stratospheric balloon has been planned and developed in ISAS since 1978. A rocket-shaped chamber mounting the experiment apparatus is released from the balloon around 30 km altitude. The microgravity duration is from the release to opening of parachute, controlled by an on-board sequential timer. Test flights were performed in 1980 and in 1981. In September 1983 the first scientific experiment, observing behaviors and brain activities of fishes in the microgravity circumstance, have been successfully carried out. The chamber is specially equipped with movie cameras and subtransmitters, and its release altitude is about 32 km. The microgravity observed inside the chamber is less than 2.9 × 10-3 G during 10 sec. Engineering aspects of the system used in the 1983 experiment are presented.
Early Cosmic Ray Research with Balloons
NASA Astrophysics Data System (ADS)
Walter, Michael
2013-06-01
The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.
The Balloon-borne Large Aperture Submillimeter Telescope: BLAST
NASA Astrophysics Data System (ADS)
Truch, Matthew D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Chung, J.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; MacTavish, C. J.; Marsden, G.; Martin, P. G.; Martin, T. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Thomas, N. E.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.
2009-01-01
The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 microns. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30" at 250 microns. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of 30"; postflight pointing reconstruction to <5" rms is achieved. The onboard telescope control software permits autonomous execution of a preselected set of maps, with the option of manual override. On this poster, we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hour, circumpolar flight from McMurdo Station, Antarctica in 2006 December. The BLAST collaboration acknowledges the support of NASA through grants NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the Science and Technology Facilities Council (STFC), Canada's Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation, the Ontario Innovation Trust, the Puerto Rico Space Grant Consortium, the Fondo Institucional para la Investigacion of the University of Puerto Rico, and the National Science Foundation Office of Polar Programs.
Cassini Titan Flybys: The Next Year (April 2012 through April 2013)
NASA Astrophysics Data System (ADS)
Ray, T.; Burton, M.; Pitesky, J. E.; Steadman, K.; Roy, M.
2012-04-01
This poster describes the scientific, engineering, and operations planning for a Discovery / New Frontiers class Titan airplane mission, AVIATR (Aerial Vehicle for In-situ and Airborne Titan Reconnaissance). The mission would focus on Titan's surface and atmospheric diversity, using high-resolution imaging, near-infrared spectroscopy, a haze spectrometer, and atmospheric structure measurements. Previous mission studies have elected to use hot-air balloons to achieve similar science goals. These hot-air balloon concepts require the waste heat from inefficient thermocouple-based Radioisotope Thermoelectric Generators (RTGs) for buoyancy. New Advanced Stirling Radioisotope Generators (ASRGs) are much more efficient than RTGs both in terms of power produced per gram of plutonium-238 and the total watts-per-kilogram of the power unit itself. However, they are so efficient that they are much less effective for use in heating a hot-air balloon. Similarly, old-style RTGs produce insufficient specific power for heavier-than-air flight, but the use of 2 ASRGs can support a 120 kg airplane for a long-duration mission at Titan. The AVIATR airplane concept has several advantages in its science capabilities relative to a balloon, including the ability to target any site of interest, remaining on the dayside, stereo and repeat coverage, and easy altitude changes. It also possesses engineering advantages over a balloon like low total mass, a more straightforward deployment sequence, direct-to-Earth communications capability, and a more robust airframe.
Titan's atmosphere and surface in 2026: the AVIATR Titan Airplane Mission
NASA Astrophysics Data System (ADS)
McKay, Chris; Barnes, Jason W.; Lemke, Lawrence; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David; Flasar, F. Michael
2010-04-01
This poster describes the scientific, engineering, and operations planning for a Discovery / New Frontiers class Titan airplane mission, AVIATR (Aerial Vehicle for In-situ and Airborne Titan Reconnaissance). The mission would focus on Titan's surface and atmospheric diversity, using high-resolution imaging, near-infrared spectroscopy, a haze spectrometer, and atmospheric structure measurements. Previous mission studies have elected to use hot-air balloons to achieve similar science goals. These hot-air balloon concepts require the waste heat from inefficient thermocouple-based Radioisotope Thermoelectric Generators (RTGs) for buoyancy. New Advanced Stirling Radioisotope Generators (ASRGs) are much more efficient than RTGs both in terms of power produced per gram of plutonium-238 and the total watts-per-kilogram of the power unit itself. However, they are so efficient that they are much less effective for use in heating a hot-air balloon. Similarly, old-style RTGs produce insufficient specific power for heavier-than-air flight, but the use of 2 ASRGs can support a 120 kg airplane for a long-duration mission at Titan. The AVIATR airplane concept has several advantages in its science capabilities relative to a balloon, including the ability to target any site of interest, remaining on the dayside, stereo and repeat coverage, and easy altitude changes. It also possesses engineering advantages over a balloon like low total mass, a more straightforward deployment sequence, direct-to-Earth communications capability, and a more robust airframe.
A hard X-ray experiment for long-duration balloon flights
NASA Astrophysics Data System (ADS)
Johnson, W. N.; Kurfess, J. D.; Strickman, M. S.; Saulnier, D. M.
The Naval Research Lab has developed a balloon-borne hard X-ray experiment which is designed for 60- to 90-day flight durations soon to be available with around the world Sky Anchor or RACOON balloon flights. The experiment's scintillation detector is sensitive to the 15 - 250 keV X-ray energy range. The experiment includes three microcomputer systems which control the data acquisition and provide the orientation and navigation information required for global balloon flights. The data system supports global data communications utilizing the GOES satellite as well as high bit rate communications through L-band li line-of-site transmissions
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Downing, R. G.; Sidwell, L. B.
1985-01-01
The Solar Cell Calibration Facility (SCCF) experiment was designed and built to evaluate the effect of the Earth's upper atmosphere on the calibration of solar cell standards. During execution of the experiment, a collection of carefully selected solar cells was flown on the shuttle, and reflown on a high-altitude balloon, then their outputs were compared. After correction to standard temperature and intensity values of 28 C and an Earth-Sun distance of 1 AU, the solar cell outputs during the two flights were found to be identical. The conclusion is therefore that the high-altitude balloon flights are very good vehicles for calibrating solar cells for use as space flight reference standards.
Recent results in the NASA research balloon program
NASA Technical Reports Server (NTRS)
Jones, W. Vernon
1989-01-01
The NASA Balloon Program has progressed from a total hiatus in the fall of 1985 to an unprecedented flight success rate in the fall of 1988. Using heavy-lift balloons being regularly supplied by two manufacturers, the program has provided a timely response for investigations of Supernova 1987A from Australia, low energy cosmic ray investigations from Canada during periods of near-solar-minimum, and routine domestic turnaround flights for a variety of investigations. Recent re-evaluation of balloon flight-safety have resulted in severe constraints on flights launched from the Palestine, Texas facility. The future program must rely heavily on the use of remote launch sites to meet the growing requirements for more frequent and longer duration flights being planned for the next 3 - 5 years.
Copy Right for Flight: Patterns of Technological Adaptation in Military Aviation
2012-06-01
Heppenheimer , A Brief History of Flight : From Balloons to Mach 3 and Beyond (New York: Wiley, 2001), 238. 4 Ronald E. Miller and David Sawers...Technical Development of Modern Aviation (London,: Routledge & K. Paul, 1968), 159. 7 T. A . Heppenheimer , A Brief History of Flight : From Balloons to...Modern Aviation (London,: Routledge & K. Paul, 1968), 165. 10 T. A . Heppenheimer , A Brief History of Flight : From Balloons to Mach 3 and Beyond (New
Optimization of the GRAPE Polarimeter Design
NASA Astrophysics Data System (ADS)
McConnell, Mark
The Gamma Ray Polarimeter Experiment (GRAPE) is designed to investigate one of the most exotic phenomena in the universe - gamma-ray bursts (GRB). There has been intense observational and theoretical research in recent years, but research in this area has been largely focused on studies of time histories, spectra, and spatial distributions. Theoretical models show that a more complete understanding of the inner structure of GRBs, including the geometry and physical processes close to the central engine, requires the exploitation of gamma-ray polarimetry. Over the past several years, we have developed the GRAPE instrument to measure the polarization of gamma-rays from GRBs over the energy range of 50 to 500 keV. The GRAPE design is a modular one in which several independent modules are required to achieve sufficient sensitivity. A single module fits on the front end of a 2-inch square flat-panel multi-anode photomultiplier tube (MAPMT). The first operational balloon flight took in place in September of 2011 from Ft. Sumner, NM. The purpose of the 2011 flight was to validate the science capability of GRAPE by measuring the Crab polarization with a collimated array of 16 modules. The limited success of that flight led to a second validation flight (also from Ft. Sumner) in the fall of 2014, with significantly improved shielding and a larger array of modules. That flight proved too short to make a full observation of the Crab. Although we did not succeed in measuring the polarization of the Crab with a high degree of confidence, we feel that we are nonetheless prepared to move forward with our program. Our next goal is to fly GRAPE on a long duration balloon (LDB) platform to collect data on a significant sample of GRBs. Our experience with the first two balloon flights, coupled with further design efforts focused on orbital payloads, has led to an improved polarimeter concept that represents a natural evolution of the current design. It is this new concept that we are now proposing to develop and test before embarking on a long-duration balloon program. This new design, with improved sensitivity, will ensure that the science objectives can be achieved within the context of a viable balloon program.
A stress index model for ascending balloons
NASA Technical Reports Server (NTRS)
Smith, I. S.
1986-01-01
Attention is given to the development on the part of NASA of a simplified stress 'index' model to establish the relative stress magnitudes along a balloon's gore position as a function of altitude. Application of this model to several hundred balloon flights showed a good correlation between balloon failure rate and stress 'index' level. This model can be used during the balloon design process to lower the levels of stress in the balloon. By increasing the wall thickness of the balloon, adding caps, lengthening caps, or using external caps, lower stress can be accomplished. As a result, in January 1985, the NASA Balloon Program established a stress index specification to limit the design and flight stresses for NASA balloons.
Inflation Tests of the Echo 1 Satellite in Weeksville, N.C.
1958-08-13
Inflation Tests of the Echo 1 Satellite in Weeksville, N.C. 1958-L-03603 Image Langley engineers Edwin Kilgore (center), Norman Crabill (right) and an unidentified man take a peek inside the vast balloon during inflation tests. Page. 183 Space Flight Revolution NASA Langley Research Center From Sputnik to Apollo. NASA SP-4308.
AIROscope: Ames infrared balloon-borne telescope
NASA Technical Reports Server (NTRS)
Koontz, O. L.; Scott, S. G.
1974-01-01
A balloon-borne telescope system designed for astronomical observations at infrared wavelengths is discussed. The telescope is gyro-stabilized with updated pointing information derived from television, star tracker, or ground commands. The television system furnishes both course and fine acquisition after initial orientation using a pair of fluxgate servo compasses. Command and control is by a UHF link with 256 commands available. Scientific and engineering data are telemetered to the ground station via narrow band F.M. in the L band. The ground station displays all scientific, engineering and status information during the flights and records the command and telemetry digital bit stream for detailed analysis. The AIROscope telescope has a 28-inch diameter primary mirror and Dall-Kirkham optics. The beam is modulated by oscillating a secondary mirror at 11 or 25 Hz with provision for left or right beam fixed positions by command.
Antioxidant metabolism in Xenopus laevis embryos is affected by stratospheric balloon flight.
Rizzo, Angela M; Rossi, Federica; Zava, Stefania; Montorfano, Gigliola; Adorni, Laura; Cotronei, Vittorio; Zanini, Alba; Berra, Bruno
2007-07-01
To test the effects of low levels of radiation from space on living organisms, we flew Xenopus laevis embryos at different stages of development on a stratospheric balloon (BI.R.BA mission). After recovery, different parameters were analyzed to assess the effects of flight, with particular regard to oxidative stress damage. Because of failed temperature control during flight, the flight shielded embryos (FC) could not be used for biochemical or morphological comparisons. In contrast, the incubation conditions (i.e. temperature, containers, volumes) for the flight embryos (F) were parallel to those for the ground controls. Mortality data show that younger embryos (16 h) flown on the balloon (F) are more sensitive to radiation exposure than older ones (40 h and 6 days). Exposure during flight lowered the antioxidant potential in all embryos, particularly older ones. These preliminary data demonstrate that flight on a stratospheric balloon might affect antioxidant metabolism, though it is not yet possible to correlate these results with low radiation exposure during flight.
Global electrodynamics from superpressure balloons
NASA Technical Reports Server (NTRS)
Holzworth, R. H.; Hu, H.
1995-01-01
Electric field and conductivity measurements in the stratosphere between November 1992 and March 1993 have been made using superpressure balloons in the southern hemisphere. Over 400 payload-days of data have been made during a record setting experiment called ELBBO (Extended Life Balloon Borne Observatories). This experiment resulted in 4 flights aloft simultaneously for over 2 months including one flight which lasted over 4 months. Electrodynamical coupling between the atmosphere and ionosphere is studied using the measured electric fields, and a simple empirical model of the stratospheric conductivity. Altitude profiles of conductivity have been obtained from several superpressure balloon flights using the large end-of-flight altitude swings on the last few days of each flight (as the balloon begins to loose superpressure). Coupling between the fields and atmospheric inertial waves has been observed. Effects and dynamics of the global circuit suggest that standard models are missing significant phenomena. Large scale ionospheric convection activity has been studied from the polar cap to the middle latitudes. Cusp latitude fields have been continuously measured for many days in a row.
The High Energy Replicated Optics to Explore the Sun (HEROES)
NASA Astrophysics Data System (ADS)
Christe, S.; Shih, A. Y.; Rodriguez, M.; Cramer, A.; Garcia, I.; Gaskin, J.; Chavis, K.; Smith, L.
2012-12-01
Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaboration between NASA Marshall Space Flight Center and Goddard Space Flight Center to upgrade an existing payload to make unique scientific measurements of the Sun (during the day) and astrophysical targets (at night) during a single flight. HEROES will use grazing-incidence x-ray focusing optics combined with position-sensitive detectors to make new high energy (>20 keV) observations of the Sun in order to understand particle acceleration in solar flares. The HEROES science payload consists of 8 mirror modules, housing 110 grazing incidence replicated optics, mounted on a carbon-fiber-Aluminum optical bench 6 m from a matching array of focal-plane detectors (high pressure xenon gas scintillation proportional counters). The solar science objectives for HEROES are to (1) investigate electron acceleration in the non-flaring solar corona by searching for the hard X-ray signature of energetic electrons and to (2) investigate the acceleration and transport of energetic electrons in solar flares. HEROES will image the Sun with an angular resolution of 20 arcsec (FWHM) and will have a sensitivity up to ~100 times better than RHESSI at 20 keV. During 6 hours of solar observations (a minimum requirement for a typical balloon flight), HEROES has a ~75% chance of observing at least one flare with a GOES class above C1, and a ~20% chance of at least one flare above M1. HEROES is expected to observe the faint HXR emission from electrons streaming down the legs of magnetic loops or escaping along open magnetic field lines. Information from this flight will be used to design of a new balloon payload (SuperHERO) capable of capable of observing the Sun for 2-4 weeks using a Long Duration Balloon. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer, and Office of the Chief Technologist.
The High Energy Replicated Optics to Explore the Sun (HEROES)
NASA Astrophysics Data System (ADS)
Christe, Steven; Shih, A. Y.; Rodriguez, M.; Cramer, A.; Gregory, K.; Gaskin, J.; Chavis, K.; Smith, L.; HOPE/HEROES Team
2013-07-01
Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaboration between NASA Marshall Space Flight Center and Goddard Space Flight Center to upgrade an existing payload to make unique scientific measurements of the Sun (during the day) and astrophysical targets (at night) during a single flight. HEROES will use grazing-incidence x-ray focusing optics combined with position-sensitive detectors to make new high energy 20 keV to 75 keV) observations of the Sun in order to understand particle acceleration in solar flares. The HEROES science payload consists of 8 mirror modules, housing 109 grazing incidence replicated optics, mounted on a carbon-fiber-Aluminum optical bench 6 m from a matching array of focal-plane detectors (high pressure xenon gas scintillation proportional counters). HEROES will investigate electron acceleration and transport in the solar corona both in the solar flares and in the non-flaring quiet Sun. HEROES will image the Sun with an angular resolution of 20 arcsec (FWHM) and will have a sensitivity up to ~50 times better than RHESSI at 20 keV. During 6 hours of solar observations (a minimum requirement for a typical balloon flight), HEROES has a ~75% chance of observing at least one flare with a GOES class above C1, and a ~20% chance of at least one flare above M1. HEROES is expected to observe the faint HXR emission from electrons streaming down the legs of magnetic loops or escaping along open magnetic field lines. Experience on this flight will be used to design of new balloon payload (Super HERO) capable of capable of observing the Sun for 2-4 weeks using a Long Duration Balloon (LDB). This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer, and Office of the Chief Technologist.
Overview Of The Scientific Balloon Activity in Sweden 2014-2016
NASA Astrophysics Data System (ADS)
Abrahamsson, Mattias; Lockowandt, Christian; Andersson, Kent
2016-07-01
SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from Esrange since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times of 4-5 days are very beneficial for astronomical payloads, such as telescopes that need long observation times. Circumpolar flights of more than two weeks are possible if Russian overflight permission exists. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. Since last COSPAR a number of interesting balloon flights have been performed from Esrange. In late 2014 parachute tests for the ExoMars programme was performed by drop-test from balloons. This was followed up on in the summer of 2015 with full end-to-end dynamic stability tests of Earth re-entry capsule shapes. Several balloon-borne UAV tests have been performed in 2015. A small high-altitude gliding UAV was tested in the spring, a large supersonic UAV was flown in the summer, and in the late autumn several tests of a small glider were done. A number of flights of a small Swedish science package have been made in 2015 and 2016, and four flights within the BEXUS student programme have also been performed. Seven scientific flights studying the electron losses from Earth's radiation belt were performed by US scientists in August 2015, with the longest flight lasting more than 36 hours. In summer 2016 there is a plan to make a re-flight of the PoGOLite payload, studying polarized X-rays. The latest results from this will be presented.
NASA Astrophysics Data System (ADS)
Javier Romualdez, Luis
Scientific balloon-borne instrumentation offers an attractive, competitive, and effective alternative to space-borne missions when considering the overall scope, cost, and development timescale required to design and launch scientific instruments. In particular, the balloon-borne environment provides a near-space regime that is suitable for a number of modern astronomical and cosmological experiments, where the atmospheric interference suffered by ground-based instrumentation is negligible at stratospheric altitudes. This work is centered around the analytical strategies and implementation considerations for the attitude determination and control of SuperBIT, a scientific balloon-borne payload capable of meeting the strict sub-arcsecond pointing and image stability requirements demanded by modern cosmological experiments. Broadly speaking, the designed stability specifications of SuperBIT coupled with its observational efficiency, image quality, and accessibility rivals state-of-the-art astronomical observatories such as the Hubble Space Telescope. To this end, this work presents an end-to-end design methodology for precision pointing balloon-borne payloads such as SuperBIT within an analytical yet implementationally grounded context. Simulation models of SuperBIT are analytically derived to aid in pre-assembly trade-off and case studies that are pertinent to the dynamic balloon-borne environment. From these results, state estimation techniques and control methodologies are extensively developed, leveraging the analytical framework of simulation models and design studies. This pre-assembly design phase is physically validated during assembly, integration, and testing through implementation in real-time hardware and software, which bridges the gap between analytical results and practical application. SuperBIT attitude determination and control is demonstrated throughout two engineering test flights that verify pointing and image stability requirements in flight, where the post-flight results close the overall design loop by suggesting practical improvements to pre-design methodologies. Overall, the analytical and practical results presented in this work, though centered around the SuperBIT project, provide generically useful and implementationally viable methodologies for high precision balloon-borne instrumentation, all of which are validated, justified, and improved both theoretically and practically. As such, the continuing development of SuperBIT, built from the work presented in this thesis, strives to further the potential for scientific balloon-borne astronomy in the near future.
NASA Scientific Balloon Team Hopes to Break Flight Duration Record with New Zealand Launch
2017-12-08
After years of tests and development, NASA’s Balloon Program team is on the cusp of expanding the envelope in high-altitude, heavy-lift ballooning with its super pressure balloon (SPB) technology. NASA’s scientific balloon experts are in Wanaka, New Zealand, prepping for the fourth flight of an 18.8 million-cubic-foot (532,000 cubic-meter) balloon, with the ambitious goal of achieving an ultra-long-duration flight of up to 100 days at mid-latitudes. Launch of the pumpkin-shaped, football stadium-size balloon is scheduled for sometime after April 1, 2016, from Wanaka Airport, pending final checkouts and flight readiness of the balloon and supporting systems. Once launched, the SPB, which is made from 22-acres of polyethylene film – similar to a sandwich bag, but stronger and more durable – will ascend to a nearly constant float altitude of 110,000 feet (33.5 km). The balloon will travel eastward carrying a 2,260-pound (1,025 kg) payload consisting of tracking, communications and scientific instruments. NASA expects the SPB to circumnavigate the globe once every one to three weeks, depending on wind speeds in the stratosphere. Read more: go.nasa.gov/1p56xKR NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Thermal Control of the Balloon-Borne HEROES Telescope
NASA Technical Reports Server (NTRS)
O'Connor, Brian
2013-01-01
The High Energy Replicated Optics to Explore the Sun (HEROES) telescope is scheduled to fly on a high altitude balloon from Fort Sumner, New Mexico in the Fall of 2013. Once it reaches an altitude of 40km it will observe the Sun, Crab Nebula, and other astrophysical objects in the hard X-Ray spectrum (20-75keV) for around 28 hours. The HEROES project is a joint effort between Marshall and Goddard Space Flight Centers (MSFC and GSFC), and will utilize the High Energy Replicated Optics (HERO) telescope, which last flew in 2011 in Australia. The addition of new systems will allow the telescope to view the Sun, and monitor the mechanical alignment of the structure during flight. This paper will give an overview of the telescope, and then provide a description of the thermal control method used on HEROES. The thermal control is done through a passive cold-bias design. Detailed thermal analyses were performed in order to prove the design. This will be discussed along with the results of the analyses. HEROES is funded by the NASA Hands-On Project Experience (HOPE) Training Opportunity. The HOPE opportunity provides early career employees within NASA hands on experience with a yearlong flight project. HOPE was awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer, and Office of the Chief Technologist.
The Primordial Inflation Polarization ExploreR (PIPER)
NASA Astrophysics Data System (ADS)
Gandilo, Natalie; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Datta, Rahul; Dotson, Jessie; Essinger-Hileman, Thomas; Fixsen, Dale; Halpern, Mark; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lowe, Luke; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Walts, Alexander; Wollack, Edward
2018-01-01
The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne telescope designed to map the large scale polarization of the Cosmic Microwave Background as well as the polarized emission from galactic dust at 200, 270, 350, and 600 GHz, with 21, 15, 14, and 14 arcminutes of angular resolution respectively. PIPER uses twin telescopes with Variable-delay Polarization Modulators to simultaneously map Stokes I, Q, U and V. Cold optics and the lack of a warm window allow the instrument to achieve background limited sensitivity, with mapping speed approximately 10 times faster than a similar instrument with a single ambient-temperature mirror. Over the course of 8 conventional balloon flights from the Northern and Southern hemisphere, PIPER will map 85% of the sky, measuring the B-mode polarization spectrum from the reionization bump to l~300, and placing an upper limit on the tensor-to-scalar ratio of r<0.007. An engineering flight is planned for October 2017 from Fort Sumner, New Mexico, and the first science flight is planned for June 2018 from Palestine, Texas.
NASA Astrophysics Data System (ADS)
Chaabane, Makram; Chaabane, Makram; Dalverny, Olivier; Deramecourt, Arnaud; Mistou, Sébastien
The super-pressure balloons developed by CNES are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding to the flight level and the lifespan of the balloon. It appears during the working stages of the super pressure balloons that these last can exploded prematurely in the course of the first hours of flight. For this reason CNES and LGP are carrying out research programs about experimentations and modelling in order to predict a good stability of the balloons flight and guarantee a life time in adequacy with the technical requirement. This study deals with multilayered polymeric film damage which induce balloons failure. These experimental and numerical study aims, are a better understanding and predicting of the damage mechanisms bringing the premature explosion of balloons. The following damages phenomena have different origins. The firsts are simple and triple wrinkles owed during the process and the stocking stages of the balloons. The second damage phenomenon is associated to the creep of the polymeric film during the flight of the balloon. The first experimental results we present in this paper, concern the mechanical characterization of three different damage phenomena. The severe damage induced by the wrinkles of the film involves a significant loss of mechanical properties. In a second part the theoretical study, concerns the choice and the development of a non linear viscoelastic coupled damage behavior model in a finite element code.
Results of the 1970 balloon flight solar cell standardization program
NASA Technical Reports Server (NTRS)
Greenwood, R. F.
1972-01-01
For the eighth consective year, high-altitude calibration of solar cells was accomplished with the aid of free-flight balloons. Flights were conducted to an altitude of 36,576 m which is above 99.5% of earth's atmosphere where all water vapor levels and significant ozone bands are absent. Solar cells calibrated in this manner are significant used as intensity references in solar simulators and in terrestrial sunlight. Discussed is the method employed for high altitude balloon flight solar cell calibration. Also presented are data collected on 52 standard solar cells on two flights conducted in 1970. Solar cells flown repeatedly on successive flights have shown correlation of better than + or - 1.0%.
NASA Technical Reports Server (NTRS)
Carlson, L. A.; Horn, W. J.
1981-01-01
A computer model for the prediction of the trajectory and thermal behavior of zero-pressure high altitude balloon was developed. In accord with flight data, the model permits radiative emission and absorption of the lifting gas and daytime gas temperatures above that of the balloon film. It also includes ballasting, venting, and valving. Predictions obtained with the model are compared with flight data from several flights and newly discovered features are discussed.
Scientific ballooning in India Recent developments
NASA Astrophysics Data System (ADS)
Manchanda, R. K.
Established in 1971, the National Balloon Facility operated by TIFR in Hyderabad, India, is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, research and development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is its hallmark. In the past few years, we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m 3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.
Cosmic radiation dose measurements from the RaD-X flight campaign
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; Wiley, Scott; Gersey, Brad; Wilkins, Richard; Xu, Xiaojing
2016-10-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W) on 25 September 2015. Over 18 h of flight data were obtained from each of the four different science instruments at altitudes above 20 km. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric;
2016-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
Status of the NASA Balloon Program
NASA Technical Reports Server (NTRS)
Needleman, H. C.; Nock, R. S.; Bawcom, D. W.
1993-01-01
The NASA Balloon Program (BP) is examined in an overview of design philosophy, R&D activities, flight testing, and the development of a long-duration balloon for Antarctic use. The Balloon Recovery Program was developed to qualify the use of existing films and to design improved materials and seals. Balloon flights are described for studying the supernova SN1987a, and systems were developed to enhance balloon campaigns including mobile launch vehicles and tracking/data-acquisition systems. The technical approach to long-duration ballooning is reviewed which allows the use of payloads of up to 1350 kg for two to three weeks. The BP is responsible for the development of several candidate polyethylene balloon films as well as design/performance standards for candidate balloons. Specific progress is noted in reliability and in R&D with respect to optimization of structural design, resin blending, and extrusion.
An Overview of the NASA Sounding Rocket and Balloon Programs
NASA Technical Reports Server (NTRS)
Eberspeaker, Philip J.; Smith, Ira S.
2003-01-01
The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 50 to 60 missions per year in support of the NASA scientific community. These missions support investigations sponsored by NASA's Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program provides the science community with payload development support, environmental testing, launch vehicles, and launch operations from fixed and mobile launch ranges. Sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface. New technology efforts include GPS payload event triggering, tailored trajectories, new vehicle configuration development to expand current capabilities, and the feasibility assessment of an ultra high altitude sounding rocket vehicle. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. The Long Duration Balloon (LDB) is capable of providing flight durations in excess of two weeks and has had many successful flights since its development. The NASA Balloon Program is currently engaged in the development of the Ultra Long Duration Balloon (ULDB), which will be capable of providing flight times up to 100-days. Additional development efforts are focusing on ultra high altitude balloons, station keeping techniques and planetary balloon technologies.
NASA Technical Reports Server (NTRS)
Rizzo, Maxime J.; Rinehart, S. A.; Dhabal, A.; Ade, P.; Benford, D. J.; Fixsen, D. J.; Griffin, M.; Juanola Parramon, R.; Leisawitz, D. T.; Maher, S. F.;
2016-01-01
The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is a balloon-borne, far-infrared direct detection interferometer with a baseline of 8 m and two collectors of 50 cm. It is designed to study galactic clustered star formation by providing spatially-resolved spectroscopy of nearby star clusters. It is being assembled and tested at NASA Goddard Space Flight Center for a first flight in Fall 2016. We report on recent progress concerning the pointing control system and discuss the overall status of the project as it gets ready for its commissioning flight.
Scientific Ballooning in India - Recent Developments
NASA Astrophysics Data System (ADS)
Manchanda, R. K.; Srinivasan, S.; Subbarao, J. V.
Established in 1972, the National Balloon Facility operated by TIFR in Hyderabad, India is is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, Research and Development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is a hallmark of the Hyderabad balloon facility. In the past few years we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to size of 780,000 M^3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.
NASA Technical Reports Server (NTRS)
2002-01-01
Cosmic-ray background fluxes were modeled based on existing measurements and theories and are presented here. The model, originally developed for the Gamma-ray Large Area Space Telescope (GLAST) Balloon Experiment, covers the entire solid angle (4(pi) sr), the sensitive energy range of the instrument ((approx) 10 MeV to 100 GeV) and abundant components (proton, alpha, e(sup -), e(sup +), (mu)(sup -), (mu)(sup +) and gamma). It is expressed in analytic functions in which modulations due to the solar activity and the Earth geomagnetism are parameterized. Although the model is intended to be used primarily for the GLAST Balloon Experiment, model functions in low-Earth orbit are also presented and can be used for other high energy astrophysical missions. The model has been validated via comparison with the data of the GLAST Balloon Experiment.
NASA Technical Reports Server (NTRS)
Korn, A. O.
1975-01-01
In the late 1960's several governmental agencies sponsored efforts to develop unmanned, powered balloon systems for scientific experimentation and military operations. Some of the programs resulted in hardware and limited flight tests; others, to date, have not progressed beyond the paper study stage. Balloon system designs, materials, propulsion units and capabilities are briefly described, and critical problem areas are pointed out which require further study in order to achieve operational powered balloon systems capable of long duration flight at high altitudes.
National Report on the NASA Sounding Rocket and Balloon Programs
NASA Technical Reports Server (NTRS)
Eberspeaker, Philip; Fairbrother, Debora
2013-01-01
The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to conduct supersonic decelerator tests. An overview of NASA's Sounding Rockets and Balloon Operations, Technology Development and Science support activities will be presented.
NASA Technical Reports Server (NTRS)
Lee, R. B., III; Gandrud, B. W.; Robbins, D. E.; Rossi, L. C.; Swann, N. R. W.
1982-01-01
The Limb Infrared Monitor of the Stratosphere (LIMS) LIP balloon experiment was used to obtain correlative temperature, ozone, water vapor, and nitric acid data at altitudes between 10 and 36 kilometers. The performance of the LIMS sensor flown on the Nimbus 7 Satellite was assessed. The LIP consists of the modified electrochemical concentration cell ozonesonde, the ultraviolet absorption photometric of ozone, the water vapor infrared radiometer sonde, the chemical absorption filter instrument for nitric acid vapor, and the infrared radiometer for nitric acid vapor. The limb instrument package (LIP), its correlative sensors, and the resulting data obtained from an engineering and four correlative flights are described.
Potential of balloon payloads for in flight validation of direct and nulling interferometry concepts
NASA Astrophysics Data System (ADS)
Demangeon, Olivier; Ollivier, Marc; Le Duigou, Jean-Michel; Cassaing, Frédéric; Coudé du Foresto, Vincent; Mourard, Denis; Kern, Pierre; Lam Trong, Tien; Evrard, Jean; Absil, Olivier; Defrere, Denis; Lopez, Bruno
2010-07-01
While the question of low cost / low science precursors is raised to validate the concepts of direct and nulling interferometry space missions, balloon payloads offer a real opportunity thanks to their relatively low cost and reduced development plan. Taking into account the flight capabilities of various balloon types, we propose in this paper, several concepts of payloads associated to their flight plan. We also discuss the pros and cons of each concepts in terms of technological and science demonstration power.
High Altitude Ozone Research Balloon
NASA Technical Reports Server (NTRS)
Cauthen, Timothy A.; Daniel, Leslie A.; Herrick, Sally C.; Rock, Stacey G.; Varias, Michael A.
1990-01-01
In order to create a mission model of the high altitude ozone research balloon (HAORB) several options for flight preparation, altitude control, flight termination, and payload recovery were considered. After the optimal launch date and location for two separate HAORB flights were calculated, a method for reducing the heat transfer from solar and infrared radiation was designed and analytically tested. This provided the most important advantage of the HAORB over conventional balloons, i.e., its improved flight duration. Comparisons of different parachute configurations were made, and a design best suited for the HAORB's needs was determined to provide for payload recovery after flight termination. In an effort to avoid possible payload damage, a landing system was also developed.
Evolution of NASA Scientific Ballooning and Particle Astrophysics Research
NASA Astrophysics Data System (ADS)
Jones, William Vernon
2017-01-01
Particle astrophysics research has a history in ballooning that spans over 100 years, ever since Victor Hess discovered cosmic rays on a manned balloon in 1912. The NASA Particle Astrophysics Program currently covers the origin, acceleration and transport of Galactic cosmic rays, plus the Nature of Dark Matter and Ultrahigh Energy Neutrinos. Progress in each of these topics has come from sophisticated instrumentation flown on Long Duration Balloon (LDB) flights around Antarctica for more than two decades. Super Pressure Balloons (SPB) and International Space Station (ISS) platforms are emerging opportunities that promise major steps forward for these and other objectives. NASA has continued development and qualification flights leading to SPB flights capable of supporting 1000 kg science instruments to 33 km for upwards of hundred day missions, with plans for increasing the altitude to 38 km. This goal is even more important now, in view of the Astro2010 Decadal Study recommendation that NASA should support Ultra-Long Duration Balloon (ULDB) flight development for studies of particle astrophysics, cosmology and indirect detection of dark matter. The mid-latitude test flight of an 18.8 MCF SPB launched from Wanaka, NZ in 2015 achieved 32 days of nearly constant altitude exposure, and an identical SPB launched from Wanaka in 2016 with a science payload flew for 46 days. Scientific ballooning as a vital infrastructure component for cosmic ray and general astrophysics investigations, including training for young scientists, graduate and undergraduate students, leading up to the 2020 Decadal Study and beyond, will be presented and discussed.
Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity
NASA Astrophysics Data System (ADS)
Rand, J. L.; Wakefield, D. S.
Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may
Analysis of Flight of Near-Space Balloon
NASA Astrophysics Data System (ADS)
Miller, Zech; Evans, Austin; Seyfert, James; Leadlove, Kyle; Gumina, Kaitlyn; Martell, Eric
2015-04-01
In December 2014, the Electronics class at Millikin University launched a balloon designed to travel into the near-space region of the atmosphere. The balloon was equipped with an instrumentation package including a camera, accelerometer, barometric pressure sensor, temperature probes, as well as a system for tracking using an Automatic Packet Reporting System (APRS). The balloon was launched from Decatur, IL, and landed in Marysville, OH, nearly 320 miles away. The students then analyzed the data from the flight and compared results to expectations.
NASA's Suborbital Center of Excellence - reaching young minds and crafting the future
NASA Astrophysics Data System (ADS)
Cathey, H.; Hottman, S.; Hansen, K.
The NASA Suborbital Center of Excellence is charting new territory. From an idea to promote science and engineering education and outreach, the Suborbital Center of Excellence is working toward the objective of increasing numbers of college graduates choosing a career in suborbital programs. Approaches to excite university students to want to pursue these careers through relevant and useful work experiences will be highlighted. Suborbital platforms include balloons, sounding rockets, research aircraft (manned and remotely piloted vehicles) and small satellites. Key components of this are the Suborbital Center of Excellence co-op program and the support of Engineering ``Capstone'' projects. A number of these projects and programs have been supported during the past year. Highlights of these student hands-on learning experiences will be presented. The projects have included diverse projects ranging from work on a power beaming demonstration and autonomous aircraft control logic to the development of light weight pressure vessels for balloon flights based on ULDB spin-off technology, and balloon drop sonde development. Preparing these future Scientists and Engineers involves the investment of time, energy, and resources. The Suborbital Center of Excellence is uniquely positioned to do this. Future programs and initiatives will be presented. The Suborbital Center of Excellence is evolving, meeting the needs to promote science and engineering education and outreach. Educational outreach initiatives for young children to university students will also be presented. These include hands-on experiments, demonstrations, and suborbital educational materials.
Reference level winds from balloon platforms
NASA Technical Reports Server (NTRS)
Lally, Vincent E.
1985-01-01
The superpressure balloon was developed to provide a method of obtaining global winds at all altitudes from 5 to 30 km. If a balloon could be made to fly for several weeks at a constant altitude, and if it could be tracked accurately on its global circuits, the balloon would provide a tag for the air parcel in which it was embedded. The Lagrangian data on the atmospheric circulation would provide a superior data input to the numerical model. The Global Atmospheric Research Program (GARP) was initiated in large part based on the promise of this technique coupled with free-floating ocean buoys and satellite radiometers. The initial name proposed by Charney for GARP was SABABURA 'SAtellite BAlloon BUoy RAdiometric system' (Charney, 1966). However, although the superpressure balloon exceeded its designers' expectations for flight duration in the stratosphere (longest flight duration of 744 days), flight duration below 10 km was limited by icing in super-cooled clouds to a few days. The balloon was relegated to a secondary role during the GARP Special Observing Periods. The several major superpressure balloon programs for global wind measurement are described as well as those new developments which make the balloon once again an attractive vehicle for measurement of global winds as a reference and bench-mark system for future satellite systems.
A search for solar neutrons on a long duration balloon flight
NASA Technical Reports Server (NTRS)
Koga, R.; Frye, G. M., Jr.; Owens, A.; Denehy, B. V.; Mace, O.; Thomas, J.
1985-01-01
The EOSCOR 3 detector, designed to measure the flux of solar neutrons, was flown on a long duration RACOON balloon flight from Australia during Jan. through Feb, 1983. The Circum-global flight lasted 22 days. No major solar activity occurred during the flight and thus only an upper limit to the solar flare neutrons flux is given. The atmospheric neutron response is compared with that obtained on earlier flights from Palestine, Texas.
A search for solar neutrons on a long duration balloon flight
NASA Astrophysics Data System (ADS)
Koga, R.; Frye, G. M., Jr.; Owens, A.; Denehy, B. V.; Mace, O.; Thomas, J.
1985-08-01
The EOSCOR 3 detector, designed to measure the flux of solar neutrons, was flown on a long duration RACOON balloon flight from Australia during Jan. through Feb, 1983. The Circum-global flight lasted 22 days. No major solar activity occurred during the flight and thus only an upper limit to the solar flare neutrons flux is given. The atmospheric neutron response is compared with that obtained on earlier flights from Palestine, Texas.
Evaluation of balloon trajectory forecast routines for GAINS
NASA Astrophysics Data System (ADS)
Collander, R.; Girz, C.
The Global Air-ocean IN-situ System (GAINS) is a global observing system designed to augment current environmental observing and monitoring networks. GAINS is a network of long-duration, stratospheric platforms that carry onboard sensors and hundreds of dropsondes to acquire meteorological, air chemistry, and climate data over oceans and in remote land regions of the globe. Although GAINS platforms will include balloons and Remotely Operated Aircraft (ROA), the scope of this paper is limited to balloon-based platforms. A primary goal of GAINS balloon test flights is post-flight recovery of the balloon shell and payload, which requires information on the expected flight path and landing site prior to launch. Software has been developed for the prediction of the balloon trajectory and landing site, with separate versions written to generate predictions based upon rawinsonde data and model output. Balloon positions are calculated in 1-min increments based on wind data from the closest rawinsonde site or model grid point, given a known launch point, ascent and descent rate and flight duration. For short flights (< 6h), rawinsonde winds interpolated to 10-mb levels are used for trajectory calculations. Predictions for flight durations of 6 to 48h are based upon the initialization and 3 h forecast wind fields from NOAA's global aviation- (AVN) and Rapid Update Cycle (RUC) models. Given a limited number of actual balloon launches, trajectories computed from a chronological series of hourly RUC initializations are used as the baseline for comparison purposes. These baseline trajectories are compared to trajectory predictions from the rawinsonde and model-based versions on a monthly and seasonal basis over a 1-year period (January 1 - December 31, 2001) for flight durations of 3h, 6h and 48h. Predicted trajectories diverge from the baseline path, with the divergence increasing with increasing time. We examine the zonal, meridional and net magnitudes of these deviations, and attempt to determine directional biases in the predictions. This paper gives an overview of the software, including methods employed, physical considerations and limitations, and discusses results of this evaluation.
The GRAD Supernova Observer: First flight of a very large balloon over Antarctica
NASA Astrophysics Data System (ADS)
Rester, A. C.
1993-02-01
The first very large, zero pressure balloon to be flown over Antarctica was launched from Williams Field near Ross Island on 8 January 1988. It carried the GRAD Supernova Observer Experiment, with which a study of the gamma-ray spectrum of SN1987a was made. The mission is reviewed, and recommendations for further long duration balloon flights are made.
NASA Technical Reports Server (NTRS)
Murcray, D. G.; Brooks, J. N.; Kosters, J. J.; Williams, W. J.
1975-01-01
A balloon flight was conducted with a sensitive infrared spectral radiometer system in support of the LACATE balloon experiment. The instrumentation aboard the balloon is described along with data reduction techniques. Results obtained during the flight are presented.
The radiation controlled balloon (RACOON)
NASA Astrophysics Data System (ADS)
Lally, Vincent E.
The RACOON concept permits the flight of large, low-cost polyethylene balloons for several weeks at stratospheric altitudes without ballast. The theory of operations is described. The RACOON balloon ascends each morning and descends at night. This movement of 15 to 20 km in altitude provides an ideal platform for vertical soundings and sampling measurements in the stratosphere. Results of a number of globe-circling flights are presented.
Laboratory and balloon flight performance of the liquid xenon gamma ray imaging telescope
NASA Astrophysics Data System (ADS)
Curioni, Alessandro
2004-10-01
This thesis presents the laboratory calibration and in- flight performance of the liquid xenon γ-ray imaging telescope (LXeGRIT). LXeGRIT is the prototype of a novel concept of Compton telescope, based on a liquid xenon time projection chamber (LXeTPC), developed through several years by Prof. Aprile and collaborators at Columbia. When I joined the collaboration in Spring 1999, LXeGRIT was getting ready for a balloon borne experiment with the goal of performing the key measurement of the background at balloon altitude. After the 1999 balloon flight, a good deal of work was devoted to a thorough calibration of LXeGRIT, both through several tests in the laboratory and through improving the analysis software and developing Monte Carlo simulations. After substantial advancements in our understanding of the detector performance, LXeGRIT was improved and calibrated before a long duration balloon campaign in the Fall of 2000. Data gathered in this flight have allowed a detailed study of the background at balloon altitude and of the sensitivity to celestial γ-ray sources, the focus of the second part of my thesis. As this dissertation is intended to show, “the LXeGRIT phase”—defined as the prototype work, the experimental demonstration of the LXeTPC concept as a Compton telescope, the measurement of the background and of the detection sensitivity—has been now successfully completed. We are now ready for future implementations of the LXeTPC technology for astrophysics observations. The detailed calibration of LXeGRIT, both as an imaging calorimeter and as a Compton telescope is described in Chapters 2, 3 and 4. In Chapter 5 more details are given of LXeGRIT as a balloon borne instrument and its flight performance in year 2000. The measurement of the background at balloon altitude, based on the data collected in year 2000, is presented in Chapter 6 and the sensitivity of the instrument is derived in Chapter 7. An overview of future developments for the LXeTPC technology in the field of γ-ray astronomy is given in Chapter 8. The main results from the 1999 balloon flight are summarized in Appendix A.
Investigation of gamma rays from the galactic center
NASA Technical Reports Server (NTRS)
Helmken, H. F.
1973-01-01
Data from Argentine balloon flights made to investigate gamma ray emission from the galactic center are summarized. Data are also summarized from a Palestine, Texas balloon flight to measure gamma rays from NP 0532 and Crab Nebulae.
Analysis of Data from the Balloon Borne Gamma RAy Polarimeter Experiment (GRAPE)
NASA Astrophysics Data System (ADS)
Wasti, Sambid K.; Bloser, Peter F.; Legere, Jason S.; McConnell, Mark L.; Ryan, James M.
2016-04-01
The Gamma Ray Polarimeter Experiment (GRAPE), a balloon borne polarimeter for 50~300 keV gamma rays, successfully flew in 2011 and 2014. The main goal of these balloon flights was to measure the gamma ray polarization of the Crab Nebula. Analysis of data from the first two balloon flights of GRAPE has been challenging due to significant changes in the background level during each flight. We have developed a technique based on the Principle Component Analysis (PCA) to estimate the background for the Crab observation. We found that the background depended mostly on the atmospheric depth, pointing zenith angle and instrument temperatures. Incorporating Anti-coincidence shield data (which served as a surrogate for the background) was also found to improve the analysis. Here, we present the calibration data and describe the analysis done on the GRAPE 2014 flight data.
NASA Technical Reports Server (NTRS)
Pohl, R. A.
1975-01-01
Lighter Than Air vehicles are generally defined or categorized by the shape of the balloon, payload capacity and operational flight regime. Two balloon systems that are classed as being in opposite categories are described. One is a cable guided, helium filled, short haul, heavy load transport Lighter Than Air system with a natural shaped envelope. The other is a manned, aerodynamic shaped airship which utilizes hot air as the buoyancy medium and is in the light payload class. While the airship is in the design/fabrication phase with flight tests scheduled for the latter part of 1974, the transport balloon system has been operational for some eight years.
On the attitude control and flight result of winged reentry test vehicle
NASA Astrophysics Data System (ADS)
Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Yonemoto, Koichi; Hinada, Motoki
The Institute of Space and Astronautical Science (ISAS) has been studying the unmanned winged space vehicle HIMES (HIghly Maneuverable Engineering Space vehicle) for a decade and successfully carried out sub-sonic Gliding Flight Experiments several years ago, which was followed by Reentry Flight Experiment, utilizing so called 'Rockoon' method, in September of 1988, which failed due to the unexpected burst of the balloon. ISAS conducted it again making use of refined 'Rockoon' scheme in February of 1992. In spite of its small bulk property, it was equipped with not only a reaction control system (RCS) but a surface control system (SCS) capability as well, which enabled it to make a successful flight under both vacuum and atmospheric circumstances. The highest Mach number exceeded 3.5 and the highest altitude was a bit lower to 67 km. Switching from reaction control to surface control was one of the essential engineering interests in the flight like this. Supersonic autonomous flight control with high angle of attack was also what should be established through this, since in general it inevitably carries inherent lateral instability. A flight test this time revealed those features and characteristics quite well. This paper deals with the attitude control strategy with three-axis Motion Simulation Test as well as the flight results.
The use of optical fibers in the Trans Iron Galactic Element Recorder (TIGER)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sposato, S. H.; Binns, W. R.; Dowkontt, P. F.
1998-11-09
TIGER, the Trans-Iron Galactic Element Recorder, is a cosmic-ray balloon borne experiment that utilizes a scintillating Fiber Hodoscope/Time of Flight (TOF) counter. It was flown aboard a high altitude balloon on September 24, 1997. The objective of this experiment is to measure the elemental abundances of all nuclei within the charge range: 26{<=}Z{<=}40. This initial balloon flight will test the detector concept, which will be used in future balloon and space experiments. The instrument and the fiber detector are described.
High Energy Replicated Optics to Explore the Sun: Hard X-Ray Balloon-Borne Telescope
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; Apple, Jeff; StevensonChavis, Katherine; Dietz, Kurt; Holt, Marlon; Koehler, Heather; Lis, Tomasz; O'Connor, Brian; RodriquezOtero, Miguel; Pryor, Jonathan;
2013-01-01
Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaborative effort between the NASA Marshall Space Flight Center and the Goddard Space Flight Center to upgrade an existing payload, the High Energy Replicated Optics (HERO) balloon-borne telescope, to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES science payload consists of 8 mirror modules, housing a total of 109 grazing-incidence optics. These modules are mounted on a carbon-fiber - and Aluminum optical bench 6 m from a matching array of high pressure xenon gas scintillation proportional counters, which serve as the focal-plane detectors. The HERO gondola utilizes a differential GPS system (backed by a magnetometer) for coarse pointing in the azimuth and a shaft angle encoder plus inclinometer provides the coarse elevation. The HEROES payload will incorporate a new solar aspect system to supplement the existing star camera, for fine pointing during both the day and night. A mechanical shutter will be added to the star camera to protect it during solar observations. HEROES will also implement two novel alignment monitoring system that will measure the alignment between the optical bench and the star camera and between the optics and detectors for improved pointing and post-flight data reconstruction. The overall payload will also be discussed. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist
High Energy Replicated Optics to Explore the Sun: Hard X-ray balloon-borne telescope
NASA Astrophysics Data System (ADS)
Gaskin, J.; Apple, J.; Chavis, K. S.; Dietz, K.; Holt, M.; Koehler, H.; Lis, T.; O'Connor, B.; Otero, M. R.; Pryor, J.; Ramsey, B.; Rinehart-Dawson, M.; Smith, L.; Sobey, A.; Wilson-Hodge, C.; Christe, S.; Cramer, A.; Edgerton, M.; Rodriguez, M.; Shih, A.; Gregory, D.; Jasper, J.; Bohon, S.
Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaborative effort between the NASA Marshall Space Flight Center and the Goddard Space Flight Center to upgrade an existing payload, the High Energy Replicated Optics (HERO) balloon-borne telescope, to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES science payload consists of 8 mirror modules, housing a total of 109 grazing-incidence optics. These modules are mounted on a carbon-fiber - and Aluminum optical bench 6 m from a matching array of high pressure xenon gas scintillation proportional counters, which serve as the focal-plane detectors. The HERO gondola utilizes a differential GPS system (backed by a magnetometer) for coarse pointing in the azimuth and a shaft angle encoder plus inclinometer provides the coarse elevation. The HEROES payload will incorporate a new solar aspect system to supplement the existing star camera, for fine pointing during both the day and night. A mechanical shutter will be added to the star camera to protect it during solar observations. HEROES will also implement two novel alignment monitoring system that will measure the alignment between the optical bench and the star camera and between the optics and detectors for improved pointing and post-flight data reconstruction. The overall payload will also be discussed. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist.
UNH Project SMART 2017: Space Science for High School Students
NASA Astrophysics Data System (ADS)
Smith, C. W.; Broad, L.; Goelzer, S.; Levergood, R.; Lugaz, N.; Moebius, E.
2017-12-01
Every summer for the past 26 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. This year the student research projects used data from the Messenger, STEREO, and Triana missions. In addition, the students build and fly a high-altitude balloon payload with instruments of their own construction. Students learn circuit design and construction, microcontroller programming, and core atmospheric and space science along with fundamental concepts in space physics and engineering. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute. Our flight hardware includes an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This year we developed, built and flew a successful line cutter based on GPS location information that prevents our payload from falling into the ocean while also separating the payload from the balloon remains for a cleaner descent. We will describe that new line cutter design and implementation along with the shielded Geiger counters that we flew as part of our cosmic ray air shower experiment. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .
An Overview of the NASA Sounding Rockets and Balloon Programs
NASA Technical Reports Server (NTRS)
Flowers, Bobby J.; Needleman, Harvey C.
1999-01-01
The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a combined total of approximately fifty to sixty missions per year in support of the NASA scientific community. These missions are provided in support of investigations sponsored by NASA'S Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program has continued to su,pport the science community by integrating their experiments into the sounding rocket payload and providing the rocket vehicle and launch operations necessary to provide the altitude/time required obtain the science objectives. The sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface, which is physically inaccessible to either balloons or satellites. A new architecture for providing this support has been introduced this year with the establishment of the NASA Sounding Rockets Contract. The Program has continued to introduce improvements into their operations and ground and flight systems. An overview of the NASA Sounding Rockets Program with special emphasis on the new support contract will be presented. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. Long duration balloon (LDB) is a prominent aspect of the program with two campaigns scheduled for this calendar year. Two flights are scheduled in the Northern Hemisphere from Fairbanks, Alaska, in June and two flights are scheduled from McMurdo, Antarctica, in the Southern Hemisphere in December. The comprehensive balloon research and development (R&D) effort has continued with advances being made across the spectrum of balloon related disciplines. As a result of these technology advancements a new ultra long duration balloon project (ULDB) for the development of a 100- day duration balloon capability has been initiated. The ULDB will rely upon new balloon materials and designs to accomplish its goals. The Program has also continued to introduce new technology and improvements into flights systems, ground systems and operational techniques. An overview of the various aspects of the NASA Balloon Program will be presented.
Telescope Systems for Balloon-Borne Research
NASA Technical Reports Server (NTRS)
Swift, C. (Editor); Witteborn, F. C. (Editor); Shipley, A. (Editor)
1974-01-01
The proceedings of a conference on the use of balloons for scientific research are presented. The subjects discussed include the following: (1) astronomical observations with balloon-borne telescopes, (2) orientable, stabilized balloon-borne gondola for around-the-world flights, (3) ultraviolet stellar spectrophotometry from a balloon platform, (4) infrared telescope for balloon-borne infrared astronomy, and (5) stabilization, pointing, and command control of balloon-borne telescopes.
Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight
NASA Technical Reports Server (NTRS)
Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.
1997-01-01
A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.
Private and Commercial Pilot: Free Balloon: Flight Test Guide (Part 61 Revised).
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
The flight test guide has been prepared to assist the applicant and his instructor in preparing for the private pilot or commercial pilot certificate with a lighter-than-air category and free balloon class rating. It contains information and guidance concerning the pilot operations, procedures, and maneuvers relevant to the flight test: layout and…
Out of This World Science, Down to Earth Prices
NASA Technical Reports Server (NTRS)
Kremic, Tibor; Hurford, Terry Anthony; Mandell, Avi; Arnold, Steven
2015-01-01
The National Aeronautics and Space Administration (NASA), along with the rest of government and the nation have become increasing cost conscious in recent years. This has resulted in renewed efforts at finding ways to do more with less. Planetary science is no exception. The 2013 Decadal Survey for Planetary Science made great efforts to understand the costs of proposed missions. The community has been asked to develop more affordable versions of mission concepts, especially in the flagship category. Many in the community continue to encourage NASA to prioritize lower cost missions at a more frequent cadence over fewer but larger missions. This presentation discusses a new tool in the planetary science arsenal to achieve a broad set of planetary science questions at costs that are lower, and in some cases dramatically lower, than other options in the past. Technology advances in pointing systems and the growing capabilities of stratospheric balloons, such as the ultra-long duration flights, have caught the attention of many in the planetary science community. A workshop was held in January 2012 to help planetary scientists and NASA better understand the capabilities of balloon borne platforms, along with their strengths and limitations. Perhaps most importantly, the workshop focused on the potential science that could be achieved. The science and engineering participants discussed what, if any, science can be achieved and why or how balloon platforms would offer an advantage. Since that first workshop, not only have further discussions and studies occurred within the community, but demonstration missions have been flown with compelling results. These balloon missions have shown that the science envisioned can indeed be achievable, that balloon platforms do offer some unique advantages; and that repeated flights can be implemented at relatively low cost. The presentation briefly summarizes the potential science and the characteristics of a balloon based observatory that make it desirable for some science investigations. The recent missions are described along with some of their challenges and achievements. Finally, a brief summary of options moving forward are considered.
Ballooning Comes of Age: Make Your Own Balloon.
ERIC Educational Resources Information Center
Eckford, Jim
1983-01-01
Provides instructions for building a working model of a hot-air balloon, offering suggestions for a successful flight. Indicates that children can be involved in the projects, for example, by filling in colors in the panels of a balloon drawing. (JN)
The French Balloon Program 2013 - 2017
NASA Astrophysics Data System (ADS)
Dubourg, Vincent; Vargas, André; Raizonville, Philippe
2016-07-01
With over 50 years' experience in the field, the French Centre National d'Etudes Spatiales (CNES) goes on supporting - as designer and operator - a significant scientific ballooning program. In particular so because balloons still give a unique and valuable access to near space science. From 2008 to 2013, an important renovation effort was achieved, beginning by Zero Pressure Balloons (ZPB) systems, to comply with more stringent Safety constraints and to the growing reliability and performance requirements from scientific missions. The paper will give an overview of the CNES new capabilities and services for operational balloon activities, and their availability status. The scientific launch campaigns of the past two years will be presented. A focus will be made on the results of the Stratoscience 2015 flight campaign from Timmins, Ontario, using the NOSYCA command and control system for ZPB, qualified in flight in 2013. In particular, the PILOT telescope successfully flew during the 2015 campaign, key figures about the flight and mission will be given. An outlook of the new stratospheric long duration flight systems currently in process of developement at CNES will be given, as well as the presentation of the Stratéole 2 project, dedicated to the survey of the low stratosphere and upper troposphere in equatorial regions, with a fleet of small suprer pressure balloons (SPB). As far as tropospheric balloons are concerned, the Aeroclipper initiative will be presented, aiming at qualifying a quasi-tethered balloon, pushed by the winds close to the sea surface, for the study of cyclones. The scientific launch campaigns and the main payloads in the study for the near future will also be presented.
Power considerations for long duration balloon flights
NASA Astrophysics Data System (ADS)
Frye, G. M.; Owens, A.; Koga, R.; Denehy, B. V.; Mace, O.; Thomas, J.
A solar panel, silicad battery power supply system is described which provided 100 W of power for a balloon borne solar neutron experiment. The system operated successfully on a 22 day circum-global RACOON flight launched from Australia in January 1983.
NASA Technical Reports Server (NTRS)
Crannell, C. J.; Starr, R.; Stottlemyre, A. R.; Trombka, J. I.
1984-01-01
The design, development, and balloon-flight verification of a payload for observations of gamma-ray emission from solar flares are reported. The payload incorporates a high-purity germanium semiconductor detector, standard NIM and CAMAC electronics modules, a thermally stabilized pressure housing, and regulated battery power supplies. The flight system is supported on the ground with interactive data-handling equipment comprised of similar electronics hardware. The modularity and flexibility of the payload, together with the resolution and stability obtained throughout a 30-hour flight, make it readily adaptable for high-sensitivity, long-duration balloon fight applications.
NASA Technical Reports Server (NTRS)
Horn, W. J.; Carlson, L. A.
1983-01-01
A FORTRAN computer program called THERMTRAJ is presented which can be used to compute the trajectory of high altitude scientific zero pressure balloons from launch through all subsequent phases of the balloon flight. In addition, balloon gas and film temperatures can be computed at every point of the flight. The program has the ability to account for ballasting, changes in cloud cover, variable atmospheric temperature profiles, and both unconditional valving and scheduled valving of the balloon gas. The program was verified for an extensive range of balloon sizes (from 0.5 to 41.47 million cubic feet). Instructions on program usage, listing of the program source deck, input data and printed and plotted output for a verification case are included.
NASA Astrophysics Data System (ADS)
de Schrijver, E.; Chameleva, H.; Degroote, C.; D'Haese, Z.; Paice, C.; Plas, H.; Van den Bossche, A.; Vander Donckt, L.; Vander Vost, J.
2015-09-01
Flight opportunities on high-altitude ASGARD balloons offered to secondary schools worldwide since 20 1 1 have led to an ever more rapidly increasing number of project proposals. The introduction of beginners' and ‘advanced classes of experiments is hoped to draw in even larger numbers of interested school teams. Furthermore, and in cooperation with ESERO (European Space Education Resources Office), workshops and documentation are being prepared to introduce teachers and students alike to the world of microcontrollers and sensors. A student parabolic flight programme called BIFROST (Brussels' Initiative to provide Flight Research Opportunities to STudents) was initiated to meet the rising demand for hands-on space education projects and the desire to cover the widest possible range of scientific and/or technical domains, which essentially calls for a variety of flight platforms: cansats, balloons and parabolic flight.
Results of the 1979 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Seaman, C. H.; Weiss, R. S.
1980-01-01
Calibration of solar cells to be used as reference standards in simulator testing of cells and arrays was accomplished. Thirty-eight modules were carried to an altitude of about 36 kilometers during the solar cell calibration balloon flight.
The balloon and the airship technological heritage
NASA Technical Reports Server (NTRS)
Mayer, N. J.
1981-01-01
The balloon and the airship are discussed with emphasis on the identification of commonalities and distinctions. The aerostat technology behind the shape and structure of the vehicles is reviewed, including a discussion of structural weight, internal pressure, buckling, and the development of a stable tethered balloon system. Proper materials for the envelope are considered, taking elongation and stress into account, and flight operation and future developments are reviewed. Airships and tethered balloons which are designed to carry high operating pressure with low gas loss characteristics are found to share similar problems in low speed flight operations, while possessing interchangeable technologies.
Terahertz photometers to observe solar flares from space (SOLAR-T project)
NASA Astrophysics Data System (ADS)
Kaufmann, Pierre; Raulin, Jean-Pierre
The space experiment SOLAR-T designed to observe solar flares at THz frequencies was completed. We present the concept, fabrication and performance of a double THz photometers system. An innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. It is the first detecting system conceived to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. One artificial Sun setup was developed to simulate actual observations. Tests comprised the whole system performance, on ambient and low pressure and temperature conditions. It is intended to provide data on the still unrevealed spectral shape of the mysterious THz solar flares emissions. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014-2016. The SOLAR-T development, fabrication and tests has been accomplished by engineering and research teams from Mackenzie, Unicamp and Bernard Lyot Solar Observatory; Propertech Ltda.; Neuron Ltda.; and Samsung, Brazil; Tydex LCC, Russia; CONICET, Argentina; the stratospheric balloon missions will be carried in cooperation with teams from University of California, Berkeley, USA (flight over Antarctica), and Lebedev Physical Institute, Moscow, Russia (flight over Russia).
Development of a 5,000 m(3) super-pressure balloon with a diamond-shaped net
NASA Astrophysics Data System (ADS)
Saito, Yoshitaka; Tanaka, Shigeki; Nakashino, Kyoichi; Matsushima, Kiyoho; Goto, Ken; Furuta, Ryosuke; Domoto, Kodai; Akita, Daisuke; Hashimoto, Hiroyuki
A light super-pressure balloon of which weight will be comparable to the weight of the zero-pressure balloon has been developed using a method to cover a balloon with a diamond-shaped net of high-tensile fibers. The goal is to fly a payload of 900 kg to the altitude of 37 km with a 300,000 m(3) balloon. A flight test of a 3,000 m(3) balloon in the tandem balloon configuration with a 15,000 m(3) zero-pressure balloon was performed in 2012. Although a small gas leak occurred in the super-pressure balloon at the differential pressure of 400 to 500 Pa, the differential pressure reached the highest value of 814 Pa and kept positive through the level flight lasting for 25 minutes due to its slow leakage. To avoid a possible stress concentration to films at the polar area, a new design setting the meridian length of the balloon gore film equal to the length of the net was adopted. A 3-m balloon with the design was developed and its capacity to resist pressure at room temperature and at -30 (°) C was checked through the ground inflation tests. In 2013, a balloon of the same model was launched in the tandem balloon configuration with 2 kg rubber balloons. It was confirmed that the balloon could withstand the maximum differential pressure of 6,280 Pa, could withstand the differential pressure of 5,600 Pa for 2 hours, and there was a small gas leak through a hole with an area of 0.4 mm(2) which was also found in the ground leakage test. These results indicated that the improvement was adequate and there was no problem for the super-pressure balloon to fly in the environment of the stratosphere except for the problem of the small gas leak. In 2014, a flight test of a 5,000 m(3) balloon will be performed. In this paper, after reviewing the method to cover a balloon with a diamond-shaped net, the current status of the development will be reported.
Ballooning in the constant sun of the South Pole summer
2017-12-08
BARREL researchers get ready to release the top part of the balloon, called the bubble, as it fills with enough helium to support itself. Only the top part of the balloon is inflated before launch since the helium expands as the balloon ascends. Credit: NASA/Goddard/BARREL/Nicky Knox Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Scientific Balloon in Antarctica
2017-12-08
NASA image captured December 25, 2011 A NASA scientific balloon awaits launch in McMurdo, Antarctica. The balloon, carrying Indiana University's Cosmic Ray Electron Synchrotron Telescope (CREST), was launched on December 25. After a circum-navigational flight around the South Pole, the payload landed on January 5. The CREST payload is one of two scheduled as part of this seasons' annual NASA Antarctic balloon Campaign which is conducted in cooperation with the National Science Foundation's Office of Polar Programs. The campaign's second payload is the University of Arizona's Stratospheric Terahertz Observatory (STO). You can follow the flights at the Columbia Scientific Balloon Facility's web site at www.csbf.nasa.gov/antarctica/ice.htm Credit: NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Saito, Yoshitaka; Nakashino, Kyoichi; Akita, Daisuke; Matsushima, Kiyoho; Shimadu, Shigeyuki; Goto, Ken; Hashimoto, Hiroyuki; Matsuo, Takuma
2016-07-01
A light super-pressure balloon has been developed using a method to cover a balloon with a diamond-shaped net of high-tensile fibers. The goal is to fly a payload of 900 kg to the altitude of 37 km with a 300,000 m^{3} balloon. Beginning from a demonstration test of the net-balloon with a 10 m^{3} balloon in 2010, we have been polished the net-balloon through ground inflation tests and flight tests, including a flight test of a 3,000 m ^{3} balloon in the tandem balloon configuration with a 15,000 m^{3} zero-pressure balloon in 2012, and a flight test of a 10 m^{3} balloon in the tandem balloon configuration with a 2 kg rubber balloon in 2013, as reported in the last COSPAR. In 2014, we developed a 5,000 m^{3} balloon and performed a ground inflation test to find that the balloon burst from a lip panel for termination with a differential pressure of 425 Pa. It was due to a stress concentration at the edge of a thick tape attached along the termination mechanism. In 2015, we modified the balloon by adding tapes on the lip panel to avoid the stress concentration, and also shorten the net length to leave some margin of the film and performed a ground inflation test again to find the balloon showed asymmetrical deployment and burst from the edge of the net with a differential pressure of 348 Pa. We consider it is due to the margin of the film along the circumferential direction, and proposed a gore shape which circumference length is kept as determined by the pumpkin shape of the balloon but setting meridian length longer than that. We developed a 10 m^{3} balloon with the gore design to find that the balloon deployed symmetrically and showed the burst pressure of 10,000 Pa. In 2016, we are going to develop a 2,000 m^{3} balloon with the gore design and perform its ground inflation test. In this paper, we are going to report its result with the sequence of the development.
A Low Cost Weather Balloon Borne Solar Cell Calibration Payload
NASA Technical Reports Server (NTRS)
Snyder, David B.; Wolford, David S.
2012-01-01
Calibration of standard sets of solar cell sub-cells is an important step to laboratory verification of on-orbit performance of new solar cell technologies. This paper, looks at the potential capabilities of a lightweight weather balloon payload for solar cell calibration. A 1500 gr latex weather balloon can lift a 2.7 kg payload to over 100,000 ft altitude, above 99% of the atmosphere. Data taken between atmospheric pressures of about 30 to 15 mbar may be extrapolated via the Langley Plot method to 0 mbar, i.e. AMO. This extrapolation, in principle, can have better than 0.1 % error. The launch costs of such a payload arc significantly less than the much larger, higher altitude balloons, or the manned flight facility. The low cost enables a risk tolerant approach to payload development. Demonstration of 1% standard deviation flight-to-flight variation is the goal of this project. This paper describes the initial concept of solar cell calibration payload, and reports initial test flight results. .
A revised approach to the ULDB design
NASA Astrophysics Data System (ADS)
Smith, M.; Cathey, H.
The National Aeronautics and Space Administration Balloon Program has experienced problems in the scaling up of the proposed Ultra Long Duration Balloon. Full deployment of the balloon envelope has been the issue for the larger balloons. There are a number of factors that contribute to this phenomenon. Analytical treatments of the deployment issue are currently underway. It has also been acknowledged that the current fabrication approach using foreshortening is costly, labor intensive, and requires significant handling during production thereby increasing the chances of inducing damage to the envelope. Raven Industries has proposed a new design and fabrication approach that should increase the probability of balloon deployment, does not require foreshortening, will reduce the handling, production labor, and reduce the final balloon cost. This paper will present a description of the logic and approach used to develop this innovation. This development consists of a serial set of steps with decision points that build upon the results of the previous steps. The first steps include limited material development and testing. This will be followed by load testing of bi-axial reinforced cylinders to determine the effect of eliminating the foreshortening. This series of tests have the goal of measuring the strain in the material as it is bi-axially loaded in a condition that closely replicated the application in the full-scale balloon. Constant lobe radius pumpkin shaped test structures will be designed and analyzed. This matrix of model tests, in conjunction with the deployment analyses, will help develop a curve that should clearly present the deployment relationship for this kind of design. This will allow the ``design space'' for this type of balloon to be initially determined. The materials used, analyses, and ground testing results of both cylinders and small pumpkin structures will be presented. Following ground testing, a series of test flights, staged in increments of increasing suspended load and balloon volume, will be conducted. The first small scale test flight has been proposed for early Spring 2004. Results of this test flight of this new design and approach will presented. Two additional domestic test flights from Ft. Sumner, New Mexico, and Palestine, Texas, and one circumglobal test flight from Australia are planned as part of this development. Future plans for both ground testing and test flights will also be presented.
A Revised Approach to the ULDB Design
NASA Technical Reports Server (NTRS)
Smith, Michael; Cathey, H. M., Jr.
2004-01-01
The National Aeronautics and Space Administration Balloon Program has experienced problems in the scaling up of the proposed Ultra Long Duration Balloon. Full deployment of the balloon envelope has been the issue for the larger balloons. There are a number of factors that contribute to this phenomenon. Analytical treatments of the deployment issue are currently underway. It has also been acknowledged that the current fabrication approach using foreshortening is costly, labor intensive, and requires significant handling during production thereby increasing the chances of inducing damage to the envelope. Raven Industries has proposed a new design and fabrication approach that should increase the probability of balloon deployment, does not require foreshortening, will reduce the handling, production labor, and reduce the final balloon cost. This paper will present a description of the logic and approach used to develop this innovation. This development consists of a serial set of steps with decision points that build upon the results of the previous steps. The first steps include limited material development and testing. This will be followed by load testing of bi-axial reinforced cylinders to determine the effect of eliminating the foreshortening. This series of tests have the goal of measuring the strain in the material as it is bi-axially loaded in a condition that closely replicated the application in the full-scale balloon. Constant lobe radius pumpkin shaped test structures will be designed and analyzed. This matrix of model tests, in conjunction with the deployment analyses, will help develop a curve that should clearly present the deployment relationship for this kind of design. This will allow the "design space" for this type of balloon to be initially determined. The materials used, analyses, and ground testing results of both cylinders and small pumpkin structures will be presented. Following ground testing, a series of test flights, staged in increments of increasing suspended load and balloon volume, will be conducted. The first small scale test flight has been proposed for early Spring 2004. Results of this test flight of this new design and approach will presented. Two additional domestic test flights from Ft. Sumner, New Mexico, and Palestine, Texas, and one circumglobal test flight from Australia are planned as part of this development. Future plans for both ground testing and test flights will also be presented.
Results of the 1995 JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1995-01-01
The Jet Propulsion Laboratory (JPL) solar cell calibration program was conceived to produce reference standards for the purpose of accurately setting solar simulator intensities. The concept was to fly solar cells on a high-altitude balloon, to measure their output at altitudes near 120,000 ft (36.6 km), to recover the cells, and to use them as reference standards. The procedure is simple. The reference cell is placed in the simulator beam, and the beam intensity is adjusted until the reference cell reads the same as it read on the balloon. As long as the reference cell has the same spectral response as the cells or panels to be measured, this is a very accurate method of setting the intensity. But as solar cell technology changes, the spectral response of the solar cells changes also, and reference standards using the new technology must be built and calibrated. Until the summer of 1985, there had always been a question as to how much the atmosphere above the balloon modified the solar spectrum. If the modification was significant, the reference cells might not have the required accuracy. Solar cells made in recent years have increasingly higher blue responses, and if the atmosphere has any effect at all, it would be expected to modify the calibration of these newer blue cells much more so than for cells made in the past. JPL has been flying calibration standards on high-altitude balloons since 1963 and continues to organize a calibration balloon flight at least once a year. The 1995 flight was the 48th flight in this series. The 1995 flight incorporated 46 solar cell modules from 7 different participants. The payload included Si, amorphous Si, GaAs, GaAs/Ge, dual junction cells, top and bottom sections of dual junction cells, and a triple junction cell. A new data acquisition system was built for the balloon flights and flown for the first time on the 1995 flight. This system allows the measurement of current-voltage (I-V) curves for 20 modules in addition to measurement of modules with fixed loads as had been done in the past.
Balloon-Borne, High-Energy Astrophysics: Experiences from the 1960s to the 1980s
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2008-01-01
Observational high-energy astrophysics in the hard-x-ray and gamma-ray regions owes its development and initial successes to the balloon-borne development of detector systems, as well as pioneering observations, primarily in the timeframe from the 1960s to the 1990s. I will describe some of the first observations made by the Rice University balloon group in the 1960s, including the impetus for these observations. The appearance of SN 1987a led to several balloon-flight campaigns, sponsored by NASA, from Alice Springs, Australia in 1987 and 1988. During the 1980s, prototypes of instruments for the Compton Gamma Ray Observatory were flown on many balloon flights, which greatly enhanced the success of that mission.
Incorporation of Scientific Ballooning into Science Education
NASA Astrophysics Data System (ADS)
Chanover, N.; Stochaj, S.; Petty, C.
1999-12-01
We are augmenting the science curriculum of the Roswell Independent School District in Roswell, NM, to take advantage of the proximity of a NASA scientific balloon base. The basic science related to balloon experimentation is being incorporated into the K-12 science curriculum via the discussion of topics such as atmospheric properties, weather, phases of matter, plotting skills, and communications in the context of a high-altitude balloon flight. These efforts will culminate in the construction of balloon-borne instruments by high school students, which will be launched during the spring of 2000. A demonstration flight, launched in the spring of 1999, was used to build student enthusiasm and community support for this program, which is funded by the NASA/IDEAS program.
Long duration balloon flights in the middle stratosphere
NASA Astrophysics Data System (ADS)
Malaterre, P.
1993-02-01
Research and development performed by the French Space Agency (CNES) over the past 10 years has given the scientific community the Infrared Montgolfiere, a balloon capable of lifting 50-kg payloads into the stratosphere for periods of several weeks. The Infrared Montgolfiere is a hot air balloon that captures infrared radiation using the earth as a heat source. Thirty flights have been launched so far, some lasting more than sixty days and circling the globe twice.
Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas
2014-09-30
developed by incorporating the proposed IR sensors and ground-sky temperature difference algorithm into a tethered balloon borne payload (Figure 3...into the cloud base. RESULTS FROM FY 2014 • A second flight of the tethered balloon -borne IR cloud margin sensor was conducted in Colorado on...Figure 3: Tethered balloon -borne IR sensing payload IR Cloud Margin Sensor Figure 4: First successful flight validation of the IR cloud
Overview of the NASA Suborbital Program
NASA Astrophysics Data System (ADS)
Jones, W. Vernon
2014-08-01
The NASA Suborbital Program consists of Sounding Rocket and Balloon Projects managed, respectively, by the Heliophysics and Astrophysics Divisions of the Science Mission Directorate, which maintains “Program” Offices at the NASA Wallops Flight Facility. Suborbital missions have for several decades enabled investigations with significant results from relatively modest investments. Some have been competitive with orbital missions, while others have enabled orbital missions. NASA launches suborbital missions from sites established in the U.S. and around the world to meet investigators’ needs. A sea change in scientific ballooning occurred with the inauguration of 8 - 20 day flights around Antarctica in the early 1990’s. The U.S. National Science Foundation supports these circumpolar flights, which have been spectacularly successful with many investigations utilizing multiple flights of payloads that are recovered, refurbished, and reused to minimize life-cycle costs. The attainment of 25 - 32 day and 35 - 55 day flights in two and three circumnavigations, respectively, of the Antarctic continent has greatly increased expectations of scientific users. The 55-day Super-TIGER flight over Antarctica during the 2012-13 season broke the 42-day CREAM record during the 2004-05 season, as well as the 54-day super pressure balloon test flight in 2008-09. Qualification of super pressure flights to support 1000 kg science instruments for up to 100 days at 33 km have proceeded in parallel with plans to increase the altitude for less massive instruments requiring less atmospheric overburden. The nearly constant volume of super-pressure balloons allows stable altitude flights at non-polar latitudes. Long-duration flights in both polar and non-polar regions will confirm the important contributions that ballooning can make in traditional Astrophysics, Solar and Heliophysics, and Earth Science disciplines. With two comets approaching the sun in 2013-14, the Planetary Science community has shown increased interest in remote observations of comets, planets, and other objects in the Solar System.
Concepts for autonomous flight control for a balloon on Mars
NASA Technical Reports Server (NTRS)
Heinsheimer, Thomas F.; Friend, Robyn C.; Siegel, Neil G.
1988-01-01
Balloons operating as airborne rovers have been suggested as ideal candidates for early exploration of the Martian surface. An international study team composed of scientists from the U.S.S.R., France, and the U.S.A. is planning the launching in 1994 of a balloon system to fly on Mars. The current likely design is a dual thermal/gas balloon that consists of a gas balloon suspended above a solar-heated thermal balloon. At night, the thermal balloon provides no lift, and the balloon system drifts just above the Martian surface; the lift of the gas balloon is just sufficient to prevent the science payload from hitting the ground. During the day, the balloon system flies at an altitude of 4 to 5 kilometers, rising due to the added lift provided by the thermal balloon. Over the course of a single Martian day, there may be winds in several directions, and in fact it can be expected that there will be winds simultaneously in different directions at different altitudes. Therefore, a balloon system capable of controlling its own altitude, via an autonomous flight control system, can take advantage of these different winds to control its direction, thereby greatly increasing both its mission utility and its longevity.
Development of a super-pressure balloon with a diamond-shaped net
NASA Astrophysics Data System (ADS)
Saito, Y.; Iijima, I.; Matsuzaka, Y.; Matsushima, K.; Tanaka, S.; Kajiwara, K.; Shimadu, S.
2014-10-01
The essential reason of the lobed-pumpkin shaped super-pressure balloon to withstand against the high pressure is that the local curvature of the balloon film is kept small. Recently, it has been found that the small local curvature can also be obtained if the balloon is covered by a diamond-shaped net with a vertically elongated shape. The development of the super-pressure balloon using this method was started from a 3-m balloon with a polyethylene film covered by a net using Kevlar ropes. The ground inflation test showed the expected high burst pressure. Then, a 6-m and a 12-m balloon using a polyethylene film and a net using the Vectran were developed and stable deployment was checked through the ground inflation tests. The flight test of a 3000 m3 balloon was performed in 2013 and shown to resist a pressure of at least 400 Pa. In the future, after testing a new design to relax a possible stress concentration around the polar area, test flights of scaled balloons will be performed gradually enlarging their size. The goal is to launch a 300,000 m3 super-pressure balloon.
Scientific study in solar and plasma physics relative to rocket and balloon projects
NASA Technical Reports Server (NTRS)
Wu, S. T.
1993-01-01
The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.
Universal stratospheric balloon gradiometer
NASA Astrophysics Data System (ADS)
Tsvetkov, Yury; Filippov, Sergey; Brekhov, Oleg; Nikolaev, Nikolay
The study of the interior structure of the Earth and laws of its evolution is one of the most difficult problems of natural science. Among the geophysical fields the anomaly magnetic field is one of the most informational in questions of the Earth’s crust structure. Many important parameters of an environment are expedient for measuring at lower altitudes, than satellite ones. So, one of the alternatives is stratospheric balloon survey. The balloon flight altitudes cover the range from 20 to 50 km. At such altitudes there are steady zone air flows due to which the balloon flight trajectories can be of any direction, including round-the-world (round-the-pole). For investigation of Earth's magnetic field one of the examples of such sounding system have been designed, developed and maintained at IZMIRAN and MAI during already about 25 years. This system consists of three instrumental containers uniformly placed along a vertical 6 km line. Up today this set has been used only for geomagnetic purposes. So we describe this system on example of the measuring of the geomagnetic field gradient. System allows measuring a module and vertical gradient of the geomagnetic field along the whole flight trajectory and so one’s name is - stratospheric balloon magnetic gradiometer (SMBG). The GPS-receivers, located in each instrumental container, fix the flight coordinates to within several tens meters. Process of SBMG deployment, feature of the exit of rope from the magazine at the moment of balloon launching has been studied. Used magazine is cellular type. The hodograph of the measuring base of SBMG and the technique of correction of the deviations of the measuring base from the vertical line (introduction of the amendments for the deviation) during the flight have been investigated. It is shown that estimation of the normal level of values of the vertical gradient of the geomagnetic field is determined by the accuracy of determining the length of the measuring base SBMG, which should be not less than 10 m. A brief description of this instrument is provided in the report. The SBMG is certified for the use in Russia for "zero-pressure" balloon "VAL 120" capable of drifting at about 30 km height. The obtained data are used in solving the problems of deep sounding of the Earth’s crust magnetic structure - an extraction of magnetic anomalies, determination of a depth of bedding of magnetoactive rocks and others. Examples of the experiments (data) obtained by SBMG (including along the 9000 km flight track), as a new opportunities in geomagnetism for researchers that could use this device, are shown here. To avoid magnetic noise the sensor of the upper magnetometer is located at 35 meters above the main suspension basket of the balloon (in the small magnetic noise place). As we know, people have a problem to find such places (with a relatively low level of magnetic noise) at other types of balloons. So, for the other types of balloons we have developed and investigated balloon gradiometer with sensors located at a distance of 50 m down from the main suspension basket of the balloon. This decision is optimal for the "superpressure" balloons. The developed launching technology, deployment in flight, assembly, data processing, transfer and landing the containers with the equipment can be used for other similar problems of monitoring and sounding an environment. Useful flight weights of each of three instrumental containers (uniformly placed along a vertical 6 km line) may be reaching 50 kg. More than ten testing flights (1986-2013) at stratospheric altitudes (20-30 km) have proven the reliability of this system.
Near Space Lab-Rat Experimentation using Stratospheric Balloon
NASA Astrophysics Data System (ADS)
Buduru, Suneel Kumar; Reddy Vizapur, Anmi; Rao Tanneeru, Venkateswara; Trivedi, Dharmesh; Devarajan, Anand; Pandit Manikrao Kulkarni, MR..; Ojha, Devendra; Korra, Sakram; Neerudu, Nagendra; Seng, Lim; Godi, Stalin Peter
2016-07-01
First ever balloon borne lab-rat experiment up to near space stratospheric altitude levels carried out at TIFR Balloon Facility, Hydeabad using zero pressure balloons for the purpose of validating the life support system. A series of two balloon experiments conducted under joint collaboration with IN.Genius, Singapore in the year 2015. In these experiments, three lab-rats sent to stratosphere in a pressurized capsule designed to reach an altitude of 30 km by keeping constant pressure, temperature and maintained at a precise rate of oxygen supply inside the capsule. The first experiment conducted on 1 ^{st} February, 2015 with a total suspended weight of 225 kg. During the balloon ascent stage at 18 km altitude, sensors inside the capsule reported drastic drop in internal pressure while oxygen and temperatures maintained at correct levels resulted in premature fligt termination at 20.1 km. All the three lab-rats recovered without life due to the collapse of their lungs caused by the depressurization inside the capsule. The second experiment conducted on 14th March, 2015 using a newly developed capsule with rectification of depressurization fault by using improved sealing gaskets and hermitically sealed connectors for sending lab-rats again to stratosphere comprising a total suspended load of 122.3 kg. The balloon flight was terminated after reaching 29.5 km in 110 minutes and succesfully recovered all the three lab-rats alive. This paper focuses on lessons learnt of the development of the life support system as an integral pressurized vessel, flight control instrumentation, flight simulation tests using thermo-vaccum chamber with pre-flight operations.
Design considerations and practical results with long duration systems for manned world flights
NASA Astrophysics Data System (ADS)
Nott, Julian
2004-01-01
This paper describes development of three balloon types by the author, all proposed for piloted flights around the world. The first was a superpressure pumpkin used to cross Australia. However, the balloon took up an incorrect shape when inflated. Because of this and other problems, the pumpkin was abandoned and the author built a combined helium-hot air balloon. This in turn was abandoned because it was cumbersome and costly. The author then developed an entirely new system, carrying cryogenic liquid helium to create lift in flight. Two very successful 24-h flights were made. In addition several inventions were developed for crew safety. Perhaps the most important is an entirely new way to protect pilots against sudden cabin pressure loss, with potentially broad use.
Balloon-borne video cassette recorders for digital data storage
NASA Technical Reports Server (NTRS)
Althouse, W. E.; Cook, W. R.
1985-01-01
A high speed, high capacity digital data storage system was developed for a new balloon-borne gamma-ray telescope. The system incorporates economical consumer products: the portable video cassette recorder (VCR) and a relatively newer item - the digital audio processor. The in-flight recording system employs eight VCRs and will provide a continuous data storage rate of 1.4 megabits/sec throughout a 40 hour balloon flight. Data storage capacity is 25 gigabytes and power consumption is only 10 watts.
NASA Technical Reports Server (NTRS)
Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.
1972-01-01
The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-2 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anomalies encounters during the mission is included.
NASA Technical Reports Server (NTRS)
Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.
1973-01-01
The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-3 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anaomalies encounters during the mission is included.
Results of the 1978 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Seaman, C. H.; Sidwell, L. B.
1979-01-01
The 1978 scheduled solar cell calibration balloon flight was successfully completed. Thirty six modules were carried to an altitude of above 36 kilometers. Recovery of telemetry and flight packages was without incident. These calibrated standard cells are used as reference standards in simulator testing of cells and arrays with similar spectral response characteristics. The factors affecting the spectral transmission of the atmosphere at various altitudes are summarized.
NASA Technical Reports Server (NTRS)
Daube, B. C., Jr.; Boering, K. A.; Andrews, Arlyn E.; Wofsy, S. C.
2001-01-01
Two in situ CO2 analyzers have been developed for deployment on the NASA ER-2 aircraft and on stratospheric balloons. The ER-2 instrument has had more than 150 flights during 21 deployments from 1992 to 2000, resulting in a dataset with nearly pole-to-pole coverage that includes data from all seasons in both hemispheres except austral summer. In-flight calibrations show that the typical long-term (i.e. flight-to-flight) precision of the instruments is better than plus or minus 0.1 ppmv. The flight standards are traceable to standards held by the Scripps Institute of Oceanography and the National Oceanic and Atmospheric Administration's Climate Monitoring and Diagnostics Laboratory. The balloon instrument has had 8 balloon flights since September 1996, providing the first in situ observations of CO2 above approx. 21 km. In addition, the balloon instrument has been flown onboard a Cessna Citation II aircraft for sampling between the surface and 10 km. In this paper, the instrumentation and calibration procedures for both instruments are described in detail. An intercomparison of the two instruments during the Photochemistry of Ozone Loss in the Arctic Region In Summer (POLARIS) project showed that, on average, the instruments agreed to within 0.05 ppmv.
Balloon Ascent: 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons
NASA Technical Reports Server (NTRS)
Farley, Rodger E.
2005-01-01
The BalloonAscent balloon flight simulation code represents a from-scratch development using Visual Basic 5 as the software platform. The simulation code is a transient analysis of balloon flight, predicting the skin and gas temperatures along with the 3-D position and velocity in a time and spatially varying environment. There are manual and automated controls for gas valving and the dropping of ballast. Also, there are many handy calculators, such as appropriate free lift, and steady-state thermal solutions with temperature gradients. The strength of this simulation model over others in the past is that the infrared environment is deterministic rather than guessed at. The ground temperature is specified along with the emissivity, which creates a ground level IR environment that is then partially absorbed as it travels upward through the atmosphere to the altitude of the balloon.
The 37-day flight of CREAM during the 2009-2010 austral summer
NASA Astrophysics Data System (ADS)
Seo, Eun-Suk
The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment was launched from McMurdo Station Antarctica on December 1, 2009, an early-launch record for Antarctic Long Duration Balloon (LDB) flights. A cumulative exposure of ˜ 156 days was achieved when this 37-day fifth flight of CREAM was terminated over the Ross Ice Shelf on January 8, 2010. Combining a sampling calorimeter for energy measurement with multiple charge detectors for particle identification, CREAM-V provided a large data sample to measure elemental spectra for 1 ≤ Z ≤ 26 in energies above 1014 eV. This was the first time that CREAM was supported with the standard Support Instrumentation Package (SIP) for LDB payloads. The first four flights were supported by the Command and Data Module (CDM) developed by the NASA Wallops Flight Facility for Ultra Long Duration Balloon (ULDB) flights. The instrument performance, results from the ongoing data analysis, and future plans will be presented.
14 CFR 31.49 - Control systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... minute when the balloon is at its maximum operating pressure. (d) Each hot air balloon must have a means to allow the controlled release of hot air during flight. (e) Each hot air balloon must have a means... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.49 Control systems. (a) Each control must operate...
Ballooning in the constant sun of the South Pole summer
2014-04-24
While large compared to a human, BARREL balloons are actually much smaller than typical science balloons, which can be as large as a football field. Credit: NASA/Goddard/BARREL/Brett Anderson Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Ballooning in the constant sun of the South Pole summer
2017-12-08
The BARREL team at Halley Research Station in Antarctica, work to inflate a balloon. The long tube on the left is the inflation tube used to fill the top of the balloon with helium. Credit: NASA/Goddard/BARREL Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy.NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.Follow us on TwitterLike us on FacebookFind us on Instagram
Ballooning in the constant sun of the South Pole summer
2014-04-24
Release of a BARREL balloon. The launch crew can be seen on the right holding the payload as the top of the balloon moves overhead where they can release it. Credit: NASA/Goddard/BARREL Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy.NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.Follow us on TwitterLike us on FacebookFind us on Instagram
Ballooning in the constant sun of the South Pole summer
2014-04-24
Getting ready to lay out a BARREL balloon to prepare for inflation. The helium stillages used to fill the balloon can be seen in the background. Credit: NASA/Goddard/BARREL/Brett Anderson Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
A Survey of Titan Balloon Concepts and Technology Status
NASA Technical Reports Server (NTRS)
Hall, Jeffery L.
2011-01-01
This paper surveys the options for, and technology status of, balloon vehicles to explore Saturn's moon Titan. A significant amount of Titan balloon concept thinking and technology development has been performed in recent years, particularly following the spectacular results from the descent and landing of the Huygens probe and remote sensing observations by the Cassini spacecraft. There is widespread recognition that a balloon vehicle on the next Titan mission could provide an outstanding and unmatched capability for in situ exploration on a global scale. The rich variety of revealed science targets has combined with a highly favorable Titan flight environment to yield a wide diversity of proposed balloon concepts. The paper presents a conceptual framework for thinking about balloon vehicle design choices and uses it to analyze various Titan options. The result is a list of recommended Titan balloon vehicle concepts that could perform a variety of science missions, along with their projected performance metrics. Recent technology developments for these balloon concepts are discussed to provide context for an assessment of outstanding risk areas and technological maturity. The paper concludes with suggestions for technology investments needed to achieve flight readiness.
Improving INPE'S balloon ground facilities for operation of the protoMIRAX experiment
NASA Astrophysics Data System (ADS)
Mattiello-Francisco, F.; Rinke, E.; Fernandes, J. O.; Cardoso, L.; Cardoso, P.; Braga, J.
2014-10-01
The system requirements for reusing the scientific balloon ground facilities available at INPE were a challenge to the ground system engineers involved in the protoMIRAX X-ray astronomy experiment. A significant effort on software updating was required for the balloon ground station. Considering that protoMIRAX is a pathfinder for the MIRAX satellite mission, a ground infrastructure compatible with INPE's satellite operation approach would be useful and highly recommended to control and monitor the experiment during the balloon flights. This approach will make use of the SATellite Control System (SATCS), a software-based architecture developed at INPE for satellite commanding and monitoring. SATCS complies with particular operational requirements of different satellites by using several customized object-oriented software elements and frameworks. We present the ground solution designed for protoMIRAX operation, the Control and Reception System (CRS). A new server computer, properly configured with Ethernet, has extended the existing ground station facilities with switch, converters and new software (OPS/SERVER) in order to support the available uplink and downlink channels being mapped to TCP/IP gateways required by SATCS. Currently, the CRS development is customizing the SATCS for the kernel functions of protoMIRAX command and telemetry processing. Design-patterns, component-based libraries and metadata are widely used in the SATCS in order to extend the frameworks to address the Packet Utilization Standard (PUS) for ground-balloon communication, in compliance with the services provided by the data handling computer onboard the protoMIRAX balloon.
Taking the Hot Air Out of Balloons.
ERIC Educational Resources Information Center
Brinks, Virgil L.; Brinks, Robyn L.
1994-01-01
Describes how a teacher can give their students the challenge of designing and building model balloons or blimps. The project helps students learn the basics of balloon flight and what it really means to be "lighter than air." (PR)
The Cosmic Ray Energetics And Mass Project
NASA Astrophysics Data System (ADS)
Seo, Eun-Suk; Iss-Cream Collaboration
2017-01-01
The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment was flown for 161 days in six flights over Antarctica, the longest known exposure for a single balloon project. Elemental spectra were measured for Z = 1- 26 nuclei over a wide energy range from 1010 to >1014 eV. Building on the success of those balloon flights, one of the two balloon payloads was transformed for exposure on the International Space Station (ISS) Japanese Experiment Module Exposed Facility (JEM-EF). This ISS-CREAM instrument is configured with redundant and complementary particle detectors. The four layers of its finely segmented Silicon Charge Detector provide precise charge measurements, and its ionization calorimeter provides energy measurements. In addition, scintillator-based Top and Bottom Counting Detectors and the Boronated Scintillator Detector distinguish electrons from nuclei. An order of magnitude increase in data collecting power is expected to reach the highest energies practical with direct measurements. Following completion of its qualification tests at NASA Goddard Space Flight Center, the ISS-CREAM payload was delivered to NASA Kennedy Space Center in August 2015 to await its launch to the ISS. While waiting for ISS-CREAM to launch, the other balloon payload including a Transition Radiation Detector, which is too large for the JEM-EF envelope, has been prepared for another Antarctic balloon flight in 2016. This so-called Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS) payload will investigate cosmic ray propagation history. The overall project status and future plans will be presented.
Results of the 1983 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Downing, R. G.; Weiss, R. S.
1984-01-01
The 1983 solar cell calibration balloon flight was successfully completed and met all objectives of the program. Thirty-four modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays. Cell calibration data are tabulated as well as the repeatability of standard solar cell BFS-17A (35 flights over a 21-year period).
Results of the 1984 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Downing, R. G.; Weiss, R. S.
1984-01-01
The 1984 solar cell calibration balloon flight was successfully completed on July 19, meeting all objectives of the program. Thirty-six modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1986 NASA/JPL Balloon Flight Solar Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1986-01-01
The 1986 solar cell calibration balloon flight was successfully completed on July 15, 1986, meeting all objectives of the program. Thirty modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1982 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Downing, R. G.; Weiss, R. S.
1983-01-01
The 1982 solar cell calibration balloon flight was successfully completed on July 21, meeting all objectives of the program. Twenty-eight modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
Access to Space: Hands on flight instrument experience for sophomores at UW
NASA Astrophysics Data System (ADS)
Holzworth, R. H.; Harnett, E. M.; Winglee, R. M.; Chinowsky, T. M.; McCarthy, M. P.
2003-12-01
Students at the college sophomore level, with no science or technical prerequisites, form teams to design and fabricate sounding balloon payloads. This 200 level class promotes interest in research and involves a mixture of lectures about the upper atmosphere and space environment coupled with an intense laboratory experience. Students are taught rudimentary electronics and fabrication techniques, culminating after just 4 weeks of the flight of a CricketSat instrument (single, thermistor-controlled tone telemetry modulation; kit by Bob Twiggs at Stanford) on a sounding balloon. Following this appetite whetting, student teams design, test, calibrate and interface an instrument of their own choosing to a telemetry system for sounding balloon flight. During Spring 2003 student built payloads included devices to measure direct and reflected solar radiation, magnetic field variations, temperature and pressure, and even a small 'biosphere' with crickets which actually survived flight to near 30km altitude! Students go on a one day field trip to launch the sounding balloons and attempt recovery. This is followed by the last two weeks of data analysis and final report writing.
NASA Technical Reports Server (NTRS)
Rand, J. L.
1981-01-01
Previous attempts to develop an appropriate sensor for measuring the stress or strain of high altitude balloons during flight are reviewed as well as the various conditions that must be met by such a device. The design, development and calibration of a transducer which promises to satisfy the necessary design constraints are described. The thin film strain transducer has a low effective modulus so as not to interfere with the strain that would naturally occur in the balloon. In addition, the transducer has a high sensitivity to longitudinal strain (7.216 mV/V/unit strain) which is constant for all temperature from room temperature to -80 C and all strains from 5 percent compression to 10 percent tensile strain. At the same time, the sensor is relatively insensitive (0.27 percent) to transverse forces. The device has a standard 350 ohm impedance which is compatible with available bridge balance, amplification and telemetry instrumentation now available for balloon flight. Recommendations are included for improved coatings to provide passive thermal control as well as model, tethered and full scale flight testing.
The ATIC Long Duration Balloon Project
NASA Technical Reports Server (NTRS)
Guzik, T. G.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Granger, D.; Gunasingha, R.
2003-01-01
Long Duration Balloon (LDB) scientific experiments, launched to circumnavigate the south pole over Antarctica, have particular advantages compared to Shuttle or other Low Earth Orbit (LEO) missions in terms of cost, weight, scientific 'duty factor' and work force development. The Advanced Thin Ionization Calorimeter (ATIC) cosmic ray astrophysics experiment is a good example of a university-based project that takes full advantage of current LDB capability. The ATIC experiment is currently being prepared for its first LDB science flight that will investigate the charge composition and energy spectra of primary cosmic rays over the energy range from about 10(exp 10) to 10(exp 14) eV. The instrument is built around a fully active, Bismuth Germanate (BGO) ionization calorimeter to measure the energy deposited by the cascades formed by particles interacting in a thick carbon target. A highly segmented silicon matrix, located above the target, provides good incident charge resolution plus rejection of the 'backscattered' particles from the interaction. Trajectory reconstruction is based on the cascade profile in the BGO calorimeter, plus information from the three pairs of scintillator hodoscope layers in the target section above it. A full evaluation of the experiment was performed during a test flight occurring between 28 December 2000 and 13 January 2001 where ATIC was carried to an altitude of approx. 37 km above Antarctica by an approx. 850,000 cu m helium filled balloon for one circumnavigation of the continent. All systems behaved well, the detectors performed as expected, more than 43 gigabytes of engineering and cosmic ray event data was returned and these data are now undergoing preliminary data analysis. During the coming 2002-2003 Antarctica summer season, we are preparing for a ATIC science flight with approx. 15 to 30 days of continuous data collection in the near-space environment of LDB float altitudes.
Balloon-borne video cassette recorders for digital data storage
NASA Technical Reports Server (NTRS)
Althouse, W. E.; Cook, W. R.
1985-01-01
A high-speed, high-capacity digital data storage system has been developed for a new balloon-borne gamma-ray telescope. The system incorporates sophisticated, yet easy to use and economical consumer products: the portable video cassette recorder (VCR) and a relatively newer item - the digital audio processor. The in-flight recording system employs eight VCRs and will provide a continuous data storage rate of 1.4 megabits/sec throughout a 40 hour balloon flight. Data storage capacity is 25 gigabytes and power consumption is only 10 watts.
The French balloon and sounding rocket space program
NASA Astrophysics Data System (ADS)
Coutin/Faye, S.; Sadourny, I.
1987-08-01
Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.
Results of the 1994 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1994-01-01
The 1994 solar cell calibration balloon flight was completed on August 6, 1994. All objectives of the flight program were met. Thirty-seven modules were carried to an altitude of 119,000 ft (36.6 km). Data telemetered from the modules was corrected to 28 C and to 1 AU. The calibrated cells have been returned to the 6 participants and can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1991 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1991-01-01
The 1991 solar cell calibration balloon flight was completed on August 1, 1991. All objectives of the flight program were met. Thirty-nine modules were carried to an altitude of 119,000 ft. (36.3 km). Data telemetered from the modules were corrected to 28 C and to 1 AU. The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1992 NASA/JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1992-01-01
The 1992 solar cell calibration balloon flight was completed on August 1, 1992. All objectives of the flight program were met. Forty-one modules were carried to an altitude of 119,000 ft (36.3 km). Data telemetered from the modules was corrected to 28 C and 1 AU. The calibrated cells have been returned to 39 participants and can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1993 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1993-01-01
The 1993 solar cell calibration balloon flight was completed on July 29, 1993. All objectives of the flight program were met. Forty modules were carried to an altitude of 120,000 ft (36.6 km). Data telemetered from the modules was corrected to 28 C and to 1 AU. The calibrated cells have been returned to 8 participants and can now be used as reference standards in simulator testing of cells and arrays.
Avionics and Power Management for Low-Cost High-Altitude Balloon Science Platforms
NASA Technical Reports Server (NTRS)
Chin, Jeffrey; Roberts, Anthony; McNatt, Jeremiah
2016-01-01
High-altitude balloons (HABs) have become popular as educational and scientific platforms for planetary research. This document outlines key components for missions where low cost and rapid development are desired. As an alternative to ground-based vacuum and thermal testing, these systems can be flight tested at comparable costs. Communication, solar, space, and atmospheric sensing experiments often require environments where ground level testing can be challenging or impossible in certain cases. When performing HAB research the ability to monitor the status of the platform and gather data is key for both scientific and recoverability aspects of the mission. A few turnkey platform solutions are outlined that leverage rapidly evolving open-source engineering ecosystems. Rather than building custom components from scratch, these recommendations attempt to maximize simplicity and cost of HAB platforms to make launches more accessible to everyone.
Overview of medical operations for a manned stratospheric balloon flight.
Blue, Rebecca S; Law, Jennifer; Norton, Sean C; Garbino, Alejandro; Pattarini, James M; Turney, Matthew W; Clark, Jonathan B
2013-03-01
Red Bull Stratos was a commercial program designed to bring a test parachutist protected by a full-pressure suit via a stratospheric balloon with a pressurized capsule to 120,000 ft (36,576 m), from which he would freefall and subsequently parachute to the ground. On March 15, 2012, the Red Bull Stratos program successfully conducted a preliminary manned balloon test flight and parachute jump, reaching a final altitude of 71,581 ft (21,818 m). In light of the uniqueness of the operation and medical threats faced, a comprehensive medical plan was needed to ensure prompt and efficient response to any medical contingencies. This report will serve to discuss the medical plans put into place before the first manned balloon flight and the actions of the medical team during that flight. The medical operations developed for this program will be systematically evaluated, particularly, specific recommendations for improvement in future high-altitude and commercial space activities. A multipronged approach to medical support was developed, consisting of event planning, medical personnel, equipment, contingency-specific considerations, and communications. Medical operations were found to be highly successful when field-tested during this stratospheric flight, and the experience allowed for refinement of medical operations for future flights. The lessons learned and practices established for this program can easily be used to tailor a plan specific to other aviation or spaceflight events.
Results of the 1987 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1987-01-01
The 1987 solar cell calibration balloon flight was successfully completed on August 23, 1987, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 120,000 ft (36.0 km). The cells calibrated can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1988 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1988-01-01
The 1988 solar cell calibration balloon flight was successfully completed on August 7, 1988, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1989 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1989-01-01
The 1989 solar cell calibration balloon flight was successfully completed on August 9, 1989, meeting all objectives of the program. Forty-two modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1985 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1986-01-01
The 1985 solar cell calibration balloon flight was successfully completed on July 12, 1985, meeting all objectives of the program. Fifty-seven modules were carried to an altitude of 115,000 ft (35.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
Meeting the Challenge to Balloon Science
NASA Astrophysics Data System (ADS)
Jones, W. Vernon
The promise of superpressure ballooning is helping the balloon program evolve toward a cost-effective means for frequent access to near-space. Superpressure balloons fabricated from strong, light-weight composite materials have the potential for increasing flight times of ton-class payloads to 100 days or more at altitudes above 5 mbars at essentially any geographic latitude. Although this new capability is still in an embryonic stage, its potential has already had an impact. Specifically, a new NASA Office of Space Science policy for University-class Explorer missions allows balloon investigations to compete on an equal basis with other low-cost missions requiring expendable launch vehicles. The new challenge for the science community is to design winning payloads that can be built within the cost cap of $13 M, including launch costs, and be developed within two to three years from selection to launch. Defining the international trajectories and getting the overflight agreements for balloon flights that make several circumnavigations of Earth will also be a challenge
Dutch Viking TROS Aktua Special
NASA Technical Reports Server (NTRS)
1986-01-01
Footage shows the night vertical takeoff of the Viking Hollan hot air balloon. The crew is shown participating in survival technique training, boarding the plane to depart to Canada, and preparing for the vertical takeoff in the hot air balloon across the Atlantic Ocean. Scenes also include the making of the capsule for the balloon, some flight activities, and the landing of the balloon.
Heat Transfer Model for Hot Air Balloons
NASA Astrophysics Data System (ADS)
Llado-Gambin, Adriana
A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.
CdZnTe Background Measurements at Balloon Altitudes with PoRTIA
NASA Technical Reports Server (NTRS)
Parsons, A.; Barthelmy, S.; Bartlett, L.; Gehrels, N.; Naya, J.; Stahle, C. M.; Tueller, J.; Teegarden, B.
2003-01-01
Measurements of the CdZnTe internal background at balloon altitudes are essential to determine which physical processes make the most important background contributions. We present results from CdZnTe background measurements made by PoRTIA, a small CdZnTe balloon instrument that was flown three times in three different shielding configurations. PoRTIA was passively shielded during its first flight from Palestine, Texas and actively shielded as a piggyback instrument on the GRIS balloon experiment during its second and third flights from Alice Springs, Australia, using the thick GRIS Nal anticoincidence shield. A significant CdZnTe background reduction was achieved during the third flight with PoRTIA placed completely inside the GRIS shield and blocking crystal, and thus completely surrounded by 15 cm of Nal. A unique balloon altitude background data set is provided by CdZnTe and Ge detectors simultaneously surrounded by the same thick anticoincidence shield; the presence of a single coxial Ge detector inside the shield next to PoRTIA allowed a measurement of the ambient neutron flux inside the shield throughout the flight. These neutrons interact with the detector material to produce isomeric states of the Cd, Zn and Te nuclei that radiatively decay; calculations are presented that indicate that these decays may explain most of the fully shielded CdZnTe background.
NASA Astrophysics Data System (ADS)
Wiencke, Lawrence; Adams, Jim; Olinto, Angela; JEM-EUSO Collaboration
2016-03-01
The Extreme Universe Space Observatory on a super pressure balloon (EUSO-SPB) mission will make the first fluorescence observations of high energy cosmic ray extensive air showers by looking down on the atmosphere from near space. EUSO-SPB follows a successful overnight flight in August 2014 of the JEM-EUSO prototype mission named EUSO-Balloon. EUSO-Balloon recorded artificial tracks and pulses that were generated by a laser and optical flashers that were flown in a helicopter under the balloon. Preparations are underway for EUSO-SPB with the potential for a flight of 50 days duration. The planned launch site is Wanaka, New Zealand. We describe the mission, the updated instrument, and expected detection rates of extensive air showers events produced by cosmic primaries.
Ballooning in the constant sun of the South Pole summer
2014-04-24
BARREL team members lift up the instrument box below an inflated BARREL balloon to help with launch. Credit: NASA/Goddard/Francois Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy.NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.Follow us on TwitterLike us on FacebookFind us on Instagram
Ballooning in the constant sun of the South Pole summer
2014-04-24
A BARREL balloon launches up into the sky, destined to float on the circumpolar winds around the South Pole for up to three weeks while measuring Earth's magnetic field and energetic particles from the radiation belts. Credit: NASA/Goddard/BARREL/Brett Anderson Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Ballooning in the constant sun of the South Pole summer
2017-12-08
Members of the BARREL team in Antarctica jump up and down in what they call the Low Wind Dance as they hope for the low wind conditions needed to launch another balloon. Credit: NASA/Goddard/BARREL/Brett Anderson Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Ballooning in the constant sun of the South Pole summer
2014-04-24
A team member from South African research station, SANAE IV, helps unwrap the balloon from its protective yellow plastic cover just prior to inflation. Credit: NASA/Goddard/BARREL/Nicky Knox Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Ballooning in the constant sun of the South Pole summer
2014-04-24
The BARREL team at the South African research station, SANAE IV, poses next to the instrument box, which will float in the atmosphere beneath the balloon that can be seen being inflated in the background. Credit: NASA/Goddard/BARREL/Brett Anderson Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Ballooning in the constant sun of the South Pole summer
2014-04-24
The BARREL team at the South African research station, SANAE IV, lay out the 130-foot-long balloon on the ground to prepare for inflation. The entire set up and launch process takes three to four hours. Credit: NASA/Goddard/BARREL/Nicky Knox Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Ballooning in the constant sun of the South Pole summer
2017-12-08
The Halley station team members assisted the BARREL team with the launches. Here, one gives the thumbs up to start inflating a BARREL balloon. Credit: NASA/Goddard/BARREL/M. Krzysztofowicz Read more: www.nasa.gov/content/nasas-barrel-returns-successful-from... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Ballooning in the constant sun of the South Pole summer
2014-04-24
Getting fuller! A BARREL balloon is filled with helium during the 2013-2014 mission campaign in Antarctica. Credit: NASA/Goddard/BARREL Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy.NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.Follow us on TwitterLike us on FacebookFind us on Instagram
Ballooning in the constant sun of the South Pole summer
2014-04-24
The BARREL instrument in Antarctica– prior to being encased in its protective box – destined to float beneath a giant balloon to study magnetic fields and energetic particles near the South Pole. Credit: NASA/Goddard/BARREL/Brett Anderson Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
The Rocket Balloon (Rocketball): Applications to Science, Technology, and Education
NASA Technical Reports Server (NTRS)
Esper, Jaime
2009-01-01
Originally envisioned to study upper atmospheric phenomena, the Rocket Balloon system (or Rocketball for short) has utility in a range of applications, including sprite detection and in-situ measurements, near-space measurements and calibration correlation with orbital assets, hurricane observation and characterization, technology testing and validation, ground observation, and education. A salient feature includes the need to reach space and near-space within a critical time-frame and in adverse local meteorological conditions. It can also provide for the execution of technology validation and operational demonstrations at a fraction of the cost of a space flight. In particular, planetary entry probe proof-of-concepts can be examined. A typical Rocketball operational scenario consists of a sounding rocket launch and subsequent deployment of a balloon above a desired location. An obvious advantage of this combination is the additional mission 'hang-time' rendered by the balloon once the sounding rocket flight is completed. The system leverages current and emergent technologies at the NASA Goddard Space Flight Center and other organizations.
Balloons on Ice: NASA Launches Antarctica Scientific Balloon Campaign
2017-12-08
Cosmic rays and the chemicals and atoms that make up the interstellar space between stars are the focus of this year’s NASA Antarctica Long Duration Balloon Flight Campaign, which kicked into high gear with the launch of the Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS) payload Nov. 28. The University of Maryland’s BACCUS mission is the first of three payloads taking flight from a balloon launch site on Antarctica’s Ross Ice Shelf near McMurdo Station with support from the National Science Foundation’s United States Antarctic Program. Read more: go.nasa.gov/2gCMtyP NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Ballooning in the constant sun of the South Pole summer
2014-04-24
A view looking over the payload – the instruments that fly under a balloon – while the BARREL balloon inflates. The orange parachute lies on the ground in front of the payload, while most of the balloon length can be seen stretched along the ground toward the part being inflated. Credit: NASA/Goddard/BARREL Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy.NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.Follow us on TwitterLike us on FacebookFind us on Instagram
Two hundred years of flight in America: A bicentennial survey
NASA Technical Reports Server (NTRS)
Emme, E. M.
1977-01-01
The first recorded balloon ascension in America took place on June 19, 1784, when an unmanned balloon was raised in a public demonstration at Bladensburg, Maryland. On June 24, 1784, a thirteen-year-old boy ascended in the same balloon. The history of actual flight during the nineteenth century was entirely concerned with balloons except for several gliders and models leading to the coming of the airship and the aircraft. The history of practical flight in America begins in the twentieth century. The described developments related to aerostatics are concerned with balloons, rigid airships, and blimps. In a review of the evolution of aeronautics, attention is given to general aviation and its search for a market, trends in military aeronautics, and commercial aviation. It is pointed out that American air transport had its birth on New Year's Day, 1914, at Tampa Bay, Florida. The evolution of astronautics during the period from 1957 to 1976 is also examined, taking into account scientific satellites, the Apollo project, the exploration of the planets with the aid of unmanned spacecraft, strategic reconnaissance satellites, missile alarm satellites, instrumental satellites for detecting nuclear and thermonuclear explosions, weather satellites, communications satellites, and earth resource survey and geodetic satellites.
Simulating clefts in pumpkin balloons
NASA Astrophysics Data System (ADS)
Baginski, Frank; Brakke, Kenneth
2010-02-01
The geometry of a large axisymmetric balloon with positive differential pressure, such as a sphere, leads to very high film stresses. These stresses can be significantly reduced by using a tendon re-enforced lobed pumpkin-like shape. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin shape, including the constant bulge angle (CBA) design, the constant bulge radius (CBR) design, CBA/CBR hybrids, and NASA’s recent constant stress (CS) design. Utilizing a hybrid CBA/CBR pumpkin design, Flight 555-NT in June 2006 formed an S-cleft and was unable to fully deploy. In order to better understand the S-cleft phenomenon, a series of inflation tests involving four 27-m diameter 200-gore pumpkin balloons were conducted in 2007. One of the test vehicles was a 1/3-scale mockup of the Flight 555-NT balloon. Using an inflation procedure intended to mimic ascent, the 1/3-scale mockup developed an S-cleft feature strikingly similar to the one observed in Flight 555-NT. Our analysis of the 1/3-scale mockup found it to be unstable. We compute asymmetric equilibrium configurations of this balloon, including shapes with an S-cleft feature.
A Space Based Internet Protocol System for Launch Vehicle Tracking and Control
NASA Technical Reports Server (NTRS)
Bull, Barton; Grant, Charles; Morgan, Dwayne; Streich, Ron; Bauer, Frank (Technical Monitor)
2001-01-01
Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia are responsible for the overall management of the NASA Sounding Rocket and Scientific Balloon Programs. Payloads are generally in support of NASA's Space Science Enterprise's missions and return a variety of scientific data as well as providing a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft. Sounding rockets used by NASA can carry payloads of various weights to altitudes from 50 km to more than 1,300 km. Scientific balloons can carry a payload weighing as much as 3,630 Kg to an altitude of 42 km. Launch activities for both are conducted not only from established ranges, but also from remote locations worldwide requiring mobile tracking and command equipment to be transported and set up at considerable expense. The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce tracking and control costs of these launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating this ground infrastructure. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initiated from practically any location. A low cost Commercial Off The Shelf (COTS) system is currently under development for sounding rockets that also has application to UAVs and scientific balloons. Due to relatively low data rate (9600 baud) currently available, the system will first be used to provide GPS data for tracking and vehicle recovery. Range safety requirements for launch vehicles usually stipulate at least two independent tracking sources. Most sounding rockets flown by NASA now carry GP receivers that output position data via the payload telemetry system to the ground station. The Flight Modem can be configured as a completely separate link thereby eliminating the requirement for tracking radar. The system architecture that integrates antennas, GPS receiver, commercial satellite packet data modem, and a single board computer with custom software is described along with the technical challenges and the plan for their resolution. These include antenna development, high Doppler rates, reliability, environmental ruggedness, hand over between satellites, and data security. An aggressive test plan is included which, in addition to environmental testing, measures bit error rate, latency and antenna patterns. Actual launches on a sounding rocket and various aircraft flights have taken place. Flight tests are planned for the near future on aircraft, long duration balloons and sounding rockets. These results, as well as the current status of the project, are reported.
Science at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2012-01-01
The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.
Results of the 1996 JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1996-01-01
The 1996 solar cell calibration balloon flight campaign was completed with the first flight on June 30, 1996 and a second flight on August 8, 1996. All objectives of the flight program were met. Sixty-four modules were carried to an altitude of 120,000 ft (36.6 km). Full 1-5 curves were measured on 22 of these modules, and output at a fixed load was measured on 42 modules. This data was corrected to 28 C and to 1 AU (1.496 x 10(exp 8) km). The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.
Iridium: Global OTH data communications for high altitude scientific ballooning
NASA Astrophysics Data System (ADS)
Denney, A.
While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several beneficial points provided by the Iridium platform include pure global accessibility (as well as polar), cost effectiveness because it is available as a COTS (Commercially Off The Shelf) technology, reliability in that the equipment must operate in extreme conditions (near space), integration and development time into current systems must be minimized. As a bonus Motorola and NAL Research Corporation are developing SBD (Short Burst Data) into the Iridium network. This may lead the way to a global IP (Internet Protocol) node based ballooning platform. The Iridium satellite data modems employ the Iridium Low-Earth Orbit (LEO) satellite network. The scope of this paper is to introduce an OTH communications alternative, albeit not necessarily a primary one, to existing ballooning platforms using COTS based emerging technologies. Design aspects, characteristics, actual flight testing statistics, principles of the Iridium modems and communication paths are described including payload and support instrumentation interfacing. Not limited to high altitude ballooning, the Iridium communications platform opens a new era in remote commanding and data retrieval.
2015-05-11
Crews from the Columbia Scientific Balloon Facility prepare the balloon for flight for the 2014 NASA Low-Density Supersonic Decelerator test from the U.S. Navy Pacific Missile Range Facility on Kauai, Hawaii.
JUBA (Joint UAS-Balloon Activities) Final Campaign Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dexheimer, Darielle; Apple, Monty; Callow, Diane Schafer
Using internal investment funds within Sandia National Laboratories’ (SNL) Division 6000, JUBA was a collaborative exercise between SNL Orgs. 6533 & 6913 (later 8863) to demonstrate simultaneous flights of tethered balloons and UAS on the North Slope of Alaska. JUBA UAS and tethered balloon flights were conducted within the Restricted Airspace associated with the ARM AMF3 site at Oliktok Point, Alaska. The Restricted Airspace occupies a 2 nautical mile radius around Oliktok Point. JUBA was conducted at the Sandia Arctic Site, which is approximately 2 km east-southeast of the AMF3. JUBA activities occurred from 08/08/17 – 08/10/17. Atmospheric measurements frommore » tethered balloons can occur for a long duration, but offer limited spatial variation. Measurements from UAS could offer increased spatial variability.« less
FIREBall-2: Trailblazing observations of the space UV circumgalactic medium
NASA Astrophysics Data System (ADS)
Martin, Christopher
The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3
Results from the IMP-J violet solar cell experiment and violet cell balloon flights
NASA Technical Reports Server (NTRS)
Gaddy, E. M.
1976-01-01
The Interplanetary Monitoring Platform-J violet solar cell experiment was flown in an orbit with mild thermal cycling and low hard-particle radiation. The results of the experiment show that violet cells degrade at about the same rate as conventional cells in such an orbit. Balloon flight measurements show that violet solar cells produce approximately 20% more power than conventional cells.
Results from the IMP-J violet solar cell experiment and violet cell balloon flights
NASA Technical Reports Server (NTRS)
Gaddy, E. M.
1976-01-01
The IMP-J violet solar cell experiment was flown in an orbit with mild thermal cycling and low hard particle radiation. The results of the experiment show that violet cells degrade at about the same rate as conventional cells in such an orbit. Balloon flight measurements show that violet solar cells produce approximately 20% more power than conventional cells.
NASA Astrophysics Data System (ADS)
Efremov, Denis; Khaykin, Sergey; Lykov, Alexey; Berezhko, Yaroslav; Lunin, Aleksey
High-resolution measurements of climate-relevant trace gases and aerosols in the upper troposphere and stratosphere (UTS) have been and remain technically challenging. The high cost of measurements onboard airborne platforms or heavy stratospheric balloons results in a lack of accurate information on vertical distribution of atmospheric constituents. Whereas light-weight instruments carried by meteorological balloons are becoming progressively available, their usage is constrained by the cost of the equipment or the recovery operations. The evolving need in cost-efficient observations for UTS process studies has led to development of small airborne platforms - unmanned aerial vehicles (UAV), capable of carrying small sensors for in-situ measurements. We present a new UAV-based stratospheric sounding platform capable of carrying scientific payload of up to 2 kg. The airborne platform comprises of a latex meteorological balloon and detachable flying wing type UAV with internal measurement controller. The UAV is launched on a balloon to stratospheric altitudes up to 20 km, where it can be automatically released by autopilot or by a remote command sent from the ground control. Having been released from the balloon the UAV glides down and returns to the launch position. Autopilot using 3-axis gyro, accelerometer, barometer, compas and GPS navigation provides flight stabilization and optimal way back trajectory. Backup manual control is provided for emergencies. During the flight the onboard measurement controller stores the data into internal memory and transmits current flight parameters to the ground station via telemetry. Precise operation of the flight control systems ensures safe landing at the launch point. A series of field tests of the detachable stratospheric UAV has been conducted. The scientific payload included the following instruments involved in different flights: a) stratospheric Lyman-alpha hygrometer (FLASH); b) backscatter sonde; c) electrochemical ozone sonde; d) optical CO2 sensor; e) radioactivity sensor; f) solar radiation sensor. In addition, each payload included temperature sensor, barometric sensor and a GPS receiver. Design features of measurement systems onboard UAV and flight results are presented. Possible applications for atmospheric studies and validation of remote ground-based and space-borne observations is discussed.
2015-08-14
The BARREL team prepares to release the second scientific balloon in its Sweden campaign on Aug. 13, 2015. In addition to the instruments used in previous BARREL campaigns, this second balloon launched from the Esrange Space Center in Kiruna is carrying one of two instruments designed by a team from the University of Houston. With funding from the Undergraduate Student Instrument Program, or USIP, at NASA Goddard Space Flight Center’s Wallops Flight Facility, the team of 12 students, under the direction of Edgar Bering at the University of Houston, developed a magnetometer -- which measures magnetic fields -- and an instrument to measure electrons, which flew on this launch. To collect their data, the University of Houston team needs to recover their instrument after the balloon comes down. After this launch, the balloon began to drift toward the mountains, which would have impeded recovery. So the team terminated the flight at 1:18 pm EDT to bring the payload slowly and safely to the ground. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – measures electrons in the atmosphere near the poles. Such electrons rain down into the atmosphere from two giant radiation belts surrounding Earth, called the Van Allen belts. For its third campaign, BARREL is launching six balloons from the Esrange Space Center in Kiruna, Sweden. BARREL is led by Dartmouth College in Hanover, New Hampshire. Credit: NASA/University of Houston/Edgar Bering NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Ohari, T.
1982-01-01
A method was developed whereby a balloon was used to carry lumber out of a forest in order to continue lumber production without destroying the natural environment and view of the forest. Emphasis was on the best shape for a logging balloon, development of a balloon logging system suitable for cutting lumber and safety plans, tests on balloon construction and development of netting, and weather of mountainous areas, especially solutions to problems caused by winds.
A balloon-borne experiment to investigate the Martian magnetic field
NASA Astrophysics Data System (ADS)
Schwingenschuh, K.; Feldhofer, H.; Koren, W.; Jernej, I.; Stachel, M.; Riedler, W.; Slamanig, H.; Auster, H.-U.; Rustenbach, J.; Fornacon, H. K.; Schenk, H. J.; Hillenmaier, O.; Haerendel, G.; Yeroshenko, Ye.; Styashkin, V.; Zaroutzky, A.; Best, A.; Scholz, G.; Russell, C. T.; Means, J.; Pierce, D.; Luhmann, J. G.
1996-03-01
The Space Research Institute of the Austrian Academy, of Sciences (Graz, Austria) in cooperation with MPE (Berlin, Germany), GFZ Potsdam (Obs. Niemegk, Germany) IZMIRAN/IOFAN (Moscow, Russian) and IGPP/UCLA (Los Angeles, USA) is designing the magnetic field experiment MAGIBAL (MAGnetic field experiment aboard a martian BALloon) to investigate the magnetic field on the surface of Mars. The dual sensor fluxgate magnetometer is part of the MARS-98/MARS-TOGETHER balloon payload. During a ten days period the balloon will float over a distance of about 2000 km at altitudes between 0 and 4 km. Due to the limited power and telemetry allocation the magnetometer can transmit only one vector per ten seconds and spectral information in the frequency range from 2 - 25 Hz. The dynamic range is +/- 2000 nT. The main scientific objectives of the experiment are: • Determination of the magnetism of the Martian rocks • Investigation of the leakage of the solar wind induced magnetosphere using the correlation between orbiter and balloon observations • Measurement of the magnetic field profile between the orbiter and the surface of Mars during the descent phase of the balloon. Terrestrial test flights with a hot air balloon were performed in order to test the original MAGIBAL equipment under balloon flight conditions.
TGF Observations From A Small, Low-Cost, Low-Mass, High-Speed Versatile Detector System.
NASA Astrophysics Data System (ADS)
Sample, J. G.; Smith, D. M.; Johnson, J.; Varney, C.; Gannon, J.; Hunter, S.; Murtaugh, J.; Durtka, J.; Cunningham, B.
2017-12-01
The Light And Fast TGF Recorder or LAFTR is a NASA-University Student Instrumentation Project (USIP) that is designed to observe Terrestrial Gamma Flashes from a sounding balloon. LAFTR is a joint project between UC-Santa Cruz and Montana State University. LAFTR utilizes a small plastic scintillator with a fast shaped SiPM readout and a comparator based digitization similar to ADELE but with 6 energy channels. The discriminator bank is read out with a low-cost FPGA and data stored on board for recovery. LAFTR is able to time-tag gamma ray photons to 10ns at an approximate maximum rate of >5 MCounts/s. The entire systems fits well within the 6lb limit for unrestricted balloon launching and launch plans will be in advance of approaching thunderstorms. The small size of the scintillator and fast counting are ideal for unsaturated observations from near the TGF generation region which LAFTR will access via a valved latex balloon developed by the BOREALIS program at MSU. The valved balloon allows for a flight of several hours at >15km altitude. A test flight is planned for Fall 2017 followed by science observation flights throughout the next year. Although designed for single balloon flights, the low-cost nature of LAFTR potentially allows for many units to be produced allowing multi-point measurements and distributed arrays of ground and tower-based TGF observations as it affords significant student experiences throughout.
The balloon-borne exoplanet spectroscopy experiment (BETSE)
NASA Astrophysics Data System (ADS)
Pascale, E.
2015-10-01
The balloon-borne exoplanet spectroscopy experiment (BETSE) is a proposed balloon spectrometer operating in the 1-5 μm band with spectral resolution of R = 100. Using a 50 cm diameter telescope, BETSE is desgnied to have sufficient sensitivity and control of systematics to measure the atmospheric spectra of representative sample of known hot Jupiters, few warm Neptunes, and some of the exoplanets TESS will soon begin to discover. This would for the first time allow us to place strict observational constraints on the nature of exo-atmospheres and on models of planetary formation. In a LDB flight from Antarctica, BETSE would be able to characterize the atmospheres of 20 planets. If a ULDB flight is available, the combination of a longer flight and night time operations would enable BETSE to ground-breakingly characterize the atmospheres of more than 40 planets. Prior to an LDB or ULDB flight, BETSE would be tested in a 24 hr flight from Fort Sumner, NM, in order to test all subsystems, also observing more than 4 planets with SNR greater than 5.
NASA Technical Reports Server (NTRS)
Stuchlik, David W.; Lanzi, Raymond J.
2017-01-01
The National Aeronautics and Space Administrations (NASA) Wallops Flight Facility (WFF), part of the Goddard Space Flight Center (GSFC), has developed a unique pointing control system for instruments aboard scientific balloon gondolas. The ability to point large telescopes and instruments with arc-second accuracy and stability is highly desired by multiple scientific disciplines, such as Planetary, Earth Science, Heliospheric and Astrophysics, and the availability of a standardized system supplied by NASA alleviates the need for the science user to develop and provide their own system. In addition to the pointing control system, a star tracker has been developed with both daytime and nighttime capability to augment the WASP and provide an absolute pointing reference. The WASP Project has successfully completed five test flights and one operational science mission, and is currently supporting an additional test flight in 2017, along with three science missions with flights scheduled between 2018 and 2020. The WASP system has demonstrated precision pointing and high reliability, and is available to support scientific balloon missions.
Analysis of tethered balloon data from San Nicolas Island on 8 July 1987
NASA Technical Reports Server (NTRS)
Cox, Stephen K.; Duda, David P.; Guinn, Thomas A.; Johnson-Pasqua, Christopher M.; Schubert, Wayne H.; Snider, Jack B.
1990-01-01
Analysis of the 8 July 1987 (Julian Day 189) tethered balloon flight from San Nicolas Island is summarized. The flight commenced at about 14:30 UTC (7:30 Pacific Daylight Time) and lasted six and one-half hours. The position of the Colorado State University (CSU) instrument package as a function of time is shown. For the purpose of presentation of results, researchers divided the flight into 13 legs. These legs consist of 20 minute constant level runs, with the exception of leg 1, which is a sounding from the surface to just above 930 mb. The laser ceilometer record of cloud base is also shown. The cloud base averaged around 970 mb during much of the flight but was more variable near the end. Before the tethered balloon flight commenced, a Communications Link Analysis and Simulation System (CLASS) sounding was released at 12:11 UTC (5:11 PDT). Temperature and moisture data below 927 mb for this sounding is shown. The sounding indicates a cloud top around 955 mb at this time.
NASA Technical Reports Server (NTRS)
Roberts, Barry C.; McGrath, Kevin; Starr, Brett; Brandon, Jay
2009-01-01
During the launch countdown of the Ares I-X test vehicle, engineers from Langley Research Center will use profiles of atmospheric density and winds in evaluating vehicle ascent loads and controllability. A schedule for the release of balloons to measure atmospheric density and winds has been developed by the Natural Environments Branch at Marshall Space Flight Center to help ensure timely evaluation of the vehicle ascent loads and controllability parameters and support a successful launch of the Ares I-X vehicle.
High Altitude Balloon Flight Path Prediction and Site Selection Based On Computer Simulations
NASA Astrophysics Data System (ADS)
Linford, Joel
2010-10-01
Interested in the upper atmosphere, Weber State University Physics department has developed a High Altitude Reconnaissance Balloon for Outreach and Research team, also known as HARBOR. HARBOR enables Weber State University to take a variety of measurements from ground level to altitudes as high as 100,000 feet. The flight paths of these balloons can extend as long as 100 miles from the launch zone, making the choice of where and when to fly critical. To ensure the ability to recover the packages in a reasonable amount of time, days and times are carefully selected using computer simulations limiting flight tracks to approximately 40 miles from the launch zone. The computer simulations take atmospheric data collected by National Oceanic and Atmospheric Administration (NOAA) to plot what flights might have looked like in the past, and to predict future flights. Using these simulations a launch zone has been selected in Duchesne Utah, which has hosted eight successful flights over the course of the last three years, all of which have been recovered. Several secondary launch zones in western Wyoming, Southern Idaho, and Northern Utah are also being considered.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices or..., material or equipment by parachute, balloon, helicopter or other means onto or from project lands or waters...
Balloon-borne pressure sensor performance evaluation utilizing tracking radars
NASA Technical Reports Server (NTRS)
Norcross, G. A.; Brooks, R. L.
1983-01-01
The pressure sensors on balloon-borne sondes relate the sonde measurements to height above the Earth's surface through the hypsometric equation. It is crucial that sondes used to explore the vertical structure of the atmosphere do not contribute significant height errors to their measurements of atmospheric constituent concentrations and properties. A series of radiosonde flights was conducted. In most cases, each flight consisted of two sondes attached to a single balloon and each flight was tracked by a highly accurate C-band radar. For the first 19 radiosonde flights, the standard aneroid cell baroswitch assembly used was the pressure sensor. The last 26 radiosondes were equipped with a premium grade aneroid cell baroswitch assembly sensor and with a hypsometer. It is shown that both aneroid cell baroswitch sensors become increasingly inaccurate with altitude. The hypsometer radar differences are not strongly dependent upon altitude and it is found that the standard deviation of the differences at 35 km is 0.179 km.
Long-Duration, Balloon-Borne Observations of Cosmic Microwave Background Anisotropy
NASA Technical Reports Server (NTRS)
1997-01-01
Funds from this grant were used to support the continuing development of BOOMERANG, a 1.3 m, balloon-borne, attitude-stabilized telescope designed to measure the anisotropy of the Cosmic Microwave Background (CMB) on angular scales of 12 min to 10 degrees. By the end of the funding period covered by this grant, the fabrication of most of the BOOMERANG sub-systems was completed, and integration and test of the payload at Caltech had begun. The project was continued under a new grant from NASA and continuing funding from the NSF. Payload integration and test was completed in April, 1997. A campaign to Palestine, Texas, resulted in two test flights during 1997. A flight on August 12, 1997 was terminated on ascent due to a leaky balloon. The payload was successfully recovered, refurbished, and flown again on August 29, 1997. The second flight was completely successful, and qualified the payload for an LDB flight from McMurdo Stn., Antarctica, in December 1998.
Results from the Balloon Ozone Intercomparison Campaign (BOIC)
NASA Technical Reports Server (NTRS)
Hilsenrath, E.; Hagemeyer, R.; Mentall, J.; Torres, A.; Attmannspacher, W.; Bass, A.; Evans, W.; Barnes, R. A.; Komhyr, W.; Robbins, D.
1986-01-01
Data from the BOIC which consisted of three balloon missions conducted in Palestine, Texas from June 1983 to March 1984 are presented. The BOIC was to assess the ability to perform ozone measurements from balloon platforms. The accuracy and precision of the various ozone measurement systems, which were composed of a photometer, a mass spectrometer, and solar UV absorption sensors, are evaluated. The ozone observations obtained with the instruments on the three flight missions are analyzed and intercompared. The flight in situ data are also compared to the National Bureau of Standards reference photometer, satellite measurements, and under simulated stratospheric pressure and ozone concentrations.
NASA Astrophysics Data System (ADS)
Kislat, Fabian; Abarr, Quin; Beheshtipour, Banafsheh; De Geronimo, Gianluigi; Dowkontt, Paul; Tang, Jason; Krawczynski, Henric
2018-01-01
X-ray polarimetry promises exciting insights into the physics of compact astrophysical objects by providing two observables: the polarization fraction and angle as function of energy. X-Calibur is a balloon-borne hard x-ray scattering polarimeter for the 15- to 60-keV energy range. After the successful test flight in September 2016, the instrument is now being prepared for a long-duration balloon (LDB) flight in December 2018 through January 2019. During the LDB flight, X-Calibur will make detailed measurements of the polarization of Vela X-1 and constrain the polarization of a sample of between 4 and 9 additional sources. We describe the upgraded polarimeter design, including the use of a beryllium scattering element, lower-noise front-end electronics, and an improved fully active CsI(Na) anticoincidence shield, which will significantly increase the instrument sensitivity. We present estimates of the improved polarimeter performance based on simulations and laboratory measurements. We present some of the results from the 2016 flight and show that we solved several problems, which led to a reduced sensitivity during the 2016 flight. We end with a description of the planned Vela X-1 observations, including a Swift/BAT-guided observation strategy.
Overview of the Radiation Dosimetry Experiment (RaD-X) flight mission
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.
2016-11-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.
Overview of the Radiation Dosimetry Experiment (RaD-X) Flight Mission
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.
2016-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5 N, 104.2 W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.
New concepts for interplanetary balloons and blimps, particularly for Titan
NASA Astrophysics Data System (ADS)
Nott, J.
This paper proposes novel approaches for balloons for planets Titan BALLUTE A balloon or blimp arriving at a planet or moon with an atmosphere might inflate falling under a parachute or after landing Neither is ideal In both cases the envelope must include qualities needed for inflation as well as those for flight A ballute BALLoon parachUTE could be used thus a ballute is like a hot air balloon with a large mouth Initially it fills by ram pressure descending through an atmosphere As proposed it would then be heated by solid propellant It would stop descending and float level with hot air lift It is now a perfect location for inflation without wind or movement through the atmosphere and away from the uncertainties of the surface A ballute could be used over several bodies in the solar system BALLOONS FOR LOW TEMPERATURES Flight in very low temperatures is also discussed Conditions are so different that it is useful to examine basic factors These apply for any planet with low temperature and weather calm enough for balloons or blimps First for terrestrial hot air balloons thermal radiation is usually the dominant way heat is lost But radiation rises with the 4th power of absolute temperature At Titan radiation will be one or two orders of magnitude smaller Also the dense atmosphere allows small balloons small temperature differences So convection is small It appears a hot air balloon can easily be heated by a radioactive source likely carried to make electricity Pinholes are not important in such a balloon
NASA Astrophysics Data System (ADS)
Wakefield, David
Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures. Founded upon their inTENS finite element analysis suite, these activities have broadened to encompass ‘lighter than air' structures such as aerostats, hybrid air-vehicles and stratospheric balloons. Since 2004 Tensys have acted as consultants to the NASA Ultra Long Duration Balloon (ULDB) Program. Early implementations of the super-pressure balloon design chosen for ULDB have shown problems of geometric instability, characterised by improper deployment and the potential for overall geometric instability once deployed. The latter has been reproduced numerically using inTENS, and the former are better understood following a series of large-scale hangar tests simulating launch and ascent. In both cases the solution lies in minimising the film lobing between the tendons. These tendons, which span between base and apex end fittings, cause the characteristic pumpkin shape of the balloons and also provide valuable constraint against excessive film deformation. There is also the requirement to generate a biaxial stress field in order to mobilise in-plane shear stiffness. A consequence of reduced lobing between tendons is the development of higher stresses in the balloon film under pressure. The different thermal characteristics between tendons and film lead to further significant meridional stress under low temperature flight conditions. The non-linear viscoelastic response of the envelope film acts positively to help dissipate excessive stress and local concentrations. However, creep over time may produce lobe geometry variations sufficient to compromise the geometric stability of the balloon. The design of a balloon requires an analysis approach that addresses the questions of stress and stability over the duration of a flight by time stepping analyses using an appropriate material model. This paper summarises the Dynamic Relaxation approach to stress and stability analysis inherent in inTENS, and focuses in particular on: Implementation of an alternative application of the Incremental Schapery Rand (ISR) representation of the non-linear visco-elastic response of the polyethylene balloon film. This is based upon the relaxation modulus, rather than the creep compliance, and as such fits more efficiently into the Dynamic Relaxation analysis procedure used within inTENS. Comparisons of results between the two approaches are given. Verification of the material model by comparison with material tests. Verification of the application to pumpkin balloon structures by comparison with scale model tests. Application of inTENS with ISR to time-stepping analyses of a balloon flight including diurnal variations of temperature and pressure. This includes the demonstration of a method for checking the likely hood of overall instability developing at any particular time in the flight as both balloon geometry and film properties change due to visco-elastic effects.
NASA Astrophysics Data System (ADS)
Cocquerez, P.; Venel, S.; Vial, F.; Mechoso, R.; Hertzog, A.; Basdevant, C.
The Stratéole-Vorcore stratospheric balloon campaign took place in September-October 2005 from McMurdo Antarctica This campaign which benefited from a very significant support from the National science Foundation as well as from the French polar institute Institut Paul Emile Victor is a joint effort of the French space agency CNES and the Laboratoire de meteorology Dynamique IPSL CNRS 27 balloons were released from 5 th of September to 28 th of October Drifting during several months at constant air density in the low stratosphere they formed a flotilla of up to 21 balloons floating simultaneously The duration of flight cumulated over the entire flotilla reached 1577 days producing more than 150 000 meteorological observations This presentation will mainly focus on the description of the ground and flight systems the launch operations and the main characteristics of the flights It will be completed by an overview of the current plans for the utilisation of this observation system for other scientific missions in the near future
NASA Technical Reports Server (NTRS)
Fairbrother, Debbie
2017-01-01
NASA is in the process of qualifying the mid-size Super Pressure Balloon (SPB) to provide constant density altitude flight for science investigations at polar and mid-latitudes. The status of the development of the 18.8 million cubic foot SPB capable of carrying one-tone of science to 110,000 feet, will be given. In addition, the operating considerations such as launch sites, flight safety considerations, and recovery will be discussed.
NASA Technical Reports Server (NTRS)
Fairbrother, Debbie
2016-01-01
NASA is in the process of qualifying the mid-size Super Pressure Balloon (SPB) to provide constant density altitude flight for science investigations at polar and mid-latitudes. The status of the development of the 18.8 million cubic foot SPB capable of carrying one-tonne of science to 110,000 feet, will be given. In addition, the operating considerations such as launch sites, flight safety considerations, and recovery will be discussed.
THz Solar Observations on Board of a Trans-Antarctic Stratospheric Balloon Flight
NASA Technical Reports Server (NTRS)
Kaufmann, P.; Abrantes, A.; Bortolucci, E. C.; Caspi, A.; Fernandes, L. O. T.; Kropotov, G.; Kudaka, A. S.; Laurent, G.; Machado, N.; Marcon, R.;
2016-01-01
A new system of two photometers was built to observe the Sun at 3 and 7 THz from space, named SOLART. It has been flown coupled to U.C. Berkeley GRIPS experiment on a NASA stratospheric balloon flight over Antarctica, 19-30 January 2016. The mission was successfully accomplished. We describe the system performance, solar brightness determination and the first THz impulsive burst detected.
Qualification of the new French balloon system and of the new Canadian launch site
NASA Astrophysics Data System (ADS)
Vargas, André; Levesque, Daniel
In the frame of an international collaboration between the ‘Centre National d’Etudes Spatiales’ (CNES) and the Canadian Space Agency (CSA), a new mid-latitude stratospheric balloon base has been developed and finalized at the Victor M. Power Timmins Airport, located in Ontario, Canada. As part of this collaboration, CNES, based on its 3500 flights heritage and 50 years experience in ballooning, provides all flight hardware, including a newly developed control system for aerostats known as NOSYCA, as well as all associated ground support equipment. On the other hand, CSA provides a mid-latitude launch base located in a low populated area of northern Ontario, aerostats recovery services as well as interfaces with all national authorities needed to fly heavy stratospheric balloons safely within Canadian airspace. In exchanges of these services, Canadian payloads are to be flown yearly by CNES from its worldwide network of sites. Following the completion of the base’s construction in March 2013, a qualification plan was put together by the two (2) agencies in order to test and verify all technical and operational aspects of this new mid-latitude launch site. Furthermore, the plan included hosting NOSYCA’s maiden flights, with the aim of allowing CNES to resume stratospheric science campaigns as soon as 2014. For CNES, the main objectives of the campaign were to qualify NOSYCA as well as to tests ground and flight operational procedures. For the CSA, the goals were to qualify its launch base, recovery procedures, operational procedures with national authorities, and to validate mapping & drop zones. The campaign, which began in June 2013, was successfully completed in September 2013 with two (2) qualification flights that included a one hundred (100) and an eight hundreds (800) thousands meter cubes balloons, lasting 10 and 13 hours respectively. This paper presents, in the context of this French-Canadian collaboration, the results from the first campaign, and from the maiden flights completed.
Overview of the TILDAE High-Altitude Balloon Mission
NASA Astrophysics Data System (ADS)
Godbole, N. H.; Maruca, B.; Marino, R.; Sundkvist, D. J.; Constantin, S.; Zimmerman, H.; Carbone, V.
2016-12-01
Though the presence of intermittent turbulence in the stratosphere has been well established, much remains unknown about it. In situ observations of this phenomenon, which have provided the greatest detail of it, have typically been achieved via sounding balloons (i.e., small balloons which burst at peak altitude) carrying constant-temperature "hot wire" anemometers (CTAs). The Turbulence and Intermittency Long-Duration Atmospheric Experiment (TILDAE) was developed to test a new paradigm for stratospheric observations. Rather than flying on a sounding balloon, TILDAE was incorporated as an "add-on" experiment to the payload of a NASA long-duration balloon mission that launched in January, 2016 from McMurdo Station, Antarctica. Furthermore, TILDAE's key instrument was a sonic anemometer, which (relative to a CTA) provides better-calibrated measurements of wind velocity and more-robust separation of velocity components. This presentation focuses on the technical details of TILDAE's instrumentation and the performance thereof during its flight. Potential design improvements for future flights are also discussed.
Results of the 1999 JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Mueller, R. L.; Weiss, R. S.
2000-01-01
The 1999 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 14, 1999, and July 6, 1999. All objectives of the flight program were met. Fifty-seven modules were carried to an altitude of approximately equal to 120,000 ft (36.6 km). Full I-V curves were measured on five of these modules, and output at a fixed load was measured on forty-three modules (forty-five cells), with some modules repeated on the second flight. This data was corrected to 28 C and to 1 AU (1.496 x 10 (exp 8) km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.
Balloon and surface UV radiation measurements with the NILU-CUBE instrument
NASA Astrophysics Data System (ADS)
Kylling, A.; Danielsen, T.; Webb, A.; Blumthaler, M.; Schreder, J.
2003-04-01
The NILU-CUBE instrument measures the irradiance on the six faces of a cube. On each face the radiation is measured at 312~nm and 340~nm with a bandwidth of approximately 10~nm at full width half maximum. The instrument is designed to be flown as part of balloon payloads. It may also readily be operated on the ground. The instrument and its characteristics are presented and the calibration procedure outlined. Photodissociation rates derived from measurements made during a twilight stratospheric balloon flight from Gap-Tallard, France, are presented. From two hot-air balloon flights over East-Anglia, England, measurements by the instrument were used to derive the surface albedo. Finally, surface measurements are used to describe the incoming irradiance on vertical and horizontal surfaces. All measurements are compared with model simulations.
Ballooning in the constant sun of the South Pole summer
2014-04-24
A group picture of all the researchers – from various science projects -- at the South African research station, SANAE IV, Antarctica, in the (Southern) summer 2013-2014. Credit: NASA/Goddard/BARREL/Brett Anderson Read more: www.nasa.gov/content/nasas-barrel-returns-successful-from... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
1993-01-01
The observational limitations of earth bound solar studies has prompted a great deal of interest in recent months in being able to gain new scientific perspectives through, what should prove to be, relatively low cost flight of the magnetograph system. The ground work done by TBE for the solar balloon missions (originally planned for SOUP and GRID) as well as the rather advanced state of assembly of the EXVM has allowed the quick formulation of a mission concept for the 30 cm system currently being assembled. The flight system operational configuration will be discussed as it is proposed for short duration flight (on the order of one day) over the continental United States. Balloon hardware design requirements used in formulation of the concept are those set by the National Science Balloon Facility (NSBF), the support agency under NASA contract for flight services. The concept assumes that the flight hardware assembly would come together from three development sources: the scientific investigator package, the integration contractor package, and the NSBF support system. The majority of these three separate packages can be independently developed; however, the computer control interfaces and telemetry links would require extensive preplanning and coordination. A special section of this study deals with definition of a dedicated telemetry link to be provided by the integration contractor for video image data for pointing system performance verification. In this study the approach has been to capitalize to the maximum extent possible on existing hardware and system design. This is the most prudent step that can be taken to reduce eventual program cost for long duration flights. By fielding the existing EXVM as quickly as possible, experience could be gained from several short duration flight tests before it became necessary to commit to major upgrades for long duration flights of this system or of the larger 60 cm version being considered for eventual development.
NASA Astrophysics Data System (ADS)
Bénech, Bruno; Ezcurra, Agustin; Lothon, Marie; Saïd, Frédérique; Campistron, Bernard; Lohou, Fabienne; Durand, Pierre
ESCOMPTE programme aims at studying the emissions of primary pollutants in industrial and urban areas, their transport, diffusion and transformation in the atmosphere. This experiment, carried out in southeast France, can be used to validate and to improve meteorological and chemical mesoscale models. One major goal of this experiment was to follow the pollutant plumes, and to investigate its thermodynamic and physico-chemical time evolution. This was realized by means of constant volume balloons, located by global position satellite (GPS) and equipped with thermodynamic and ozone sensors, flying at constant density levels. During the two ESCOMPTE campaigns that took place in June and July 2000 and 2001, 40 balloons were launched, 17 of them equipped with ozone sensors during the day from 0800 to 1800 UTC. Balloons' altitudes flight levels ranged between 400 and 1200 m altitude with Mistral (northerly synoptic flow) and Sea Breeze (southerly breeze) conditions. The atmospheric boundary layer (ABL) topography of the experimental domain is complex and varies strongly from day to day. Its depth presents a large gradient from the sea coast to the north part of the ESCOMPTE domain, and also more complex variability within the domain. The balloons' trajectories describe the evolution of the pollutant plume emitted from the industrial area of Fos-Berre or from the Marseille urban area. Constant volume balloons give a good description of the trajectories of these two plumes. The balloons, which fly at an isopicnic level, cross different atmospheric layers chiefly depending on the ABL height in relation with the constant volume balloons flight level. Thus, each balloon flight is decomposed into different segments that correspond to the same atmospheric layer. In each segment, the ozone content variation is analyzed in relation to other thermodynamical parameters measured by the balloon and mainly to the vapor mixing ratio content. During ESCOMPTE campaign, the mean linear rate of chemical net ozone production at the top of the atmospheric boundary layer was found to be around 6 ppb h -1.
Project Hermes 'Use of Smartphones for Receiving Telemetry and Commanding a Satellite'
NASA Technical Reports Server (NTRS)
Maharaja, Rishabh (Principal Investigator)
2016-01-01
TCPIP protocols can be applied for satellite command, control, and data transfer. Project Hermes was an experiment set-up to test the use of the TCPIP protocol for communicating with a space bound payload. The idea was successfully demonstrated on high altitude balloon flights and on a sub-orbital sounding rocket launched from NASAs Wallops Flight Facility. TCPIP protocols can be applied for satellite command, control, and data transfer. Project Hermes was an experiment set-up to test the use of the TCPIP protocol for communicating with a space bound payload. The idea was successfully demonstrated on high altitude balloon flights and on a sub-orbital sounding rocket launched from NASAs Wallops Flight Facility.
NASA Astrophysics Data System (ADS)
Redkar, R. T.
1993-02-01
A new grade of balloon film extruded out of LLDPE resin with Butene as comonomer and Cold Brittle Point (CBP) at -88°C was extruded and successfully flight tested with a 25 micron single shell 53,000 Cu.M. balloon carrying 330 Kg. payload to 33 Km. altitude. We have also produced superior LLDPE film out of Dowlex 2045 Dow Chemicals resin with Octene as comonomer, which has the cold brittle point lower than -90°C and superior mechanical properties at low temperatures. A high pressure hydrogen filling system capable of delivering 2200 Cu.Ft. of hydrogen per minute has been commissioned and successfully utilised in 11 flights. With this new filling system, the inflation time is drastically reduced by over 50% thereby reducing the duration of pre-launch stresses on the ground bubble. After the acceptance of our revised design criteria for balloons to be flown from equatorial latitudes by M/s.Winzen International Inc., U.S.A., 41 flights have been made, out of which 36 have been successful giving us a success record of 88%. Out of the 5 failures, 3 have been float failures with gross inflations exceeding 1950 kg, for which launch spool damage is a suspect. To reduce the spool damage, the shell thickness of the subsequent balloon was increased to 20.32 microns from 17.78 microns and the flight was a success. For further reducing the possibility of launch spool damage, a larger diameter spool is being designed.
The Micro-Instrumentation Package: A Solution to Lightweight Ballooning
NASA Astrophysics Data System (ADS)
Juneau, Jill
This paper discusses the design and testing of an over the horizon (OTH) light weight telemetry and termination system that can be used for small ballooning payloads. Currently, the Columbia Scientific Balloon Facility (CSBF) provides telemetry for the science payload by integrating one of two types of support packages. The type of support package integrated depends on whether the flight will stay in range of line of sight (LOS) or will exceed LOS requiring the use of over the horizon (OTH) telemetry. The weights of these systems range from 100 pounds to 350 pounds depending upon the use of redundant systems, equipment for high data rates, and batteries and/or solar panels for power requirements. These weight values are not as significant for larger payloads but can be crippling for smaller payloads. In addition, these support package systems are fairly expensive, placing a high importance on recovery. A lightweight and inexpensive telemetry system could be beneficial for various reasons. First, it would allow scientists to fly lightweight payloads on large balloons reaching even higher altitudes. Second, scientists could fly lightweight payloads on less expensive balloons such as meteorological balloons. Depending on the payload, these flights could be fairly inexpensive and even disposable. Third, a compact telemetry system on any balloon will free up more room for the science portion of the payload. In response, a compact telemetry/termination system called the Micro-Instrumentation Package (MIP) was developed. The MIP provides uplink and downlink communications, an interface to the science, housekeeping information including global positioning system (GPS) position, and relays. Instead of a power-hungry microprocessor, the MIP's central consists of a microcontroller. Microcontrollers are lower power, easily programmed, and can be purchased for less than ten dollars. For uplink and downlink telemetry, the MIP uses an LOS serial transceiver and an Iridium unit for OTH flights. A relay deck is also included for powering subsystems and for flight termination. Furthermore, the science will be able to interface to the MIP through a serial connection, although the data rates for the science interface will be limited compared to those of standard telemetry support packages. Overall, the MIP provides the basic necessities for the safe operation of a balloon flight without the weight and the expense of the current CSBF telemetry support packages. This paper will explain more about CSBF operations and delve further into the MIP development, testing and capabilities.
Elemental Spectra from the First ATIC Flight
NASA Technical Reports Server (NTRS)
Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Changv, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.; Guzik, T. G.
2005-01-01
The Advanced Thin Ionization Calorimeter (ATIC) instrument is a balloon-borne experiment designed to measure the composition and energy spectra of Z = l to 26 cosmic rays over the energy range from approx. 10(exp 11) to approx. 10(exp 14) eV. The instrument consists of a silicon matrix charge detector, plastic scintillator strip hodoscopes interleaved with graphite interaction targets, and a fully active Bismuth Germanate (BGO) calorimeter. ATIC had two successful Long Duration Balloon flights launched from McMurdo Station, Antarctica in 2000 and 2002. In this paper, spectra of various elements measured during the first 16 day flight are presented.
First Images from HERO: A Hard-X-Ray Focusing Telescope
NASA Technical Reports Server (NTRS)
Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Benson, Carl M.; Dietz, Kurtis L.; Elsner, Ronald F.; Engelhaupt, Darell E.; Ghosh, Kajal K.; Kolodziejczak, Jeffery J.; ODell, Stephen L.;
2001-01-01
We are developing a balloon-borne hard-x-ray telescope that utilizes grazing incidence optics. Termed HERO, for High-Energy Replicated Optics, the instrument will provide unprecented sensitivity in the hard-x-ray region and will achieve milliCrab-level sensitivity in a typical 3-hour balloon-flight observation and 50 microCrab sensitivity on ultra-long-duration flights. A recent proof-of-concept flight, featuring a small number of mirror shells captured the first focused hard-x-ray images of galactic x-ray sources. Full details of the payload, its expected future performance and its recent measurements are provided.
Low Density Supersonic Decelerator Flight Dynamics Test-1 Flight Design and Targeting
NASA Technical Reports Server (NTRS)
Ivanov, Mark
2015-01-01
NASA's Low Density Supersonic Decelerator (LDSD) program was established to identify, develop, and eventually qualify to Test [i.e. Technology] Readiness Level (TRL) - 6 aerodynamic decelerators for eventual use on Mars. Through comprehensive Mars application studies, two distinct Supersonic Inflatable Aerodynamic Decelerator (SIAD) designs were chosen that afforded the optimum balance of benefit, cost, and development risk. In addition, a Supersonic Disk Sail (SSDS) parachute design was chosen that satisfied the same criteria. The final phase of the multi-tiered qualification process involves Earth Supersonic Flight Dynamics Tests (SFDTs) within environmental conditions similar to those that would be experienced during a Mars Entry, Descent, and Landing (EDL) mission. The first of these flight tests (i.e. SFDT-1) was completed on June 28, 2014 with two more tests scheduled for the summer of 2015 and 2016, respectively. The basic flight design for all the SFDT flights is for the SFDT test vehicle to be ferried to a float altitude of 120 kilo-feet by a 34 thousand cubic feet (Mcf) heavy lift helium balloon. Once float altitude is reached, the test vehicle is released from the balloon, spun-up for stability, and accelerated to supersonic speeds using a Star48 solid rocket motor. After burnout of the Star48 motor the vehicle decelerates to pre-flight selected test conditions for the deployment of the SIAD system. After further deceleration with the SIAD deployed, the SSDS parachute is then deployed stressing the performance of the parachute in the wake of the SIAD augmented blunt body. The test vehicle/SIAD/parachute system then descends to splashdown in the Pacific Ocean for eventual recovery. This paper will discuss the development of both the test vehicle and the trajectory sequence including design trade-offs resulting from the interaction of both engineering efforts. In addition, the SFDT-1 nominal trajectory design and associated sensitivities will be discussed as well as an overview of the on-board flight software used to trigger and sequence the main flight events necessary to deploy the deceleration technologies. Finally, as-flown performance of the SFDT-1 system will be discussed.
Intermediate eXperimental Vehicle Jettison Mechanism Engineering and Test
NASA Astrophysics Data System (ADS)
Caldirola, L.; Schmid, B.
2015-09-01
The IXV (Intermediate eXperimental Vehicle) is a project of the European Space Agency that aims to develop an autonomous atmospheric re-entry system. A flight model has been launched on a Vega rocket on the 11th of February 2015 and after descending from an altitude of 420km splashed down in the Pacific Ocean. In the frame of this project RUAG space has developed the entire cold structure and the mechanisms able to eject the panels closing the parachute and floatation balloons bays. Panels ejection allows respectively parachutes deployment, reducing the IXV re-entry speed from Mach 1.5 to few meters per second just before the splash down, and buoyancy balloons inflation which let the vehicle float on the sea surface until arrival of the recovery ship.Such panels and the relevant mechanisms had to be designed not only to guarantee the correct external aerodynamic shape needed for the flight performance, but also to provide enough stiffness and strength to the IXV structure, being capable of transfer high shear loads.Moreover the floatation doors design enclosed both the hold down and release mechanism, based on a non- explosive separation nut, and the jettison springs, therefore particular attention had to be put to prevent any damage to the panel during the release which could have potentially led to jamming of the panel itself which jeopardise the floatation balloon deployment. The chosen design was therefore based on a spherical joint, so that shear load can be withstand and bending moment on the jettison-able panels limited at the same time.Test activities have been performed at mechanism level for environmental and preliminary functional qualification, subsystem level, including dummy panel jettison and full scale IXV drop test, to complete the functional qualification and system level test to close qualification campaign.The purpose of this paper is to present the mechanism design and the activities performed to qualify at component and sub-system level the jettison mechanism of the floatation balloons doors.
Cosmic ray proton spectra at low rigidities
NASA Technical Reports Server (NTRS)
Seo, E. S.; Ormes, J. F.; Streitmatter, R. E.; Lloyd-Evans, J.; Jones, W. V.
1990-01-01
The cosmic ray proton rigidity spectra have been investigated with data collected in the Low Energy Antiproton (LEAP) balloon flight experiment flown from Prince Albert, Canada in 1987. The LEAP apparatus was designed to measure antiprotons using a superconducting magnet spectrometer with ancillary scintillator, time-of-flight, and liquid Cherenkov detectors. After reaching float altitude the balloon drifted south and west to higher geomagnetic cutoffs. The effect of the changing geomagnetic cutoff on the observed spectra was observed during analysis of the proton data along the balloon trajectory. This is the first measurement of the primary and splash albedo spectra over a wide rigidity range (few hundred MV to about 100 GV) with a single instrument.
Improvements in the Goddard balloon-borne lidar
NASA Technical Reports Server (NTRS)
Heaps, W. S.
1986-01-01
The Goddard balloon-borne lidar system for the measurement of stratospheric ozone and the hydroxyl radical has made three additional flights since the last laser radar conference. On September 27, 1984, a flight was made from Palestine, Texas obtaining a measurement of hydroxyl diurnal variation at 36 km. These data are presented on the plot which shows hydroxyl concentration as a function of GMT for the range cell closest to the instrument. Local noon corresponds to 18 hours on the plot. The rapid drop in concentration after noon is not predicted by models of stratospheric chemistry. It may represent the effects of contamination of the sample volume by hydrocarbons outgassed from the balloon. The more recent flights on June 30, 1985, and December 6, 1985, focussed on measurements of concentration in the lower stratosphere (less than 30 km). The June flight succeeded in obtaining an average concentration measurement (1.8 + or - 0.0000018 molecules/cubic cm) over the altitude range 21 to 26 km. The December flight obtained measurements down to 24 km with a better signal-to-noise ratio than that obtained in June. Prospects for further improvement in sensitivity and absolute calibration will be discussed.
Results of the 2000 JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Mueller, R. L.; Weiss, R. S.
2001-01-01
The 2000 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 27, 2000, and July 5, 2000. All objectives of the flight program were met. Sixty-two modules were carried to an altitude of approximately 120,000 ft (36.6 km). Full I-V curves were measured on sixteen of these modules, and output at a fixed load was measured on thirty-seven modules (forty-six cells), with some modules repeated on the second flight. Nine modules were flown for temperature measurement only. This data was corrected to 28 C and to 1 AU (1.496x10(exp 8) km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.
NASA Technical Reports Server (NTRS)
Fazely, A. R.; Gunasingha, R. M.; Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.
2003-01-01
We present results on the spectra and the relative abundances of C, N, and 0 nuclei in the cosmic radiation as measured from the Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) . The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon flight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate calorimeter. It is equipped with a large area mosaic of silicon detector pixels capable of charge identification from H to Fe. As a redundancy check for the charge identification and a particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the middle and below a 0.75 nuclear interaction length graphite target.
Morphological characterization of selected balloon films and its effects on balloon performances
NASA Technical Reports Server (NTRS)
Said, Magdi A.
1994-01-01
Morphological characterization of several polyethylene balloon films have been studied using various techniques. The objective is to determine, if any, differentiating structural or morphological features that can be related to the performance of these balloon film materials. The results of the study indicate that the films are composed of either linear low denstiy polyethylene (LLDPE) or low density polyethylene (LDPE). A selective examination of these data imply that films limited degree of branching and larger crystallites size (same % crystallinity) showed good mechanical properties that appear to correlate with their high level of success in balloon flights.
NASA Astrophysics Data System (ADS)
Urban, M. A.; Kroeger, T.
2014-12-01
Training in-service and pre-service K-12 science teachers to understand and structure appropriate instructional opportunities for addressing cross-cutting concepts and engineering design with students in their classrooms is critical given the emphases in the Next Generation Science Standards (NGSS). One mechanism for doing so involves utilizing high altitude ballooning as a tool for providing authentic investigation opportunities in the geosciences. As individual states review and make decisions about what role the NGSS will play in their standards, it is important for college and university science teacher preparation programs to prepare current and future teachers to become more comfortable with designing research investigations, controlling variables, anticipating cross-disciplinary connections, refining and analyzing data, and communicating the findings of real and contrived scientific investigation. Many undergraduate and professional development research possibilities exist through high altitude ballooning, including: microbiological experimentation at high altitudes, microcontroller use for context-specific data collection, near-space system development and design, balloon flight-track modeling, and more. Example projects and findings will be shared. Equally important to creating appropriate learning activities to address NGSS expectations is understanding the context-specific needs and available resources existing in K-12 science classrooms. Findings from semi-structured interviews with a focus group of pre-service and practicing teachers will be presented -- from both participants and non-participants in high altitude ballooning activities -- related to how high altitude ballooning could be (or already is) being used to meet NGSS and state science standards. The two primary outcomes of the presentation are to: 1) inform science teacher preparation programs for purposes of structuring useful and appropriate science methods activities; 2) frame the K-12 science classroom environment for consideration of the practicality of high altitude ballooning activities for meeting state and national science standards.
Results of the 1973 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Yasui, R. K.; Greenwood, R. F.
1975-01-01
High altitude balloon flights carried 37 standard solar cells for calibration above 99.5 percent of the earth's atmosphere. The cells were assembled into standard modules with appropriate resistors to load each cell at short circuit current. Each standardized module was mounted at the apex of the balloon on a sun tracker which automatically maintained normal incidence to the sun within 1.0 deg. The balloons were launched to reach a float altitude of approximately 36.6 km two hours before solar noon and remain at float altitude for two hours beyond solar noon. Telemetered calibration data on each standard solar cell was collected and recorded on magnetic tape. At the end of each float period the solar cell payload was separated from the balloon by radio command and descended via parachute to a ground recovery crew. Standard solar cells calibrated and recovered in this manner are used as primary intensity reference standards in solar simulators and in terrestrial sunlight for evaluating the performance of other solar cells and solar arrays with similar spectral response characteristics.
High Energy Antimatter Telescope (HEAT) Balloon Experiment
NASA Technical Reports Server (NTRS)
Beatty, J. J.
1995-01-01
This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.
NASA Astrophysics Data System (ADS)
Schiminovich, David
Columbia University is a Co-I institution in a collaborative research program with Caltech, the Lead Institution (PI: Christopher Martin). The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3
NASA Technical Reports Server (NTRS)
Conrad, George R.; Robbins, Edward J.
1991-01-01
The evolution of an empirical drag relationship that has stimulated rethinking regarding the physics of balloon drag phenomena is discussed. Combined parasitic drag from all sources in the balloon system are estimated to constitute less than 10 percent of the total system drag. It is shown that the difference between flight-determined drag coefficients and those based on the spherical assumption should be related to the square of the Froude number.
Balloon Borne Ultraviolet Spectrometer.
1978-12-28
n.c.aaary ond lden lfy by block numb.r) ultraviolet ground support equipment (GSE) spectrometers flight electronics instrumentation balloons \\ solar ...Assembly 4 Fig. 3 Solar Balloon Experiment Ass ’y 7 Fig. 4 Mechanical Interface , UV Spectrometer 8 Fig . 5 Spectrometer Body Assemb ly 10 Fig. 6...Diagram, GSE )bnitor 48 Selector and Battery Charger Fig. 25 Schematic Diagram, GSE Serial to 49 Parallel Data Converter Fig. 26 Schematic Diagram
Ballooning for Biologists: Mission Essentials for Flying Experiments on Large NASA Balloons
NASA Technical Reports Server (NTRS)
Smith, David J.; Sowa, Marianne
2017-01-01
Despite centuries of scientific balloon flights, only a handful of experiments have produced biologically-relevant results. Yet unlike orbital spaceflight, it is much faster and cheaper to conduct biology research with balloons, sending specimens to the near space environment of Earths stratosphere. Samples can be loaded the morning of a launch and sometimes returned to the laboratory within one day after flying. The National Aeronautics and Space Administration (NASA) flies large, unmanned scientific balloons from all over the globe, with missions ranging from hours to weeks in duration. A payload in the middle portion of the stratosphere (approx. 35 km above sea level) will be exposed to an environment similar to the surface of Mars: temperatures generally around -36 C, atmospheric pressure at a thin 1 kPa, relative humidity levels <1%, and a harsh illumination of ultraviolet (UV) and cosmic radiation levels (about 100 W/sq m and 0.1 mGy/d, respectively) that can be obtained nowhere else on the surface of the Earth, including environmental chambers and particle accelerator facilities attempting to simulate space radiation effects. Considering the operational advantages of ballooning and the fidelity of space-like stressors in the stratosphere, researchers in aerobiology, astrobiology, and space biology can benefit from balloon flight experiments as an intermediary step on the extraterrestrial continuum (ground, low Earth orbit, and deep space studies). Our presentation targets biologists with no background or experience in scientific ballooning. We will provide an overview of large balloon operations, biology topics that can be uniquely addressed in the stratosphere, and a roadmap for developing payloads to fly with NASA.
NASA Astrophysics Data System (ADS)
Potosnak, M. J.; Beck-Winchatz, B.; Ritter, P.
2016-12-01
High-altitude balloons (HABs) are an engaging platform for citizen science and formal and informal STEM education. However, the logistics of launching, chasing and recovering a payload on a 1200 g or 1500 g balloon can be daunting for many novice school groups and citizen scientists, and the cost can be prohibitive. In addition, there are many interesting scientific applications that do not require reaching the stratosphere, including measuring atmospheric pollutants in the planetary boundary layer. With a large number of citizen scientist flights, these data can be used to constrain satellite retrieval algorithms. In this poster presentation, we discuss a novel approach based on small (30 g) balloons that are cheap and easy to handle, and low-cost tracking devices (SPOT trackers for hikers) that do not require a radio license. Our scientific goal is to measure air quality in the lower troposphere. For example, particulate matter (PM) is an air pollutant that varies on small spatial scales and has sources in rural areas like biomass burning and farming practices such as tilling. Our HAB platform test flight incorporates an optical PM sensor, an integrated single board computer that records the PM sensor signal in addition to flight parameters (pressure, location and altitude), and a low-cost tracking system. Our goal is for the entire platform to cost less than $500. While the datasets generated by these flights are typically small, integrating a network of flight data from citizen scientists into a form usable for comparison to satellite data will require big data techniques.
NASA Astrophysics Data System (ADS)
Voss, P. B.; Nott, J.; Cutts, J. A.; Hall, J. L.; Beauchamp, P. M.; Limaye, S. S.; Baines, K. H.; Hole, L. R.
2013-12-01
In situ exploration of the upper atmosphere of Venus, approximately 65-77 km altitude, could answer many important questions (Limaye 2013, Crisp 2013). This region contains a time-variable UV absorber of unknown composition that controls many aspects of the heat balance on Venus. Understanding the composition and dynamics of this unknown absorber is an important science goal; in situ optical and chemical measurements are needed. However, conventional approaches do not provide access to this altitude range, repeated traverses, and a mission lifetime of several months needed to effectively carry out the science. This paper examines concepts for altitude-controlled balloons not previously flown on planetary missions that could potentially provide the desired measurements. The concepts take advantage of the fact that at 60 km altitude, for example, the atmospheric density on Venus is about 40% of the sea-level density on earth and the temperature is a moderate 230 K. The solar flux is approximately double that on earth, creating some thermal challenges, but making photovoltaic power highly effective. Using a steady-state thermodynamic model and flight data from Earth, we evaluate the suitability of two types of altitude-controlled balloons for a potential mission on Venus. Such balloons could repeatedly measure profiles, avoid diurnal temperature extremes, and navigate using wind shear. The first balloon design uses air ballast (AB) whereby ambient air can be compressed into or released from a constant-volume balloon, causing it to descend or ascend accordingly. The second design uses lift-gas compression (LGC) to change the volume of a zero-pressure balloon, thereby changing its effective density and altitude. For an altitude range of 60-75 km on Venus, we find that the superpressure volume for a LGC balloon is about 5% of that needed for an AB balloon while the maximum pressurization is the same for both systems. The compressor work per km descent of the LGC balloon is about 10% of the AB balloon, largely due to the much lower flow rate. The LGC balloon must compress some lift gas at sunrise, but this can be managed by one of several strategies. We conclude that while the weight constraints are likely to be significant, LGC altitude-controlled balloons may be feasible for accessing the 60 to 75 km altitude range on Venus. The underlying concept of balloons on Venus was proven by the Soviet Union's successful deployment of their two superpressure VEGA balloons in 1981 operating at a fixed altitude near 55 km. Superpressure balloon concepts for similar altitudes and larger payloads have since been proposed for NASA's Discovery program and ESA's Cosmic Visions program. The LGC balloon would add a zero-pressure envelope and a compressor to the established superpressure design, allowing it to ascend above the deployment altitude and realize lossless altitude control over a range of several scale heights. The thermodynamic equations, flight data, and conceptual analysis presented are intended to foster further discussion about the feasibility and potential benefits of a balloon mission to Venus.
NASA Astrophysics Data System (ADS)
Vial, F.; Hertzog, A.; Mechoso, C. R.; Basdevant, C.; Cocquerez, P.; Dubourg, V.; Nouel, F.
2001-10-01
In the late southern winter of 1998, Center National d'Études Spatiales (CNES), the French Space Agency, released six 10-m-diameter, superpressure balloons from a location near Quito, Ecuador. Three balloons collapsed soon after launching, but the remaining three drifted westward for a few weeks at altitudes between 19 and 20 km. Two of those balloons crossed the Pacific Ocean before falling above the ``maritime continent,'' while the other completed a revolution around the Earth and crossed the Pacific for a second time before its final fall. Despite the small number and the relatively short duration of the flights, the balloons provided a unique in situ data set for the lower equatorial stratosphere. This part 1 of a two-part paper describes this data set and analyzes outstanding features in the planetary scales. Part 2 focuses on gravity-wave scale. It is argued that balloon trajectories over the Pacific are primarily determined by the westward drift during the easterly phase of the equatorial quasi-biennial oscillation (QBO) and the meridional velocity field of a mixed Rossby-gravity (Yanai) wave with an apparent period of 4 days and zonal wave number 4. This wave appears to have two episodes of amplification during the balloon flights. It is also argued that the balloons show evidence of oscillations with periods between 2 and 4 days and of a Kelvin wave with an apparent period close to 10 days and zonal wave number 1. In this way, the balloon behavior provided a pictorial view of air parcel trajectory in the equatorial lower stratosphere. It is stated that larger balloon campaigns can provide excellent in situ data sets for studies on the dynamics and composition of the middle atmosphere.
Code of Federal Regulations, 2014 CFR
2014-01-01
...; aircraft engines; propellers. 21.21 Section 21.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION...; manned free balloons; special classes of aircraft; aircraft engines; propellers. An applicant is entitled... category, or for a manned free balloon, special class of aircraft, or an aircraft engine or propeller, if...
Code of Federal Regulations, 2013 CFR
2013-01-01
...; aircraft engines; propellers. 21.21 Section 21.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION...; manned free balloons; special classes of aircraft; aircraft engines; propellers. An applicant is entitled... category, or for a manned free balloon, special class of aircraft, or an aircraft engine or propeller, if...
Code of Federal Regulations, 2012 CFR
2012-01-01
...; aircraft engines; propellers. 21.21 Section 21.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION...; manned free balloons; special classes of aircraft; aircraft engines; propellers. An applicant is entitled... category, or for a manned free balloon, special class of aircraft, or an aircraft engine or propeller, if...
NASA Astrophysics Data System (ADS)
Renard, Jean-Baptiste; Dulac, François; Vignelles, Damien; Jeannot, Matthieu; Verdier, Nicolas; Chazette, Patrick; Crenn, Vincent; Sciare, Jean; Totems, Julien; Durand, Pierre; Barret, Brice; Jambert, Corinne; Mallet, Marc; Menut, Laurent; Mailler, Sylvain; Basart, Sara; Baldasano, José Maria
2015-04-01
LOAC (Light Optical Aerosol Counter) is a new small optical particle counter/sizer of ~250 grams designed to fly under all kinds of balloons. The measurements are conducted at two scattering angles (12° and 60°), allowing the determination of the aerosol particle concentrations in 19 size classes within a diameter range of ~0.2-100 µm and some identification of the nature of particles dominating different size classes. Following laboratory calibration, the sensor particularly discriminates wet or liquid particles, mineral dust, soot carbon particles and salts. Comparisons with other in situ sensors at the surface and with remote sensing measurements on the vertical were performed to give confidence in measurements. The instrument has been operated at the surface, under all kinds of balloons up to more than 35 km in altitude, including tethered, sounding, open stratospheric and new boundary-layer pressurized drifting balloons (BLPB) from CNES, and was tested on board a small UAV. Operations encompass a variety of environments including the Arctic (Reykjavik, Island, and Kiruna, Sweden), Brazil (Sao Paolo), the western Mediterranean Basin, southwestern France, peri-urban (Ile de France) and urban areas (Paris and Vienna). Presented results are focused on the LOAC balloon-borne measurements performed in the western Mediterranean basin during MISTRALS/ChArMEx campaigns (Mediterranean Integrated Studies aT Regional And Local Scales/the Chemistry-Aerosol Mediterranean Experiment; http://www.mistrals-hjome.org; http://charmex.lsce.ipsl.fr), with a focus on African dust events. Two test flights with a first version of LOAC under sounding balloons were first successfully performed in late June 2012 near Marseille during an intense dust event. In 2013, 19 LOAC flights have been performed under meteorological balloons and 12 under low altitude drifting balloons, most of them from Minorca Island (Spain) in June and early July and others from Levant Island (south of France) in late July and early August . A number of the 2013 flights were coupled with ozone concentration measurements (see presentation of Gheusi et al. in the same session). LOAC balloons were especially, but not only, dedicated to study the various Saharan dust events that occurred during the campaign. In particular, a series of flights were conducted every 12 hours during the 15-19 June dust event. Forest fire smoke from North America was also sampled in late June over Minorca, as well as anthropogenic polluted layers in various occasions. LOAC data (available from ChArMEx database http://mistrals.sedoo.fr/ChArMEx) are interpreted with the help of coincident lidar, sun photometer remote sensing measurements available in Menorca, and satellite products and air mass trajectories. The sounding flights allow us to determine the vertical extent of the various aerosol layers, and to follow the particle size distribution and the concentration evolution along the vertical. The low altitude drifting balloons, which stayed roughly at constant altitude between 350 and 3330 m up to more than 25 h, allow us to study the time-evolution of the aerosol concentrations in the same air mass. Under both balloon types, LOAC has detected larges particles up to ~30 µm in diameter. The flights drifting within dust layers indicate that there is a relatively stable particle size distribution during transport over the sea, with no clear sedimentation loss of large particles. Aerosol simulations with the CHIMERE and NMMB/§BSC chemistry-transport models are compared to LOAC measurements. Acknowledgements: LOAC was developed with support of the French ANR. Balloon operations were performed by CNES and special acknowledgements are addressed to Gilles Dupouy, Françoise Douchin and collaborators for field operations. Alexis Doerenbacher from Météo-France and Claude Basdevant from Ecole Polytechnique are also acknowledged for their helpful contribution in providing balloon-related forecasts, quicklooks and data (http://www.lmd.polytechnique.fr/BAMED/index.html). The LOAC balloon campaigns were mainly funded by CNES, ADEME and CNRS/INSU, with support from CEA and Météo-France.
NASA Astrophysics Data System (ADS)
Hansford, Graeme M.; Freshwater, Ray A.; Eden, Louise; Turnbull, Katharine F. V.; Hadaway, David E.; Ostanin, Victor P.; Jones, Roderic L.
2006-01-01
The design of a very lightweight dew-/frost-point hygrometer for balloon-borne atmospheric water vapor profiling is described. The instrument is based on a surface-acoustic-wave sensor. The low instrument weight is a key feature, allowing flights on meteorological balloons which brings many more flight opportunities. The hygrometer shows consistently good performance in the troposphere and while water vapor measurements near the tropopause and in the stratosphere are possible with the current instrument, the long-time response in these regions hampers realistic measurements. The excellent intrinsic sensitivity of the surface-acoustic-wave sensor should permit considerable improvement in the hygrometer performance in the very dry regions of the atmosphere.
Results of the 1990 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, Bruce E.; Weiss, Robert S.
1990-01-01
The 1990 solar cell calibration balloon flight consisted of two flights, one on July 20, 1990 and the other on September 6, 1990. A malfunction occurred during the first flight, which resulted in a complete loss of data and a free fall of the payload from 120,000 ft. After the tracker was rebuilt, and several solar cell modules were replaced, the payload was reflown. The September flight was successful and met all the objectives of the program. Forty-six modules were carried to an altitude of 118,000 ft (36.0 km). Data telemetered from the modules was corrected to 28 C and to 1 a.u. The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.
14 CFR 31.23 - Flight load factor.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight load factor. 31.23 Section 31.23... STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.23 Flight load factor. In determining limit load, the limit flight load factor must be at least 1.4. ...
14 CFR 31.23 - Flight load factor.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight load factor. 31.23 Section 31.23... STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.23 Flight load factor. In determining limit load, the limit flight load factor must be at least 1.4. ...
14 CFR 31.23 - Flight load factor.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight load factor. 31.23 Section 31.23... STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.23 Flight load factor. In determining limit load, the limit flight load factor must be at least 1.4. ...
Flight Instructor Practical Test Standards for Lighter-Than-Air: Balloon, Airship
DOT National Transportation Integrated Search
1995-03-01
The Flight Instructor - Lighter-Than-Air Practical Test Standards (PTS) : book has been published by the Federal Aviation Administration (FAA) to : establish the standards for flight instructor certification practical tests for : the lighter-than-air...
NASA Astrophysics Data System (ADS)
Dulac, François; Renard, Jean-Baptiste
LOAC (Light Optical Aerosol Counter) is a new small optical particle counter/sizer of 250 grams designed to fly under all kinds of balloons. The measurements are conducted at two scattering angles: the first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.2-100 mm; the second angle, at 60°, is used to discriminate between different types of particles dominating different size classes. The sensor particularly discriminates wet or liquid particles, mineral dust, soot carbon particles and salts. Comparisons with measurements from other sensors at the surface are shown. We shall give a quick review of balloon-borne experiences since 2011 with LOAC under all kinds of balloons including tethered, sounding, open stratospheric, and new boundary-layer pressurized drifting balloons (BLBP) from CNES. Observation domains include the atmospheric surface layer, the boundary layer, the free troposphere and the lower stratosphere up to more than 35 km in altitude. Operations encompass a variety of environments including the Arctic (Reykjavik, Island, and Kiruna, Sweden), Brazil (Sao Paolo), the western Mediterranean Basin, southwestern France, peri-urban (Ile de France) and urban areas (Paris and Vienna). Results from the various campaigns will be illustrated including the study of fog events, urban aerosols, Saharan dust transport over France, stratospheric soot... Emphasis will be put on the ChArMEx campaign (the Chemistry-Aerosol Mediterranean Experiment) performed in summer 2013 in the Mediterranean basin: 19 LOAC flights have been performed under meteorological balloons and 12 under low altitude drifting balloons, most of them from Minorca Island (Spain) in June and early July and others from Levant Island (south of France) in late July and early August. Most of the flights were coupled with ozone concentration measurements (see presentation by F. Gheusi et al.). LOAC balloons were especially, but not only, dedicated to study the various Saharan dust events that occurred during the campaign. In particular, a series of flights were conducted every 12 hours during the 15-19 June dust event. Forest fire smoke from North America was also sampled in late June over Minorca, as well as anthropogenic polluted layers in various occasions. LOAC data are used to identify the various turbid layers with the help of coincident lidar and sun photometer remote sensing measurements in Menorca and air mass trajectories. The sounding flights allow one to determine the vertical extent of the various aerosol layers, and to follow the particle size distribution and the concentration evolution along the vertical. The low altitude drifting balloons, which stayed roughly at constant altitude between 350 and 3330 m up to more than 25 h, allow us to study the time-evolution of the aerosol concentrations in the same air mass. Under both balloon types, LOAC has detected larges particles up to 30 mum in diameter. The flights drifting within dust layers indicate that there is a relatively stable particle size distribution during transport over the sea, with no clear sedimentation loss of large particles.
Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)
NASA Technical Reports Server (NTRS)
Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.
1984-01-01
Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.
Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System (Vps)
NASA Technical Reports Server (NTRS)
Marz, Bryan E.; Ash, Robert L.
1996-01-01
This document provides a summary of the launch and post-launch activities of Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System, V(ps). It is a comprehensive overview covering launch activities, post-launch activities, experimental results, and future flight recommendations.
Performance of a day time star sensor for a stabilized balloon platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, E.; DiCocco, G.; Donati, A.
1989-02-01
A modified version of a CCD star tracker originally designed for use on the ROSAT X ray astronomy satellite, has been built for use on a three axis stabilized balloon platform. The first flight of this star sensor was planned for may 1988 from the NASA Balloon base at Palestine, Texas. The expected performance of this instrument is described along with the preflight results.
Status of the NASA Balloon Program
NASA Astrophysics Data System (ADS)
Needleman, H. C.; Nock, R. S.; Bawcom, D. W.
1993-02-01
In the early 1980's the U.S. National Aeronautics and Space Administration (NASA) Balloon Program was faced with a problem of catastrophic balloon failures. In 1986 a balloon recovery program was initiated. This program included qualification of new balloon films, and investigations into materials, processing, structures and performance of balloons. This recovery program has been very successful. To date, more than 100 balloons manufactured of newly developed films have been flown with unprecedented success. There has been much progress made across the spectrum of balloon related disciplines. A new design philosophy has been developed and is being used for all NASA balloons. An updated balloon reliability and quality assurance program is in effect. The long duration balloon development project has been initiated with the first flight test having been conducted in December 1989 from Antarctica. A comprehensive research and development (R&D) effort has been initiated and is progressing well. The progress, status and future plans for these and other aspects of the NASA program, along with a description of the comprehensive balloon R&D activity, will be presented.
NASA Astrophysics Data System (ADS)
Landry, B. J.; Blair, D.; Causey, J.; Collins, J.; Davis, A.; Fernandez-Kim, V.; Kennedy, J.; Pate, N.; Kearney, C.; Schayer, C.; Turk, E.; Cherry, M. L.; Fava, C.; Granger, D.; Stewart, M.; Guzik, T. G.
2017-12-01
High energy gamma ray flashes from terrestrial sources have been observed by satellites for decades, but the actual mechanism, assumed to be thunderstorm lightning, has yet to be fully characterized. The goal of COTEL, funded by NASA through the University Student Instrument Project (USIP) program, is to correlate in time TGF events, lightning strikes, and electric fields inside of thunderstorms. This will be accomplished using a small network of balloon-borne payloads suspended in and around thunderstorm environments. The payloads will detect and timestamp gamma radiation bursts, lightning strikes, and the intensity of localized electric fields. While in flight, data collected by the payloads will be transmitted to a ground station in real-time and will be analyzed post-flight to investigate potential correlations between lightning, TGFs, and electric fields. The COTEL student team is in its second year of effort having spent the first year developing the basic balloon payloads and ground tracking system. Currently the team is focusing on prototype electric field and gamma radiation detectors. Testing and development of these systems will continue into 2018, and flight operations will take place during the spring 2018 Louisiana thunderstorm season. The presentation, led by undergraduate Physics student Brad Landry, will cover the student team effort in developing the COTEL system, an overview of the system architecture, balloon flight tests conducted to date, preliminary results from prototype detectors, lessons learned for student-led science projects, and future plans.
Microorganisms in the Stratosphere (MIST): In-flight Sterilization with UVC Leds
NASA Technical Reports Server (NTRS)
Wong, Gregory Michael; Smith, David J.
2014-01-01
The stratosphere (10 km to 50 km above sea level) is a unique place on Earth for astrobiological studies of microbes in extreme environments due to the combination of harsh conditions (high ultraviolet radiation, low pressure, desiccation, and low temperatures). Microorganisms in the Stratosphere (MIST) will attempt to characterize the diversity of microbes at these altitudes using a balloon collection device on a meteorological weather balloon. A major challenge of such an aerobiology study is the potential for ground contamination that makes it difficult to distinguish between collected microbes and contaminants. One solution is to use germicidal ultraviolet light emitting diodes (UV LEDs) to sterilize the collection strip. To use this solution, an optimal spatial arrangement of the lights had to be determined to ensure the greatest chance of complete sterilization within the 30 to 60 minute time of balloon ascent. A novel, 3D-printed test stand was developed to experimentally determine viable Bacillus pumilus SAFR-032 spore reduction after exposure to ultraviolet radiation at various times, angles, and distances. Taken together, the experimental simulations suggested that the UV LEDs on the MIST flight hardware should be active for at least 15 minutes and mounted within 4 cm of the illuminated surface at any angle to achieve optimal sterilization. These findings will aid in the production of the balloon collection device to ensure pristine stratospheric microbial samples are collected. Flight hardware capable of in-flight self-sterilization will enable future life detection missions to minimize both forward contamination and false positives.
14 CFR 31.17 - Performance: Climb.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Performance: Climb. 31.17 Section 31.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.17 Performance: Climb. (a) Each balloon must be...
14 CFR 31.17 - Performance: Climb.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Performance: Climb. 31.17 Section 31.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.17 Performance: Climb. (a) Each balloon must be...
14 CFR 31.17 - Performance: Climb.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Performance: Climb. 31.17 Section 31.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.17 Performance: Climb. (a) Each balloon must be...
14 CFR 31.17 - Performance: Climb.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Performance: Climb. 31.17 Section 31.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.17 Performance: Climb. (a) Each balloon must be...
Telescopes in Near Space: Balloon Exoplanet Nulling Interferometer (BigBENI)
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Mauk, Robin
2012-01-01
A significant and often overlooked path to advancing both science and technology for direct imaging and spectroscopic characterization of exosolar planets is to fly "near space" missions, i.e. balloon borne exosolar missions. A near space balloon mission with two or more telescopes, coherently combined, is capable of achieving a subset of the mission science goals of a single large space telescope at a small fraction of the cost. Additionally such an approach advances technologies toward flight readiness for space flight. Herein we discuss the feasibility of flying two 1.2 meter telescopes, with a baseline separation of 3.6 meters, operating in visible light, on a composite boom structure coupled to a modified visible nulling coronagraph operating to achieve an inner working angle of 60 milli-arcseconds. We discuss the potential science return, atmospheric residuals at 135,000 feet, pointing control and visible nulling and evaluate the state-or-art of these technologies with regards to balloon missions.
Ignition of Hydrogen Balloons by Model-Rocket-Engine Igniters.
ERIC Educational Resources Information Center
Hartman, Nicholas T.
2003-01-01
Describes an alternative method for exploding hydrogen balloons as a classroom demonstration. Uses the method of igniting the balloons via an electronic match. Includes necessary materials to conduct the demonstration and discusses potential hazards. (SOE)
NASA Astrophysics Data System (ADS)
Eack, K. B.; Winn, W. P.; Rust, W. D.; Minschwaner, K.; Fredrickson, S.; Kennedy, D.; Edens, H. E.; Kalnajs, L. E.; Rabin, R. M.; Lu, G. P.; Bonin, D.
2008-12-01
A field project was conducted at the Langmuir Laboratory for Atmospheric Research during the summer of 2008 in an effort to better understand the direct production of ozone within electrically active storms. Five balloon flights were successfully launched into thunderstorms during this project. In situ measurements from the balloon instrument package included ozone mixing ratio, electric field strength, meteorological variables, and GPS location and timing. Lightning discharges were identified within each storm using a ground based lightning mapping array. The data show that the instruments ascended through regions of high electric fields within the sampled storms, and in some cases the balloon was in very close proximity to lightning. Relationships between electric field, lightning, and ozone observed during these flights will be discussed.
HERO: Program Status and Fist Images from a Balloon-Borne Focusing Hard-X-ray Telescope
NASA Technical Reports Server (NTRS)
Ramsey, B. D.; Alexander, C. D.; Apple, J. A.; Benson, C. M.; Dietz, K. L.; Elsner, R. F.; Engelhaupt. D. E.; Ghosh, K. K.; Kolodziejczak, J. J.; ODell, S. L.;
2001-01-01
HERO is a balloon payload featuring shallow-graze angle replicated optics for hard-x-ray imaging. When completed, the instrument will offer unprecedented sensitivity in the hard-x-ray region, giving thousands of sources to choose from for detailed study on long flights. A recent proof-of-concept flight captured the first hard-x-ray focused images of the Crab Nebula, Cygnus X-1 and GRS 1915+105. Full details of the HERO program are presented, including the design and performance of the optics, the detectors and the gondola. Results from the recent proving flight are discussed together with expected future performance when the full science payload is completed.
Thermal performance modeling of NASA s scientific balloons
NASA Astrophysics Data System (ADS)
Franco, H.; Cathey, H.
The flight performance of a scientific balloon is highly dependant on the interaction between the balloon and its environment. The balloon is a thermal vehicle. Modeling a scientific balloon's thermal performance has proven to be a difficult analytical task. Most previous thermal models have attempted these analyses by using either a bulk thermal model approach, or by simplified representations of the balloon. These approaches to date have provided reasonable, but not very accurate results. Improvements have been made in recent years using thermal analysis tools developed for the thermal modeling of spacecraft and other sophisticated heat transfer problems. These tools, which now allow for accurate modeling of highly transmissive materials, have been applied to the thermal analysis of NASA's scientific balloons. A research effort has been started that utilizes the "Thermal Desktop" addition to AUTO CAD. This paper will discuss the development of thermal models for both conventional and Ultra Long Duration super-pressure balloons. This research effort has focused on incremental analysis stages of development to assess the accuracy of the tool and the required model resolution to produce usable data. The first stage balloon thermal analyses started with simple spherical balloon models with a limited number of nodes, and expanded the number of nodes to determine required model resolution. These models were then modified to include additional details such as load tapes. The second stage analyses looked at natural shaped Zero Pressure balloons. Load tapes were then added to these shapes, again with the goal of determining the required modeling accuracy by varying the number of gores. The third stage, following the same steps as the Zero Pressure balloon efforts, was directed at modeling super-pressure pumpkin shaped balloons. The results were then used to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. The development of the radiative environment and program input files, the development of the modeling techniques for balloons, and the development of appropriate data output handling techniques for both the raw data and data plots will be discussed. A general guideline to match predicted balloon performance with known flight data will also be presented. One long-term goal of this effort is to develop simplified approaches and techniques to include results in performance codes being developed.
Results of the 2001 JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Mueller, R. L.
2002-01-01
The 2001 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 26, 2001, and July 4, 2001. Fifty-nine modules were carried to an altitude of approximately 120,000 ft (36.6 km). Full I-V curves were measured on nineteen of these modules, and output at a fixed load was measured on thirty-two modules (forty-six cells), with some modules repeated on the second flight. Nine modules were flown for temperature measurement only. The data from the fixed load cells on the first flight was not usable. The temperature dependence of the first-flight data was erratic and we were unable to find a way to extract accurate calibration values. The I-V data from the first flight was good, however, and all data from the second flight was also good. The data was corrected to 28 C and to 1 AU (1.496 x 10(exp 8)km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.
NASA Astrophysics Data System (ADS)
Dulac, F.; Renard, J. B.; Durand, P.; Denjean, C.; Bourgeois, Q.; Vignelles, D.; Jeannot, M.; Mallet, M.; Verdier, N.
2017-12-01
This study focuses on in situ balloon-borne measurements of mineral dust from summer regional field campaigns in the western Mediterranean basin performed in the framework of ChArMEx (the Chemistry and Aerosol Mediterranean Experiment; see special issue https://www.atmos-chem-phys.net/special_issue334.html). Due to long-range transport from Africa, the lower troposphere over this regional sea is subject to high levels of desert dust with a maximum during the long dry and sunny Mediterranean summer season. Based on developments of boundary-layer pressurized balloons (BLPBs) and of a dedicated optical particle counter named LOAC (Light Optical Aerosol Counter/sizer), we were able to perform original quasi-Lagrangian monitoring of desert dust aerosols over the sea. The strategy combined classical sounding balloons and drifting BLPBs to document both the vertical distribution and long-range transport. A total of 27 LOAC flights were successfully conducted from Minorca Isl. (Spain) or Levant Isl. (France), during 4 Saharan dust transport events, including 10 flights with BLPBs at drifting altitudes between 2.0 and 3.3 km above sea level. The longest flight exceeded 700 km and lasted more than 25 h. Numerous tests and validations of LOAC measurements were performed to qualify the instrument, including comparisons with concurrent airborne measurements, sounding balloons, and remote sensing measurements with an AERONET sun-photometer, and a ground-based and the CALIOP lidar systems. Aerosol optical depths in the balloon vicinity did not exceed about 0.4 but the presence of turbid dust layers was confirmed thanks to dual scattering angle measurements by LOAC allowing the identification of dust particles. LOAC data could generally be fitted by a 3-mode lognormal distribution at roughly 0.2, 4 and 30 µm in modal diameter. Up to about 10-4 dust particles larger than 40 µm per cm3 are reported and no significant evolution of the size distribution was observed during the flights. The presence of such a coarse mode several days after dust emission is unexpected due to gravitational sedimentation. An indirect evidence of the presence of charged particles has been derived from the LOAC measurements and we speculate that electrical forces might counteract gravitational settling of the coarse particles.
Solar research with stratospheric balloons
NASA Astrophysics Data System (ADS)
Vázquez, Manuel; Wittmann, Axel D.
Balloons, driven by hot air or some gas lighter than air, were the first artificial machines able to lift payloads (including humans) from the ground. After some pioneering flights the study of the physical properties of the terrestrial atmosphere constituted the first scientific target. A bit later astronomers realized that the turbulence of the atmospheric layers above their ground-based telescopes deteriorated the image quality, and that balloons were an appropriate means to overcome, total or partially, this problem. Some of the most highly-resolved photographs and spectrograms of the sun during the 20th century were actually obtained by balloon-borne telescopes from the stratosphere. Some more recent projects of solar balloon astronomy will also be described.
Results of the 1981 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Seaman, C. H.; Weiss, R. S.
1982-01-01
The calibration of the direct conversion of solar energy through use of solar cells at high altitudes by balloon flight is reported. Twenty seven modules were carried to an altitude of 35.4 kilometers. Silicon cells are stable for long periods of time and can be used as standards. It is demonstrated that the cell mounting cavity may be either black or white with equal validity in setting solar simulators. The calibrated cells can be used as reference standards in simulator testing of cells and arrays.
Carbon dioxide measurements in the stratosphere
NASA Technical Reports Server (NTRS)
Mauersberger, K.; Finstad, R.
1980-01-01
A mass spectrometer experiment for the analysis of minor constituents in the stratosphere has been flown successfully four times from Palestine, Texas on board a balloon gondola. The carbon dioxide mixing ratio, which shows unexpectedly large variations in the stratosphere, reached 400 ppm in one particular night flight. This is about 20% higher than the ground value. Evidence is presented that the experiment performed well during each of the balloon flights. The isotopic ratio C-12/C-13 was measured and found in good agreement with previous air analyses showing a depletion of C-13.
Ballooning in the constant sun of the South Pole summer
2017-12-08
Researchers communicate with the BARREL ground station during preparations for launch. The white box in the background is the science payload and the orange and white parachute can be seen on the ground in front of it. On the left is BARREL Principal Investigator Robyn Millan of Dartmouth College in Hanover, N.H.; on the right is BARREL Co-Investigator Michael McCarthy of the University of Washington in Seattle. Credit: NASA/Goddard/BARREL/M. Krzysztofowicz Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Traub, Wesley A.; Chance, Kelly V.; Johnson, David G.; Jucks, Kenneth W.; Salawitch, Ross J.; Xue, Jim Changqin; Ciarpallini, Paola
1995-01-01
This report covers the time period 1 January 1994 to 31 December 1994. During this reporting period we had our fourth Upper Atmosphere Research Satellite (UARS) correlative balloon flight; the data from this flight have been reduced and submitted to the UARS CDHF. We have spent most of the past year analyzing data from this and past flights. For example, using data from our September 1989 balloon flight we have demonstrated for the first time ever that the rates of production and loss of ozone are in balance in the upper stratosphere. As part of this analysis, we have completed the most detailed study to date of radical partitioning throughout the stratosphere. We have also produced the first measurement of HBr and HOBr mixing ratio profiles over a full diurnal cycle.
Flight. Science Series Grades 4, 5, 6.
ERIC Educational Resources Information Center
Frensch, Helen
The activities in this book are designed to reinforce the elementary concepts of flight. General background information, suggested activities, questions for discussion, and answers are provided. Twenty-eight reproducible worksheets are contained in this guide. Topics include: hot air balloons, the physics of flight, air resistance, airplane…
Two Phase Technology Development Initiatives
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
1999-01-01
Three promising thermal technology development initiatives, vapor compression thermal control system, electronics cooling, and electrohydrodynamics applications are outlined herein. These technologies will provide thermal engineers with additional tools to meet the thermal challenges presented by increased power densities and reduced architectural options that will be available in future spacecraft. Goddard Space Flight Center and the University of Maryland are fabricating and testing a 'proto- flight' vapor compression based thermal control system for the Ultra Long Duration Balloon (ULDB) Program. The vapor compression system will be capable of transporting approximately 400 W of heat while providing a temperature lift of 60C. The system is constructed of 'commercial off-the-shelf' hardware that is modified to meet the unique environmental requirements of the ULDB. A demonstration flight is planned for 1999 or early 2000. Goddard Space Flight Center has embarked upon a multi-discipline effort to address a number of design issues regarding spacecraft electronics. The program addressed the high priority design issues concerning the total mass of standard spacecraft electronics enclosures and the impact of design changes on thermal performance. This presentation reviews the pertinent results of the Lightweight Electronics Enclosure Program. Electronics cooling is a growing challenge to thermal engineers due to increasing power densities and spacecraft architecture. The space-flight qualification program and preliminary results of thermal performance tests of copper-water heat pipes are presented. Electrohydrodynamics (EHD) is an emerging technology that uses the secondary forces that result from the application of an electric field to a flowing fluid to enhance heat transfer and manage fluid flow. A brief review of current EHD capabilities regarding heat transfer enhancement of commercial heat exchangers and capillary pumped loops is presented. Goddard Space Flight Center research efforts applying this technique to fluid management and fluid pumping are discussed.
Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment
NASA Technical Reports Server (NTRS)
Wefel, John P.; Guzik, T. Gregory
2001-01-01
During grant NAG5-5064, Louisiana State University (LSU) led the ATIC team in the development, construction, testing, accelerator validation, pre-deployment integration and flight operations of the Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment. This involved interfacing among the ATIC collaborators (UMD, NRL/MSFC, SU, MSU, WI, SNU) to develop a new balloon payload based upon a fully active calorimeter, a carbon target, a scintillator strip hodoscope and a pixilated silicon solid state detector for a detailed investigation of the very high energy cosmic rays to energies beyond 10(exp 14) eV/nucleus. It is in this very high energy region that theory predicts changes in composition and energy spectra related to the Supernova Remnant Acceleration model for cosmic rays below the "knee" in the all-particle spectrum. This report provides a documentation list, details the anticipated ATIC science return, describes the particle detection principles on which the experiment is based, summarizes the simulation results for the system, describes the validation work at the CERN SPS accelerator and details the balloon flight configuration. The ATIC experiment had a very successful LDB flight from McMurdo, Antarctica in 12/00 - 1/01. The instrument performed well for the entire 15 days. Preliminary data analysis shows acceptable charge resolution and an all-particle power law energy deposition distribution not inconsistent with previous measurements. Detailed analysis is underway and will result in new data on the cosmic ray charge and energy spectra in the GeV - TeV energy range. ATIC is currently being refurbished in anticipation of another LDB flight in the 2002-03 period.
High-Altitude Air Mass Zero Calibration of Solar Cells
NASA Technical Reports Server (NTRS)
Woodyard, James R.; Snyder, David B.
2005-01-01
Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.
Development of EXITE3, Imaging Detectors and a Long Duration Balloon Gondola
NASA Technical Reports Server (NTRS)
2003-01-01
In this Report we summarize the work conducted for the EXITE program under grant NAG5-5103. This grant supported the ongoing EXITE program at Harvard for the development of imaging hard x-ray detectors and telescopes over the 3 year period 1997-2000 with a one year extension to 2001 to transition to the next SR&T grant in this program. Work was conducted in three major parts: analysis of the EXITE2 balloon flight data (from our May 1997 flight); development of pixellated imaging Cd-Zn-Te detector arrays and readout systems for the proposed EXITE3 detector and telescope; and development of systems for a Long Duration Balloon (LDB) gondola. Progress on all three major aspects of this research is summarized for each of the years of this grant.
NASA Astrophysics Data System (ADS)
Siguier, J.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.
Long duration super-pressure balloons are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin,...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding the flight level and the life-span of the balloon. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. On the one hand, we define the mechanical laws of envelope materials, that is the elasticity, plasticity and viscosity properties of polymers, and find the parameters of the law with unidirectional tests. These laws are introduced in a finite element code which predict the stress and strain state of a complex envelope structure. On the other hand, we are developing an experimental set-up to measure the 3D strain of a balloon sub-system, that is including the envelope, assemblies and apex parts, with realistic flight conditions. This facility, called NIRVANA, is a 1m3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. We can submit a 1,5m diameter sample to differential pressure, regulate the temperature from +20°C to -120°C and apply a load to tendons of up to 6 tons if required. This paper presents the first results of the modelizations and m asurements of ane envelope sample submitted to axisymetrical stress due to the differential pressure. This sample consists of a 50μm multi-layer polymer film with an assembly, used in 10m diameter STRATEOLE super-pressure balloons. The modelization gives results which largely agree with the experiment and enable us to continue with cold conditions and more complex structures.
TT and C - First TDRSS, Then Commercial GEO and Big LEO and Now through LEO
NASA Technical Reports Server (NTRS)
Morgan, Dwayne; Bull, Barton; Grant, Charles; Streich, Ronald; Powers, Edward I. (Technical Monitor)
2001-01-01
The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce Telemetry Tracking and Control (TT&C) costs of launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating ground infrastructure. Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia have successfully used commercial GEO & Big LEO communications satellites for Long Duration Balloon flight TT&C. In addition, TDRSS capability for these balloons has been developed by WFF for the Ultra Long Duration Balloons with the first test flight launch in January 2001 for one global circumnavigation at 120,000 feet altitude launched from Alice Springs. Australia. Numerous other low cost applications can new utilize the commercial LEO satellites for TT&C. The Flight Modern became a GSFC/WFF Advanced Range Technology Initiative (ARTI) in an effort to streamline TT&C capability to the user community at low cost. Phase I ground tests of The Flight Modem verified downlink communications quality of service and measured transmission latencies. These tests were completed last year, Phase II consisting of aircraft flight tests provide much of the data presented in this paper. Phase III of the Flight Modern baseline test program is a demonstration of the ruggedized version of the WFF Flight Modem flown on one sounding rocket launched from Sweden. Flights of opportunity have been and are being actively pursued with other centers, ranges and users at universities. The WFF goal is to reduce TT&C costs by providing a low cost COTS Flight Modem with a User Handbook containing system capability and limitation descriptions. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initialed from practically any location with no infrastructure. The WFF, like most ranges, has been using GPS receivers on sounding rockets and long duration balloons for several years, The WFF Flight Modem contains a GPS receiver to provide vehicle position for tracking and vehicle recovery. The system architecture which integrates antennas, GPS receiver, commercial satellite packet data modem. and a single board computer with custom software is described and a number of technical challenges are discussed along with the plan for their resolution. These include antenna development, high Doppler rates, reliability, environmental ruggedness, hand over between satellites and data security. An aggressive test plan is included which in addition to environmental Testing measures bit error rate latency and antenna patterns. Additional flight tests are planned far the near future on aircraft, long duration balloons and sounding rockets and these results as well as the current status of the project arc reported. Use of the WFF Flight Modem on small satellites is also being pursued. The LEO satellite constellation altitude above 1400 km is not an obstacle because most spacecraft do not require continuous Communications. The challenge is scheduling where store and forward techniques for command are required and downlink when the communications link allows connection (above 60 percent of the time depending on the satellite altitude). Sophisticated scheduling techniques utilizing 2-line orbital element sets available on the NASA/NORAD Internet site could be implemented for rare special cases. The current 9600 baud rate of the LEO communications link may be increased With special techniques that are planned for development in the WFF Flight Modem project.
NASA Astrophysics Data System (ADS)
Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; Ryan, J. M.; McConnell, M. L.
2016-03-01
We present the results of the first high-altitude balloon flight test of a concept for an advanced Compton telescope making use of modern scintillator materials with silicon photomultiplier (SiPM) readouts. There is a need in the fields of high-energy astronomy and solar physics for new medium-energy gamma-ray ( 0.4-10 MeV) detectors capable of making sensitive observations of both line and continuum sources over a wide dynamic range. A fast scintillator-based Compton telescope with SiPM readouts is a promising solution to this instrumentation challenge, since the fast response of the scintillators permits both the rejection of background via time-of-flight (ToF) discrimination and the ability to operate at high count rates. The Solar Compton Telescope (SolCompT) prototype presented here was designed to demonstrate stable performance of this technology under balloon-flight conditions. The SolCompT instrument was a simple two-element Compton telescope, consisting of an approximately one-inch cylindrical stilbene crystal for a scattering detector and a one-inch cubic LaBr3:Ce crystal for a calorimeter detector. Both scintillator detectors were read out by 2×2 arrays of Hamamatsu S11828-3344 MPPC devices. Custom front-end electronics provided optimum signal rise time and linearity, and custom power supplies automatically adjusted the SiPM bias voltage to compensate for temperature-induced gain variations. A tagged calibration source, consisting of 240 nCi of 60Co embedded in plastic scintillator, was placed in the field of view and provided a known source of gamma rays to measure in flight. The SolCompT balloon payload was launched on 24 August 2014 from Fort Sumner, NM, and spent 3.75 h at a float altitude of 123,000 ft. The instrument performed well throughout the flight. After correcting for small ( 10%) residual gain variations, we measured an in-flight ToF resolution of 760 ps (FWHM). Advanced scintillators with SiPM readouts continue to show great promise for future gamma-ray instruments.
Catalytic Generation of Lift Gases for Balloons
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Berggren, Mark
2011-01-01
A lift-gas cracker (LGC) is an apparatus that generates a low-molecular-weight gas (mostly hydrogen with smaller amounts of carbon monoxide and/or carbon dioxide) at low gauge pressure by methanol reforming. LGCs are undergoing development for use as sources of buoyant gases for filling zero-gauge-pressure meteorological and scientific balloons in remote locations where heavy, high-pressure helium cylinders are not readily available. LGCs could also be used aboard large, zero-gauge-pressure, stratospheric research balloons to extend the duration of flight.
Alien crop circle? No, that’s just NASA’s newest balloon launch pad
2017-12-08
Aviators, skydivers and other altitude-seeking enthusiasts flying out of Wanaka Airport, New Zealand, are double taking at a new topographical feature reminiscent of an alien crop circle. Rest assured, the nearly 2,000-foot (600-meter) diameter circle with a pie-shaped wedge on one side and spokes on the other is no extraterrestrial footprint and it’s definitely no hoax. It’s NASA’s newest launch pad for launching the agency’s most advanced high-altitude, heavy-lift scientific balloon: the super pressure balloon. The four spokes emanating from the center and toward the west, each nearly 1,000 feet (300 meters) long, align with magnetic compass directions at 240, 260, 290 and 320 degrees. On launch day, balloon flight experts from NASA’s Columbia Scientific Balloon Facility will assess meteorological data and determine if the conditions are suitable to support a launch opportunity. The new pad is the first major project in developing a long-term super pressure balloon launch site in Wanaka. Earlier in 2017, NASA signed a 10-year lease with the Queenstown Airport Corporation to conduct balloon operations from a newly acquired piece of land adjacent to the Wanaka Airport. Credit: NASA/Dave Webb NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Low Cost Balloon programme of Indian Centre for Space Physics
NASA Astrophysics Data System (ADS)
Chakrabarti, Sandip Kumar
2016-07-01
Indian Centre for Space Physics has launched 89 Missions to near space using single or multiple weather balloons or very light plastic balloons. Basic goal was to capitalize miniaturization of equipments in modern ages. Our typical payload of less than 4kg weight consists of GPS, video camera, cosmic ray detectors, Attitude measurement unit, sunsensor and most importantly a 50-100sqcm X-ray/Gamma-ray detector (usually a scintillator type). The main purpose of the latter is to study spectra of secondary cosmic ray spectra (till our ceiling altitude of 36-42km) over the years and their seasonal variation or variation with solar cycle. We also study solar X-ray spectra, especially of solar flares. We have detected a Gamma Ray Burst (GRB) and pulsars. Our observation of black hole candidates did not yield satisfactory result yet mainly because of poor collimation (~ 10 deg x 10 deg) by lead collimator which introduces strong background also. Our effort with multiple balloon flights enabled us to have long duration flights. We believe that our procedure is very futuristic and yet at an affordable cost.
NASA Technical Reports Server (NTRS)
Traub, Wesley A.; Chance, Kelly V.; Johnson, David G.; Jucks, Kenneth W.; Wofsy, Steven C.
1993-01-01
This report covers the time period 1 January 1993 to 30 June 1993. During this reporting period we had our third Upper Atmosphere Research Satellite (UARS) correlative balloon flight and submitted the results from this flight to the Central Data Handling Facility (CDHF). We made a number of improvements in our data processing software in preparation for a new analysis of our old balloon data sets. Finally, we continue to analyze the data obtained during the second Airborne Arctic Stratospheric Expedition (AASE 2).
Initial results from the Caltech/DSRI balloon-borne isotope experiment
NASA Technical Reports Server (NTRS)
Schindler, S. M.; Buffington, A.; Christian, E. C.; Grove, J. E.; Lau, K. H.; Stone, E. C.; Rasmussen, I. L.; Laursen, S.
1985-01-01
The Caltech/DSRI balloon-borne High Energy Isotope Spectrometer Telescope (HEIST) was flown successfully from Palestine, Texas on 14 May 1984. The experiment was designed to measure cosmic ray isotopic abundances from neon through iron, with incident particle energies from approximately 1.5 to 2.2 GeV/nucleon, depending on the element. During approximately 38 hours at float altitude, 10 to the 5th events were recorded with Z or = 6 and incident energies 1.5 GeV/nucleon. We present results from the ongoing data analysis associated with both the pre-flight Bevalac calibration and the flight data.
The Scintillating Optical Fiber Calorimeter Instrument Performance (SOFCAL)
NASA Technical Reports Server (NTRS)
Christl, M. J.; Benson, C. M.; Berry, F. A.; Fountain, W. F.; Gregory, J. C.; Johnson, J. S.; Munroe, R. B.; Parnell, T. A.; Takahashi, Y.; Watts, J. W.
1999-01-01
SOFCAL is a balloon-borne instrument designed to measure the P-He cosmic ray spectra from about 200 GeV/amu - 20 TeV/amu. SOFCAL uses a thin lead and scintillating-fiber ionization calorimeter to measure the cascades produced by cosmic rays interacting in the hybrid detector system. Above the fiber calorimeter is an emulsion chamber that provides the interaction target, primary particle identification and in-flight energy calibration for the scintillating fiber data. The energy measurement technique and its calibration are described, and the present results from the analysis of a 1 day balloon flight will be presented.
Near Space Environments: Tethering Systems
NASA Technical Reports Server (NTRS)
Lucht, Nolan R.
2013-01-01
Near Space Environments, the Rocket University (Rocket U) program dealing with high altitude balloons carrying payloads into the upper earth atmosphere is the field of my project. The tethering from balloon to payload is the specific system I am responsible for. The tethering system includes, the lines that tie the payload to the balloon, as well as, lines that connect payloads together, if they are needed, as well as how to sever the tether to release payloads from the balloon. My objective is to design a tethering system that will carry a payload to any desired altitude and then sever by command at any given point during flight.
A practical concept for powered or tethered weight-lifting LTA vehicles
NASA Technical Reports Server (NTRS)
Balleyguier, M. A.
1975-01-01
A concept for a multi-hull weightlifting airship is presented. The concept is based upon experience in the design and handling of gas-filled balloons for commercial purposes, it was first tested in April, 1972. In the flight test, two barrage balloons were joined side-by-side, with an intermediate frame, and launched in captive flight. The success of this flight test led to plans for a development program calling for a powered, piloted prototype, a follow-on 40 ton model, and a 400 ton transport model. All of these airships utilize a tetrehedric three-line tethering method for loading and unloading phases of flight, which bypasses many of the difficulties inherent in the handling of a conventional airship near the ground. Both initial and operating costs per ton of lift capability are significantly less for the subject design than for either helicopters or airships of conventional mono-hull design.
NASA Astrophysics Data System (ADS)
Sakai, H.
1985-09-01
The SCRIBE experiments were conducted for the purpose of observing the atmospheric infrared emission by using a cryogenic interferometer spectrometer mounted on a balloon-borne platform. The data collected during the flight by the spectrometer were transmitted through the radio telemetry link and were received at the ground station of Holloman AFB where these flights were monitored. They were recorded on analog 1/2 in magnetic tapes running at 60 ips. By playing back these tapes, the telemetry signal transmitted from the balloon-borne package was reporduced at our site for processing efforts to retrieve the interferogram data out of the played-back telemetry signal, and to recover the spectral data corresponding to radiation emitted by the atmosphere were the main objective of this work. In addition to the Holloman tapes, a mobile telemetry signal-receiving unit of AFGL was used to record the flight data on similar analog tapes for the Jul-05-1984 flight launched from Roswell, New Mexico.
SuperHERO: the next generation hard x-ray HEROES telescope
NASA Astrophysics Data System (ADS)
Gaskin, Jessica A.; Christe, Steven D.; Elsner, Ronald F.; Kilaru, Kiranmayee; Ramsey, Brian D.; Seller, Paul; Shih, Albert Y.; Stuchlik, David W.; Swartz, Douglas A.; Tennant, Allyn F.; Weddendorf, Bruce; Wilson, Matthew D.; Wilson-Hodge, Colleen A.
2014-07-01
SuperHERO is a new high-resolution, Long Duration Balloon-capable, hard-x-ray (20-75 keV) focusing telescope for making novel astrophysics and heliophysics observations. The SuperHERO payload, currently in its proposal phase, is being developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center and the Solar Physics Laboratory and the Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently flew from Fort Sumner, NM in September of 2013, and will utilize many of the same features. Significant enhancements to the HEROES payload will be made, including the addition of optics, novel solid-state multi-pixel CdTe detectors, integration of the Wallops Arc-Second Pointer and a significantly lighter gondola suitable for Long Duration Flights.
The ATIC Experiment: First Balloon Flight
NASA Technical Reports Server (NTRS)
Wefel, J. P.; Adams, J. H.; Ahn, H.; Ampe, J.; Bashindzhagyan, G.; Case, G.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had its maiden test flight from McMurdo, Antarctica 28/12/00 to 13/01/01, local time, recording over 360 hours of data. ATIC was designed to measure the composition and energy spectra of cosmic rays from approx. 10 GeV to near 100 TeV utilizing a Si matrix detector to determine charge in conjunction with a scintillator hodoscope which measures charge and trajectory. Cosmic rays that interact in a carbon target have their energy determined from the shower that develops within a fully active calorimeter composed of a stack of scintillating BGO (Bismuth Germanate) crystals. ATIC's geometry factor is about 0.25 sq. m -sr. During line-of-sight operations much of the datastream was transmitted to the ground. For most of the flight, the data was recorded on-board, yielding 45 GB of flight data for analysis. The payload construction, operations and in-flight performance are described, along with preliminary results from the on-going analysis.
The ATIC Experiment: First Balloon Flight
NASA Technical Reports Server (NTRS)
Wefel, J. P.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had its maiden, test, flight from McMurdo, Antarctica 28/12/00 to 13/01/01, local time, recording over 360 hours of data. ATIC was designed to measure the composition and energy spectra of cosmic rays from approximately 10 GeV to near 100 TeV utilizing a Si-matrix detector to determine charge in conjunction with a scintillator hodoscope which measures charge and trajectory. Cosmic rays that interact in a Carbon target have their energy determined from the shower that develops within a fully active calorimeter composed of a stack of scintillating BGO crystals. ATIC's geometry factor is about 0.25 m**2-sr. During line-of-sight operations much of the datastream was transmitted to the ground. For most of the flight, the data was recorded on-board, yielding 45 GB of flight data for analysis. The payload construction, operations and in-flight performance are described, along with preliminary results from the on-going analysis.
Infrasound as a Geophysical Probe Using Earth as a Venus Analog
NASA Astrophysics Data System (ADS)
Komjathy, Attila; Cutts, James; Pauken, Michael; Kedar, Sharon; Smrekar, Suzanne
2016-10-01
JPL is in a process of developing an instrument to measure seismic activity on Venus by detecting infrasonic waves in the atmosphere. The overall objective of this research is to demonstrate the feasibility of using sensitive barometers to detect infrasonic signals from seismic and explosive activity on Venus from a balloon platform. Because of Venus' dense atmosphere, seismic signatures from even small quakes (magnitude ~3) are effectively coupled into the atmosphere. The seismic signals are known to couple about 60 times more efficiently into the atmosphere on Venus than on Earth. It was found that almost no attenuation below 80 km on Venus for frequency less than 1Hz. Whereas wind noise is a major source of background noise for terrestrial infrasonic arrays, it is expected that a balloon platform, which drifts with winds will be capable of very sensitive measurements with low noise.In our research we will demonstrate and apply techniques for discriminating upward propagating waves from a seismic event by making measurements with two or more infrasonic sensors using very sensitive barometers on a tether deployed from the balloon in a series of earth-based tests. We will first demonstrate and validate the technique using an artificial infrasound source in a deployment from a hot air balloon on Earth and then extend it with longer duration flights in the troposphere and stratosphere.We will report results on the first flight experiment that will focus on using the barometer instruments on a tethered helium-filled balloon. The balloon flight will be conducted in the vicinity of a known seismic source generated by a seismic hammer. Earlier tests conducted by Sandia National Laboratory demonstrated that this is a highly reproducible source of seismic and acoustic energy using infrasound sensors. The results of the experiments are intended to validate the two-barometer signal processing approach using a well-characterized point signal source.
Infrasound as a Geophysical Probe Using Earth as a Venus Analog
NASA Astrophysics Data System (ADS)
Komjathy, A.; Cutts, J. A.; Pauken, M.; Kedar, S.; Smrekar, S. E.; Hall, J. R.
2016-12-01
JPL is in a process of developing an instrument to measure seismic activity on Venus by detecting infrasonic waves in the atmosphere. The overall objective of this research is to demonstrate the feasibility of using sensitive barometers to detect infrasonic signals from seismic and explosive activity on Venus from a balloon platform. Because of Venus' dense atmosphere, seismic signatures from even small quakes (magnitude 3) are effectively coupled into the atmosphere. The seismic signals are known to couple about 60 times more efficiently into the atmosphere on Venus than on Earth. It was found that almost no attenuation below 80 km on Venus for frequency less than 1Hz. Whereas wind noise is a major source of background noise for terrestrial infrasonic arrays, it is expected that a balloon platform, which drifts with winds will be capable of very sensitive measurements with low noise. In our research we will demonstrate and apply techniques for discriminating upward propagating waves from a seismic event by making measurements with two or more infrasonic sensors using very sensitive barometers on a tether deployed from the balloon in a series of earth-based tests. We will first demonstrate and validate the technique using an artificial infrasound source in a deployment from a hot air balloon on Earth and then extend it with longer duration flights in the troposphere and stratosphere. We will report results on the first flight experiment that will focus on using the barometer instruments on a tethered helium-filled balloon. The balloon flight will be conducted in the vicinity of a known seismic source generated by a seismic hammer. Earlier tests conducted by Sandia National Laboratory demonstrated that this is a highly reproducible source of seismic and acoustic energy using infrasound sensors. The results of the experiments are intended to validate the two-barometer signal processing approach using a well-characterized point signal source.
Cubesat Application for Planetary Entry (CAPE) Missions: Micro-Return Capsule (MIRCA)
NASA Technical Reports Server (NTRS)
Esper, Jaime
2016-01-01
The Cubesat Application for Planetary Entry Missions (CAPE) concept describes a high-performing Cubesat system which includes a propulsion module and miniaturized technologies capable of surviving atmospheric entry heating, while reliably transmitting scientific and engineering data. The Micro Return Capsule (MIRCA) is CAPE's first planetary entry probe flight prototype. Within this context, this paper briefly describes CAPE's configuration and typical operational scenario, and summarizes ongoing work on the design and basic aerodynamic characteristics of the prototype MIRCA vehicle. CAPE not only opens the door to new planetary mission capabilities, it also offers relatively low-cost opportunities especially suitable to university participation. In broad terms, CAPE consists of two main functional components: the "service module" (SM), and "CAPE's entry probe" (CEP). The SM contains the subsystems necessary to support vehicle targeting (propulsion, ACS, computer, power) and the communications capability to relay data from the CEP probe to an orbiting "mother-ship". The CEP itself carries the scientific instrumentation capable of measuring atmospheric properties (such as density, temperature, composition), and embedded engineering sensors for Entry, Descent, and Landing (EDL). The first flight of MIRCA was successfully completed on 10 October 2015 as a "piggy-back" payload onboard a NASA stratospheric balloon launched from Ft. Sumner, NM.
Data Retrieved by ARCADE-R2 Experiment On Board the BEXUS-17 Balloon
NASA Astrophysics Data System (ADS)
Barbetta, M.; Branz, F.; Carron, A.; Olivieri, L.; Prendin, J.; Sansone, F.; Savioli, L.; Spinello, F.; Francesconi, A.
2015-09-01
The Autonomous Rendezvous, Control And Docking Experiment — Reflight 2 (ARCADE-R2) is a technology demonstrator aiming to prove automatic attitude determination and control, rendezvous and docking capabilities for small scale spacecraft and aircraft. The development of such capabilities could be fundamental to create, in the near future, fleets of cooperative, autonomous unmanned aerial vehicles for mapping, surveillance, inspection and remote observation of hazardous environments; small-class satellites could also benefit from the employment of docking systems to extend and reconfigure their mission profiles. ARCADE-R2 is designed to test these technologies on a stratospheric flight on board the BEXUS-17 balloon, allowing to demonstrate them in a harsh environment subjected to gusty winds and high pressure and temperature variations. In this paper, ARCADE-R2 architecture is introduced and the main results obtained from a stratospheric balloon flight are presented.
Utilization of sounding rockets and balloons in the German Space Programme
NASA Astrophysics Data System (ADS)
Preu, Peter; Friker, Achim; Frings, Wolfgang; Püttmann, Norbert
2005-08-01
Sounding rockets and balloons are important tools of Germany's Space Programme. DLR manages these activities and promotes scientific experiments and validation programmes within (1) Space Science, (2) Earth Observation, (3) Microgravity Research and (4) Re-entry Technologies (SHEFEX). In Space Science the present focus is at atmospheric research. Concerning Earth Observation balloon-borne measurements play a key role in the validation of atmospheric satellite sounders (ENVISAT). TEXUS and MAXUS sounding rockets are successfully used for short duration microgravity experiments. The Sharp Edge Flight Experiment SHEFEX will deliver data from a hypersonic flight for the validation of a new Thermal Protection System (TPS), wind tunnel testing and numerical analysis of aerothermodynamics. Signing the Revised Esrange and Andøya Special Project (EASP) Agreement 2006-2010 in June 2004 Germany has made an essential contribution to the long-term availability of the Scandinavian ranges for the European science community.
High Altitude Infrasound Measurements using Balloon-Borne Arrays
NASA Astrophysics Data System (ADS)
Bowman, D. C.; Johnson, C. S.; Gupta, R. A.; Anderson, J.; Lees, J. M.; Drob, D. P.; Phillips, D.
2015-12-01
For the last fifty years, almost all infrasound sensors have been located on the Earth's surface. A few experiments consisting of microphones on poles and tethered aerostats comprise the remainder. Such surface and near-surface arrays likely do not capture the full diversity of acoustic signals in the atmosphere. Here, we describe results from a balloon mounted infrasound array that reached altitudes of up to 38 km (the middle stratosphere). The balloon drifted at the ambient wind speed, resulting in a near total reduction in wind noise. Signals consistent with tropospheric turbulence were detected. A spectral peak in the ocean microbarom range (0.12 - 0.35 Hz) was present on balloon-mounted sensors but not on static infrasound stations near the flight path. A strong 18 Hz signal, possibly related to building ventilation systems, was observed in the stratosphere. A wide variety of other narrow band acoustic signals of uncertain provenance were present throughout the flight, but were absent in simultaneous recordings from nearby ground stations. Similar phenomena were present in spectrograms from the last balloon infrasound campaign in the 1960s. Our results suggest that the infrasonic wave field in the stratosphere is very different from that which is readily detectable on surface stations. This has implications for modeling acoustic energy transfer between the lower and upper atmosphere as well as the detection of novel acoustic signals that never reach the ground. Our work provides valuable constraints on a proposed mission to detect earthquakes on Venus using balloon-borne infrasound sensors.
A balloon-borne prototype for demonstrating the concept of JEM-EUSO
NASA Astrophysics Data System (ADS)
von Ballmoos, P.; Santangelo, A.; Adams, J. H.; Barrillon, P.; Bayer, J.; Bertaina, M.; Cafagna, F.; Casolino, M.; Dagoret, S.; Danto, P.; Distratis, G.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Evrard, J.; Gorodetzky, Ph.; Haungs, A.; Jung, A.; Kawasaki, Y.; Medina-Tanco, G.; Mot, B.; Osteria, G.; Parizot, E.; Park, I. H.; Picozza, P.; Prévôt, G.; Prieto, H.; Ricci, M.; Rodríguez Frías, M. D.; Roudil, G.; Scotti, V.; Szabelski, J.; Takizawa, Y.; Tusno, K.
2014-05-01
EUSO-BALLOON has been conceived as a pathfinder for JEM-EUSO, a mission concept for a space-borne wide-field telescope monitoring the Earth's nighttime atmosphere with the objective of recording the ultraviolet light from tracks initiated by ultra-high energy cosmic rays. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-BALLOON will serve as a test-bench for the key technologies of JEM-EUSO. EUSO-BALLOON shall perform an end-to-end test of all subsystems and components, and prove the global detection chain while improving our knowledge of the atmospheric and terrestrial ultraviolet background. The balloon-instrument also has the potential to detect for the first time UV-light generated by atmospheric air-shower from above, marking a milestone in the development of UHECR science, and paving the way for any future large scale, space-based ultra-high energy cosmic ray observatory.
The Silicon Matrix as a Charge Detector in the ATIC Experiment
NASA Technical Reports Server (NTRS)
Zatsepin, V. I.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.
2004-01-01
The Advanced Thin Ionization Calorimeter (ATIC) was built for series of long- duration balloon flights in Antarctica. Its main goal is to measure energy spectra of cosmic ray nuclei from protons up to iron nuclei over a wide energy range from 30 GeV up to 100 TeV. The ATIC balloon experiment had its first, test flight that lasted for 16 days from 28 Dec 2000 to 13 Jan 2OO1 around the continent. The ATIC spectrometer consists of a fully active BGO calorimeter, scintillator hodoscopes and a silicon matrix. The silicon matrix, consisting of 4480 pixels, was used as a charge detector in the experiment. About 25 million cosmic ray events were detected during the flight. In the paper, the charge spectrum obtained with the silicon matrix is analyzed.
Rigidity Spectra of Protons and Helium as Measured in the First Flight of the ATIC Experiment
NASA Technical Reports Server (NTRS)
Zatsepin, V. I.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.
2003-01-01
ATIC (Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure cosmic ray composition for elements from hydrogen to iron and their energy spectra from 30 GeV to near 100 TeV. It is comprised of a fully active BGO calorimeter, a carbon interaction target, scintillator hodoscopes, and a silicon matrix that is used as a charge detector in the experiment. ATIC had two successful balloon flights in Antarctica: from 28 Dec 2000 to 13 Jan 2001 (ATIC-1) and from 29 Dec 2002 to 18 Jan 2003 (ATIC-2). Preliminary rigidity spectra of protons and helium nuclei and their ratio are presented for the test flight (ATIC-1). Particular attention is given to problems associated with measuring energy.
Controlled weather balloon ascents and descents for atmospheric research and climate monitoring
Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F.; Hall, Emrys G.; Jordan, Allen F.
2017-01-01
In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth’s surface to about 35 km (3–5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent. PMID:29263765
Controlled weather balloon ascents and descents for atmospheric research and climate monitoring.
Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F; Hall, Emrys G; Jordan, Allen F
2016-01-01
In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.
Intercomparisons of radiosondes and an airborne refractometer for measuring radio ducts
NASA Astrophysics Data System (ADS)
Morrissey, J. F.; Izumi, Y.; Cote, O. R.
1986-07-01
The capabilities of two types of radiosondes and an aircraft refractometer to measure radio ducting conditions were compared in a series of flights in September 1985 at Chatham, Mass., on Cape Cod. The tests were part of a program studying radio propagation on Air Force communication links. The intercomparisons were made between data from a refractometer mounted on a small single engine aircraft (Cessna 172) and data from an operational National Weather Service synoptic sounding system. The synoptic sonde and the portable sonde were often on the same balloon train. The comparisons show that the aircraft refractometer data indicate the highest number of ducts and the synoptic data the least number of ducts.
NASA's BARREL Mission in Sweden
2017-12-08
The fourth BARREL balloon of this campaign sits on the launch pad shortly before it launched on Aug. 21, 2016. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA's BARREL Mission in Sweden
2017-12-08
The third BARREL balloon floats towards the stratosphere on Aug. 21, 2016. This payload flew for nearly 30 hours, measuring X-rays in Earth’s atmosphere. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA's BARREL Mission in Sweden
2017-12-08
A BARREL balloon inflates on the launch pad at Esrange Space Center on Aug. 29, 2016. Throughout August 2016, the BARREL team was at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carried instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/Dartmouth/Alexa Halford NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA's BARREL Mission in Sweden
2017-12-08
The first BARREL balloon is inflated just before its launch on Aug. 13, 2016, from Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/University of Houston/Edgar Bering NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA's BARREL Mission in Sweden
2017-12-08
The BARREL team inflates the balloon to launch their fifth scientific payload from Esrange Space Center near Kiruna, Sweden, on Aug. 24, 2016. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Siguier, J.-M.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.
2004-01-01
Long duration super-pressure balloons constitute a great challenge in scientific ballooning. For any type of balloons (spherical, pumpkin, …), it is necessary to have a good knowledge of the mechanical behavior of envelopes regarding the level and the lifetime of the flight. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. This study was conducted in two parts. During the first one, we defined, with parameters obtained from unidirectional tests, the mechanical laws (elasticity, plasticity and viscosity properties of polymers) of materials involved in the envelope. These laws are introduced in a finite element code, which predicts the stress and strain status of a complex envelope structure. During the second one, we developed an experimental set-up to measure the 3D strain on a balloon subsystem, which includes envelope, assemblies and apex parts, in real flight conditions. This facility, called NIRVANA, is a 1 m 3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. A 1.5 m diameter sample can be tested under differential pressure, regulated temperature (from +20 to -120 °C) and a load (up to 6 tonnes) applied on tendons. This paper presents the first results obtained from the modelizations and measurements done on an envelope sample submitted to axisymmetrical stress due to the differential pressure. This sample consists of a 50 μm multilayer polymer film with an assembly, used in 10 m diameter STRATEOLE super-pressure balloons. The modelization gives results in good accordance with the experiments and will enable us to follow this work with cold conditions, time dependence (creeping) and more complex structures.
Tethered balloon-based measurements of meteorological variables and aerosols
NASA Technical Reports Server (NTRS)
Sentell, R. J.; Storey, R. W.; Chang, J. J. C.; Jacobsen, S. J.
1976-01-01
Tethered balloon based measurements of the vertical distributions of temperature, humidity, wind speed, and aerosol concentrations were taken over a 4-hour period beginning at sunrise on June 29, 1976, at Wallops Island, Virginia. Twelve consecutive profiles of each variable were obtained from ground to about 500 meters. These measurements were in conjuction with a noise propagation study on remotely arrayed acoustic range (ROMAAR) at Wallops Flight Center. An organized listing of these vertical soundings is presented. The tethered balloon system configuration utilized for these measurements is described.
Polymer blends for LDB applications. [Long Duration Ballooning
NASA Technical Reports Server (NTRS)
Lichkus, Andrew M.; Harrison, Ian R.
1991-01-01
A series of LCP/PE blends have been studied to determine the potential of such systems to produce a high modulus balloon film material which retains the balloon fabrication and low temperature flight advantages of the current PE films. Blown films of blends of 5 and 15 percent LCP in PE have been produced which show a 28 percent enhancement in modulus over the neat PE matrix. These results are substantially lower than anticipated and are explained in terms of the LCP reinforcement aspect ratio and fibril diameter.
NASA Technical Reports Server (NTRS)
Goldman, A.
1981-01-01
Work on the spectral line parameters of hydroxyl radical band was completed. The UV-visible data obtained during 1977 balloon flights were used for zone quantification. The region between from 3100 A to 3500 A appears to be the best region to use for determining ozone columns with the three wavelength method. Ozone volume mixing ratios determined for the 1977 data were compared with standard middle latitude ozone profiles. Numerous high and low Sun scans were obtained during ascent and from float altitude (1981 balloon flight) at 0.003 A resolution in the 3068 A to 3089 A region. The spectra are being studied for OH identification and quantification.
Layering in halocarbons, methane, nitrous oxide, ozone, and water vapour over mid-latitudes
NASA Technical Reports Server (NTRS)
Orsolini, Yvan J.; Karcher, Fernand; Manney, Gloria L.; Engel, Andreas; Ovarlez, Joelle; Claud, Chantal
1997-01-01
The purpose of the balloon flights performed in March 1993 from Aire-sur-Adour (France) was to measure trace gases in the polar vortex during a dynamically active period. These balloon flights revealed coincident layering in long-lived tropospheric source gases. A layer of mid-latitude air, enriched in trace gases, was detected at sampled levels near 15 mbar. High resolution advection models, fine scale distributions of ozone, nitrous oxide, methane, and halocarbons were constructed. The calculations showed how air enriched in trace gases is sampled near 15 mbar when a filament of such air is drawn into the outer portion of the vortex.
Balloons on Ice: Launch # 2 takes flight in Antarctica
2017-12-08
The second of three missions as part of NASA’s Antarctica Long Duration Balloon Flight Campaign was successfully launched at 8:10 a.m. EDT, Dec. 2. The Antarctic Impulsive Transient Antenna (ANITA) from the University of Hawaii at Manoa was launched from Antarctica’s Ross Ice Shelf near McMurdo Station with support from the National Science Foundation’s United States Antarctic Program. Scientists will use ANITA’s instruments to study the reactions in the core of stars and as they explode via the release of neutrinos that travel to Earth and interact with the Antarctica ice. More: go.nasa.gov/2ghR6Le
Observations of narrow microburst trains in the geomagnetic storm of August 4-6, 1972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.R.
1973-04-01
In the intense geomagnetic disturbances of early August 1972, auroral zone microburst trains were observed at balloon altitude and found to be significantly narrower in burst width and spacing than microbursts found previously at the same site. These observations suggest that the spacing of microburst peaks, as well as their width, is related to variations in the power spectrum of a magnetospheric acceleration process rather than the bounce motions of electrons in the geomagnetic field or the modulation of electron precipitation by drift waves in magnetospheric plasma. In the geomagnetic activity that followed the solar flares in early August 1972,more » intense fluxes of auroral x rays were encountered during balloon flights launched from College, Alaska. Although much of the time variations of the x-ray fluxes observed during these flights represented known features of electron precipitation at auroral latitudes, one new and distinct feature was evident. In particular, it was found that the widths and spacings of auroral zone microbursts (Anderson and Milton, 1964) on this occasion were significantly smaller than those observed previously on many balloon flights from the same site. Thus, instead of microburst trains with widths at half-intensity points of ~0.2 sec and spacings of ~0.6 sec, the majority of the microbursts encountered on two flights from College had widths of ~0.1 sec and spacings of ~0.4 sec. (auth)« less
An automatic parachute release for high altitude scientific balloons
NASA Astrophysics Data System (ADS)
Field, Chris
NASA's Columbia Scientific Balloon Facility launches high altitude scientific research balloons at many locations around the world. Locations like Antarctica are flat for hundreds of miles and have nothing to snag a parachute consequently causing it to be more important to separate the parachute from the payload than in an area with vegetation and fences. Scientists are now building one of a kind payloads costing millions of dollars, taking five years or more to build, and are requesting multiple flights. In addition to that, the data gathering rate of many science payloads far exceeds the data downlink rate on over-the-horizon flights therefore making a recovery of at least the data hard drives a "minimum success requirement". The older mentality in ballooning; separating the parachute and payload from the balloon and getting it on the ground is more important than separating the parachute after the payload is on the ground has changed. It is now equally as important to separate the parachute from the gondola to prevent damage from dragging. Until now, commands had to be sent to separate the parachute from the gondola at approximately 60K ft, 30K ft, and 10K ft to use the Semi Automatic Parachute Release (SAPR), which is after the sometimes violent parachute opening shock. By using the Gondola controlled Automatic Parachute Release (GAPR) all commanding is done prior to termination, making the parachute release fully autonomous.
NASA Technical Reports Server (NTRS)
Blanford, G. E., Jr.; Friedlander, M. W.; Hoppe, M.; Klarmann, J.; Walker, R. M.; Wefel, J. P.
1974-01-01
Large areas of nuclear emulsions and plastic detectors were exposed to the primary cosmic radiation during high-altitude balloon flights. From an analysis of 141 particle tracks recorded during a total exposure of 13,000,000 sq m-ster-sec, a charge spectrum of the VVH particles has been derived.
First ozone profiles measured with electrochemical and chemiluminescent sondes, developed in Russia
NASA Technical Reports Server (NTRS)
Zuyaguintsev, Anatoly M.; Perov, Stanislav P.; Ryabov, Youry A.
1994-01-01
Results obtained with experimental balloon electrochemical and chemiluminescent ozonesondes are summarized and estimated as quite satisfactory. The average normalization factor for the electrochemical ozonesonde obtained in 1991 at four Soviet balloon routine network stations is 1.069+.073 (in 17 flights). Some ozone profiles obtained in summer 1991 at Volgograd are discussed together with corresponding meteorological data.
Integrating BalloonSAT and Atmospheric Dynamic Concepts into the Secondary Classroom
NASA Astrophysics Data System (ADS)
Fong, B. N.; Kennon, J. T.; Roberts, E.
2016-05-01
Arkansas BalloonSAT is an educational outreach and scientific research program that is part of Arkansas State University in Jonesboro, AR. The following is a unit of instruction to incorporate BalloonSAT measurements into secondary science classes. Students interpret graphs and identify several atmospheric trends and properties of a typical balloon flight. Students engage critical thinking skills in developing and answering their own questions relevant to the BalloonSAT program. Prerequisite concepts students should know are how to interpret graphs and unit conversions. Students should have a basic understanding of gravity, units of temperature and distance, and error in measurements. The unit is designed for one week after end-of-course exams and before the end of school. The unit may take two to five 50-minute periods, depending on how many activities are completed.
Atic Experiment: Flight Data Processing
NASA Technical Reports Server (NTRS)
Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.; Guzik, T. G.
2003-01-01
The Advanced Thin Ionization Calorimeter (ATIC) is a balloon borne experiment to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range approx. 30 GeV - 100 TeV. The instrument consists of a fully active 320-crystal Bismuth Germanate (BGO) calorimeter, 202 scintillator strips in 3 hodoscopes interleaved with a graphite target, and a 4480-pixel silicon matrix charge detector. ATIC has had two successful Long Duration Balloon flights from McMurdo, Antarctica: from 12/28/00 to 01/13/01 and from 12/29/02 to 01/18/03. We have developed the ATIC Data Processing System (ADPs), which is an Object Oriented data processing program based on ROOT. In this paper, we describe the processing scheme used in handling the flight data, especially the calibration method and the event reconstruction algorithm.
Experience of Application of Silicon Matrix as a Charge Detector in the ATIC Experiment
NASA Technical Reports Server (NTRS)
Zatsepin, V. I.; Adams, J. H.; Christl, M. J.
2003-01-01
The Advanced Thin Ionization Calorimeter (ATIC) was built for series of long-duration balloon flights in Antarctica. Its main goal is to measure energy spectra of cosmic ray nuclei from protons up to iron nuclei in the wide range of their energy from 30 GeV up to 100 TeV. The ATIC balloon experiment had its first, test flight that lasted for 16 days from 28 Dec 2000 to 13 Jan 2001 around the South Pole. The ATIC spectrometer consists of a fully active BGO calorimeter, scintillator hodoscopes and a silicon matrix. The silicon matrix consisted of 4480 pixels was used as a charge detector in the experiment. About 25 million cosmic ray events were detected during the flight. In the paper, the charge spectrum obtained with the silicon matrix is analyzed.
GPS-aided gravimetry at 30 km altitude from a balloon-borne platform
NASA Technical Reports Server (NTRS)
Lazarewicz, Andrew R.; Evans, Alan G.
1989-01-01
A balloon-borne experiment, flown at 30 km altitude over New Mexico, was used to test dynamic differential Global Positioning System (GPS) tracking in support of gravimetry at high-altitudes. The experiment package contained a gravimeter (Vibrating String Accelerometer), a full complement of inertial instruments, a TI-4100 GPS receiver and a radar transponder. The flight was supported by two GPS receivers on the ground near the flight path. From the 8 hour flight, about a forty minute period was selected for analysis. Differential GPS phase measurements were used to estimate changes in position over the sample time interval, or average velocity. In addition to average velocity, differential positions and numerical averages of acceleration were obtained in three components. Gravitational acceleration was estimated by correcting for accelerations due to translational motion, ignoring all rotational effects.
The Viking parachute qualification test technique.
NASA Technical Reports Server (NTRS)
Raper, J. L.; Lundstrom, R. R.; Michel, F. C.
1973-01-01
The parachute system for NASA's Viking '75 Mars lander was flight qualified in four high-altitude flight tests at the White Sands Missile range (WSMR). A balloon system lifted a full-scale simulated Viking spacecraft to an altitude where a varying number of rocket motors were used to propel the high drag, lifting test vehicle to test conditions which would simulate the range of entry conditions expected at Mars. A ground-commanded cold gas pointing system located on the balloon system provided powered vehicle azimuth control to insure that the flight trajectory remained within the WSMR boundaries. A unique ground-based computer-radar system was employed to monitor inflight performance of the powered vehicle and insure that command ignition of the parachute mortar occurred at the required test conditions of Mach number and dynamic pressure. Performance data were obtained from cameras, telemetry, and radar.
NASA Astrophysics Data System (ADS)
Young, Eliot
THAI-SPICE is the Testbed for High-Acuity Imaging - Stable Photometry and ImageMotion Compensation Experiment - It is a lead proposal, accompanied by a coInstitutional proposal from MIT LL. The overarching goal of THAI-SPICE is to advance balloonborne telescopes to the point where they can surpass HST in terms of spatial resolution in visible wavelengths and surpass the Kepler mission in terms of observing exoplanet transits. Balloon-borne telescopes are becoming an important part of NASA's observing programs - each 100-day super-pressure balloon flight will provide 1000 hours of dark time observing, equivalent to about 1/3 of the total on-target time allocated in an HST cycle across its entire portfolio of science programs. However, balloon-borne telescopes face unique challenges from the stratospheric thermal environment and the pointing stability of a suspended platform. This proposal will study and test three areas of development that will enable high-acuity image quality and stable photometry from balloon-borne telescopes. - Passive thermal control and stabilization of balloon-borne OTAs (Optical Tube Assemblies). Recent modeling suggests that an appropriate arrangement of sunshields, earth-shields and telescope insulation can reduce diurnal temperature excursions from more than 40°C to less than 2°C. Furthermore, modeling also suggests that the steadystate temperature of an OTA can be reduced to temperatures near 180 K, an advantage for infrared observing programs. However, most modeling packages (e.g., Thermal Desktop) do not accurately account for convection in the 3 torr or 8 torr environment of zeropressure or super-pressure balloons. In fact, it is hard to tell whether radiation or convection is a more significant cooling mechanism at super-pressure balloon altitudes. We propose to verify or update Thermal Desktop results with a series of experiments using an instrumented OTA and sun- and earth-shields. The payoff from this experiment will be balloon-borne telescopes that exhibit extremely stable temperatures through daynight cycles and, in turn, avoid optical misalignment due to temperature excursions. - Orthogonal Transfer CCDs as solid-state motion compensation devices. In order to stay within a wavefront error budget that is comparable to WFIRST or HST, a balloon-borne imaging system cannot afford a single mediocre optical element. Fine steering mirrors are especially problematic, since they are often thin, lightweight and mounted to a fastmoving mechanism. We will test the performance of OTCCDs on actual balloon platforms to assess how they can compensate for focal plane motion in flight. In addition, we will measure the photometric stability afforded by OTCCDs, and whether purposely moving a point source in a pattern can improve photometry by PSF-shaping and spreading the signal over many array elements. - In-flight wavefront error measurements. During a 100-day mission, it will be useful to monitor the focus and optical alignment of the telescope and the attached instruments. A Shack-Hartmann array located at an exit pupil will provide a detailed breakdown of the optical system: compact commercial units often provide over 15 Zernike polynomials. We want to test another method, the Curvature Wavefront Sensing method (aka, the Roddier method). The CWS method only requires images on either side of focus. It does not require extra hardware nor access to an exit pupil. We want to demonstrate the CWS method in flight and compare its results to a conventional Shack-Hartmann array. All of these projects leverage prior work, some supported by previous APRA projects, some part of NASA's ongoing GHAPS project (Gondola for High Altitude Planetary Science). We propose two domestic flights with a 24-in instrumented telescope and a gondola capable of coarse pointing. This project will involve students from the University of Virginia and the University of Colorado.
NASA Astrophysics Data System (ADS)
Kyrazis, Demos T.; Eaton, Frank D.; Black, Don G.; Black, Wiley T.; Black, Alastair
2009-08-01
Balloons, similar to those used for meteorological observations, are commonly used to carry a small instrumentation package for measuring optical turbulence in the atmosphere as a function of altitude. Two temperature sensors, one meter apart, measure a single point of the temperature structure function. The raw data is processed to provided the value of CT2, and the results transmitted to a ground receiving site. These data are converted to the index of refraction structure constant, Cn2. The validity of these measurements depend on the correctness of a number of assumptions. These include local isotropy of the turbulence and the existence of the Kolmogorov inertial subrange, and that the data is not contaminated by the wake of the ascending balloon. A variety of experiments on other platforms, and in the laboratory, demonstrate that the assumptions upon which these balloon measurements are made are not valid for a large percentage of the above described flights. In order to collect data whose interpretation did not require preconceived assumptions, the balloon ring instrumentation system was developed. The ring is 8.69 meters in diameter, with a cross-sectional diameter of 14 cm. The ring is hung just below the balloon, so that the wake goes through the center of the ring, and the sensors are mounted tangent to the circumference of the ring. The raw data is transmitted to the ground with a bandwidth extending to 1.25 kHz. A sample of the measurements taken during a flight at Vandenberg Air Force Base, Calif. is presented.
NASA Balloon Highlights 2015-2017
NASA Technical Reports Server (NTRS)
Fairbrother, Debora
2017-01-01
The NASA Balloon Program provides low-cost, quick response, near space access to NASAs science Community for conducting Cutting Edge Science Investigations. Serve as a technology development platform. Excellent training for NASA scientists and engineers.
Telemetry Tracking & Control (TT&C) - First TDRSS, then Commercial GEO & Big LEO and Now Through LEO
NASA Technical Reports Server (NTRS)
Morgan, Dwayne R.; Streich, Ron G.; Bull, Barton; Grant, Chuck; Power, Edward I. (Technical Monitor)
2001-01-01
The advent of low earth orbit (LEO) commercial communication satellites provides an opportunity to dramatically reduce Telemetry, Tracking and Control (TT&C) costs of launch vehicles, Unpiloted Aerial Vehicles (UAVs), Research Balloons and spacecraft by reducing or eliminating ground infrastructure. Personnel from the Goddard Space Flight Center's Wallops Flight Facility (GSFC\\WFF) have successfully used commercial Geostationary Earth Orbit (GEO) and Big LEO communications satellites for Long Duration Balloon Flight TT&C. The Flight Modem is a GSFC\\WFF Advanced Range Technology initiative (ARTI) designed to streamline TT&C capability in the user community of these scientific data gathering platforms at low cost. Making use of existing LEO satellites and adapting and ruggedized commercially available components; two-way, over the horizon communications may be established with these vehicles at great savings due to reduced infrastructure. Initially planned as a means for permitting GPS data for tracking and recovery of sounding rocket and balloon payloads, expectations are that the bandwidth can soon be expanded to allow more comprehensive data transfer. The system architecture which integrates antennas, GPS receiver, commercial satellite packet data modem and a single board computer with custom software is described and technical challenges are discussed along with the plan for their resolution. A three-phase testing and development plan is outlined and the current results are reported. Results and status of ongoing flight tests on aircraft and sounding rockets are reported. Future applications on these platforms and the potential for satellite support are discussed along with an analysis of cost effectiveness of this method vs. other tracking and data transmission schemes.
NASA Technical Reports Server (NTRS)
Shields, W. E.
1973-01-01
Tests were conducted to provide flight conditions for qualifying the Viking Decelerator System in a simulated Mars environment. A balloon launched decelerator test (BLDT) vehicle which has an external shape similar to the actual Mars Viking Lander Capsule was used so that the decelerator would be deployed in the wake of a blunt body. An effort was made to simulate the BLDT vehicle flights from the time they were dropped from the balloon, through decelerator deployment, until stable decelerator conditions were reached. The procedure used to simulate these flights using the Statistical Trajectory Estimation Program (STEP) is discussed. Using primarily ground-based position radar and vehicle onboard rate gyro and accelerometer data, the STEP produces a minimum variance solution of the vehicle trajectory and calculates vehicle attitude histories. Using film from cameras in the vehicle along with a computer program, attitude histories for portions of the flight before and after decelerator deployment were calculated independent of the STEP simulation. With the assumption that the vehicle motions derived from camera data are accurate, a comparison reveals that STEP was able to simulate vehicle motions for all flights both before and after decelerator deployment.
The Use of Environmental Test Facilities for Purposes Beyond Their Original Design
NASA Technical Reports Server (NTRS)
Fisher, Terry C.; Marner, W. J.
2000-01-01
Increasing demands from space flight project offices are requiring environmental testing facilities to become more versatile with increased capabilities. At the same time, maintaining a cost-effective approach to test operations has driven efforts to use these facilities for purposes beyond their original design. This paper presents an overview of the Jet Propulsion Laboratory's efforts to provide JPL's space flight projects with test facilities to meet unique test requirements and to serve the needs of selected outside customers. The large number of recent Mars Missions, including the Mars Pathfinder project, have required testing of components and systems in a Martian surface environment in facilities originally designed for deep space testing. The unique problems associated with performing these tests are discussed, along with practical solutions. Other unique test requirements are discussed including the use of space simulation chambers for testing high altitude balloon gondolas and the use of vacuum chambers for system level test firing of an ion propulsion engine.
Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads
NASA Technical Reports Server (NTRS)
Kogut, Alan; James, Bryan; Fixsen, Dale
2013-01-01
Astrophysical observations at millimeter wavelengths require large (2-to-5- meter diameter) telescopes carried to altitudes above 35 km by scientific research balloons. The scientific performance is greatly enhanced if the telescope is cooled to temperatures below 10 K with no emissive windows between the telescope and the sky. Standard liquid helium bucket dewars can contain a suitable telescope for telescope diameter less than two meters. However, the mass of a dewar large enough to hold a 3-to-5-meter diameter telescope would exceed the balloon lift capacity. The solution is to separate the functions of cryogen storage and in-flight thermal isolation, utilizing the unique physical conditions at balloon altitudes. Conventional dewars are launched cold: the vacuum walls necessary for thermal isolation must also withstand the pressure gradient at sea level and are correspondingly thick and heavy. The pressure at 40 km is less than 0.3% of sea level: a dewar designed for use only at 40 km can use ultra thin walls to achieve significant reductions in mass. This innovation concerns new construction and operational techniques to produce a lightweight liquid helium bucket dewar. The dewar is intended for use on high-altitude balloon payloads. The mass is low enough to allow a large (3-to-5-meter) diameter dewar to fly at altitudes above 35 km on conventional scientific research balloons without exceeding the lift capability of the balloon. The lightweight dewar has thin (250- micron) stainless steel walls. The walls are too thin to support the pressure gradient at sea level: the dewar launches warm with the vacuum space vented continuously during ascent to eliminate any pressure gradient across the walls. A commercial 500-liter storage dewar maintains a reservoir of liquid helium within a minimal (hence low mass) volume. Once a 40-km altitude is reached, the valve venting the vacuum space of the bucket dewar is closed to seal the vacuum space. A vacuum pump then evacuates the dewar vacuum space to provide the necessary thermal isolation. Liquid helium may then be transferred from the storage dewar into the bucket dewar to cool the telescope inside the bucket dewar. By splitting the functions of helium storage and in-flight thermal isolation, the parasitic mass associated with the dewar pressure vessel is eliminated to achieve factor-of-five or better reduction in mass. The lower mass allows flight on conventional scientific research balloons, even for telescopes 3 to 5 meters in diameter.
Aerial Deployment and Inflation System for Mars Helium Balloons
NASA Technical Reports Server (NTRS)
Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.
2009-01-01
A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.
NASA Astrophysics Data System (ADS)
Moision, Bruce; Erkmen, Baris; Keyes, Edward; Belt, Todd; Bowen, Oliver; Brinkley, Devin; Csonka, Paul; Eglington, Michael; Kazmierski, Andrei; Kim, Nam-hyong; Moody, John; Tu, Thanh; Vermeer, William
2017-02-01
Internet connectivity is limited and in some cases non-existent for a significant part of the world's population. Project Loon aims to address this with a network of high-altitude balloons traveling in the stratosphere, at an altitude of approximately 20 km. The balloons navigate by using the stratified wind layers at different altitudes, adjusting the balloon's altitude to catch winds in a desired direction. Data transfer is achieved by 1) uplinking a signal from an Internet-connected ground station to a balloon terminal, 2) crosslinking the signal through the balloon network to reach the geographic area of the users, and 3) downlinking the signal directly to the end-users' phones or other LTE-enabled devices. We describe Loon's progress on utilizing free-space optical communications (FSOC) for the inter-balloon crosslinks. FSOC, offering high data rates and long communication ranges, is well-suited for communication between high-altitude platforms. A stratospheric link is sufficiently high to be above weather events (clouds, fog, rain, etc.), and the impact of atmospheric turbulence is significantly weaker than at ground level. In addition, being in the stratosphere as opposed to space helps avoid the typical challenges faced by space-based systems, namely operation in a vacuum environment with significant radiation. Finally, the angular pointing disturbances introduced by a floating balloon-based platform are notably less than any propelled platform, which simplifies the disturbance rejection requirements on the FSOC system. We summarize results from Project Loon's early-phase experimental inter-balloon links at 20 km altitude, demonstrating full duplex 130 Mbps throughput at distances in excess of 100 km over the course of several-day flights. The terminals utilize a monostatic design, with dual wavelengths for communication and a dedicated wide-angle beacon for pointing, acquisition, and tracking. We summarize the constraints on the terminal design, and the key design trades that led to our initial system. We illustrate measured performance during flight tests: received signal power variations with range, pointing system performance, and data throughput.
NASA Technical Reports Server (NTRS)
Blanford, G. E., Jr.; Friedlander, M. W.; Hoppe, M.; Klarmann, J.; Walker, R. M.; Wefel, J. P.
1972-01-01
Large areas of nuclear emulsions and plastic detectors were exposed to the primary cosmic radiation during high altitude balloon flights. From the analysis of 141 particle tracks recorded during a total exposure of 1.3 x 10 to the 7th power sq m ster.sec., a charge spectrum of the VVH particles has been derived.
Guidelines and Suggestions for Balloon Gondola Design
NASA Technical Reports Server (NTRS)
Franco, Hugo
2017-01-01
This paper discusses the current gondola design requirements for the Columbia Scientific Balloon Facility (CSBF). The CSBF is responsible for launching and supporting balloon borne scientific instruments and has some current updated guidelines that will be discussed in this presentation. As the sophistication of Payload systems have increased in size and complexity new guidelines have been implemented in order to make these instruments stay within the acceptable launch risks. Additionally, there is a requirement to submit a proper stress analysis report that states the flight design requirements have been met. Suggestions are discussed in this presentation that establish the proper guidelines to submit these.
HX-POL - A Balloon-Bourne Hard X-Ray Polarimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krawczynski, H.; De Geronimo, G.; Garson, A., III, Martin, J.
2009-12-09
We report on the design and estimated performance of a balloon-borne hard X-ray polarimeter called HX-POL. The experiment uses a combination of Si and Cadmium Zinc Telluride detectors to measure the polarization of 50 keV-400 keV X-rays from cosmic sources through the dependence of the angular distribution of Compton scattered photons on the polarization direction. On a one-day balloon flight, HX-POL would allow us to measure the polarization of bright Crab-like sources for polarization degrees well below 10%. On a longer (15-30 day) flight from Australia or Antarctica, HX-POL would be be able to measure the polarization of bright galacticmore » X-ray sources down to polarization degrees of a few percent. Hard X-ray polarization measurements provide unique venues for the study of particle acceleration processes by compact objects and relativistic outflows. In this paper, we discuss the overall instrument design and performance. Furthermore, we present results from laboratory tests of the Si and CZT detectors.« less
NASA Astrophysics Data System (ADS)
Helson, Kyle
2014-03-01
We report on the status of the E and B Experiment (EBEX) a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation. The instrument employs a 1.5 meter Gregorian Mizuguchi-Dragone telescope providing 8 arc-minute resolution at three bands centered on 150, 250, and 410 GHz. A continuously rotating achromatic half wave plate, mounted on a superconducting magnetic bearing, and a polarizing grid give EBEX polarimetric capabilities. Radiation is detected with a kilo-pixel array of transition edge sensor (TES) bolometers that are cooled to 0.25 K. The detectors are readout using SQUID current amplifiers and a digital frequency-domain multiplexing system in which 16 detectors are readout simultaneously with two wires. EBEX is the first instrument to implement TESs and such readout system on board a balloon-borne platform. EBEX was launched from the Antarctic in December 2012 on an 11-day long-duration balloon flight. This presentation will provide an overview of the instrument and discuss the flight and status of the data analysis.
UV/visible albedos from airborne measurements
NASA Astrophysics Data System (ADS)
Webb, A.; Kylling, A.; Stromberg, I.
2003-04-01
During the INSPECTRO campaign effective surface albedo was measured at UV and visible wavelengths from two airborne platforms, a Cessna light aircraft and a hot air balloon. On board the Cessna was a scanning spectroradiometer measuring from 300 - 500nm at 10nm intervals. The NILU cube, with 6 faces and two UV channels at 312 and 340nm, was suspended beneath the hot air balloon. Flights took place over East Anglia during September, 2002. Balloon flights were made below cloud layers, while the Cessna flew both above and below cloud. The Cessna also flew over Barton Bendish, where surface albedos have been measured for ground truthing of satellite data, and measured the effective albedo at four visible wave- lengths in the centres of the satellite bandpass functions. Results of measurements from the different platforms are compared, and model simulations used to deduce the surface albedo from the effective albedo at altitude, giving, for example, an albedo of 0.02 ± 0.01 at 340nm.
Polar Balloon Experiment for Astrophysics Research (Polar BEAR)
NASA Technical Reports Server (NTRS)
Bashindzhagyan, G.; Adams, James H., Jr.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Kalinin, A.;
2001-01-01
A new balloon experiment is proposed for a long duration flight around the North Pole. The primary objective of the experiment is to measure the elemental energy spectra of high-energy cosmic rays in the region up to 10(exp 15) eV. The proposed instrument involves the combination of a large collecting area (approximately 1 x 1 square m) KLEM (Kinematic Lightweight Energy Meter) device with an ionization calorimeter having a smaller collecting area (approximately 0.5 x 0.5 square m) and integrated beneath the KLEM apparatus. This combination has several important advantages. Due to the large aperture (greater than 2 square m sr) of the KLEM device a large exposure factor can be achieved with a long duration balloon flight (2-4 weeks). The calorimeter will collect about 10% of the events already registered by KLEM and provide effective cross-calibration for both energy measurement methods. Details of the experiment and its astrophysical significance will be presented.
ERIC Educational Resources Information Center
Janes, Patricia
2001-01-01
Presents suggestions to help students learn about the concept of flight. Ideas include making a classroom timeline of flight, creating balloon rockets to demonstrate the concept of thrust, making tissue paper parachutes and observing the effect of drag, designing a space mission patch, and having a model paper airplane competition. (SM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trefall, H.
Ways to solve the practical problems associated with largescale simultaneous balloon recordings of auroral-zone x rays in the region from Scandinavia to eastern Greenland, caused by the paucity of land-based launching and telemetry sites, are suggested. Firstly, the long-duration flight capabilities of modern stratospheric balloons coupled with their westward drift in the summer should make it possible to perform such recordings with launchings from Scandinavian stations only. Secondly, the experimentally tested vhf radio range of a balloon-borne transmitter seems just sufficient to cover the region mentioned from land-based telemetry stations only. Thirdly, the CONSOL navigation system seems conveniently applicable formore » the determination of balloon positions between Scandinavia and Greenland. On this basis, suggestions are made for cooperative programs between balloon recordings of x rays from electron precipitation events and GEOS satellite measurements. A scheme for longitudinal shift maneuver of the satellite is proposed with such measurements in mind. (FR)« less
NASA Technical Reports Server (NTRS)
Decker, Ryan; Barbre, Robert E., Jr.
2011-01-01
Impact of winds to space launch vehicle include Design, Certification Day-of-launch (DOL) steering commands (1)Develop "knockdowns" of load indicators (2) Temporal uncertainty of flight winds. Currently use databases from weather balloons. Includes discrete profiles and profile pair datasets. Issues are : (1)Larger vehicles operate near design limits during ascent 150 discrete profiles per month 110-217 seasonal 2.0 and 3.5-hour pairs Balloon rise time (one hour) and drift (up to 100 n mi) Advantages of the Alternative approach using Doppler Radar Wind Profiler (DRWP) are: (1) Obtain larger sample size (2) Provide flexibility for assessing trajectory changes due to winds (3) Better representation of flight winds.
PICTURE-C: A NASA Balloon Mission to Directly Image Exozodiacal Dust Around Nearby Stars
NASA Astrophysics Data System (ADS)
Mendillo, Christopher; Hewawasam, Kuravi; Howe, Glenn A.; Martel, Jason; Finn, Susanna; Cook, Timothy; Chakrabarti, Supriya
2018-01-01
The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around nearby stars from a high-altitude balloon using a vector vortex coronagraph (VVC). The mission will consist of two flights, the first in September, 2018 and the second in September, 2019. The second flight will also include a microwave kinetic inductance detector (MKID) to provide spectral imaging. We present a progress report for the mission, which recently completed its critical design review. This will include a description of recent major optical design changes that occurred due to a change in the deformable mirror vendor.
The PoGO+ Ballon-Borne Hard X-ray Polarimetry Mission
NASA Astrophysics Data System (ADS)
Friis, Mette; Kiss, Mózsi; Mikhalev, Victor; Pearce, Mark; Takahashi, Hiromitsu
2018-03-01
The PoGO mission, including the PoGOLite Pathfinder and PoGO+, aims to provide polarimetric measurements of the Crab system and Cygnus X-1 in the hard X-ray band. Measurements are conducted from a stabilized balloon-borne platform, launched on a 1 million cubic meter balloon from the Esrange Space Center in Sweden to an altitude of approximately 40 km. Several flights have been conducted, resulting in two independent measurements of the Crab polarization and one of Cygnus X-1. Here, a review of the PoGO mission is presented, including a description of the payload and the flight campaigns, and a discussion of some of the scientific results obtained to date.
SPIDER: Listening for the echoes of inflation from above the clouds
NASA Astrophysics Data System (ADS)
Filippini, Jeffrey; Spider Collaboration
2016-03-01
We report on the status of SPIDER, a balloon-borne instrument to map the polarization of the cosmic microwave background at large angular scales. SPIDER targets the B-mode signature of primordial gravitational waves, with a focus on mapping a large sky area at multiple frequencies. SPIDER's six monochromatic refracting telescopes (three each at 95 and 150 GHz) feed a total of more than 2000 antenna-coupled superconducting transition-edge sensors. A sapphire half-wave plate at the aperture of each telescope modulates sky polarization for control of systematics. We discuss SPIDER's first long-duration balloon flight in January 2015, as well as the status of data analysis and development toward a second flight.
NASA Technical Reports Server (NTRS)
Bettanini, C.; Angrilli, F.
2005-01-01
As part of the collaboration with Italian Space Agency on HASI instrument for Huygens mission, University of Padova has been conducting since 2001 scientific activity on Stratospheric Balloon Launches from the Trapani base in Sicily. The most recent boomerang flight in July 2003 has successfully flown a mock up of the Huygens probe hosting spares of flight scientific units and extra housekeeping and scientific sensors on a parachuted descent from 33 kilometre altitude. This work presents the studies conducted on attitude reconstruction of the probe, as well as the utilisation of iterative extended Kalman filtering in investigating vanes induced spin rate and in providing a baseline for the performance evaluation of Huygens accelerometers operations. Finally some possible contributions on the reconstruction of the lower part of Titan descent for Huygens probe are suggested based on the confrontation of sensor data for 2003 flight.
The First Flight of ATIC : Preliminary Results on CNO Nuclei
NASA Technical Reports Server (NTRS)
Fazely, A.; Gunasingha, R.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
We present preliminary results on the spectra of CNO nuclei in the cosmic radiation as measured in the first flight of the Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) which lasted for 16 days, starting in December, 2000 with a launch from McMurdo, Antarctica. ATIC is a multiple, long duration balloon flight,investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification in cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction'target'.
SPIDER: CMB Polarimetry from the Edge of Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gualtieri, R.; et al.
SPIDER is a balloon-borne instrument designed to map the polarization of the millimeter-wave sky at large angular scales. SPIDER targets the B-mode signature of primordial gravitational waves in the cosmic microwave background (CMB), with a focus on mapping a large sky area with high fidelity at multiple frequencies. SPIDER's first longduration balloon (LDB) flight in January 2015 deployed a total of 2400 antenna-coupled Transition Edge Sensors (TESs) at 90 GHz and 150 GHz. In this work we review the design and in-flight performance of the SPIDER instrument, with a particular focus on the measured performance of the detectors and instrumentmore » in a space-like loading and radiation environment. SPIDER's second flight in December 2018 will incorporate payload upgrades and new receivers to map the sky at 285 GHz, providing valuable information for cleaning polarized dust emission from CMB maps.« less
General Aviation Pilot and Aircraft Activity Survey.
1985-09-01
Balloon 3. Rotorcraft piston 6. Turbojet 4. HOW 010 YOU OBTAIN THE AIRCRAFT FOR THIS FLIGHT’ iCheck only one) 1. Individual owner or partnership 4...you prefer that the destination airport in requirements? (Check all) your cross-country flight have the following facilities ? iCheck ail) Ve wll Ade
14 CFR 31.12 - Proof of compliance.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Except as provided in § 31.17(b), allowable weight tolerances during flight testing are +5 percent and... STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.12 Proof of compliance. (a) Each requirement of... requested or by calculations based on, and equal in accuracy to, the results of testing; and (2) Systematic...
14 CFR 31.12 - Proof of compliance.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Except as provided in § 31.17(b), allowable weight tolerances during flight testing are +5 percent and... STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.12 Proof of compliance. (a) Each requirement of... requested or by calculations based on, and equal in accuracy to, the results of testing; and (2) Systematic...
14 CFR 31.12 - Proof of compliance.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Except as provided in § 31.17(b), allowable weight tolerances during flight testing are +5 percent and... STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.12 Proof of compliance. (a) Each requirement of... requested or by calculations based on, and equal in accuracy to, the results of testing; and (2) Systematic...
14 CFR 31.12 - Proof of compliance.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Except as provided in § 31.17(b), allowable weight tolerances during flight testing are +5 percent and... STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.12 Proof of compliance. (a) Each requirement of... requested or by calculations based on, and equal in accuracy to, the results of testing; and (2) Systematic...
14 CFR 31.12 - Proof of compliance.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Except as provided in § 31.17(b), allowable weight tolerances during flight testing are +5 percent and... STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.12 Proof of compliance. (a) Each requirement of... requested or by calculations based on, and equal in accuracy to, the results of testing; and (2) Systematic...
Testing Galactic Cosmic Ray Models
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.
2009-01-01
Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.
Testing Galactic Cosmic Ray Models
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.
2010-01-01
Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.
Preparations for the Advanced Scintillator Compton Telescope (ASCOT) balloon flight
NASA Astrophysics Data System (ADS)
Sharma, T.; Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; McConnell, M. L.; Ryan, J. M.; Wright, A. M.
2017-08-01
We describe our ongoing work to develop a new medium-energy gamma-ray Compton telescope using advanced scintillator materials combined with silicon photomultiplier readouts and fly it on a scientific balloon. There is a need in high-energy astronomy for a medium-energy gamma-ray mission covering the energy range from approximately 0.4 - 20 MeV to follow the success of the COMPTEL instrument on CGRO. We believe that directly building on the legacy of COMPTEL, using relatively robust, low-cost, off-the-shelf technologies, is the most promising path for such a mission. Fortunately, high-performance scintillators, such as Cerium Bromide (CeBr3) and p-terphenyl, and compact readout devices, such as silicon photomultipliers (SiPMs), are already commercially available and capable of meeting this need. We are now constructing an Advanced Scintillator Compton Telescope (ASCOT) with SiPM readout, with the goal of imaging the Crab Nebula at MeV energies from a high-altitude balloon flight. We expect a 4-sigma detection at 1 MeV in a single transit. We present calibration results of the detector modules, and updated simulations of the balloon instrument sensitivity. If successful, this project will demonstrate that the energy, timing, and position resolution of this technology are sufficient to achieve an order of magnitude improvement in sensitivity in the medium-energy gamma-ray band, were it to be applied to a 1 cubic meter instrument on a long-duration balloon or Explorer platform.
2011-09-28
A hot air balloon passes over the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-28
A hot air balloons pass over the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Houtas, Franzeska F.; Teets, Edward H.
2010-01-01
A comparison study by the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) and the Naval Post Graduate School Center for Interdisciplinary Remotely-Piloted Aircraft Studies (Marina, California) was conducted to show the advantages of an airborne wind profiling light detection and ranging (lidar) system in reducing drift uncertainty along a reentry vehicle descent trajectory. This effort was in support of the once planned Orion Crew Exploration Vehicle ground landing. A Twin Otter Doppler Wind Lidar was flown on multiple flights along the approximate ground track of each ascending weather balloon launched from the Marina Municipal Airport (Marina, California). The airborne lidar used was a 5-mJ, 2-micron infrared laser with a 10-cm telescope and a two-axis scanner. Each lidar wind profile contains data for an altitude range between the surface and flight altitude of 2.7 km, processed on board every 20 s. In comparison, a typical weather balloon would traverse that same altitude range with a similar data set available in approximately 15 to 20 min. These tests were conducted on November 15 and 16, 2007. Results show a best-case absolute difference of 0.18 m/s (0.35 knots) in speed and 1 degree in direct
Curie-Montgolfiere Planetary Explorers
NASA Astrophysics Data System (ADS)
Taylor, Chris Y.; Hansen, Jeremiah
2007-01-01
Hot-air balloons, also known as Montgolfiere balloons, powered by heat from radioisotope decay are a potentially useful tool for exploring planetary atmospheres and augmenting the capabilities of other exploration technologies. This paper describes the physical equations and identifies the key engineering parameters that drive radioisotope-powered balloon performance. These parameters include envelope strength-to-weight, envelope thermal conductivity, heater power-to-weight, heater temperature, and balloon shape. The design space for these parameters are shown for varying atmospheric compositions to illustrate the performance needed to build functioning ``Curie-Montgolfiere'' balloons for various planetary atmospheres. Methods to ease the process of Curie-Montgolfiere conceptual design and sizing of are also introduced.
Microcontroller uses in Long-Duration Ballooning
NASA Astrophysics Data System (ADS)
Jones, Joseph
This paper discusses how microcontrollers are being utilized to fulfill the demands of long duration ballooning (LDB) and the advantages of doing so. The Columbia Scientific Balloon Facility (CSBF) offers the service of launching high altitude balloons (120k ft) which provide an over the horizon telemetry system and platform for scientific research payloads to collect data. CSBF has utilized microcontrollers to address multiple tasks and functions which were previously performed by more complex systems. A microcontroller system has been recently developed and programmed in house to replace our previous backup navigation system which is used on all LDB flights. A similar microcontroller system was developed to be independently launched in Antarctica before the actual scientific payload. This system's function is to transmit its GPS position and a small housekeeping packet so that we can confirm the upper level float winds are as predicted from satellite derived models. Microcontrollers have also been used to create test equipment to functionally check out the flight hardware used in our telemetry systems. One test system which was developed can be used to quickly determine if our communication link we are providing for the science payloads is functioning properly. Another system was developed to provide us with the ability to easily determine the status of one of our over the horizon communication links through a closed loop system. This test system has given us the capability to provide more field support to science groups than we were able to in years past. The trend of utilizing microcontrollers has taken place for a number of reasons. By using microcontrollers to fill these needs, it has given us the ability to quickly design and implement systems which meet flight critical needs, as well as perform many of the everyday tasks in LDB. This route has also allowed us to reduce the amount of time required for personnel to perform a number of the tasks required during the initial fabrication and also refurbishing processes of flight hardware systems. The recent use of microcontrollers in the design of both LDB flight hardware and test equipment has shown some examples of the adaptability and usefulness they have provided for our workplace.
NASA's BARREL Mission in Sweden
2017-12-08
Four reindeer walk past the BARREL payload on the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/University of Houston/Samar Mathur NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA's BARREL Mission in Sweden
2017-12-08
A member of the BARREL team prepares a payload for launch from Esrange Space Center on Aug. 29, 2016. Throughout August 2016, the BARREL team was at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carried instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/Dartmouth/Alexa Halford NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA's BARREL Mission in Sweden
2017-12-08
A BARREL payload sits on the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/University of Houston/Edgar Bering NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA's BARREL Mission in Sweden
2017-12-08
A BARREL team member recovers the second payload after it landed. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/Montana State University/Arlo Johnson NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA's BARREL Mission in Sweden
2017-12-08
Prior to launch, the BARREL team works on the payload from the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/Dartmouth/Robyn Millan NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA's BARREL Mission in Sweden
2017-12-08
The BARREL team prepares to launch their third payload from Esrange Space Center near Kiruna, Sweden, on Aug. 21, 2016. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA's BARREL Mission in Sweden
2017-12-08
A BARREL team member watches as one of their payloads launches from Esrange Space Center on Aug. 29, 2016. Throughout August 2016, the BARREL team was at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carried instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/Dartmouth/Alexa Halford NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA's BARREL Mission in Sweden
2017-12-08
A BARREL payload sits on the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/Dartmouth/Robyn Millan NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Fairlie, T. D.; Vernier, J. P.; Deshler, T.; Pandit, A. K.; Ratnam, M. V.; Gadhavi, H. S.; Liu, H.; Natarajan, M.; Jayaraman, A.; Kumar, S.; Singh, A. K.; Stenchikov, G. L.; Wienhold, F.; Vignelles, D.; Bedka, K. M.; Avery, M. A.
2017-12-01
We present in situ balloon observations of the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with Asian Summer Monsoon (ASM). The ATAL was first revealed by CALIPSO satellite data, and has been linked with deep convection of boundary layer pollution into the UTLS. The ATAL has potential implications for regional cloud properties, radiative transfer, and chemical processes in the UTLS. The "Balloon measurements of the Asian Tropopause Aerosol Layer (BATAL)" field campaigns to India and Saudi Arabia in were designed to characterize the physical and optical properties of the ATAL, to explore its composition, and its relationship with clouds in the UTLS. We launched 55 balloon flights from 4 locations, in summers 2014-2016. We return to India to make more balloon flights in summer 2017. Balloon payloads range from 500g to 50 kg, making measurements of meteorological parameters, ozone, water vapor, aerosol optical properties, concentration, volatility, and composition in the UTLS region. This project represents the most important effort to date to study UTLS aerosols during the ASM, given few in situ observations. We complement the in situ data presented with 3-d chemical transport simulations, designed to further explore the ATAL's chemical composition, the sensitivity of such to scavenging in parameterized deep convection, and the relative contribution of regional vs. rest-of-the-world pollution sources. The BATAL project has been a successful partnership between institutes in the US, India, Saudi Arabia, and Europe, and continues for the next 3-4 years, sponsored by the NASA Upper Atmosphere Research program. This partnership may provide a foundation for potential high-altitude airborne measurement studies during the ASM in the future.
Menon, Anil S; Jourdan, David; Nusbaum, Derek M; Garbino, Alejandro; Buckland, Daniel M; Norton, Sean; Clark, Johnathan B; Antonsen, Erik L
2016-10-01
The StratEx program used a self-contained space suit and balloon system to loft pilot Alan Eustace to a record-breaking altitude and skydive from 135,897 feet (41,422 m). After releasing from the balloon and a stabilized freefall, the pilot safely landed using a parachute system based on a modified tandem parachute rig. A custom spacesuit provided life support using a similar system to NASA's (National Aeronautics and Space Administration; Washington, DC USA) Extravehicular Mobility Unit. It also provided tracking, communications, and connection to the parachute system. A recovery support team, including at least two medical personnel and two spacesuit technicians, was charged with reaching the pilot within five minutes of touchdown to extract him from the suit and provide treatment for any injuries. The team had to track the flight at all times, be prepared to respond in case of premature release, and to operate in any terrain. Crew recovery operations were planned and tailored to anticipate outcomes during this novel event in a systematic fashion, through scenario and risk analysis, in order to minimize the probability and impact of injury. This analysis, detailed here, helped the team configure recovery assets, refine navigation and tracking systems, develop procedures, and conduct training. An extensive period of testing and practice culminated in three manned flights leading to a successful mission and setting the record for exit altitude, distance of fall with stabilizing device, and vertical speed with a stabilizing device. During this mission, recovery teams reached the landing spot within one minute, extracted the pilot, and confirmed that he was not injured. This strategy is presented as an approach to prehospital planning and care for improved safety during crew recovery in novel, extreme events. Menon AS , Jourdan D , Nusbaum DM , Garbino A , Buckland DM , Norton S , Clark JB , Antonsen EL . Crew recovery and contingency planning for a manned stratospheric balloon flight - the StratEx program. Prehosp Disaster Med. 2016;31(5):524-531.
NASA Technical Reports Server (NTRS)
Traub, Wesley A.; Chance, Kelly V.
1988-01-01
The major events and results to date of the ongoing program of measuring stratospheric composition by the technique of far-infrared Fourier-transform spectroscopy from a balloon-borne platform are reviewed. The highlights of this period were the two balloon flight campaigns which were performed at Palestine, Texas, both of which produced large amounts of scientifically useful data.
Infrasound from ground to space
NASA Astrophysics Data System (ADS)
Bowman, Daniel Charles
Acoustic detector networks are usually located on the Earth's surface. However, these networks suffer from shortcomings such as poor detection range and pervasive wind noise. An alternative is to deploy acoustic sensors on high altitude balloons. In theory, such platforms can resolve signals arriving from great distances, acquire others that never reach the surface at all, and avoid wind noise entirely. This dissertation focuses on scientific advances, instrumentation, and analytical techniques resulting from the development of such sensor arrays. Results from infrasound microphones deployed on balloon flights in the middle stratosphere are described, and acoustic sources such as the ocean microbarom and building ventilation systems are discussed. Electromagnetic noise originating from the balloon, flight system, and other payloads is shown to be a pervasive issue. An experiment investigating acoustic sensor calibration at low pressures is presented, and implications for high altitude recording are considered. Outstanding challenges and opportunities in sound measurement using sensors embedded in the free atmosphere are outlined. Acoustic signals from field scale explosions designed to emulate volcanic eruptions are described, and their generation mechanisms modeled. Wave forms recorded on sensors suspended from tethered helium balloons are compared with those detected on ground stations during the experiment. Finally, the Hilbert-Huang transform, a high time resolution spectral analysis method for nonstationary and nonlinear time series, is presented.
Low-cost TDRSS communications for NASA's long duration balloon project
NASA Technical Reports Server (NTRS)
Israel, David J.
1993-01-01
A new transponder and RF ground support equipment for the NASA Tracking and Data Relay Satellite System (TDRSS) intended to support long duration scientific balloon flights in Antarctica are described. The new balloon class transponder features a highly integrated spread spectrum receiver design based on programmable charge coupled device (CCD) correlators and digital signal processing chips. The correlator chip is a Lincoln Labs 4ABC with four CCD channels. The balloon transponder is capable of reporting an estimate of its input bit error rate using digital signal processing. The TDRSS user RF test set is based on a set of RF ground support equipment capable of providing both the RF communications and direct control and monitoring necessary for transponder testing and a two-way RF link for preflight testing.
NASA Astrophysics Data System (ADS)
Yamada, Kazuhiko; Suzuki, Kojiro; Honma, Naohiko; Abe, Daisuke; Makino, Hitoshi; Nagata, Yasunori; Kimura, Yusuke; Koyama, Masashi; Akita, Daisuke; Hayashi, Koichi; Abe, Takashi
A deployable and flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system in the near future, because the large-area, low-mass aeroshell dramatically reduces aerodynamic heating and achieves a soft landing without a conventional parachute system thanks to its low ballistic coefficient. Various concepts of flexible aeroshell have been proposed in the past. Our group are researching and developing a flare-type membrane aeroshell sustained by inflatable torus. As a part of the development, a deployment and drop test of a capsule-type experimental vehicle with a 1.264-m-diameter flare-type membrane aeroshell sustained by inflatable torus was carried out using a large scientific balloon in August, 2009. The objectives of this experiment are 1) to demonstrate the remote inflation system of inflatable aeroshell, 2) to acquire aerodynamic performance of a low ballistic coefficient vehicle including an inflatable structure in subsonic region, and 3) to observe behavior and deformation of the flexible aeroshell during free flight. In this test, the inflatable aeroshell was deployed at an altitude 24.6km by radio command from ground station. After deployment, the experimental vehicle was dropped from the balloon and underwent free flight. The flight data and images of the aeroshell collected using onboard sensors were transmitted successfully during the flight by the telemetry system. The data showed that the vehicle was almost stable in free flight condition and the inflatable aeroshell was collapsed at expected altitude. This deployment and drop test was very successful and useful data for design of actual atmospheric-entry vehicles with inflatable structure was acquired as planned.
Flying high-altitude balloon-borne telescopes 50 years ago
NASA Astrophysics Data System (ADS)
Fazio, Giovanni G.
Based on theoretical predictions of cosmic gamma-ray fluxes by P. Morrison (1958) and M. Savedoff (1959), we started, at the University of Rochester, a program in high-energy gammaray astronomy to search for these sources using high-altitude balloon-borne telescopes. The first flight occurred in 1959 from Sioux Falls, SD, using scintillator/Cerenkov detectors. In 1962 I initiated a gamma-ray astronomy program at the Smithsonian Astrophysical Observatory (SAO) using vidicon spark chambers. Later Henry Helmken (SAO) developed a program in low-energy gamma-ray astronomy based on a gas Cerenkov detector. During the 1960's more flights followed from San Angelo, TX; Holloman AFB, NM; Hyderabad, India, and finally, Palestine, TX. All of these flights just produced upper limits to the cosmic gamma-ray flux. We also entered a collaboration with the Cornell Group (K. Greisen) to fly a large gas-Cerenkov telescope to search for ˜ 100 MeV gamma-rays. In the early 1970's, using this telescope, gammarays from the Crab Nebula pulsar were detected (McBreen et al. 1973). It soon became evident that gamma-ray astronomy, to be successful, had to be performed from space telescopes. In 1970, somewhat frustrated, I changed fields and started at SAO/Harvard the construction of a 1-meter balloon-borne telescope for far-infrared astronomy. This was a collaborative program with the University of Arizona (F. Low). This program was extremely successful, resulting in 19 flights over 20 years, and produced the first far-infrared high-resolution maps of many new galactic regions and detection of solar system sources. Experience gained from these programs later led to the development and flight of space gamma-ray and infrared telescopes and many of the participants were, and some still are, active in numerous space programs.
DLR HABLEG- High Altitude Balloon Launched Experimental Glider
NASA Astrophysics Data System (ADS)
Wlach, S.; Schwarzbauch, M.; Laiacker, M.
2015-09-01
The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.
NASA Technical Reports Server (NTRS)
Jacobson, M. R.; Harwit, M.; Frederick, C.; Ward, D. B.; Melnick, G.; Stasavage, G.
1978-01-01
Nine additional radiation sources, above a 3-sigma confidence level of 1300 Jy, were identified at 100 microns by far infrared photometry of the galactic plane using a 0.4 meter aperture, liquid helium cooled, multichannel far infrared balloon-borne telescope. The instrument is described, including its electronics, pointing and suspension systems, and ground support equipment. Testing procedures and flight staging are discussed along with the reduction and analysis of the data acquired. The history of infrared astronomy is reviewed. General infrared techniques and the concerns of balloon astronomers are explored.
High Energy Cosmic Ray Electron Spectra measured from the ATIC Balloon Experiment
NASA Technical Reports Server (NTRS)
Chang, J.; Schmidt, W. K. H.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G.; Batkov, K. E.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.
2003-01-01
The Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) is specifically designed for high energy cosmic ray ion detection. From simulation and a CERN beam test exposure we find that the design consisting of a graphite target and an energy detection device, a totally active calorimeter of BGO scintillator, gives us sufficient information to distinguish electrons from protons up to the TeV energy range. Balloon observations were successfully carried out over Antarctica in both 2000/2001 and 2002/2003 for a total of more than 35 days. This paper presents preliminary results on the spectrum of high energy electrons observed in the first ATIC flight.
NASA Astrophysics Data System (ADS)
González-Llana, Arturo; González-Bárcena, David; Pérez-Grande, Isabel; Sanz-Andrés, Ángel
2018-07-01
The selection of the extreme thermal environmental conditions -albedo coefficient and Earth infrared radiation- for the thermal design of stratospheric balloon missions is usually based on the methodologies applied in space missions. However, the particularities of stratospheric balloon missions, such as the much higher residence time of the balloon payload over a determined area, make necessary an approach centered in the actual environment the balloon is going to find, in terms of geographic area and season of flight. In this sense, this work is focussed on stratospheric balloon missions circumnavigating the North Pole during the summer period. Pairs of albedo and Earth infrared radiation satellite data restricted to this area and season of interest have been treated statistically. Furthermore, the environmental conditions leading to the extreme temperatures of the payload depend in turn on the surface finish, and more particularly on the ratio between the solar absorptance and the infrared emissivity α/ε. A simple but representative thermal model of a balloon and its payload has been set up in order to identify the pairs of albedo coefficient and Earth infrared radiation leading to extreme temperatures for each value of α/ε.
All-Particle Spectrum Measured by the ATIC Experiment
NASA Technical Reports Server (NTRS)
Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.; Guzik, T. G.;
2007-01-01
The Advanced Thin Ionization Calorimeter (ATIC), a balloon-borne experiment, is designed to investigate the composition and energy spectra of cosmic rays of charge Z = 1 to 26 over the energy range - 10(exp 11) - 10(exp 14) ev. The instrument consists of a silicon matrix charge detector, plastic-scintillator strip hodoscopes interleaved with graphite interaction targets, and an 18 radiation length deep, fully active bismuth germanate (BGO) calorimeter. ATIC has had two successful long duration balloon (LDB) flights launched from McMurdo Station, Antarc't'ica in 2000 and 2002. In this paper, we present the all-particle spectrum extracted from data collected during the ATIC flights, and compare it with results from other experiments at both lower and higher energies.
NASA Technical Reports Server (NTRS)
Sharp, William E.; Knoll, Glenn
1989-01-01
A feasibility study of conducting a joint NASA/GSFC and Soviet Space Agency long duration balloon flight at the Antarctic in Jan. 1993 is reported. The objective of the mission is the verification and calibration of gamma ray and neutron remote sensing instruments which can be used to obtain geochemical maps of the surface of planetary bodies. The gamma ray instruments in question are the GRAD and the Soviet Phobos prototype. The neutron detectors are supplied by Los Alamos National Laboratory and the Soviet Phobos prototype. These are to be carried aboard a gondola that supplies the data and supplies the power for the period of up to two weeks.
NASA Technical Reports Server (NTRS)
Tarbell, Theodore D.
1993-01-01
Technical studies of the feasibility of balloon flights of the former Spacelab instrument, the Solar Optical Universal Polarimeter, with a modern charge-coupled device (CCD) camera, to study the structure and evolution of solar active regions at high resolution, are reviewed. In particular, different CCD cameras were used at ground-based solar observatories with the SOUP filter, to evaluate their performance and collect high resolution images. High resolution movies of the photosphere and chromosphere were successfully obtained using four different CCD cameras. Some of this data was collected in coordinated observations with the Yohkoh satellite during May-July, 1992, and they are being analyzed scientifically along with simultaneous X-ray observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockwood, J.A.; Webber, W.R.; Friling, L.A.
1981-09-15
Results are presented from a balloon flight at Palestine, Texas, in 1978 to measure the atmospheric and diffuse ..gamma..-ray flux in the energy range 0.4--7.0 MeV. The observations were made with a Compton telescope which included pulse-shape discrimination of the first scattering detector and a time-of-flight system between the first and second detector elements. The total downward ..gamma..-ray flux at 3.7 g cm/sup -2/ is given by the spectrum 3.1 x 10/sup -2/ x E/sup -1.74/ (photons cm/sup -2/ s/sup -1/ MeV/sup -1/ sr/sup -1/) for 0.5
A parachute system for upper atmospheric studies
NASA Technical Reports Server (NTRS)
Maksimovic, V. M.
1979-01-01
The Goddard Space Flight Center's Sounding Rocket Division successfully flight tested a high altitude, low velocity, 63.5 foot cross parachute system. The system was developed to provide a platform for atmospheric studies at altitudes higher than those attainable with balloons. This paper represents the approach taken to determine the necessary conditions for a successful apogee deployment of the parachute. The test flight deployed the parachute system at an apogee altitude of 61 kilometers. Post-flight results of rocket and parachute performance are compared to the preflight analyses.
The survival of micro-organisms in space. Further rocket and balloon-borne exposure experiments.
Hotchin, J; Lorenz, P; Markusen, A; Hemenway, C
1967-01-01
This report describes the results of survival studies of terrestrial micro-organisms exposed directly to the space environment on two balloons and in two rocket flights. The work is part of a program to develop techniques for the collection of micro-organisms in the size range of micrometeorite particles in space or non-terrestrial atmospheres, and their return to earth in a viable state for further study. Previous survival studies were reported (J. Hotchin, P. Lorenz and C. Hemenway, Nature 206 (1965) 442) in which a few relatively large area samples of micro-organisms were exposed on millipore filter cemented to aluminum plates. In the present series of experiments, newly developed techniques have resulted in a 25-fold miniaturization resulting in a corresponding increase in the number of experiments performed. This has enabled a statistical evaluation of the results to be made. A total of 756 separate exposure units (each approximately 5 x 5 mm in size) were flown in four experiments, and organisms used were coliphage T1, penicillium roqueforti (THOM) mold spores, poliovirus type I (Pfizer attenuated Sabin vaccine strain), and bacillus subtilis spores. The organisms were deposited either by spraying directly upon the vinyl-coated metal units, or by droplet seeding into shallow depressions in the millipore filter membrane-coated units. Groups of units were prepared comprising fully exposed, inverted (screened by 2 mm of Al), and filter-protected organisms. All of these were included in the flight set, the back up set, and a laboratory control set. The altitude of the exposures varied from 35 km in the balloon experiments to 150 km in the rocket experiments. Times of exposures at altitude were approximately 6 hours for the balloon flights and about 3 minutes for the rocket experiments.
NASA Technical Reports Server (NTRS)
Houtas, Franzeska; Teets, Edward H., Jr.
2010-01-01
A comparison study by the National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, CA and the Naval Post Graduate School Center for Interdisciplinary Remotely-Piloted Aircraft Studies, Marina, CA was conducted to show the advantages of an airborne wind profiling lidar system in reducing drift uncertainty along a reentry vehicle descent trajectory. This effort was in support of the once planned Orion Crew Exploration Vehicle ground landing. A Twin Otter Doppler Wind Lidar was flown on multiple flights along the approximate ground track of an ascending weather balloons launched from the Marina Municipal Airport. The airborne lidar used was a 5-milli-Joules, 2-micron infrared laser with a 10-centimeter telescope and a two-axis scanner. Each lidar wind profile contains data for an altitude range between the surface and flight altitude of 2,700 meters, processed on board every 20 seconds. In comparison, a typical weather balloon would traverse that same altitude range with a similar data set available in approximately 15-20 minutes. These tests were conducted on November 15 & 16, 2007. Results comparing the balloon and a 10 minute multiple lidar profile averages show a best case absolute difference of 0.18 m/s (0.35 knots) in speed and 1 degree in direction during light and variable (less than 5 knots, without constant direction) wind conditions. These limited test results indicated a standard deviation wind velocity and direction differences of 0.71 m/s (1.3 knots) and 7.17 degrees for 1800Z, and 0.70 m/s (1.3 knots) and 6.79 degrees, outside of cloud layer.
Telemetry Options for LDB Payloads
NASA Technical Reports Server (NTRS)
Field, Chris
2017-01-01
The Columbia Scientific Balloon Facility has been designing and building high-altitude balloon power systems for over 26 years. With that experience, we have found certain types of PV panels, batteries, and charge controllers that are reliable in stratospheric environments. The ultimate goal is to ensure that power systems will provide power reliably throughout the duration of an LDB flight. The purpose of this presentation is to provide some general guidelines and best practices for power system design.
1980-02-28
containing a command receiver, batteries, and a differential- pressure switch , all located immediately below the confluence point, with long leads and a...should break free, or during normal deflation at take- down. Purpose of the differential- pressure switch was to momentarily open the valves if the...otherwise was completely different. A differential- pressure switch of the type formerly used in the command package, but without the long pressure
Cyberwar: Are Civilians Back on the Battlefield
2015-02-17
long before the Wright brothers finally achieved it in 1903. States, having experienced balloons and anticipating the advent of other forms of...flight, agreed in the 1899 Hague Convention to “prohibit, for a term of five years, the launching of projectiles and explosives from balloons , or by...Princeton, NJ: Princeton University Press, 1976), 87. 8Friedman, The Law of War, xiii. 9 Paul J. Springer, America’s Captives : Treatment of POWs
Undergraduate Student-built Experiments in Sounding-Rocket and Balloon Campaign
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Christian, J. A.; Keesee, A. M.; Lindon, M.; Lusk, G. D.
2014-12-01
Space physics and aerospace engineering experiments are becoming readily accessible to STEM undergraduates. A number of ionospheric physics experiments and guidance and navigation components were designed, built, integrated, and tested by STEM students at West Virginia University in the 2013-2014 academic year. A main payload was flown on NASA's annual RockSat-C two-stage rocket launched from Wallops Flight Facility in Chincoteague, VA on the morning of June 26, 2014. A high-altitude balloon with a reduced payload was released from Bruceton Mills, WV, prior to the rocket and reached 30,054 m. The geographic distance between the two launch points is small compared to the footprint of geomagnetic and solar-terrestrial disturbances. Aerospace sensors provided flight profiles for each of the two platforms. Daytime E region electron density was measured via a Langmuir probe as a function of altitude from 90 km to the apogee of 117 km. Geomagnetic activity was low (Dst>-7 nT, AE<500 nT) so geomagnetic disturbances were probably due to solar quiet (Sq) currents. Earlier solar wind activity included two high-plasma-density regions measured by NASA's ACE which impacted the magnetosphere producing two sudden impulses at midlatitudes (Dst=+19 and +13 nT). In an airglow experiment, the altitude range of the sodium layer was estimated to be 75-110 km based on in situ measurements of the D2emission line intensity. Acceleration, rotation-rate, and magnetic-field data are useful in reconstructing the trajectory and flight dynamics of the two vehicles and comparing with video from onboard cameras. Participation in RockSat and similar programs is useful in ushering space science and spaceflight concepts in the classroom and lab experience of STEM undergraduates. Lectures, homework, and progress reports were used to connect advanced topics of Earth's space environment and spaceflight to the students' core courses. In several cases the STEM students were guided by graduate students during lab work. Development of the flight payloads was supported by NASA's Undergraduate Student Instrument Project, NSF/AGS, and the WV Space Grant.
Code of Federal Regulations, 2013 CFR
2013-07-01
... REGULATIONS GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS..., seaplanes, helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered... person, material or equipment by parachute, balloon, helicopter or other means onto or from project lands...
NASA’s BARREL Mission Launches 20 Balloons
2017-12-08
Some of the BARREL balloon launches took place at the South African National Antarctic Expedition Research base, called SANAE IV, the others at Halley Research Station. This balloon is taking flight at SANAE IV. Credit: NASA --- In Antarctica in January, 2013 – the summer at the South Pole – scientists launched 20 balloons up into the air to study an enduring mystery of space weather: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? The mission is called BARREL (Balloon Array for Radiation belt Relativistic Electron Losses) and it is led by physicist Robyn Millan of Dartmouth College in Hanover, NH. Millan provided photographs from the team’s time in Antarctica. The team launched a balloon every day or two into the circumpolar winds that circulate around the pole. Each balloon floated for anywhere from 3 to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere. BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels through the Van Allen radiation belts surrounding Earth. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites must travel. Scientists wish to understand this process better, and even provide forecasts of this space weather, in order to protect our spacecraft. As the Van Allen Probes were observing what was happening in the belts, BARREL tracked electrons that precipitated out of the belts and hurtled down Earth’s magnetic field lines toward the poles. By comparing data, scientists will be able to track how what’s happening in the belts correlates to the loss of particles – information that can help us understand this mysterious, dynamic region that can impact spacecraft. Having launched balloons in early 2013, the team is back at home building the next set of payloads. They will launch 20 more balloons in 2014. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Lykov, Alexey; Khaykin, Sergey; Yushkov, Vladimir; Efremov, Denis; Formanyuk, Ivan; Astakhov, Valeriy
The FLASH instrument is based on the fluorescent method, which uses H2O molecules photodissociation at a wavelength lambda=121.6 nm (Lalpha - hydrogen emission) followed by the measurement of the fluorescence of excited OH radicals. The source of Lyman-alpha radiation is a hydrogen discharge lamp while the detector of OH fluorescence at 308 -316 nm is a photomultiplier run in photon counting mode. The intensity of the fluorescent light as well as the instrument readings is directly proportional to the water vapor mixing ratio under stratospheric conditions with negligible oxygen absorption. Initially designed for rocket-borne application, FLASH has evolved into a light-weight balloon sonde (FLASH-B) for measurements in the upper troposphere and stratosphere on board meteorological and small plastic balloons. This configuration has been used in over 100 soundings at numerous tropical mid-latitude and polar locations within various international field campaigns. An airborne version of FLASH instrument is successfully utilized onboard stratospheric M55-Geophysica aircraft and tropospheric airborne laboratory YAK42-Roshydromet. The hygrometer was modified for application onboard stratospheric long-duration balloons (FLASH-LDB version). This version was successfully used onboard CNES super-pressure balloon launched from SSC Esrange in March 2007 and flown during 10 days. Special design for polar long duration balloon PoGOLite was created for testing work during polar day in June 2013. Installation and measurement peculiarities as well as observational results are presented. Observations of water vapour using FLASH-B instrument, being of high quality are rather costly as the payload recovery is often complicated and most of the time impossible. Following the goal to find a cost-efficient solution, FLASH was adapted for use onboard Unmanned Aerial Vehicles (UAV). This solution was only possible thanks to compactness and light-weight (0.5 kg) of FLASH instrument. The hygrometer was installed at the nose of a small GPS-controlled glider, which was lifted by a meteorological balloon into the stratosphere and released by a remote command. GPS-based flight control guides and lands the UAV at the launch point thereby allowing multiple usage of its payload. Another sounding platform allowing for multiple usage of the FLASH instrument is a GPS-guided paraglide. The results of measurements acquired in the test flights using different types of balloon-lifted UAVs are presented.
Radiosonde pressure sensor performance - Evaluation using tracking radars
NASA Technical Reports Server (NTRS)
Parsons, C. L.; Norcross, G. A.; Brooks, R. L.
1984-01-01
The standard balloon-borne radiosonde employed for synoptic meteorology provides vertical profiles of temperature, pressure, and humidity as a function of elapsed time. These parameters are used in the hypsometric equation to calculate the geopotential altitude at each sampling point during the balloon's flight. It is important that the vertical location information be accurate. The present investigation was conducted with the objective to evaluate the altitude determination accuracy of the standard radiosonde throughout the entire balloon profile. The tests included two other commercially available pressure sensors to see if they could provide improved accuracy in the stratosphere. The pressure-measuring performance of standard baroswitches, premium baroswitches, and hypsometers in balloon-borne sondes was correlated with tracking radars. It was found that the standard and premium baroswitches perform well up to about 25 km altitude, while hypsometers provide more reliable data above 25 km.
Second Generation Prototype Design and Testing for a High Altitude Venus Balloon
NASA Technical Reports Server (NTRS)
Hall, J. L.; Kerzhanovich, V. V.; Yavrouian, A. H.; Plett, G. A.; Said, M.; Fairbrother, D.; Sandy, C.; Frederickson, T.; Sharpe, G.; Day, S.
2008-01-01
This paper describes the development of a second generation prototype balloon intended for flight in the upper atmosphere of Venus. The design of this new prototype incorporates lessons learned from the construction and testing of the first generation prototype, including finite element analyses of the balloon stresses and deformations, measured leak performance after handling and packaging, permeability and optical property measurements on material samples, and sulfuric acid testing. An improved design for the second generation prototype was formulated based on these results, although the spherical shape and 5.5 m diameter size were retained. The resulting balloon has a volume of 87 cubic meters and is capable of carrying a 45 kg payload at a 55 km altitude at Venus. The design and fabrication of the new prototype is described, along with test data for inflation and leakage performance.
NASA Astrophysics Data System (ADS)
Helson, Kyle R.
2015-08-01
We report on the status of the E and B Experiment (EBEX) a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation. The instrument employs a 1.5 meter Gregorian Mizuguchi-Dragone telescope providing 8 arc-minute resolution at three bands centered on 150, 250, and 410 GHz. A continuously rotating achromatic half wave plate, mounted on a superconducting magnetic bearing, and a polarizing grid give EBEX polarimetric capabilities. Radiation is detected with a kilo-pixel array of transition edge sensor (TES) bolometers that are cooled to 0.25 K. The detectors are readout using SQUID current amplifiers and a digital frequency-domain multiplexing system in which 16 detectors are readout simultaneously with two wires. EBEX is the first instrument to implement TESs and such readout system on board a balloon-borne platform. EBEX was launched from the Antarctic in December 2012 on an 11-day long-duration balloon flight. This presentation will provide an overview of the instrument and discuss the flight and status of the data analysis. We also discuss the next generation of EBEX called EBEX10k, currently in development.
NASA Astrophysics Data System (ADS)
Williams, B. P.; Kjellstrand, B.; Jones, G.; Reimuller, J. D.; Fritts, D. C.; Miller, A.; Geach, C.; Limon, M.; Hanany, S.; Kaifler, B.; Wang, L.; Taylor, M. J.
2017-12-01
PMC-Turbo is a NASA long-duration, high-altitude balloon mission that will deploy 7 high-resolution cameras to image polar mesospheric clouds (PMC) and measure gravity wave breakdown and turbulence. The mission has been enhanced by the addition of the DLR Balloon Lidar Experiment (BOLIDE) and an OH imager from Utah State University. This instrument suite will provide high horizontal and vertical resolution of the wave-modified PMC structure along a several thousand kilometer flight track. We have requested a flight from Kiruna, Sweden to Canada in June 2017 or McMurdo Base, Antarctica in Dec 2017. Three of the PMC camera systems were deployed on an aircraft and two tomographic ground sites for the High Level campaign in Canada in June/July 2017. On several nights the cameras observed PMC's with strong gravity wave breaking signatures. One PMC camera will piggyback on the Super Tiger mission scheduled to be launched in Dec 2017 from McMurdo, so we will obtain PMC images and wave/turbulence data from both the northern and southern hemispheres.
The NASA rocky mountain space grant high altitude research balloon project
NASA Astrophysics Data System (ADS)
Moore, R. G.; Espy, P.
1994-02-01
A group of U.S. universities, under the auspices of NASA's Space Grant College and Fellowship Program, has initiated a super-pressure balloon research project to measure ozone column density in the atmosphere above 20 kilometers, together with stratospheric circulation between 20 km and 40 km, over the continental U.S.A. Data from a balloon-borne ultraviolet spectrometer, together with time, altitude, latitude and longitude information from a Global Positioning System receiver, are recorded at ten-minute intervals during daytime hours in an on-board solid-state data logger. Coded messages are transmitted nightly from selected amateur radio ground stations to a receiver in the balloon gondola to command the transmission of packet radio bursts from the data logger to the ground stations, for relay to a central data collection and analysis facility at Utah State University. Discussions are under way with radio amateurs and members of the international scientific balloon community regarding extension of flights to cover the earth's northern hemisphere.
The NASA rocky moutain space grant high altitude research balloon project
NASA Astrophysics Data System (ADS)
Moore, R. G.; Espy, P.
1994-02-01
A group of U.S. universities, under the auspices of NASA's Space Grant College and Fellowship Program, has initiated a super-pressure balloon research project to measure ozone column density in the atmosphere above 20 kilometers, together with stratospheric circulation between 20 km and 40 km, over the continental U.S.A. Data from a balloon-borne ultraviolet spectrometer, together with time, altitude, latitude and longitude information from a Global Positioning System reciever, are recorded at ten-minute intervals during daytime hours in an on-board solid-state data logger. Coded messages are transmitted nightly from selected amateur radio ground stations to a receiver in the balloon gondola to command transmission of packet radio bursts from the data logger to the ground stations, for relay to a central data collection and analysis facility at Utah State University. Discussions are under way with radio amateurs and members of the international scientific balloon community regarding extension of flights to cover the earth's northern hemisphere.
Resuscitative Endovascular Balloon Occlusion of the Aorta: A Bridge to Flight Survival.
Goforth, Carl; Bradley, Matthew; Pineda, Benilani; See, Suzanne; Pasley, Jason
2018-04-01
Trauma endures as the leading cause of death worldwide, and most deaths occur in the first 24 hours after initial injury as a result of hemorrhage. Historically, about 90% of battlefield deaths occur before the injured person arrives at a theater hospital, and most are due to noncompressible hemorrhage of the torso. Resuscitative endovascular balloon occlusion of the aorta is an evolving technique to quickly place a balloon into the thoracic or abdominal aorta to efficiently block blood flow to distal circulation. Maneuvers, such as resuscitative endovascular balloon occlusion of the aorta, to control endovascular hemorrhage offer a potential intervention to control noncompressible hemorrhage. This technique can be performed percutaneously or open in prehospital environments to restore hemodynamic functions and serve as a survival bridge until the patient is delivered to a treatment facility for definitive surgical hemostasis. This article describes the indications, complications, and application of resuscitative endovascular balloon occlusion of the aorta to military and civilian aeromedical transport. ©2018 American Association of Critical-Care Nurses.
NASA Astrophysics Data System (ADS)
Smith, H. T.
2013-12-01
Multiple companies are in the process of developing commercial suborbital reusable launch vehicles (sRLV's). While these companies originally targeted space tourism as the primary customer base, it is rapidly becoming apparent that this dramatic increase in low cost access to space could provide revolutionary opportunities for scientific research, engineering/instrument development and STEM education. These burgeoning capabilities will offer unprecedented opportunities regarding access to space with frequent low-cost access to the region of space from the ground to the boundary of near-Earth space at ~100 km. In situ research of this region is difficult because it is too high for aircraft and balloons and yet too low for orbital satellites and spacecraft. However, this region is very significant because it represents the tenuous boundary of Earth's Atmosphere and Space. It contains a critical portion of the atmosphere where the regime transitions from collisional to non-collisional physics and includes complex charged and neutral particle interactions. These new launch vehicles are currently designed for manned and unmanned flights that reach altitudes up to 110 km for 5K-500K per flight with payload capacity exceeding 600 kg. Considering the much higher cost per flight for a sounding rocket with similar capabilities, high flight cadence, and guaranteed return of payload, commercial spacecraft has the potential to revolutionize access to near space. This unprecedented access to space allows participation at all levels of research, engineering, education and the public at large. For example, one can envision a model where students can conduct complete end to end projects where they design, build, fly and analyze data from individual research projects for thousands of dollars instead of hundreds of thousands. Our community is only beginning to grasp the opportunities and impactions of these new capabilities but with operational flights anticipated in 2014, it is important for our community to start exploring possible applications for these new spacecraft.
NASA Astrophysics Data System (ADS)
Voss, H. D.; Dailey, J.; Snyder, S. J.
2011-09-01
Students creating and flying experiments into near-space using a low-cost balloon High-Altitude Research Platform (HARP) greatly advance understanding in introductory astronomy and advanced classes across several disciplines. Remote sensing above 98% of the atmosphere using cameras, image intensifiers, IR, and UV sensors provides access to the heavens and large regions of the earth below. In situ and limb atmospheric gas measurements, near-space stratosphere measurements, and cosmic rays engage students in areas from planetary atmospheres to supernova acceleration. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build less than 4 kg payloads. The HARP program provides an engaging laboratory, gives challenging science, technology, engineering, and mathematics (STEM) field experiences, reaches students from diverse backgrounds, encourages collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Over a seven-year period, Taylor University, an undergraduate liberal arts school, has successfully launched over 230 HARP systems to altitudes over 30 km (100% retrieval success with rapid recovery) with flight times between two and six hours. The HARP payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergraduate). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded, leading to representatives from more than 52 universities being trained at workshops to implement high-altitude balloon launches in the classroom. A spin-off company, StratoStar Systems LLC, now sells the turn-key high-altitude balloon system, and another spin-off company, NearSpace Launch, now offers a low cost ride-for-hire into near-space.
Software systems for operation, control, and monitoring of the EBEX instrument
NASA Astrophysics Data System (ADS)
Milligan, Michael; Ade, Peter; Aubin, François; Baccigalupi, Carlo; Bao, Chaoyun; Borrill, Julian; Cantalupo, Christopher; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grainger, Will; Hanany, Shaul; Hillbrand, Seth; Hubmayr, Johannes; Hyland, Peter; Jaffe, Andrew; Johnson, Bradley; Kisner, Theodore; Klein, Jeff; Korotkov, Andrei; Leach, Sam; Lee, Adrian; Levinson, Lorne; Limon, Michele; MacDermid, Kevin; Matsumura, Tomotake; Miller, Amber; Pascale, Enzo; Polsgrove, Daniel; Ponthieu, Nicolas; Raach, Kate; Reichborn-Kjennerud, Britt; Sagiv, Ilan; Tran, Huan; Tucker, Gregory S.; Vinokurov, Yury; Yadav, Amit; Zaldarriaga, Matias; Zilic, Kyle
2010-07-01
We present the hardware and software systems implementing autonomous operation, distributed real-time monitoring, and control for the EBEX instrument. EBEX is a NASA-funded balloon-borne microwave polarimeter designed for a 14 day Antarctic flight that circumnavigates the pole. To meet its science goals the EBEX instrument autonomously executes several tasks in parallel: it collects attitude data and maintains pointing control in order to adhere to an observing schedule; tunes and operates up to 1920 TES bolometers and 120 SQUID amplifiers controlled by as many as 30 embedded computers; coordinates and dispatches jobs across an onboard computer network to manage this detector readout system; logs over 3 GiB/hour of science and housekeeping data to an onboard disk storage array; responds to a variety of commands and exogenous events; and downlinks multiple heterogeneous data streams representing a selected subset of the total logged data. Most of the systems implementing these functions have been tested during a recent engineering flight of the payload, and have proven to meet the target requirements. The EBEX ground segment couples uplink and downlink hardware to a client-server software stack, enabling real-time monitoring and command responsibility to be distributed across the public internet or other standard computer networks. Using the emerging dirfile standard as a uniform intermediate data format, a variety of front end programs provide access to different components and views of the downlinked data products. This distributed architecture was demonstrated operating across multiple widely dispersed sites prior to and during the EBEX engineering flight.
Dynamic Response Analysis of an Icosahedron Shaped Lighter Than Air Vehicle
2015-03-26
Montgolfier brothers successfully achieved flight using a hot - air balloon . While this was not the first time a LTAV had been imagined, it was the...first time one had been successfully built and flown [3]. Hot - air balloons are able to stay afloat in the atmosphere by displacing a volume of air ...These possibilities have already been exploited by LTAVs using a lifting gas (hydrogen, helium, hot air ), but those vehicles require storage for the gas
SuperHERO: Design of a New Hard X-Ray Focusing Telescope
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; Elsner, Ronald; Ramsey, Brian; Wilson-Hodge, Colleen; Tennant, Allyn; Christe, Steven; Shih, Albert; Kiranmayee, Kilaru; Swartz, Douglas; Seller, Paul;
2015-01-01
SuperHERO is a hard x-ray (20-75 keV) balloon-borne telescope, currently in its proposal phase, that will utilize high angular-resolution grazing-incidence optics, coupled to novel CdTe multi-pixel, fine-pitch (250 micrometers) detectors. The high-resolution electroformed-nickel, grazing-incidence optics were developed at MSFC, and the detectors were developed at the Rutherford Appleton Laboratory in the UK, and are being readied for flight at GSFC. SuperHERO will use two active pointing systems; one for carrying out astronomical observations and another for solar observations during the same flight. The telescope will reside on a light-weight, carbon-composite structure that will integrate the Wallops Arc Second Pointer into its frame, for arcsecond or better pointing. This configuration will allow for Long Duration Balloon flights that can last up to 4 weeks. This next generation design, which is based on the High Energy Replicated Optics (HERO) and HERO to Explore the Sun (HEROES) payloads, will be discussed, with emphasis on the core telescope components.
SuperHERO: The Next Generation Hard X-Ray HEROES Telescope
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Gaskin, Jessica A.; Christe, Steven D.; Elsner, Ronald F.; Ramsey, Brian D.; Seller, Paul; Shih, Albert Y.; Stuchlik, David W.; Swartz, Douglas A.; Tenant, Allyn F.;
2014-01-01
SuperHERO is a new high-sensitivity Long Duration Balloon (LDB)-capable, hard-x-ray (20-75 keV) telescope for making novel astrophysics and heliophysics observations. The proposed SuperHERO payload will be developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center, the Solar Physics Laboratory and Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently launched from Fort Sumner, NM in September of 2013. The HEROES core instrument is a hard x-ray telescope consisting of x-ray 109 optics configured into 8 modules. Each module is aligned to a matching gas-filled detector at a focal length of 6 m. SuperHERO will make significant improvements to the HEROES payload, including: new solid-state multi-pixel CdTe detectors, additional optics, the Wallops Arc-Second Pointer, alignment monitoring systems and lighter gondola.
SuperHERO: The Next Generation Hard X-ray HEROES Telescope
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Christe, Steven D.; Wilson-Hodge, Colleen; Shih, Albert Y. M.; Ramsey, Brian D.; Tennant, Allyn F.; Swartz, Douglas A.
2014-01-01
SuperHERO is a new high-sensitivity Long Duration Balloon (LDB)-capable, hard-x-ray (20-75 keV) telescope for making novel astrophysics and heliophysics observations. The proposed SuperHERO payload will be developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center, the Solar Physics Laboratory and Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently launched from Fort Sumner, NM in September of 2013. The HEROES core instrument is a hard x-ray telescope consisting of x-ray 109 optics configured into 8 modules. Each module is aligned to a matching gas-filled detector at a focal length of 6 m. SuperHERO will make significant improvements to the HEROES payload, including: new solid-state multi-pixel CdTe detectors, additional optics, the Wallops Arc-Second Pointer, alignment monitoring systems and lighter gondola.
Astrophysical Observations with the HEROES Balloon-borne Payload
NASA Astrophysics Data System (ADS)
Wilson, Colleen; Gaskin, J.; Christe, S.; Shih, A. Y.; Swartz, D. A.; Tennant, A. F.; Ramsey, B.
2014-01-01
The High Energy Replicated Optics to Explore the Sun (HEROES) payload flew on a balloon from Ft. Sumner, NM, September 21-22, 2013. HEROES is sensitive from about 20-75 keV and comprises 8 optics modules, each consisting of 13-14 nickel replicated optics shells and 8 Xenon-filled position-sensitive proportional counter detectors. HEROES is unique in that it is the first hard X-ray telescope that will observe the Sun and astrophysical targets in the same balloon flight. Our astrophysics targets include the Crab nebula and pulsar and the black hole binary GRS 1915+105. In this presentation, I will describe the HEROES mission, the data analysis pipeline and calibrations, and preliminary astrophysics results.
NASA Technical Reports Server (NTRS)
Lubin, Philip M.; Tomizuka, Masayoshi; Chingcuanco, Alfredo O.; Meinhold, Peter R.
1991-01-01
A balloon-born stabilized platform has been developed for the remotely operated altitude-azimuth pointing of a millimeter wave telescope system. This paper presents a development and implementation of model reference adaptive control (MRAC) for the azimuth-pointing system of the stabilized platform. The primary goal of the controller is to achieve pointing rms better than 0.1 deg. Simulation results indicate that MRAC can achieve pointing rms better than 0.1 deg. Ground test results show pointing rms better than 0.03 deg. Data from the first flight at the National Scientific Balloon Facility (NSBF) Palestine, Texas show pointing rms better than 0.02 deg.
Design Evolution and Methodology for Pumpkin Super-Pressure Balloons
NASA Astrophysics Data System (ADS)
Farley, Rodger
The NASA Ultra Long Duration Balloon (ULDB) program has had many technical development issues discovered and solved along its road to success as a new vehicle. It has the promise of being a sub-satellite, a means to launch up to 2700 kg to 33.5 km altitude for 100 days from a comfortable mid-latitude launch point. Current high-lift long duration ballooning is accomplished out of Antarctica with zero-pressure balloons, which cannot cope with the rigors of diurnal cycles. The ULDB design is still evolving, the product of intense analytical effort, scaled testing, improved manufacturing, and engineering intuition. The past technical problems, in particular the s-cleft deformation, their solutions, future challenges, and the methodology of pumpkin balloon design will generally be described.
NASA Technical Reports Server (NTRS)
Schubert, Wayne H.; Ciesielski, Paul E.; Guinn, Thomas A.; Cox, Stephen K.; Mckee, Thomas B.
1990-01-01
During the FIRE Marine Stratocumulus Program on San Nicolas Island, Colorado State University (CSU) and the British Meteorological Office (BMO) operated separate instrument packages on the NASA tethered balloon. The CSU package contained instrumentation for the measurement of temperature, pressure, humidity, cloud droplet concentration, and long and short wave radiation. Eight research flights, performed between July 7 and July 14, are summarized. An analysis priority to the July 7, 8 and 11 flights was assigned for the purposes of comparing the CSU and BMO data. Results are presented. In addition, CSU operated a laser ceilometer for the determination of cloud base, and a CLASS radiosonde site which launched 69 sondes. Data from all of the above systems are being analyzed.
NASA Astrophysics Data System (ADS)
Roberts, T. J.; Dütsch, M.; Hole, L. R.; Voss, P. B.
2015-10-01
Observations from CMET (Controlled Meteorological) balloons are analyzed in combination with mesoscale model simulations to provide insights into tropospheric meteorological conditions (temperature, humidity, wind-speed) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard over 5-12 May 2011, and measured vertical atmospheric profiles above Spitsbergen Island and over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer over a period of more than 10 h. The CMET profiles are compared to simulations using the Weather Research and Forecasting (WRF) model using nested grids and three different boundary layer schemes. Variability between the three model schemes was typically smaller than the discrepancies between the model runs and the observations. Over Spitsbergen, the CMET flights identified temperature inversions and low-level jets (LLJ) that were not captured by the model. Nevertheless, the model largely reproduced time-series obtained from the Ny-Ålesund meteorological station, with exception of surface winds during the LLJ. Over sea-ice east of Svalbard the model underestimated potential temperature and overestimated wind-speed compared to the CMET observations. This is most likely due to the full sea-ice coverage assumed by the model, and consequent underestimation of ocean-atmosphere exchange in the presence of leads or fractional coverage. The suite of continuous CMET soundings over a sea-ice free region to the northwest of Svalbard are analysed spatially and temporally, and compared to the model. The observed along-flight daytime increase in relative humidity is interpreted in terms of the diurnal cycle, and in the context of marine and terrestrial air-mass influences. Analysis of the balloon trajectory during the CMET soundings identifies strong wind-shear, with a low-level channeled flow. The study highlights the challenges of modelling the Arctic atmosphere, especially in coastal zones with varying topography, sea-ice and surface conditions. In this context, CMET balloons provide a valuable technology for profiling the free atmosphere and boundary layer in remote regions where few other observations are available for model validation.
RaD-X: Complementary measurements of dose rates at aviation altitudes
NASA Astrophysics Data System (ADS)
Meier, Matthias M.; Matthiä, Daniel; Forkert, Tomas; Wirtz, Michael; Scheibinger, Markus; Hübel, Robert; Mertens, Christopher J.
2016-09-01
The RaD-X stratospheric balloon flight organized by the National Aeronautics and Space Administration was launched from Fort Sumner on 25 September 2015 and carried several instruments to measure the radiation field in the upper atmosphere at the average vertical cutoff rigidity Rc of 4.1 GV. The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt) in cooperation with Lufthansa German Airlines supported this campaign with an independent measuring flight at the altitudes of civil aviation on a round trip from Germany to Japan. The goal was to measure dose rates under similar space weather conditions over an area on the Northern Hemisphere opposite to the RaD-X flight. Dose rates were measured in the target areas, i.e., around vertical cutoff rigidity Rc of 4.1 GV, at two flight altitudes for about 1 h at each position with acceptable counting statistics. The analysis of the space weather situation during the flights shows that measuring data were acquired under stable and moderate space weather conditions with a virtually undisturbed magnetosphere. The measured rates of absorbed dose in silicon and ambient dose equivalent complement the data recorded during the balloon flight. The combined measurements provide a set of experimental data suitable for validating and improving numerical models for the calculation of radiation exposure at aviation altitudes.
The Gamma-Ray Imager/Polarimeter for Solar Flares (GRIPS)
NASA Technical Reports Server (NTRS)
Shih, Albert Y.; Lin, Robert P.; Hurford, Gordon J.; Duncan, Nicole A.; Saint-Hilaire, Pascal; Bain, Hazel M.; Boggs, Steven E.; Zoglauer, Andreas C.; Smith, David M.; Tajima, Hiroyasu;
2012-01-01
The balloon-borne Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument will provide a near-optimal combination of high-resolution imaging, spectroscopy, and polarimetry of solar-flare gamma-ray/hard X-ray emissions from approximately 20 keV to greater than approximately 10 MeV. GRIPS will address questions raised by recent solar flare observations regarding particle acceleration and energy release, such as: What causes the spatial separation between energetic electrons producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? The spectrometer/polarimeter consists of sixteen 3D position-sensitive germanium detectors (3D-GeDs), where each energy deposition is individually recorded with an energy resolution of a few keV FWHM and a spatial resolution of less than 0.1 cubic millimeter. Imaging is accomplished by a single multi-pitch rotating modulator (MPRM), a 2.5-centimeter thick tungsten alloy slit/slat grid with pitches that range quasi-continuously from 1 to 13 millimeters. The MPRM is situated 8 meters from the spectrometer to provide excellent image quality and unparalleled angular resolution at gamma-ray energies (12.5 arcsec FWHM), sufficient to separate 2.2 MeV footpoint sources for almost all flares. Polarimetry is accomplished by analyzing the anisotropy of reconstructed Compton scattering in the 3D-GeDs (i.e., as an active scatterer), with an estimated minimum detectable polarization of a few percent at 150-650 keV in an X-class flare. GRIPS is scheduled for a continental-US engineering test flight in fall 2013, followed by long or ultra-long duration balloon flights in Antarctica.
NASA's BARREL Mission in Sweden
2017-12-08
The faint green glow of aurora can be seen above the clouds at Esrange Space Center in this photo from Aug. 23, 2016. Auroras are created by energetic electrons, which rain down from Earth’s magnetic bubble and interact with particles in the upper atmosphere to create glowing lights that stretch across the sky. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
77 FR 4370 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-27
... persons, scientific and technical information relevant to program planning. DATES: Thursday, February 23... topics: --Astrophysics Division Update --Update on Balloons Return to Flight Changes --James Webb Space...
The Extreme Universe Space Observatory Super Pressure Balloon Mission
NASA Astrophysics Data System (ADS)
Wiencke, Lawrence; Olinto, Angela; Adams, Jim; JEM-EUSO Collaboration
2017-01-01
The Extreme Universe Space Observatory on a super pressure balloon (EUSO-SPB) mission will make the first fluorescence observations of high energy cosmic ray extensive air showers by looking down on the atmosphere from near space. A long duration flight of at least 50 nights launched from Wanaka NZ is planned for 2017. We describe completed instrument, and the planned mission. We acknowledge the support of NASA through grants NNX13AH53G and NNX13AH55G.
Observational techniques for solar flare gamma-rays, hard X-rays, and neutrons
NASA Technical Reports Server (NTRS)
Lin, Robert P.
1989-01-01
The development of new instrumentation and techniques for solar hard X-ray, gamma ray and neutron observations from spacecraft and/or balloon-borne platforms is examined. The principal accomplishments are: (1) the development of a two segment germanium detector which is near ideal for solar hard X-ray and gamma ray spectroscopy; (2) the development of long duration balloon flight techniques and associated instrumentation; and (3) the development of innovative new position sensitive detectors for hard X-ray and gamma rays.
Astronomical observations with the University College London balloon borne telescope
NASA Technical Reports Server (NTRS)
Jennings, R. E.
1974-01-01
The characteristics of a telescope system which was developed for high altitude balloon astronomy are discussed. A drawing of the optical system of the telescope is provided. A sample of the signals recorded during one of the flights is included. The correlation between the infrared flux and the radio continuum flux is analyzed. A far infrared map of the radio and infrared peaks of selected stars is developed. The spectrum of the planet Saturn is plotted to show intensity as compared with wavenumber.
Performance of the Advanced Thin Ionization Calorimeter (ATIC)
NASA Technical Reports Server (NTRS)
Case, G.; Ellison, S.; Gould, R.; Granger, D.; Guzik, T. G.; Isbert, J.; Price, B.; Stewart, M.; Wefel, J. P.; Adams, J. H.;
2001-01-01
The ATIC instrument is a balloon-borne experiment capable of measuring cosmic ray elemental spectra from 50 GeV to 100 TeV for nuclei from H to Fe with a fully active Bismuth Germanate calorimeter. Several Long Duration Balloon flights from McMurdo station, Antarctica are scheduled. The detector was tested with high energy electron, proton, and pion beams at CERN. We present results for 150 and 375 GeV protons, and 150 GeV pions and comparison with a GEANT Monte Carlo.
Flight Analysis of an Autonomously Navigated Experimental Lander for High Altitude Recovery
NASA Technical Reports Server (NTRS)
Chin, Jeffrey; Niehaus, Justin; Goodenow, Debra; Dunker, Storm; Montague, David
2016-01-01
First steps have been taken to qualify a family of parafoil systems capable of increasing the survivability and reusability of high-altitude balloon payloads. The research is motivated by the common risk facing balloon payloads where expensive flight hardware can often land in inaccessible areas that make them difficult or impossible to recover. The Autonomously Navigated Experimental Lander (ANGEL) flight test introduced a commercial Guided Parachute Aerial Delivery System (GPADS) to a previously untested environment at 108,000ft MSL to determine its high-altitude survivability and capabilities. Following release, ANGEL descended under a drogue until approximately 25,000ft, at which point the drogue was jettisoned and the main parachute was deployed, commencing navigation. Multiple data acquisition platforms were used to characterize the return-to-point technology performance and help determine its suitability for returning future scientific payloads ranging from 180 to 10,000lbs to safer and more convenient landing locations. This report describes the test vehicle design, and summarizes the captured sensor data. Various post-flight analyses are used to quantify the system's performance, gondola load data, and serve as a reference point for subsequent missions.
Flight Analysis of an Autonomously Navigated Experimental Lander
NASA Technical Reports Server (NTRS)
Chin, Jeffrey; Niehaus, Justin; Goodenow, Debra; Dunker, Storm; Montague, David
2016-01-01
First steps have been taken to qualify a family of parafoil systems capable of increasing the survivability and reusability of high-altitude balloon payloads. The research is motivated by the common risk facing balloon payloads where expensive flight hardware can often land in inaccessible areas that make them difficult or impossible to recover. The Autonomously Navigated Experimental Lander (ANGEL) flight test introduced a commercial Guided Parachute Aerial Delivery System (GPADS) to a previously untested environment at 108,000 feet Mean Sea Level (MSL) to determine its high-altitude survivability and capabilities. Following release, ANGEL descended under a drogue until approximately 25,000 feet, at which point the drogue was jettisoned and the main parachute was deployed, commencing navigation. Multiple data acquisition platforms were used to characterize the return-to-point technology performance and help determine its suitability for returning future scientific payloads ranging from 180 to 10,000 pounds to safer and more convenient landing locations. This report describes the test vehicle design, and summarizes the captured sensor data. Various post-flight analyses are used to quantify the systems performance, gondola load data, and serve as a reference point for subsequent missions.
Assessing the Potential of Stratospheric Balloons for Planetary Science
NASA Technical Reports Server (NTRS)
Kremic, Tibor; Hibbitts, Karl; Young, Eliot; Landis, Robert; Noll, Keith; Baines, Kevin
2013-01-01
Recent developments in high altitude balloon platform capabilities, specifically long duration flights in excess of 50 days at over 100,000 ft and precision pointing with performance at the arc sec level or better have raised the question whether this platform can be utilized for high-value planetary science observations. In January of 2012 a workshop was held at NASA Glenn Research Center in Cleveland, Ohio to explore what planetary science can be achieved utilizing such a platform. Over 40 science concepts were identified by the scientists and engineers attending the workshop. Those ideas were captured and then posted to a public website for all interested planetary scientists to review and give their comments. The results of the workshop, and subsequent community review, have demonstrated that this platform appears to have potential for high-value science at very competitive costs. Given these positive results, the assessment process was extended to include 1) examining, in more detail, the requirements for the gondola platform and the mission scenarios 2) identifying technical challenges and 3) developing one or more platform concepts in enough fidelity to enable accurate estimating of development and mission costs. This paper provides a review of the assessment, a summary of the achievable science and the challenges to make that science a reality with this platform.
Assessing the potential of stratospheric balloons for planetary science
NASA Astrophysics Data System (ADS)
Kremic, T.; Hibbitts, K.; Young, E.; Landis, R.; Noll, K.; Baines, K.
Recent developments in high altitude balloon platform capabilities, specifically long duration flights in excess of 50 days at over 100,000 ft and precision pointing with performance at the arc sec level or better have raised the question whether this platform can be utilized for high-value planetary science observations. In January of 2012 a workshop was held at NASA Glenn Research Center in Cleveland, Ohio to explore what planetary science can be achieved utilizing such a platform. Over 40 science concepts were identified by the scientists and engineers attending the workshop. Those ideas were captured and then posted to a public website for all interested planetary scientists to review and give their comments. The results of the workshop, and subsequent community review, have demonstrated that this platform appears to have potential for high-value science at very competitive costs. Given these positive results, the assessment process was extended to include 1) examining, in more detail, the requirements for the gondola platform and the mission scenarios 2) identifying technical challenges and 3) developing one or more platform concepts in enough fidelity to enable accurate estimating of development and mission costs. This paper provides a review of the assessment, a summary of the achievable science and the challenges to make that science a reality with this platform.
Summary of biological spaceflight experiments with cells.
Dickson, K J
1991-07-01
Numerous biological experiments with cells have been conducted in space, and the importance of these experiments and this area of study is continually becoming evident. This contribution is a compilation of available information about spaceflight experiments with cells for the purpose of providing a single source of information for those interested in space gravitational cell biology. Experiments focused on a study of the effects of gravity and its absence on cells, cell function, and basic cellular processes have been included. Experiments include those involving viruses, bacteriophage, unicellular organisms, lower fungi, and animal and plant cell and tissue cultures, but exclude experiments with cells that were carried on a flight as part of a whole organism and later removed for study, and experiments with fertilized eggs. In addition, experiments in biotechnology, in which the microgravity environment is employed to study cell purification, cell fusion, protein crystallization, and similar processes, have not been included. Spaceflight experiments conducted by scientists from the U.S., U.S.S.R., and other countries and flown onboard sounding rockets (TEXUS, MAXUS, Consort), biosatellites (Biosatellite II, Cosmos), and various crewed spacecraft including the space shuttle (STS) and Soyuz, and space stations (Salyut, Mir) have been included, as well as high altitude balloon flights. Balloon flights are not spaceflights but can and are used as controls for the effects of space radiation, since organisms carried on balloons may be exposed to some of the same radiation as those taken into space, yet continue to be exposed to Earth's gravitational force. Parabolic flights on aircraft during which periods of microgravity of less than a minute are achieved have arbitrarily been excluded, because even though numerous experiments have been conducted, few results have been published.
NASA’s BARREL Mission Launches 20 Balloons
2017-12-08
BARREL team members run under the payload as the balloon first takes flight at the SANAE IV research station in Antarctica. Credit: NASA --- In Antarctica in January, 2013 – the summer at the South Pole – scientists launched 20 balloons up into the air to study an enduring mystery of space weather: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? The mission is called BARREL (Balloon Array for Radiation belt Relativistic Electron Losses) and it is led by physicist Robyn Millan of Dartmouth College in Hanover, NH. Millan provided photographs from the team’s time in Antarctica. The team launched a balloon every day or two into the circumpolar winds that circulate around the pole. Each balloon floated for anywhere from 3 to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere. BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels through the Van Allen radiation belts surrounding Earth. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites must travel. Scientists wish to understand this process better, and even provide forecasts of this space weather, in order to protect our spacecraft. As the Van Allen Probes were observing what was happening in the belts, BARREL tracked electrons that precipitated out of the belts and hurtled down Earth’s magnetic field lines toward the poles. By comparing data, scientists will be able to track how what’s happening in the belts correlates to the loss of particles – information that can help us understand this mysterious, dynamic region that can impact spacecraft. Having launched balloons in early 2013, the team is back at home building the next set of payloads. They will launch 20 more balloons in 2014. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
A measurement of the energy spectra of cosmic rays from 20 to 1000 GeV per AMU
NASA Technical Reports Server (NTRS)
Gregory, John C.; Smith, Arthur
1994-01-01
During the report period the BUGS-4 instrument was completed, and the maiden voyage took place on 29 September from Fort Sumner, New Mexico. The successful flight of a large spherical drift chamber is a unique first for the sub-orbital balloon program. Unfortunately the instrument was consumed by fire after striking a power line during landing. However, while at float altitude, circa 24 hours of data were telemetered. The pre-flight preparations, and flight operations are described.
NASA Technical Reports Server (NTRS)
Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.
1990-01-01
Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.
The Electron Calorimeter (ECAL) Long Duration Balloon Experiment
NASA Technical Reports Server (NTRS)
Guzik, T. G.; Adams, J. H.; Bashindzhagyan, G.; Binns, W. R.; Chang, J.; Cherry, M. L.; Christl, M.; Dowkontt, P.; Ellison, B.; Isbert, J. B.;
2007-01-01
Accurate measurements of the cosmic ray electron energy spectrum in the energy region 50 GeV to greater than 1 TeV may reveal structure caused by the annihilation of exotic dark matter particles and/or individual cosmic ray sources. Here we describe a new long duration balloon (LDB) experiment, ECAL, optimized to directly measure cosmic ray electrons up to several TeV. ECAL includes a double layer silicon matrix, a scintillating optical fiber track imager, a neutron detector and a fully active calorimeter to identify more than 90% of the incident electrons with an energy resolution of about 1.7% while misidentifying only 1 in 200,000 protons and 0.8% of secondary gamma rays as electrons. Two ECAL flights in Antarctica are planned for a total exposure of 50 days with the first flight anticipate for December 2009.
Research in cosmic and gamma ray astrophysics
NASA Technical Reports Server (NTRS)
Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.
1992-01-01
Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.
Temperature Effects in the ATIC BGO Calorimeter
NASA Technical Reports Server (NTRS)
Isbert, J.; Adams, J. H.; Ahn, H.; Bashindzhagyan, G.; Batkov, K.; Chang, J.; Christl, M. J.; Fazely, A.; Ganel, O.; Gunasigha, R.
2006-01-01
The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment contains a segmented calorimeter composed of 320 individual BGO crystals (18 radiation lengths deep) to determine the particle energy. Like all inorganic scintillation crystals the light output of BGO depends not only on the energy deposited by particles but also on the temperature of the crystal. ATIC had successful flights in 2000/2001 and 2002/2003 from McMurdo, Antarctica. The temperature of balloon instruments varies during their flights at altitude due to sun angle variations and differences in albedo from the ground and is monitored and recorded. In order to determine the temperature sensitivity of the ATIC calorimeter it was temperature cycled in the thermal vacuum chamber at the CSBF in Palestine, TX. The temperature dependence is derived from the pulse height response to cosmic ray muons at various temperatures.
NASA Technical Reports Server (NTRS)
Paciesas, W. S.; Baker, R.; Boclet, D.; Brown, S.; Cline, T.; Costlow, H.; Durouchoux, P.; Ehrmann, C.; Gehrels, N.; Hameury, J. M.
1983-01-01
The Low Energy Gamma ray Spectrometer (LEGS) is designed to perform fine energy resolution measurements of astrophysical sources. The instrument is configured for a particular balloon flight with either of two sets of high purity germanium detectors. In one configuration, the instrument uses an array of three coaxial detectors (effective volume equal to or approximately 230 cubic cm) inside an NaI (T1) shield and collimator (field of view equal to or approximately 16 deg FWHM) and operates in the 80 to 8000 keV energy range. In the other configuration, three planar detectors (effective area equal to or approximately square cm) surrounded by a combination of passive Fe and active NaI for shielding and collimation (field of view equal to or approximately 5 deg x 10 deg FWHM) are optimized for the 20 to 200 keV energy range. In a typical one day balloon flight, LEGS sensitivity limit (3 sigma) for narrow line features is less than or approximately .0008 ph/cm/s square (coaxial array: 80 to 2000 keV) and less than or approximately .0003 ph/square cm/s (planar array: 50 to 150 keV).
NASA Technical Reports Server (NTRS)
Vallerga, J. V.; Vanderspek, R. K.; Ricker, G. R.
1983-01-01
To establish the expected sensitivity of a new hard X-ray telescope design, described by Ricker et al., an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, TX. The second flight of this instrument established a differential background counting rate of 4.2 + or - 0.7 x 10 to the -5th counts/s sq cm keV over the energy range of 40-80 keV. This measurement was within 50 percent of the predicted value. The measured rate is about 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range.
Stratospheric constituent distributions from balloon-based limb thermal emission measurements
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Kunde, Vigil G.
1990-01-01
This research task deals with an analysis of infrared thermal emission observations of the Earth's atmosphere for determination of trace constituent distributions. Infrared limb thermal emission spectra in the 700-2000 cm(exp -1) region were obtained with a liquid nitrogen cooled Michelson interferometer-spectrometer (SIRIS) on a balloon flight launched from Palestine, Texas, at nighttime on September 15-16, 1986. An important objective of this work is to obtain simultaneously measured vertical mixing ratio profiles of O3, H2O, N2O, NO2, N2O5, HNO3 and ClONO2 and compare with measurements made with a variety of techniques by other groups as well as with photochemical model calculations. A portion of the observed spectra obtained by SIRIS from the balloon flight on September 15-16, 1986, has been analyzed with a focus on calculation of the total nighttime odd nitrogen budget from the simultaneously measured profiles of important members of the NO(sub x) family. The measurements permit first direct determination of the nighttime total odd nitrogen concentrations NO(sub y) and the partitioning of the important elements of the NO(sub x) family.
Isothermal pumping analysis for high-altitude tethered balloons
Kuo, Kirsty A.; Hunt, Hugh E. M.
2015-01-01
High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe. PMID:26543573
Isothermal pumping analysis for high-altitude tethered balloons.
Kuo, Kirsty A; Hunt, Hugh E M
2015-06-01
High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe.
Cho, Moonsung; Neubauer, Peter; Fahrenson, Christoph; Rechenberg, Ingo
2018-06-01
The physical mechanism of aerial dispersal of spiders, "ballooning behavior," is still unclear because of the lack of serious scientific observations and experiments. Therefore, as a first step in clarifying the phenomenon, we studied the ballooning behavior of relatively large spiders (heavier than 5 mg) in nature. Additional wind tunnel tests to identify ballooning silks were implemented in the laboratory. From our observation, it seems obvious that spiders actively evaluate the condition of the wind with their front leg (leg I) and wait for the preferable wind condition for their ballooning takeoff. In the wind tunnel tests, as-yet-unknown physical properties of ballooning fibers (length, thickness, and number of fibers) were identified. Large spiders, 16-20 mg Xysticus spp., spun 50-60 nanoscale fibers, with a diameter of 121-323 nm. The length of these threads was 3.22 ± 1.31 m (N = 22). These physical properties of ballooning fibers can explain the ballooning of large spiders with relatively light updrafts, 0.1-0.5 m s-1, which exist in a light breeze of 1.5-3.3 m s-1. Additionally, in line with previous research on turbulence in atmospheric boundary layers and from our wind measurements, it is hypothesized that spiders use the ascending air current for their aerial dispersal, the "ejection" regime, which is induced by hairpin vortices in the atmospheric boundary layer turbulence. This regime is highly correlated with lower wind speeds. This coincides well with the fact that spiders usually balloon when the wind speed is lower than 3 m s-1.
NASA Technical Reports Server (NTRS)
Dacostafereiraneri, A.; Bui-Van, A.; Lavigne, J. M.; Sabaud, C.; Vedrenne, G.; Agrinier, B.; Gouiffes, C.
1985-01-01
A time of flight measuring device is the basic triggering system of most of medium and high energy gamma-ray telescopes. A simple gamma-ray telescope has been built in order to check in flight conditions the functioning of an advanced time of flight system. The technical ratings of the system are described. This telescope has been flown twice with stratospheric balloons, its axis being oriented at various Zenital directions. Flight results are presented for diffuse gamma-rays, atmospheric secondaries, and various causes of noise in the 5 MeV-50 MeV energy range.
European Venus Explorer: An in-situ mission to Venus using a balloon platform
NASA Astrophysics Data System (ADS)
Chassefière, E.; Korablev, O.; Imamura, T.; Baines, K. H.; Wilson, C. F.; Titov, D. V.; Aplin, K. L.; Balint, T.; Blamont, J. E.; Cochrane, C. G.; Ferencz, Cs.; Ferri, F.; Gerasimov, M.; Leitner, J. J.; Lopez-Moreno, J.; Marty, B.; Martynov, M.; Pogrebenko, S. V.; Rodin, A.; Whiteway, J. A.; Zasova, L. V.; the EVE Team
2009-07-01
Planetary balloons have a long history already. A small super-pressure balloon was flown in the atmosphere of Venus in the eighties by the Russian-French VEGA mission. For this mission, CNES developed and fully tested a 9 m diameter super-pressure balloon, but finally replaced it by a smaller one due to mass constraints (when it was decided to send Vega to Halley's Comet). Furthermore, several kinds of balloons have been proposed for planetary exploration [Blamont, J., in: Maran, S.P. (Ed.), The Astronomy and Astrophysics Encyclopedia. Cambridge University Press, p. 494, 1991]. A Mars balloon has been studied for the Mars-94 Russian-French mission, which was finally cancelled. Mars and Venus balloons have also been studied and ground tested at JPL, and a low atmosphere Venus balloon is presently under development at JAXA (the Japanese Space Agency). Balloons have been identified as a key element in an ongoing Flagship class mission study at NASA, with an assumed launch date between 2020 and 2025. Recently, it was proposed by a group of scientists, under European leadership, to use a balloon to characterize - by in-situ measurements - the evolution, composition and dynamics of the Venus atmosphere. This balloon is part of a mission called EVE (European Venus Explorer), which has been proposed in response to the ESA AO for the first slice of the Cosmic Vision program by a wide international consortium including Europe, Russia, Japan and USA. The EVE architecture consists of one balloon platform floating at an altitude of 50-60 km, one short lived probe provided by Russia, and an orbiter with a polar orbit to relay data from the balloon and probe, and to perform remote sensing science observations. The balloon type preferred for scientific goals is one, which would oscillate in altitude through the cloud deck. To achieve this flight profile, the balloon envelope would contain a phase change fluid. While this proposal was not selected for the first slice of Cosmic Vision missions, it was ranked first among the remaining concepts within the field of solar system science.
Report on the Brazilian Scientific Balloon Program
NASA Astrophysics Data System (ADS)
Braga, Joao
We report on the recent scientific ballooning activities in Brazil, including important international collaborations, and present the plans for the next few years. We also present the recent progress achieved in the development and calibration of the protoMIRAX balloon experiment, especially about the detector system. protoMIRAX is a balloon-borne X-ray imaging telescope under development at INPE as a pathfinder for the MIRAX (Monitor e Imageador de Raios X) satellite mission. The experiment consists essentially in a hard X-ray (30-200 keV) coded-aperture imager which employs a square array of 196 10mm x 10mm x 2mm CdZnTe (CZT) planar detector. A collimator defines a fully-coded field-of-view of 20(°) x 20(°) , with 4(°) x 4(°) of full sensitivity. The angular resolution will be of 1.7(°) , defined by the use of a 1mm-thick lead coded-mask with an extended (˜4x4) 13x13 MURA pattern will 20mm-side cells, placed at a distance of 650 mm from the detector plane. We describe the design and development of the front-end electronics, with charge preamplifiers and shaping amplifiers customized for these detectors. We present spectral results obtained in the laboratory as well as initial calibration results of the acquisition system designed to get positions and energies in the detector plane. We show simulations of the flight background and the expected flight images of bright sources.
NASA Astrophysics Data System (ADS)
Saad, Marissa Elizabeth
The United States must provide quality science, technology, engineering, and math (STEM) education in order to maintain a leading role in the global economy. Numerous initiatives have been established across the United States that promote and encourage STEM education within the middle school curriculum. Integrating active learning pedagogy into instructors' lesson plans will prepare the students to think critically - a necessary skill for the twenty first century. This study integrated a three-week long Near Space Balloon project into six eighth grade Earth Science classes from Valley Middle School in Grand Forks, North Dakota. It was hypothesized that after the students designed, constructed, launched, and analyzed their payload experiments, they would have an increased affinity for high school science and math classes. A pre- and post-survey was distributed to the students (n=124), before and after the project to analyze how effective this engineering and space mission was regarding high school STEM interests. The surveys were statistically analyzed, comparing means by the Student's t-Test, specifically the Welch-Satterthwaite test. Female students displayed a 57.1% increase in math and a 63.6% increase in science; male students displayed a 46.6% increase in science and 0% increase in math. Most Likert-scale survey questions experienced no statistically significant change, supporting the null hypothesis. The only survey question that supported the hypothesis was, "I Think Engineers Work Alone," which experienced a 0.24% decrease in student understanding. The results suggest that integrating a three-week long Near Space Balloon project into middle school curricula will not directly influence the students' excitement to pursue STEM subjects and careers. An extensive, yearlong ballooning mission is recommended so that it can be integrated with multiple core subjects. Using such an innovative pedagogy method as with this balloon launch will help students master the scientific process and experience real team collaboration, as they did in this successful mission.
STRATCOM-8 scientific objectives and mission orginization
NASA Technical Reports Server (NTRS)
Reed, E. I. (Compiler)
1977-01-01
Stratospheric photochemistry was studied, with emphasis on the Ozone-NOx-ultraviolet flux interactions, but also including members of the chlorine, water vapor, and carbon-containing families. Secondary objectives include: (1) study of the balloon environment, (2) comparison of independent measurements of ozone and of NO, (3) development of new sensor systems; and (4) some measurements for exploratory purposes. Most, but not all, systems and instruments performed as planned, and it is believed that data are available to achieve most of the planned scientific and engineering objectives. The emphasis on photochemistry in the 35 to 40 km region is greater than anticipated, and observations are more complete for sunset than for sunrise. The planned instruments and a summary of the flight operations is discussed partly for the mutual information of those participating and partly for the wider scientific community.
Project SunbYte: solar astronomy on a budget
NASA Astrophysics Data System (ADS)
Alvarez Gonzalez, F.; Badilita, A.-M.; Baker, A.; Cho, Y.-H.; Dhot, N.; Fedun, V.; Hare, C.; He, T.; Hobbs, M.; Javed, M.; Lovesey, H.; Lord, C.; Panoutsos, G.; Permyakov, A.; Pope, S.; Portnell, M.; Rhodes, L.; Sharma, R.; Taras, P.; Taylor, J.; Tilbrook, R.; Verth, G.; Wrigley, S. N.; Yaqoob, M.; Cook, R.; McLaughlin, J.; Morton, R.; Scullion, E.; Shelyag, S.; Hamilton, A.; Zharkov, S.; Jess, D.; Wrigley, M.
2017-04-01
The Sheffield University Nova Balloon Lifted Solar Telescope (SunbYte) is a high-altitude balloon experiment devised and run largely by students at the University of Sheffield, and is scheduled for launch in October 2017. It was the only UK project in 2016 to be selected for the balloon side of the Swedish-German student programme REXUS/BEXUS (Rocket and Balloon Experiments for University Students; see box on p2.25). The success of the SunbYte team in the REXUS/BEXUS selection process is an unprecedented opportunity for the students to gain valuable experience working in the space engineering industry, using their theoretical knowledge and networking with students and technology companies from all over Europe.
All about Flight. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
Up, up and away! A hot air balloon, an airplane and even the space shuttle all defy the force of gravity, but they all do it in different ways. Children will learn about the basic concepts that make flight possible. With clear demonstrations and a hands-on project, students will be able to understand more easily the basic concepts behind various…
Adapted ECC ozonesonde for long-duration flights aboard boundary-layer pressurised balloons
NASA Astrophysics Data System (ADS)
Gheusi, François; Durand, Pierre; Verdier, Nicolas; Dulac, François; Attié, Jean-Luc; Commun, Philippe; Barret, Brice; Basdevant, Claude; Clenet, Antoine; Derrien, Solène; Doerenbecher, Alexis; El Amraoui, Laaziz; Fontaine, Alain; Hache, Emeric; Jambert, Corinne; Jaumouillé, Elodie; Meyerfeld, Yves; Roblou, Laurent; Tocquer, Flore
2016-12-01
Since the 1970s, the French space agency CNES has developed boundary-layer pressurised balloons (BLPBs) with the capability to transport lightweight scientific payloads at isopycnic level and offer a quasi-Lagrangian sampling of the lower atmosphere over very long distances and durations (up to several weeks).
Electrochemical concentration cell (ECC) ozonesondes are widely used under small sounding balloons. However, their autonomy is limited to a few hours owing to power consumption and electrolyte evaporation. An adaptation of the ECC sonde has been developed specifically for long-duration BLPB flights. Compared to conventional ECC sondes, the main feature is the possibility of programming periodic measurement sequences (with possible remote control during the flight). To increase the ozonesonde autonomy, the strategy has been adopted of short measurement sequences (2-3 min) regularly spaced in time (e.g. every 15 min). The rest of the time, the sonde pump is turned off. Results of preliminary ground-based tests are first presented. In particular, the sonde was able to provide correct ozone concentrations against a reference UV-absorption ozone analyser every 15 min for 4 days. Then we illustrate results from 16 BLBP flights launched over the western Mediterranean during three summer field campaigns of the ChArMEx project (http://charmex.lsce.ipsl.fr): TRAQA in 2012, and ADRIMED and SAFMED in 2013. BLPB drifting altitudes were in the range 0.25-3.2 km. The longest flight lasted more than 32 h and covered more than 1000 km. Satisfactory data were obtained when compared to independent ozone measurements close in space and time. The quasi-Lagrangian measurements allowed a first look at ozone diurnal evolution in the marine boundary layer as well as in the lower free troposphere. During some flight segments, there was indication of photochemical ozone production in the marine boundary layer or even in the free troposphere, at rates ranging from 1 to 2 ppbv h -1, which is slower than previously found in the boundary layer over land in the same region.
ATIC Experiment: Elemental Spectra from the Flight in 2000
NASA Technical Reports Server (NTRS)
Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.; Guzik, T. G.
2003-01-01
The Advanced Thin Ionization Calorimeter (ATIC) had successful Long Duration Balloon flights from McMurdo, Antarctica in both 2000 and 2002. The instrument consists of a silicon matrix charge detector, a 0.75 nuclear interaction length graphite target, 3 scintillator strip hodoscopes, and an 18 radiation length thick BGO calorimeter to measure the cosmic ray composition and energy spectra from approximately 30 GeV to near 100 TeV. In this paper, we present preliminary results from the first flight, which was a test flight that lasted for 16 days, starting on 12/28/00.