Science.gov

Sample records for balloon flight solar

  1. Results of the 1970 balloon flight solar cell standardization program

    NASA Technical Reports Server (NTRS)

    Greenwood, R. F.

    1972-01-01

    For the eighth consective year, high-altitude calibration of solar cells was accomplished with the aid of free-flight balloons. Flights were conducted to an altitude of 36,576 m which is above 99.5% of earth's atmosphere where all water vapor levels and significant ozone bands are absent. Solar cells calibrated in this manner are significant used as intensity references in solar simulators and in terrestrial sunlight. Discussed is the method employed for high altitude balloon flight solar cell calibration. Also presented are data collected on 52 standard solar cells on two flights conducted in 1970. Solar cells flown repeatedly on successive flights have shown correlation of better than + or - 1.0%.

  2. Flight Performance of the Balloon Gondola Solar Pointing System

    NASA Technical Reports Server (NTRS)

    Simpson, Joel; Hall, Kenneth

    1999-01-01

    The NASA Solar Pointing System (SPS) has made two operational flights since its test flight in April of 1997. This pointing device was conceived and designed to provide ultra-low power gondola pointing primarily for directing gondola-fixed solar panels toward the sun. While typically consuming less than 5 watts, the system is capable of suspending and pointing up to 3400 kg, The SPS has logged over 25 days of mostly continuous operation. The performance data, including power consumption and pointing accuracy for these two successful flights is presented and analyzed. The data is compared to predictions and test flight data Suggestions for further developments and applications including Ultra-Long Duration Balloon (ULDB) are discussed.

  3. A search for solar neutrons on a long duration balloon flight

    NASA Technical Reports Server (NTRS)

    Koga, R.; Frye, G. M., Jr.; Owens, A.; Denehy, B. V.; Mace, O.; Thomas, J.

    1985-01-01

    The EOSCOR 3 detector, designed to measure the flux of solar neutrons, was flown on a long duration RACOON balloon flight from Australia during Jan. through Feb, 1983. The Circum-global flight lasted 22 days. No major solar activity occurred during the flight and thus only an upper limit to the solar flare neutrons flux is given. The atmospheric neutron response is compared with that obtained on earlier flights from Palestine, Texas.

  4. SOLAR-T: terahertz photometers to observe solar flare emission on stratospheric balloon flights

    NASA Astrophysics Data System (ADS)

    Kaufmann, P.; Abrantes, A.; Bortolucci, E. C.; Correia, E.; Diniz, J. A.; Fernandez, G.; Fernandes, L. O. T.; Giménez de Castro, C. G.; Godoy, R.; Hurford, G.; Kudaka, A. S.; Lebedev, M.; Lin, R. P.; Machado, N.; Makhmutov, V. S.; Marcon, R.; Marun, A.; Nicolaev, V. A.; Pereyra, P.; Raulin, J.-P.; da Silva, C. M.; Shih, A.; Stozhkov, Y. I.; Swart, J. W.; Timofeevsky, A. V.; Valio, A.; Villela, T.; Zakia, M. B.

    2012-09-01

    A new solar flare spectral component has been found with intensities increasing for larger sub-THz frequencies, spectrally separated from the well known microwaves component, bringing challenging constraints for interpretation. Higher THz frequencies observations are needed to understand the nature of the mechanisms occurring in flares. A twofrequency THz photometer system was developed to observe outside the terrestrial atmosphere on stratospheric balloons or satellites, or at exceptionally transparent ground stations. 76 mm diameter telescopes were designed to observe the whole solar disk detecting small relative changes in input temperature caused by flares at localized positions at 3 and 7 THz. Golay cell detectors are preceded by low-pass filters to suppress visible and near IR radiation, band-pass filters, and choppers. It can detect temperature variations smaller than 1 K with time resolution of a fraction of a second, corresponding to small burst intensities. The telescopes are being assembled in a thermal controlled box to which a data conditioning and acquisition unit is coupled. While all observations are stored on board, a telemetry system will forward solar activity compact data to the ground station. The experiment is planned to fly on board of long-duration stratospheric balloon flights some time in 2013-2015. One will be coupled to the GRIPS gamma-ray experiment in cooperation with University of California, Berkeley, USA. One engineering flight will be flown in the USA, and a 2 weeks flight is planned over Antarctica in southern hemisphere summer. Another long duration stratospheric balloon flight over Russia (one week) is planned in cooperation with the Lebedev Physics Institute, Moscow, in northern hemisphere summer.

  5. Results of the 1987 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1987-01-01

    The 1987 solar cell calibration balloon flight was successfully completed on August 23, 1987, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 120,000 ft (36.0 km). The cells calibrated can now be used as reference standards in simulator testing of cells and arrays.

  6. Results of the 1988 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1988-01-01

    The 1988 solar cell calibration balloon flight was successfully completed on August 7, 1988, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  7. Results of the 1992 NASA/JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1992-01-01

    The 1992 solar cell calibration balloon flight was completed on August 1, 1992. All objectives of the flight program were met. Forty-one modules were carried to an altitude of 119,000 ft (36.3 km). Data telemetered from the modules was corrected to 28 C and 1 AU. The calibrated cells have been returned to 39 participants and can now be used as reference standards in simulator testing of cells and arrays.

  8. Results of the 1994 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1994-01-01

    The 1994 solar cell calibration balloon flight was completed on August 6, 1994. All objectives of the flight program were met. Thirty-seven modules were carried to an altitude of 119,000 ft (36.6 km). Data telemetered from the modules was corrected to 28 C and to 1 AU. The calibrated cells have been returned to the 6 participants and can now be used as reference standards in simulator testing of cells and arrays.

  9. Results of the 1993 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1993-01-01

    The 1993 solar cell calibration balloon flight was completed on July 29, 1993. All objectives of the flight program were met. Forty modules were carried to an altitude of 120,000 ft (36.6 km). Data telemetered from the modules was corrected to 28 C and to 1 AU. The calibrated cells have been returned to 8 participants and can now be used as reference standards in simulator testing of cells and arrays.

  10. Results of the 1994 NASA/JPL balloon flight solar cell calibration program

    SciTech Connect

    Anspaugh, B.E.; Weiss, R.S.

    1994-10-01

    The 1994 solar cell calibration balloon flight was completed on August 6, 1994. All objectives of the flight program were met. Thirty-seven modules were carried to an altitude of 119,000 ft (36.6 km). Data telemetered from the modules was corrected to 28 C and to 1 AU. The calibrated cells have been returned to the 6 participants and can now be used as reference standards in simulator testing of cells and arrays.

  11. Results of the 1973 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.; Greenwood, R. F.

    1975-01-01

    High altitude balloon flights carried 37 standard solar cells for calibration above 99.5 percent of the earth's atmosphere. The cells were assembled into standard modules with appropriate resistors to load each cell at short circuit current. Each standardized module was mounted at the apex of the balloon on a sun tracker which automatically maintained normal incidence to the sun within 1.0 deg. The balloons were launched to reach a float altitude of approximately 36.6 km two hours before solar noon and remain at float altitude for two hours beyond solar noon. Telemetered calibration data on each standard solar cell was collected and recorded on magnetic tape. At the end of each float period the solar cell payload was separated from the balloon by radio command and descended via parachute to a ground recovery crew. Standard solar cells calibrated and recovered in this manner are used as primary intensity reference standards in solar simulators and in terrestrial sunlight for evaluating the performance of other solar cells and solar arrays with similar spectral response characteristics.

  12. Results of the 1995 JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1995-01-01

    The Jet Propulsion Laboratory (JPL) solar cell calibration program was conceived to produce reference standards for the purpose of accurately setting solar simulator intensities. The concept was to fly solar cells on a high-altitude balloon, to measure their output at altitudes near 120,000 ft (36.6 km), to recover the cells, and to use them as reference standards. The procedure is simple. The reference cell is placed in the simulator beam, and the beam intensity is adjusted until the reference cell reads the same as it read on the balloon. As long as the reference cell has the same spectral response as the cells or panels to be measured, this is a very accurate method of setting the intensity. But as solar cell technology changes, the spectral response of the solar cells changes also, and reference standards using the new technology must be built and calibrated. Until the summer of 1985, there had always been a question as to how much the atmosphere above the balloon modified the solar spectrum. If the modification was significant, the reference cells might not have the required accuracy. Solar cells made in recent years have increasingly higher blue responses, and if the atmosphere has any effect at all, it would be expected to modify the calibration of these newer blue cells much more so than for cells made in the past. JPL has been flying calibration standards on high-altitude balloons since 1963 and continues to organize a calibration balloon flight at least once a year. The 1995 flight was the 48th flight in this series. The 1995 flight incorporated 46 solar cell modules from 7 different participants. The payload included Si, amorphous Si, GaAs, GaAs/Ge, dual junction cells, top and bottom sections of dual junction cells, and a triple junction cell. A new data acquisition system was built for the balloon flights and flown for the first time on the 1995 flight. This system allows the measurement of current-voltage (I-V) curves for 20 modules in addition to

  13. Results of the 1997 JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1997-01-01

    The 1997 solar cell calibration balloon flight campaign consisted of three flights, the first flight on June 11, 1997, the second flight on August 2, 1997, and the third flight on August 24, 1997. One flight, flown on August 14, 1997, was terminated early because of a telemetry transmitter failure, and its payload was reflown on the August 24 flight. All objectives of the flight program were met. Ninety-eight modules were carried to an altitude of approximately 120,000 ft (36.6 km). Full I-V curves were measured on 32 of these modules, and output at a fixed load was measured on 66 modules. This data was corrected to 28 C and to 1 AU (1.496 x 10(exp 8) km). The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  14. Results of the 1998 JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Mueller, R. L.; Weiss, R. S.

    1998-01-01

    The 1998 solar cell calibration balloon flight campaign consisted of one flight, which occurred on August 15, 1998. All objectives of the flight program were met. Thirty-one modules were carried to an altitude of = 120,000 ft (36.6 km). Full I-V curves were measured on 4 of these modules, and output at a fixed load was measured on 27 modules. This data was corrected to 28 C and to 1 AU (1.496 x 10(exp 8) km). The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  15. Investigation of solar active regions at high resolution by balloon flights of the solar optical universal polarimeter, definition phase

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore D.; Topka, Kenneth P.

    1992-01-01

    The definition phase of a scientific study of active regions on the sun by balloon flight of a former Spacelab instrument, the Solar Optical Universal Polarimeter (SOUP) is described. SOUP is an optical telescope with image stabilization, tunable filter and various cameras. After the flight phase of the program was cancelled due to budgetary problems, scientific and engineering studies relevant to future balloon experiments of this type were completed. High resolution observations of the sun were obtained using SOUP components at the Swedish Solar Observatory in the Canary Islands. These were analyzed and published in studies of solar magnetic fields and active regions. In addition, testing of low-voltage piezoelectric transducers was performed, which showed they were appropriate for use in image stabilization on a balloon.

  16. Results of the 1996 JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1996-01-01

    The 1996 solar cell calibration balloon flight campaign was completed with the first flight on June 30, 1996 and a second flight on August 8, 1996. All objectives of the flight program were met. Sixty-four modules were carried to an altitude of 120,000 ft (36.6 km). Full 1-5 curves were measured on 22 of these modules, and output at a fixed load was measured on 42 modules. This data was corrected to 28 C and to 1 AU (1.496 x 10(exp 8) km). The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  17. Results of the 2000 JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Mueller, R. L.; Weiss, R. S.

    2001-01-01

    The 2000 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 27, 2000, and July 5, 2000. All objectives of the flight program were met. Sixty-two modules were carried to an altitude of approximately 120,000 ft (36.6 km). Full I-V curves were measured on sixteen of these modules, and output at a fixed load was measured on thirty-seven modules (forty-six cells), with some modules repeated on the second flight. Nine modules were flown for temperature measurement only. This data was corrected to 28 C and to 1 AU (1.496x10(exp 8) km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.

  18. Results of the 1999 JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Mueller, R. L.; Weiss, R. S.

    2000-01-01

    The 1999 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 14, 1999, and July 6, 1999. All objectives of the flight program were met. Fifty-seven modules were carried to an altitude of approximately equal to 120,000 ft (36.6 km). Full I-V curves were measured on five of these modules, and output at a fixed load was measured on forty-three modules (forty-five cells), with some modules repeated on the second flight. This data was corrected to 28 C and to 1 AU (1.496 x 10 (exp 8) km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.

  19. The solar diameter and oblateness measured by the solar disk sextant on the 1992 September 30 balloon flight

    NASA Technical Reports Server (NTRS)

    Sofia, S.; Heaps, W.; Twigg, L. W.

    1994-01-01

    This paper reports the results of a balloon flight of the Solar Disk Sextant (SDS) on 1992 September 30. This was the first flight in which the SDS used a wedge assembly fabricated by molecular contact in order to eliminate the wedge angle variations observed in previous flights. The instrument performed as designed. The main results obtained are values of the solar diameter for a number of discrete heliocentric latitudes, and the solar oblateness. The accuracy of the diameter values is better than 0.2 sec whereas the precision is approximately 1-2 mas. The equatorial solar diameter, at 1 AU, was 1919.06 sec +/- 0.12 sec, and the oblateness epsilon = 8.63 +/- 0.88 x 10(exp -6).

  20. Results of the 2001 JPL Balloon Flight Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Mueller, R. L.

    2002-01-01

    The 2001 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 26, 2001, and July 4, 2001. Fifty-nine modules were carried to an altitude of approximately 120,000 ft (36.6 km). Full I-V curves were measured on nineteen of these modules, and output at a fixed load was measured on thirty-two modules (forty-six cells), with some modules repeated on the second flight. Nine modules were flown for temperature measurement only. The data from the fixed load cells on the first flight was not usable. The temperature dependence of the first-flight data was erratic and we were unable to find a way to extract accurate calibration values. The I-V data from the first flight was good, however, and all data from the second flight was also good. The data was corrected to 28 C and to 1 AU (1.496 x 10(exp 8)km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.

  1. Solar Observations at THz Frequencies on Board of a Trans-Antartic Stratospheric Balloon Flight

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Abrantes, André; Bortolucci, Emilio; Caspi, Amir; Fernandes, Luis Olavo T.; Kropotov, Grigory; Kudaka, Amauri; Laurent, Glenn Thomas; Machado, Nelson; Marcon, Rogério; Marun, Adolfo; Nicolaev, Valery; Hidalgo Ramirez, Ray Fernando; Raulin, Jean-Pierre; Saint-Hilaire, Pascal; Shih, Albert; Silva, Claudemir; Timofeevsky, Alexander

    2016-05-01

    Sub-THz and 30 THz solar burst observations revealed a new spectral component, with fluxes increasing towards THz frequencies, simultaneously with the well known component peaking at microwaves, bringing challenging constraints for interpretation. The THz flare spectra can be completed with measurements made from space. A new system of two photometers was built to observe the Sun at 3 and 7 THz named SOLAR-T. An innovative optical setup allows observations of the full solar disk and detect small burst with sub-second time resolution. The photometers use two Golay cell detectors at the foci of 7.6 cm Cassegrain telescopes. The incoming radiation undergoes low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. The system has been integrated to redundant data acquisition system and Iridium short-burst data services telemetry for monitoring during the flight. SOLAR-T has been flown coupled to U.C. Berkeley solar hard X-ray and gamma-ray imaging spectro-polarimeter GRIPS experiment launched on a NASA CSBF stratospheric balloon from U.S. McMurdo base on January 19, 2016, on a trans-Antarctic flight. The mission ended on January 30. The SOLAR-T on-board computers were recovered from the payload that landed in the Argentina Mountain Range, nearly 2100 km from McMurdo. The SOLAR-T performance was successfully attained, with full space qualification instrumentation. Preliminary results provide the solar disk THz brightness temperatures and indicate a 7 THz burst enhancement time coincident to a sub-THz burst observed by SST during the 28 January GOES C9.6 class soft X-ray burst, the largest occurred during the flight.

  2. Energy from solar balloons

    SciTech Connect

    Grena, Roberto

    2010-04-15

    Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)

  3. Investigation of solar active regions at high resolution by balloon flights of the solar optical universal polarimeter, extended definition phase

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore D.

    1993-01-01

    Technical studies of the feasibility of balloon flights of the former Spacelab instrument, the Solar Optical Universal Polarimeter, with a modern charge-coupled device (CCD) camera, to study the structure and evolution of solar active regions at high resolution, are reviewed. In particular, different CCD cameras were used at ground-based solar observatories with the SOUP filter, to evaluate their performance and collect high resolution images. High resolution movies of the photosphere and chromosphere were successfully obtained using four different CCD cameras. Some of this data was collected in coordinated observations with the Yohkoh satellite during May-July, 1992, and they are being analyzed scientifically along with simultaneous X-ray observations.

  4. Preliminary results of a balloon flight of the solar disk sextant

    NASA Technical Reports Server (NTRS)

    Maier, E.; Twigg, L.; Sofia, S.

    1992-01-01

    Preliminary results of a balloon flight on October 11, 1991, of the solar disk sextant (SDS) experiment are reported. The SDS is an instrument which measures the solar diameter at different orientations with respect to the solar polar axis. Fitting straight lines through two fixed-angle data sets with time as the independent variable yields slopes of (7.1 +/ - 1.5) x 10 exp -3 and (6.7 +/- 1.6) x 10 exp -3/mas s, consistent with the value of 6.47 x 10 exp -3/mas s expected from the earth's approach to the sun due to the orbital motion toward perihelion. Upon the instrument's rotation on its axis a sinusoidal component of the diameter measurement was observed in each rotation cycle, with a variable amplitude of about 150 mas. The present result is epsilon of (5.6 +/- 6.3) x 10 exp -6, about 30 deg offset from the polar-equator position. The absolute diameter obtained by means of the FFT definition is found to be 1919.269 +/- 0.240 arcsec or 1919.131 +/- 0.240 arcsec, depending on the orientation mode of the measurement.

  5. Preliminary results of a balloon flight of the solar disk sextant

    NASA Astrophysics Data System (ADS)

    Maier, E.; Twigg, L.; Sofia, S.

    1992-04-01

    Preliminary results of a balloon flight on October 11, 1991, of the solar disk sextant (SDS) experiment are reported. The SDS is an instrument which measures the solar diameter at different orientations with respect to the solar polar axis. Fitting straight lines through two fixed-angle data sets with time as the independent variable yields slopes of (7.1 +/ - 1.5) x 10 exp -3 and (6.7 +/- 1.6) x 10 exp -3/mas s, consistent with the value of 6.47 x 10 exp -3/mas s expected from the earth's approach to the sun due to the orbital motion toward perihelion. Upon the instrument's rotation on its axis a sinusoidal component of the diameter measurement was observed in each rotation cycle, with a variable amplitude of about 150 mas. The present result is epsilon of (5.6 +/- 6.3) x 10 exp -6, about 30 deg offset from the polar-equator position. The absolute diameter obtained by means of the FFT definition is found to be 1919.269 +/- 0.240 arcsec or 1919.131 +/- 0.240 arcsec, depending on the orientation mode of the measurement.

  6. Mars Balloon Flight Test Results

    NASA Technical Reports Server (NTRS)

    Hall, Jeffery L.; Pauken, Michael T.; Kerzhanovich, Viktor V.; Walsh, Gerald J.; Kulczycki, Eric A.; Fairbrother, Debora; Shreves, Chris; Lachenmeier, Tim

    2009-01-01

    This paper describes a set of four Earth atmosphere flight test experiments on prototype helium superpressure balloons designed for Mars. Three of the experiments explored the problem of aerial deployment and inflation, using the cold, low density environment of the Earth's stratosphere at an altitude of 30-32 km as a proxy for the Martian atmosphere. Auxiliary carrier balloons were used in three of these test flights to lift the Mars balloon prototype and its supporting system from the ground to the stratosphere where the experiment was conducted. In each case, deployment and helium inflation was initiated after starting a parachute descent of the payload at 5 Pa dynamic pressure, thereby mimicking the conditions expected at Mars after atmospheric entry and high speed parachute deceleration. Upward and downward looking video cameras provided real time images from the flights, with additional data provided by onboard temperature, pressure and GPS sensors. One test of a 660 cc pumpkin balloon was highly successful, achieving deployment, inflation and separation of the balloon from the flight train at the end of inflation; however, some damage was incurred on the balloon during this process. Two flight tests of 12 m diameter spherical Mylar balloons were not successful, although some lessons were learned based on the failure analyses. The final flight experiment consisted of a ground-launched 12 m diameter spherical Mylar balloon that ascended to the designed 30.3 km altitude and successfully floated for 9.5 hours through full noontime daylight and into darkness, after which the telemetry system ran out of electrical power and tracking was lost. The altitude excursions for this last flight were +/-75 m peak to peak, indicating that the balloon was essentially leak free and functioning correctly. This provides substantial confidence that this balloon design will fly for days or weeks at Mars if it can be deployed and inflated without damage.

  7. B-SSIPP: A Miniature Solar Observatory for Rocket or Balloon Flight

    NASA Astrophysics Data System (ADS)

    DeForest, Craig; Laurent, Glenn Thomas; Diller, Jed; Brownsberger, Judy

    2016-05-01

    The Southwest Solar Instrument Pointing Package (SSIPP) is a miniature solar observatory for flight application. Conceived as a way to lower barriers to entry to spaceflight, SSIPP conditions a broadband solar beam for use by an IR, visible, or UV instrument on an optical table -- just as do ground-based observatories. The beam is conditioned by a closed-loop tip/tilt pointing system that can lock onto the Sun over a 20° cone of angles, and maintain arcsecond-class pointing from a dynamic flight platform. SSIPP was originally conceived as an instrument platform for the XCOR Lynx suborbital sportsrocket. It has been adapted for ballloon flight, incorporating a novel coarse pointing system that measures torsional pendulation in-flight to construct a stable pointing law on-the-fly. First flight is projected for June 2016 (shortly after SPD). We present status, major design elements, and future plans for the platform.

  8. Investigation of active regions at high resolution by balloon flights of the Solar Optical Universal Polarimeter (SOUP)

    NASA Technical Reports Server (NTRS)

    Tarbell, T.; Frank, Z.; Gilbreth, C.; Shine, R.; Title, A.; Topka, K.; Wolfson, J.

    1989-01-01

    SOUP is a versatile, visible-light solar observatory, built for space or balloon flight. It is designed to study magnetic and velocity fields in the solar atmosphere with high spatial resolution and temporal uniformity, which cannot be achieved from the surface of the earth. The SOUP investigation is carried out by the Lockheed Palo Alto Research Laboratory, under contract to NASA's Marshall Space Flight Center. Co-investigators include staff members at a dozen observatories and universities in the U.S. and Europe. The primary objectives of the SOUP experiment are: to measure vector magnetic and velocity fields in the solar atmosphere with much better spatial resolution than can be achieved from the ground; to study the physical processes that store magnetic energy in active regions and the conditions that trigger its release; and to understand how magnetic flux emerges, evolves, combines, and disappears on spatial scales of 400 to 100,000 km. SOUP is designed to study intensity, magnetic, and velocity fields in the photosphere and low chromosphere with 0.5 arcsec resolution, free of atmospheric disturbances. The instrument includes: a 30 cm Cassegrain telescope; an active mirror for image stabilization; broadband film and TV cameras; a birefringent filter, tunable over 5100 to 6600 A with 0.05 A bandpass; a 35 mm film camera and a digital CCD camera behind the filter; and a high-speed digital image processor.

  9. Absorption spectrometer balloon flight and iodine investigations

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A high altitude balloon flight experiment to determine the technical feasibility of employing absorption spectroscopy to measure SO2 and NO2 gases in the earth's atmosphere from above the atmospheric ozone layer is discussed. In addition to the balloon experiment the contract includes a ground-based survey of natural I emissions from geological sources and studies of the feasibility of mapping I2 from spacecraft. This report is divided into three major sections as follows: (1) the planning engineering and execution of the balloon experiment, (2) data reduction and analysis of the balloon data, and (3) the results of the I2 phase of the contract.

  10. Flight Dynamics of High Altitude Research Balloons

    NASA Astrophysics Data System (ADS)

    Sohl, Ian

    2010-10-01

    Dramatic motions have been observed by instrumentation loaded in payloads attached to high altitude weather balloons. Several HARBOR flights have been completed with six-axis attitude sensors and a high definition video camera that allowed us to analyze the balloon's motion. Turbulence in the atmosphere, especially near the jet stream, results in dramatic oscillations---sometimes swinging the payload above the balloon. Other unexpected motions include rapid spinning (as in a barrel roll) of the entire package. We are correlating these motions with observed atmospheric conditions and addressing issues related to payload safety, mission tracking, and recovery. Also of interest are the dynamics of balloon rupture at low atmospheric pressure and the response of the parachute recovery system to that environment. HARBOR (High Altitude Reconnaissance Balloon for Outreach and Research) is a program in which scientific payloads are designed, constructed, and flown by students using weather balloons to reach the edge of space. These flights are similar to the hundreds of weather balloons launched twice a day by the National Oceanic and Atmospheric Administration for which very little is actually known about the flight dynamics.

  11. Test flights of the NASA ultra long duration balloon

    NASA Astrophysics Data System (ADS)

    Cathey, H.

    The NASA Ultra Long Duration Balloon development project is attempting to extend the potential flight durations for large scientific balloon payloads. The culmination of each of the development steps has been the fabrication and test flight of progressively larger balloons. This new super-pressure balloon is a pumpkin balloon design. This paper concentrates on the super-pressure balloon development test flights that have been, and are currently being planned by the National Aeronautics and Space Administration (NASA) Balloon Program Office at Goddard Space Flight Center's Wallops Flight Facility. Two Ultra Long Duration balloon test flights took place from Australia in early 2001. The results from these flights, as well as the challenges presented, will be discussed. With these lessons learned and incorporating both material and design improvements, a test flight of a full-scale 610,500m3 balloon with a 2,800 kg suspended load will be completed in Spring of 2002 from Ft. Sumner, New Mexico. This balloon, the largest single celled super- pressure balloon ever flown, has been sized to satisfy the requirements for the planned ULDB CREAM mission in late 2003. A description of the balloon design, including the modifications made as a result of the lessons learned from the two Australia flights, will be presented. The results, highlighting balloon performance, from the Spring 2002 test flight will be presented. This will include information related to the balloon preparation, flight operations, and flight performance. A review of the radiative environmental influences on the balloon related to this flight will be presented. A second test flight of a full-scale Ultra Long Duration Balloon is scheduled for December of 2002. This flight is expected to be one orbit or approximately 15 days. The plans for this Southern Hemisphere, Australia launched, global flight will also be presented.

  12. Test flights of the NASA ultra-long duration balloon

    NASA Astrophysics Data System (ADS)

    Cathey, H. M.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Ultra-Long Duration Balloon development project is attempting to extend the potential flight durations for large scientific balloon payloads. The culmination of each of the development steps has been the fabrication and test flight of progressively larger balloons. This new super-pressure balloon is a pumpkin balloon design. This paper concentrates on the super-pressure balloon development test flights that have been, and are currently being planned by the NASA Balloon Program Office at Goddard Space Flight Center's Wallops Flight Facility. Descriptions of two test flights from early 2001 are presented along with lessons learned. Results are also presented of a July 2002 test flight of a full-scale 610,500 m 3 balloon with a 2800 kg suspended load that incorporated the lessons learned.

  13. Measurement of the Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight over Antarctica

    NASA Technical Reports Server (NTRS)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; Matsuda, S.; Matsukawa, Y.; Mitchell, J. W.; Nishimura, J.; Nozaki, M.; Orito, R.; Ormes, J. F.; Sakai, K.; Sasaki, M.; Seo, E. S.; Shinoda, R.; Streitmatter, R. E.; Suzuki, J.; Tanaka, K.; Thakur, N.

    2012-01-01

    The energy spectrum of cosmic-ray antiprotons (p-bar's) from 0.17 to 3.5 GeV has been measured using 7886 p-bar's detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary p-bar calculations. Cosmologically primary p-bar's have been investigated by comparing measured and calculated p-bar spectra. BESS-Polar II data.show no evidence of primary p-bar's from the evaporation of primordial black holes.

  14. Measurement of Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight in Antarctica

    NASA Technical Reports Server (NTRS)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; Matsuda, S.; Matsukawa, Y.; Mitchell, J. W.; Nishimura, J.; Nozaki, M.; Orito, R.; Ormes, J. F.; Sakai, K.; Sasaki, M.; Seo, E. S.; Shinoda, R.; Streitmatter, R. E.; Suzuki, J.; Tanaka, K.; Thakur, N.

    2011-01-01

    The energy spectrum of cosmic-ray antiprotons (p(raised bar)'s) collected by the BESS-Polar II instrument during a long-duration flight over Antarctica in the solar minimum period of December 2007 through January 2008. The p(raised bar) spectrum measured by BESS-Polar II shows good consistency with secondary p(raised bar) calculations. Cosmologically primary p(raised bar)'s have been searched for by comparing the observed and calculated p(raised bar) spectra. The BESSPolar II result shows no evidence of primary p(raised bar)'s originating from the evaporation of PBH.

  15. CREAM Balloon Flights and Beyond

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2012-07-01

    The Cosmic Ray Energetics And Mass (CREAM) payload was launched from McMurdo Station in Antarctica on December 21, 2010 for its sixth flight. A cumulative exposure of ~ 161 days was achieved when this almost 6-day flight was terminated on December 26, 2010. The calorimeter module was recovered in one piece on the pallet without dis-assembly, despite the challenging recovery location at high altitude on the opposite side of the Antarctic continent from McMurdo Station. The recovered CREAM-VI instrument was calibrated at CERN in October 2011, and it is being integrated for a CREAM-VII flight in Antarctica. The CREAM-V instrument recovered previously was refurbished, and it is being re-configured for exposure on the International Space Station (ISS). The instrument performance, results from the ongoing data analysis, and future plans will be presented.

  16. Measurements of Load Train Motion on a Stratospheric Balloon Flight

    NASA Technical Reports Server (NTRS)

    Gruner, Timothy D.; Olney, David J.; Russo, Angela M.

    2005-01-01

    Attitude measurements using gyros and magnetometers placed on a stratospheric balloon during a non-pointed test flight were used to observe the natural azimuth and elevation motions of a balloon/load train/gondola at an altitude of 36 km over a total flight time of 400 minutes. Time traces of the entire flight are presented. This flight, conducted under nominal atmospheric conditions, had significant motion about the azimuth. Some discussion on balloon disturbances is also included.

  17. Lightweight Reusable Solar Array For Balloons

    NASA Astrophysics Data System (ADS)

    Aaron, K.; Tensor, P.; Nock, K.; Wyszkowski, C.

    We will discuss a new lightweight reusable solar array system, dubbed HighPower, which is being developed for the Ultra-Long Duration Balloon (ULDB) program using NASA/SBIR funding, but which is also applicable to other balloon systems. The system uses a vertically deployed stack of panels suspended from their corners by cables. The stack act likes a two-dimensional Venetian blind. By raising and lowering opposite corners, the array of parallel panels can be pointed over most of the upper hemisphere. This allows the panels to remain normal to the sun despite the slow rotation of the gondola and without requiring rotation of the system (no slip rings) or heavy cantilevered rotation joints. The system is sized to generate 2000 W using six 2m x 2m panels. The modularity of the system allows panels to be added or removed to tailored the power to the needs of the mission. Prior to cut -down of the balloon, the panels can be retracted and stowed compactly in the lower part of the gondola. This will protect the array during landing, allowing the array to be reused on subsequent flights.

  18. EUSO-Balloon: The first flight

    NASA Astrophysics Data System (ADS)

    Scotti, Valentina; Osteria, Giuseppe

    2016-07-01

    EUSO-Balloon is a pathfinder mission for JEM-EUSO, the near-UV telescope proposed to be installed on board the International Space Station (ISS). The main objective of this pathfinder mission is to perform a full scale end-to-end test of all the key technologies of JEM-EUSO detectors and to measure the UV background. The JEM-EUSO instrument consists of UV telescope designed to focus the signal of the UV tracks generated by Extreme Energy Cosmic Rays propagating in Earth's atmosphere, onto a finely pixelized UV camera. The EUSO-Balloon instrument, smaller than the one designed for the ISS, was launched on August 2014 from Timmins (Ontario, Canada). The flight lasted about five hours and the instrument reached a float altitude of about 40 km. From this altitude the telescope registered, at a rate of 400 000 frames/s, the nightglow background on forests, lakes and clouds, as well as city lights and artificial air showers tracks generated by means of a laser installed on an helicopter flying inside its field of view. In this contribution we will describe the instrument and its performance during the first flight.

  19. Sounding rocket and balloon flight safety philosophy and methodologies

    NASA Technical Reports Server (NTRS)

    Beyma, R. J.

    1986-01-01

    NASA's sounding rocket and balloon goal is to successfully and safely perform scientific research. This is reflected in the design, planning, and conduct of sounding rocket and balloon operations. The purpose of this paper is to acquaint the sounding rocket and balloon scientific community with flight safety philosophy and methodologies, and how range safety affects their programs. This paper presents the flight safety philosophy for protecting the public against the risk created by the conduct of sounding rocket and balloon operations. The flight safety criteria used to implement this philosophy are defined and the methodologies used to calculate mission risk are described.

  20. The NASA super pressure balloon - A path to flight

    NASA Astrophysics Data System (ADS)

    Cathey, H. M.

    2009-07-01

    The National Aeronautics and Space Administration's Balloon Program Office has invested significant time and effort in extensive ground testing of model super pressure balloons. The testing path has been developed as an outgrowth of the results of the super pressure balloon test flight in 2006. Summary results of the June 2006 super pressure test flight from Kiruna, Sweden are presented including the balloon performance and "lessons learned". This balloons flight performance exceeded expectations, but did not fully deploy. The flight was safely terminated by command. The results of this test flight refocused the project's efforts toward additional ground testing and analysis; a path to flight. A series of small 4 m diameter models were made and tested to further explore the deployment and structural capabilities of the balloons and materials. A series of ˜27 m model balloons were successfully tested indoors. These balloons successfully replicated the cleft seen in the Sweden flight, explored the deployment trade space to help characterize better design approaches, and demonstrated an acceptable fix to the deployment issue. Photogrammetry was employed during these ˜27 m model tests to help characterize both the balloon and gore shape evolution under pressurization. A ˜8.5 m ground model was used to explore the design and materials performance. Results of these tests will be presented. A general overview of some of the other project advancements made related to demonstrating the strain arresting nature of the proposed design, materials and analysis work will also be presented. All of this work has prepared a clear path toward a renewed round of test flights. This paper will give an overview of the development approach pursued for this super pressure balloon development. A description of the balloon design, including the modifications made as a result of the lessons learned, is presented. A short deployment test flight of the National Aeronautics and Space

  1. NASA balloon design and flight - Philosophy and criteria

    NASA Technical Reports Server (NTRS)

    Smith, I. S., Jr.

    1993-01-01

    The NASA philosophy and criteria for the design and flight of scientific balloons are set forth and discussed. The thickness of balloon films is standardized at 20.3 microns to isolate potential film problems, and design equations are given for specific balloon parameters. Expressions are given for: flight-stress index, total required thickness, cap length, load-tape rating, and venting-duct area. The balloon design criteria were used in the design of scientific balloons under NASA auspices since 1986, and the resulting designs are shown to be 95 percent effective. These results represent a significant increase in the effectiveness of the balloons and therefore indicate that the design criteria are valuable. The criteria are applicable to four balloon volume classes in combination with seven payload ranges.

  2. A Low Cost Weather Balloon Borne Solar Cell Calibration Payload

    NASA Technical Reports Server (NTRS)

    Snyder, David B.; Wolford, David S.

    2012-01-01

    Calibration of standard sets of solar cell sub-cells is an important step to laboratory verification of on-orbit performance of new solar cell technologies. This paper, looks at the potential capabilities of a lightweight weather balloon payload for solar cell calibration. A 1500 gr latex weather balloon can lift a 2.7 kg payload to over 100,000 ft altitude, above 99% of the atmosphere. Data taken between atmospheric pressures of about 30 to 15 mbar may be extrapolated via the Langley Plot method to 0 mbar, i.e. AMO. This extrapolation, in principle, can have better than 0.1 % error. The launch costs of such a payload arc significantly less than the much larger, higher altitude balloons, or the manned flight facility. The low cost enables a risk tolerant approach to payload development. Demonstration of 1% standard deviation flight-to-flight variation is the goal of this project. This paper describes the initial concept of solar cell calibration payload, and reports initial test flight results. .

  3. Flight Qualification of the NASA's Super Pressure Balloon

    NASA Astrophysics Data System (ADS)

    Cathey, Henry; Said, Magdi; Fairbrother, Debora

    Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test

  4. The NASA super pressure balloon - a path to flight

    NASA Astrophysics Data System (ADS)

    Cathey, Henry

    The National Aeronautics and Space Administration's Balloon Program Office has invested significant time and effort in extensive ground testing of model super pressure balloons. The testing path has been developed as an outgrowth of the results of an Ultra Long Duration Balloon (ULDB) test flight in 2006. Summary results of the June 2006 ULDB test flight from Kiruna, Sweden will be presented including the balloon performance and "lessons learned". This balloons flight performance exceeded expectations, but did not fully deploy. The flight was safely terminated by command. The results of this test flight refocused the projects efforts toward additional ground testing and analysis. A series of small 4 m diameter models were made and tested to further explore the deployment and structural capabilities of the balloons and materials. A series of 27 m model balloons were successfully testing indoors. These balloons successfully replicated the cleft seen in the Sweden flight, explored the deployment trade space to help characterize better design approaches, and demonstrated an acceptable fix to the deployment issue. Photogrammetry was employed during these 27 m model tests to help characterize both the balloon and gore shape evolution under pressurization. Results of these tests will be presented. A general overview of some of the other project advancements made related to demonstrating the strain arresting nature of the proposed design, materials and analysis work will also be presented. All of this work has prepared a clear path toward a renewed round of test flights. This paper will give an overview of the development approach pursued for ULDB. A description of the balloon design, including the modifications made as a result of the lessons learned, will be presented. Areas to be presented include the design approach, deployment issues that have been encountered and the proposed solutions, material testing, ground testing, photogrammetry, and an analysis overview. A

  5. Medium energy gamma ray astronomy with transpacific balloon flights

    NASA Technical Reports Server (NTRS)

    Zych, A. D.; Jennings, M. C.; White, R. S.; Dayton, B.

    1981-01-01

    Transpacific balloon flights with the University of California, Riverside (UCR) double scatter telescope are discussed. With flight durations from 5 days up to perhaps 15 days the long observation times necessary for medium energy (1-30 MeV) gamma ray astronomy can be obtained. These flights would be made under the auspices of the Joint U.S.-Japan Balloon Flight Program at NASA. It is proposed that flights can provide at least 30 hours of observation time per flight for many discrete source candidates and 120 hours for detecting low intensity cosmic gamma ray bursts.

  6. A high resolution gamma-ray and hard X-ray spectrometer (HIREGS) for long duration balloon flights

    NASA Technical Reports Server (NTRS)

    Pelling, M.; Feffer, P. T.; Hurley, K.; Kane, S. R.; Lin, R. P.; Mcbride, S.; Primbsch, J. H.; Smith, D. M.; Youseffi, K.; Zimmer, G.

    1992-01-01

    The elements of a high resolution gamma-ray spectrometer, developed for observations of solar flares, are described. Emphasis is given to those aspects of the system that relate to its operation on a long duration balloon platform. The performance of the system observed in its first flight, launched from McMurdo Station, Antarctica on 10 January, 1992, is discussed. Background characteristics of the antarctic balloon environment are compared with those observed in conventional mid-latitude balloon flights and the general advantages of long duration ballooning are discussed.

  7. New Design Concept and Flight Test of Superpressure Balloon

    NASA Astrophysics Data System (ADS)

    Izutsu, Naoki; Yajima, Nobuyuki; Ohta, Shigeo; Honda, Hideyuki; Kurokawa, Haruhisa; Matsushima, Kiyoho

    A new ballon design method named ‘three-dimensional gore design’ was developed. It is based on a pumpkin shape balloon with bulges of small radii between adjacent load tapes without the help of film extensibility. This type of balloon can be manufactured with gores having a size larger than that of the conventional gore. The sides of each gore are fixed to the adjacent short load tapes with controlled shortening rates. The gore length is chosen so as not to create any meridional tension. Hence, the superpressure limit of these balloons is simply given as film strength divided by bulge radius. As the limit does not depend on the balloon size, a large balloon with a high superpressure limit can be easily constructed without strong films. A test flight as well as indoor inflation and burst experiment showed that this new design method can realize a larger and lighter superpressure balloon capable of suspending a heavy payload in the stratosphere.

  8. Vertical sounding balloons for long duration flights

    NASA Astrophysics Data System (ADS)

    Malaterre, P.

    1994-02-01

    Vertical soundings in the lower stratosphere are possible on command with an Infrared Montgolfiere, between 16 km and 28 km. Results of simulations are presented. The first test flight of a 7800 cu m Montgolfiere with a relief valve, has been conducted in Arctic area (Spitzbergen, July 1992). The flight of an Infrared Montgolfiere, with full vertical sounding capabilities, is planned for the end of 1993, from Ecuador (South AMERICA).

  9. Vertical sounding balloons for long duration flights

    NASA Astrophysics Data System (ADS)

    Malaterre, P.

    1994-02-01

    Vertical soundings in the lower stratosphere are possible on command with an Infrared Montgolfiere, between 16 km and 28 km. Results of simulations are presented. The first test flight of a 7800 m3 Montgolfiere with a relief valve, has been conducted in Arctic area (Spitzbergen, July 1992). The flight of an Infrared Montgolfiere, with full vertical sounding capabilities, is planned for the end of 1993, from Ecuador (South AMERICA).

  10. Concept report: Experimental vector magnetograph (EXVM) operational configuration balloon flight assembly

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The observational limitations of earth bound solar studies has prompted a great deal of interest in recent months in being able to gain new scientific perspectives through, what should prove to be, relatively low cost flight of the magnetograph system. The ground work done by TBE for the solar balloon missions (originally planned for SOUP and GRID) as well as the rather advanced state of assembly of the EXVM has allowed the quick formulation of a mission concept for the 30 cm system currently being assembled. The flight system operational configuration will be discussed as it is proposed for short duration flight (on the order of one day) over the continental United States. Balloon hardware design requirements used in formulation of the concept are those set by the National Science Balloon Facility (NSBF), the support agency under NASA contract for flight services. The concept assumes that the flight hardware assembly would come together from three development sources: the scientific investigator package, the integration contractor package, and the NSBF support system. The majority of these three separate packages can be independently developed; however, the computer control interfaces and telemetry links would require extensive preplanning and coordination. A special section of this study deals with definition of a dedicated telemetry link to be provided by the integration contractor for video image data for pointing system performance verification. In this study the approach has been to capitalize to the maximum extent possible on existing hardware and system design. This is the most prudent step that can be taken to reduce eventual program cost for long duration flights. By fielding the existing EXVM as quickly as possible, experience could be gained from several short duration flight tests before it became necessary to commit to major upgrades for long duration flights of this system or of the larger 60 cm version being considered for eventual development.

  11. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  12. Long Duration Balloon Maximum Power Point Tracking (MPPT) solar power system development

    NASA Astrophysics Data System (ADS)

    Perez, Juan

    High altitude scientific balloons have been used for many years to provide scientists with access to near space at a fraction of the cost of satellite based or sounding rocket experiments. In recent years, these balloons have been successfully used for long duration missions of up to 40 days. Longer missions, with durations of up to 100 days (Ultra Long), are in the planning stages. Due to the flight durations, solar power systems have been utilized throughout the Long Duration Balloon (LDB) flight program to power the necessary electronic systems. Recently, Maximum Power Point Tracking (MPPT) charge controllers have become available off-the-shelf. These controllers along with high efficiency mono-crystalline solar cells have become reliable, low cost solutions even in the harsh environments they operate in. The LDB program at the Columbia Scientific Balloon Facility (CSBF) began supporting solar power systems with custom units fabricated by the Physical Science Laboratory (PSL) of New Mexico State University (NMSU). These charge controllers proved to be very reliable systems; however, they required intensive labor to build and were relatively expensive. As off-the-shelf MPPT charge controllers have become available, they have been integrated into the LDB flight support systems. Coupled with PSL developed interface electronics for monitoring and power switching, they have proven to be as reliable, less expensive, and more efficient. The addition of MPPT allows for the controller to operate the solar panel at it highest power production point. Newer, off-the-shelf controllers with smarter MPPT, are currently being tested. This paper describes the long and ultra-long balloon missions and the role that solar power plays in mission success. More importantly, it discusses the recent developments in off-the-shelf MPPT charge controllers configured for use in the harsh high altitude balloon environment.

  13. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    PubMed

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. PMID:27550757

  14. Coordinated weather balloon solar radiation measurements during a solar eclipse

    PubMed Central

    2016-01-01

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550757

  15. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    PubMed

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  16. Long-Duration Altitude-Controlled Balloons for Venus: A Feasibility Study Informed by Balloon Flights in Remote Environments on Earth

    NASA Astrophysics Data System (ADS)

    Voss, P. B.; Nott, J.; Cutts, J. A.; Hall, J. L.; Beauchamp, P. M.; Limaye, S. S.; Baines, K. H.; Hole, L. R.

    2013-12-01

    In situ exploration of the upper atmosphere of Venus, approximately 65-77 km altitude, could answer many important questions (Limaye 2013, Crisp 2013). This region contains a time-variable UV absorber of unknown composition that controls many aspects of the heat balance on Venus. Understanding the composition and dynamics of this unknown absorber is an important science goal; in situ optical and chemical measurements are needed. However, conventional approaches do not provide access to this altitude range, repeated traverses, and a mission lifetime of several months needed to effectively carry out the science. This paper examines concepts for altitude-controlled balloons not previously flown on planetary missions that could potentially provide the desired measurements. The concepts take advantage of the fact that at 60 km altitude, for example, the atmospheric density on Venus is about 40% of the sea-level density on earth and the temperature is a moderate 230 K. The solar flux is approximately double that on earth, creating some thermal challenges, but making photovoltaic power highly effective. Using a steady-state thermodynamic model and flight data from Earth, we evaluate the suitability of two types of altitude-controlled balloons for a potential mission on Venus. Such balloons could repeatedly measure profiles, avoid diurnal temperature extremes, and navigate using wind shear. The first balloon design uses air ballast (AB) whereby ambient air can be compressed into or released from a constant-volume balloon, causing it to descend or ascend accordingly. The second design uses lift-gas compression (LGC) to change the volume of a zero-pressure balloon, thereby changing its effective density and altitude. For an altitude range of 60-75 km on Venus, we find that the superpressure volume for a LGC balloon is about 5% of that needed for an AB balloon while the maximum pressurization is the same for both systems. The compressor work per km descent of the LGC balloon

  17. A balloon-borne high-resolution spectrometer for observations of gamma-ray emission from solar flares

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Starr, R.; Stottlemyre, A. R.; Trombka, J. I.

    1984-01-01

    The design, development, and balloon-flight verification of a payload for observations of gamma-ray emission from solar flares are reported. The payload incorporates a high-purity germanium semiconductor detector, standard NIM and CAMAC electronics modules, a thermally stabilized pressure housing, and regulated battery power supplies. The flight system is supported on the ground with interactive data-handling equipment comprised of similar electronics hardware. The modularity and flexibility of the payload, together with the resolution and stability obtained throughout a 30-hour flight, make it readily adaptable for high-sensitivity, long-duration balloon fight applications.

  18. Initial Results from the ANITA 2006-2007 Balloon Flight

    SciTech Connect

    Gorham, P.W.; Allison, P.; Barwick, S.W.; Beatty, J.J.; Besson, D.Z.; Binns, W.R.; Chen, C.; Chen, P.; Clem, J.M.; Connolly, A.; Dowkontt, P.F.; DuVernois, M.A.; Field, R.C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C.L.; Hoover, S.; Israel, M.H.; Kowalski, J.; Learned, J.G.; /Hawaii U. /Caltech, JPL /Hawaii U. /Minnesota U. /Hawaii U. /Ohio State U. /Hawaii U. /Hawaii U. /UC, Irvine /Taiwan, Natl. Taiwan U. /Caltech, JPL /SLAC /University Coll. London /Ohio State U. /SLAC /Hawaii U. /Hawaii U. /Hawaii U. /UCLA /Delaware U. /Hawaii U. /SLAC /Taiwan, Natl. Taiwan U. /UC, Irvine

    2011-11-16

    We report initial results of the Antarctic Impulsive Transient Antenna (ANITA) 2006-2007 Long Duration Balloon flight, which searched for evidence of the flux of cosmogenic neutrinos. ANITA flew for 35 days looking for radio impulses that might be due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. In our initial high-threshold robust analysis, no neutrino candidates are seen, with no physics background. In a non-signal horizontal-polarization channel, we do detect 6 events consistent with radio impulses from extensive air showers, which helps to validate the effectiveness of our method. Upper limits derived from our analysis now begin to eliminate the highest cosmogenic neutrino models.

  19. Balloon measurements of cosmic ray protons and helium over half a solar cycle 1965-1969.

    NASA Technical Reports Server (NTRS)

    Rygg, T. A.; Earl, J. A.

    1971-01-01

    Evaluation of differential energy spectra for protons and helium covering the energy range from 100 to 260 MeV/nucleon obtained from balloon flights made each summer (1965 to 1969) at Churchill, Manitoba, with the aid of a Geiger-tube hodoscope operated in conjunction with two scintillation elements used to measure dE/dx and E. Supplementary data from balloon flights at Minneapolis, Minn., and Sioux Falls, S. Dak. and from calibration exposures to protons and electrons were used to define backgrounds and to verify the predicted detector response. The observed proton spectra are characterized over a wide range of energy (30 to 300 MeV) by a simple relationship between cosmic-ray intensity J and kinetic energy T: J = AT. The helium spectra also follow this law at solar maximum but rise less steeply near solar minimum. This characteristic behavior can be interpreted in terms of a simple model in which convection is balanced by adiabatic deceleration.-

  20. Balloon flight test of a Compton telescope based on scintillators with silicon photomultiplier readouts

    NASA Astrophysics Data System (ADS)

    Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; Ryan, J. M.; McConnell, M. L.

    2016-03-01

    We present the results of the first high-altitude balloon flight test of a concept for an advanced Compton telescope making use of modern scintillator materials with silicon photomultiplier (SiPM) readouts. There is a need in the fields of high-energy astronomy and solar physics for new medium-energy gamma-ray (~0.4-10 MeV) detectors capable of making sensitive observations of both line and continuum sources over a wide dynamic range. A fast scintillator-based Compton telescope with SiPM readouts is a promising solution to this instrumentation challenge, since the fast response of the scintillators permits both the rejection of background via time-of-flight (ToF) discrimination and the ability to operate at high count rates. The Solar Compton Telescope (SolCompT) prototype presented here was designed to demonstrate stable performance of this technology under balloon-flight conditions. The SolCompT instrument was a simple two-element Compton telescope, consisting of an approximately one-inch cylindrical stilbene crystal for a scattering detector and a one-inch cubic LaBr3:Ce crystal for a calorimeter detector. Both scintillator detectors were read out by 2×2 arrays of Hamamatsu S11828-3344 MPPC devices. Custom front-end electronics provided optimum signal rise time and linearity, and custom power supplies automatically adjusted the SiPM bias voltage to compensate for temperature-induced gain variations. A tagged calibration source, consisting of ~240 nCi of 60Co embedded in plastic scintillator, was placed in the field of view and provided a known source of gamma rays to measure in flight. The SolCompT balloon payload was launched on 24 August 2014 from Fort Sumner, NM, and spent ~3.75 h at a float altitude of ~123,000 ft. The instrument performed well throughout the flight. After correcting for small (~10%) residual gain variations, we measured an in-flight ToF resolution of ~760 ps (FWHM). Advanced scintillators with SiPM readouts continue to show great promise

  1. Solar radiation measurements from coordinated radiosonde flights during the 20th March 2015 solar eclipse

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Marlton, Graeme; Williams, Paul; Nicoll, Keri

    2016-04-01

    Solar radiation sensors can be carried on standard weather balloon packages and provide additional information about the atmosphere's vertical structure beyond the traditional thermodynamic measurements [1]. An interesting set of circumstances for such sensors occurs during a solar eclipse, which provides a rapidly changing solar radiation environment within the duration of a typical free balloon flight. Coordinating several launches of solar radiation measuring radiosondes brings a good likelihood of at least one being above any cloud during the maximum eclipse, allowing solar eclipse radiation measurements for comparison with theory. For the 20th March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44N, 0.94W), Lerwick (60.15N, 1.13W) and Reykjavik (64.13N, 21.90W), straddling the path of the eclipse. All three balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. These approaches, which are essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes. [1] K.A. Nicoll and R.G. Harrison, Balloon-borne disposable radiometer Rev Sci Instrum 83, 025111 (2012) doi: 10.1063/1.3685252

  2. Flight demonstration of a superpressure balloon by three-dimensional gore design

    NASA Astrophysics Data System (ADS)

    Izutsu, N.; Yajima, N.; Ohta, S.; Honda, H.; Kurokawa, H.; Matsushima, K.

    On May 15, 1999, a balloon with a volume of 3,100 cubic meters was successfully launched from Sanriku Balloon Center of Japan. It became a superpressure balloon at 19.2km in altitude with 20% pressure difference to the ambient atmosphere. This is the first superpressure balloon capable of suspending a heavy payload. It was designed by the new 'three-dimensional gore design' method and was based on a pumpkin shape balloon with bulges of small radii between adjacent load tapes without the help of film extensibility. The balloon climbed up to 21.6km in altitude by dropping the ballast and held out against a 64% pressure difference over the ambient atmosphere. This flight test proved the capability of large stratospheric superpressure balloons by this new design method.

  3. Implementation of a Novel Flight Tracking and Recovery Package for High Altitude Ballooning Missions

    NASA Astrophysics Data System (ADS)

    Fatima, Aqsa; Nekkanti, Sanjay; Mohan Suri, Ram; Shankar, Divya; Prasad Nagendra, Narayan

    High altitude ballooning is typically used for scientific missions including stratospheric observations, aerological observations, and near space environment technology demonstration. The usage of stratospheric balloons is a cost effective method to pursue several scientific and technological avenues against using satellites in the void of space. Based on the Indian Institute of Astrophysics (IIA) ballooning program for studying Comet ISON using high altitude ballooning, a cost effective flight tracking and recovery package for ballooning missions has been developed using open source hardware. The flight tracking and recovery package is based on using Automatic Packet Reporting System (APRS) and has a redundant Global System for Mobile Communications (GSM) based Global Positioning System (GPS) tracker. The APRS based tracker uses AX.25 protocol for transmission of the GPS coordinates (latitude, longitude, altitude, time) alongside the heading and health parameters of the board (voltage, temperature). APRS uses amateur radio frequencies where data is transmitted in packet messaging format, modulated by radio signals. The receiver uses Very High Frequency (VHF) transceiver to demodulate the APRS signals. The data received will be decoded using MixW (open source software). A bridge will be established between the decoding software and the APRS software. The flight path will be predicted before the launch and the real time position co-ordinates will be used to obtain the real time flight path that will be uploaded online using the bridge connection. We also use open source APRS software to decode and Google Earth to display the real time flight path. Several ballooning campaigns do not employ payload data transmission in real time, which makes the flight tracking and package recovery vital for data collection and recovery of flight instruments. The flight tracking and recovery package implemented in our missions allow independent development of the payload package

  4. Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight

    NASA Technical Reports Server (NTRS)

    Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.

    1997-01-01

    A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.

  5. Detector performances of the BESS-Polar II instrument during the second long-duration balloon flight over Antarctica.

    NASA Astrophysics Data System (ADS)

    Yoshimura, Koji; Sakai, Kenichi; Yamamoto, A.; Mitchell, J. W.; Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Lee, T. Kumazawa1, M. H.; Makida, Y.; Matsuda, S.; Matsukawa, Y.; Matsumoto, K.; Moiseev, A. A.; Myers, Z.; Nishimura, J.; Nozaki, M.; Orito, R.; Ormes, J. F.; Sakai, K.; Sasaki, M.; Seo, E. S.; Shikaze, Y.; Shinoda, R.; Streitmatter, R. E.; Suzuki, J.; Takasugi, Y.; Takeuchi, K.; Tanaka, K.; Thakur, N.; Yamagami, T.; Yoshida, T.; Yoshimura, K.

    USA The new balloon-borne instrument was developed for the second long-duration balloon flight over Antarctica (BESS-Polar II) on the basis of the feed back from the results from the first flight in 2004 (BESS-Polar I). Most of the detector components had been redesigned and upgraded to improve their performances and to increase the data taking period and capacity. The BESS-Polar II flight was successfully carried out in December 2007-January 2008. We performed 24.5 days scientific observation just at the solar minimum and recorded about 4.7 billion cosmic-ray enents in the harddisk drives onboard. During the flight, the instrument worked well except for minor problems in some detector components. We have made careful post-flight calibration for all detectors by using cosmic-ray event and house-keeping data. Stable and better performance was obtained for the entire flight. In this presentatation, detector performances for the BESS-Polar II instrument will be presented.

  6. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, R. W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  7. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  8. Private and Commercial Pilot: Free Balloon: Flight Test Guide (Part 61 Revised).

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The flight test guide has been prepared to assist the applicant and his instructor in preparing for the private pilot or commercial pilot certificate with a lighter-than-air category and free balloon class rating. It contains information and guidance concerning the pilot operations, procedures, and maneuvers relevant to the flight test: layout and…

  9. Design considerations &practical results with long duration systems for manned flight: cryogenic helium and superpressure balloons.

    NASA Astrophysics Data System (ADS)

    Nott, J.

    The paper will describe two manned flights made in polyethylene zero pressure balloons with liquid helium carried to provide all in-flight buoyancy adjustment. These balloons were of 1,600 and 8,000 cubic meter volumes. Two flights have been made, both lasting 24 hours. The first flight cruised and flew through the sunset at 18,000 feet / 5,500 meters. The second flight using a pressurized cabin included flying through the night at about 32,000 feet / 10,000 meters. These flights highlight a wide range of theoretical and practical design concerns. For a craft carrying a crew, structural integrity and manageability &control in flight are naturally important. These flights demonstrated the complete feasibility of this system which will be described in detail. In addition the author constructed a 1,600 cubic meter pumpkin balloon used for a two day fight across Australia with a crew of two. Considerable problems were discovered during construction with distortion of the balloon. Although this work was done some time ago, the results have not been published in detail. The reason for publications at this time is that the work is very relevant to the problems recently encountered with the ULDB pumpkin design. The author, who is a physicist as well as a member of the Society of Experimental Test Pilots, was the principal desig ner as well as pilot of these craft. Ends...

  10. Balloons for Science.

    ERIC Educational Resources Information Center

    Lally, Vincent E.

    1982-01-01

    Discusses the nature and use of scientific balloons. Topics addressed include: (1) types of balloons; (2) lifting gases; (3) polyethylene balloons; (4) duration of balloon flight; and (5) use of balloons in scientific research. (JN)

  11. Solar Powered Flight on Venus

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony; Landis, Geoff (Technical Monitor)

    2004-01-01

    Solar powered flight within the Venus environment from the surface to the upper atmosphere was evaluated. The objective was to see if a station-keeping mission was possible within this environment based on a solar power generating system. Due to the slow rotation rate of Venus it would be possible to remain within the day light side of the planet for extended periods of time. However the high wind speeds and thick cloud cover make a station-keeping solar powered mission challenging. The environment of Venus was modeled as a function of altitude from the surface. This modeling included density, temperature, solar attenuation and wind speed. Using this environmental model flight with both airships and aircraft was considered to evaluate whether a station-keeping mission is feasible. The solar power system and flight characteristics of both types of vehicles was modeled and power balance was set up to determine if the power available from the solar array was sufficient to provide enough thrust to maintain station over a fixed ground location.

  12. Modified ECC ozone sonde for long-duration flights aboard isopicnic drifting balloons

    NASA Astrophysics Data System (ADS)

    Gheusi, Francois; Durand, Pierre; Verdier, Nicolas; Dulac, François; Attié, Jean-Luc; Commun, Philippe; Barret, Brice; Basdevant, Claude; Clénet, Antoine; Fontaine, Alain; Jambert, Corinne; Meyerfeld, Yves; Roblou, Laurent; Tocquer, Flore

    2015-04-01

    Since few years, the French space agency CNES has developed boundary-layer pressurized balloons (BLPB) with the capability to transport scientific payloads at isopicnic level over very long distances and durations (up to several weeks in absence of navigation limits). However, the autonomy of conventional electrochemical concentration cell (ECC) ozone sondes, that are widely used for tropospheric and stratospheric soundings, is limited to few hours due to power consumption and electrolyte evaporation (owing to air bubbling in the cathode solution). In collaboration with the French research community, CNES has developed a new ozone payload suited for long duration flights aboard BLPB. The mechanical elements (Teflon pump and motor) and the electrochemical cell of conventional ECC sondes have been kept but the electronic implementation is entirely new. The main feature is the possibility of programming periodic measurement sequences -- with possible remote control during the flight. To increase the ozone sonde autonomy, a strategy has been adopted of short measurement sequences (typically 2-3 min) regularly spaced in time (e.g. every 15 min, which is usually sufficient for air quality studies). The rest of the time, the sonde is at rest (pump motor off). The response time of an ECC sonde to an ozone concentration step is below one minute. Consequently, the measurement sequence is typically composed of a one-minute spin-up period after the pump has been turned on, followed by a one- to two-minute acquisition period. All time intervals can be adjusted before and during the flight. Results of a preliminary ground-based test in spring 2012 are first presented. The sonde provided correct ozone concentrations against a reference UV analyzer every 15 minutes during 4 days. Then we illustrate results from 16 BLBP flights launched in the low troposphere over the Mediterranean during summer field campaings in 2012 and 2013 (TRAQA and ChArMEx programmes). BLPB drifting

  13. Flight Performance of the HEROES Solar Aspect System

    NASA Astrophysics Data System (ADS)

    Shih, Albert Y.; Christe, Steven; Rodriguez, Marcello; Gregory, Kyle; Cramer, Alexander; Edgerton, Melissa; Gaskin, Jessica; O'Connor, Brian; Sobey, Alexander

    2014-06-01

    Hard X-ray (HXR) observations of solar flares reveal the signatures of energetic electrons, and HXR images with high dynamic range and high sensitivity can distinguish between where electrons are accelerated and where they stop. Furthermore, high-sensitivity HXR measurements may be able to detect the presence of electron acceleration in the non-flaring corona. The High Energy Replicated Optics to Explore the Sun (HEROES) balloon mission added the capability of solar observations to an existing astrophysics balloon payload, HERO, which used grazing-incidence optics for direct HXR imaging. The HEROES Solar Aspect System (SAS) was developed and built to provide pointing knowledge during solar observations to better than the ~20 arcsec FWHM angular resolution of the HXR instrument. The SAS consists of two separate systems: the Pitch-Yaw aspect System (PYAS) and the Roll Aspect System (RAS). The PYAS compares the position of an optical image of the Sun relative to precise fiducials to determine the pitch and yaw pointing offsets from the desired solar target. The RAS images the Earth's horizon in opposite directions simultaneously to determine the roll of the gondola. HEROES launched in September 2013 from Fort Sumner, New Mexico, and had a successful one-day flight. We present the detailed analysis of the performance of the SAS for that flight.

  14. SUNRISE: a balloon-borne telescope for high resolution solar observations in the visible and UV

    NASA Astrophysics Data System (ADS)

    Solanki, Sami K.; Gandorfer, Achim M.; Schuessler, Manfred; Curdt, W.; Lites, Bruce W.; Martinez-Pillet, Valentin; Schmidt, Wolfgang; Title, Alan M.

    2003-02-01

    Sunrise is a light-weight solar telescope with a 1 m aperture for spectro-polarimetric observations of the solar atmosphere. The telescope is planned to be operated during a series of long-duration balloon flights in order to obtain time series of spectra and images at the diffraction-limit and to study the UV spectral region down to ~200 nm, which is not accessible from the ground. The central aim of Sunrise is to understand the structure and dynamics of the magnetic field in the solar atmosphere. Through its interaction with the convective flow field, the magnetic field in the solar photosphere develops intense field concentrations on scales below 100 km, which are crucial for the dynamics and energetics of the whole solar atmosphere. In addition, Sunrise aims to provide information on the structure and dynamics of the solar chromosphere and on the physics of solar irradiance changes. Sunrise is a joint project of the Max-Planck-Institut fuer Aeronomie (MPAe), Katlenburg-Lindau, with the Kiepenheuer-Institut fuer Sonnenphysik (KIS), Freiburg, the High-Altitude Observatory (HAO), Boulder, the Lockheed-Martin Solar and Astrophysics Lab. (LMSAL), Palo Alto, and the Instituto de Astrofi sica de Canarias, La Laguna, Tenerife. In addition, there are close contacts with associated scientists from a variety of institutes.

  15. Balloon Flight Tests of a Gas-Ionization-Chamber-Based Isotope Spectrometer

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.; Milliken, B.

    1995-01-01

    High resolution studies of the isotopic composition of heavy elements in the galactic cosmic radiation have been performed using satellites. The performance of the Tracking Heavy Isotope Spectrometer Telescopes for Low Energies (THISTLE) is investigated using data from a balloon flight carried out in 1993. The instrument design is discussed; and data, and additional analysis, is shown.

  16. Gamma Ray Large Area Space Telescope (GLAST) Balloon Flight Engineering Model: Overview

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Godfrey, G.; Williams, S. M.; Grove, J. E.; Mizuno, T.; Sadrozinski, H. F.-W.; Kamae, T.; Ampe, J.; Briber, Stuart; Dann, James; White, Nicholas E. (Technical Monitor)

    2001-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) is a pair-production high-energy (greater than 20 MeV) gamma-ray telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006, designed to study a wide variety of high-energy astrophysical phenomena. As part of the development effort, the collaboration has built a Balloon Flight Engineering Model (BFEM) for flight on a high-altitude scientific balloon. The BFEM is approximately the size of one of the 16 GLAST-LAT towers and contains all the components of the full instrument: plastic scintillator anticoincidence system (ACD), high-Z foil/Si strip pair-conversion tracker (TKR), CsI hodoscopic calorimeter (CAL), triggering and data acquisition electronics (DAQ), commanding system, power distribution, telemetry, real-time data display, and ground data processing system. The principal goal of the balloon flight was to demonstrate the performance of this instrument configuration under conditions similar to those expected in orbit. Results from a balloon flight from Palestine, Texas, on August 4, 2001, show that the BFEM successfully obtained gamma-ray data in this high-background environment.

  17. Polaris Experiment: Data Collected During the Stratospheric Flight on the Balloon BEXUS 18

    NASA Astrophysics Data System (ADS)

    Paganini, D.; Cacco, C.; Cipriani, F.; Cocco, F.; Cortese, T.; Vecchia, R. D.; La Grassa, M.; Lora, M.; Zorzan, M.; Branz, F.; Olivieri, L.; Sansone, F.; Francesconi, A.

    2015-09-01

    POLARIS experiment, POLymer-Actuated Radiator with Independent Surfaces, is a technology demonstrator based on a new concept of heat radiator, conceived for space and planetary applications. This innovative radiator, named “multi-plate”, is able to influence actively the heat amount dissipated towards the environment through a simple geometry change, varying its equivalent thermal resistance. In order to better understand the potentialities of this radiator concept in one of its most likely scenario of application, POLARIS flew into stratosphere on the BEXUS1 8 balloon, in the framework of the REXUS-BEXUS programme; the flight took place from the ESRANGE Space Center on October 12th, 2014. The conditions that the experiment experienced during the flight allowed to evaluate the radiator in a realistic context, giving an extraordinary opportunity to characterize its capabilities. In this paper, POLARIS architecture is introduced and the main results obtained from the stratospheric balloon flight are presented and discussed.

  18. Balloon stratospheric research flights, November 1974 to January 1976

    NASA Technical Reports Server (NTRS)

    Allen, N. C.

    1976-01-01

    These flights were designed to measure the vertical concentration profile of trace stratospheric species which form major links in the photochemical system of the upper atmosphere. An overview of the specific goals of the program, a statement of program management and support functions, a brief description of the instrumentation flown, pertinent engineering and payload operations data, and a summary of the scientific data obtained for each of the last five flights during this period are presented.

  19. Small balloon flights for investigating the impact of convective overshooting on the tropical lower stratosphere

    NASA Astrophysics Data System (ADS)

    Pommereau, Jean-Pierre; Riviere, Emmanuel; Khaykin, Sergey; Held, Gerhard

    Thunderstorm convective overshooting over tropical land can reach an altitude of 20-21 km (Pommereau et al, Cospar 2018, Id 15676). For better understanding the process and the impact on the lower stratosphere, a small balloon flight program combining frequent flights of plastic and large rubber balloons next to thunderstorms has been carried in S-E Brazil in the frame of a French TROPICO project. Given the goal flying as close as possible from thunderstorms and ATC and safety requirements at landing, a specific control procedure was developed based on C-band radar observations and use of light-weight Iridium telemetry/remote control whose data were made available in real time to ATC by Internet for following the flight. A total of 37 flights have been carried out within two 3 weeks campaigns (20 in March 2012 and 17 in February 2013) of 3-40 kg payloads, among which FLASH Lyman alpha stratospheric hygrometers, PicoSDLA water vapor, N2O and CH4 diode laser sensors and COBALD cloud and aerosols detectors, operated and recovered in safe conditions. Altogether those balloon data, complemented by a variety of ground-based measurements of cloud altitude, atmospheric optical thickness and 4 radiosondes/day, allow confirming the stronger convective intensity over land in the southern tropics. An promising approach for further investigating the possible differences with other continents, i.e. Central Africa and Northern Australia, would be to carry similar measurements from long duration circumnavigating Infra Montgolfier, when their flights will be newly authorized. Details on technical aspects, payloads and procedures applied for carrying safe balloon flights in agreement with Brazilian authorities will be presented.

  20. Balloon stratospheric research flights, April 1976 to December 1976

    NASA Technical Reports Server (NTRS)

    Allen, N. C.

    1977-01-01

    These flights were designed to measure the vertical concentration profile of trace stratospheric species which form major links in the chlorine photochemical system of the upper atmosphere, to measure the vertical concentration profiles of atomic oxygen, the hydroxyl radical and ozone in the stratosphere. An overview of the scientific goals of the program, a statement of program management and support functions, a brief description of the instrumentation flown, pertinent engineering and payload operations data, and a summary of the scientific data obtained for four flights are presented.

  1. Mars Solar Balloon Landed Gas Chromatograph Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Harpold, D.; Niemann, H.; Atreya, S.; Gorevan, S.; Israel, G.; Bertaux, J. L.; Jones, J.; Owen, T.; Raulin, F.

    1999-01-01

    A Mars surface lander Gas Chromatograph Mass Spectrometer (GCMS) is described to measure the chemical composition of abundant and trace volatile species and isotope ratios for noble gases and other elements. These measurements are relevant to the study of atmospheric evolution and past climatic conditions. A Micromission plan is under study where a surface package including a miniaturized GCMS would be delivered to the surface by a solar heated hot air balloon based system. The balloon system would be deployed about 8 km above the surface of Mars, wherein it would rapidly fill with Martian atmosphere and be heated quickly by the sun. The combined buoyancy and parachuting effects of the solar balloon result in a surface package impact of about 5 m/sec. After delivery of the package to the surface, the balloon would ascend to about 4 km altitude, with imaging and magnetometry data being taken for the remainder of the daylight hours as the balloon is blown with the Martian winds. Total atmospheric entry mass of this mission is estimated to be approximately 50 kg, and it can fit as an Ariane 5 piggyback payload. The GCMS would obtain samples directly from the atmosphere at the surface and also from gases evolved from solid phase material collected from well below the surface with a Sample Acquisition and Transport Mechanism (SATM). The experiment envisioned in the Mars Micromission described would obtain samples from a much greater depth of up to one meter below the surface, and would search for organic molecules trapped in ancient stratified layers well below the oxidized surface. Insitu instruments on upcoming NASA missions working in concert with remote sensing measurement techniques have the potential to provide a more detailed investigation of mineralogy and the extent of simple volatiles such as CO2 and H2O in surface and subsurface solid phase materials. Within the context of subsequent mission opportunities such as those provided by the Ariane 5 piggyback

  2. ER-2 High Altitude Solar Cell Calibration Flights

    NASA Technical Reports Server (NTRS)

    Myers, Matthew; Wolford, David; Snyder, David; Piszczor, Michael

    2015-01-01

    Evaluation of space photovoltaics using ground-based simulators requires primary standard cells which have been characterized in a space or near-space environment. Due to the high cost inherent in testing cells in space, most primary standards are tested on high altitude fixed wing aircraft or balloons. The ER-2 test platform is the latest system developed by the Glenn Research Center (GRC) for near-space photovoltaic characterization. This system offers several improvements over GRC's current Learjet platform including higher altitude, larger testing area, onboard spectrometers, and longer flight season. The ER-2 system was developed by GRC in cooperation with NASA's Armstrong Flight Research Center (AFRC) as well as partners at the Naval Research Laboratory and Air Force Research Laboratory. The system was designed and built between June and September of 2014, with the integration and first flights taking place at AFRC's Palmdale facility in October of 2014. Three flights were made testing cells from GRC as well as commercial industry partners. Cell performance data was successfully collected on all three flights as well as solar spectra. The data was processed using a Langley extrapolation method, and performance results showed a less than half a percent variation between flights, and less than a percent variation from GRC's current Learjet test platform.

  3. Mutation effect of high altitude balloon flight on rice and green pepper seeds.

    PubMed

    Li, J; Wang, P; Han, D; Chen, F; Deng, L; Guo, Y

    1997-04-01

    Dry seeds of rice and green pepper were carried in the basket of a high altitude balloon to 30-40 km for 8 h. The treated seeds were planted on the ground and characters of these seeds and their progenies, such as development, fruiting, disease resistance were observed. The results showed that the SP2 generation of the treated rice showed strong mutation. A Japonica male fertility restorer rice line was found out. It could be hybridized with sterile line of Indica rice, and their progeny had strong hybrid vigor, high setting percentage and good plumpness of grain. Disease resistance, high-yield, big-fruit and high vitamin C content strains were selected from the progenies of treated green pepper seeds. The above results indicated that the special conditions in high altitude could produce a variety of mutations and most of them are hereditable. Therefore, high altitude balloon flight can be used as a new method of mutation breeding. PMID:11539903

  4. Pre-flight integration and characterization of the SPIDER balloon-borne telescope

    NASA Astrophysics Data System (ADS)

    Rahlin, A. S.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, Hsin C.; Contaldi, C. R.; Crill, B. P.; Doré, O.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Gambrel, A. E.; Gandilo, N. N.; Golwala, S.; Gudmundsson, Jon E.; Halpern, M.; Hasselfield, M. F.; Hilton, G.; Holmes, W. A.; Hristov, V. V.; Irwin, K. D.; Jones, William C.; Kermish, Zigmund D.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Megerian, K.; Moncelsi, L.; Morford, T. A.; Nagy, J. M.; Netterfield, C. B.; O'Brient, R.; Reintsema, C.; Ruhl, J. E.; Runyan, M. C.; Shariff, J. A.; Soler, J. D.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.; Weber, A. C.; Wiebe, D. V.; Young, E. Y.

    2014-07-01

    We present the results of integration and characterization of the Spider instrument after the 2013 pre-flight campaign. Spider is a balloon-borne polarimeter designed to probe the primordial gravitational wave signal in the degree-scale B-mode polarization of the cosmic microwave background. With six independent telescopes housing over 2000 detectors in the 94 GHz and 150 GHz frequency bands, Spider will map 7.5% of the sky with a depth of 11 to 14 μK•arcmin at each frequency, which is a factor of ~5 improvement over Planck. We discuss the integration of the pointing, cryogenic, electronics, and power sub-systems, as well as pre-flight characterization of the detectors and optical systems. Spider is well prepared for a December 2014 flight from Antarctica, and is expected to be limited by astrophysical foreground emission, and not instrumental sensitivity, over the survey region.

  5. Balloon launched decelerator test program: Post-flight test report, BLDT vehicle AV-3, Viking 1975 project

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.

    1973-01-01

    The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-3 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anaomalies encounters during the mission is included.

  6. Upper limits for stratospheric H2O2 and HOCl from high resolution balloon-borne infrared solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.; Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.

    1985-01-01

    Solar absorption spectra from two stratospheric balloon flights have been analyzed for the presence of H2O2 and HOCl absorption in the 1230.0 to 1255.0 per cm region. The data were recorded at 0.02 per cm resolution during sunset with the University of Denver interferometer system on October 27, 1978 and March 23, 1981. Selected spectral regions were analyzed with the technique of nonlinear least squares spectral curve fitting. Upper limits of 0.33 ppbv for H2O2 and 0.36 ppbv for HOCl near 28 km are derived from the 1978 flight data while upper limits of 0.44 ppbv for H2O2 and 0.43 ppbv for HOCl at 29.5 km are obtained from the 1981 flight data.

  7. Identification of the V3 vibration-rotation band of CF4 in balloon-borne infrared solar spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, D. G.; Murcray, F. J.; Cook, G. R.; Van Allen, J. W.; Bonomo, F. S.; Blatherwick, R. D.

    1979-01-01

    Infrared solar spectra in the 850 to 1350/cm region, at 0.02/cm resolution, were obtained during a balloon flight made on 27 October 1978 from Alamogordo, New Mexico. Analysis of the 1275-1290/cm region indicates that the atmospheric absorption lines of CH4, N2O, H2O, HNO3 and CO2 near 1283/cm are super-imposed on a broader absorption feature which we interpret as due to the V3 band of CF4. Fine structure of CF4 is also identified. Preliminary estimates from the sunset spectra show approximately 75 pptv CF4 near 25 km.

  8. Development and demonstration flight of a fuel cell system for high-altitude balloons

    NASA Astrophysics Data System (ADS)

    Uno, Masatoshi; Shimada, Takanobu; Ariyama, Yusuke; Fukuzawa, Naoya; Noguchi, Daisuke; Ogawa, Keita; Naito, Hitoshi; Sone, Yoshitsugu; Saito, Yoshitaka

    Proton exchange membrane fuel cell offers higher energy density than the existing battery technologies for high-energy applications, and it is a promising power source for various industries including aerospace vehicles. We have been developing and testing a non-external humidified fuel cell system for high-altitude balloons, which require simple, light, and easy-to-operate power systems. This system consists of three major subsystems-a fuel cell stack, a reactant supply subsystem, and an electrical control subsystem. Ground performance testing in a vacuum chamber simulating the high-altitude vacuum condition was performed before the flight. Then, a demonstration flight of the fuel cell system was launched using a large balloon for verifying its performance under practical high-altitude conditions. Cell voltage variations synchronized with oxygen pressure spikes were observed that were probably caused by condensed product water plugging the flow passages of the back pressure regulator. Flight results indicated that the fuel cell system operated better when water was expelled as vapor, rather than in the liquid form. In addition, a back pressure regulator should be installed to avoid the accumulation of water droplets for realizing a stable performance.

  9. Solar-powered Gossamer Penguin in flight

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Gossamer Penguin in flight above Rogers Dry Lakebed at Edwards, California, showing the solar panel perpendicular to the wing and facing the sun. Background The first flight of a solar-powered aircraft took place on November 4, 1974, when the remotely controlled Sunrise II, designed by Robert J. Boucher of AstroFlight, Inc., flew following a launch from a catapult. Following this event, AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) took on a more ambitious project to design a human-piloted, solar-powered aircraft. The firm initially took the human-powered Gossamer Albatross II and scaled it down to three-quarters of its previous size for solar-powered flight with a human pilot controlling it. This was more easily done because in early 1980 the Gossamer Albatross had participated in a flight research program at NASA Dryden in a program conducted jointly by the Langley and Dryden research centers. Some of the flights were conducted using a small electric motor for power. Gossamer Penguin The scaled-down aircraft was designated the Gossamer Penguin. It had a 71-foot wingspan compared with the 96-foot span of the Gossamer Albatross. Weighing only 68 pounds without a pilot, it had a low power requirement and thus was an excellent test bed for solar power. AstroFlight, Inc., of Venice, Calif., provided the power plant for the Gossamer Penguin, an Astro-40 electric motor. Robert Boucher, designer of the Sunrise II, served as a key consultant for both this aircraft and the Solar Challenger. The power source for the initial flights of the Gossamer Penguin consisted of 28 nickel-cadmium batteries, replaced for the solar-powered flights by a panel of 3,920 solar cells capable of producing 541 Watts of power. The battery-powered flights took place at Shafter Airport near Bakersfield, Calif. Dr. Paul MacCready's son Marshall, who was 13 years old and weighed roughly 80 pounds, served as the initial pilot for these flights to

  10. Crew Recovery and Contingency Planning for a Manned Stratospheric Balloon Flight - the StratEx Program.

    PubMed

    Menon, Anil S; Jourdan, David; Nusbaum, Derek M; Garbino, Alejandro; Buckland, Daniel M; Norton, Sean; Clark, Johnathan B; Antonsen, Erik L

    2016-10-01

    The StratEx program used a self-contained space suit and balloon system to loft pilot Alan Eustace to a record-breaking altitude and skydive from 135,897 feet (41,422 m). After releasing from the balloon and a stabilized freefall, the pilot safely landed using a parachute system based on a modified tandem parachute rig. A custom spacesuit provided life support using a similar system to NASA's (National Aeronautics and Space Administration; Washington, DC USA) Extravehicular Mobility Unit. It also provided tracking, communications, and connection to the parachute system. A recovery support team, including at least two medical personnel and two spacesuit technicians, was charged with reaching the pilot within five minutes of touchdown to extract him from the suit and provide treatment for any injuries. The team had to track the flight at all times, be prepared to respond in case of premature release, and to operate in any terrain. Crew recovery operations were planned and tailored to anticipate outcomes during this novel event in a systematic fashion, through scenario and risk analysis, in order to minimize the probability and impact of injury. This analysis, detailed here, helped the team configure recovery assets, refine navigation and tracking systems, develop procedures, and conduct training. An extensive period of testing and practice culminated in three manned flights leading to a successful mission and setting the record for exit altitude, distance of fall with stabilizing device, and vertical speed with a stabilizing device. During this mission, recovery teams reached the landing spot within one minute, extracted the pilot, and confirmed that he was not injured. This strategy is presented as an approach to prehospital planning and care for improved safety during crew recovery in novel, extreme events. Menon AS , Jourdan D , Nusbaum DM , Garbino A , Buckland DM , Norton S , Clark JB , Antonsen EL . Crew recovery and contingency planning for a manned

  11. Crew Recovery and Contingency Planning for a Manned Stratospheric Balloon Flight - the StratEx Program.

    PubMed

    Menon, Anil S; Jourdan, David; Nusbaum, Derek M; Garbino, Alejandro; Buckland, Daniel M; Norton, Sean; Clark, Johnathan B; Antonsen, Erik L

    2016-10-01

    The StratEx program used a self-contained space suit and balloon system to loft pilot Alan Eustace to a record-breaking altitude and skydive from 135,897 feet (41,422 m). After releasing from the balloon and a stabilized freefall, the pilot safely landed using a parachute system based on a modified tandem parachute rig. A custom spacesuit provided life support using a similar system to NASA's (National Aeronautics and Space Administration; Washington, DC USA) Extravehicular Mobility Unit. It also provided tracking, communications, and connection to the parachute system. A recovery support team, including at least two medical personnel and two spacesuit technicians, was charged with reaching the pilot within five minutes of touchdown to extract him from the suit and provide treatment for any injuries. The team had to track the flight at all times, be prepared to respond in case of premature release, and to operate in any terrain. Crew recovery operations were planned and tailored to anticipate outcomes during this novel event in a systematic fashion, through scenario and risk analysis, in order to minimize the probability and impact of injury. This analysis, detailed here, helped the team configure recovery assets, refine navigation and tracking systems, develop procedures, and conduct training. An extensive period of testing and practice culminated in three manned flights leading to a successful mission and setting the record for exit altitude, distance of fall with stabilizing device, and vertical speed with a stabilizing device. During this mission, recovery teams reached the landing spot within one minute, extracted the pilot, and confirmed that he was not injured. This strategy is presented as an approach to prehospital planning and care for improved safety during crew recovery in novel, extreme events. Menon AS , Jourdan D , Nusbaum DM , Garbino A , Buckland DM , Norton S , Clark JB , Antonsen EL . Crew recovery and contingency planning for a manned

  12. Upper Limits of Stratsopsheric Io and Oio Inferred From Center-to-limb Darkening Corrected Balloon Borne Solar Occultation Spectra: Implication For Total Gaseous Iodine and Stratsopsheric Ozone

    NASA Astrophysics Data System (ADS)

    Boesch, H.; Camy Peyret, C.; Dorf, M.; Fitzenberger, R.; Platt, U.; Weidner, F.; Pfeilsticker, K.

    We report upper limits of lower stratospheric IO (0.055+/-0.004) ppt and OIO (0.056+/-0.003) ppt inferred from balloon-borne solar occultation UV/visible spec- troscopy (<20 km). The spectra were recorded during a series of LPMA/DOAS (Labo- ratoire de Physique Moléculaire et Applications/Differential Optical Absorption Spec- troscopy) balloon flights that were conducted at different geophysical conditions i.e., inside the arctic winter vortex, at mid-, and high latitudes in spring, summer, and fall. Photochemical modeling that accounts for the iodine partitioning

  13. Solar energy collector including a weightless balloon with sun tracking means

    DOEpatents

    Hall, Frederick F.

    1978-01-01

    A solar energy collector having a weightless balloon, the balloon including a transparent polyvinylfluoride hemisphere reinforced with a mesh of ropes secured to its outside surface, and a laminated reflector hemisphere, the inner layer being clear and aluminized on its outside surface and the outer layer being opaque, the balloon being inflated with lighter-than-air gas. A heat collection probe extends into the balloon along the focus of reflection of the reflective hemisphere for conducting coolant into and out of the balloon. The probe is mounted on apparatus for keeping the probe aligned with the sun's path, the apparatus being founded in the earth for withstanding wind pressure on the balloon. The balloon is lashed to the probe by ropes adhered to the outer surface of the balloon for withstanding wind pressures of 100 miles per hour. Preferably, the coolant is liquid sodium-potassium eutectic alloy which will not normally freeze at night in the temperate zones, and when heated to 4,000.degree. R exerts a pressure of only a few atmospheres.

  14. Balloon for Long-Duration, High-Altitude Flight at Venus

    NASA Technical Reports Server (NTRS)

    Hall, Jeffrey; Kerzhanovich, Viktor; Yavrouian, Andre; Fairbrother, Debora; Said, Magdi; Sandy, Chuck; Fredrickson, Thad

    2007-01-01

    A document describes a 5.5-m-diameter, helium-filled balloon designed for carrying a scientific payload having a mass of 44 kg for at least six days at an altitude of about 55 km in the atmosphere of Venus. The requirement for floating at nearly constant altitude dictates the choice of a mass-efficient spherical super-pressure balloon that tracks a constant atmospheric density. Therefore, the balloon is of a conventional spherical super-pressure type, except that it is made of materials chosen to minimize solar radiant heating and withstand the corrosive sulfuric acid aerosol of the Venusian atmosphere. The shell consists of 16 gores of a multilayer composite material. The outer layer, made of polytetrafluoroethylene, protects against sulfuric acid aerosol. Next is an aluminum layer that reflects sunlight to minimize heating, followed by an aluminized polyethylene terephthalate layer that resists permeation by helium, followed by an aromatic polyester fabric that imparts strength to withstand deployment forces and steady super-pressure. A polyurethane coat on the inner surface of the fabric facilitates sealing at gore-to-gore seams. End fittings and seals, and a tether connecting the end fittings to a gondola, are all made of sulfuric-acid-resistant materials.

  15. Initial Results from the Radiation Dosimetry Experiment (RaD-X) Balloon Flight Mission

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.

    2015-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. The four dosimeters flown on the RaD-X science payload are a Hawk version 3.0 Tissue Equivalent Proportional Counter (TEPC) manufactured by Far West Technologies, a Liulin dosimeter-spectrometer produced by the Solar Research and Technology Institute, Bulgarian Academy of Sciences, a total ionizing dose detector manufactured by Teledyne Microelectronic Technologies, and the RaySure detector provided by the University of Surrey.

  16. Radiation measurement platform for balloon flights based on the TriTel silicon detector telescope

    NASA Astrophysics Data System (ADS)

    Zabori, Balazs; Hirn, Attila; Pazmandi, Tamas; Apathy, Istvan; Szanto, Peter; Deme, Sandor

    Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research airplanes. However the cosmic radiation field is not well known between 15 km and 30 km. Our experiment idea based on to study the radiation environment in the stratosphere. The main technical goals of our experiment were to test at first time the TriTel 3D silicon detector telescope system for future ISS missons and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TriTel system to determine dosimetric and radiation quantities during the ballon flight and to intercompare the TriTel and Pille results to provide a correction factor definition method for the Pille ISS measurements. To fulfil the scientific and technological objectives several different dosimeter systems were included in the experiment: an advanced version of the TriTel silicon detector telescope, Geiger-Müller counters, Pille passive thermoluminescent dosimeters and Solid State Nuclear Track Detectors. The experiment was built by students from Hungarian universities and flew on board the BEXUS stratospheric balloon in Northern Sweden (from ESRANGE Space Center). The float altitude was approximately 28.6 km and the total flight time was about 4 hours. The active instruments measured in real time and the ground team received the collected data continuously during the mission. The main technical goals were received since the operation of the TriTel experienced no failures and the experiment worked as it expected. This paper presents the scientific goals and results. From the TriTel measurements the deposited energy spectra, the Linear Energy Transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined for the

  17. Solar Flight on Mars and Venus

    NASA Astrophysics Data System (ADS)

    Landis, Geoffrey A.; LaMarre, Christopher; Colozza, Anthony

    2002-10-01

    Solar powered aircraft are of interest for exploring both Mars and Venus. The thin atmosphere of Mars presents a difficult environment for flying. It is clear that a new approach is needed. By making a totally solar airplane, we can eliminate many of the heavy components, and make an airplane that can fly without fuel. Using high efficiency solar cells, we can succeed with an airplane design that can fly for up to 6 hours in near-equatorial regions of Mars (4 hours of level flight, plus two hours of slow descent), and potentially fly for many days in the polar regions. By designing an airplane for a single day flight. In particular, this change means that we no longer have to cope with the weight of the energy storage system that made previous solar powered airplanes for Mars impractical). The new airplane concept is designed to fly only under the optimal conditions: near equatorial flight, at the subsolar point, near noon. We baseline an 8 kg airplane, with 2 kg margin. Science instruments will be selected with the primary criterion of low mass. Solar-powered aircraft are also quite interesting for the exploration of Venus. Venus provides several advantages for flying a solar-powered aircraft. At the top of the cloud level, the solar intensity is comparable to or greater than terrestrial solar intensities. The atmospheric pressure makes flight much easier than on planets such as Mars. The atmospheric pressure on Venus is presented. From an altitude of approximately 45 km (pressure = 2 bar), to approximately 60 km (pressure = 0.2 bar), terrestrial airplane experience can be easily applied to a Venus airplane design. At these flight altitudes, the temperature varies from 80 C at 45 km, decreasing to -35 C at 60 km. Also, the slow rotation of Venus allows an airplane to be designed for flight within continuous sunlight, eliminating the need for energy storage for nighttime flight. These factors make Venus a prime choice for a long-duration solar-powered aircraft

  18. Solar Flight on Mars and Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; LaMarre, Christopher; Colozza, Anthony

    2002-01-01

    Solar powered aircraft are of interest for exploring both Mars and Venus. The thin atmosphere of Mars presents a difficult environment for flying. It is clear that a new approach is needed. By making a totally solar airplane, we can eliminate many of the heavy components, and make an airplane that can fly without fuel. Using high efficiency solar cells, we can succeed with an airplane design that can fly for up to 6 hours in near-equatorial regions of Mars (4 hours of level flight, plus two hours of slow descent), and potentially fly for many days in the polar regions. By designing an airplane for a single day flight. In particular, this change means that we no longer have to cope with the weight of the energy storage system that made previous solar powered airplanes for Mars impractical). The new airplane concept is designed to fly only under the optimal conditions: near equatorial flight, at the subsolar point, near noon. We baseline an 8 kg airplane, with 2 kg margin. Science instruments will be selected with the primary criterion of low mass. Solar-powered aircraft are also quite interesting for the exploration of Venus. Venus provides several advantages for flying a solar-powered aircraft. At the top of the cloud level, the solar intensity is comparable to or greater than terrestrial solar intensities. The atmospheric pressure makes flight much easier than on planets such as Mars. The atmospheric pressure on Venus is presented. From an altitude of approximately 45 km (pressure = 2 bar), to approximately 60 km (pressure = 0.2 bar), terrestrial airplane experience can be easily applied to a Venus airplane design. At these flight altitudes, the temperature varies from 80 C at 45 km, decreasing to -35 C at 60 km. Also, the slow rotation of Venus allows an airplane to be designed for flight within continuous sunlight, eliminating the need for energy storage for nighttime flight. These factors make Venus a prime choice for a long-duration solar-powered aircraft

  19. First Balloon Flight with the Prototype Tracking and Imaging Gamma-Ray Experiment (TIGRE)

    NASA Astrophysics Data System (ADS)

    Zych, Allen; O'Neill, Terrence; Bhttacharya, Dipen; Harris, Eric; Trojanowski, Charity; Kamiya, Kaoru; Wijeratne, Sitara

    The TIGRE prototype scientific balloon instrument was flown for the first time on 2-3 June 2007 from Ft. Sumner NM. Approximately 2 million events (100 GB) were recorded on-board during a period of 20 hours. This instrument is sensitive to gamma radiation from 1-10 MeV using Compton scattering with recoil electron tracking and from 10-100 MeV for gammaray pairs. A combination of silicon semiconductor detectors and scintillation detectors are used. A description of the performance of various telescope subsystems during the flight will be presented. This will include oscillator/clock stability, orientation control and measurement, thermal design and diurnal performance and system counting rates and dead-times. Preliminary science results will also be presented.

  20. THE BALLOON-BORNE LARGE APERTURE SUBMILLIMETER TELESCOPE (BLAST) 2006: CALIBRATION AND FLIGHT PERFORMANCE

    SciTech Connect

    Truch, Matthew D. P.; Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Bock, James J.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Gundersen, Joshua O.; Hughes, David H.; Martin, Peter G.; Netterfield, C. Barth; Olmi, Luca; Patanchon, Guillaume

    2009-12-20

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 250 hr flight over Antarctica in 2006 December (BLAST06). As part of the calibration and pointing procedures, the red hypergiant star VY CMa was observed and used as the primary calibrator. Details of the overall BLAST06 calibration procedure are discussed. The 1sigma uncertainty on the absolute calibration is accurate to 9.5%, 8.7%, and 9.2% at the 250, 350, and 500 mum bands, respectively. The errors are highly correlated between bands resulting in much lower errors for the derived shape of the 250-500 mum continuum. The overall pointing error is < 5'' rms for the 36'', 42'', and 60'' beams. The performance of optics and pointing systems is discussed.

  1. Solar flare gamma-ray and hard x ray imaging with the GRID-on-a-balloon

    NASA Technical Reports Server (NTRS)

    Orwig, Larry E.; Crannell, C. J.; Dennis, Brian R.; Starr, R.; Hurford, G. J.; Hudson, H. S.; Vanbeek, F.; Greene, M. E.; Johnson, W. N.; Norris, J. P.

    1989-01-01

    A primary scientific objective for solar flare research during the rapidly approaching maximum in solar activity is the imaging of gamma-ray and hard x ray sources of solar flare emissions. These goals will be pursued by the Gamma Ray Imaging Device (GRID) instrument, one of three instruments recently selected for NASA's Max '91 Solar Balloon Program. The GRID instrument is based on the technique of Fourier transform imaging and utilizes scanning modulation grid collimator optics to provide full-Sun imaging with 1.9-arcsecond resolution over the energy range from 20 to 700 keV at time resolutions from 0.1 to 2 s. The GRID telescope will employ 32 subcollimators, each composed of a matched pair of high-Z collimator grids separated by 5.2 meters and a phoswich scintillation spectrometer detector having no spatial resolution. The subcollimators and integrally-mounted fine aspect system are contained within a telescope canister which will be pointed to 0.1 degree accuracy and cyclically scanned to produce source modulation. The 32 subcollimators provide a uniform distribution of grid slit orientations and a logarithmic distribution of slit spacings corresponding to angular dimensions of 1.9 arcseconds to several arcminutes. The instrument is several orders of magnitude more sensitive than the HXIS instrument on the Solar Maximum Mission (SMM) and nearly 10 times more sensitive than any similar instrument scheduled to fly during the next solar maximum. The payload, designed for long-duration high-altitude balloon capability, is scheduled for its first science flight (8 to 14 days duration) from the Antarctic in January of 1992.

  2. First Flight of the Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Case, G.; Ellison, S.; Gould, R.; Granger, D.; Guzik, T. G.; Isbert, J.; Price, B.; Stewart, M.; Wefel, J. P.; Mock, L.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The ATILT instrument is designed to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range -10 GeV - 100 TeV. ATIC was launched as a long duration test balloon flight on 12/28/00 local time from McMurdo, Antarctica. The operations preceding and during launch went very smoothly. During the first -20 hr while the instrument remained within line of sight (LOS), a full system check out was conducted, the experiment was operated in several test configurations, and all major tuning was completed. Preliminary analysis of the science data indicates that the overall detector system is functioning as expected. With our fully functioning analysis software we were able to monitor the data in nearly real time. Each event was reconstructed event-by-event to confirm the detector performance. The shower profiles indicate that the shower maximum location is deeper in the calorimeter for higher energy events, as expected. The energy spectra of protons, Helium nuclei, and "all particles" appear to follow power laws. Both the Si matrix and top scintillator layer of the charge module show clear charge separation for p and He. As the statistics increase, heavy nuclei charge separation will be evaluated. We will present preliminary results of the LOS data, as well as other data that will be available from the flight-data hard disk,

  3. Gamma Ray Large Area Space Telescope (GLAST) Balloon Flight Data Handling Overview

    SciTech Connect

    Rochester, Leon S

    2002-09-25

    The GLAST Balloon Flight Engineering Model (BFEM) represents one of 16 towers that constitute the Large Area Telescope (LAT), a high-energy (>20 MeV) gamma-ray pair-production telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006. The prototype tower consists of a Pb/Si pair-conversion tracker (TKR), a CsI hodoscopic calorimeter (CAL), an anti-coincidence detector (ACD) and an autonomous data acquisition system (DAQ). The self-triggering capabilities and performance of the detector elements have been previously characterized using positron, photon and hadron beams. External target scintillators were placed above the instrument to act as sources of hadronic showers. This paper provides a comprehensive description of the BFEM data-reduction process, from receipt of the flight data from telemetry through event reconstruction and background rejection cuts. The goals of the ground analysis presented here are to verify the functioning of the instrument and to validate the reconstruction software and the background-rejection scheme.

  4. Preliminary Results Of the 2007 Flight of the Solar Bolometric Imager at Solar Minimum

    NASA Astrophysics Data System (ADS)

    Bernasconi, P. N.; Foukal, P. V.; Eaton, H. H.; Noble, M.

    2008-05-01

    On September 13 2007, the Solar Bolometric Imager (SBI) successfully observed the Sun for several hours while suspended from a balloon in the stratosphere above New Mexico. The SBI represents a totally new approach in finding the sources of the solar irradiance variation. The SBI detector is an array of 320x240 thermal IR elements whose spectral absorptance has been extended and flattened by a deposited layer of gold-black. The telescope is a 30-cm Dall-Kirkham with uncoated primary and secondary Pyrex mirrors. The combination of telescope and bolometric array provide an image of the Sun with a constant spectral response between ~ 280 and 2600 nm, over a field of view of 960 x 720 arcsec with a pixel size of 3 arcsec. This is the second successful flight of SBI, following a successful one on September 2003 which produced the first measurements in broad band of the center-to-limb variation of bolometric facular contrast (a flight attempt from Antarctica in 2006 was aborted). This latest flight provided bolometric (integrated light) maps of the solar photosphere during a time of minimum of solar activity. The SBI imagery will enable us to evaluate the photometric contribution of weak magnetic structures (e.g. network) more accurately than has been achievable with spectrally selective imaging over restricted wavebands. It will also enable us to investigate the presence, if any, of other thermal structures unrelated to magnetic activity, such as e.g. giant cells and pole-to-equator temperature gradients. During the 16 hour flight the SBI gathered several thousand bolometric images that are now being processed to produce full-disk maps of spatial variation in total solar output at solar minimum. The SBI flight is also providing important engineering data to validate the space worthiness of the novel gold-blackened thermal array detectors. In this paper we will briefly describe the characteristics of the SBI, its in-flight performance, and we will present the first

  5. A method of exploration of the atmosphere of Titan. [hot air balloon heated by solar radiation or planetary thermal flux

    NASA Technical Reports Server (NTRS)

    Blamont, J.

    1978-01-01

    A hot-air balloon, with the air heated by natural sources, is described. Buoyancy is accomplished by either solar heating or by utilizing the IR thermal flux of the planet to heat the gas in the balloon. Altitude control is provided by a valve which is opened and closed by a barometer. The balloon is made of an organic material which has to absorb radiant energy and to emit as little as possible.

  6. Scientific ballooning in Japan

    NASA Astrophysics Data System (ADS)

    Makino, Fumiyoshi

    Activities in scientific ballooning in Japan during 1998-1999 are reported. The total number of scientific balloons flown in Japan in 1998 and 1999 was sixteen, eight flights in each year. The scientific objectives were observations of high energy cosmic electrons, air samplings at various altitudes, monitoring of atmospheric ozone density, Galactic infrared observations, and test flights of new type balloons. Balloon expeditions were conducted in Antarctica by the National Institute of Polar Research, in Russia, in Canada and in India in collaboration with foreign countries' institutes to investigate cosmic rays, Galactic infrared radiation, and Earth's atmosphere. There were three flights in Antarctica, four flights in Russia, three flights in Canada and two flights in India. Four test balloons were flown for balloon technology, which included pumpkin-type super-pressure balloon and a balloon made with ultra-thin polyethylene film of 3.4 μm thickness.

  7. High Energy Electrons and Gamma Rays from the ATIC-2 Balloon Flight

    NASA Astrophysics Data System (ADS)

    Isbert, J. B.; ATIC Collaboration

    2004-08-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment is primarily designed to measure the spectra of nuclear cosmic rays (protons to nickel). It is composed of a segmented BGO calorimeter (18 radiation lengths deep) following a carbon target (0.75 nuclear interaction lengths) interleaved with scintillator tracking layers. A Silicon matrix detector at the entrance identifies the incident particle charge. Utilizing simulations such as Fluka and Geant we have investigated the ability of this design to differentiate electron (gamma) initiated showers from hadronic showers. The differences in shower development between the two populations are sufficient to differentiate them for measurements of electron spectra into the TeV region, as confirmed by accelerator tests at CERN and by the ATIC-1 test flight in 2000-01. ATIC had a successful science flight in 2002-03 from McMurdo, Antarctica returning about 19 days of flight data. This exposure is sufficient to record electrons into the TeV region and measure gamma rays at 100's of GeV. The majority of gamma rays are of atmospheric origin and provide a test for this technique. The preliminary electron spectrum from the ATIC-2 flight is presented and compared to previous high energy measurements, principally from emulsion chambers. Possible astrophysical interpretations of the results are discussed. The ATIC Collaboration: J.H. Adams,2 H.S. Ahn,3 G.L. Bashindzhagyan,4 K.E. Batkov,4 J. Chang,6,7 M. Christl,2 A.R. Fazely,5, O. Ganel,3 R.M. Gunasingha,5 T.G. Guzik,1 J. Isbert,1 K.C. Kim,3 E.N. Kouznetsov,4 M.I. Panasyuk,4 A.D. Panov,4 W.K.H. Schmidt,6 E.S. Seo,3 N.V. Sokolskaya,4 J.Z. Wang,3 J.P. Wefel,1 J. Wu,3 V.I. Zatsepin,4 (1) Louisiana State University, Baton Rouge, LA, USA (2) Marshall Space Flight Center, Huntsville, AL, USA (3) University of Maryland, College Park, MD, USA (4) Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia (5) Southern University, Baton Rouge, LA, USA (6

  8. Testing of Radio Communication Subsystems for the NUTS CubeSat on a Meteorological Balloon Flight from Andoya in 2014

    NASA Astrophysics Data System (ADS)

    Tommer, M.; Birkeland, R.; Gjersvik, A.; Stein, T. A.; Vestnes, F.; Skagmo, J. P.; Kvamtro, K. M.; Eckholdt, F.; Alstad, T.; Grande, J.; Mathisen, S. V.

    2015-09-01

    In April 2014, the Norwegian University of Science and Technology (NTNU) Test Satellite (NUTS) team carried out a balloon campaign at Andøya, Norway. The purpose was to test the on-board UHF and VHF radio prototypes. In accordance with the project mission goals, this campaign marked the test of the engineering model's communication subsystems. One of the mission requirements was that these systems should be as close to the final flight-model as possible. Parts of the system were built and assembled in advance at NTNU, and the final system integration was carried out at Andøya. A standard PTU probe with a GPS module transmitting the balloon's location in the UHF band was used to track the flight. The probe was mounted below the NUTS payload box. The payload radios was tracked using Yagi antennas based on the received GPS coordinates from the PTU probe. A two-way communication link was established and maintained between the balloon and the ground station. This paper will present the results from the mission as well as lessons learned related to the preparation and execution of balloon campaigns.

  9. Stratochip, a dual balloon high-altitude platform: controlled altitude flight experiments and potential applications in geosciences.

    NASA Astrophysics Data System (ADS)

    Burlet, Christian; Vanbrabant, Yves

    2014-05-01

    A high-altitude dual balloons system, the 'Stratochip', was designed at the Geological Survey of Belgium to serve as a development platform to carry measurement and earth observation equipments, in altitudes comprised between 1000 and 25000m. These working altitudes far exceed the range of current motor powered unmanned aerial vehicules, with a higher weight carrying capacity (up to 10-15kg). This platform is built around a two helium balloons configuration, than can be released one by one at a target altitude or location, allowing a partially controlled drift of the platform. Using a 'nowcasting' meteorological model, updated by flight telemetry, the predicted path can be refined live to follow and retrieve the equipment in a predicted landing area. All subsystems (balloon cut-off devices, flight controller, telemetry system) have been developed in-house. Three independent communication channels, designed to work at extremely low temperature (up to -60° C) ensure a continuous tracking until landing. A calibrated parachute is used to control the safe descent of the equipment. Several flight tests have been performed in Belgium to control the meteorological model accuracy for wind predictions (model based on National Oceanic and Atmospheric Administration data). Those tests demonstrated the capability of the platform to maintain its altitude in a predicted path, allowing using the platform for new types of atmospheric studies and affordable high-altitude remote-sensing applications (i.e. sub-meter resolution stereo imagery).

  10. Thin film strain transducer. [in-flight measurement of stress or strain in walls of high altitude balloons

    NASA Technical Reports Server (NTRS)

    Rand, J. L.

    1981-01-01

    Previous attempts to develop an appropriate sensor for measuring the stress or strain of high altitude balloons during flight are reviewed as well as the various conditions that must be met by such a device. The design, development and calibration of a transducer which promises to satisfy the necessary design constraints are described. The thin film strain transducer has a low effective modulus so as not to interfere with the strain that would naturally occur in the balloon. In addition, the transducer has a high sensitivity to longitudinal strain (7.216 mV/V/unit strain) which is constant for all temperature from room temperature to -80 C and all strains from 5 percent compression to 10 percent tensile strain. At the same time, the sensor is relatively insensitive (0.27 percent) to transverse forces. The device has a standard 350 ohm impedance which is compatible with available bridge balance, amplification and telemetry instrumentation now available for balloon flight. Recommendations are included for improved coatings to provide passive thermal control as well as model, tethered and full scale flight testing.

  11. High Altitude Ozone Research Balloon

    NASA Technical Reports Server (NTRS)

    Cauthen, Timothy A.; Daniel, Leslie A.; Herrick, Sally C.; Rock, Stacey G.; Varias, Michael A.

    1990-01-01

    In order to create a mission model of the high altitude ozone research balloon (HAORB) several options for flight preparation, altitude control, flight termination, and payload recovery were considered. After the optimal launch date and location for two separate HAORB flights were calculated, a method for reducing the heat transfer from solar and infrared radiation was designed and analytically tested. This provided the most important advantage of the HAORB over conventional balloons, i.e., its improved flight duration. Comparisons of different parachute configurations were made, and a design best suited for the HAORB's needs was determined to provide for payload recovery after flight termination. In an effort to avoid possible payload damage, a landing system was also developed.

  12. Two lighter than air systems in opposing flight regimes: An unmanned short haul, heavy load transport balloon and a manned, light payload airship

    NASA Technical Reports Server (NTRS)

    Pohl, R. A.

    1975-01-01

    Lighter Than Air vehicles are generally defined or categorized by the shape of the balloon, payload capacity and operational flight regime. Two balloon systems that are classed as being in opposite categories are described. One is a cable guided, helium filled, short haul, heavy load transport Lighter Than Air system with a natural shaped envelope. The other is a manned, aerodynamic shaped airship which utilizes hot air as the buoyancy medium and is in the light payload class. While the airship is in the design/fabrication phase with flight tests scheduled for the latter part of 1974, the transport balloon system has been operational for some eight years.

  13. Intercomparison of NO2 Slant Column Densities and Vertical Profiles Inferred from Balloon-borne Measurements of Solar Absorption Spectra in the IR and UV/vis

    NASA Astrophysics Data System (ADS)

    Butz, A.; Boesch, H.; Camy-Peyret, C.; Dorf, M.; Dufour, G.; Payan, S.; Weidner, F.; Pfeilsticker, K.

    2003-04-01

    During a series of LPMA/DOAS (Laboratoire de Physique Moléculaire et Applications/Differential Optical Absorption Spectroscopy) stratospheric balloon flights direct solar spectra in the UV/vis and near IR were simultaneously measured by the onboard installed Fourier Transform (LPMA) and two channel grating spectrometer (DOAS). The measurements were conducted in spring and summer at high and midlatitudes during ascent of the balloon into the stratosphere (30 - 40 km) and solar occultation at balloon float altitude. Here we present a direct intercomparison of the NO_2 slant column densities (SCDs) and vertical profiles retrieved from UV/vis-DOAS and IR-LPMA measurements for a wide range of geophysical conditions (ambient pressure and temperature and solar illumination). The comparison study thus allows us to verify the applied retrieval procedures, i.e., the underlying spectroscopic dataset as well as the inversion algorithms. First intercomparison studies showed a sizeable discrepancy between NO_2 inferred by LPMA in the IR and DOAS in the visible spectral range indicating deficiencies in the spectral retrieval techniques. After introducing a temperature correction scheme for the DOAS retrieval and a new LPMA MULTIFIT procedure which minimizes the correlations of the fitting parameters by performing the inversion simultaneously in several micro-windows, a reasonably good agreement between NO_2 inferred from both instruments is found.

  14. To sail the skies of Mars - Scientific ballooning on the red planet

    NASA Technical Reports Server (NTRS)

    Gaidos, Eric J.; Burke, James D.

    1988-01-01

    Balloons represent a novel approach to exploring the surface of Mars. One promising aerostat system incorporates a solar-powered balloon as a means of generating diurnally varying lift and so can 'hop' across the surface, obtaining detailed information at a large number of sites. Two important areas of research and testing are underway on solar balloon technology and balloon payload design. The solar balloon concept has been demonstrated on earth, but more work is needed on a 'flyable' version for Mars. Particular attention must be paid to radiation heat transfer and aerodynamic effects. A special 'snake' payload concept has been demonstrated that allows for balloon system traverses of the surface and provides a usable instrument platform. A balloon system of this type could obtain unique surface imaging and physical and chemical data. The flight of the balloon also provides in situ atmospheric boundary-layer and circulation measurements.

  15. Investigations To Characterize Multi-Junction Solar Cells In The Stratosphere Using Low-Cost Balloon And Communication Technologies

    NASA Technical Reports Server (NTRS)

    Bowe, Glenroy A.; Wang, Qianghua; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2005-01-01

    The use of current balloon, control and communication technologies to test multi-junction solar sell in the stratosphere to achieve near AMO conditions have been investigated. The design criteria for the technologies are that they be reliable, low cost and readily available. Progress is reported on a program to design, launch, fly and retrieve payloads dedicated to testing multi-junction solar cells.

  16. Electrons in the solar corona. III - Coronal streamers analysis from balloon-borne coronagraph

    NASA Astrophysics Data System (ADS)

    Dollfus, A.; Mouradian, Z.

    1981-03-01

    The solar corona is discussed on the basis of observations made during a 5-hour period in France in September 1971. Using a balloon at an altitude of 32,000 m, the solar corona was cinematographed from 2 to 5 solar radii with an externally occulted coronagraph. It is noted that motions in coronal features, when they occur, exhibit deformations of structures with velocities not exceeding a few tens of km/s. Several streamers were often involved simultaneously; these variations are compatible with magnetic changes or sudden reorganizations of lines of forces. Intensity and polarization measurements are shown to give the electron density with height in the quiet corona above the equator. Three-dimensional structures and localizations of the streamers are deduced from combined photometry, polarimetry, and ground-based K coronametry.

  17. ER-2 High Altitude Solar Cell Calibration Flights

    NASA Technical Reports Server (NTRS)

    Myers, Matthew G.; Piszczor, Michael F.

    2015-01-01

    The first flights of the ER-2 solar cell calibration demonstration were conducted during September-October of 2014. Three flights were performed that not only tested out the equipment and operational procedures, but also demonstrated the capability of this unique facility by conducting the first short-circuit measurements on a variety of test solar cells. Very preliminary results of these first flights were presented at the 2014 Space Photovoltaic Research and Technology (SPRAT) Conference in Cleveland, OH shortly following these first flights. At the 2015 Space Power Workshop, a more detailed description of these first ER-2 flights will be presented, along with the final flight data from some of the test cells that were flown and has now been reduced and corrected for ER-2 atmospheric flight conditions. Plans for ER-2 flights during the summer of 2015 will also be discussed.

  18. Ultra high resolution images of the solar chromosphere and corona using coordinated rocket and balloon observations

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Timothy, J. G.; Hoover, Richard B.; Barbee, Troy W., Jr.

    1993-01-01

    A discussion is presented of the scientific objectives that can be pursued by simultaneous coronal/chromospheric observation with the Multi-Spectral Solar Telescope Array (MSSTA), and a new balloon-borne observatory called the Ultra-High Resolution Vacuum Ultraviolet Spectroheliograph (UHRVS). Attention is given to the proposed UHRVS observatory, which will incorporate two instruments, a 65-cm aperture telescope with narrowband filters for high resolution photographic and photoelectric spectroheliograms, and a very high resolution spectrograph which uses a 40-cm aperture telescope. The capabilities of the MSSTA, and the joint UHRVS/MSSTA observing program that is envisioned are reviewed.

  19. "SP.ACE" 2013-2015: ASGARD Balloon and BIFROST Parabolic Flights: Latest Developments in Hands-On Space Education Projects for Secondary School Students

    NASA Astrophysics Data System (ADS)

    de Schrijver, E.; Chameleva, H.; Degroote, C.; D'Haese, Z.; Paice, C.; Plas, H.; Van den Bossche, A.; Vander Donckt, L.; Vander Vost, J.

    2015-09-01

    Flight opportunities on high-altitude ASGARD balloons offered to secondary schools worldwide since 20 1 1 have led to an ever more rapidly increasing number of project proposals. The introduction of beginners' and ‘advanced classes of experiments is hoped to draw in even larger numbers of interested school teams. Furthermore, and in cooperation with ESERO (European Space Education Resources Office), workshops and documentation are being prepared to introduce teachers and students alike to the world of microcontrollers and sensors. A student parabolic flight programme called BIFROST (Brussels' Initiative to provide Flight Research Opportunities to STudents) was initiated to meet the rising demand for hands-on space education projects and the desire to cover the widest possible range of scientific and/or technical domains, which essentially calls for a variety of flight platforms: cansats, balloons and parabolic flight.

  20. Balloon system and balloon-borne experiments in China

    NASA Astrophysics Data System (ADS)

    Gu, Yi-Dong

    The Chinese scientific balloon project was started in 1979 by the Academia Sinica which has now established a permanent balloon facility. It consists of 1500 m2 launching site complete with telecontrol and PCM and FM telemetry, and meteorological and communications equipment. A series of 5×102 to 5×104 m3 zero-pressure natural shape balloons produced in China have served for scientific observations with a maximum payload weight of 250 kg and with flight durations up to 18 hrs. The balloon envelope is made of LDPE (MI = 0.3) with 18.6 thickness and 1.4 m width. For astronomical observations an attitude system is available. The ``binding-off'' technique using a parachute has increased the landing accuracy of the gondola. In almost any case the gondola can be recovered within 12 hrs. Successful scientific observations using this balloon facility included: - Observations of the primary cosmic ray nuclei and cross-section measurements of high energy heavy nuclei interactions. - Measurement of the vertical distribution of aerosols in the atmosphere. - Hard X-ray astronomy observations. - Remote sensing in the infra-red band at balloon altitudes. - Observations of solar far infra-red radiation.

  1. A mercuric detector system for X-ray astronomy. 2. Results from flight tests of a balloon borne instrument

    NASA Technical Reports Server (NTRS)

    Vallerga, J.; Vanderspek, R. K.; Ricker, G. R.

    1982-01-01

    To establish the expected sensitivity of a new hard X-ray telescope design, an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate (Bi4Ge3O12) scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, Texas. The second flight of this instrument established a differential background counting rate of 4.2 O.7 x 10-5 counts/sec cm keV over the energy range of 40 to 80 keV. This measurement was within 50% of the predicted value. The measured rate is approx 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range. The prediction was based on a Monte Carlo simulation of the detector assembly in the radiation environment at float altitude.

  2. The Antarctic Impulsive Transient Antenna ultra-high energy neutrino detector: Design, performance, and sensitivity for 2006-2007 balloon flight

    SciTech Connect

    Gorham, P. W.; Allison, P.; Barwick, S. W.; Beatty, J. J.; Besson, D. Z.; Binns, W. R.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Dowkontt, P. F.; DuVernois, M. A.; Field, R. C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C. L.; Hoover, S.; Israel, M. H.; Learned, J. G.

    2009-05-23

    In this article, we present a comprehensive report on the experimental details of the Antarctic Impulsive Transient Antenna (ANITA) long-duration balloon payload, including the design philosophy and realization, physics simulations, performance of the instrument during its first Antarctic flight completed in January of 2007, and expectations for the limiting neutrino detection sensitivity.

  3. Effects of space balloon flights on reproductive activity in Paramecium aurelia.

    PubMed

    Planel, H; Soleilhavoup, J P; Croute, F

    1975-01-01

    Post autogamous Paramecium aurelia cultures were placed in hermetic containers, including a heating device with accuracy kept around +/- 0.1 degrees C. Kinetics of cellular growth was determined by cell count, after recovery, on in-flight cultures and ground control cultures. Dosimetry was performed by thermoluminescent detectors (CaSO4 activated with dysprosium). Flight durations of maximum altitude (ceiling) ranged between 48 min and 15 hours (repeated flights). Conclusions are as follows: short flights result in a secondary stimulating effect, shown by post-flight increase of the growth rate (total dose above 2 mrads); long flights or repeated flights are accompanied by a decrease in growth rate (total dose ranging from 2 to 6 mrads); in the stimulation experiments, cell counts performed immediately after flight permit identification of a temporary decrease of growth rate. The biphasic character of the biological response after flights may be due to an ionization phenomena induced by cosmic rays. Indeed, the temporary drop of growth rate is not observed after recovery if the cells are subcultured in fresh medium and left on the earth's surface. We observe, on the contrary, an increase in growth rate. These findings confirm the great sensitivity of Paramecium aurelia to very low doses of ionizing radiations and demonstrate the biological effect of cosmic radiation.

  4. Effects of space balloon flights on reproductive activity in Paramecium aurelia.

    PubMed

    Planel, H; Soleilhavoup, J P; Croute, F

    1975-01-01

    Post autogamous Paramecium aurelia cultures were placed in hermetic containers, including a heating device with accuracy kept around +/- 0.1 degrees C. Kinetics of cellular growth was determined by cell count, after recovery, on in-flight cultures and ground control cultures. Dosimetry was performed by thermoluminescent detectors (CaSO4 activated with dysprosium). Flight durations of maximum altitude (ceiling) ranged between 48 min and 15 hours (repeated flights). Conclusions are as follows: short flights result in a secondary stimulating effect, shown by post-flight increase of the growth rate (total dose above 2 mrads); long flights or repeated flights are accompanied by a decrease in growth rate (total dose ranging from 2 to 6 mrads); in the stimulation experiments, cell counts performed immediately after flight permit identification of a temporary decrease of growth rate. The biphasic character of the biological response after flights may be due to an ionization phenomena induced by cosmic rays. Indeed, the temporary drop of growth rate is not observed after recovery if the cells are subcultured in fresh medium and left on the earth's surface. We observe, on the contrary, an increase in growth rate. These findings confirm the great sensitivity of Paramecium aurelia to very low doses of ionizing radiations and demonstrate the biological effect of cosmic radiation. PMID:11913423

  5. The design and flight performance of the PoGOLite Pathfinder balloon-borne hard X-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Chauvin, M.; Florén, H.-G.; Jackson, M.; Kamae, T.; Kawano, T.; Kiss, M.; Kole, M.; Mikhalev, V.; Moretti, E.; Olofsson, G.; Rydström, S.; Takahashi, H.; Lind, J.; Strömberg, J.-E.; Welin, O.; Iyudin, A.; Shifrin, D.; Pearce, M.

    2016-02-01

    In the 50 years since the advent of X-ray astronomy there have been many scientific advances due to the development of new experimental techniques for detecting and characterising X-rays. Observations of X-ray polarisation have, however, not undergone a similar development. This is a shortcoming since a plethora of open questions related to the nature of X-ray sources could be resolved through measurements of the linear polarisation of emitted X-rays. The PoGOLite Pathfinder is a balloon-borne hard X-ray polarimeter operating in the 25-240 keV energy band from a stabilised observation platform. Polarisation is determined using coincident energy deposits in a segmented array of plastic scintillators surrounded by a BGO anticoincidence system and a polyethylene neutron shield. The PoGOLite Pathfinder was launched from the SSC Esrange Space Centre in July 2013. A near-circumpolar flight was achieved with a duration of approximately two weeks. The flight performance of the Pathfinder design is discussed for the three Crab observations conducted. The signal-to-background ratio for the observations is shown to be 0.25 ±0.03 and the Minimum Detectable Polarisation (99 % C.L.) is (28.4 ±2.2) %. A strategy for the continuation of the PoGOLite programme is outlined based on experience gained during the 2013 maiden flight.

  6. Solar flare and pulsar detection with small balloon borne scintillator detector

    NASA Astrophysics Data System (ADS)

    Sarkar, Ritabrata; Chakrabarti, Sandip Kumar; Bhowmick, Debashis; Bhattacharya, Arnab

    2016-07-01

    We present radiation measurement data from the Sun and the Crab Pulsar using a very light weight payload comprising a scintillator detector from one of the ongoing missions carried out by Indian Centre for Space Physics, India. This is a unique observation in the sense that the payload containing the detector unit was carried off above the Earth atmosphere using small weather balloons in a very cost effective way and with severe weight constraints. In this Mission we have been able to observe two consecutive solar flares and radiation from the Crab pulsar when the payload was under 30 km altitude. We present a brief description of the mission strategy and the temporal and spectral analysis of the data from those sources.

  7. NASA Balloon Technology Developments

    NASA Technical Reports Server (NTRS)

    Fairbrother, D. A.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Balloon Program has been, and will continue to be, committed to improving the capabilities of balloons to support science missions. Fundamental to vehicle improvement is a program of technology development that will enable improved flight performance throughout the next decade. The program s technology thrust areas include: materials, vehicle design & development, structural analysis, operations & support systems, performance modeling and planetary balloons. Building on the foundations of the 18-year research and development program, a technology roadmap has been generated which identifies specific areas of interest to NASA and the vision of future developments. The major components of the roadmap are: vehicle systems, balloon-craft systems, operational and safety support systems, and planetary vehicles. Current technology activities include nanocomposite balloon films, a new balloon designed to lift 3600 kgs to 36 km, a balloon rotation rate study and Mars pumpkin balloon investigations. The technology roadmap, as well as specific projects and recent advancements, will be presented.

  8. Overview of the Scientific Balloon Activity in Sweden

    NASA Astrophysics Data System (ADS)

    Abrahamsson, Mattias; Kemi, Stig; Lockowandt, Christian; Andersson, Kent

    SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from ESC since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times are very beneficial for astronomical payloads, such as telescopes that need long observation times. In 2013 two such payloads were flown, the first called SUNRISE was a German/US solar telescope, and the other called PoGOLite with a Swedish gamma-ray telescope. In 14 days PoGOLite, which had permission to fly over Russia, made an almost complete circumpolar flight. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. University students from all over Europe are involved in flights from Esrange under a Swedish/German programme called BEXUS. Two stratospheric balloons are flown with student

  9. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    NASA Astrophysics Data System (ADS)

    Matthews, Tristan G.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Chapman, Nicholas L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  10. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    SciTech Connect

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B.; Chapin, Edward L.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca; and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  11. Planetary atmospheres minor species sensor balloon flight test to near space

    NASA Astrophysics Data System (ADS)

    Peale, Robert E.; Fredricksen, Christopher J.; Muraviev, Andrei V.; Maukonen, Douglas; Quddusi, Hajrah M.; Calhoun, Seth; Colwell, Joshua E.; Lachenmeier, Timothy A.; Dewey, Russell G.; Stern, Alan; Padilla, Sebastian; Bode, Rolfe

    2015-05-01

    The Planetary Atmospheres Minor Species Sensor (PAMSS) is an intracavity laser absorption spectrometer that uses a mid-infrared quantum cascade laser in an open external cavity for sensing ultra-trace gases with parts-per-billion sensitivity. PAMSS was flown on a balloon by Near Space Corporation from Madras OR to 30 km on 17 July 2014. Based on lessons learned, it was modified and was flown a second time to 32 km by World View Enterprises from Pinal AirPark AZ on 8 March 2015. Successes included continuous operation and survival of software, electronics, optics, and optical alignment during extreme conditions and a rough landing. Operation of PAMSS in the relevant environment of near space has significantly elevated its Technical Readiness Level for trace-gas sensing with potential for planetary and atmospheric science in harsh environments.

  12. Measurements of atmospheric electrical parameters and ELF electromagnetic emissions during a meteorological balloon flight.

    NASA Astrophysics Data System (ADS)

    Benda, Robert; Dujany, Matthieu; Berthomieu, Roland; Boissier, Mathilde; Bruneel, Pierre; Fischer, Lucie; Focillon, William; Gullo, Robin; Hubert, Valentin; Lafforgue, Gaétan; Loe-Mie, Marichka; Messager, Adrien; Roy, Felix; Auvray, Gérard; Bertrand, Fabrice; Coulomb, Romain; Deprez, Gregoire; Berthelier, Jean-Jacques

    2016-04-01

    Measurements of electric field and atmospheric conductivity were performed onboard a small payload flown under a meteorological balloon during a fair weather period. This experiment is part of a project to study thunderstorms and TLE organized in the frame of the engineering cursus at Ecole Polytechnique. The payload is equipped with 4 electrodes to measure the 3 components of the DC and AC electric fields up to 3.2 kHz. Dedicated sequences of operation, when one electrode is operated in the relaxation mode, have been used to determine the positive and negative electrical conductivities. Altitude profiles of the DC vertical electric field and conductivities in agreement with expected fair weather parameters were obtained from ~ 3.5 to ~ 13 km before the failure of a battery. At an altitude of ~ 9 km slight disturbances in the electric field suggest the traversal of thin clouds with disturbed electrical characteristics. Schumann resonances were observed up to the fifth harmonics at levels that are typical of a quiet period over Europe with most thunderstorms located over remote longitudinal sectors. EM waves due the power lines at 50Hz are detected during the whole measuring period and their altitude and horizontal variations will be presented as a function of the position of the balloon over the ground power network. A surprising and interesting observation was made of a Russian transmitter at 82 Hz located in Murmansk region and used for sub-marine communications. We shall present an initial analysis of the amplitude and polarization of the corresponding signal.

  13. A summary of results from solar monitoring rocket flights

    NASA Astrophysics Data System (ADS)

    Duncan, C. H.

    1981-12-01

    Three rocket flights to measure the solar constant and provide calibration data for sensors aboard Nimbus 6, 7, and Solar Maximum Mission (SMM) spacecraft were accomplished. The values obtained by the rocket instruments for the solar constant in SI units are: 1367 w/sq m on 29 June 1976; 1372 w/sq m on 16 November 1978; and 1374 w/sq m on 22 May 1980. The uncertainty of the rocket measurements is + or - 0.5%. The values obtained by the Hickey-Frieden sensor on Nimbus 7 during the second and third flights was 1376 w/sq m. The value obtained by the Active Cavity Radiometer Model IV (ACR IV) on SMM during the flight was 1368 w/sq m.

  14. [Solar cosmic radiation and the radiation hazard of space flight].

    PubMed

    Miroshnichenko, L I

    1983-01-01

    Present-day data on the spectrum of solar radiation in the source and near the Earth are discussed as applied to the radiation safety of crewmembers and electronics onboard manned and unmanned spacecraft. It is shown that the slope of the solar radiation spectrum changes (flattens) in the low energy range. Quantitative information about absolute solar radiation fluxes near the Earth is summarized in relation to the most significant flares of 1956--1978. The time-related evolution of the solar radiation spectrum in the interplanetary space is described in quantitative terms (as illustrated by the solar flare of 28 September 1961). It is indicated that the nonmonotonic energy dependence of the transport path of solar radiation in the interplanetary space should be taken into consideration. It is demonstrated that the diffusion model of propagation can be verified using solar radiation measurements in space flights.

  15. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    NASA Technical Reports Server (NTRS)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  16. NASA balloon technology developments

    NASA Astrophysics Data System (ADS)

    Fairbrother, D. A.

    The National Aeronautics and Space Administration (NASA) Balloon Program has been, and will continue to be, committed to improving the capabilities of balloons to support science missions. Fundamental to vehicle improvement is a program of technology development that will enable improved flight performance throughout the next decade. The program's technology thrust areas include: materials, vehicle design & development, structural analysis, operations & support systems, performance modeling and planetary balloons. Building on the foundations of the 18-year research and development program, a technology roadmap has been generated which identifies specific areas of interest to NASA and the vision of future developments. The major components of the roadmap are: vehicle systems, ballooncraft systems, operational and safety support systems, and planetary vehicles. Current technology activities include nanocomposite balloon films, a new balloon designed to lift 3600 kgs to 36 km, a balloon rotation rate study and Mars pumpkin balloon investigations. The technology roadmap, as well as specific projects and recent advancements, will be presented.

  17. Stratospheric NO and NO2 profiles at sunset from analysis of high-resolution balloon-borne infrared solar absorption spectra obtained at 33 deg N and calculations with a time-dependent photochemical model

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Boughner, R. E.; Larsen, J. C.; Goldman, A.; Murcray, F. J.; Murcray, D. G.

    1984-01-01

    Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported.

  18. A Search for Formic Acid in the Upper Troposphere: A Tentative Identification of the 1105-cm(exp -1) nu(sub 6) Band Q Branch in High-Resolution Balloon-Borne Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1984-01-01

    Infrared solar absorption spectra recorded at 0.02/cm resolution during a balloon flight from Alamogordo, N.M. (33 deg N), on March 23, 1981, have been analyzed for the possible presence of absorption by formic acid (HCOOH). An absorption feature at 1105/ cm has been tentatively identified in upper tropospheric spectra as due to the nu(sub 6) band Q branch. A preliminary analysis indicates a concentration of approx. = 0.6 ppbv and approx. = 0.4 ppbv near 8 and 10 km, respectively.

  19. A search for formic acid in the upper troposphere - A tentative identification of the 1105-per cm nu-6 band Q branch in high-resolution balloon-borne solar absorption spectra

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1984-04-01

    Infrared solar absorption spectra recorded at 0.02-per cm resolution during a balloon flight from Alamogordo, NM (33 deg N), on March 23, 1981, have been analyzed for the possible presence of absorption by formic acid (HCOOH). An absorption feature at 1105 per cm has been tentatively identified in upper tropospheric spectra as due to the nu-6 band Q branch. A preliminary analysis indicates a concentration of about 0.6 ppbv and 0.4 ppbv near 8 and 10 km, respectively.

  20. A search for formic acid in the upper troposphere - A tentative identification of the 1105-per cm nu-6 band Q branch in high-resolution balloon-borne solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. H.; Murcray, D. G.; Rinsland, C. P.

    1984-01-01

    Infrared solar absorption spectra recorded at 0.02-per cm resolution during a balloon flight from Alamogordo, NM (33 deg N), on March 23, 1981, have been analyzed for the possible presence of absorption by formic acid (HCOOH). An absorption feature at 1105 per cm has been tentatively identified in upper tropospheric spectra as due to the nu-6 band Q branch. A preliminary analysis indicates a concentration of about 0.6 ppbv and 0.4 ppbv near 8 and 10 km, respectively.

  1. Telescope Systems for Balloon-Borne Research

    NASA Technical Reports Server (NTRS)

    Swift, C. (Editor); Witteborn, F. C. (Editor); Shipley, A. (Editor)

    1974-01-01

    The proceedings of a conference on the use of balloons for scientific research are presented. The subjects discussed include the following: (1) astronomical observations with balloon-borne telescopes, (2) orientable, stabilized balloon-borne gondola for around-the-world flights, (3) ultraviolet stellar spectrophotometry from a balloon platform, (4) infrared telescope for balloon-borne infrared astronomy, and (5) stabilization, pointing, and command control of balloon-borne telescopes.

  2. Accuracy of analyzed temperatures, winds and trajectories in the Southern Hemisphere tropical and midlatitude stratosphere as compared to long-duration balloon flights

    NASA Astrophysics Data System (ADS)

    Knudsen, B. M.; Christensen, T.; Hertzog, A.; Deme, A.; Vial, F.; Pommereau, J.-P.

    2006-12-01

    Eight super-pressure balloons floating at constant level between 50 and 80 hPa and three Infra-Red Montgolfier balloons of variable altitude (15 hPa daytime, 40-80 hPa night time) have been launched at 22° S from Brazil in February-May 2004 in the frame of the HIBISCUS project. The flights lasted for 7 to 79 days residing mainly in the tropics, but some of them passed the tropical barrier and went to southern midlatitudes. Compared to the balloon measurements just above the tropical tropopause the ECMWF operational temperatures show a systematic cold bias of 0.9 K and the easterly zonal winds are too strong by 0.7 m/s. This bias in the zonal wind adds to the ECMWF trajectory errors, but they still are relatively small with e.g. about an error of 700 km after 5 days. The NCEP/NCAR reanalysis trajectory errors are substantially larger (1300 km after 5 days). In the southern midlatitudes the cold bias is the same, but the zonal wind bias is almost zero. The trajectories are generally more accurate than in the tropics, but for one balloon a lot of the calculated trajectories end up on the wrong side of the tropical barrier and this leads to large trajectory errors.

  3. SEP solar array Shuttle flight experiment

    NASA Technical Reports Server (NTRS)

    Elms, R. V., Jr.; Young, L. E.; Hill, H. C.

    1981-01-01

    An experiment to verify the operational performance of a full-scale Solar Electric Propulsion (SEP) solar array is described. Scheduled to fly on the Shuttle in 1983, the array will be deployed from the bay for ten orbits, with dynamic excitation to test the structural integrity being furnished by the Orbiter verniers; thermal, electrical, and sun orientation characteristics will be monitored, in addition to safety, reliability, and cost effective performance. The blanket, with aluminum and glass as solar cell mass simulators, is 4 by 32 m, with panels (each 0.38 by 4 m) hinged together; two live Si cell panels will be included. The panels are bonded to stiffened graphite-epoxy ribs and are storable in a box in the bay. The wing support structure is detailed, noting the option of releasing the wing into space by use of the Remote Manipulator System if the wing cannot be refolded. Procedures and equipment for monitoring the array behavior are outlined, and comprise both analog data and TV recording for later playback and analysis. The array wing experiment will also aid in developing measurement techniques for large structure dynamics in space.

  4. The Japanese Balloon Program

    NASA Astrophysics Data System (ADS)

    Nishimura, J.

    The Japanese scientific ballooning program has been organized by ISAS since the institute was founded in mid 1960s. Since then, the balloon group of ISAS has been engaged in the development of the balloon technologies and scientific observations in collaboration with scientists and engineers in other universities and organizations. Here, I describe several subjects of recent activities, the details of some items will also be reported in the separate papers in this meeting.Preparation of a new mobile receiving station.

  5. Balloons of made of the EVAL (Ethylene-Vinyl-Alcohol) films. EVAL film has specific Infra-red absorption bands, and is expected to be useful for saving the ballast for a long duration flight.
  6. A high altitude balloon with thin polyethylene films achieving at an altitude of above 50km. Further improvement of this type of balloons is continued by inventing how to extrude thin films less than 5 microns of thickness.
  7. Recent achievement of Antarctica Flights under the collaboration of ISAS and National Polar Institute.
  8. Other new efforts to long duration flights such as satellite link boomerang balloon systems and others.
  9. New balloon borne scientific instrumentation for observations of high energy electrons and Anti-protons in cosmic-rays.
  10. Report on Project to Characterize Multi-Junction Solar Cells in the Stratosphere using Low-Cost Balloon and Communication Technologies

    NASA Astrophysics Data System (ADS)

    Mirza, Ali; Sant, David; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2002-10-01

    Balloon, control and communication technologies are under development in our laboratory for testing multi-junction solar cells in the stratosphere to achieve near AM0 conditions. One flight, Suntracker I, has been carried out reported earlier. We report on our efforts in preparation for a second flight, Suntracker II, that was aborted due to hardware problems. The package for Suntracker I system has been modified to include separate electronics and battery packs for the 70 centimeter and 2 meter systems. The collimator control system and motor gearboxes have been redesigned to address problems with the virtual stops and backlash. Surface mount technology on a printed circuit board was used in place of the through-hole prototype circuit in efforts to reduce weight and size, and improve reliability. A mobile base station has been constructed that includes a 35' tower with a two axis rotator and multi-element yagi antennas. Modifications in Suntracker I and the factors that lead to aborting Suntracker II are discussed.

  11. Report on Project to Characterize Multi-Junction Solar Cells in the Stratosphere using Low-Cost Balloon and Communication Technologies

    NASA Technical Reports Server (NTRS)

    Mirza, Ali; Sant, David; Woodyard, James R.; Johnston, Richard R.; Brown, William J.

    2002-01-01

    Balloon, control and communication technologies are under development in our laboratory for testing multi-junction solar cells in the stratosphere to achieve near AM0 conditions. One flight, Suntracker I, has been carried out reported earlier. We report on our efforts in preparation for a second flight, Suntracker II, that was aborted due to hardware problems. The package for Suntracker I system has been modified to include separate electronics and battery packs for the 70 centimeter and 2 meter systems. The collimator control system and motor gearboxes have been redesigned to address problems with the virtual stops and backlash. Surface mount technology on a printed circuit board was used in place of the through-hole prototype circuit in efforts to reduce weight and size, and improve reliability. A mobile base station has been constructed that includes a 35' tower with a two axis rotator and multi-element yagi antennas. Modifications in Suntracker I and the factors that lead to aborting Suntracker II are discussed.

  12. Breakthrough in Mars balloon technology

    NASA Astrophysics Data System (ADS)

    Kerzhanovich, V. V.; Cutts, J. A.; Cooper, H. W.; Hall, J. L.; McDonald, B. A.; Pauken, M. T.; White, C. V.; Yavrouian, A. H.; Castano, A.; Cathey, H. M.; Fairbrother, D. A.; Smith, I. S.; Shreves, C. M.; Lachenmeier, T.; Rainwater, E.; Smith, M.

    2004-01-01

    Two prototypes of Mars superpressure balloons were flight tested for aerial deployment and inflation in the Earth's stratosphere in June, 2002. One was an 11.3 m diameter by 6.8 m high pumpkin balloon constructed from polyethylene film and Zylon (PBO) tendons, the second was a 10 m diameter spherical balloon constructed from 12 μm thick Mylar film. Aerial deployment and inflation occurred under parachute descent at 34 km altitude, mimicing the dynamic pressure environment expected during an actual Mars balloon mission. Two on-board video cameras were used on each flight to provide real-time upward and downward views of the flight train. Atmospheric pressure and temperature were also recorded. Both prototypes successfully deployed from their storage container during parachute descent at approximately 40 m/s. The pumpkin balloon also successfully inflated with a 440 g charge of helium gas injected over a 1.5-min period. Since the helium inflation system was deliberately retained after inflation in this test, the pumpkin balloon continued to fall to the ocean where it was recovered for post-flight analysis. The less robust spherical balloon achieved only a partial (~70%) inflation before a structural failure occurred in the balloon film resulting in the loss of the vehicle. This structural failure was diagnosed to result from the vigorous oscillatory motion of the partially inflated balloon, possibly compounded by contact between the balloon film and an instrumentation box above it on the flight train. These two flights together represent significant progress in the development of Mars superpressure balloon technology and pave the way for future flight tests that will include post-deployment flight of the prototype balloons at a stable altitude.

  13. New concepts for interplanetary balloons and blimps, particularly for Titan

    NASA Astrophysics Data System (ADS)

    Nott, J.

    This paper proposes novel approaches for balloons for planets Titan BALLUTE A balloon or blimp arriving at a planet or moon with an atmosphere might inflate falling under a parachute or after landing Neither is ideal In both cases the envelope must include qualities needed for inflation as well as those for flight A ballute BALLoon parachUTE could be used thus a ballute is like a hot air balloon with a large mouth Initially it fills by ram pressure descending through an atmosphere As proposed it would then be heated by solid propellant It would stop descending and float level with hot air lift It is now a perfect location for inflation without wind or movement through the atmosphere and away from the uncertainties of the surface A ballute could be used over several bodies in the solar system BALLOONS FOR LOW TEMPERATURES Flight in very low temperatures is also discussed Conditions are so different that it is useful to examine basic factors These apply for any planet with low temperature and weather calm enough for balloons or blimps First for terrestrial hot air balloons thermal radiation is usually the dominant way heat is lost But radiation rises with the 4th power of absolute temperature At Titan radiation will be one or two orders of magnitude smaller Also the dense atmosphere allows small balloons small temperature differences So convection is small It appears a hot air balloon can easily be heated by a radioactive source likely carried to make electricity Pinholes are not important in such a balloon

  14. Recent Results and Near Term Outlook for the NASA Balloon Science Program

    NASA Astrophysics Data System (ADS)

    Jones, William Vernon

    Long-duration and conventional balloon flights in the traditional Astrophysics, Solar and Heliophysics, and Earth Science disciplines have continued in both polar and non-polar regions since the 39th COSPAR Assembly in Mysore, India. One of these established a new flight record of 55 days over Antarctica during the 2012-2013 austral season. That Super-TIGER science flight broke both the 42-day record of the CREAM science flight during the 2004-2005 season and the 54-day super pressure balloon test flight in 2008-2009. With two comets approaching the sun in 2013-2014, the Planetary Science community has shown increased interest in remote observations of comets, planets, and other objects in the Solar System. All of the above science disciplines are interested in super pressure balloon (SPB) flights, which have been under development by NASA, and which were strongly supported by the Astro2010 Decadal Study. A 532,152 m3 (18.8 MCF) SPB with a major gamma ray astrophysics payload is planned for an ultra-long duration balloon (ULDB) test flight around and from Antarctica during the upcoming 2014-2015 season. Flights for SPB qualification to support 1000 kg science instruments to 33 km altitude have proceeded in parallel with planning for options to increase the altitude for less massive instruments that require less atmospheric overburden. The nearly constant SPB volume will provide stable altitude long-duration flights at non-polar latitudes, thereby supporting a much broader range of scientific investigations. Scientific ballooning continues to complement and enable space missions, while training young scientists and systems engineers for the workforce needed to conduct future missions. Highlights of results from past balloon-borne measurements and expected results from ongoing and planned balloon-borne experiments will be presented.

  15. Nationwide Eclipse Ballooning Project

    NASA Astrophysics Data System (ADS)

    Colman Des Jardins, Angela; Berk Knighton, W.; Larimer, Randal; Mayer-Gawlik, Shane; Fowler, Jennifer; Harmon, Christina; Koehler, Christopher; Guzik, Gregory; Flaten, James; Nolby, Caitlin; Granger, Douglas; Stewart, Michael

    2016-05-01

    The purpose of the Nationwide Eclipse Ballooning Project is to make the most of the 2017 rare eclipse event in four main areas: public engagement, workforce development, partnership development, and science. The Project is focused on two efforts, both student-led: online live video of the eclipse from the edge of space and the study of the atmospheric response to the eclipse. These efforts, however, involving more than 60 teams across the US, are challenging in many ways. Therefore, the Project is leveraging the NASA Space Grant and NOAA atmospheric science communities to make it a success. The first and primary topic of this poster is the NASA Space Grant supported online live video effort. College and high school students on 48 teams from 31 states will conduct high altitude balloon flights from 15-20 locations across the 8/21/2017 total eclipse path, sending live video and images from near space to a national website. Video and images of a total solar eclipse from near space are fascinating and rare. It’s never been done live and certainly not in a network of coverage across a continent. In addition to the live video to the web, these teams are engaged in several other science experiments as secondary payloads. We also briefly highlight the eclipse atmospheric science effort, where about a dozen teams will launch over one hundred radiosondes from across the 2017 path, recording an unprecedented atmospheric data sample. Collected data will include temperature, density, wind, humidity, and ozone measurements.

  16. Post-flight investigation programmes of recently retrieved solar generators

    NASA Technical Reports Server (NTRS)

    Grelach, Lothar

    1994-01-01

    In 1993 two ESA solar power generators were successfully retrieved from space: EURECA with its 10 panel rigid array in August, after 11 months in a 500 km orbit, and one of the two flexible Hubble Space Telescope (HST) arrays in December, after almost 4 years in a 600 km orbit. Both solar generators are undergoing separate post-flight investigation programs (PFIP). These programs cover investigations of all solar array (SA) components and mechanisms. Since both programs have much in common, most of the component and material investigations are the same. Extremely valuable information on numerous essential subjects, such as atomic oxygen, radiation, meteoroid and space debris environment resulting damage, low cycle fatigue, material degradation, etc. are expected to be obtained for both types of arrays. We will also be able to explain and understand the anomalies experienced on both solar arrays in orbit. The paper will outline both post-flight investigation programs and will concentrate on reporting the first results and findings.

  17. Solar array flight experiment/dynamic augmentation experiment

    NASA Technical Reports Server (NTRS)

    Young, Leighton E.; Pack, Homer C., Jr.

    1987-01-01

    This report presents the objectives, design, testing, and data analyses of the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE) that was tested aboard Shuttle in September 1984. The SAFE was a lightweight, flat-fold array that employed a thin polyimide film (Kapton) as a substrate for the solar cells. Extension/retraction, dynamics, electrical and thermal tests, were performed. Of particular interest is the dynamic behavior of such a large lightweight structure in space. Three techniques for measuring and analyzing this behavior were employed. The methodology for performing these tests, gathering data, and data analyses are presented. The report shows that the SAFE solar array technology is ready for application and that new methods are available to assess the dynamics of large structures in space.

  18. Centurion solar-powered high-altitude aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Since 1980 AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) has been experimenting with solar-powered aircraft, often in conjunction with the NASA Dryden Flight Research Center, Edwards, California. Thus far, AeroVironment, now headquartered in Monrovia, California, has achieved several altitude records with its Solar Challenger, Pathfinder, and Pathfinder-Plus aircraft. It expects to exceed these records with the newer and larger solar-powered Centurion and its successors the Centelios and Helios vehicles, in the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. The Centurion is a lightweight, solar-powered, remotely piloted flying wing aircraft that is demonstrating the technology of applying solar power for long-duration, high-altitude flight. It is considered to be a prototype technology demonstrator for a future fleet of solar-powered aircraft that could stay airborne for weeks or months on scientific sampling and imaging missions or while serving as telecommunications relay platforms. Although it shares many of the design concepts of the Pathfinder, the Centurion has a wingspan of 206 feet, more than twice the 98-foot span of the original Pathfinder and 70-percent longer than the Pathfinder-Plus' 121-foot span. At the same time, Centurion maintains the 8-foot chord (front to rear distance) of the Pathfinder wing, giving the wing an aspect ratio (length-to-chord) of 26 to 1. Other visible changes from its predecessor include a modified wing airfoil designed for flight at extreme altitude and four underwing pods to support its landing gear and electronic systems (compared with two such pods on the Pathfinder). The flexible wing is primarily fabricated from carbon fiber, graphite epoxy composites, and kevlar. It is built in five sections, a 44-foot-long center section and middle and outer sections just over 40 feet long. All five sections have an identical thickness--12 percent of the chord

  19. Taking the Hot Air Out of Balloons.

    ERIC Educational Resources Information Center

    Brinks, Virgil L.; Brinks, Robyn L.

    1994-01-01

    Describes how a teacher can give their students the challenge of designing and building model balloons or blimps. The project helps students learn the basics of balloon flight and what it really means to be "lighter than air." (PR)

  20. First flight of SMASH, the SwRI Miniature Assembly for Solar Hard X-rays

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Laurent, Glenn Thomas; Shoffner, Michael; Higuera Caubilla, David; Meurisse, Jeremie; Smith, Kelly; Shih, Albert Y.; Saint-Hilaire, Pascal; DeForest, Craig; Mansour, Nagi N.; Hathaway, David H.

    2016-05-01

    The SwRI Miniature Assembly for Solar Hard X-rays (SMASH) was successfully flown from Antarctica in January (19-30) 2016, as a piggy-back instrument on the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) high altitude balloon payload. SMASH is a technological demonstration of a new miniaturized hard X-ray (HXR) detector for use on CubeSats and other small spacecraft, including the proposed CubeSat Imaging X-ray Solar Spectrometer (CubIXSS).HXRs are the observational signatures of energetic processes on the Sun, including plasma heating and particle acceleration. One of the goals of CubIXSS will be to address the question of how plasma is heated during solar flares, including the relationship between thermal plasma and non-thermal particles. SMASH demonstrated the space-borne application of the commercial off-the-shelf Amptek X123-CdTe, a miniature cadmium telluride photon-counting HXR spectrometer. The CdTe detector has a physical area of 25 mm^2 and 1 mm fully-depleted thickness, with a ~100 micron Be window; with on-board thermoelectric cooling and pulse pile-up rejection, it is sensitive to solar photons from ~5 to ~100 keV with ~0.5-1.0 keV FWHM resolution. Photons are accumulated into histogram spectra with customizable energy binning and integration time. With modest resource requirements (~1/8 U, ~200 g, ~2.5 W) and low cost (~$10K), the X123-CdTe is an attractive solution for HXR measurements from budget- and resource-limited platforms such as CubeSats. SMASH flew two identical X123-CdTe detectors for redundancy and increased collecting area; the supporting electronics (power, CPU) were largely build-to-print using the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat design.We review the SMASH mission, design, and detector performance during the 12-day Antarctic flight. We present current progress on our data analysis of observed solar flares, and discuss future applications of the space-qualified X123-CdTe detector, including the CubIXSS mission

  21. The Marshall Space Flight Center Solar Utraviolet Magnetograph

    NASA Technical Reports Server (NTRS)

    West, E. A.; Porter, J. G.; Davis, J. M.; Gary, G. A.; Noble, M.

    2004-01-01

    This paper will describe the objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the W, a sounding rocket payload is being developed. This paper will discuss: (1) the scientific measurements that will be made by the SUMI sounding rocket program, (2) how the optics have been optimized for simultaneous measurements of two magnetic lines CIV (1550 Angstroms) and MgII (2800 Angstroms), and (3) the optical, reflectance, transmission and polarization measurements that have been made on the SUMI telescope mirrors and polarimeter.

  22. The Marshall Space Flight Center Solar Ultraviolet Magnetograph

    NASA Technical Reports Server (NTRS)

    West, E. A.; Porter, J. G.; Davis, J. M.; Gary, G. A.; Noble, M. W.; Lewis, M.; Thomas, Roger J.

    2004-01-01

    This paper will describe the objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed. This paper will discuss: (1) the scientific measurements that will be made by the SUMI sounding rocket program, (2) how the optics have been optimized for simultaneous measurements of two magnetic lines CIV (1550Angstroms) and MgII (2800Angstroms), and (3) the optical, reflectance, transmission and polarization measurements that have been made on the SUMI telescope mirrors and polarimeter.

  23. First flight of the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS)

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, Pascal; Shih, Albert Y.; Duncan, Nicole; Bain, Hazel; Maruca, Bennett A.; Kelley, Nicole; Godbole, Niharika; Kaufmann, Pierre; Caspi, Amir; Sample, John; Hoberman, Jane; Mochizuki, Brent; Olson, Jerry; Boggs, Steven E.; Zoglauer, Andreas; Hurford, Gordon J.; Smith, David M.; Tajima, Hiroyasu; Amman, Mark

    2016-05-01

    The Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) high altitude balloon payload was successfully flown in January 2016 from Antarctica (Jan 19 to Jan 30).GRIPS provides a near-optimal combination of high-resolution imaging, spectroscopy, and polarimetry of solar-flare gamma ray/hard X-ray emissions from ~20 keV to >~10 MeV. GRIPS’s goal is to address questions raised by recent solar flare observations regarding particle acceleration and energy release, such as: What causes the spatial separation between energetic electrons producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? The spectrometer/polarimeter consists of six 3D position-sensitive germanium detectors (3D-GeDs), where each energy deposition is individually recorded with an energy resolution of a few keV FWHM and a spatial resolution <0.1 mm3. Imaging is accomplished by a single multi-pitch rotating modulator (MPRM), a 2.5-cm thick tungsten alloy slit/slat grid with pitches that range quasi-continuously from 1 to 13 mm. The MPRM is situated 8 meters from the spectrometer to provide excellent image quality and unparalleled angular resolution at gamma-ray energies (12.5 arcsec FWHM), sufficient to separate 2.2 MeV footpoint sources for almost all flares. Polarimetry is accomplished by analyzing the anisotropy of reconstructed Compton scattering in the 3D-GeDs, with an estimated minimum detectable polarization of a few percent at 150-650 keV in an X-class flare. GRIPS was also equipped with active BGO shields, and three piggy-back instruments: a solar terahertz radiometer (Solar-T), a hard X-ray spectrometer (SMASH), and a sonic anemometer (TILDAE).We will present an overview of GRIPS's first flight, the performance of its instruments and subsystems, including the solar pointing and aspect systems, and

  24. Balloon monitoring of cosmic ray fluxes: galactic and solar cosmic rays in the near-Earth space

    NASA Astrophysics Data System (ADS)

    Bazilevskaya, Galina; Makhmutov, Vladimir; Stozhkov, Yuri; Svirzhevskaya, Albina; Svirzhevsky, Nikolai

    The long-term observations of charged particle fluxes in the atmosphere at the polar and mid latitudes are conducted by the Lebedev Physical Institute since 1957 up to the present time. Meteorological balloons with a Geiger counter telescope are launched several times a week in the Arctic, Antarctic and Moscow regions. Simple instrumentation returns the secondary cosmic ray fluxes at varies altitudes from the ground level up to the 30-35 km. Since the geomagnetic field and the atmosphere act as an energy analyzer it is possible to estimate the intensity of galactic cosmic rays with energy above 100 and 1500 MeV during the whole period of observations and energy spectra of solar cosmic rays (when available) at the atmospheric boundary. We present the particle absolute fluxes and energy spectra, discuss the reliability of the results obtained and compare the results with data of measurements performed by the neutron monitor network and the near-Earth orbit spacecraft. We argue for necessity of the simultaneous ground-based, balloon, and spacecraft measurements of cosmic rays.

  25. Pioneering Space Research with Balloons

    NASA Astrophysics Data System (ADS)

    Jones, W. V.

    NASA s Scientific Ballooning Planning Team has concluded that ballooning enables significant scientific discoveries while providing test beds for space instruments and training for young scientists Circumpolar flights around Antarctica have been spectacularly successful with fight durations up to 42 days Demand for participation in this Long-Duration Balloon LDB program a partnership with the U S National Science Foundation Office of Polar Programs is greater than the current capacity of two flights per campaign Given appropriate international agreements LDB flights in the Northern Hemisphere would be competitive with Antarctic flights and super-pressure balloons would allow comparable flights at any latitude The Balloon Planning Team made several recommendations for LDB flights provide a reliable funding source for sophisticated payloads extend the Antarctic capability to three flights per year and develop a comparable capability in the Arctic provide aircraft for intact-payload recovery develop a modest trajectory modification capability to enable longer flights and enhance super-pressure balloons to carry 1-ton payloads to 38 km Implementation of these recommendations would facilitate frequent access to near-space for cutting-edge research and technology development for a wide range of investigations

  1. Mir Cooperative Solar Array Flight Performance Data and Computational Analysis

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Hoffman, David J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) was developed jointly by the United States (US) and Russia to provide approximately 6 kW of photovoltaic power to the Russian space station Mir. The MCSA was launched to Mir in November 1995 and installed on the Kvant-1 module in May 1996. Since the MCSA photovoltaic panel modules (PPMs) are nearly identical to those of the International Space Station (ISS) photovoltaic arrays, MCSA operation offered an opportunity to gather multi-year performance data on this technology prior to its implementation on ISS. Two specially designed test sequences were executed in June and December 1996 to measure MCSA performance. Each test period encompassed 3 orbital revolutions whereby the current produced by the MCSA channels was measured. The temperature of MCSA PPMs was also measured. To better interpret the MCSA flight data, a dedicated FORTRAN computer code was developed to predict the detailed thermal-electrical performance of the MCSA. Flight data compared very favorably with computational performance predictions. This indicated that the MCSA electrical performance was fully meeting pre-flight expectations. There were no measurable indications of unexpected or precipitous MCSA performance degradation due to contamination or other causes after 7 months of operation on orbit. Power delivered to the Mir bus was lower than desired as a consequence of the retrofitted power distribution cabling. The strong correlation of experimental and computational results further bolsters the confidence level of performance codes used in critical ISS electric power forecasting. In this paper, MCSA flight performance tests are described as well as the computational modeling behind the performance predictions.

  2. Development overview of the revised NASA Ultra Long Duration Balloon

    NASA Astrophysics Data System (ADS)

    Cathey, H. M.

    2008-11-01

    The desire for longer duration stratospheric flights at constant float altitudes for heavy payloads has been the focus of the development of the National Aeronautics and Space Administration’s (NASA) Ultra Long Duration Balloon (ULDB) effort. Recent efforts have focused on ground testing and analysis to understand the previously observed issue of balloon deployment. A revised approach to the pumpkin balloon design has been tested through ground testing of model balloons and through two test flights. The design approach does not require foreshortening, and will significantly reduce the balloon handling during manufacture reducing the chances of inducing damage to the envelope. Successful ground testing of model balloons lead to the fabrication and test flight of a ˜176,000 m3 (˜6.2 MCF Million Cubic Foot) balloon. Pre-flight analytical predictions predicted that the proposed flight balloon design to be stable and should fully deploy. This paper provides an overview of this first test flight of the revised Ultra Long Duration Balloon design which was a short domestic test flight from Ft. Sumner, NM, USA. This balloon fully deployed, but developed a leak under pressurization. After an extensive investigation to the cause of the leak, a second test flight balloon was fabricated. This ˜176,000 m3 (˜6.2 MCF) balloon was flown from Kiruna, Sweden in June of 2006. Flight results for both test flights, including flight performance are presented.

  3. Universal stratospheric balloon gradiometer

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Yury; Filippov, Sergey; Brekhov, Oleg; Nikolaev, Nikolay

    The study of the interior structure of the Earth and laws of its evolution is one of the most difficult problems of natural science. Among the geophysical fields the anomaly magnetic field is one of the most informational in questions of the Earth’s crust structure. Many important parameters of an environment are expedient for measuring at lower altitudes, than satellite ones. So, one of the alternatives is stratospheric balloon survey. The balloon flight altitudes cover the range from 20 to 50 km. At such altitudes there are steady zone air flows due to which the balloon flight trajectories can be of any direction, including round-the-world (round-the-pole). For investigation of Earth's magnetic field one of the examples of such sounding system have been designed, developed and maintained at IZMIRAN and MAI during already about 25 years. This system consists of three instrumental containers uniformly placed along a vertical 6 km line. Up today this set has been used only for geomagnetic purposes. So we describe this system on example of the measuring of the geomagnetic field gradient. System allows measuring a module and vertical gradient of the geomagnetic field along the whole flight trajectory and so one’s name is - stratospheric balloon magnetic gradiometer (SMBG). The GPS-receivers, located in each instrumental container, fix the flight coordinates to within several tens meters. Process of SBMG deployment, feature of the exit of rope from the magazine at the moment of balloon launching has been studied. Used magazine is cellular type. The hodograph of the measuring base of SBMG and the technique of correction of the deviations of the measuring base from the vertical line (introduction of the amendments for the deviation) during the flight have been investigated. It is shown that estimation of the normal level of values of the vertical gradient of the geomagnetic field is determined by the accuracy of determining the length of the measuring base SBMG

  4. Balloon-based interferometric techniques

    NASA Technical Reports Server (NTRS)

    Rees, David

    1985-01-01

    A balloon-borne triple-etalon Fabry-Perot Interferometer, observing the Doppler shifts of absorption lines caused by molecular oxygen and water vapor in the far red/near infrared spectrum of backscattered sunlight, has been used to evaluate a passive spaceborne remote sensing technique for measuring winds in the troposphere and stratosphere. There have been two successful high altitude balloon flights of the prototype UCL instrument from the National Scientific Balloon Facility at Palestine, TE (May 80, Oct. 83). The results from these flights have demonstrated that an interferometer with adequate resolution, stability and sensitivity can be built. The wind data are of comparable quality to those obtained from operational techniques (balloon and rocket sonde, cloud-top drift analysis, and from the gradient wind analysis of satellite radiance measurements). However, the interferometric data can provide a regular global grid, over a height range from 5 to 50 km in regions of clear air. Between the middle troposphere (5 km) and the upper stratosphere (40 to 50 km), an optimized instrument can make wind measurements over the daylit hemisphere with an accuracy of about 3 to 5 m/sec (2 sigma). It is possible to obtain full height profiles between altitudes of 5 and 50 km, with 4 km height resolution, and a spatial resolution of about 200 km, along the orbit track. Below an altitude of about 10 km, Fraunhofer lines of solar origin are possible targets of the Doppler wind analysis. Above an altitude of 50 km, the weakness of the backscattered solar spectrum (decreasing air density) is coupled with the low absorption crosssection of all atmospheric species in the spectral region up to 800 nm (where imaging photon detectors can be used), causing the along-the-track resolution (or error) to increase beyond values useful for operational purposes. Within the region of optimum performance (5 to 50 km), however, the technique is a valuable potential complement to existing wind

  5. Sonic Thermometer for High-Altitude Balloons

    NASA Technical Reports Server (NTRS)

    Bognar, John

    2012-01-01

    The sonic thermometer is a specialized application of well-known sonic anemometer technology. Adaptations have been made to the circuit, including the addition of supporting sensors, which enable its use in the high-altitude environment and in non-air gas mixtures. There is a need to measure gas temperatures inside and outside of superpressure balloons that are flown at high altitudes. These measurements will allow the performance of the balloon to be modeled more accurately, leading to better flight performance. Small thermistors (solid-state temperature sensors) have been used for this general purpose, and for temperature measurements on radiosondes. A disadvantage to thermistors and other physical (as distinct from sonic) temperature sensors is that they are subject to solar heating errors when they are exposed to the Sun, and this leads to issues with their use in a very high-altitude environment

  6. The effect of ballooning modes on thermal transport and magnetic field diffusion in the solar corona

    NASA Technical Reports Server (NTRS)

    Strauss, H. R.

    1989-01-01

    Presently favored mechanisms of coronal heating (current sheet dissipation and Alfven wave resonant heating) deposit heat in thin layers. Classical thermal conduction cannot explain how heat is transported across the magnetic field. If heating occurs in thin layers, large pressure gradients can be created which can give rise to ballooning modes. These instabilities are caused by the pressure gradient and the curvature of the magnetic field, and are stabilized by magnetic tension. The modes are broad band in wavelength and should produce turbulence. A mixing length expression for the turbulent heat transport shows that it is more than adequate to rapidly convect heat into much broader layers. Furthermore, the turbulent resistivity implies that heating occurs over most of the width of these broadened layers. The broadening also implies that much shorter time scales are required for heating. The beta values in the corona suggest that 1-10 turbulent layers are formed in typical loop or arch structures.

  7. Lifting Entry & Atmospheric Flight (LEAF) Applications at Solar System Bodies.

    NASA Astrophysics Data System (ADS)

    Lee, G.; Sen, B.; Polidan, R. S.

    2015-12-01

    Introduction: Northrop Grumman and L'Garde have continued the development of a hypersonic entry, maneuverable platform capable of performing long-duration (months to a year) in situ and remote measurements at any solar system body that possesses an atmosphere. The Lifting Entry & Atmospheric Flight (LEAF) family of vehicles achieve this capability by using a semi-buoyant, ultra-low ballistic coefficient vehicle whose lifting entry allows it to enter the atmosphere without an aeroshell. In this presentation, we discuss the application of the LEAF system at various solar system bodies: Venus, Titan, Mars, and Earth. We present the key differences in platform design as well as operational differences required by the various target environments. The Venus implementation includes propulsive capability to reach higher altitudes during the day and achieves full buoyancy in the "habitable layers" of Venus' atmosphere at night. Titan also offers an attractive operating environment, allowing LEAF designs that can target low, medium, or high altitude operations, also with propulsive capabilities to roam within each altitude regime. The Mars version is a glider that descends gradually, allowing targeted delivery of payloads to the surface. Finally, an Earth version could remain in orbit in a stowed state until activated, allowing rapid response type deployments to any region of the globe.

  8. Scientific ballooning: Past, present and future

    NASA Astrophysics Data System (ADS)

    Jones, W. Vernon

    2013-02-01

    Balloons have been used for scientific research since they were invented in France more than 200 years ago. Cosmic rays were discovered 100 years ago with an experiment flown on a manned balloon. A major change in balloon design occurred in 1950 with the introduction of the socalled natural shape balloon with integral load tapes. This basic design has been used with more or less continuously improved materials for scientific balloon flights for the past half century, including long-duration balloon (LDB) flights around Antarctica for the past two decades. The U.S. National Aeronautics and Space Administration (NASA) is currently developing a super-pressure balloon that would enable extended duration missions above 99.5% of the Earth's atmosphere at any latitude. Ultra-long-duration balloon (ULDB) flights enabled by constant-volume balloons should result in an even greater sea change in scientific ballooning than the inauguration of long-duration balloon (LDB) flights in Antarctica during the 1990-91 austral summer.

  9. Cleft formation in pumpkin balloons

    NASA Astrophysics Data System (ADS)

    Baginski, Frank E.; Brakke, Kenneth A.; Schur, Willi W.

    NASA’s development of a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circumstances, it has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state instead. Success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and developing of means for the quantitative assessment of design measures that prevent the occurrence of undesired equilibrium. In this paper, we will use the concept of stability to classify cyclically symmetric equilibrium states at full inflation and pressurization. Our mathematical model for a strained equilibrium balloon, when applied to a shape that mimics the Phase IV-A balloon of Flight 517, predicts instability at float. Launched in Spring 2003, this pumpkin balloon failed to deploy properly. Observations on pumpkin shape type super-pressure balloons that date back to the 1980s suggest that within a narrowly defined design class of pumpkin shape super-pressure balloons where individual designs are fully described by the number of gores ng and by a single measure of the bulging gore shape, the designs tend to become more vulnerable with the growing number of gores and with the diminishing size of the bulge radius rB Weight efficiency considerations favor a small bulge radius, while robust deployment into the desired cyclically symmetrical configuration becomes more likely with an increased bulge radius. In an effort to quantify this dependency, we will explore the stability of a family of balloon shapes parametrized by (ng, rB) which includes a design that is very similar, but not identical, to the balloon of Flight 517. In addition, we carry out a number of simulations that demonstrate other aspects related to multiple equilibria of pumpkin balloons.

  10. Radiation Dosimetry Experiment (RaD-X): High-Altitude Balloon Flight Mission for Improving the NAIRAS Model

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Alston, Erica J.; Straume, Tore; Gersey, Brad; Lusby, Terry C.; Norman, Ryan B.; Gronoff, Guillaume P.; Tobiska, W. Kent; Wilkins, Rick

    2015-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. One of the main goals of the RaD-X mission is to improve aviation radiation model characterization of cosmic ray primaries by taking dosimetric measurements above the Pfotzer maximum before the production of secondary particles occurs. The second goal of the RaD-X mission is to facilitate the pathway toward real-time, data assimilative predictions of atmospheric cosmic radiation exposure by identifying and characterizing low-cost radiation measurement solutions.

  11. Scientific ballooning in India: recent developments

    NASA Astrophysics Data System (ADS)

    Joshi, M. N.; Damle, S. V.

    The National Scientific Balloon Facility (NBF) of the Tata Institute of Fundamental Research (TIFR) has been conducting regular balloon flights for various experiments in the areas of Space Astronomy and Atmospheric Sciences. A continuous improvement in all aspects of Scientific Ballooning through a sustained R and D programme ensures uptodate services and a better handle on the design specifications for the balloon. Recent developments in balloon grade films, continuous improvements in design specifications, balloon manufacturing methods, flight operational procedures and improved balloon flight capabilities have resulted in a greatly improved flight performance in the last five years. A launch capability upgradation programme in terms of new launch spool and new launch vehicle has been initiated to be able to safely launch balloons with gross lifts upto 3500 kg, balloon volumes upto 450,000 m^3 and payloads upto 1400 kg. A series of steps have been initiated to improve long duration flight capabilities. In this paper, we present details on some of these aspects of Scientific Ballooning in India.

  12. A long duration balloon-borne telescope for solar gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Owens, Alan; Chupp, Edward L.; Dunphy, Philip P.

    1989-01-01

    A new solar gamma-ray telescope is described which is intended to take advantage of current long-duration ballon facilities such as the RACOON system. The primary scientific objective is to detect and measure gamma-ray lines from solar flares, along with the associated low-energy continuum. The proposed instrument is centered on a multiheaded Ge system and is designed to operate over the energy range 50 keV to 200 200 MeV. In the nuclear transition energy region, the average energy resolution of the primary detectors is over 20 times better than that achieved with the gamma-ray spectrometer on the Solar Maximum Mission satellite.

  13. Flight performance of an advanced CZT imaging detector in a balloon-borne wide-field hard X-ray telescope—ProtoEXIST1

    NASA Astrophysics Data System (ADS)

    Hong, J.; Allen, B.; Grindlay, J.; Barthelemy, S.; Baker, R.; Garson, A.; Krawczynski, H.; Apple, J.; Cleveland, W. H.

    2011-10-01

    We successfully carried out the first high-altitude balloon flight of a wide-field hard X-ray coded-aperture telescope ProtoEXIST1, which was launched from the Columbia Scientific Balloon Facility at Ft. Sumner, New Mexico on October 9, 2009. ProtoEXIST1 is the first implementation of an advanced CdZnTe (CZT) imaging detector in our ongoing program to establish the technology required for next generation wide-field hard X-ray telescopes such as the High Energy Telescope (HET) in the Energetic X-ray Imaging Survey Telescope (EXIST). The CZT detector plane in ProtoEXIST1 consists of an 8×8 array of closely tiled 2 cm×2 cm×0.5 cm thick pixellated CZT crystals, each with 8×8 pixels, mounted on a set of readout electronics boards and covering a 256 cm2 active area with 2.5 mm pixels. A tungsten mask, mounted at 90 cm above the detector provides shadowgrams of X-ray sources in the 30-600 keV band for imaging, allowing a fully coded field of view of 9°×9° (and 19°×19° for 50% coding fraction) with an angular resolution of 20‧. In order to reduce the background radiation, the detector is surrounded by semi-graded (Pb/Sn/Cu) passive shields on the four sides all the way to the mask. On the back side, a 26 cm×26 cm×2 cm CsI(Na) active shield provides signals to tag charged particle induced events as well as ≳100keV background photons from below. The flight duration was only about 7.5 h due to strong winds (60 knots) at float altitude (38-39 km). Throughout the flight, the CZT detector performed excellently. The telescope observed Cyg X-1, a bright black hole binary system, for ˜1h at the end of the flight. Despite a few problems with the pointing and aspect systems that caused the telescope to track about 6.4° off the target, the analysis of the Cyg X-1 data revealed an X-ray source at 7.2σ in the 30-100 keV energy band at the expected location from the optical images taken by the onboard daytime star camera. The success of this first flight is very

  14. Balloon-borne observations of mid-latitude hydrofluoric acid

    NASA Technical Reports Server (NTRS)

    Sen, B.; Toon, G. C.; Blavier, J.-F.; Szeto, J. T.; Fleming, E. L.; Jackman, C. H.

    1995-01-01

    Measurements of stratospheric hydrofluoric acid (HF) have been made by the JPL MkIV interferometer during high-altitude balloon flights. Infrared solar absorption spectra were acquired near 35 deg N at altitudes between local tropopause and 38 km. Volume mixing ratio profiles of HF derived from 4 flights (1990-93), in conjunction with simultaneously observed N2O profiles, indicate an average rate of HF increase of (5.5 +/- 0.3)% per year, in agreement with time-dependent, two-dimensional model simulations (6% per year) and ATMOS measurements.

  15. Radiation Dosimetry Experiment (RaD-X): High-Altitude Balloon Flight Mission for Improving the Nairas Aviation Radiation Model

    NASA Astrophysics Data System (ADS)

    Mays, M. L.; Luhmann, J. G.; Odstrcil, D.; Schwadron, N.; Gorby, M.; Bain, H. M.; Mewaldt, R. A.; Gold, R. E.

    2014-12-01

    In preparation for Solar Probe Plus and Solar Orbiter we consider a series of SEP modeling experiments based on the global MHD WSA-ENLIL model. The models include the Solar Energetic Particle Model (SEPMOD) (Luhmann et al., 2007; 2010) and the Earth-Moon-Mars Radiation Environment Module (EMMREM) (Schwadron et al., 2010)). WSA-ENLIL provides a time-dependent background heliospheric description including CME-like clouds which can generate shocks during their propagation. SEPMOD makes use of the ENLIL-provided magnetic topologies of observer-connected magnetic field lines and all plasma and shock properties along those field lines. The model injects protons onto a sequence observer field lines at intensities dependent on the connected shock source strength which are then integrated at the observer to approximate the proton flux. EMMREM couples with MHD models such as ENLIL and computes energetic particle distributions based on the focused transport equation along a Lagrangian grid of nodes that propagate out with the solar wind. In this presentation we compare SEP modeling results with data, and consider SEP variability in longitude and latitude. Additionally we study the relative importance of observer-connectivity to the solar source and shock locations, as derived from ENLIL. We evaluate the shock geometry and compare model-derived shock parameters with those observed. Finally, we test the effect of the seed population on the resulting profiles.

  16. Balloon gondola diagnostics package

    NASA Technical Reports Server (NTRS)

    Cantor, K. M.

    1986-01-01

    In order to define a new gondola structural specification and to quantify the balloon termination environment, NASA developed a balloon gondola diagnostics package (GDP). This addition to the balloon flight train is comprised of a large array of electronic sensors employed to define the forces and accelerations imposed on a gondola during the termination event. These sensors include the following: a load cell, a three-axis accelerometer, two three-axis rate gyros, two magnetometers, and a two axis inclinometer. A transceiver couple allows the data to be telemetered across any in-line rotator to the gondola-mounted memory system. The GDP is commanded 'ON' just prior to parachute deployment in order to record the entire event.

  17. The Role of Structural Models in the Solar Sail Flight Validation Process

    NASA Technical Reports Server (NTRS)

    Johnston, John D.

    2004-01-01

    NASA is currently soliciting proposals via the New Millennium Program ST-9 opportunity for a potential Solar Sail Flight Validation (SSFV) experiment to develop and operate in space a deployable solar sail that can be steered and provides measurable acceleration. The approach planned for this experiment is to test and validate models and processes for solar sail design, fabrication, deployment, and flight. These models and processes would then be used to design, fabricate, and operate scaleable solar sails for future space science missions. There are six validation objectives planned for the ST9 SSFV experiment: 1) Validate solar sail design tools and fabrication methods; 2) Validate controlled deployment; 3) Validate in space structural characteristics (focus of poster); 4) Validate solar sail attitude control; 5) Validate solar sail thrust performance; 6) Characterize the sail's electromagnetic interaction with the space environment. This poster presents a top-level assessment of the role of structural models in the validation process for in-space structural characteristics.

  18. New data analysis technique developed for the determination of the solar limb position in measurements of the solar diameter and oblateness, and application to observations obtained with the balloon-borne Solar Disk Sextant (SDS) experiment.

    NASA Astrophysics Data System (ADS)

    Djafer, D.; Sofia, S.; Irbah, A.; Thuillier, G.; Egidi, A.; Caccin, B.

    Solar diameter measurements performed from ground by several instruments during these last decades show variations which are not in agreement. In relation with solar activity, these measurements do not reveal consistent results. These results can be either attributed to Earth atmosphere effects or to instrumental ones especially in presence of noise. Noise affects directly the determination of the solar diameter defined as the zero crossing of the second derivative of the solar limb. Furthermore, presence of noise in data causes additional problems requiring appropriate data filtering without changing the solar limb slope. Several methods have been developed and used for a correct inflexion point position determination, among them, is the Fast Fourier Transform Definition (FFTD). We first present a complete description of the FFTD tool and in particular a new method to choose the filtering parameter (a) to be determined for applying FFDT. An alternative method by filtering using the wavelet analysis is also shown. The Solar Disk Sextant (SDS) is an instrument which has been flown on stratospheric balloons from 1992 to 1998 at 37 km altitude preventing all atmospheric effects. SDS uses a prism as angular reference. We present and discuss results obtained from SDS data analysis and compare them using others methods of inflexion point position detection. Finally, we discuss all other SDS experimental parameters able to cause solar diameter measurement variations.We show the relationship between the diameter variation and solar variability.

  19. Low Cost Balloon programme of Indian Centre for Space Physics

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip Kumar

    2016-07-01

    Indian Centre for Space Physics has launched 89 Missions to near space using single or multiple weather balloons or very light plastic balloons. Basic goal was to capitalize miniaturization of equipments in modern ages. Our typical payload of less than 4kg weight consists of GPS, video camera, cosmic ray detectors, Attitude measurement unit, sunsensor and most importantly a 50-100sqcm X-ray/Gamma-ray detector (usually a scintillator type). The main purpose of the latter is to study spectra of secondary cosmic ray spectra (till our ceiling altitude of 36-42km) over the years and their seasonal variation or variation with solar cycle. We also study solar X-ray spectra, especially of solar flares. We have detected a Gamma Ray Burst (GRB) and pulsars. Our observation of black hole candidates did not yield satisfactory result yet mainly because of poor collimation (~ 10 deg x 10 deg) by lead collimator which introduces strong background also. Our effort with multiple balloon flights enabled us to have long duration flights. We believe that our procedure is very futuristic and yet at an affordable cost.

  20. Balloon Launch.

    ERIC Educational Resources Information Center

    Grambo, Gregory

    1994-01-01

    This article describes a science learning experience in which intermediate grade students launched balloons with attached postcards to study wind currents. More than 200 (of over 900 balloons) were returned, and their analysis supported the students' hypothesis about the direction of wind currents. (DB)

  1. Balloons Revisited

    ERIC Educational Resources Information Center

    Jeskova, Z.; Featonby, D.; Fekova, V.

    2012-01-01

    Whilst everyone is familiar with the process of blowing up a balloon, few of us have gone further to quantify the actual pressures involved at different stages in the inflation process. This paper seeks to describe experiments to fill some of those gaps and examine some of the apparently anomalous behaviour of connected balloons. (Contains 12…

  2. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel

    2016-08-01

    In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  3. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    NASA Astrophysics Data System (ADS)

    Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelles, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Mesmin, S.; Duverger, V.; Dupont, J. C.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.

    2015-09-01

    In the companion paper (Renard et al., 2015), we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter) based on scattering measurements at angles of 12 and 60° that allows some topology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 μm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV) and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  4. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    NASA Astrophysics Data System (ADS)

    Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelle, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Mineau, J.-L.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Mesmin, S.; Duverger, V.; Dupont, J.-C.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.

    2015-01-01

    In a companion (Part 1) paper (Renard et al., 2015), we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosols Counter) based on scattering measurements at angles of 12 and 60°. that allows some speciation of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overwhelm those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 μm in diameter) in desert dust plumes or fog and clouds. LOAC light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV) and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Wien (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  5. Scientific Balloons for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Cutts, James; Yavrouian, Andre; Nott, Julian; Baines, Kevin; Limaye, Sanjay; Wilson, Colin; Kerzhanovich, Viktor; Voss, Paul; Hall, Jeffery

    Almost 30 years ago, two balloons were successfully deployed into the atmosphere of Venus as an element of the VeGa - Venus Halley mission conducted by the Soviet Union. As interest in further Venus exploration grows among the established planetary exploration agencies - in Europe, Japan, Russia and the United States, use of balloons is emerging as an essential part of that investigative program. Venus balloons have been proposed in NASA’s Discovery program and ESA’s cosmic vision program and are a key element in NASA’s strategic plan for Venus exploration. At JPL, the focus for the last decade has been on the development of a 7m diameter superpressure pressure(twice that of VeGa) capable of carrying a 100 kg payload (14 times that of VeGA balloons), operating for more than 30 days (15 times the 2 day flight duration of the VeGa balloons) and transmitting up to 20 Mbit of data (300 times that of VeGa balloons). This new generation of balloons must tolerate day night transitions on Venus as well as extended exposure to the sulfuric acid environment. These constant altitude balloons operating at an altitude of about 55 km on Venus where temperatures are benign can also deploy sondes to sound the atmosphere beneath the probe and deliver deep sondes equipped to survive and operate down to the surface. The technology for these balloons is now maturing rapidly and we are now looking forward to the prospects for altitude control balloons that can cycle repeatedly through the Venus cloud region. One concept, which has been used for tropospheric profiling in Antarctica, is the pumped-helium balloon, with heritage to the anchor balloon, and would be best adapted for flight above the 55 km level. Phase change balloons, which use the atmosphere as a heat engine, can be used to investigate the lower cloud region down to 30 km. Progress in components for high temperature operation may also enable investigation of the deep atmosphere of Venus with metal-based balloons.

  6. Ballooning Interest.

    ERIC Educational Resources Information Center

    Mebane, Robert C.; Rector, Bronwyn

    1991-01-01

    Presents activities that utilize balloons to encourage students to explore questions related to scientific concepts. Concepts explored include light, heat, charged ions, polarization, and the sense of smell. (MDH)

  7. Scientific Ballooning Activities and Recent Developments in Technology and Instrumentation of the TIFR Balloon Facility, Hyderabad

    NASA Astrophysics Data System (ADS)

    Buduru, Suneel Kumar

    2016-07-01

    The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) is a unique center of expertise working throughout the year to design, fabricate and launch scientific balloons mainly for space astronomy, atmospheric science and engineering experiments. Recently TIFR-BF extended its support to new user scientists for conducting balloon launches for biological and middle atmospheric sciences. For the first time two balloon launches conducted for sending live lab rats to upper stratosphere and provided launch support for different balloon campaigns such as Tropical Tropopause Dynamics (TTD) to study water vapour content in upper tropospheric and lower stratospheric regions over Hyderabad and the other balloon campaign to study the Asian Tropopause Aerosol Layer (BATAL) during the Indian summer monsoon season. BATAL is the first campaign to conduct balloon launches during active (South-West) monsoon season using zero pressure balloons of different volumes. TIFR-BF also provided zero pressure and sounding balloon support to various research institutes and organizations in India and for several international space projects. In this paper, we present details on our increased capability of balloon fabrication for carrying heavier payloads, development of high strength balloon load tapes and recent developments of flight control and safety systems. A summary of the various flights conducted in two years will be presented along with the future ballooning plans.

  8. Stratospheric N2O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880/cm

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1982-01-01

    A nonlinear least-squares fitting procedure is used to derive the stratospheric N2O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880/cm. The atmospheric spectra analyzed here were recorded during sunset from a float altitude of 33 km with the University of Denver's 0.02/cm resolution interferometer near Alamogordo, N.M. (33 deg N) on Oct. 10, 1979. The laboratory data are used to determine the N2O line intensities. The measurements suggest an N2O mixing ratio of 264 ppbv near 15 km, decreasing to 155 ppbv near 28 km.

  9. Stratospheric N(2)O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880 cm(-1).

    PubMed

    Rinsland, C P; Goldman, A; Murcray, F J; Murcray, D G; Smith, M A; Seals, R K; Larsen, J C; Rinsland, P L

    1982-12-01

    A nonlinear least-squares fitting procedure has been used to derive the stratospheric N(2)O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880 cm(-1). The atmospheric spectra were recorded during sunset from a float altitude of 33 km with the University of Denver 0.02-cm(-1) resolution interferometer near Alamogordo, N.M. (33 degrees N), on 10 Oct. 1979. The laboratory data were used to determine the N(2)O line intensities. The measurements indicate an N(2)O mixing ratio of 264 ppbv near 15 km decreasing to 155 ppbv near 28 km. PMID:20401069

  10. Stratospheric N2O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880/cm

    NASA Astrophysics Data System (ADS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1982-12-01

    A nonlinear least-squares fitting procedure is used to derive the stratospheric N2O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880/cm. The atmospheric spectra analyzed here were recorded during sunset from a float altitude of 33 km with the University of Denver's 0.02/cm resolution interferometer near Alamogordo, N.M. (33 deg N) on Oct. 10, 1979. The laboratory data are used to determine the N2O line intensities. The measurements suggest an N2O mixing ratio of 264 ppbv near 15 km, decreasing to 155 ppbv near 28 km.

  11. Recent Developments in Balloon Support Instrumentation at TIFR Balloon Facility, Hyderabad.

    NASA Astrophysics Data System (ADS)

    Vasudevan, Rajagopalan

    2012-07-01

    The Balloon Facility of Tata Institute of Fundamental Research has been conducting stratospheric balloon flights regularly for various experiments in Space Astronomy and Atmospheric Sciences. A continuous improvement in Balloon flight Support instrumentation by the Control Instrumentation Group to keep in space with the growing complexities of the scientific payloads have contributed to the total success of balloon flights conducted recently. Recent improvements in display of Balloon position during balloon flight by showing on real time the balloon GPS position against Google TM maps is of immense help in selecting the right spot for payload landing and safe recovery . For further speeding up the payload recovery process, a new GPS-GSM payload system has been developed which gives SMS of the payload position information to the recovery team on their cell phones. On parallel footing, a new GPS- VHF system has been developed using GPS and Radio Modems for Balloon Tracking and also for obtaining the payload impact point. On the Telecommand side, a single board Telecommand/ Timer weighing less than 2 Kg has been specially developed for use in the mesosphere balloon test flight. The interference on the existing Short Range Telemetry System has been eliminated by introducing a Band Pass Filter and LNA in the Receiving system of the modules, thereby enhancing its reliability. In this paper , we present the details of the above mentioned developments.

  12. Thermal performance evaluation of the Northrop model NSC-01-0732 concentrating solar collector array at outdoor conditions. [Marshall Space Flight Center solar house test facility

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The thermal efficiency of the concentrating, tracking solar collector was tested after ten months of operation at the Marshall Space Flight Center solar house. The test procedures and results are presented.

  13. Technologies developed by CNES balloon team

    NASA Astrophysics Data System (ADS)

    Sosa-Sesma, Sergio; Charbonnier, Jean-Marc; Deramecourt, Arnaud

    CNES balloon team develops and operates all the components of this kind of vehicle: it means envelope and gondola. This abstract will point out only developments done for envelope. Nowadays CNES offers to scientists four types of envelops that cover a large range of mission demands. These envelops are: 1. Zero pressure balloons: Size going from 3,000m3 to 600,000m3, this kind of envelop is ideal for short duration flights (a few hours) but if we use an intelligent management of ballast consumption and if we chose the best launch site, it is possible to perform medium duration flights (10/20 days depending on the ballast on board). Flight train mass starts at 50kg for small balloons and reach 1000kg for larger ones. Zero pressure balloons are inflated with helium gas. 2. Super pressure balloons: Diameter going from 2.5m to 12m, this kind of envelop is ideal for long duration flights (1 to 6 months). Flight train is inside the envelop for small balloons, it means 2.5 diameter meters which is usually called BPCL (Super pressure balloon for Earth boundary layer) and it is about 3kg of mass. Larger ones could lift external flight trains about 50kg of mass. Super pressure balloons are inflated with helium gas. 3. MIR balloons: Size going from 36,000m3 to 46,000m3. Ceiling is reach with helium gas but after three days helium is no longer present inside and lift force is produced by difference of temperature between air inside and air of atmosphere. Flight trains must not be over 50kg. 4. Aero Clipper balloons: A concept to correlate measurements done in oceans and in nearest layers of atmosphere simultaneously. Flight train is made by a "fish" that drags inside water and an atmospheric gondola few meters above "fish", both pushed by a balloon which profits of the wind force. Materials used for construction and assembling depend on balloon type; they are usually made of polyester or polyethylene. Thickness varies from 12 micrometers to 120 micrometers. Balloon assembling

  14. A disturbance isolation controller for the solar electric propulsion system flight experiment

    NASA Astrophysics Data System (ADS)

    Waites, H. B.

    1982-03-01

    A disturbance isolation controller (DIC) is developed for a simplified model of the solar electric propulsion system (SEPS) flight experiment which consists of a rigid Sperry gimbal torquer (AGS) mounted to a rigid orbiter and the SEPS solar array (rigid) end mounted to the AGS. The main purpose of the DIC is to reduce the effects of orbiter disturbances which are transmitted to the flight experiment. The DIC uses an observer, which does not require the direct measurement of the plant inputs, to obtain estimates of the plant states and the rate of the plant states. The state and rate of state information is used to design a controller which isolates disturbances from specified segments of the plant, and for the flight experiment, the isolated segment is the SEPS solar array.

  15. Scientific balloons: historical remarks.

    NASA Astrophysics Data System (ADS)

    Ubertini, P.

    The paper is an overview of the Human attempt to fly, from the myth of Daedalus and his son Icarus to the first "aerostatic" experiment by Joseph-Michel and Jaques-Etienne Montgolfier. Then, via a jump of about 200 years, we arrive to the era of the modern stratospheric ballooning that, from the beginning of the last century, have provided a unique flight opportunity for aerospace experiments. In particular, the Italian scientific community has employed stratospheric balloons since the '50s for cosmic rays and high energy astrophysical experiments with initial launches performed from Cagliari Helmas Airport (Sardinia). More recently an almost ideal location was found in the area of Trapani-Milo (Sicily, Italy), were an old abandoned airport was refurbished to be used as a new launch site that became operative at the beginning of the '70s. Finally, we suggest a short reminiscence of the first transatlantic experiment carried out on August 1975 in collaboration between SAS-CNR (Italy) and NSBF-NASA (USA). The reason why the Long Duration Balloon has been recently re-oriented in a different direction is analysed and future perspectives discussed. Finally, the spirit of the balloon launch performed by the Groups lead by Edoardo Amaldi, Livio Scarsi and other Italian pioneers, with payloads looking like "refrigerators" weighting a few tens of kg is intact and the wide participation to the present Workshop is the clear demonstration.

  16. FOXSI-2: Upgrades of the Focusing Optics X-ray Solar Imager for its Second Flight

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Glesener, Lindsay; Buitrago-Casas, Camilo; Ishikawa, Shin-Nosuke; Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Watanabe, Shin; Takahashi, Tadayuki; Tajima, Hiroyasu; Turin, Paul; Shourt, Van; Foster, Natalie; Krucker, Sam

    2016-03-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the second time on 2014 December 11. To enable direct Hard X-Ray (HXR) imaging spectroscopy, FOXSI makes use of grazing-incidence replicated focusing optics combined with fine-pitch solid-state detectors. FOXSI’s first flight provided the first HXR focused images of the Sun. For FOXSI’s second flight several updates were made to the instrument including updating the optics and detectors as well as adding a new Solar Aspect and Alignment System (SAAS). This paper provides an overview of these updates as well as a discussion of their measured performance.

  17. High Altitude Balloons as a Platform for Space Radiation Belt Science

    NASA Astrophysics Data System (ADS)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    Space Consortium (LaSpace), and sponsored by NASA. The HASP platform was launched from Fort Sumner, New Mexico, and to an altitude of about 36kilometers with flight durations of 15 to 20 hours using a small volume, low pressure balloon. The main objectives of the program, the challenges involved in developing it, and the major achievements and outcomes will be discussed. Future opportunities for the use of high altitude balloons for solar-terrestrial science, such as the diagnosis of radiation belt loss through the flight of alternative X-ray scintillator payloads, on short duration weather balloon flights will also be discussed. The UA-HAB project is undertaken with the financial support of the Canadian Space Agency.

  18. A solar infrared photometer for space flight application

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Deming, Drake

    1991-01-01

    A photometer concept which is capable of nearly simultaneous measurements of solar radiation from 1.6 to 200 microns in seven wavelength bands is described. This range of wavelengths can probe the solar photosphere from below the level of unit optical depth in the visible to the temperature minimum, about 500 km above it. An instrument package including a 20-cm Gregorian telescope and a filter wheel photometer utilizing noncryogenic pyroelectric infrared detectors is described. Approaches to the rejection of the visible solar spectrum in the instrument, the availability of optical and mechanical components, and the expected instrumental sensitivity are discussed. For wavelengths below 35 microns, the projected instrumental sensitivity is found to be adequate to detect the intensity signature of solar p-mode oscillations during 5 min of integration. For longer wavelengths, clear detection is expected through Fourier analysis of modest data sets.

  19. Atmospheric ozone profiles from high resolution UV spectra obtained with a balloon-borne spectrometer.

    PubMed

    Gillis, J R; Goldman, A; Williams, W J; Murcray, D G

    1982-02-01

    High resolution solar spectra at high and low sun angles in the 3200-3400-A region were obtained during balloon flights on 9 Feb. 1977 (altitude 41 km) and 17 Feb. 1977 (altitude 29 km). These data were analyzed using a layer-by-layer three-wavelength differential absorption method. Ozone volume-mixing ratio profiles, which agree with standard profiles, were derived. Suggestions are made for improving the accuracy of the results in future measurements.

  20. A long-duration balloon payload for hard X-ray and gamma-ray observations of the sun

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Curtis, D. W.; Primbsch, J. H.; Harvey, P. R.; Levedahl, W. K.

    1987-01-01

    A balloon payload designed to study the processes of energy release, particle acceleration, and heating of the active corona in hard X-ray microflares and normal flares is described. An array of liquid nitrogen-cooled germanium detectors together with large area phoswich scintillation detectors provide the highest sensitivity (about 500 sq cm) and energy resolution (not greater than 0.7 keV) ever achieved for solar hard X-ray (about 15-600 keV) measurements. These detectors were flown in February 1987 from Australia on a long duration radiation controlled balloon flight (LDBF) which provided 12 days of observations before cutdown in Brazil. The payload includes solar cells for power, pointing, and navigation sensors, a microprocessor controlled data system with VCR tape storage, and transmitters for GOES and ARGOS spacecraft. This successful flight illustrates the potential of LDBFs for solar flare studies.

  1. Cosmic Balloons

    ERIC Educational Resources Information Center

    El Abed, Mohamed

    2014-01-01

    A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess's historical experiment that demonstrated the existence of ionizing radiation from the sky--later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.

  2. NASA Marshall Space Flight Center Solar Observatory report, July - October 1993

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1994-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during June-October 1993. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  3. NASA Marshall Space Flight Center Solar Observatory report, January - June 1992

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1992-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during Jan. to Jun. 1992. The systems that make up the facility are a magnetograph telescope, and H-alpha telescope, a Questar telescope, and a computer code.

  4. NASA Marshall Space Flight Center Solar Observatory Report, July to December 1992

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1993-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during July-December 1992. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  5. NASA Marshall Space Flight Center Solar Observatory report, March - May 1994

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1994-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during March-May 1994. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  6. Balloon flight and atmospheric electricity

    NASA Technical Reports Server (NTRS)

    Herrera, Emilio

    1924-01-01

    The air is known to be charged with electricity (chiefly positive) with reference to the earth, so that its potential increases with the altitude and the difference in potential between two points in the same vertical line, divided by the distance between them, gives a value called the "potential gradient," which may vary greatly with the altitude, the nature of the ground and the atmospheric conditions.

  7. ISBA system for CNES operations of stratospheric balloons

    NASA Astrophysics Data System (ADS)

    Vargas, André; Cocquerez, Philippe; Escarnot, Jean-Pierre; Sosa-Sesma, Sergio; Ragazzo, Patrick; Spel, Martin

    For long duration flights of stratospheric balloons, the CNES has developed the ISBA Tracking, Telemetry Command system (TT and C), which comprises a house-keeping gondola (on board aerostat) and associated ground segments. The ISBA TT and C system permits to control and to monitor stratospheric balloons for long duration flights lasting a few days (zero-pressure balloon) to several months (superpressure balloon), flying anywhere in the world. This system has been implemented for scientific balloon campaigns : African Monsoon Multidisciplinary Analyzes (AMMA 2006) and Pacific Asian Regional Campaign (PARC 2008). The next balloon campaign with this system will be Concordiasi (2010 ), during which 20 superpressure balloons will be launched from the U.S. MacMurdo station (placeAntarctica) where the duration of the balloon flights are expected to reach 6 months. To enable monitoring and controlling of the flights in real time, regardless of the location of the balloons, the Iridium system is used as the communication link between the ground stations and the on-board house-keeping gondola. A mobile Control Station is activated on the balloon operation site for the launch, from where the ascent to flight level and the beginning of the flight is controlled by the team in charge of launching operations. Subsequently after checking the good health of the aerostat (balloon itself and house keeping gondola), the flight control of the balloon is transferred to the Control Center installed in the CNES at Toulouse from where the flight is further controlled : checking housekeeping and scientific telemetries, operations of ballast dropping and helium gas exhausting (superpressure balloons), monitoring the health of the balloon and the house keeping gondola, forecasts extensions of balloon trajectories for the 10 days to come, and management of the end of the flight to ensure a descent of the envelope of the balloon and flight train with its parachute in maximum safety conditions

  8. Gondola development for CNES stratospheric balloons

    NASA Astrophysics Data System (ADS)

    Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.

    The CNES has been supporting scientific ballooning since its establishment in 1962. The two main parts of the balloon system or aerostat are the balloon itself and the flight train, comprising the house-keeping gondola, for the control of balloon flight (localization and operational telemetry & telecommand - TM/TC), and the scientific gondola with its dedicated telecommunication system. For zero pressure balloon, the development of new TM/TC system for the housekeeping and science data transmission are going on from 1999. The main concepts are : - for balloon house-keeping and low rate scientific telemetry, the ELITE system, which is based on single I2C bus standardizing communication between the different components of the system : trajectography, balloon control, power supply, scientific TM/TC, .... In this concept, Radio Frequency links are developed between the house keeping gondola and the components of the aerostat (balloon valve, ballast machine, balloon gas temperature measurements, ...). The main objectives are to simplify the flight train preparation in term of gondola testing before flight, and also by reducing the number of long electrical cables integrated in the balloon and the flight train; - for high rate scientific telemetry, the use of functional interconnection Internet Protocol (IP) in interface with the Radio Frequency link. The main idea is to use off-the-shelf IP hardware products (routers, industrial PC, ...) and IP software (Telnet, FTP, Web-HTTP, ...) to reduce the development costs; - for safety increase, the adding, in the flight train, of a totally independent house keeping gondola based on the satellite Inmarsat M and Iridium telecommunication systems, which permits to get real time communications between the on-board data mobile and the ground station, reduced to a PC computer with modem connected to the phone network. These GEO and LEO telecommunication systems give also the capability to operate balloon flights over longer distance

  9. Pathfinder aircraft prepared for flight showing solar cell arrays on wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The solar cell arrays, which cover about 75 percent of its upper wing surface, are clearly evident in this view of the Pathfinder solar-electric aircraft. The solar arrays are capable not only of absorbing direct sunlight, but can also absorb light reflected from the ground through the transparent lower surface of the 98-foot-long wing. Engineers and technicians from Pathfinder's developer, AeroVironment, Inc., conducted a successful two-hour check-out flight from NASA's Dryden Flight Research Center, Edwards, California, on Nov. 19, 1996. The craft then underwent preperations at AeroVironment's Simi Valley, California, facility for a new series of flight tests in Hawaii, during summer, 1997. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the

  10. Solar-powered airplane design for long-endurance, high-altitude flight

    NASA Technical Reports Server (NTRS)

    Youngblood, J. W.; Talay, T. A.

    1982-01-01

    This paper describes the performance analysis and design of a solar-powered airplane for long-endurance, unmanned, high-altitude cruise flight utilizing electric propulsion and solar energy collection/storage devices. For a fixed calendar date and geocentric latitude, the daily energy balance, airplane sizing, and airplane aerodynamics relations combine to determine airplane size and geometry to meet mission requirements. Vehicle component weight loadings, aerodynamic parameters, and current and projected values of power train component characteristics form the basis of the solution. For a specified mission, a candidate airplane design is presented to demonstrate the feasibility of solar-powered long endurance flight. Parametric data are presented to illustrate the airplane's mission flexibility.

  11. UltraSail CubeSat Solar Sail Flight Experiment

    NASA Technical Reports Server (NTRS)

    Carroll, David; Burton, Rodney; Coverstone, Victoria; Swenson, Gary

    2013-01-01

    UltraSail is a next-generation, highrisk, high-payoff sail system for the launch, deployment, stabilization, and control of very large (km2 class) solar sails enabling high payload mass fractions for interplanetary and deep space spacecraft. UltraSail is a non-traditional approach to propulsion technology achieved by combining propulsion and control systems developed for formation- flying microsatellites with an innovative solar sail architecture to achieve controllable sail areas approaching 1 km2, sail subsystem area densities approaching 1 g/m2, and thrust levels many times those of ion thrusters used for comparable deep space missions. UltraSail can achieve outer planetary rendezvous, a deep-space capability now reserved for high-mass nuclear and chemical systems. There is a twofold rationale behind the UltraSail concept for advanced solar sail systems. The first is that sail-andboom systems are inherently size-limited. The boom mass must be kept small, and column buckling limits the boom length to a few hundred meters. By eliminating the boom, UltraSail not only offers larger sail area, but also lower areal density, allowing larger payloads and shorter mission transit times. The second rationale for UltraSail is that sail films present deployment handling difficulties as the film thickness approaches one micrometer. The square sail requires that the film be folded in two directions for launch, and similarly unfolded for deployment. The film is stressed at the intersection of two folds, and this stress varies inversely with the film thickness. This stress can cause the film to yield, forming a permanent crease, or worse, to perforate. By rolling the film as UltraSail does, creases are prevented. Because the film is so thin, the roll thickness is small. Dynamic structural analysis of UltraSail coupled with dynamic control analysis shows that the system can be designed to eliminate longitudinal torsional waves created while controlling the pitch of the blades

  12. Solar cosmic rays as a specific source of radiation risk during piloted space flight.

    PubMed

    Petrov, V M

    2004-01-01

    Solar cosmic rays present one of several radiation sources that are unique to space flight. Under ground conditions the exposure to individuals has a controlled form and radiation risk occurs as stochastic radiobiological effects. Existence of solar cosmic rays in space leads to a stochastic mode of radiation environment as a result of which any radiobiological consequences of exposure to solar cosmic rays during the flight will be probabilistic values. In this case, the hazard of deterministic effects should also be expressed in radiation risk values. The main deterministic effect under space conditions is radiation sickness. The best dosimetric functional for its analysis is the blood forming organs dose equivalent but not an effective dose. In addition, the repair processes in red bone marrow affect strongly on the manifestation of this pathology and they must be taken into account for radiation risk assessment. A method for taking into account the mentioned above peculiarities for the solar cosmic rays radiation risk assessment during the interplanetary flights is given in the report. It is shown that radiation risk of deterministic effects defined, as the death probability caused by radiation sickness due to acute solar cosmic rays exposure, can be comparable to risk of stochastic effects. Its value decreases strongly because of the fractional mode of exposure during the orbital movement of the spacecraft. On the contrary, during the interplanetary flight, radiation risk of deterministic effects increases significantly because of the residual component of the blood forming organs dose from previous solar proton events. The noted quality of radiation responses must be taken into account for estimating radiation hazard in space.

  13. Solar cosmic rays as a specific source of radiation risk during piloted space flight

    NASA Astrophysics Data System (ADS)

    Petrov, V. M.

    2004-01-01

    Solar cosmic rays present one of several radiation sources that are unique to space flight. Under ground conditions the exposure to individuals has a controlled form and radiation risk occurs as stochastic radiobiological effects. Existence of solar cosmic rays in space leads to a stochastic mode of radiation environment as a result of which any radiobiological consequences of exposure to solar cosmic rays during the flight will be probabilistic values. In this case, the hazard of deterministic effects should also be expressed in radiation risk values. The main deterministic effect under space conditions is radiation sickness. The best dosimetric functional for its analysis is the blood forming organs dose equivalent but not an effective dose. In addition, the repair processes in red bone marrow affect strongly on the manifestation of this pathology and they must be taken into account for radiation risk assessment. A method for taking into account the mentioned above peculiarities for the solar cosmic rays radiation risk assessment during the interplanetary flights is given in the report. It is shown that radiation risk of deterministic effects defined, as the death probability caused by radiation sickness due to acute solar cosmic rays exposure, can be comparable to risk of stochastic effects. Its value decreases strongly because of the fractional mode of exposure during the orbital movement of the spacecraft. On the contrary, during the interplanetary flight, radiation risk of deterministic effects increases significantly because of the residual component of the blood forming organs dose from previous solar proton events. The noted quality of radiation responses must be taken into account for estimating radiation hazard in space.

  14. Solar Thermal Propulsion Improvements at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P.

    2003-01-01

    Solar Thermal Propulsion (STP) is a concept which operates by transferring solar energy to a propellant, which thermally expands through a nozzle. The specific impulse performance is about twice that of chemical combustions engines, since there is no need for an oxidizer. In orbit, an inflatable concentrator mirror captures sunlight and focuses it inside an engine absorber cavity/heat exchanger, which then heats the propellant. The primary application of STP is with upperstages taking payloads from low earth orbit to geosynchronous earth orbit or earth escape velocities. STP engines are made of high temperature materials since heat exchanger operation requires temperatures greater than 2500K. Refractory metals such as tungsten and rhenium have been examined. The materials must also be compatible with hot hydrogen propellant. MSFC has three different engine designs, made of different refractory metal materials ready to test. Future engines will be made of high temperature carbide materials, which can withstand temperatures greater than 3000K, hot hydrogen, and provide higher performance. A specific impulse greater than 1000 seconds greatly reduces the amount of required propellant. A special 1 OkW solar ground test facility was made at MSFC to test various STP engine designs. The heliostat mirror, with dual-axis gear drive, tracks and reflects sunlight to the 18 ft. diameter concentrator mirror. The concentrator then focuses sunlight through a vacuum chamber window to a small focal point inside the STP engine. The facility closely simulates how the STP engine would function in orbit. The flux intensity at the focal point is equivalent to the intensity at a distance of 7 solar radii from the sun.

  15. Innovative Balloon Buoyancy Techniques for Atmospheric Exploration

    NASA Technical Reports Server (NTRS)

    Jones, J.

    2000-01-01

    Until quite recently, the only practical means to control balloon buoyancy, and thus altitude, required consuming large amounts of fuel or the limited venting of helium balloons and/or dropping of ballast. With recent discoveries at JPL, novel long-life, balloon buoyancy techniques have been discovered that for the first time allow balloons to float in the primarily hydrogen atmospheres of Jupiter, Saturn, Uranus, and Neptune (using ambient fill-gas), and by using renewable energy sources, allow multiple controlled landings on Venus (using atmospheric temperature differences), Mars (solar heat), Titan (RTG heat), and Earth (planet radiant heat).

  16. Simulating clefts in pumpkin balloons

    NASA Astrophysics Data System (ADS)

    Baginski, Frank; Brakke, Kenneth

    2010-02-01

    The geometry of a large axisymmetric balloon with positive differential pressure, such as a sphere, leads to very high film stresses. These stresses can be significantly reduced by using a tendon re-enforced lobed pumpkin-like shape. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin shape, including the constant bulge angle (CBA) design, the constant bulge radius (CBR) design, CBA/CBR hybrids, and NASA’s recent constant stress (CS) design. Utilizing a hybrid CBA/CBR pumpkin design, Flight 555-NT in June 2006 formed an S-cleft and was unable to fully deploy. In order to better understand the S-cleft phenomenon, a series of inflation tests involving four 27-m diameter 200-gore pumpkin balloons were conducted in 2007. One of the test vehicles was a 1/3-scale mockup of the Flight 555-NT balloon. Using an inflation procedure intended to mimic ascent, the 1/3-scale mockup developed an S-cleft feature strikingly similar to the one observed in Flight 555-NT. Our analysis of the 1/3-scale mockup found it to be unstable. We compute asymmetric equilibrium configurations of this balloon, including shapes with an S-cleft feature.

  17. Second flight of the Focusing Optics X-ray Solar Imager sounding rocket [FOXSI-2

    NASA Astrophysics Data System (ADS)

    Buitrago-Casas, J. C.; Krucker, S.; Christe, S.; Glesener, L.; Ishikawa, S. N.; Ramsey, B.; Foster, N. D.

    2015-12-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket experiment that has flown twice to test a direct focusing method for measuring solar hard X-rays (HXRs). These HXRs are associated with particle acceleration mechanisms at work in powering solar flares and aid us in investigating the role of nanoflares in heating the solar corona. FOXSI-1 successfully flew for the first time on November 2, 2012. After some upgrades including the addition of extra mirrors to two optics modules and the inclusion of new fine-pitch CdTe strip detectors, in addition to the Si detectors from FOXSI-1, the FOXSI-2 payload flew successfully again on December 11, 2014. During the second flight four targets on the Sun were observed, including at least three active regions, two microflares, and ~1 minute of quiet Sun observation. This work is focused in giving an overview of the FOXSI rocket program and a detailed description of the upgrades for the second flight. In addition, we show images and spectra investigating the presence of no thermal emission for each of the flaring targets that we observed during the second flight.

  18. Balloons and Science Kit.

    ERIC Educational Resources Information Center

    Balloon Council, Washington, DC.

    This document provides background information on balloons including: (1) the history of balloons; (2) balloon manufacturing; (3) biodegradability; (4) the fate of latex balloons; and (5) the effect of balloons on the rainforest and sea mammals. Also included as part of this instructional kit are four fun experiments that allow students to…

  19. LDEF (Flight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 EL-1994-00666 LDEF (Flight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 The flight photograph was taken from the Orbiter aft flight deck during the LDEF retrieval prior to berthing the LDEF in the Orbiter cargo bay and shows the Solar Array Materials Passive LDEF Experiment (SAMPLE) on the LDEF. Six (6) plates of passive components, provided by various experiment organizations and designated plate I thru plate VI, are shown mounted in a three (3) inch deep LDEF peripheral tray. All six plates are aluminum and attach to the LDEF experiment tray with non-magnetic stainless steel fasteners. Plate I, located in the upper left corner, consist of a combination of solar cells with and without covers, solar cell modules and solar arrays assembled on the baseplate. Two of the four solar arrays are missing and one appears to be attached at only one corner. Other components appear to be secure. Plate II in the left center section, has twenty-seven (27) composite samples, carbon fiber and glass fiber, mounted on the baseplate. The composites appear to be intact with no physical damage. Plate III, in the lower left corner, consist mostly of metallized and thin polymeric films (Kapton, Mylar, TEFLON® , white Tedlar,etc.). The thin films without protective coatings sustained significant damage and most were destroyed. The metallized film apparently survived with minimum damage. Plate IV located in the upper right corner consist of metals and coatings mounted in an aluminum baseplate and covered with a thin aluminum coverplate that partially mask the specimen. Several of the coatings appear to have changed to a darker color and a light brown discoloration appears around the outer edges of the mounting plate and along the right edge of the coverplates. Plate V, in the right center section, contained thermal plastics and structural film configured into tensile and shear specimen. All

  20. NASA super-pressure balloons - designing to meet the future

    NASA Astrophysics Data System (ADS)

    Cathey, Henry M., Jr.

    2001-08-01

    The NASA Ultra Long Duration Balloon project presents a new challenge in balloon design by extending flight duration for large heavy payloads. The pumpkin balloon design is innovative and presents many new challenges. This paper encapsulates the NASA Ultra Long Duration Balloon Vehicle developments, presents them to the Science Community, and shows points of interaction with the users. The capabilities and limitations are presented to allow potential users to make informed choices in the development of balloon class payloads. Brief summaries of test flights and the cause and effect relationship between suspended load and float altitude are presented. A focus on innovation and the future using the Ultra Long Duration Balloon super-pressure balloon technology is also presented.

  1. In-Space Structural Validation Plan for a Stretched-Lens Solar Array Flight Experiment

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Woods-Vedeler, Jessica A.; Jones, Thomas W.

    2001-01-01

    This paper summarizes in-space structural validation plans for a proposed Space Shuttle-based flight experiment. The test article is an innovative, lightweight solar array concept that uses pop-up, refractive stretched-lens concentrators to achieve a power/mass density of at least 175 W/kg, which is more than three times greater than current capabilities. The flight experiment will validate this new technology to retire the risk associated with its first use in space. The experiment includes structural diagnostic instrumentation to measure the deployment dynamics, static shape, and modes of vibration of the 8-meter-long solar array and several of its lenses. These data will be obtained by photogrammetry using the Shuttle payload-bay video cameras and miniature video cameras on the array. Six accelerometers are also included in the experiment to measure base excitations and small-amplitude tip motions.

  2. A new tool for radiation exposure calculations in aircraft flights during disturbed solar activity periods

    NASA Astrophysics Data System (ADS)

    Paschalis, Pavlos; Tezari, Anastasia; Gerontidou, Maria; Mavromichalaki, Helen

    2016-04-01

    Galactic cosmic rays and solar energetic particles can penetrate the Earth's atmosphere and interact with its molecules, which can cause atmospheric showers of secondary particles that are detected by ground based neutron monitor detectors. The cascades are of great importance for the study of the radiation exposure of aircraft crews. A new Geant4 software application is presented based on DYASTIMA (Dynamic Atmospheric Shower Tracking Interactive Model Application), which calculates the effective dose that aviators may receive in different flight scenarios characterized by different altitudes and different flight routes, during quiet and disturbed solar and cosmic ray activity. The concept is based on Monte Carlo simulations by using phantoms for the aircraft and the aviator and experimenting with different shielding materials.

  3. Solar array shuttle flight experiment - hardware development and testing

    SciTech Connect

    Elms, R.V.; Hill, H.C.; Young, L.E.

    1982-09-01

    This paper reports on the fabrication and ground testing of a large area, light-weight, flexible substrate developmental solar array wing that has been built for NASA-MSFC (Contract NAS8-31352) and of the supporting structure and data acquisition system (DAS) which, with the wing will be flown in the shuttle as an experiment in 1984. The experiment will verify the dynamics, thermodynamic, and electrical performance predictions of the array wing and will demonstrate the structural capability of the array wing for Orbiter launch and re-entry environments. The accomodation of the Shuttle payload requirements has resulted in several array wing and operation modifications since the ground demonstration of the array wing in the technology development program. The experiment hardware verification program was designed to minimize costs and risk of experiment performance degradation while maintaining shuttle and crew safety. The previous full-scale wing hardware tests included an extension mast water table test and wing testing for random vibration, thermal vacuum, and acoustic environments. The results of these tests were used to define wing design modifications and to scope the test program for the experiment hardware. The experiment hardware acceptance test program will be completed in October 1982.

  4. NanoSail-D: The First Flight Demonstration of Solar Sails for Nanosatellites

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Heaton, Andy; Pinson, Robin; Laue, Greg; Adams, Charles L.

    2008-01-01

    The NanoSail-D mission is currently scheduled for launch onboard a Falcon Launch Vehicle in the late June 2008 timeframe. The NanoSail-D, a CubeSat-class satellite, will consist of a sail subsystem stowed in a Cubesat 2U volume integrated with a CubeSat 1U volume bus provided by the NASA Ames Research Center (ARC). Shortly after deployment of the NanoSail-D from a Poly Picosatellite Orbital Deployer (P-POD) ejection system, the solar sail will deploy and mission operations will commence. This demonstration flight has two primary mission objectives: 1) to successfully stow and deploy the sail and 2) to demonstrate de-orbit functionality. Given a nearterm opportunity for launch, the project was met with the challenge of delivering the flight hardware in approximately six months, which required a significant constraint on flight system functionality. As a consequence, passive attitude stabilization will be achieved using permanent magnets to de-tumble and orient the body with the magnetic field lines and then rely on atmospheric drag to passively stabilize the sailcraft in an essentially maximum drag attitude. This paper will present an introduction to solar sail propulsion systems, overview the NanoSail-D spacecraft, describe the performance analysis for the passive attitude stabilization, and present a prediction of flight data results from the mission.

  5. Role of Meteorology in Flights of a Solar-Powered Airplane

    NASA Technical Reports Server (NTRS)

    Donohue, Casey

    2004-01-01

    In the summer of 2001, the Helios prototype solar-powered uninhabited aerial vehicle (UAV) [a lightweight, remotely piloted airplane] was deployed to the Pacific Missile Range Facility (PMRF), at Kauai, Hawaii, in an attempt to fly to altitudes above 100,000 ft (30.48 km). The goal of flying a UAV to such high altitudes has been designated a level-I milestone of the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. In support of this goal, meteorologists from NASA Dryden Flight Research Center were sent to PMRF, as part of the flight crew, to provide current and forecast weather information to the pilots, mission directors, and planners. Information of this kind is needed to optimize flight conditions for peak aircraft performance and to enable avoidance of weather conditions that could adversely affect safety. In general, the primary weather data of concern for ground and flight operations are wind speeds (see Figure 1). Because of its long wing span [247 ft (.75 m)] and low weight [1,500 to 1,600 lb (about 680 to 726 kg)], the Helios airplane is sensitive to wind speeds exceeding 7 kn (3.6 m/s) at the surface. Also, clouds are of concern because they can block sunlight needed to energize an array of solar photovoltaic cells that provide power to the airplane. Vertical wind shear is very closely monitored in order to prevent damage or loss of control due to turbulence.

  6. Solar Sail Model Validation from Echo Trajectories

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Brickerhoff, Adam T.

    2007-01-01

    The NASA In-Space Propulsion program has been engaged in a project to increase the technology readiness of solar sails. Recently, these efforts came to fruition in the form of several software tools to model solar sail guidance, navigation and control. Furthermore, solar sails are one of five technologies competing for the New Millennium Program Space Technology 9 flight demonstration mission. The historic Echo 1 and Echo 2 balloons were comprised of aluminized Mylar, which is the near-term material of choice for solar sails. Both spacecraft, but particularly Echo 2, were in low Earth orbits with characteristics similar to the proposed Space Technology 9 orbit. Therefore, the Echo balloons are excellent test cases for solar sail model validation. We present the results of studies of Echo trajectories that validate solar sail models of optics, solar radiation pressure, shape and low-thrust orbital dynamics.

  7. Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft

    NASA Technical Reports Server (NTRS)

    Ercol, Carl J.

    2008-01-01

    The MErcury, Surface, Space, ENvironment GEochemistry and Ranging (MESSENGER) spacecraft is a NASA Discovery Mission spacecraft developed and operated by the Johns Hopkins University Applied Physics Laboratory. It was launched on August 3, 2004 and is currently on a course for Mercury orbit insertion in March 2011. To date the mission trajectory has taken the spacecraft to minimum solar distances of 0.332 and 0.313 AU and on January 14, 2008 the first flyby of Mercury in 33 years. From launch through the latest perihelion passage temperature performance data has been collected for the sun facing Digital Sun Sensors (DSS), the sun facing phased array and low gain (omni) antennas, the solar arrays, the sunshade and the two sun facing attitude control 4.4 N thrusters. Prior to launch, extensive solar simulation testing was conducted at the Glenn Research Center, Tank 6 solar simulation facility in Cleveland Ohio. Flight hardware qualification units representing these Sun exposed components were tested in solar environments that represented near mission minimum solar distance as to verify the thermal designs and the material used in fabrication. The paper will review the thermal designs of these components and their thermal performance to date as compared to the solar simulation testing.

  8. Recent and Future Stratospheric Balloon Activities at Esrange Space Center

    NASA Astrophysics Data System (ADS)

    Kemi, Stig

    Esrange Space Center located in northern Sweden has during 45 years been a leading launch site for both sounding rockets and stratospheric balloons. We have a unique combination of maintaining both stratospheric balloons and sounding rockets launch operations. Most balloon flights are normally handled inside Scandinavia but since 2005 PersonNamesemi-circular flights are performed with recovery in northern Canada. The Swedish Government and Swedish National Space Board are now finaliz-ing an agreement with Russia for peaceful uPersonNamese of space, which will permit circumpolar balloon flights. Within this agreement we will soon be able to of-fer the science community long duration balloon flights with durations for PersonNameseveral weeks. The balloon operations at Esrange Space Center are yearly expanding. Both NASA and CNES have long term plans for balloon flights from northern Sweden. We have also received a request from JAXA for future balloon missions. To handle balloon campaigns with large numbers of payloads or build up for two different campaigns a new big assembly hall will be ready for use at the beginning of 2011. January 24 we made an historical balloon flight in a very cold stratosphere with a Zodiac metricconverterProductID402?000 m3402ü ınbsp;000 m3402 000 m3 balloon carrying a 750kg gondola with the German Mipas-B/Telis instrument. The balloon reached 34kms alti-tude after a carefully piloted ascent in temperature levels down to -89 degrees Centigrade. The scientists received unique data during the 13 hours and 30 minutes long sailing at different altitudes during slow descent. The payload was recovered in very good condition 80 kms from the border between country-regionFinland and Russia.

  9. 75 FR 33838 - National Environmental Policy Act; Scientific Balloon Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... Space Flight Center's Wallops Flight Facility, Wallops Island, VA 23337. Comments also may be submitted... Program Manager, NASA Goddard Space Flight Center's Wallops Flight Facility; telephone 757-824-2319; or... SPACE ADMINISTRATION National Environmental Policy Act; Scientific Balloon Program AGENCY:...

  10. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  11. Unique High Energy Experiment Initiative by ICSP with Weather Balloons

    NASA Astrophysics Data System (ADS)

    Chakrabarti, S. K.; Bhowmick, D.; Sarkar, R.; Bhattacharyya, A.; Midya, S.

    2015-09-01

    With the advent of miniaturization of instruments, Indian Centre for Space Physics began exploring high energy Universe using weather balloons about six years ago. Several Payloads of mass within 4 kg have been flown to near space. Along with the main measurement unit which is usually a scintillator detector, attitude measurement unit, GPS tracking unit, video camera and parachute(s) are also flown. Using large duration flights unique to ICSP without using any valve or ballast and any extra cost, this inexpensive initiative brings back very rich scientific data on soft X-ray spectra of Cosmic Rays, Solar flares, Gamma Ray Bursts and Crab Pulsar. Some results are presented. The payloads are reusable, reducing the recurring cost per flight to be less that $500.00.

  12. Attitude determination for balloon-borne experiments

    NASA Astrophysics Data System (ADS)

    Gandilo, N. N.; Ade, P. A. R.; Amiri, M.; Angilè, F. E.; Benton, S. J.; Bock, J. J.; Bond, J. R.; Bryan, S. A.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Devlin, M. J.; Dober, B.; Doré, O. P.; Farhang, M.; Filippini, J. P.; Fissel, L. M.; Fraisse, A. A.; Fukui, Y.; Galitzki, N.; Gambrel, A. E.; Golwala, S.; Gudmundsson, J. E.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Holmes, W. A.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kermish, Z. D.; Klein, J.; Korotkov, A. L.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Matthews, T. G.; Megerian, K. G.; Moncelsi, L.; Morford, T. A.; Mroczkowski, T. K.; Nagy, J. M.; Netterfield, C. B.; Novak, G.; Nutter, D.; O'Brient, R.; Pascale, E.; Poidevin, F.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Savini, G.; Scott, D.; Shariff, J. A.; Soler, J. D.; Thomas, N. E.; Trangsrud, A.; Truch, M. D.; Tucker, C. E.; Tucker, G. S.; Tucker, R. S.; Turner, A. D.; Ward-Thompson, D.; Weber, A. C.; Wiebe, D. V.; Young, E. Y.

    2014-07-01

    An attitude determination system for balloon-borne experiments is presented. The system provides pointing information in azimuth and elevation for instruments flying on stratospheric balloons over Antarctica. In-flight attitude is given by the real-time combination of readings from star cameras, a magnetometer, sun sensors, GPS, gyroscopes, tilt sensors and an elevation encoder. Post-flight attitude reconstruction is determined from star camera solutions, interpolated by the gyroscopes using an extended Kalman Filter. The multi-sensor system was employed by the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol), an experiment that measures polarized thermal emission from interstellar dust clouds. A similar system was designed for the upcoming flight of Spider, a Cosmic Microwave Background polarization experiment. The pointing requirements for these experiments are discussed, as well as the challenges in designing attitude reconstruction systems for high altitude balloon flights. In the 2010 and 2012 BLASTPol flights from McMurdo Station, Antarctica, the system demonstrated an accuracy of < 5' rms in-flight, and < 5" rms post-flight.

  13. Preliminary results from the flight of the Solar Array Module Plasma Interactions Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry

    1994-01-01

    SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the Office of Aeronautics and Space Technology-2 (OAST-2) mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials, and floating potentials for arrays and spacecraft in LEO.

  14. Modeling and Flight Data Analysis of Spacecraft Dynamics with a Large Solar Array Paddle

    NASA Technical Reports Server (NTRS)

    Iwata, Takanori; Maeda, Ken; Hoshino, Hiroki

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) was launched on January 24 2006 and has been operated successfully since then. This satellite has the attitude dynamics characterized by three large flexible structures, four large moving components, and stringent attitude/pointing stability requirements. In particular, it has one of the largest solar array paddles. Presented in this paper are flight data analyses and modeling of spacecraft attitude motion induced by the large solar array paddle. On orbit attitude dynamics was first characterized and summarized. These characteristic motions associated with the solar array paddle were identified and assessed. These motions are thermally induced motion, the pitch excitation by the paddle drive, and the role excitation. The thermally induced motion and the pitch excitation by the paddle drive were modeled and simulated to verify the mechanics of the motions. The control law updates implemented to mitigate the attitude vibrations are also reported.

  15. Preliminary Results from the Flight of the Solar Array Module Plasma Interactions Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry

    1994-01-01

    SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the OAST-2 mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials and floating potentials for arrays and spacecraft in LEO.

  16. Power Systems Design for Long Duration Ballooning

    NASA Technical Reports Server (NTRS)

    Stilwell, Bryan; Chuzel, Alain

    2016-01-01

    The Columbia Scientific Balloon Facility has been designing and building high-altitude balloon power systems for over 26 years. With that experience, we have found certain types of PV panels, batteries, and charge controllers that are reliable in stratospheric environments. The ultimate goal is to ensure that power systems will provide power reliably throughout the duration of an LDB flight. The purpose of this presentation is to provide some general guidelines and best practices for power system design.

  17. Evolution of scientific ballooning and its impact on astrophysics research

    NASA Astrophysics Data System (ADS)

    Jones, William Vernon

    2014-05-01

    As we celebrate the centennial year of the discovery of cosmic rays on a manned balloon, it seems appropriate to reflect on the evolution of ballooning and its scientific impact. Balloons have been used for scientific research since they were invented in France more than 200 years ago. Ballooning was revolutionized in 1950 with the introduction of the so-called natural shape balloon with integral load tapes. This basic design has been used with more or less continuously improved materials for scientific balloon flights for more than a half century, including long-duration balloon (LDB) flights around Antarctica for the past two decades. The U.S. National Aeronautics and Space Administration (NASA) is currently developing the next generation super-pressure balloon that would enable extended duration missions above 99.5% of the Earth's atmosphere at any latitude. The Astro2010 Decadal Survey report supports super-pressure balloon development and the giant step forward it offers with ultra-long-duration balloon (ULDB) flights at constant altitudes for about 100 days.

  18. Stability of the pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Baginski, Frank

    A large axisymmetric balloon with positive differential pressure, e.g., a sphere, leads to high film stresses. These can be significantly reduced by using a lobed pumpkin-like shape re-enforced with tendons. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin-shape at full inflation, including the constant bulge angle (CBA) design and the constant bulge radius (CBR) design. The authors and others have carried out stability studies of CBA and CBR designs and found instabilities under various conditions. While stability seems to be a good indicator of deployment problems for large balloons under normal ascent conditions, one cannot conclude that a stable design will deploy reliably. Nevertheless, stability analysis allows one to quantify certain deployment characteristics. Ongoing research by NASA's Balloon Program Office utilizes a new design approach developed by Rodger Farley, NASA/GSFC, that takes into account film and tendon strain. We refer to such a balloon as a constant stress (CS) pumpkin design. In June 2006, the Flight 555-NT balloon (based on a hybrid CBR/CBA design) developed an S-cleft and did not deploy. In order to understand the S-cleft phenomena and study a number of aspects related to the CS-design, a series of inflation tests were conducted at TCOM, Elizabeth City, NC in 2007. The test vehicles were 27 meter diameter pumpkins distinguished by their respective equatorial bulge angles (BA). For example, BA98 indicates an equatorial bulge angle of 98° . BA90, BA55, and BA00 are similarly defined. BA98 was essentially a one-third scale version of of the Flight 555 balloon (i.e., 12 micron film instead of 38.1 micron, mini-tendons, etc.). BA90 and BA55 were Farley CS-designs. BA00 was derived from the BA55 design so that a flat chord spanned adjacent tendons. In this paper, we will carry out stability studies of BA98, BA90, BA55, and BA00. We discuss the deployment problem of pumpkin balloons in light of 2007 inflation

  19. Evolution of Scientific Balloon Investigations in the Space Era

    NASA Astrophysics Data System (ADS)

    Jones, W. Vernon

    Scientific ballooning has complemented and enabled spaces science missions and technology investigations throughout the space era. The instruments have grown tremendously in complexity over the past 50 years from simple, passive instruments in the early days to complex observatory class instruments in many current investigations. On the surface, the zero-pressure balloons used today appear very similar to those used 50 years ago, but today's films are actually much higher quality. A sea change in scientific ballooning occurred with inauguration of long-duration flights around Antarctica in the 1990's using highly reliable zero-pressure balloons and flight support systems. Until now, NASA has conducted 32 long-duration flights in the Polar Regions using zero-pressure balloons floating in nearly constant sunlight. The decades-old concept of super pressure balloons is now on the verge of being realized, thanks to high quality films and new balloon designs. The nearly constant volume of super-pressure balloons will allow stable altitude long-duration flights at non-polar latitudes, thereby supporting a much broader range of scientific investigations. Long-duration flights in both polar and non-polar regions will undoubtedly confirm the important contributions that ballooning can make to the strategic science goals established by the National Academy of Sciences. In parallel, conventional balloon flights will continue the indispensable training of young scientists and future principal investigators of space missions. The evolution of balloon investigations from the past to the present and on to the future will be discussed using specific examples.

  20. CNES super pressure balloons assessment and new developments to prepare Strateole-2 campaign

    NASA Astrophysics Data System (ADS)

    Venel, Stephanie; Spel, Martin; Cocquerez, Philippe; Meyer, Jean-Renaud; Nicot, Jean-Marc.; Parot, Gael; Perraud, Sophie

    The French Space Agency, CNES, has developed, since about twelve years ago, super pressure balloons (SPB) that float on constant density (isopycnic) surfaces in the lowermost stratosphere, carrying 40 to 50 kg payloads, during typically three months. These SPB have been successfully deployed in flotilla of about 20 balloons for different scientific campaigns all over the world in different configuration sizes from 8,5 to 12 m diameter, mainly to document the chemistry and dynamics of the atmosphere, to study gravity waves, and to provide in-situ atmospheric profiles thanks to the NCAR driftsonde payloada. This paper will describe the main results and lessons achieved during the last CONCORDIASI campaign in 2010 over the Antarctic region. Thus, anomalies on the on-board system were investigated and explained by the effect of atmospheric particles fluxes. Also related to these flights, an accurate thermal model was built to evaluate the temperature distribution in the balloon, and several ageing tests have been made to better understand the effect of solar exposure on the different balloon materials. This paper will also present the new developments in progress for the future STRATEOLE-2 campaign dedicated to advance the knowledge of coupling processes between the troposphere and the stratosphere in the deep tropics, and foreseen in 2018-2019. In particular, a new command-control system will be developed to be in conformity with the CNES safety rules, and in continuation with the new zero pressure balloons system named NOSYCA. New solar panels are under investigation. Finally, two new balloon sizes will grow the SPB family to respond to the scientist demand of two special altitude densities.

  1. Space environmental effect on solar cells: LDEF and other flight tests

    NASA Technical Reports Server (NTRS)

    Gruenbaum, Peter; Dursch, Harry

    1995-01-01

    This paper summarizes results of several experiments flown on the Long Duration Exposure Facility (LDEF) to examine the effects of the space environment on materials and technologies to be used in solar arrays. The various LDEF experiments are compared to each other as well as to other solar cell flight data published in the literature. Data on environmental effects such as atomic oxygen, ultraviolet light, micrometeoroids and debris, and charged particles are discussed in detail. The results from the LDEF experiments allow us to draw several conclusions. Atomic oxygen erodes unprotected silver interconnects, unprotected Kapton, and polymer cell covers, but certain dielectric coatings can protect both silver and Kapton. Cells that had wrap-around silver contacts sometimes showed erosion at the edges, but more recently developed wrap-through cells are not expected to have these problems. Micrometeoroid and debris damage is limited to the area close to the impact, and microsheet covers provide the cells with some protection. Damage from charged particles was as predicted, and the cell covers provided adequate protection. In general, silicon cells with microsheet covers showed very little degradation, and solar modules showed less than 3 percent degradation, except when mechanically damaged. The solar cell choices for the Space Station solar array are supported by the data from LDEF.

  2. NASA Marshall Space Flight Center solar observatory report, January - June 1991

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1991-01-01

    Given here is a summary of the solar vector magnetic field, H-alpha, and white-light observations made at the NASA/Marshall Space Flight Center (MSFC) Solar Observatory during its daily periods of operation. The MSFC Solar Observatory facilities consist of the Solar Magnetograph, an f/13, 30-cm Cassegrain system with a 3.5-cm image of the Sun, housed on top of a 12.8-meter tower; a 12.5-cm Razdow H-alpha telescope housed at the base of the tower; an 18-cm Questar telescope with a full aperture white-light filter mounted at the base of the tower; a 30-cm Cassegrain telescope located in a second metal dome; and a 16.5-cm H-alpha telescope mounted on side of the Solar Vector Magnetograph. A concrete block building provides office space, a darkroom for developing film and performing optical testing, a workshop, video displays, and a computer facility for data reduction.

  3. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels completely extended.

  4. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels partially extended.

  5. The EUSO-Balloon pathfinder

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    EUSO-Balloon is a pathfinder for JEM-EUSO, the Extreme Universe Space Observatory which is to be hosted on-board the International Space Station. As JEM-EUSO is designed to observe Ultra-High Energy Cosmic Rays (UHECR)-induced Extensive Air Showers (EAS) by detecting their ultraviolet light tracks "from above", EUSO-Balloon is a nadir-pointing UV telescope too. With its Fresnel Optics and Photo-Detector Module, the instrument monitors a 50 km2 ground surface area in a wavelength band of 290-430 nm, collecting series of images at a rate of 400,000 frames/sec. The objectives of the balloon demonstrator are threefold: a) perform a full end-to-end test of a JEM-EUSO prototype consisting of all the main subsystems of the space experiment, b) measure the effective terrestrial UV background, with a spatial and temporal resolution relevant for JEM-EUSO. c) detect tracks of ultraviolet light from near space for the first time. The latter is a milestone in the development of UHECR science, paving the way for any future space-based UHECR observatory. On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario, Canada) by the balloon division of the French Space Agency CNES. From a float altitude of 38 km, the instrument operated during the entire astronomical night, observing UV-light from a variety of ground-covers and from hundreds of simulated EASs, produced by flashers and a laser during a two-hour helicopter under-flight.

  6. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    NASA Astrophysics Data System (ADS)

    Gallice, A.; Wienhold, F. G.; Hoyle, C. R.; Immler, F.; Peter, T.

    2011-10-01

    A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30-35 km altitude) is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI) campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s-1 in the troposphere and 0.2 m s-1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study) in the orographically

  7. High Energy Replicated Optics to Explore the Sun Balloon-Borne Telescope: Astrophysical Pointing

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Wilson-Hodge, Colleen; Ramsey, Brian; Apple, Jeff; Kurt, Dietz; Tennant, Allyn; Swartz, Douglas; Christe, Steven D.; Shih, Albert

    2014-01-01

    On September 21, 2013, the High Energy Replicated Optics to Explore the Sun, or HEROES, balloon-borne x-ray telescope launched from the Columbia Scientific Balloon Facility's site in Ft. Summer, NM. The flight lasted for approximately 27 hours and the observational targets included the Sun and astrophysical sources GRS 1915+105 and the Crab Nebula. Over the past year, the HEROES team upgraded the existing High Energy Replicated Optics (HERO) balloon-borne telescope to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES Project is a multi-NASA Center effort with team members at both Marshall Space Flight Center (MSFC) and Goddard Space Flight Center (GSFC), and is led by Co-PIs (one at each Center). The HEROES payload consists of the hard X-ray telescope HERO, developed at MSFC, combined with several new systems. To allow the HEROES telescope to make observations of the Sun, a new solar aspect system was added to supplement the existing star camera for fine pointing during both the day and night. A mechanical shutter was added to the star camera to protect it during solar observations and two alignment monitoring systems were added for improved pointing and post-flight data reconstruction. This mission was funded by the NASA HOPE (Hands-On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist.

  8. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    NASA Astrophysics Data System (ADS)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  9. Interaction of solar wind ions with thin carbon foils: Calibration of time-of-flight spectrometers

    NASA Astrophysics Data System (ADS)

    Gonin, M.; Buergi, Alfred; Oetliker, M.; Bochsler, P.

    1992-11-01

    With the KAFKA (German acronym for carbon foils collisions analyzer) experiment, charge exchange, energy loss and angular scattering of solar wind ions in thin (1 to 10 microg/sq cm) carbon foils, are studied. Such foils are extensively used in time of flight mass spectrometry. So far, the properties of H, He, B, C, N, O, F, Ne, Na, Mg, Al, Si, S, Cl, Ar, K, Ti, Fe, and Ni and in the 0.5 to 5 keV/u energy range have been investigated.

  10. Optical Characteristics of the Marshall Space Flight Center Solar Ultraviolet Magnetograph

    NASA Technical Reports Server (NTRS)

    West, E. A.; Porter, J. G.; Davis, J. M.; Gary, G. A.; Adams, M.; Smith, S.; Hraba, J. F.

    2001-01-01

    This paper will describe the scientific objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed. This paper will discuss: (1) the scientific measurements that will be made by the SUMI sounding rocket program, (2) how the optics have been optimized for simultaneous measurements of two magnetic lines CIV (1550 Angstroms) and MgII (2800 Angstroms), and (3) the optical, reflectance, transmission and polarization measurements that have been made on the SUMI telescope mirror and polarimeter.

  11. A Flight Prediction for Performance of the SWAS Solar Array Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Seniderman, Gary; Daniel, Walter K.

    1999-01-01

    The focus of this paper is a comparison of ground-based solar array deployment tests with the on-orbit deployment. The discussion includes a summary of the mechanisms involved and the correlation of a dynamics model with ground based test results. Some of the unique characteristics of the mechanisms are explained through the analysis of force and angle data acquired from the test deployments. The correlated dynamics model is then used to predict the performance of the system in its flight application.

  12. Performance of the EUSO-Balloon electronics

    NASA Astrophysics Data System (ADS)

    Barrillon, P.; Bacholle, S.; Bayer, J.; Blaksley, C.; Blin, S.; Cafagna, F.; Dagoret, S.; Fornaro, C.; Gorodetzky, P.; Jung, A.; Karczmarczyk, J.; De La Taille, C.; Medina Tanco, G.; Miyamoto, H.; Moretto, C.; Osteria, G.; Park, I.; Perfetto, F.; Prévôt, G.; Prat, P.; Rabanal Reina, J.; Rojas, J.; Santiago, L.; Scotti, V.; Silva, H.; Szabelski, J.

    2016-01-01

    The 24th of August 2014, the EUSO-Balloon instrument went for a night flight for several hours, 40 km above Timmins (Canada) balloon launching site, concretizing the hard work of an important part of the JEM-EUSO collaboration started 3 years before. This instrument consists of a telescope made of two lenses and a complex electronic chain divided in two main sub-systems: the PDM (Photo Detector Module) and the DP (Data Processor). Each of them is made of several innovative elements developed and tested in a short time. This paper presents their performances before and during the flight.

  13. The French Balloon Program 2013 - 2017

    NASA Astrophysics Data System (ADS)

    Dubourg, Vincent; Vargas, André; Raizonville, Philippe

    2016-07-01

    With over 50 years' experience in the field, the French Centre National d'Etudes Spatiales (CNES) goes on supporting - as designer and operator - a significant scientific ballooning program. In particular so because balloons still give a unique and valuable access to near space science. From 2008 to 2013, an important renovation effort was achieved, beginning by Zero Pressure Balloons (ZPB) systems, to comply with more stringent Safety constraints and to the growing reliability and performance requirements from scientific missions. The paper will give an overview of the CNES new capabilities and services for operational balloon activities, and their availability status. The scientific launch campaigns of the past two years will be presented. A focus will be made on the results of the Stratoscience 2015 flight campaign from Timmins, Ontario, using the NOSYCA command and control system for ZPB, qualified in flight in 2013. In particular, the PILOT telescope successfully flew during the 2015 campaign, key figures about the flight and mission will be given. An outlook of the new stratospheric long duration flight systems currently in process of developement at CNES will be given, as well as the presentation of the Stratéole 2 project, dedicated to the survey of the low stratosphere and upper troposphere in equatorial regions, with a fleet of small suprer pressure balloons (SPB). As far as tropospheric balloons are concerned, the Aeroclipper initiative will be presented, aiming at qualifying a quasi-tethered balloon, pushed by the winds close to the sea surface, for the study of cyclones. The scientific launch campaigns and the main payloads in the study for the near future will also be presented.

  14. A High Resolution Liquid Xenon Imaging Telescope for 0.3-10 MeV Gamma Ray Astrophysics: Construction and Initial Balloon Flights

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1993-01-01

    The results achieved with a 3.5 liter liquid xenon time projection chamber (LXe-TPC) prototype during the first year include: the efficiency of detecting the primary scintillation light for event triggering has been measured to be higher than 85%; the charge response has been measured to be stable to within 0.1% for a period of time of about 30 hours; the electron lifetime has been measured to be in excess of 1.3 ms; the energy resolution has been measured to be consistent with previous results obtained with small volume chambers; X-Y gamma ray imaging has been demonstrated with a nondestructive orthogonal wires readout; Monte Carlo simulation results on detection efficiency, expected background count rate at balloon altitude, background reduction algorithms, telescope response to point-like and diffuse sources, and polarization sensitivity calculations; and work on a 10 liter LXe-TPC prototype and gas purification/recovery system.

  15. Empirical determination of solar proton access to the atmosphere: Impact on polar flight paths

    NASA Astrophysics Data System (ADS)

    Neal, Jason J.; Rodger, Craig J.; Green, Janet C.

    2013-07-01

    Violent expulsions on the Sun's surface release high energy solar protons that ultimately affect HF communication used by aircraft. The geomagnetic field screens the low altitude equatorial region, but these protons can access the atmosphere over the poles. The latitudes over which the solar protons can reach vary with geomagnetic indices such as Kp and Dst. In this study we use observations from low Earth orbit to determine the atmospheric access of solar protons and hence the flights paths most likely to be affected. Observations taken by up to six polar orbiting satellites during 15 solar proton events are analyzed. From this we determine 16,850 proton rigidity cutoff estimates across three energy channels. Empirical fits are undertaken to estimate the most likely behavior of the cutoff dependence with geomagnetic activity. The changing Kp value is found to lead the variation in the cutoffs by ~3 h. We provide simple equations by which the geomagnetic latitude at which the protons impact the atmosphere can be determined from a given Kp or Dst value. The variation found in the cutoff with Kp is similar to that used in existing operational models, although we suggest that a ~1-2° equatorward shift in latitude would provide greater accuracy. We find that a Kp predictive model can provide additional warning to the variation in proton cutoffs. Hence, a prediction of the cutoff latitudes can be made ~3 h to as much as 7 h into the future, meeting suggested minimum planning times required by the aviation industry.

  16. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this video clip is an animated illustration of the Solar-B Spacecraft in earth orbit.

  17. Status of Solar Sail Material Characterization at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehles, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager' and the L1 Diamond '. The Environmental Effects Group at NASA's Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar(TradeMark), Teonex(TraeMark), and CP1 (Colorless Polyimide). Experimental data will be presented on sail material response to charged particle radiation and subsequent Hypervelocity Impact (HVI). Data will also be presented indicating mechanical property variations in sail material resulting from electron exposure, proton exposure, and a combined electron and proton exposure. Tabular data consisting of areal density, thickness, thermo-optical, mechanical, and electrical properties, vacuum stability and outgassing will be presented.

  18. Balloon Ascent: 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.

    2005-01-01

    The BalloonAscent balloon flight simulation code represents a from-scratch development using Visual Basic 5 as the software platform. The simulation code is a transient analysis of balloon flight, predicting the skin and gas temperatures along with the 3-D position and velocity in a time and spatially varying environment. There are manual and automated controls for gas valving and the dropping of ballast. Also, there are many handy calculators, such as appropriate free lift, and steady-state thermal solutions with temperature gradients. The strength of this simulation model over others in the past is that the infrared environment is deterministic rather than guessed at. The ground temperature is specified along with the emissivity, which creates a ground level IR environment that is then partially absorbed as it travels upward through the atmosphere to the altitude of the balloon.

  19. An Overview of the NASA Sounding Rocket and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Eberspeaker, Philip J.; Smith, Ira S.

    2003-01-01

    The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 50 to 60 missions per year in support of the NASA scientific community. These missions support investigations sponsored by NASA's Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program provides the science community with payload development support, environmental testing, launch vehicles, and launch operations from fixed and mobile launch ranges. Sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface. New technology efforts include GPS payload event triggering, tailored trajectories, new vehicle configuration development to expand current capabilities, and the feasibility assessment of an ultra high altitude sounding rocket vehicle. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. The Long Duration Balloon (LDB) is capable of providing flight durations in excess of two weeks and has had many successful flights since its development. The NASA Balloon Program is currently engaged in the development of the Ultra Long Duration Balloon (ULDB), which will be capable of providing flight times up to 100-days. Additional development efforts are focusing on ultra high altitude balloons, station keeping techniques and planetary balloon technologies.

  20. 14 CFR 61.115 - Balloon rating: Limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... takes a practical test in a balloon with an airborne heater: (1) The pilot certificate will contain a... takes a practical test in a gas balloon: (1) The pilot certificate will contain a limitation restricting...) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Private Pilots § 61.115...

  1. Recent developments in the scientific ballooning in India

    NASA Astrophysics Data System (ADS)

    Manchanda, R.; Sreenivasan, S.; Subbarao, J.; Kumar, P.

    RECENT DEVELOPMENTS IN THE SCIENTIFIC BALLOONING IN INDIA R. K. Manchanda1, S. Sreenivasan2, J. V. Subbarao2, P. R. Kumar2 1. Tata Institute of Fundamental Research Colaba, Mumbai-400 005, India. 2. TIFR Balloon Facility, PO Box 5, ECIL Post Office, Hyderabad-500 762, India ravi@tifr.res.in/FAX: +91-22-2152110 National Balloon facility operated by TIFR in Hyderabad, India is the only one of its kind in the world, which combines both, the in-house balloon production and a complete flight support for scientific ballooning. In the past few years we executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years and the results of the test flight conducted to qualify new sub systems will be presented.

  2. Solar and Heliospheric Observatory (SOHO) Flight Dynamics Simulations Using MATLAB (R)

    NASA Technical Reports Server (NTRS)

    Headrick, R. D.; Rowe, J. N.

    1996-01-01

    This paper describes a study to verify onboard attitude control laws in the coarse Sun-pointing (CSP) mode by simulation and to develop procedures for operational support for the Solar and Heliospheric Observatory (SOHO) mission. SOHO was launched on December 2, 1995, and the predictions of the simulation were verified with the flight data. This study used a commercial off the shelf product MATLAB(tm) to do the following: Develop procedures for computing the parasitic torques for orbital maneuvers; Simulate onboard attitude control of roll, pitch, and yaw during orbital maneuvers; Develop procedures for predicting firing time for both on- and off-modulated thrusters during orbital maneuvers; Investigate the use of feed forward or pre-bias torques to reduce the attitude handoff during orbit maneuvers - in particular, determine how to use the flight data to improve the feed forward torque estimates for use on future maneuvers. The study verified the stability of the attitude control during orbital maneuvers and the proposed use of feed forward torques to compensate for the attitude handoff. Comparison of the simulations with flight data showed: Parasitic torques provided a good estimate of the on- and off-modulation for attitude control; The feed forward torque compensation scheme worked well to reduce attitude handoff during the orbital maneuvers. The work has been extended to prototype calibration of thrusters from observed firing time and observed reaction wheel speed changes.

  3. Deployment Instabilities of Lobed-Pumpkin Balloon

    NASA Astrophysics Data System (ADS)

    Nakashino, Kyoichi

    A lobed-pumpkin balloon, currently being developed in ISAS/JAXA as well as in NASA, is a promising vehicle for long duration scientific observations in the stratosphere. Recent ground and flight experiments, however, have revealed that the balloon has deployment instabilities under certain conditions. In order to overcome the instability problems, a next generation SPB called 'tawara' type balloon has been proposed, in which an additional cylindrical part is appended to the standard lobed-pumpkin balloon. The present study investigates the deployment stability of tawara type SPB in comparison to that of standard lobed-pumpkin SPB through eigenvalue analysis on the basis of finite element methods. Our numerical results show that tawara type SPB enjoys excellent deployment performance over the standard lobed-pumpkin SPBs.

  4. The balloon-borne large aperture submillimeter telescope

    NASA Astrophysics Data System (ADS)

    Truch, Matthew David Patey

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is designed to produce large (1-100 deg 2 ) maps of the sky at 250, 350, and 500 pm. The balloon platform lifts BLAST above most of the atmosphere, which is nearly opaque in the submillimeter, making BLAST significantly more sensitive than existing ground-based submillimeter telescopes. BLAST has had three successful flights on a high-altitude balloon. This thesis is in three parts. In the first part, the design, construction, and operation of BLAST is described in detail. Specifically, the submillimeter telescope and receiver, the cryogenic system, the various pointing sensors, and the command and control systems are covered. The processes of launching and landing the gondola are also discussed. In the second part, the analysis of BLAST data is discussed, and specifically data from the BLAST05 flight. The process of cleaning and preparing bolometer time-streams for map-making is discussed. The process of calibrating the data, flat-fielding the bolometer responsivity, removing time-varying changes in bolometer responsivity, and absolute flux calibration based on the fluxes of a known astronomical submillimeter source is detailed. Reconstructing the pointing solution from the data from the in-flight pointing sensors is discussed. Finally, combining the calibrated bolometer data with the reconstructed pointing solution to generate maps is described. In the third part, BLAST05 flight data and results are presented. Several compact sources were mapped, including solar system, Galactic, and extragalactic targets. These included Pallas and Saturn in the solar system, K3-50, W 75N, IRAS 20126+4104, CRL 2688, IRAS 21078+5211, LDN 1014, IRAS 21307+5049, IRAS 22134+5834, and IRAS 23011+6126 in the Galaxy, and the galaxies NGC 4565, Mrk 231, and Arp 220. Fluxes and spectral energy distributions (SEDs) of each of these sources at the BLAST wavelengths are presented, and these are compared with previous

  5. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Rey, Justin; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  6. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Rahman, Zahidul; Rey, Justin; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  7. Sinuplasty (Balloon Catheter Dilation)

    MedlinePlus

    ... development of the balloon dilating catheter and its adaptation to sinus surgery. In the 1980s, the field ... used in endoscopic sinus surgery. It is the adaptation or application of minimally-invasive balloon technology to ...

  8. Flight Qualification And Production Results With Large Area Space Solar Cells And Panel Assembly

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Hanley, James; Jun, Bogim; Bardfield, Rina; Stone, Beth

    2011-10-01

    Spectrolab's product roadmap provides improvement in product performance in parallel with continuous cost reduction to maintain competitive standing in our industry. Product performance improvement is achieved by developing higher efficiency solar cells (e.g. 29.5% XTJ and 33% IMM cells).Reduced product cost is achieved historically through a variety of means including yield improvements, direct material cost reductions, process changes, and most recently, a transition to large area cell configurations (e.g. "LEONE" at 59.65 cm2). Spectrolab has successfully completed the qualification of its latest triple junction space solar cell, the 29.5% 2 XTJ (26.62 cm ), per AIAA-S-111-2005 - augmented by additional Spectrolab testing. Large area LEONE UTJ and XTJ cells (59.65 cm2 from 100 mm diameter germanium wafer) have also been qualified. Use of these large area cells has resulted in the reduction of solar panel cost, add-on mass and manufacturing cycle time for programs. This evolution to larger area cells is the result of a strategic cost reduction effort initiated in 2006; the first step of which was to manufacture the largest possible cells (LEONE) using the 100 mm germanium (Ge) wafer. In flight production since 2007, the LEONE UTJ cell has now completed rigorous qualification testing to 15,549 GEO (Geosynchronous orbit) and 66,060 LEO (Low Earth Orbit) thermal cycles. Over 53,000 LEONE UTJ cells, including more than 27,000 cells on panels delivered to flight programs, have been produced to date. The on-orbit performance of the LEONE UTJ cells is nominal. Finally, progress on the second step of our strategic cost reduction effort towards larger cells and less piece part handling is presented. This effort involves the establishment of a 150 mm Ge -based manufacturing infrastructure.

  9. Scientific ballooning payload termination loads

    NASA Astrophysics Data System (ADS)

    Robbins, E.

    1993-02-01

    NASA's high altitude balloon borne scientific payloads are typically suspended from a deployed flat circular parachute. At flight termination, the recovery train is pyrotechnically separated at the parachute apex and balloon nadir interface. The release of elastic energy stored in the parachute at zero initial virtical velocity in the rarefied atmosphere produces high canopy opening forces that subject the gondola to potentially damaging shock loads. Data from terminations occuring at altitudes to 40 km with payloads up to 2500 kg on parachutes up to 40 m in diameter are presented. Measured loads are markedly larger than encountered via packed parachute deployment for similar canopy loadings. Canopy inflation is significantly surpressed in the early stages and then accelerated during final blossoming. Data interpretation and behavioral phenomena are discussed along with proposed shock attenuation techniques.

  10. Study of the Most Harmful Solar Energetic Particle for Shielding next Human Space Flights

    NASA Astrophysics Data System (ADS)

    Komei Yamashiro, Bryan

    2015-04-01

    Solar energetic particles (SEPs) accelerated by solar events such as flares and coronal mass ejections are radiation risks for humans in space on board the International Space Station (ISS), and will be significant obstacles for future long-duration manned space flight missions. This research supported efforts to improve predictions of large solar storms and aimed for a better understanding of Heliophysics. The main objective was to generate a dated catalog of the highest energy range SEPs measured by the Alpha Magnetic Spectrometer (AMS-02). Using online graphical user interfaces from the satellites, Solar and Heliospeheric Observatory (SOHO) and Geostationary Operational Environmental Satellite (GOES-13, 15), the generated data files from the mounted particle detectors were plotted along a specified energy range. The resulting histograms illustrated the low energy range data from SOHO (4 MeV to 53 MeV) and the low-mid energy range from GOES (0.8 MeV to 500 MeV), which collectively provided a low- to mid-energy range spectrum of the specific event energy ranges versus the SEP proton flux. The high energy range results of the AMS-02 (125 MeV to a few TeV) will eventually be incorporated with the two alternative space satellites of lower energy ranges for a complete analysis across a full SEP energy range. X-ray flux from GOES-15 were then obtained and plotted with the corresponding time to portray initial phenomena of the solar events. This procedure was reproduced for 5 different events determined energetic enough to be measured by AMS-02. The generated plots showed correlation between the different satellite detectors.

  11. A new stratospheric sounding platform based on unmanned aerial vehicle (UAV) droppable from meteorological balloon

    NASA Astrophysics Data System (ADS)

    Efremov, Denis; Khaykin, Sergey; Lykov, Alexey; Berezhko, Yaroslav; Lunin, Aleksey

    High-resolution measurements of climate-relevant trace gases and aerosols in the upper troposphere and stratosphere (UTS) have been and remain technically challenging. The high cost of measurements onboard airborne platforms or heavy stratospheric balloons results in a lack of accurate information on vertical distribution of atmospheric constituents. Whereas light-weight instruments carried by meteorological balloons are becoming progressively available, their usage is constrained by the cost of the equipment or the recovery operations. The evolving need in cost-efficient observations for UTS process studies has led to development of small airborne platforms - unmanned aerial vehicles (UAV), capable of carrying small sensors for in-situ measurements. We present a new UAV-based stratospheric sounding platform capable of carrying scientific payload of up to 2 kg. The airborne platform comprises of a latex meteorological balloon and detachable flying wing type UAV with internal measurement controller. The UAV is launched on a balloon to stratospheric altitudes up to 20 km, where it can be automatically released by autopilot or by a remote command sent from the ground control. Having been released from the balloon the UAV glides down and returns to the launch position. Autopilot using 3-axis gyro, accelerometer, barometer, compas and GPS navigation provides flight stabilization and optimal way back trajectory. Backup manual control is provided for emergencies. During the flight the onboard measurement controller stores the data into internal memory and transmits current flight parameters to the ground station via telemetry. Precise operation of the flight control systems ensures safe landing at the launch point. A series of field tests of the detachable stratospheric UAV has been conducted. The scientific payload included the following instruments involved in different flights: a) stratospheric Lyman-alpha hygrometer (FLASH); b) backscatter sonde; c) electrochemical

  12. Strategic Plans for NASA Research Ballooning

    NASA Astrophysics Data System (ADS)

    Jones, W. V.

    Strategic planning is underway to maximize the return from the increased capabilities anticipated in scientific research ballooning. Circumpolar flights around Antarctica were initiated in the early 1990's to help offset the impact of losing Shuttle/Spacelab missions for the observational sciences following the Challenger accident. The Antarctic Long-Duration Balloon (LDB) program, conducted in partnership with the U.S. National Science Foundation Office of Polar Programs, has been even more successful than originally envisioned. In essence, there have been two LDB missions per year, with an average duration of about 14 days, using conventional zero-pressure balloons. Two LDB flights of similar duration in the Northern Hemisphere have shown the value of developing a routine capability that would complement the Antarctic flights. The development of super-pressure balloons should allow LDB flights at any latitude, and it is reasonable to expect that mission durations can be extended to 60 - 100 days. Assuming that the technical issues will be resolved and international agreements can be secured, scientists will be able to reap the benefits of frequent access to near-space for cutting-edge research and technology development, thereby reducing the impact of restrictions on the use of the International Space Station and the Shuttle retirement in the next decade.

  13. An overview of instrumentation capabilities for Scientific ballooning in India

    NASA Astrophysics Data System (ADS)

    Devarajan, Anand; Reddy Vizapur, Anmi; Rao Tanneeru, Venkateswara; Bangaru, Kapardhi; Trivedi, Dharmesh; Rodi, Ashish; Ojha, Devendra; Koli, Santosh

    2016-07-01

    The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) in India, launches scientific balloons for research in the field of astronomy, astrobiology and atmospheric sciences. TIFR-BF not only has the capability to design, fabricate and launch zero-pressure balloons, but also provide operational and engineering support for launching them. The Control Instrumentation Group (CIG) at the balloon facility handles all electronics related to telemetry, telecommand, tracking, real-time data display, data storage, air-safety and payload recovery. In the recent past, it has designed and developed customized electronics and payload orientation mechanism to meet specific experimental objectives. Small, inexpensive and rugged industrial grade radio data modems were successfully deployed in balloon flights for low bit rate data and image telemetry. This paper will provide an overview and in-flight performance of some of the recent developments in instrumentation and electronics systems. Our plans for future upgradations will also be discussed.

  14. Flight project data book, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Office of Space Science and Applications (OSSA) is responsible for planning, directing, executing, and evaluating that part of the overall NASA program that has as its goal the use of the unique characteristics of the space environment to conduct a scientific study of the universe, to solve practical problems on Earth, and to provide the scientific research foundation for expanding human presence beyond Earth into the solar system. OSSA manages the development of NASA's flight instrumentation for space science and applications including free flying spacecraft, Shuttle and Space Station payloads, and the suborbital sounding rockets, balloons, and aircraft programs. A summary is provided of future flight missions, including those approved and currently under development and those which appear in the OSSA strategic plan.

  15. Development of Ultra-Thin Polyethylene Balloons for High Altitude Research upto Mesosphere

    NASA Astrophysics Data System (ADS)

    Kumar, B. Suneel; Nagendra, N.; Ojha, D. K.; Peter, G. Stalin; Vasudevan, R.; Anand, D.; Kulkarni, P. M.; Reddy, V. Anmi; Rao, T. V.; Sreenivasan, S.

    Ever since its inception four decades back, Balloon Facility of Tata Institute of Fundamental Research (TIFR), Hyderabad has been functioning with the needs of its user scientists at its focus. During the early nineties, when the X-ray astronomy group at TIFR expressed the need for balloons capable of carrying the X-ray telescopes to altitudes up to 42 km, the balloon group initiated research and development work on indigenous balloon grade films in various thickness not only for the main experiment but also in parallel, took up the development of thin films in thickness range 5 to 6 μm for fabrication of sounding balloons required for probing the stratosphere up to 42 km as the regular 2000-gram rubber balloon ascents could not reach altitudes higher than 38 km. By the year 1999, total indigenization of sounding balloon manufacture was accomplished. The work on balloon grade ultra-thin polyethylene film in thickness range 2.8 to 3.8 μm for fabrication of balloons capable of penetrating mesosphere to meet the needs of user scientists working in the area of atmospheric dynamics commenced in 2011. Pursuant to the successful trials with 61,000-m3 balloon made of 3.8-μm Antrix film reaching stratopause (48 km) for the first time in the history of balloon facility in the year 2012, fine tuning of launch parameters like percentage free lift was carried out to take the same volume balloons to higher mesospheric altitudes. Three successful flights with a total suspended load of 10 kg using 61,000-m3 balloons were carried out in the month of January 2014 and all the three balloons crossed into the mesosphere reaching altitudes of over 51 km. All the balloons flown so far are closed system with no escape ducts. Balloon fabrication, development of launch hardware, flight control instruments and launch technique for these mesospheric balloon flights are discussed in this paper.

  16. High resolution solar spectrometer system for measuring atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Murcray, Frank J.; Kosters, J. J.; Blatherwick, R. D.; Olson, J.; Murcray, David G.

    1990-01-01

    A mid-IR Michelson interferometer capable of obtaining 0.002/cm resolution solar spectra has been developed for balloon use. The interferometer is based on the Bomem self-aligning instrument, and is equipped with a solar tracking system, telemetry, and recording systems, as well as temperature control and gondola orientation. The interferometer has made two successful flights in the 7-14-micron interval up to 40 km. The basic systems are described and sample spectra are presented.

  17. Improved model for solar cosmic ray exposure in manned Earth orbital flights

    SciTech Connect

    Wilson, J.W.; Nealy, J.E.; Atwell, W.; Cucinotta, F.A.; Shinn, J.L.; Townsend, L.W.

    1990-06-01

    A calculational model is derived for use in estimating Solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field and the astronauts' self-shielding are evaluated explicitly. The geomagnetic field model is an approximate tilted eccentric dipole with geomagnetic storms represented as a uniform-impressed field. The storm field is related to the planetary geomagnetic index K(sub p). The code is applied to the Shuttle geometry using the Shuttle mass distribution surrounding two locations on the flight deck. The Shuttle is treated as pure aluminum and the astronaut as soft tissue. Short-term, average fluence over a single orbit is calculated as a function of the location of the lines of nodes or long-term averages over all lines of nodes for a fixed inclination.

  18. Improved model for solar cosmic ray exposure in manned Earth orbital flights

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Atwell, William; Cucinotta, Francis A.; Shinn, Judy L.; Townsend, Lawrence W.

    1990-01-01

    A calculational model is derived for use in estimating Solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field and the astronauts' self-shielding are evaluated explicitly. The geomagnetic field model is an approximate tilted eccentric dipole with geomagnetic storms represented as a uniform-impressed field. The storm field is related to the planetary geomagnetic index K(sub p). The code is applied to the Shuttle geometry using the Shuttle mass distribution surrounding two locations on the flight deck. The Shuttle is treated as pure aluminum and the astronaut as soft tissue. Short-term, average fluence over a single orbit is calculated as a function of the location of the lines of nodes or long-term averages over all lines of nodes for a fixed inclination.

  19. SAOZ balloon profiles for the validation of OSIRIS, SCIAMACHY and GOMOS at various latitudes

    NASA Astrophysics Data System (ADS)

    Goutail, F.

    2005-08-01

    SAOZ is a small remote sensing instrument looking at solar occultation during the ascent of the balloon and during sunset (or sunrise) from floating altitude. It is a UV-visible spectrometer measuring O3 and NO2 and in its enhanced UV version, BrO. The vertical profiles, retrieved by onion peeling, have a typical vertical resolution of 1.5 km. Since the launch of ODIN in 2001 seventeen SAOZ balloon flights have been performed at various latitudes and seasons: a - nine flights at mid-latitudes in summer and autumn from southern France (43°N) within the BALODIN/CNES and ESABC programs and from Vanscoy (52°N) in Saskatchevan within the MANTRA 2002 and MANTRA 2004 Canadian campaigns; b - four flights in the Arctic from Kiruna in Sweden (67°N) in winter, inside and outside the polar vortex as well as in summer; c - and finally four flights in the tropics from Bauru in Brasil (22°S) in summer within the pre-HIBISCUS and HIBISCUS/VINTERSOL EU project. Comparison with coincident OSIRIS/ODIN, SCIAMACHY/ENVISAT and GOMOS/ENVISAT ozone, NO2 and BrO profiles are presented.

  20. Balloon-borne spectroscopic observation of the infrared hydroxyl airglow.

    PubMed

    Lowe, R P; Lytle, E A

    1973-03-01

    A balloon-borne grating spectrometer has been used to study the spectrum of the airglow between 1.8 microm and 3.6 microm and its diurnal variation. The principal features identified are the bands of the Deltaupsilon = 2 and Deltaupsilon = 1 sequences of the vibration-rotation spectrum of OH. The brightness of the 1-0 band at night was measured to be in the range 270-400 kR on two flights. A sudden decrease in the intensity of the hydroxyl bands occurred in morning twilight at a solar depression of 4 degrees and is ascribed to the photodissociation of ozone. The temperature, as indicated by the Q/R branch ratio, rose from 170 K at night to 255 K at noon indicating a reduction in the height of the emitting layer during the day.

  1. LDEF (Flight), S1002 : Investigation of Critical Surface Degradation Effects on Coating and Solar Ce

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), S1002 : Investigation of Critical Surface Degradation Effects on Coating and Solar Cells Developed in Germany, Tray E03 The flight photograph was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The capture cells of experiment A0187-02 are in the left two thirdsThe Experiment Exposure Control Canister containing experiment S1002 is the item located in the right one third section of the tray. The EECC is closed with the S1002 experiments inside. The EECC hardware is intact and appears to be in very good shape. The material on the corners of the thermal cover, near the center of the tray, is layers of tape used to blunt corners of the cover that could possibly snag an astronaut's suit if brushed during an EVA. The tape layers seem to have separated but are still attached and remain in place. The brown stain coats the exposed tray sidewall, the base plate in the tray bottom, the lead screw and the thermal covers. Two (2) Impact craters are located near the center of the base plate, another is located between the two (2) lower screws on the support rail at the right bottom edge of the tray. An impact crater appears as a white dot on the darker background. Additional craters are visible on the EECC aluminum thermal covers, the tray flanges and the LDEF structure.

  2. Performance Measurements of the Flight Detector for SPICE on SolarOrbiter

    NASA Astrophysics Data System (ADS)

    Thompson, W. T.; Davila, J. M.; Caldwell, M.; Siegmund, O.

    2015-12-01

    The Spectral Imaging of the Coronal Environment (SPICE) instrument for theSolar Orbiter mission will make spectroscopic observations of the Sun's lowcorona to characterize the plasma properties of the source regions of the solarwind. The detector package for SPICE, provided by the NASA Goddard SpaceFLight Center, consists of two microchannel-plate (MCP) intensified ActivePixel Sensor (APS) detectors covering the short (702-792 Angstroms) and long(972-1050 Angstroms) wavelength bandpasses. The long wavelength detector willalso provide coverage in second order between 485-525 Angstroms. We previouslyreported on measurements of the engineering model detector. Here, we report onmeasurements made on the flight SPICE detector in the same vacuum tank facilityat the Rutherford Appleton Laboratory in Harwell, UK. These measurementsinclude the detector flat field, sensitivity, resolution, linearity, andstatistical noise. A krypton resonance lamp operating at 1236 Angstroms wasused to stimulate the detector. Results at this wavelength are combined withthe quantum efficiency measurements of the individual MCPs at this and otherwavelengths covering the entire wavelength range to provide a completecalibration curve for the instrument. A calibrated NIST photodiode was used todetermine the absolute brightness of the lamp.

  3. LEO Flight Testing of GaAs on Si Solar Cells Aboard MISSES

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Clark, Eric B.; Ringel, Steven A.; Andre, Carrie L.; Smith, Mark A.; Scheiman, David A.; Jenkins, Phillip P.; Maurer, William F.; Fitzgerald, Eugene A.; Walters, R. J.

    2004-01-01

    Previous research efforts have demonstrated small area (0.04 cm) GaAs on Si (GaAs/Si) solar cells with AM0 efficiencies in excess of 17%. These results were achieved on Si substrates coated with a step graded buffer of Si(x),Ge(1-x) alloys graded to 100% Ge. Recently, a 100-fold increase in device area was accomplished for these devices in preparation for on-orbit testing of this technology aboard Materials International Space Station Experiment number 5 (MISSE5). The GaAs/Si MISSE5 experiment contains five (5) GaAs/Si test devices with areas of lcm(exp 2) and 4cm(exp 4) as well as two (2) GaAs on GaAs control devices. Electrical performance data, measured on-orbit for three (3) of the test devices and one (1) of the control devices, will be telemetered to ground stations daily. After approximately one year on orbit, the MISSE5 payload will be returned to Earth for post flight evaluation. This paper will discuss the development of the GaAs/Si devices for the MISSE5 flight experiment and will present recent ground and on-orbit performance data.

  4. The Solar Heating and Cooling Commercial Demonstration Program at Marshall Space Flight Center - Some problems and conclusions

    NASA Technical Reports Server (NTRS)

    Middleton, R. L.

    1978-01-01

    The origin and evolution of the Solar Heating and Cooling Commercial Demonstration Program by the Department of Energy and the Marshall Space Flight Center activities supporting this program from its conception are defined and discussed. Problems are summarized in the design and financial areas. It is concluded that the program has significantly assisted the creation of a viable solar testing and cooling industry. The cost effective procedures evolving from the program are expected to make a major contribution to reducing the effective life cycle cost of solar installation.

  5. Attitude Control Flight Experience: Coping with Solar Radiation and Ion Engines Leak Thrust in Hayabusa (MUSES-C)

    NASA Technical Reports Server (NTRS)

    Kawaguchi, Jun'ichiro; Kominato, Takashi; Shirakawa, Ken'ichi

    2007-01-01

    The paper presents the attitude reorientation taking the advantage of solar radiation pressure without use of any fuel aboard. The strategy had been adopted to make Hayabusa spacecraft keep pointed toward the Sun for several months, while spinning. The paper adds the above mentioned results reported in Sedona this February showing another challenge of combining ion engines propulsion tactically balanced with the solar radiation torque with no spin motion. The operation has been performed since this March for a half year successfully. The flight results are presented with the estimated solar array panel diffusion coefficient and the ion engine's swirl torque.

  6. Meeting the Challenge to Balloon Science

    NASA Astrophysics Data System (ADS)

    Jones, W. Vernon

    The promise of superpressure ballooning is helping the balloon program evolve toward a cost-effective means for frequent access to near-space. Superpressure balloons fabricated from strong, light-weight composite materials have the potential for increasing flight times of ton-class payloads to 100 days or more at altitudes above 5 mbars at essentially any geographic latitude. Although this new capability is still in an embryonic stage, its potential has already had an impact. Specifically, a new NASA Office of Space Science policy for University-class Explorer missions allows balloon investigations to compete on an equal basis with other low-cost missions requiring expendable launch vehicles. The new challenge for the science community is to design winning payloads that can be built within the cost cap of $13 M, including launch costs, and be developed within two to three years from selection to launch. Defining the international trajectories and getting the overflight agreements for balloon flights that make several circumnavigations of Earth will also be a challenge

  7. The 1991 research and technology report, Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Ottenstein, Howard (Editor); Montgomery, Harry (Editor); Truszkowski, Walter (Editor); Frost, Kenneth (Editor); Sullivan, Walter (Editor); Boyle, Charles (Editor)

    1991-01-01

    The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test.

  8. Lifting Entry & Atmospheric Flight (LEAF) System Concept Applications at Solar System Bodies With an Atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Greg; Polidan, Ronald; Ross, Floyd; Sokol, Daniel; Warwick, Steve

    2015-11-01

    Northrop Grumman and L’Garde have continued the development of a hypersonic entry, semi-buoyant, maneuverable platform capable of performing long-duration (months to a year) in situ and remote measurements at any solar system body that possesses an atmosphere.The Lifting Entry & Atmospheric Flight (LEAF) family of vehicles achieves this capability by using a semi-buoyant, ultra-low ballistic coefficient vehicle whose lifting entry allows it to enter the atmosphere without an aeroshell. The mass savings realized by eliminating the heavy aeroshell allows significantly more payload to be accommodated by the platform for additional science collection and return.In this presentation, we discuss the application of the LEAF system at various solar system bodies: Venus, Titan, Mars, and Earth. We present the key differences in platform design as well as operational differences required by the various target environments. The Venus implementation includes propulsive capability to reach higher altitudes during the day and achieves full buoyancy in the mid-cloud layer of Venus’ atmosphere at night.Titan also offers an attractive operating environment, allowing LEAF designs that can target low or medium altitude operations, also with propulsive capabilities to roam within each altitude regime. The Mars version is a glider that descends gradually, allowing targeted delivery of payloads to the surface or high resolution surface imaging. Finally, an Earth version could remain in orbit in a stowed state until activated, allowing rapid response type deployments to any region of the globe.

  9. On-board In-flight Energy Scale Cross-calibration Effects of Solar X-ray Instruments

    NASA Astrophysics Data System (ADS)

    Väänänen, Mikko

    2009-11-01

    We have surveyed previous spaceborne calibrations, and present results of new cross-calibrations of the X-ray solar instruments: SMART-1 XSM, GOES, RHESSI and Messenger XRS. We use XSM as the baseline instrument, and establish its ground, in-flight and cross-calibration status. Based on these calibrations, we show the relative importance of having an on-board in-flight calibration source for the energy scale with the technical twin instruments XRS and XSM. An observed energy scale drift of 168 eV (0.9%) influenced final fluxes by 25-35% in the 2-5 keV band. An ideal generic in-flight calibration source is discussed in view of the XSM-XRS simulation and the in-flight calibration of the microwave CMB instruments in particular.

  10. An adaptive dual-optimal path-planning technique for unmanned air vehicles with application to solar-regenerative high altitude long endurance flight

    NASA Astrophysics Data System (ADS)

    Whitfield, Clifford A.

    2009-12-01

    A multi-objective technique for Unmanned Air Vehicle (UAV) path and trajectory autonomy generation, through task allocation and sensor fusion has been developed. The Dual-Optimal Path-Planning (D-O.P-P.) Technique generates on-line adaptive flight paths for UAVs based on available flight windows and environmental influenced objectives. The environmental influenced optimal condition, known as the driver' determines the condition, within a downstream virtual window of possible vehicle destinations and orientation built from the UAV kinematics. The intermittent results are pursued by a dynamic optimization technique to determine the flight path. This sequential optimization technique is a multi-objective optimization procedure consisting of two goals, without requiring additional information to combine the conflicting objectives into a single-objective. An example case-study and additional applications are developed and the results are discussed; including the application to the field of Solar Regenerative (SR) High Altitude Long Endurance (HALE) UAV flight. Harnessing solar energy has recently been adapted for use on high altitude UAV platforms. An aircraft that uses solar panels and powered by the sun during the day and through the night by SR systems, in principle could sustain flight for weeks or months. The requirements and limitations of solar powered flight were determined. The SR-HALE UAV platform geometry and flight characteristics were selected from an existing aircraft that has demonstrated the capability for sustained flight through flight tests. The goals were to maintain continual Situational Awareness (SA) over a case-study selected Area of Interest (AOI) and existing UAV power and surveillance systems. This was done for still wind and constant wind conditions at altitude along with variations in latitude. The characteristics of solar flux and the dependence on the surface location and orientation were established along with fixed flight maneuvers for

  11. Advances in scientific balloon thermal modeling

    NASA Astrophysics Data System (ADS)

    Bohaboj, T.; Cathey, H.

    The National Aeronautics and Space Administration's Balloon Program Office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the ``Thermal Desktop'' addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical ``proxy models'' for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This paper presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.

  12. Small Research Balloons in a Physics Course for Education Majors

    NASA Astrophysics Data System (ADS)

    Bruhweiler, F. C.; Verner, E.; Long, T.; Montanaro, E.

    2013-12-01

    At The Catholic Univ. of America, we teach an experimental physics course entitled Physics 240: The Sun-Earth Connection, which is designed for the undergraduate education major. The emphasis is on providing hands-on experience and giving the students an exciting experience in physics. As part of this course, in the Spring 2013 semester, we instituted a project to plan, build, launch, and retrieve a small (~1.3 kg) research balloon payload. The payload flown was a small GPS unit that sent its position to an Internet site, a small wide-angle high-resolution video camera, and an analog refrigerator thermometer placed in the field of view of the camera. All data were stored on the camera sim-card. Students faced the problems of flying a small research balloon in the congested, densely populated Northeast Corridor of the US. They used computer simulators available on the Web to predict the balloon path and flight duration given velocities for the Jet Stream and ground winds, as well as payload mass and amount of helium in the balloon. The first flight was extremely successful. The balloon was launched 140 km NW of Washington DC near Hagerstown, MD and touched down 10 miles (16 km) NW of York, PA, within 1.6 km of what was predicted. The balloon reached 73,000 ft (22,000 m) and the thermometer indicated temperatures as low as -70 degrees Fahrenheit (-57 C) during the flight. Further balloon flights are planned in conjunction with this course. Additional exercises and experiments will be developed centered around these flights. Besides learning that science can be exciting, students also learn that science is not always easily predictable, and that these balloon flights give an understanding of many of problems that go into real scientific space missions. This project is supported in part by an educational supplement to NASA grant NNX10AC56G

  13. Pumpkins and onions and balloon design

    NASA Astrophysics Data System (ADS)

    Winker, J. A.

    The reach for a capability to make long flights (months) with heavy payloads (tonnes) has long been pursued. The closest we have come is with polar flights devoid of a significant diurnal cycle. Superpressure technology, with its ability to survive diurnal cycles, is an obvious choice, but materials limitations have been an obstacle to realizing these ambitious goals. Now comes an assortment of new synthetic materials, coupled with a special variety of superpressure balloon which, in combination, is poised to yield a solution for our enhanced duration/payload quest. In this paper we are looking not at materials, but only at a balloon concept. This concept is a "natural shape" oblate spheroid balloon whose shape is chosen to exploit properties of component materials, particularly newly available ones. The current variation of this concept is called a "pumpkin" balloon. The most visible work on this shape is that done by France's CNES, Japan's ISAS, and in the USA by NASA's Wallops Flight Facility. But the basic design idea is not new; it extends back at least a half century. This paper traces the origins of the shape, its evolution through various iterations, and it speculates on some of the recent thinking regarding construction details.

  14. Catalytic Generation of Lift Gases for Balloons

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Berggren, Mark

    2011-01-01

    A lift-gas cracker (LGC) is an apparatus that generates a low-molecular-weight gas (mostly hydrogen with smaller amounts of carbon monoxide and/or carbon dioxide) at low gauge pressure by methanol reforming. LGCs are undergoing development for use as sources of buoyant gases for filling zero-gauge-pressure meteorological and scientific balloons in remote locations where heavy, high-pressure helium cylinders are not readily available. LGCs could also be used aboard large, zero-gauge-pressure, stratospheric research balloons to extend the duration of flight.

  15. High altitude balloon experiments at IIA

    NASA Astrophysics Data System (ADS)

    Nayak, Akshata; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    Recent advances in balloon experiments as well as in electronics have made it possible to fly scientific payloads at costs accessible to university departments. We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bengaluru. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but we will also try scientific exploration of the phenomena occurring in the upper atmosphere, including sprites and meteorite impacts. We present the results of the initial experiments carried out at the CREST campus of IIA, Hosakote, and describe our plans for the future.

  16. Flight Project Data Book

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Office of Space Science and Applications (OSSA) is responsible for the overall planning, directing, executing, and evaluating that part of the overall NASA program that has the goal of using the unique characteristics of the space environment to conduct a scientific study of the universe, to understand how the Earth works as an integrated system, to solve practical problems on Earth, and to provide the scientific and technological research foundation for expanding human presence beyond Earth orbit into the solar system. OSSA guides its program toward leadership through its pursuit of excellence across the full spectrum of disciplines. OSSA pursues these goals through an integrated program of ground-based laboratory research and experimentation, suborbital flight of instruments on airplanes, balloons, and sounding rockets; flight of instruments and the conduct of research on the Shuttle/Spacelab system and on Space Station Freedom; and development and flight of automated Earth-orbiting and interplanetary spacecraft. The OSSA program is conducted with the participation and support of other Government agencies and facilities, universities throughout the United States, the aerospace contractor community, and all of NASA's nine Centers. In addition, OSSA operates with substantial international participation in many aspects of our Space Science and Applications Program. OSSA's programs currently in operation, those approved for development, and those planned for future missions are described.

  17. Review and prospect of Chinese Scientific Balloon activities

    NASA Astrophysics Data System (ADS)

    Yidong, G.; Luhua, J.; Bin, L.

    1993-02-01

    Chinese scientific ballooning activities commenced at the end of the 1970's. During the past 13 years, a well integrated balloon technology capability has been developed. This includes balloon fabric research and production, balloon manufacture, flight electronics development and a launching facility. Recently, we have started to develop balloons having a larger volume and capable of lifting heavier payloads. We have also developed the ability to support long duration balloon flights. We are currently preparing a LDBF program in collaboration with the USSR. In this programme the balloons will be launched from the Northeast region of China and recovered in the Southern part of the Soviet Union. These areas of development will continue to be important features of our program during the next few years. This paper presents a short review of Chinese Scientific Balloon developments and indicates the progress that we have made in recent years. We also present our development plans for the future. Some of the Chinese scientific experiments and important instruments are also described in this paper.

  18. Controlled weather balloon ascents and descents for atmospheric research and climate monitoring

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F.; Hall, Emrys G.; Jordan, Allen F.

    2016-03-01

    In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.

  19. Controlled weather balloon ascents and descents for atmospheric research and climate monitoring

    NASA Astrophysics Data System (ADS)

    Kräuchi, A.; Philipona, R.; Romanens, G.; Hurst, D. F.; Hall, E. G.; Jordan, A. F.

    2015-12-01

    In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the one balloon technique that uses a simple automatic valve system to release helium from the balloon at a pre-set ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at pre-set altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.

  20. National Report France: The French Balloon Programme 2013-2016

    NASA Astrophysics Data System (ADS)

    Dubourg, V.; Vassaux, D.; Vargas, A.; Cocquerez, P.; Louvel, S.; Douchin, F.; Saccocio, M.; Mirc, F.

    2015-09-01

    With over 50 years' experience in the field, the French Centre National dEtudes Spatiales (CNES) goes on supporting a significant scientific ballooning program. In particular so because balloons still give a unique access to near space science. Over the past 6 years, most of the systems, beginning by the Zero Pressure Balloons, had to be renewed to comply with more stringent Safety constraints and to growing performance and reliability requirements from the scientific missions. This paper will give an overview of the CNES new capabilities and services for operational balloon activities, and their availability status. The scientific launch campaigns of the past two years will be presented. A focus will be made on the results of the Stratoscience 2014 flight campaign from Timmins, Ontario, using the NOSYCA command and control system for zero pressure balloons, qualified in 2013. The ChArMEx campaign (Chemistry-AeRosol Mediterranean Experiment) performed in 2013 from the Baleares islands and from the south of France, with Boundary Layer Pressurized Balloons will also be presented as well as the LOAC-VOLTAIRE experiment, carried out from Aire-sur-l'Adour (France), through the flights of 20 instrumented light expandable balloons. An outlook of the new stratospheric long duration flight systems currently studied at CNES will be given. The scientific launch campaigns and the main payloads in the study for the near future will also be presented.

  1. Terahertz photometers to observe solar flares from space (SOLAR-T project)

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Raulin, Jean-Pierre

    The space experiment SOLAR-T designed to observe solar flares at THz frequencies was completed. We present the concept, fabrication and performance of a double THz photometers system. An innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. It is the first detecting system conceived to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. One artificial Sun setup was developed to simulate actual observations. Tests comprised the whole system performance, on ambient and low pressure and temperature conditions. It is intended to provide data on the still unrevealed spectral shape of the mysterious THz solar flares emissions. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014-2016. The SOLAR-T development, fabrication and tests has been accomplished by engineering and research teams from Mackenzie, Unicamp and Bernard Lyot Solar Observatory; Propertech Ltda.; Neuron Ltda.; and Samsung, Brazil; Tydex LCC, Russia; CONICET, Argentina; the stratospheric balloon missions will be carried in cooperation with teams from University of California, Berkeley, USA (flight over Antarctica), and Lebedev Physical Institute, Moscow, Russia (flight over Russia).

  2. GHOST balloons around Antarctica

    NASA Technical Reports Server (NTRS)

    Stearns, Charles R.

    1988-01-01

    The GHOST balloon position as a function of time data shows that the atmospheric circulation around the Antarctic Continent at the 100 mb and 200 mb levels is complex. The GHOST balloons supposedly follow the horizontal trajectory of the air at the balloon level. The position of GHOST balloon 98Q for a three month period in 1968 is shown. The balloon moved to within 2 deg of the South Pole on 1 October 1968 and then by 9 December 1968 was 35 deg from the South Pole and close to its position on 1 September 1968. The balloon generally moved from west to east but on two occasions moved in the opposite direction for a few days. The latitude of GHOST balloons 98Q and 149Z which was at 200 mb is given. Both balloons tended to get closer to the South Pole in September and October. Other GHOST balloons at the same pressure and time period may not indicate similar behavior.

  3. Kestrel balloon launch system

    SciTech Connect

    Newman, M.J.

    1991-10-01

    Kestrel is a high-altitude, Helium-gas-filled-balloon system used to launch scientific payloads in winds up to 20 knots, from small platforms or ships, anywhere over land or water, with a minimal crew and be able to hold in standby conditions. Its major components consist of two balloons (a tow balloon and a main balloon), the main deployment system, helium measurement system, a parachute recovery unit, and the scientific payload package. The main scope of the launch system was to eliminate the problems of being dependent of launching on long airfield runways, low wind conditions, and long launch preparation time. These objectives were clearly met with Kestrel 3.

  4. Stratospheric Balloon Platforms for Near Space Access

    NASA Astrophysics Data System (ADS)

    Dewey, R. G.

    2012-12-01

    For over five decades, high altitude aerospace balloon platforms have provided a unique vantage point for space and geophysical research by exposing scientific instrument packages and experiments to space-like conditions above 99% of Earth's atmosphere. Reaching altitudes in excess of 30 km for durations ranging from hours to weeks, high altitude balloons offer longer flight durations than both traditional sounding rockets and emerging suborbital reusable launch vehicles. For instruments and experiments requiring access to high altitudes, engineered balloon systems provide a timely, responsive, flexible, and cost-effective vehicle for reaching near space conditions. Moreover, high altitude balloon platforms serve as an early means of testing and validating hardware bound for suborbital or orbital space without imposing space vehicle qualifications and certification requirements on hardware in development. From float altitudes above 30 km visible obscuration of the sky is greatly reduced and telescopes and other sensors function in an orbit-like environment, but in 1g. Down-facing sensors can take long-exposure atmospheric measurements and images of Earth's surface from oblique and nadir perspectives. Payload support subsystems such as telemetry equipment and command, control, and communication (C3) interfaces can also be tested and operationally verified in this space-analog environment. For scientific payloads requiring over-flight of specific areas of interests, such as an active volcano or forest region, advanced mission planning software allows flight trajectories to be accurately modeled. Using both line-of-sight and satellite-based communication systems, payloads can be tracked and controlled throughout the entire mission duration. Under NASA's Flight Opportunities Program, NSC can provide a range of high altitude flight options to support space and geophysical research: High Altitude Shuttle System (HASS) - A balloon-borne semi-autonomous glider carries

  5. Experimental characterization and numerical modelling of polymeric film damage, constituting the stratospheric super pressurized balloons

    NASA Astrophysics Data System (ADS)

    Chaabane, Makram; Chaabane, Makram; Dalverny, Olivier; Deramecourt, Arnaud; Mistou, Sébastien

    The super-pressure balloons developed by CNES are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding to the flight level and the lifespan of the balloon. It appears during the working stages of the super pressure balloons that these last can exploded prematurely in the course of the first hours of flight. For this reason CNES and LGP are carrying out research programs about experimentations and modelling in order to predict a good stability of the balloons flight and guarantee a life time in adequacy with the technical requirement. This study deals with multilayered polymeric film damage which induce balloons failure. These experimental and numerical study aims, are a better understanding and predicting of the damage mechanisms bringing the premature explosion of balloons. The following damages phenomena have different origins. The firsts are simple and triple wrinkles owed during the process and the stocking stages of the balloons. The second damage phenomenon is associated to the creep of the polymeric film during the flight of the balloon. The first experimental results we present in this paper, concern the mechanical characterization of three different damage phenomena. The severe damage induced by the wrinkles of the film involves a significant loss of mechanical properties. In a second part the theoretical study, concerns the choice and the development of a non linear viscoelastic coupled damage behavior model in a finite element code.

  6. Observational techniques for solar flare gamma-rays, hard X-rays, and neutrons

    NASA Technical Reports Server (NTRS)

    Lin, Robert P.

    1989-01-01

    The development of new instrumentation and techniques for solar hard X-ray, gamma ray and neutron observations from spacecraft and/or balloon-borne platforms is examined. The principal accomplishments are: (1) the development of a two segment germanium detector which is near ideal for solar hard X-ray and gamma ray spectroscopy; (2) the development of long duration balloon flight techniques and associated instrumentation; and (3) the development of innovative new position sensitive detectors for hard X-ray and gamma rays.

  7. Development of a super-pressure balloon with a diamond-shaped net --- result of a ground inflation test of a 2,000 cubic-meter balloon ---

    NASA Astrophysics Data System (ADS)

    Saito, Yoshitaka; Nakashino, Kyoichi; Akita, Daisuke; Matsushima, Kiyoho; Shimadu, Shigeyuki; Goto, Ken; Hashimoto, Hiroyuki; Matsuo, Takuma

    2016-07-01

    A light super-pressure balloon has been developed using a method to cover a balloon with a diamond-shaped net of high-tensile fibers. The goal is to fly a payload of 900 kg to the altitude of 37 km with a 300,000 m^{3} balloon. Beginning from a demonstration test of the net-balloon with a 10 m^{3} balloon in 2010, we have been polished the net-balloon through ground inflation tests and flight tests, including a flight test of a 3,000 m ^{3} balloon in the tandem balloon configuration with a 15,000 m^{3} zero-pressure balloon in 2012, and a flight test of a 10 m^{3} balloon in the tandem balloon configuration with a 2 kg rubber balloon in 2013, as reported in the last COSPAR. In 2014, we developed a 5,000 m^{3} balloon and performed a ground inflation test to find that the balloon burst from a lip panel for termination with a differential pressure of 425 Pa. It was due to a stress concentration at the edge of a thick tape attached along the termination mechanism. In 2015, we modified the balloon by adding tapes on the lip panel to avoid the stress concentration, and also shorten the net length to leave some margin of the film and performed a ground inflation test again to find the balloon showed asymmetrical deployment and burst from the edge of the net with a differential pressure of 348 Pa. We consider it is due to the margin of the film along the circumferential direction, and proposed a gore shape which circumference length is kept as determined by the pumpkin shape of the balloon but setting meridian length longer than that. We developed a 10 m^{3} balloon with the gore design to find that the balloon deployed symmetrically and showed the burst pressure of 10,000 Pa. In 2016, we are going to develop a 2,000 m^{3} balloon with the gore design and perform its ground inflation test. In this paper, we are going to report its result with the sequence of the development.

  8. National Report on the NASA Sounding Rocket and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Eberspeaker, Philip; Fairbrother, Debora

    2013-01-01

    The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to

  9. In-flight UV and polarized-VL radiometric calibrations of the solar orbiter/METIS imaging coronagraph

    NASA Astrophysics Data System (ADS)

    Focardi, M.; Capobianco, G.; Andretta, V.; Sasso, C.; Romoli, M.; Landini, F.; Fineschi, S.; Pancrazzi, M.; Bemporad, A.; Nicolini, G.; Pucci, S.; Uslenghi, M.; Naletto, G.; Nicolosi, P.; Spadaro, D.; Teriaca, L.; SchuÌhle, U. H.; Antonucci, E.

    2014-07-01

    METIS is an innovative inverted occulted solar coronagraph capable of obtaining for the first time simultaneous imaging of the full corona in linearly polarized visible-light (580-640 nm) and narrow-band (+/- 10 nm) ultraviolet H I Ly-α (121.6 nm). It has been selected to fly aboard the Solar Orbiter1 spacecraft, whose launch is foreseen in July 2017. Thanks to its own capabilities and exploiting the peculiar opportunities offered by the Solar Orbiter planned orbit, METIS will address some of the still open issues in understanding the physical processes in the corona and inner heliosphere. The Solar Orbiter Nominal Mission Phase (NMP) will be characterized by three scientific observing windows per orbit and METIS will perform at least one in-flight calibration per observing window. The two imaging channels of METIS will be calibrated on ground and periodically checked, verified and re-calibrated in-flight. In particular, radiometric calibration images will be needed to determine the absolute brightness of the solar corona. For UV radiometric calibration a set of targets is represented by continuum-emitting early type bright stars (e.g. A and B spectral types) whose photospheres produce a bright far-ultraviolet continuum spectrum stable over long timescales. These stars represent an important reference standard not only for METIS in-flight calibrations but also for other Solar Orbiter instruments and they will be crucial for instruments cross-calibrations as well. For VL radiometric calibration, a set of linearly polarized stars will be used. These targets shall have a minimum degree of linear polarization (DoLP > 5%) and a detectable magnitude, compatible with the instrument integration times constrained by the desired S/N ratio and the characteristics of the spacecraft orbit dynamics.

  10. Clefting in pumpkin balloons

    NASA Astrophysics Data System (ADS)

    Baginski, F.; Schur, W.

    NASA's effort to develop a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, focuses on a pumpkin shape super-pressure design. It has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired stable state instead. Hoop stress considerations in the pumpkin design leads to choosing the lowest possible bulge radius, while robust deployment is favored by a large bulge radius. Some qualitative understanding of design aspects on undesired equilibria in pumpkin balloons has been obtained via small-scale balloon testing. Poorly deploying balloons have clefts, but most gores away from the cleft deploy uniformly. In this paper, we present models for pumpkin balloons with clefts. Long term success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and means for quantitative assessment of measures that prevent their occurrence. This paper attempts to determine numerical thresholds of design parameters that distinguish between properly deploying designs and improperly deploying designs by analytically investigating designs in the vicinity of criticality. Design elements which may trigger the onset undesired equilibria and remedial measures that ensure deployment are discussed.

  11. The Great Balloon Controversy.

    ERIC Educational Resources Information Center

    Chase, Valerie

    1989-01-01

    Discusses the harmful effects of balloon launches and the dumping of plastic debris into oceans. Cites several examples of plastic materials being discovered inside the bodies of sick and/or dead marine animals. Offers alternative activities to releasing balloons into the atmosphere. (RT)

  12. A comparison of vector magnetograms from the Marshall Space Flight Center and Mees Solar Observatory

    NASA Technical Reports Server (NTRS)

    Ronan, R. S.; Orrall, F. Q.; Mickey, D. L.; West, E. A.; Hagyard, M. J.; Balasubramaniam, K. S.

    1992-01-01

    The paper compares completely independent vector magnetic field measurements from two very different polarimetric instruments. The Marshall Space Flight Center's (MSFC's) imaging vector magnetograph is based on a birefringent filter, routinely measuring all four Stokes parameters integrated over the filter bandpass (1/8 A) which is tunable across the Fe I 5250 line in 10 mA steps. The Haleakala Stokes Polarimeter of the Mees Solar Observatory (MSO) is based on a spectrometer, routinely measuring all four Stokes parameters of the Fe I 6302.5 line simultaneously and then spatially scanning to build up a vector magnetogram. Active region magnetic field data were obtained with both the MSFC and MSO systems on five days during June 1985. After interpolating the MSFC vector fields onto the more coarse spatial grid of MSO, a point-by-point comparison of the two vector fields is made for data obtained on two of these days (June 8 and 9). From this comparison it is concluded that the spatially-averaged line-of-sight components agree quite well, and that although the MSO spatial grid is coarser, the quality of the MSO image is better than that of the MSFC data because of better seeing conditions.

  13. Thermal performance modeling of NASA s scientific balloons

    NASA Astrophysics Data System (ADS)

    Franco, H.; Cathey, H.

    The flight performance of a scientific balloon is highly dependant on the interaction between the balloon and its environment. The balloon is a thermal vehicle. Modeling a scientific balloon's thermal performance has proven to be a difficult analytical task. Most previous thermal models have attempted these analyses by using either a bulk thermal model approach, or by simplified representations of the balloon. These approaches to date have provided reasonable, but not very accurate results. Improvements have been made in recent years using thermal analysis tools developed for the thermal modeling of spacecraft and other sophisticated heat transfer problems. These tools, which now allow for accurate modeling of highly transmissive materials, have been applied to the thermal analysis of NASA's scientific balloons. A research effort has been started that utilizes the "Thermal Desktop" addition to AUTO CAD. This paper will discuss the development of thermal models for both conventional and Ultra Long Duration super-pressure balloons. This research effort has focused on incremental analysis stages of development to assess the accuracy of the tool and the required model resolution to produce usable data. The first stage balloon thermal analyses started with simple spherical balloon models with a limited number of nodes, and expanded the number of nodes to determine required model resolution. These models were then modified to include additional details such as load tapes. The second stage analyses looked at natural shaped Zero Pressure balloons. Load tapes were then added to these shapes, again with the goal of determining the required modeling accuracy by varying the number of gores. The third stage, following the same steps as the Zero Pressure balloon efforts, was directed at modeling super-pressure pumpkin shaped balloons. The results were then used to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed

  14. NASA'S Balloon Program Overview and New Horizons

    NASA Astrophysics Data System (ADS)

    Fairbrother, Debora

    The United States National Aeronautics and Space Administration’s (NASA)’s Balloon Program continues to support the scientific community providing enhanced capabilities across a spectrum of balloon related disciplines. Operationally, the Program has experienced 100 percent success rate over the past two years. The Long Duration Balloon (LDB) component continues to be a prominent element of the Program with a new LDB endurance record achieved in Antarctica with the Super-Tiger mission during the 2012-2013 campaign. Several key technologies have been demonstrated recently. The Wallops Arc Second Pointer (WASP) system, a precision pointing system for science instruments, has completed three very successful test flights over the past three years. The stair step development of the Super Pressure Balloon (SPB) continued with the development of a mid-range SPB to support one ton of science instrumentation to an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods. An Overview of the various aspects of the NASA Balloon Program will be presented as well as the outlook for the future.

  15. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Illuminated by early-morning sunlight, a quarter-scale model of the Solar-powered, remotely piloted Centurion ultra-high-altitude flying wing demonstrates its abilities during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar

  16. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Framed by wispy contrails left by passing jets high above, a quarter-scale model of the Centurion solar-electric flying wing shows off its graceful lines during a March 1997 test flight at El Mirage Dry Lake in California's Mojave Desert. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate

  17. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Silhouetted under a bright blue sky, a quarter-scale model of the Centurion solar-powered flying wing shows off its long, narrow wing as it flies over the broad expanse of El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del

  18. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With the snow-covered San Gabriel Mountains as a backdrop and a motorcycle-mounted chase crew alongside, a quarter-scale model of the Centurion solar-powered flying wing soars over El Mirage Dry Lake on an early test flight in March 1997. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate

  19. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Silhouetted under a bright blue sky, a quarter-scale model of the Centurion solar-powered flying wing shows off its internal rib structure as it floats over the El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate

  20. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Trailed by a van carrying the remote pilot and observers, a radio-controlled quarter-scale model of the Centurion solar-electric flying wing makes a low pass over El Mirage Dry Lake in Southern California during a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate

  1. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Illuminated by early-morning sunlight, a quarter-scale model of the solar-powered, remotely piloted Centurion ultra-high-altitude flying wing soars over California's Mojave Desert on a March 1997 test flight. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for

  2. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    NASA Technical Reports Server (NTRS)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    The Solar Dynamics Observatory (SDO) is a NASA spacecraft designed to study the Sun. It was launched on February 11, 2010 into a geosynchronous orbit, and uses a suite of attitude sensors and actuators to finely point the spacecraft at the Sun. SDO has three science instruments: the Atmospheric Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment (EVE). SDO uses two High Gain Antennas (HGAs) to send science data to a dedicated ground station in White Sands, New Mexico. In order to meet the science data capture budget, the HGAs must be able to transmit data to the ground for a very large percentage of the time. Each HGA is a dual-axis antenna driven by stepper motors. Both antennas transmit data at all times, but only a single antenna is required in order to meet the transmission rate requirement. For portions of the year, one antenna or the other has an unobstructed view of the White Sands ground station. During other periods, however, the view from both antennas to the Earth is blocked for different portions of the day. During these times of blockage, the two HGAs take turns pointing to White Sands, with the other antenna pointing out to space. The HGAs handover White Sands transmission responsibilities to the unblocked antenna. There are two handover seasons per year, each lasting about 72 days, where the antennas hand off control every twelve hours. The non-tracking antenna slews back to the ground station by following a ground commanded trajectory and arrives approximately 5 minutes before the formerly tracking antenna slews away to point out into space. The SDO Attitude Control System (ACS) runs at 5 Hz, and the HGA Gimbal Control Electronics (GCE) run at 200 Hz. There are 40 opportunities for the gimbals to step each ACS cycle, with a hardware limitation of no more than one step every three GCE cycles. The ACS calculates the desired gimbal motion for tracking the ground station or for slewing

  3. Evolution of the NASA long-duration balloon program

    NASA Technical Reports Server (NTRS)

    Jones, W. Vernon

    1994-01-01

    The development of long-duration ballooning techniques to support flights of 1-2 ton payloads for periods up to 2 weeks, possibly even longer, offers a near-space scientific mission capability with an order of magnitude improvement over traditional balloon flights. This revolution in scientific research ballooning began with the solution of the manufacturing difficulties that plagued the program in the first half of the 1980's, and it has culminated in the early 1990's with three successive circumnavigations of the Antarctic continent in 9 to 14 day flights. A complementary capablity in the Northern hemisphere, which would approximately double the number of flights that could be supported each year, is needed to accommodate the trend for conventional payloads to be modified, or developed, for long-duration flights. Plans are already underway to employ the order-of-magnitude increased flight time for support of multi-flight research programs that will produce results comparable to some space missions. An overview of the current status and near-term plans for ballooning will be presented, along with a discussion of some major science initiatives that have been enabled.

  4. A Survey of Titan Balloon Concepts and Technology Status

    NASA Technical Reports Server (NTRS)

    Hall, Jeffery L.

    2011-01-01

    This paper surveys the options for, and technology status of, balloon vehicles to explore Saturn's moon Titan. A significant amount of Titan balloon concept thinking and technology development has been performed in recent years, particularly following the spectacular results from the descent and landing of the Huygens probe and remote sensing observations by the Cassini spacecraft. There is widespread recognition that a balloon vehicle on the next Titan mission could provide an outstanding and unmatched capability for in situ exploration on a global scale. The rich variety of revealed science targets has combined with a highly favorable Titan flight environment to yield a wide diversity of proposed balloon concepts. The paper presents a conceptual framework for thinking about balloon vehicle design choices and uses it to analyze various Titan options. The result is a list of recommended Titan balloon vehicle concepts that could perform a variety of science missions, along with their projected performance metrics. Recent technology developments for these balloon concepts are discussed to provide context for an assessment of outstanding risk areas and technological maturity. The paper concludes with suggestions for technology investments needed to achieve flight readiness.

  5. Balloon Design Software

    NASA Technical Reports Server (NTRS)

    Farley, Rodger

    2007-01-01

    PlanetaryBalloon Version 5.0 is a software package for the design of meridionally lobed planetary balloons. It operates in a Windows environment, and programming was done in Visual Basic 6. By including the effects of circular lobes with load tapes, skin mass, hoop and meridional stress, and elasticity in the structural elements, a more accurate balloon shape of practical construction can be determined as well as the room-temperature cut pattern for the gore shapes. The computer algorithm is formulated for sizing meridionally lobed balloons for any generalized atmosphere or planet. This also covers zero-pressure, over-pressure, and super-pressure balloons. Low circumferential loads with meridionally reinforced load tapes will produce shapes close to what are known as the "natural shape." The software allows for the design of constant angle, constant radius, or constant hoop stress balloons. It uses the desired payload capacity for given atmospheric conditions and determines the required volume, allowing users to design exactly to their requirements. The formulations are generalized to use any lift gas (or mixture of gases), any atmosphere, or any planet as described by the local acceleration of gravity. PlanetaryBalloon software has a comprehensive user manual that covers features ranging from, but not limited to, buoyancy and super-pressure, convenient design equations, shape formulation, and orthotropic stress/strain.

  6. An Overview of the NASA Sounding Rockets and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Flowers, Bobby J.; Needleman, Harvey C.

    1999-01-01

    The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a combined total of approximately fifty to sixty missions per year in support of the NASA scientific community. These missions are provided in support of investigations sponsored by NASA'S Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program has continued to su,pport the science community by integrating their experiments into the sounding rocket payload and providing the rocket vehicle and launch operations necessary to provide the altitude/time required obtain the science objectives. The sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface, which is physically inaccessible to either balloons or satellites. A new architecture for providing this support has been introduced this year with the establishment of the NASA Sounding Rockets Contract. The Program has continued to introduce improvements into their operations and ground and flight systems. An overview of the NASA Sounding Rockets Program with special emphasis on the new support contract will be presented. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. Long duration balloon (LDB) is a prominent aspect of the program with two campaigns scheduled for this calendar year. Two flights are scheduled in the Northern Hemisphere from Fairbanks, Alaska, in June and two flights are scheduled from McMurdo, Antarctica, in the Southern Hemisphere in December. The comprehensive balloon research and development (R&D) effort has continued with advances being made across the

  7. Overview of the development of the pathfinder ultra long duration balloon system

    NASA Astrophysics Data System (ADS)

    Said, M.; Stuchlik, D.; Corbin, B.

    The Ultra Long Duration Balloon (ULDB) Pathfinder Project is developing a small pumpkin balloon system and new payload support systems to demonstrate a global 100 day duration capability that is scalable to a full scale flight. The proposed 56,600 m3 pumpkin balloon will be capable of supporting a small tracking payload on the order of 20-40 kg, to an altitude of 24 to 33 km. The Pathfinder Test Balloons will provide valuable data in the development of performance models for future ULDB flights. Attempts will be made to design and fabricate the balloons as close as possible to the full scale ULDB in order to maintain conformity and accuracy of the two balloons' performance models. The balloon system will be designed to handle a small global command and telemetry payload also under development. The payload will include a photo-voltaic power system, command and data handling unit, GPS receiver, and IRIDIUM transceiver for global communications. The flight data will include, at a minimum, position (latitude, longitude, and altitude), and time as well as other balloon performance parameters. Although the system will be designed for global launch capability, initial flights will be launched from the proposed full-scale ULDB mission launch locations. The overall project objectives as well as the trade studies for determining the balloon design parameters, performance, system power requirements, data transmission rates, termination options and overall system configuration will be discussed.

  8. Balloon Catheter Prevents Contamination

    NASA Technical Reports Server (NTRS)

    Higginson, Gregory A.; Bouffard, Marc R.; Hoehicke, Beth S.; King, Bradley D.; Peterson, Sandra L.

    1994-01-01

    Balloon catheter similar to that used in such medical procedures as angioplasty and heart surgery protects small orifices against contamination and blockage by chips generated in machining operations. Includes small, inflatable balloon at end of thin, flexible tube. Contains additional features adapting it to anticontamination service: balloon larger to fit wider channel it must block; made of polyurethane (rather than latex), which does not fragment if bursts; material made thicker to resist abrasion better; and kink-resistant axial wire helps catheter negotiate tight bends.

  9. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    NASA Technical Reports Server (NTRS)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    The Solar Dynamics Observatory (SDO), launched in 2010, is a NASA-designed spacecraft built to study the Sun. SDO has tight pointing requirements and instruments that are sensitive to spacecraft jitter. Two High Gain Antennas (HGAs) are used to continuously send science data to a dedicated ground station. Preflight analysis showed that jitter resulting from motion of the HGAs was a cause for concern. Three jitter mitigation techniques were developed and implemented to overcome effects of jitter from different sources. These mitigation techniques include: the random step delay, stagger stepping, and the No Step Request (NSR). During the commissioning phase of the mission, a jitter test was performed onboard the spacecraft, in which various sources of jitter were examined to determine their level of effect on the instruments. During the HGA portion of the test, the jitter amplitudes from the single step of a gimbal were examined, as well as the amplitudes due to the execution of various gimbal rates. The jitter levels were compared with the gimbal jitter allocations for each instrument. The decision was made to consider implementing two of the jitter mitigating techniques on board the spacecraft: stagger stepping and the NSR. Flight data with and without jitter mitigation enabled was examined, and it is shown in this paper that HGA tracking is not negatively impacted with the addition of the jitter mitigation techniques. Additionally, the individual gimbal steps were examined, and it was confirmed that the stagger stepping and NSRs worked as designed. An Image Quality Test was performed to determine the amount of cumulative jitter from the reaction wheels, HGAs, and instruments during various combinations of typical operations. The HGA-induced jitter on the instruments is well within the jitter requirement when the stagger step and NSR mitigation options are enabled.

  10. A solar magnetic and velocity field measurement system for Spacelab 2: The Solar Optical Universal Polarimeter (SOUP)

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore D.; Title, Alan M.

    1992-01-01

    The Solar Optical Universal Polarimeter (SOUP) flew on the shuttle mission Spacelab 2 (STS-51F) in August, 1985, and collected historic solar observations. SOUP is the only solar telescope on either a spacecraft or balloon which has delivered long sequences of diffraction-limited images. These movies led to several discoveries about the solar atmosphere which were published in the scientific journals. After Spacelab 2, reflights were planned on the shuttle Sunlab mission, which was cancelled after the Challenger disaster, and on a balloon flights, which were also cancelled for funding reasons. In the meantime, the instrument was used in a productive program of ground-based observing, which collected excellent scientific data and served as instrument tests. Given here is an overview of the history of the SOUP program, the scientific discoveries, and the instrument design and performance.

  11. NASA Now: Balloon Research

    NASA Video Gallery

    In this NASA Now program, Debbie Fairbrother discusses two types of high-altitude balloons that NASA is using to test scientific instruments and spacecraft. She also talks about the Ideal Gas Law a...

  12. Ballooning Interest in Science.

    ERIC Educational Resources Information Center

    Kim, Hy

    1992-01-01

    Presents an activity in which students construct model hot air balloons to introduce the concepts of convection current, the principles of Charles' gas law, and three-dimensional geometric shapes. Provides construction and launching instructions. (MDH)

  13. The Descending Helium Balloon

    ERIC Educational Resources Information Center

    Helseth, Lars Egil

    2014-01-01

    I describe a simple and fascinating experiment wherein helium leaks out of a rubber balloon, thereby causing it to descend. An estimate of the volumetric leakage rate is made by measuring its rate of descent.

  14. Balloon-based infrared solar occultation measurements of stratospheric O/sub 3/, H/sub 2/O, HNO/sub 3/ and CF/sub 2/Cl(sub 2)

    SciTech Connect

    Weinreb, M.P.; Chang, I.L.

    1987-09-01

    In July 1985 an infrared solar occultation experiment was performed with a balloon-borne, non-scanning, multi-detector grating spectrometer. From the data were retrieved simultaneous mixing ratio profiles of ozone, water vapor, nitric acid, and CFC-12 between 12 and 35 km. The retrieved ozone and water vapor profiles were compared with concurrent in-situ measurements with electrochemical concentration cells (ECCs) and frost-point hygrometers, respectively. The retrieved ozone profile was in good agreement with the correlative data. The retrieved values of water vapor mixing ratio, while close in magnitude to the correlative measurements, differed in their altitude dependence. Although there was no concurrent in-situ data for nitric acid and CFC-12, the retrieved profiles were consistent with measurements in the literature.

  15. Balloon-based infrared solar-occultation measurements of stratospheric O/sub 3/, H/sub 2/O, HNO/sub 3/, and CF/sub 2/Cl/sub 2/. Technical report

    SciTech Connect

    Weinreb, M.P.; Chang, I.L.

    1987-09-01

    In July 1985 the authors performed an infrared solar-occultation experiment with a balloon-borne, non-scanning, multi-detector grating spectrometer. From the data, the authors retrieved simultaneous mixing-ratio profiles of ozone, water vapor, nitric acid, and CF/sub 2/Cl/sub 2/ between 12 and 35 km. The retrieved ozone and water-vapor profiles were compared with concurrent in-situ measurements with electrochemical concentration cells (ECC's) and frost-point hygrometers, respectively. The retrieved-ozone profile was in good agreement with the correlative data. The retrieved values of water-vapor-mixing ratio, while close in magnitude to the correlative measurements, differed in their altitude dependence. Although the authors had no concurrent in-situ data for nitric acid and CF/sub 2/Cl/sub 2/, the retrieved profiles were consistent with measurements in the literature.

  16. A Review of Solar-Powered Aircraft Flight Activity at the Pacific Missile Range Test Facility, Kauai, Hawaii

    NASA Technical Reports Server (NTRS)

    Ehernberger, L. J.; Donohue, Casey; Teets, Edward H., Jr.

    2004-01-01

    A series of solar-powered aircraft have been designed and operated by AeroVironment, Inc. (Monrovia, CA) as a part of National Aeronautics and Space Administration (NASA) objectives to develop energy-efficient high-altitude long-endurance platforms for earth observations and communications applications. Flight operations have been conducted at NASA's Dryden Flight Research Center, Edwards CA and at the U.S. Navy Pacific Missile Range Facility (PMRF) at Barking Sands, Kauai, HI. These aircraft flown at PMRF are named Pathfinder , Pathfinder Plus and Helios . Sizes of these three aircraft range from 560 lb with a 99-ft wingspan to 2300 lb with a 247-ft wingspan. Available payload capacity reaches approximately 200 lb. Pathfinder uses six engines and propellers: Pathfinder Plus 8; and Helios 14. The 2003 Helios fuel cell configurations used 10 engines and propellers. The PMRF was selected as a base of operations because if offers optimal summertime solar exposure, low prevailing wind-speeds on the runway, modest upper-air wind-speeds and the availability of suitable airspace. Between 1997 and 2001, successive altitude records of 71,530 ft, 80,200 ft, and 96,863 ft were established. Flight durations extended to 18 hours.

  17. Balloon aortic valvuloplasty.

    PubMed

    Wang, A; Harrison, J K; Bashore, T M

    1997-01-01

    Balloon aortic valvuloplasty is a percutaneous, therapeutic option for patients with severe aortic stenosis, yet the effectiveness of this procedure is dependent on the morphology of the stenotic aortic valve and the respective mechanism of dilation. In younger patients with congenital aortic stenosis, acute and intermediate-term results are good. However, in adult patients, in whom degenerative aortic stenosis is the most common cause, the acute clinical and hemodynamic benefits of balloon aortic valvuloplasty are not lasting, as restenosis occurs in most patients within 6 months. Sympatomatic relief for adults undergoing balloon aortic valvuloplasty is only apparent in patients with normal left ventricular function, who generally are also candidates for aortic valve replacement. Furthermore, the long-term survival for adults after balloon aortic valvuloplasty is similar to the natural history of untreated severe aortic stenosis. In this article, the mechanism of balloon aortic valvuloplasty, as well as its clinical and hemodynamic effects, are reviewed in the context of the different morphological types of aortic stenosis. In addition, two large registries of adult patients treated with balloon aortic valvuloplasty provide important information regarding the acute and long-term results of this procedure and are reviewed.

  18. High Energy Antimatter Telescope (HEAT) Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Beatty, J. J.

    1995-01-01

    This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.

  19. Balloon-borne video cassette recorders for digital data storage

    NASA Technical Reports Server (NTRS)

    Althouse, W. E.; Cook, W. R.

    1985-01-01

    A high-speed, high-capacity digital data storage system has been developed for a new balloon-borne gamma-ray telescope. The system incorporates sophisticated, yet easy to use and economical consumer products: the portable video cassette recorder (VCR) and a relatively newer item - the digital audio processor. The in-flight recording system employs eight VCRs and will provide a continuous data storage rate of 1.4 megabits/sec throughout a 40 hour balloon flight. Data storage capacity is 25 gigabytes and power consumption is only 10 watts.

  20. Balloon-borne video cassette recorders for digital data storage

    NASA Technical Reports Server (NTRS)

    Althouse, W. E.; Cook, W. R.

    1985-01-01

    A high speed, high capacity digital data storage system was developed for a new balloon-borne gamma-ray telescope. The system incorporates economical consumer products: the portable video cassette recorder (VCR) and a relatively newer item - the digital audio processor. The in-flight recording system employs eight VCRs and will provide a continuous data storage rate of 1.4 megabits/sec throughout a 40 hour balloon flight. Data storage capacity is 25 gigabytes and power consumption is only 10 watts.

  1. Balloon measurements of the far-infrared background radiation.

    NASA Technical Reports Server (NTRS)

    Muehlner, D.; Weiss, R.

    1973-01-01

    Description of a balloon-borne radiometer designed to make direct measurements of the background radiation in the spectral range from 1 to 20 cm, and evaluation of the results of two balloon flights performed with the aid of this radiometer. Measurements in five different passbands in the spectral region below 20 per cm were made with a liquid-helium-cooled radiometer in two flights at approximately 40-km altitude. The results obtained are found to be consistent with a 2.7 K thermal radiation background. In addition, an atmospheric radiation of certain magnitude is found to dominate the region above 11 per cm.

  2. New Deflation Systems for Zero Pressure Balloons

    NASA Astrophysics Data System (ADS)

    Huens, Thomas

    Balloon flights in populated countries like France are seriously constrained in terms of safety. Flight window opportunities have been reduced in order to comply a minimal damage probability (material and human damages). Although we could use different launch sites, the enormous and useful data base collected by Scientists during 40 years in France encourages to keep the sites of Aire sur l'Adour and Gap operational. Developments were initiated in order to cope with these problems and improve the landing precision. More precisely for the last four years, the CNES balloon engineers have focused on developing a new deflation system and a new parachute system for zero pressure balloons (ZPB), in order to reduce the size of the impact uncertainty zone. We have observed that the envelope deflation phase has an important impact on the envelope drag coefficient. Residual helium inside the envelope can maintain a residual lift reducing the expected descent rate and generating a dispersion in the descent trajectory from flight to flight that increase the size of the potential landing zone. As for consequence, the deflation system installed on the new envelope shall allow a quick and efficient evacuation of the helium. The final shape of the envelope in descent with a drag coefficient is about constant, is quickly reached and the portion of residual helium is negligible. The way to improve the deflation system's efficiency -with a negligible impact on the envelope relia-bility -is a true challenge. It requires a significant amount of ground validation before the first flight test. Due to the difficulty of simulating the stratospheric environment in a volume large enough to test a ZPB, the ground validation is based on a group of tests, defined to be as close as possible to the real conditions. To reach this goal, we use (a)low speed little size tear tests in universal testing machine, at cold and ambient temperature; (b)high speed medium size tear tests, at ambient

  3. Stratospheric constituent measurements using UV solar occultation technique

    NASA Technical Reports Server (NTRS)

    Murcray, D. G.; Gillis, J.; Goldman, A.; Kosters, J. J.

    1981-01-01

    The photochemistry of the stratospheric ozone layer was studied as the result of predictions that trace amounts of pollutants can significantly affect the layer. One of the key species in the determination of the effects of these pollutants is the OH radical. A balloon flight was made to determine whether data on atmospheric OH could be obtained from lower resolution solar spectra obtained from high altitude during sunset.

  4. The issue of development and validation of a planetary balloon system

    NASA Astrophysics Data System (ADS)

    Vargas, André

    When we talk of planetary balloon system, everyone think about the free flight of the balloon in the atmosphere of the planet, following the winds and currently being achieving its scientific mission. But before the scientific mission flight, a subsystem, in the descent module, is manda-tory for the set up of the balloon in flight conditions from a folded configuration used during the interplanetary transfer. To develop such a system, the first step is to find or produce material that will enable the manufacture of a balloon capable of withstanding the environment of the planet, and which fulfills the requirements of the scientific mission in terms of flight profile, payload mass and flight duration. The second step consists in the development and validation of the subsystem, in the descent module, which permits the deployment of the aerostat and the inflation of the balloon, during the entry in the atmosphere of the planet, after main parachute stabilization and, of course, before landing on the surface of the planet. An important issue is relative to the strategy for the validations of deployment inflation phase, testing on the Earth, whose characteristics, as atmosphere (pressure temperature profile, composition, heat-ing fluxes) and gravity, are usually quite unlike that the planet. For the system validation, it is necessary to develop models (thermodynamic for flight phase and mechanics kinematic for deployment inflation phase). After the definition of similarity criteria between the planet and the Earth, these models will permit to transpose the test results on Earth to predict and to validate the behavior of the balloon system on the planet. The purpose of this paper is to pro-vide a brief overview of the issues relative to the development and the validation of a planetary balloon system. We have to deal with a lot of technical challenges as long duration folding of the balloon in its container, aerostat deployment and balloon inflation, and separations

  5. Development of a super-pressure balloon with a diamond-shaped net

    NASA Astrophysics Data System (ADS)

    Saito, Yoshitaka; Iijima, Issei; Matsuzaka, Yukihiko; Tanaka, Shigeki; Matsushima, Kiyoho; Kajiwara, Koji; Shimadu, Shigeyuki

    2012-07-01

    The essential mechanism for the lobed-pumpkin shaped super-pressure balloon to withstand against the high pressure is that the local curvature of the balloon film is kept small. Recently, it was found that the small local curvature can also be obtained, if the balloon is covered by a diamond-shaped net with vertically elongated shape. In addition, this method has following merits; 1. the weight of the balloon can be reduced by using a weak but light film and a fine mesh net, 2. the deployment problem known for the lobed-pumpkin shaped balloon can be solved due to its lack of additional films, 3. the capacity of resist pressure is not spoiled severely due to the manufacturing error of the net, since the local distortion of the mesh size does not affect the global balloon shape. First, a 3-m balloon using a polyethylene film and a net using Kevlar ropes was made for the confirmation of this method. The inflation test showed the expected high burst pressure. Then, a 6-m and a 12-m balloons using a polyethylene film and a net using the Vectran were developed and checked their stable deployment through the ground inflation tests. The flight test of a 3,000 m^3 balloon will be performed in this spring. In this paper, the method to cover a balloon with a diamond-shaped net will be explained and the results of ground and the flight tests will be reported.

  6. The Spectrometer/Telescope for Imaging X-rays on Solar Orbiter: Flight design, challenges and trade-offs

    NASA Astrophysics Data System (ADS)

    Krucker, S.; Bednarzik, M.; Grimm, O.; Hurford, G. J.; Limousin, O.; Meuris, A.; Orleański, P.; Seweryn, K.; Skup, K. R.

    2016-07-01

    STIX is the X-ray spectral imaging instrument on-board the Solar Orbiter space mission of the European Space Agency, and together with nine other instruments will address questions of the interaction between the Sun and the heliosphere. STIX will study the properties of thermal and accelerated electrons near the Sun through their Bremsstrahlung X-ray emission, addressing in particular the emission from flaring regions on the Sun. The design phase of STIX has been concluded. This paper reports the final flight design of the instrument, focusing on design challenges that were faced recently and how they were addressed.

  7. Science at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2012-01-01

    The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.

  8. Absolute Solar EUV Irradiance Measurements Obtained on NASA Sounding Rocket Flights 36.286 (23 June 2012) and 36.263 (24 July 2012) For Comparison with Solar EUV Irradiance Measurements from the EUV Spectrophotometer (ESP) Onboard the SDO/EVE and with the Solar EUV Monitor (SEM) Onboard the SOHO/CELIAS

    NASA Astrophysics Data System (ADS)

    Didkovsky, L. V.; Wieman, S. R.; Judge, D. L.; Woods, T. N.

    2012-12-01

    Two sounding rocket flights, SDO/EVE under-flight NASA 36.286 (23 June 2012) and Degradation-Free solar Spectrometers NASA 36.263 (24 July 2012) provided high-quality EUV data for comparison with the SDO/EVE EUV Spectrophotometer (ESP) and SOHO/CELIAS/SEM Solar Irradiance Measurements. These two rocket flights allowed us to compare flight and rocket solar EUV irradiances during relatively quiet solar conditions (36.286) and during a C4 solar flare (36.263). The results of these comparisons are presented and discussed using two types of solar reference spectra, a time independent SOLERS-22 spectrum built for moderate solar activity, and currently available EVE spectra representing spectral variability of the dynamical Sun.

  9. Long Duration Balloon Charge Controller Stack Integration

    NASA Astrophysics Data System (ADS)

    Clifford, Kyle

    NASA and the Columbia Scientific Balloon Facility are interested in updating the design of the charge controller on their long duration balloon (LDB) in order to enable the charge controllers to be directly interfaced via RS232 serial communication by a ground testing computers and the balloon's flight computer without the need to have an external electronics stack. The design involves creating a board that will interface with the existing boards in the charge controller in order to receive telemetry from and send commands to those boards, and interface with a computer through serial communication. The inputs to the board are digital status inputs indicating things like whether the photovoltaic panels are connected or disconnected; and analog inputs with information such as the battery voltage and temperature. The outputs of the board are 100ms duration command pulses that will switch relays that do things like connect the photovoltaic panels. The main component of this design is a PIC microcontroller which translates the outputs of the existing charge controller into serial data when interrogated by a ground testing or flight computer. Other components involved in the design are an AD7888 12-bit analog to digital converter, a MAX3232 serial transceiver, various other ICs, capacitors, resistors, and connectors.

  10. Report on the Brazilian Scientific Balloon Program

    NASA Astrophysics Data System (ADS)

    Braga, Joao

    2016-07-01

    We report on the recent scientific ballooning activities in Brazil, and present the plans for the next few years. Recent technological developments, especially on telecommunications and gondola attitude control systems will be reported. We also present the recent progress achieved in the development of the protoMIRAX balloon experiment. protoMIRAX is a balloon-borne hard X-ray imaging telescope under development at INPE as a pathfinder for the MIRAX (Monitor e Imageador de Raios X) satellite mission. The experiment consists essentially in a hard X-ray coded-aperture imager to operate in the 20-200 keV energy range. The detector plane is a square array of 196 10mm x 10mm x 2mm CdZnTe (CZT) planar detectors. A collimator defines a fully-coded field-of-view of 20 x 20 degrees, with 7 x 7 degrees of full sensitivity and an angular resolution of 1.7 degrees. We describe the final stages of development and testing of the front-end electronics, with charge preamplifiers, LNAs, shapers and Wilkinson-type ADCs customized for these detectors. We also show detailed Monte Carlo simulations of the flight background and the expected flight images of bright sources performed with the use of GEANT4.

  11. Flight programs and X-ray optics development at MSFC

    NASA Astrophysics Data System (ADS)

    Gubarev, M.; Ramsey, B.; O'Dell, S.; Elsner, R.; Kilaru, K.; Atkins, C.; Swartz, D.; Gaskin, J.; Weisskopf, M.

    The X-ray astronomy group at the Marshall Space Flight Center (MSFC) is developing electroformed nickel/cobalt x-ray optics for suborbital and orbital experiments. Suborbital instruments include the Focusing X-ray Solar Imager (FOXSI) and Micro-X sounding rocket experiments and the HEROES balloon payload. Our current orbital program is the fabrication of mirror modules for the Astronomical Roentgen Telescope (ART) to be launched on board the Russian-German Spectrum Roentgen Gamma Mission (SRG). A second component of our work is the development of fabrication techniques and optical metrology to improve the angular resolution of thin-shell optics to the arcsecond-level.

  12. Forward Technology Solar Cell Experiment (FTSCE) for MISSE-5 Verified and Readied for Flight on STS-114

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip P.; Krasowski, Michael J.; Greer, Lawrence C.; Flatico, Joseph M.

    2005-01-01

    The Forward Technology Solar Cell Experiment (FTSCE) is a space solar cell experiment built as part of the Fifth Materials on the International Space Station Experiment (MISSE-5): Data Acquisition and Control Hardware and Software. It represents a collaborative effort between the NASA Glenn Research Center, the Naval Research Laboratory, and the U.S. Naval Academy. The purpose of this experiment is to place current and future solar cell technologies on orbit where they will be characterized and validated. This is in response to recent on-orbit and ground test results that raised concerns about the in-space survivability of new solar cell technologies and about current ground test methodology. The various components of the FTSCE are assembled into a passive experiment container--a 2- by 2- by 4-in. folding metal container that will be attached by an astronaut to the outer structure of the International Space Station. Data collected by the FTSCE will be relayed to the ground through a transmitter assembled by the U.S. Naval Academy. Data-acquisition electronics and software were designed to be tolerant of the thermal and radiation effects expected on orbit. The experiment has been verified and readied for flight on STS-114.

  13. LISA: a java API for performing simulations of trajectories for all types of balloons

    NASA Astrophysics Data System (ADS)

    Conessa, Huguette

    2016-07-01

    LISA (LIbrarie de Simulation pour les Aerostats) is a java API for performing simulations of trajectories for all types of balloons (Zero Pressure Balloons, Pressurized Balloons, Infrared Montgolfier), and for all phases of flight (ascent, ceiling, descent). This library has for goals to establish a reliable repository of Balloons flight physics models, to capitalize developments and control models used in different tools. It is already used for flight physics study software in CNES, to understand and reproduce the behavior of balloons, observed during real flights. It will be used operationally for the ground segment of the STRATEOLE2 mission. It was developed with quality rules of "critical software." It is based on fundamental generic concepts, linking the simulation state variables to interchangeable calculation models. Each LISA model defines how to calculate a consistent set of state variables combining validity checks. To perform a simulation for a type of balloon and a phase of flight, it is necessary to select or create a macro-model that is to say, a consistent set of models to choose from among those offered by LISA, defining the behavior of the environment and the balloon. The purpose of this presentation is to introduce the main concepts of LISA, and the new perspectives offered by this library.

  14. Stability of lobed balloons

    NASA Astrophysics Data System (ADS)

    Pagitz, M.; Xu, Y.; Pellegrino, S.

    This paper presents a computational study of the stability of simple lobed balloon structures. The particular structure that is investigated is a stack of pumpkin-shaped envelopes with a common axis of symmetry, and hence forming a kind of lobed cylinder. The number of the pumpkin envelopes is one of the variables that is investigated; a number of shape imperfections are also considered. This lobed cylinder is an axi-symmetric, idealised version of the lobed pumpkin balloons that have occasionally deployed into anomalous, clefted configurations. By studying in detail the behaviour of lobed cylinder we are able to draw some preliminary conclusions about general features of the behaviour of lobed pumpkin balloons.

  15. Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Wefel, John P.; Guzik, T. Gregory

    2001-01-01

    During grant NAG5-5064, Louisiana State University (LSU) led the ATIC team in the development, construction, testing, accelerator validation, pre-deployment integration and flight operations of the Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment. This involved interfacing among the ATIC collaborators (UMD, NRL/MSFC, SU, MSU, WI, SNU) to develop a new balloon payload based upon a fully active calorimeter, a carbon target, a scintillator strip hodoscope and a pixilated silicon solid state detector for a detailed investigation of the very high energy cosmic rays to energies beyond 10(exp 14) eV/nucleus. It is in this very high energy region that theory predicts changes in composition and energy spectra related to the Supernova Remnant Acceleration model for cosmic rays below the "knee" in the all-particle spectrum. This report provides a documentation list, details the anticipated ATIC science return, describes the particle detection principles on which the experiment is based, summarizes the simulation results for the system, describes the validation work at the CERN SPS accelerator and details the balloon flight configuration. The ATIC experiment had a very successful LDB flight from McMurdo, Antarctica in 12/00 - 1/01. The instrument performed well for the entire 15 days. Preliminary data analysis shows acceptable charge resolution and an all-particle power law energy deposition distribution not inconsistent with previous measurements. Detailed analysis is underway and will result in new data on the cosmic ray charge and energy spectra in the GeV - TeV energy range. ATIC is currently being refurbished in anticipation of another LDB flight in the 2002-03 period.

  16. BARREL Team Launching 20 Balloons

    NASA Video Gallery

    A movie made by the NASA-Funded Balloon Array for Radiation belt Relativistic Electron Losses, or BARREL, team on their work launching 20 balloons in Antarctica during the Dec. 2013/Jan. 2014 campa...

  17. Launching Garbage-Bag Balloons.

    ERIC Educational Resources Information Center

    Kim, Hy

    1997-01-01

    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  18. Daytime Aspect Camera for Balloon Altitudes

    NASA Technical Reports Server (NTRS)

    Dietz, Kurt L.; Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Ghosh, Kajal K.; Swift, Wesley R.

    2002-01-01

    We have designed, built, and flight-tested a new star camera for daytime guiding of pointed balloon-borne experiments at altitudes around 40 km. The camera and lens are commercially available, off-the-shelf components, but require a custom-built baffle to reduce stray light, especially near the sunlit limb of the balloon. This new camera, which operates in the 600- to 1000-nm region of the spectrum, successfully provides daytime aspect information of approx. 10 arcsec resolution for two distinct star fields near the galactic plane. The detected scattered-light backgrounds show good agreement with the Air Force MODTRAN models used to design the camera, but the daytime stellar magnitude limit was lower than expected due to longitudinal chromatic aberration in the lens. Replacing the commercial lens with a custom-built lens should allow the system to track stars in any arbitrary area of the sky during the daytime.

  19. A Daytime Aspect Camera for Balloon Altitudes

    NASA Technical Reports Server (NTRS)

    Dietz, Kurt L.; Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Ghosh, Kajal K.; Swift, Wesley R.; Six, N. Frank (Technical Monitor)

    2001-01-01

    We have designed, built, and flight-tested a new star camera for daytime guiding of pointed balloon-borne experiments at altitudes around 40km. The camera and lens are commercially available, off-the-shelf components, but require a custom-built baffle to reduce stray light, especially near the sunlit limb of the balloon. This new camera, which operates in the 600-1000 nm region of the spectrum, successfully provided daytime aspect information of approximately 10 arcsecond resolution for two distinct star fields near the galactic plane. The detected scattered-light backgrounds show good agreement with the Air Force MODTRAN models, but the daytime stellar magnitude limit was lower than expected due to dispersion of red light by the lens. Replacing the commercial lens with a custom-built lens should allow the system to track stars in any arbitrary area of the sky during the daytime.

  20. Microgravity experiment system utilizing a balloon

    NASA Astrophysics Data System (ADS)

    Namiki, M.; Ohta, S.; Yamagami, T.; Koma, Y.; Akiyama, H.; Hirosawa, H.; Nishimura, J.

    A system for microgravity experiments by using a stratospheric balloon has been planned and developed in ISAS since 1978. A rocket-shaped chamber mounting the experiment apparatus is released from the balloon around 30 km altitude. The microgravity duration is from the release to opening of parachute, controlled by an on-board sequential timer. Test flights were performed in 1980 and in 1981. In September 1983 the first scientific experiment, observing behaviors and brain activities of fishes in the microgravity circumstance, have been successfully carried out. The chamber is specially equipped with movie cameras and subtransmitters, and its release altitude is about 32 km. The microgravity observed inside the chamber is less than 2.9 × 10-3 G during 10 sec. Engineering aspects of the system used in the 1983 experiment are presented.

  1. Balloon borne Infrared Surveys

    NASA Astrophysics Data System (ADS)

    Lubin, Philip M.

    2015-08-01

    We report on modeling of a balloon borne mission to survey the 1-5 micron region with sensitivity close to the zodiacal light limits in portions of this band. Such a survey is compelling for numerous science programs and is complimentary to the upcoming Euclid, WFIRST and other orbital missions. Balloons borne missions offer much lower cost access and rapid technological implementation but with much less exposure time and increased backgrounds. For some science missions the complimentary nature of these is extremely useful. .

  2. The University of Alberta High Altitude Balloon Program

    NASA Astrophysics Data System (ADS)

    Johnson, W.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Mann, I. R.; Mazzino, L.; Rae, J.; University of Alberta High Altitude Balloon Team

    2011-12-01

    The University of Alberta High Altitude Balloon (UA-HAB) program is a one and half year program sponsored by the Canadian Space Agency (CSA) that offers hands on experience for undergraduate and graduate students in the design, build, test and flight of an experimental payload on a high altitude balloon platform. Utilising low cost weather balloon platforms, and through utilisation of the CSA David Florida Laboratory for thermal-vacuum tests , in advance of the final flight of the payload on a NASA high altitude balloon platform. Collectively the program provided unique opportunities for students to experience mission phases which parallel those of a space satellite mission. The program has facilitated several weather balloon missions, which additionally provide educational opportunities for university students and staff, as well as outreach opportunities among junior and senior high school students. Weather balloon missions provide a cheap and quick alternative to suborbital missions; they can be used to test components for more expensive missions, as well as to host student based projects from different disciplines such as Earth and Atmospheric Sciences (EAS), Physics, and Engineering. In addition to extensive skills development, the program aims to promote recruitment of graduate and undergraduate students into careers in space science and engineering. Results from the UA-HAB program and the flight of the UA-HAB shielded Gieger counter payload for cosmic ray and space radiation studies will be presented. Lessons learned from developing and maintaining a weather balloon program will also be discussed. This project is undertaken in partnership with the High Altitude Student Platform, organized by Louisiana State University and the Louisiana Space Consortium (LaSpace), and sponsored by NASA, with the financial support of the Canadian Space Agency.

  3. High resolution hard X-ray spectra of solar and cosmic sources. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.

    1984-01-01

    High resolution hard X-ray observations of a large solar flare and the Crab Nebula were obtained during balloon flights using an array of cooled germanium planar detectors. In addition, high time resolution high sensitivity measurements were obtained with a 300 square cm NaI/CsI phoswich scintillator. The Crab spectrum from both flights was searched without finding evidence of line emission below 200 keV. In particular, for the 73 keV line previously reported a 3 sigma upper limit for a narrow (1 keV FWHM) line .0019 and .0014 ph square cm/sec for the 1979 and 1980 flights, respectively was obtained.

  4. Near Space Lab-Rat Experimentation using Stratospheric Balloon

    NASA Astrophysics Data System (ADS)

    Buduru, Suneel Kumar; Reddy Vizapur, Anmi; Rao Tanneeru, Venkateswara; Trivedi, Dharmesh; Devarajan, Anand; Pandit Manikrao Kulkarni, MR..; Ojha, Devendra; Korra, Sakram; Neerudu, Nagendra; Seng, Lim; Godi, Stalin Peter

    2016-07-01

    First ever balloon borne lab-rat experiment up to near space stratospheric altitude levels carried out at TIFR Balloon Facility, Hydeabad using zero pressure balloons for the purpose of validating the life support system. A series of two balloon experiments conducted under joint collaboration with IN.Genius, Singapore in the year 2015. In these experiments, three lab-rats sent to stratosphere in a pressurized capsule designed to reach an altitude of 30 km by keeping constant pressure, temperature and maintained at a precise rate of oxygen supply inside the capsule. The first experiment conducted on 1 ^{st} February, 2015 with a total suspended weight of 225 kg. During the balloon ascent stage at 18 km altitude, sensors inside the capsule reported drastic drop in internal pressure while oxygen and temperatures maintained at correct levels resulted in premature fligt termination at 20.1 km. All the three lab-rats recovered without life due to the collapse of their lungs caused by the depressurization inside the capsule. The second experiment conducted on 14th March, 2015 using a newly developed capsule with rectification of depressurization fault by using improved sealing gaskets and hermitically sealed connectors for sending lab-rats again to stratosphere comprising a total suspended load of 122.3 kg. The balloon flight was terminated after reaching 29.5 km in 110 minutes and succesfully recovered all the three lab-rats alive. This paper focuses on lessons learnt of the development of the life support system as an integral pressurized vessel, flight control instrumentation, flight simulation tests using thermo-vaccum chamber with pre-flight operations.

  5. Solution for Direct Solar Impingement Problem on Landsat-7 ETM+ Cooler Door During Cooler Outgas in Flight

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    1999-01-01

    There was a thermal anomaly of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) radiative cooler cold stage during the cooler outgas phase in flight. With the cooler door in the outgas position and the outgas heaters enabled, the cold stage temperature increased to a maximum of 323 K when the spacecraft was in the sunlight, which was warmer than the 316.3 K upper set point of the outgas heater controller on the cold stage. Also, the outgas heater cycled off when the cold stage was warming up to 323 K. A corrective action was taken before the attitude of the spacecraft was changed during the first week in flight. One orbit before the attitude was changed, the outgas heaters were disabled to cool off the cold stage. The cold stage temperature increase was strongly dependent on the spacecraft roll and yaw. It provided evidence that direct solar radiation entered the gap between the cooler door and cooler shroud. There was a concern that the direct solar radiation could cause polymerization of hydrocarbons, which could contaminate the cooler and lead to a thermal short. After outgas with the cooler door in the outgas position for seven days, the cooler door was changed to the fully open position. With the cooler door fully open, the maximum cold stage temperature was 316.3 K when the spacecraft was in the sunlight, and the duty cycle of the outgas heater in the eclipse was the same as that in the sunlight. It provided more evidence that direct solar radiation had entered the gap between the cooler door and cooler shroud. Cooler outgas continued for seven more days, with the cooler door fully open. The corrective actions had prevented overheating of the cold stage and cold focal plane array (CFPA), which could damage these two components. They also minimized the risk of contamination on the cold stage, which could lead to a thermal short.

  6. Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System (Vps)

    NASA Technical Reports Server (NTRS)

    Marz, Bryan E.; Ash, Robert L.

    1996-01-01

    This document provides a summary of the launch and post-launch activities of Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System, V(ps). It is a comprehensive overview covering launch activities, post-launch activities, experimental results, and future flight recommendations.

  7. Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)

    NASA Technical Reports Server (NTRS)

    Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.

    1984-01-01

    Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.

  8. The NRC Research Associateship Program has Greatly Enhanced the Solar Research at Marshall Space Flight Center During the Last Quarter Century

    NASA Technical Reports Server (NTRS)

    Gary, G. A.

    2003-01-01

    Under the educational Resident Research Associateships (RRA) program, NASA Headquarters funds post-doctoral research scientists through a contract with the National Research Council (NRC). This short article reviews the important influence that the RRAs have had on solar research at NASA s Marshall Space Flight Center (MSFC). Through the RRA program the National Research Council under the National Academy of Sciences has provided the Marshall Space Flight Center s Solar Physics Group with 29 post-doctorial research associateships since 1975. This starting date corresponds with the increased research activity in solar physics at MSFC. A number of MSFC scientists had been working on and supporting NASA s Skylab Mission in operation from May 1973 until February 1974. This scientific effort included the development MSFC s X-ray telescope SO56 and the development of the United States first full-vector magnetograph. Numerous engineers and scientists at MSFC supported the development and operation of the cluster of solar telescopes on the Apollo Telescope Mount (ATM), a principal part of the Skylab orbiting workshop. With the enormous volume of new and exciting solar data of the solar corona, MSFC dedicated a group of scientists to analyze these data and develop new solar instruments and programs. With this new initiative, came the world- renowned solar prominence expert, Dr. Einar Tandberg-Hanssen, from the High Altitude Observatory in Boulder, Colorado and the support of the first two RRAs in support of solar physics research.

  9. Balloon occlusion aortography.

    PubMed

    Ino, T; Shimazaki, S; Nishimoto, K; Akimoto, K; Iwahara, M; Yabuta, K; Watanabe, M; Tanaka, A; Hosoda, Y

    1991-02-01

    We review the validity of balloon occlusion aortography (BOA) on the basis of our personal experience with 18 patients with congenital heart disease (mean weight 4.55 g, including 8 neonates). Four of the 18 patients underwent aortic arch angiography using balloon occlusion of the descending aorta. Pulmonary angiography was also performed in 9 patients via a patent ductus arteriosus and in 3 patients via a Blalock-Taussig shunt. The remaining 2 patients underwent coronary arteriography by balloon occlusion of the ascending aorta. The information obtained was satisfactory in 17 of the 18 patients. However, in one patient with a double-outlet right ventricle and pulmonary stenosis, the pulmonary arteries were not clearly visualized because of dominant antegrade flow from the right ventricle. BOA is a safe and useful procedure which can be used to image the aortic arch, pulmonary artery, and coronary arteries in infants with congenital heart diseases. In children over 3 years of age, however, the balloon may not be able to occlude the appropriate site of the aorta, so selective angiography is required to obtain precise information.

  10. Comments on ideal ballooning

    SciTech Connect

    Dagazian, R.Y.; Paris, R.B.

    1982-01-01

    Ideal ballooning modes are investigated for the case of plane magnetized slab geometry. Toroidal effects are simulated by a gravitational acceleration periodically varying along magnetic field lines. High shear is shown to be very effective in stabilizing these modes even when field line curvature is most unfavorable to their stability.

  11. Retroperitoneoscopy: the balloon technique.

    PubMed

    Gaur, D D

    1994-07-01

    Retroperitoneoscopy was performed in 101 patients using the author's recently described balloon technique. Various urological procedures, were undertaken including renoscopy and renal biopsy, para-aortic lymph node biopsy, varicocelectomy, ureterolithotomy, pyelolithotomy, pyeloplasty, nephrolithotomy, nephrectomy, decortication of renal cyst, adrenalectomy, pelvic lymphadenectomy and ligation of deep penile veins.

  12. Status report on the activities of National Balloon Facility at Hyderabad

    NASA Astrophysics Data System (ADS)

    Shankarnarayan, Sreenivasan; S, Sreenivasan; Shankarnarayan, Sreenivasan; Manchanda, R. K.; Subba Rao Jonnalagadda, Venkata; Buduru, Suneelkumar

    National balloon facility at Hyderabad has been mandated to provide launch support for Indian and International scientific balloon experiments and also perform the necessary research and development in the design and fabrication of plastic balloons. In the last 4 years, since our last report, NBF has launched many successful balloon flights for the astronomy payloads and a large number of high altitude GPS Sonde flights at different places in the country. We have also continued our efforts on qualification of raw materials for zero-failure performance of our balloons and major focus on upgrading of various facilities and load-line instrumentation for launching from remote sites. We foresee a surge of balloon based experimental activity for in-situ measurements in atmospheric sciences and concept validation payloads for future space based instruments. A new centre for research in Environmental Sciences and Payload Engineering (ESPE) has also been set up at the National Balloon Facility campus to develop and conduct research in various aspects of Environmental sciences in collaboration with other groups, with a specific goal to identify, development of advanced technologies leading to an improved understanding of the earth system. The Payload Engineering facility is geared to the Design and Fabrication of Micro and Nano Satellites and will act as Inter -University Centre for payload fabrication. In this paper we present an overview of the present and planned activities in scientific ballooning at National Balloon Facility Hyderabad.

  13. Development of a super-pressure balloon with a diamond-shaped net

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Iijima, I.; Matsuzaka, Y.; Matsushima, K.; Tanaka, S.; Kajiwara, K.; Shimadu, S.

    2014-10-01

    The essential reason of the lobed-pumpkin shaped super-pressure balloon to withstand against the high pressure is that the local curvature of the balloon film is kept small. Recently, it has been found that the small local curvature can also be obtained if the balloon is covered by a diamond-shaped net with a vertically elongated shape. The development of the super-pressure balloon using this method was started from a 3-m balloon with a polyethylene film covered by a net using Kevlar ropes. The ground inflation test showed the expected high burst pressure. Then, a 6-m and a 12-m balloon using a polyethylene film and a net using the Vectran were developed and stable deployment was checked through the ground inflation tests. The flight test of a 3000 m3 balloon was performed in 2013 and shown to resist a pressure of at least 400 Pa. In the future, after testing a new design to relax a possible stress concentration around the polar area, test flights of scaled balloons will be performed gradually enlarging their size. The goal is to launch a 300,000 m3 super-pressure balloon.

  14. Recent Controlled Meteorological Balloon experiments in Queen Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Hole, L. R.; Voss, P. B.; Vihma, T. P.

    2013-12-01

    Controlled Meteorological (CMET) balloons are unique in that their altitude can be changed at any time during flight. They are remotely controlled via the Iridium network and use GPS for positioning. Over the past seven years, they have been operated at altitudes from sea-level to six kilometers and have flown for periods as long as five days. Campaigns have been carried out from the Amazon via Mexico City to polar regions. CMET balloons can perform repeated soundings in order to probe evolving thermal and chemical structure, measure wind shear, and track atmospheric layers. Typical ascent/descent rate is 1 m/s and the data sampling rate is 10 sec. The standard CMET balloon consists of zero-pressure balloon (~300-500 liters at sea level) which itself contains a much smaller (~100 liter) super-pressure balloon. Transferring helium between the super-pressure balloon and the zero-pressure balloon regulates the volume (and density) of the system, leading to controlled ascent and descent. Due to the rarity of meteorological observations from the Antarctic, especially from inland and over the sea, CMET balloons have potential to provide strongly needed data for evaluation of numerical weather prediction and climate models. Here, we present data from a CMET campaign carried out at the Finnish Aboa station in Antarctica (73° 03' S, 13° 25' W) in January 2013. The campaign was unique in that three CMET balloons were shipped to the station and launched by the local team. After the launch, they were controlled by scientists located in MA, USA and Norway. One balloon, Bravo, cruised for more than 100 hours over the coastal slopes of Queen Maud Land and nearby sea ice with a total trajectory length of over 3000 km (Fig. 1). It also passed nearby the UK Halley station. The altitude was generally kept at about 3000-3500 masl, but 8 controlled soundings down to 400-500 masl were carried out. The balloon data were compared with the Weather Research and Forecasting model (WRF

  15. THERMTRAJ: A FORTRAN program to compute the trajectory and gas film temperatures of zero pressure balloons

    NASA Technical Reports Server (NTRS)

    Horn, W. J.; Carlson, L. A.

    1983-01-01

    A FORTRAN computer program called THERMTRAJ is presented which can be used to compute the trajectory of high altitude scientific zero pressure balloons from launch through all subsequent phases of the balloon flight. In addition, balloon gas and film temperatures can be computed at every point of the flight. The program has the ability to account for ballasting, changes in cloud cover, variable atmospheric temperature profiles, and both unconditional valving and scheduled valving of the balloon gas. The program was verified for an extensive range of balloon sizes (from 0.5 to 41.47 million cubic feet). Instructions on program usage, listing of the program source deck, input data and printed and plotted output for a verification case are included.

  16. Flow Past a Descending Balloon

    NASA Technical Reports Server (NTRS)

    Baginski, Frank

    2001-01-01

    In this report, we present our findings related to aerodynamic loading of partially inflated balloon shapes. This report will consider aerodynamic loading of partially inflated inextensible natural shape balloons and some relevant problems in potential flow. For the axisymmetric modeling, we modified our Balloon Design Shape Program (BDSP) to handle axisymmetric inextensible ascent shapes with aerodynamic loading. For a few simple examples of two dimensional potential flows, we used the Matlab PDE Toolbox. In addition, we propose a model for aerodynamic loading of strained energy minimizing balloon shapes with lobes. Numerical solutions are presented for partially inflated strained balloon shapes with lobes and no aerodynamic loading.

  17. Recent Progress in Materials Selection and Characterizations for Ultra Long Duration Balloon (ULDB) Missions

    NASA Technical Reports Server (NTRS)

    Said, Magdi A.

    2000-01-01

    The development and characterization of materials suitable for ultra long duration balloon flights has recently been the focus of the materials R&D efforts for the NASA balloon program. Although basic materials selection criteria is similar to those used for conventional balloon missions, additional considerations related to balloon design, fabrication, durability, environmental effects, and cost must also be considered. Among these, the highest impact on material selection is, related to the design shape of the balloon. Work done by independent researchers indicate that for pumpkin type balloons, the load-carrying member is the tendon rather than the structural envelope. This in turn lowers the strength requirements on the envelope material to a large extent. Several materials and material combinations were explored for both design systems. This paper will present the progress made to date in the selection and characterization of these materials and the technical challenges remaining to be overcome,

  18. Venus Balloons using Water Vapor

    NASA Astrophysics Data System (ADS)

    Izutsu, N.; Yajima, N.; Honda, H.; Imamura, T.

    We propose an inflatable balloon using water vapor for the lifting gas, which is liquid in the transportation stage before entry into the high temperature atmosphere. The envelope of the balloon has an outer layer for gas barrier (a high-temperature resistant film) and an inner layer for liquid water keeping. In the descent stage using a parachute, water widely held just inside the balloon envelope can be quickly vaporized by a lot of heat flux from the surrounding high-temperature atmosphere owing to the large surface area of the balloon. As neither gas containers nor heat exchangers are necessary, we can construct a simple, lightweight and small size Venus balloon probe system. Tentative floating altitude is 35 km below the thick clouds in the Venusian atmosphere. Selection of balloon shape and material for balloon envelope are discussed in consideration of the Venusian environment such as high-temperature, high-pressure, and sulfuric acid. Balloon deployment and inflation sequence is numerically simulated. In case of the total floating mass of 10 kg at the altitude of 35 km, the volume and mass of the balloon is 1.5 cubic meters, and 3.5 kg, respectively. The shape of the balloon is chosen to be cylindrical with a small diameter. The mass of li fting gas can be determined as 4.3 kg and the remaining 2.2 kg becomes the payload mass. The mass of the total balloon system is also just 10 kg excluding the entry capsule.

  19. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) That the aircraft conforms with the type design; and (4) That the Administrator received a flight test... emergency egress and the use of parachutes. (e) Except in gliders and manned free balloons, an...

  20. Avionics and Power Management for Low-Cost High-Altitude Balloon Science Platforms

    NASA Technical Reports Server (NTRS)

    Chin, Jeffrey; Roberts, Anthony; McNatt, Jeremiah

    2016-01-01

    High-altitude balloons (HABs) have become popular as educational and scientific platforms for planetary research. This document outlines key components for missions where low cost and rapid development are desired. As an alternative to ground-based vacuum and thermal testing, these systems can be flight tested at comparable costs. Communication, solar, space, and atmospheric sensing experiments often require environments where ground level testing can be challenging or impossible in certain cases. When performing HAB research the ability to monitor the status of the platform and gather data is key for both scientific and recoverability aspects of the mission. A few turnkey platform solutions are outlined that leverage rapidly evolving open-source engineering ecosystems. Rather than building custom components from scratch, these recommendations attempt to maximize simplicity and cost of HAB platforms to make launches more accessible to everyone.

  1. The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: Calibration and Targeted Sources

    NASA Astrophysics Data System (ADS)

    Truch, Matthew; BLAST Collaboration

    2007-12-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 100-hour flight from northern Sweden in June 2005 (BLAST05). As part of the calibration and pointing procedures, several compact sources were mapped, including solar system, Galactic, and extragalactic targets, specifically Pallas, CRL 2688, LDN 1014, IRAS 20126+4104, IRAS 21078+5211, IRAS 21307+5049, IRAS 22134+5834, IRAS 23011+6126, K3-50, W 75N, Mrk 231, NGC 4565, and Arp 220 (this last source being our primary calibrator). The BLAST observations of each compact source are described, flux densities and spectral energy distributions are reported, and these are compared with previous measurements at other wavelengths. BLAST was particularly useful for constraining the slope of the submillimeter continuum.

  2. Overview Of The Scientific Balloon Activity in Sweden 2014-2016

    NASA Astrophysics Data System (ADS)

    Abrahamsson, Mattias; Lockowandt, Christian; Andersson, Kent

    2016-07-01

    SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from Esrange since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times of 4-5 days are very beneficial for astronomical payloads, such as telescopes that need long observation times. Circumpolar flights of more than two weeks are possible if Russian overflight permission exists. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. Since last COSPAR a number of interesting balloon flights have been performed from Esrange. In late 2014 parachute tests for the ExoMars programme was performed by drop-test from balloons. This was followed up on in the summer of 2015 with full end-to-end dynamic stability tests of Earth re-entry capsule shapes. Several balloon

  3. Pinhole Effects on Venus Superpressure Balloon Lifetime

    NASA Technical Reports Server (NTRS)

    Hall, Jeffery L.; Yavrouian, Andre H.

    2013-01-01

    Experimental results are presented for a series of experiments that addressed the effect of small pinhole defects on the potential lifetime of a Venus superpressure balloon. The experiments were performed on samples of a candidate balloon envelope material through which a single small hole of 80 to 300 microns in diameter was deliberately made in each one by puncturing with a metal pin. The material was mounted horizontally in a test apparatus and then a 2-3 mm thick layer of sulfuric acid was placed on top to mimic balloon wetting at Venus. Acid penetration and damage manifested itself as a darkening of the aluminum metal and adhesive layers around the hole in the balloon material. There were no test conditions under which the acid simply fell through the pinhole due to gravity because the surface tension forces always compensated at this size. Very little acid-damaged material was observed for the smallest 80 micron pinholes while gas flowed through the hole due to balloon-like pressurization: the black spot size was approximately 0.2 mm in diameter after 6 days with 86% sulfuric acid. The damage area grew more quickly in the absence of gas flowing out of an 80 micron hole, namely at a rate of 2 mm/day. It was concluded that the flow of escaping gas out of the hole provides a substantial reduction of the rate of acid penetration and damage. Larger diameter pinholes of approximately 300 micron diameter showed larger growth rates of 0.7 mm/day with gas flow and 1.7 mm/day without. The pinhole size did not change over the duration of these experiments because the material has an outer layer of fluoropolymer film that remained intact during the process and thereby held the hole size constant. None of the damage rates measured in these experiments pose a threat to the lifetime of the balloon over the projected course of a 30 day mission because the affected area is too small to cause a structural failure either through direct damage or increased solar heating and

  4. Gasless balloon laparoscopy

    PubMed Central

    Lienert, Mark; Horstmann, Olaf

    2009-01-01

    Background The concept of balloon laparoscopy (B-LSC) pursues the simplification of conventional diagnostic laparoscopy (LSC). The pneumoperitoneum is replaced by a transparent balloon, which is positioned in front of the optical system. It shall be shown that with this arrangement diagnostic LSC can be performed outside of the operating room without requiring general anesthesia. Methods An inflatable balloon was developed for a 30°/3.5-mm rod lens. Intra-abdominally the balloon was expanded to a diameter of 30 mm by air insufflation, and B-LSC was performed. Twelve patients were examined in general anesthesia before laparoscopic surgery. Twelve patients were subjected to B-LSC fully awake or with sedation (midazolam or propofol/S-ketamine) as a “second-look” procedure by way of a flexible trocar (port) left in the abdominal wall at the end of previous operation. Eight patients have been first provided with a trocar under sedation (midazolam or propofol/S-ketamine) combined with local anesthesia, and B-LSC was performed before laparoscopic surgery. Results On a scale of 1–5, the general impression was rated 1.9, the navigability to the different abdominal organs 2.5, the resolution 1.5, the stability of the system optic/trocar 2.1, the suitability of the balloon format 1.9, and the stability of the balloon against lateral shear forces 2.4. The degree of painfulness of the examination was rated 2.8, the tolerance of the port 1.4, and the degree of painfulness of trocar placement at 2.5. On a scale of 1 to 3, the strain of the abdominal musculature was rated 1.4 and the obstruction by adhesions 1.7. Discussion B-LSC is technically practicable with good imaging qualities and without requiring pneumoperitoneum. It is tolerated in great extent under slight sedation and particularly well under deep sedation. The procedure is suitable for diagnostics of unclear abdominal conditions, as a second-look LSC and also as a staging LSC. PMID:20039067

  5. Development of a tiny tandem balloon system for atmospheric observation

    NASA Astrophysics Data System (ADS)

    Saito, Yoshitaka; Yamada, Kazuhiko; Fujiwara, Masatomo

    2016-07-01

    A tandem balloon system with a combination of a zero-pressure balloon on top and a super-pressure balloon on the bottom has a unique trajectory characteristic, with different flight altitudes between day and night and thus with ascending and descending motions at dawn and dusk, respectively. This characteristic provides a unique opportunity to explore the atmosphere, e.g., the upper tropospheric and lower stratospheric region with cross-tropopause measurements twice a day. We started development of a tiny tandem balloon system using a 10 m^{3} super-pressure balloon and a 100 m^{3} zero-pressure balloon, with a capability of carrying 3 kg of payload. One of the scientific targets is to measure water vapor, cloud particles, and temperature around the tropical tropopause which is the entry point of the stratospheric and mesospheric meridional circulation. For the data transfer, the iridium satellite communication module, SBD9603 is used. In this paper, the current status of the development will be reported.

  6. Microscopic observation of carrier-transport dynamics in quantum-structure solar cells using a time-of-flight technique

    NASA Astrophysics Data System (ADS)

    Toprasertpong, Kasidit; Kasamatsu, Naofumi; Fujii, Hiromasa; Kada, Tomoyuki; Asahi, Shigeo; Wang, Yunpeng; Watanabe, Kentaroh; Sugiyama, Masakazu; Kita, Takashi; Nakano, Yoshiaki

    2015-07-01

    In this study, we propose a carrier time-of-flight technique to evaluate the carrier transport time across a quantum structure in an active region of solar cells. By observing the time-resolved photoluminescence signal with a quantum-well probe inserted under the quantum structure at forward bias, the carrier transport time can be efficiently determined at room temperature. The averaged drift velocity shows linear dependence on the internal field, allowing us to estimate the quantum structure as a quasi-bulk material with low effective mobility containing the information of carrier dynamics. We show that this direct and real-time observation is more sensitive to carrier transport than other conventional techniques, providing better insights into microscopic carrier transport dynamics to overcome a device design difficulty.

  7. Microscopic observation of carrier-transport dynamics in quantum-structure solar cells using a time-of-flight technique

    SciTech Connect

    Toprasertpong, Kasidit; Fujii, Hiromasa; Sugiyama, Masakazu; Nakano, Yoshiaki; Kasamatsu, Naofumi; Kada, Tomoyuki; Asahi, Shigeo; Kita, Takashi; Wang, Yunpeng; Watanabe, Kentaroh

    2015-07-27

    In this study, we propose a carrier time-of-flight technique to evaluate the carrier transport time across a quantum structure in an active region of solar cells. By observing the time-resolved photoluminescence signal with a quantum-well probe inserted under the quantum structure at forward bias, the carrier transport time can be efficiently determined at room temperature. The averaged drift velocity shows linear dependence on the internal field, allowing us to estimate the quantum structure as a quasi-bulk material with low effective mobility containing the information of carrier dynamics. We show that this direct and real-time observation is more sensitive to carrier transport than other conventional techniques, providing better insights into microscopic carrier transport dynamics to overcome a device design difficulty.

  8. In-flight calibration and performance evaluation of the fixed head star trackers for the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Thompson, R. H.; Gambardella, P. J.

    1980-01-01

    The Solar Maximum Mission (SMM) spacecraft provides an excellent opportunity for evaluating attitude determination accuracies achievable with tracking instruments such as fixed head star trackers (FHSTs). As a part of its payload, SMM carries a highly accurate fine pointing Sun sensor (FPSS). The EPSS provides an independent check of the pitch and yaw parameters computed from observations of stars in the FHST field of view. A method to determine the alignment of the FHSTs relative to the FPSS using spacecraft data is applied. Two methods that were used to determine distortions in the 8 degree by 8 degree field of view of the FHSTs using spacecraft data are also presented. The attitude determination accuracy performance of the in flight calibrated FHSTs is evaluated.

  9. Laser annealing of amorphous/poly: Silicon solar cell material flight experiment

    NASA Technical Reports Server (NTRS)

    Cole, Eric E.

    1990-01-01

    The preliminary design proposed for the microelectronics materials processing equipment is presented. An overall mission profile, description of all processing steps, analysis methods and measurement techniques, data acquisition and storage, and a preview of the experimental hardware are included. The goal of the project is to investigate the viability of material processing of semiconductor microelectronics materials in a micro-gravity environment. The two key processes are examined: (1) Rapid Thermal Annealing (RTA) of semiconductor thin films and damaged solar cells, and (2) thin film deposition using a filament evaporator. The RTA process will be used to obtain higher quality crystalline properties from amorphous/poly-silicon films. RTA methods can also be used to repair radiation-damaged solar cells. On earth this technique is commonly used to anneal semiconductor films after ion-implantation. The damage to the crystal lattice is similar to the defects found in solar cells which have been exposed to high-energy particle bombardment.

  10. A CCD image transducer and processor suitable for space flight. [satellite borne solar telescope instrumentation

    NASA Technical Reports Server (NTRS)

    Michels, D. J.

    1975-01-01

    A satellite borne extreme ultraviolet solar telescope makes use of CCD area arrays for both image readout and onboard data processing. The instrument is designed to view the inner solar corona in the wavelength band 170 - 630 A, and the output video stream may be selected by ground command to present the coronal scene, or the time-rate-of-change of the scene. Details of the CCD application to onboard image processing are described, and a discussion of the processor's potential for telemetry bandwidth compression is included. Optical coupling methods, data storage requirements, spatial and temporal resolution, and nonsymmetry of resolution (pitch) in the CCD are discussed.

  11. Solar Modulation of Low-Energy Antiproton and Proton Spectra Measured by BESS

    NASA Technical Reports Server (NTRS)

    Mitchell, John W.; Abe, Ko; Fuke, Hideyuki; Haino, Sadakazu; Hams, Thomas; Horikoshi, Atsushi; Kim, Ki-Chun; Lee, MooHyun; Makida, Yashuhiro; Matsuda, Shinya; Moiseev, Alexander; Nishimura, Jun; Nozaki, Mitsuaki

    2007-01-01

    The spectra of low-energy cosmic-ray protons and antiprotons have been measured by BESS in nine high-latitude balloon flights between 1993 and 2004. These measurements span a range of solar activity from the previous solar minimum through solar ma>:im%am and the onset of the present solar minimum, as well as a solar magnetic field reversal from positive to negative in 2000. Because protons and antiprotons differ only in charge sign, these simultaneous measurements provide a sensitive probe of charge dependent solar modulation. The antiproton to proton ratio measured by BESS is consistent with simple spherically symmetric models of solar modulation during the Sun's positive polarity phase, but favor charge-sign-dependent drift models during the negative phase. The BESS measurements will be presented and compared to various models of solar modulation.

  12. CdZnTe background measurements at balloon altitudes

    NASA Astrophysics Data System (ADS)

    Parsons, Ann M.; Barthelmy, Scott D.; Bartlett, Lyle M.; Birsa, F. B.; Gehrels, Neil A.; Naya, Juan E.; Odom, James L.; Singh, S.; Stahle, Carl M.; Tueller, Jack; Teegarden, Bonnard J.

    1996-10-01

    Because of its high atomic number and convenient room temperature operation, CdZnTe has great potential for use in both balloon and space borne hard x-ray (5 - 200 keV) astrophysics experiments. Here we present preliminary results from the first CdZnTe background measurements made by a balloon instrument. Measurements of the CdZnTe internal background are essential to determine which physical processes make the most important background contributions and are critical in the design of future scientific instruments. The PoRTIA CdZnTe balloon instrument was flown three times in three different shielding configurations. PoRTIA was passively shielded during its first flight from Palestine, Texas and actively shielded as a piggyback instrument on the GRIS balloon experiment during flights 2 and 3 from Alice Springs, Australia. PoRTIA flew twice during the Fall 1995 Alice Springs, Australia campaign using the thick GRIS NaI anticoincidence shield. A significant CdZnTe background reduction was achieved during the third flight with PoRTIA placed completely inside the GRIS shield and blocking crystal, and thus completely surrounded by 15 cm of NaI. These background results are presented and contributions from different background processes are discussed.

  13. Flight solar calibrations using the Mirror Attenuator Mosaic (MAM): Low scattering mirror

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III

    1992-01-01

    Measurements of solar radiances reflected from the mirror attenuator mosaic (MAM) were used to calibrate the shortwave portions of the Earth Radiation Budget Experiment (ERBE) thermistor bolometer scanning radiometers. The MAM is basically a low scattering mirror which has been used to attenuate and reflect solar radiation into the fields of view for the broadband shortwave (0.2 to 5 micrometers) and total (0.2 to 50.0+ micrometers) ERBE scanning radiometers. The MAM assembly consists of a tightly packed array of aluminum, 0.3175-cm diameter concave spherical mirrors and field of view limiting baffles. The spherical mirrors are masked by a copper plate, electro-plated with black chrome. Perforations (0.14 centimeter in diameter) in the copper plate serve as apertures for the mirrors. Black anodized aluminum baffles limit the MAM clear field of view to 7.1 degrees. The MAM assemblies are located on the Earth Radiation Budget Satellite (ERBS) and on the National Oceanic and Atmospheric Administration NOAA-9 and NOAA-10 spacecraft. The 1984-1985 ERBS and 1985-1986 NOAA-9 solar calibration datasets are presented. Analyses of the calibrations indicate that the MAM exhibited no detectable degradation in its reflectance properties and that the gains of the shortwave scanners did not change. The stability of the shortwave radiometers indicates that the transmission of the Suprasil W1 filters did not degrade detectably when exposed to Earth/atmosphere-reflected solar radiation.

  14. Cosmic ray abundance measurements with the CAKE balloon experiment

    NASA Astrophysics Data System (ADS)

    Cecchini, S.; Chiarusi, T.; Giacomelli, G.; Manzoor, S.; Medinaceli, E.; Patrizii, L.; Togo, V.

    We present the results from the CAKE (Cosmic Abundance below Knee Energy) balloon experiment which uses nuclear track detectors. The final experiment goal is the determination of the charge spectrum of CR nuclei with Z > 30 in the primary cosmic radiation. The detector, which has a geometric acceptance of \\~ 1.7 m2 sr, was exposed in a trans-mediterranean stratospheric balloon flight. Calibrations of the detectors used (CR39 and Lexan), scanning strategies and algorithms for tracking particles in an automatic mode are presented. The present status of the results is discussed

  15. Tethered balloon-based measurements of meteorological variables and aerosols

    NASA Technical Reports Server (NTRS)

    Sentell, R. J.; Storey, R. W.; Chang, J. J. C.; Jacobsen, S. J.

    1976-01-01

    Tethered balloon based measurements of the vertical distributions of temperature, humidity, wind speed, and aerosol concentrations were taken over a 4-hour period beginning at sunrise on June 29, 1976, at Wallops Island, Virginia. Twelve consecutive profiles of each variable were obtained from ground to about 500 meters. These measurements were in conjuction with a noise propagation study on remotely arrayed acoustic range (ROMAAR) at Wallops Flight Center. An organized listing of these vertical soundings is presented. The tethered balloon system configuration utilized for these measurements is described.

  16. Upper limits to the quiet-time solar neutron flux from 10 to 100 MeV

    NASA Technical Reports Server (NTRS)

    Moon, S.; Simnett, G. M.; White, R. S.

    1975-01-01

    The UCR large area solid-angle double scatter neutron telescope was flown to search for solar neutrons on 3 balloon flights on September 26, 1971, May 14, 1972 and September 19, 1972. The first two flights were launched from Palestine, Texas and the third from Cape Girardeau, Missouri. The float altitude on each flight was at about 5 g/sq cm residual atmosphere. Neutrons from 10 to 100 MeV were measured. No solar flares occurred during the flights. Upper limits to the quiet time solar neutron fluxes at the 95% confidence level are .00028, .00046, .00096 and .00090 neutrons/sq cm-sec in the energy intervals of 10-30, 30-50, 50-100 and 10-100 MeV, respectively.

  17. SoRa first flight. Summer 2009

    NASA Astrophysics Data System (ADS)

    Pirrotta, S.; Flamini, E.

    The SoRa (Sounding Radar) experiment was successfully launched from Longyearbyen (Svalbard, Norway) during the summer 2009 campaign managed by the Italian/Norwegian "Nobile Amundsen / Stratospheric Balloon Centre" (NA/SBC). SoRa is part of the Italian Space Agency (ASI) programs for Long Duration Balloon Flights. Carried by the biggest balloon (800.000 m3) ever launched in polar regions, SoRa main experiment and its three piggyback payloads (DUSTER, ISA and SIDERALE) performed a nominal flight of almost 4 days over the North Sea and Greenland, until the separation, landing and recovery in Baffin Island (Canada). Despite the final destructive event that compromise the scientific main goal of SoRa, the 2009 ASI balloon campaign can be considered an important milestone, because of the obtained scientific and technical results but also for the lesson learned by the science, engineering and managerial teams looking at the future ASI scientific balloon-born activities.

  18. Origins of Solar Activity

    NASA Astrophysics Data System (ADS)

    Rust, David M.

    1996-05-01

    Work under the subject grant began in August 1992, when Mr. J. J. Blanchette began study and data analysis in the area of solar flare research. Mr. Blanchette passed all requirements toward a Ph.D., except for the thesis. Mr. Blanchette worked with the APL Flare Genesis Experiment team to build a balloon-borne solar vector magnetograph. Other work on the magnetograph was partially supported by AFOSR grant F49620-94-1-0079. Mr. Blanchette assisted the Flare Genesis team prepare the telescope and focal plane optical elements for a test flight. He participated in instrument integ ration and in launch preparations for the flight, which took place on January 23, 1994. Mr. Blanchette was awarded a Masters Degree in Astrophysics by the Johns Hopkins University in recognition of his achievements. Mr. Blanchette indicated a desire to suspend work on the Ph.D. degree, and he left the AASERT program on August 31, 1994. Under the guidance of his advisor at JHU/APL, Dr. David M. Rust, Mr. Blanchette gained enough background in solar physics so that he can contribute to observational, analytical, and presentation efforts in solar research. Beginning in August 1995, Mr. Ashok Kumar was supported by the grant. Mr. Kumar demonstrated remarkable theoretical insight into the problems of solar activity. He developed the concept of intrinsic scale magnetic flux ropes in the solar atmosphere and interplanetary space. His model can explain the heating of interplanetary magnetic clouds. Recently, his idea has been extended to explain solar wind heating. If the idea is confirmed by further comparison with observations, it will be a major breakthrough in space physics and it may lead to an explanation for why the solar corona's temperature is over a million degrees.

  19. Comparison of solar system measured data for various sample rates. [conducted using Marshall Space Flight Center Solar House

    NASA Technical Reports Server (NTRS)

    Chiou, J., Sr.

    1977-01-01

    The results of solar house data for sample rates of 50, 100, 250, 300, and 600 seconds were compared. The data considered for summer days were the heat incident on the collectors, the heat used by the air conditioner generator, and the heat used by the auxiliary heater. For winter days, the heat incident, the heat collected and the heat used by the heat exchanger were computed. These data were compared for different weather days such as clear days, partly cloudy days, cloudy days, and very cloudy days. Also, data for the integration of all these weather days were compared. The precentage differences for these data, using 50 second sample rate as a base, are also presented.

  20. Experimental investigation of undesired stable equilibria in pumpkin shape super-pressure balloon designs

    NASA Astrophysics Data System (ADS)

    Schur, W.

    The scientific community's desire for large capacity, constant altitude, long duration stratospheric platforms is not likely going to be met by un-reinforced spherical super-pressure balloons. More likely, the pneumatic envelope for the large-scale super-pressure balloon of the future will be a tendon reinforced structure in which the tendons perform the primary pressure load confining function and the skin serves as a gas barrier and transfers the local pressure load to the tendons. NASA's Ultra Long Duration Balloon (ULDB), which is currently under development, is of that type. By separating the load carrying function of the tendons and the skin a number of advantages are gained. Perhaps most important is the fact that the required skin strength remains to first order independent of the balloon size. Only the size and number of tendons are dictated by the balloon size. By designing the balloon to be at least quasi statically determinate, the stress distributions are more certain, and stress raisers due to fabrication imperfections are more easily controlled and it becomes unnecessary to account for load path uncertainties by providing everywhere excessive strength and structural weight. Furthermore, it becomes possible to use for the envelope skin a visco-elastic film (polyethylene) that has proven performance in the stratospheric environment. The silhouette shape of this balloon type has prompted early researchers to name this design a "pumpkin" shape balloon. Later investigators accepted this terminology. The pumpkin shape balloon concept was adopted by NASA for its ULDB design at the end of 1998 when advantages of that design over a spherical shape design were convincingly demonstrated. Two stratospheric test flights of large-scale super-pressure balloons demonstrated the functioning of this balloon type. In the second successful flight the switch was made from an excessively strong and heavy skin, a holdover from the earlier concept of a spherical design, to

  1. Optimum designs for superpressure balloons

    NASA Astrophysics Data System (ADS)

    Smith, M. S.; Rainwater, E. L.

    2004-01-01

    The elastica shape is now well known to be the best basic shape for superpressure balloon design. This shape, also known as the pumpkin, or natural shape for balloons, has been well understood since the early 1900s when it was applied to the determination of the shape of descending parachutes. The elastica shape was also investigated in the 1950s when high strength films were used to produce superpressure cylinder balloons. The need for uniform stress distribution in shells of early superpressure balloons led to a long period of the development of spherical superpressure balloons. Not until the late 1970s was the elastica shape revisited for the purpose of the producing superpressure balloons. This paper will review various development efforts in the field of superpressure design and will elaborate on the current state-of-the-art with suggestions for future developments.

  2. Depth profile analysis of amorphous silicon thin film solar cells by pulsed radiofrequency glow discharge time of flight mass spectrometry.

    PubMed

    Alvarez-Toral, Aitor; Sanchez, Pascal; Menéndez, Armando; Pereiro, Rosario; Sanz-Medel, Alfredo; Fernández, Beatriz

    2015-02-01

    Among the different solar cell technologies, amorphous silicon (a-Si:H) thin film solar cells (TFSCs) are today very promising and, so, TFSCs analytical characterization for quality control issues is increasingly demanding. In this line, depth profile analysis of a-Si:H TFSCs on steel substrate has been investigated by using pulsed radiofrequency glow discharge-time of flight mass spectrometry (rf-PGD-TOFMS). First, to discriminate potential polyatomic interferences for several analytes (e.g., (28)Si(+), (31)P(+), and (16)O(+)) appropriate time positions along the GD pulse profile were selected. A multi-matrix calibration approach, using homogeneous certified reference materials without hydrogen as well as coated laboratory-made standards containing hydrogen, was employed for the methodological calibration. Different calibration strategies (in terms of time interval selection on the pulse profile within the afterglow region) have been compared, searching for optimal calibration graphs correlation. Results showed that reliable and fast quantitative depth profile analysis of a-Si:H TFSCs by rf-PGD-TOFMS can be achieved. PMID:25404156

  3. Recent results of the GAINS test flight

    NASA Astrophysics Data System (ADS)

    Girz, C.

    A demonstration flight of the Global Atmosphere-ocean IN-situ System (GAINS) Prototype III balloon is scheduled to occur in early summer 2002. The 18-m diameter PIII superpressure balloon, built by GSSL, Inc., will float a 135-kg payload at 16 km. Performance of the SpectraTM envelope will be assessed over two day-night cycles. The payload consists of line-of-sight communications for transmitting GPS position, and monitored parameters on balloon and payload state and the internal and external thermal environments. Primary termination is by radio command with several independent backup termination systems. Safe operation of the balloon is ensured by an onboard transponder that keeps the balloon under active air traffic control. The balloon is tracked by an aircraft that will record communications from the balloon and instigate termination of the flight. Mobile ground stations positioned at the launch and recovery locations will also be capable of recording and terminating the flight. A suite of trajectory forecast tools has been developed based on radiosondes and winds from numerical weather models. A GPS surface reflection experiment for determining ocean surface winds will be tested on this platform. Physical and electronic integration of the radio and mechanical systems was completed over the last two years. Data and videos from the June flight will be presented.

  4. Microcontroller uses in Long-Duration Ballooning

    NASA Astrophysics Data System (ADS)

    Jones, Joseph

    This paper discusses how microcontrollers are being utilized to fulfill the demands of long duration ballooning (LDB) and the advantages of doing so. The Columbia Scientific Balloon Facility (CSBF) offers the service of launching high altitude balloons (120k ft) which provide an over the horizon telemetry system and platform for scientific research payloads to collect data. CSBF has utilized microcontrollers to address multiple tasks and functions which were previously performed by more complex systems. A microcontroller system has been recently developed and programmed in house to replace our previous backup navigation system which is used on all LDB flights. A similar microcontroller system was developed to be independently launched in Antarctica before the actual scientific payload. This system's function is to transmit its GPS position and a small housekeeping packet so that we can confirm the upper level float winds are as predicted from satellite derived models. Microcontrollers have also been used to create test equipment to functionally check out the flight hardware used in our telemetry systems. One test system which was developed can be used to quickly determine if our communication link we are providing for the science payloads is functioning properly. Another system was developed to provide us with the ability to easily determine the status of one of our over the horizon communication links through a closed loop system. This test system has given us the capability to provide more field support to science groups than we were able to in years past. The trend of utilizing microcontrollers has taken place for a number of reasons. By using microcontrollers to fill these needs, it has given us the ability to quickly design and implement systems which meet flight critical needs, as well as perform many of the everyday tasks in LDB. This route has also allowed us to reduce the amount of time required for personnel to perform a number of the tasks required

  5. VEGA Balloon System and Instrumentation.

    PubMed

    Kremnev, R S; Linkin, V M; Lipatov, A N; Pichkadze, K M; Shurupov, A A; Terterashvili, A V; Bakitko, R V; Blamont, J E; Malique, C; Ragent, B; Preston, R A; Elson, L S; Crisp, D

    1986-03-21

    The VEGA Venus balloon radio transmissions received on Earth were used to measure the motion of the balloons and to obtain the data recorded by onboard sensors measuring atmospheric characteristics. Thus the balloons themselves, the gondolas, the onboard sensors, and the radio transmission system were all components of the experiment. A description of these elements is given, and a few details of data sampling and formatting are discussed.

  6. Unique Programme of Indian Centre for Space Physics using large rubber Balloons

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip Kumar; Sarkar, Ritabrata; Bhowmick, Debashis; Chakraborty, Subhankar

    Indian Centre for Space Physics (ICSP) has developed a unique capability to pursue space based studies at a very low cost. Here, large rubber balloons are sent to near space (~ 40km) with payloads of less than 4kg weight. These payloads can be cosmic ray detectors, X-ray detectors, muon detectors apart from communication device, GPS, and nine degrees of freedom measuring capabilities. With two balloons in orbiter-launcher configuration, ICSP has been able to conduct long duration flights upto 12 hours. ICSP has so far sent 56 Dignity missions to near space and obtained Cosmic Ray and muon variation on a regular basis, dynamical spectrum of solar flares and gamma ray burst apart from other usual parameters such as wind velocity components, temperature and pressure variations etc. Since all the payloads are retrieved by parachutes, the cost per mission remains very low, typically around USD1000.00. The preparation time is low. Furthermore, no special launching area is required. In principle, such experiments can be conducted on a daily basis, if need be. Presently, we are also incorporating studies relating to earth system science such as Ozone, aerosols, micro-meteorites etc.

  7. Flight experience of solar mesosphere explorer's power system over high temperatures ranges

    NASA Technical Reports Server (NTRS)

    Faber, Jack; Hurley, Daniel

    1987-01-01

    The performance of the power system on the Solar Mesosphere Explorer (SME) satellite for the life of the mission and the techniques used to ensure power system health are summarized. Early in the mission high cell imbalances in one of the batteries resulted in a loading scheme which attempted to minimize the cell imbalances without causing an undervoltage condition. A short term model of the power system allowed planners to predict depth of discharge using the latest available data. Due to expected orbital shifts the solar arrays experience extended periods of no eclipse. This has required special conditioning schemes to keep the batteries healthy when the eclipses return. Analysis of the SME data indicates long term health of the SME power system as long as the conditioning scheme is continued.

  8. Simplified model for solar cosmic ray exposure in manned Earth orbital flights

    SciTech Connect

    Wilson, J.W.; Khandelwal, G.S.; Shinn, J.L.; Nealy, J.E.; Townsend, L.W.; Cucinotta, F.A.

    1990-05-01

    A simple calculational model is derived for use in estimating solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field, including storm conditions and the astronauts' self-shielding, are evaluated explicitly. The magnetic storm model is keyed to the planetary index K(sub p).

  9. Simplified model for solar cosmic ray exposure in manned Earth orbital flights

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Khandelwal, Govind S.; Shinn, Judy L.; Nealy, John E.; Townsend, Lawrence W.; Cucinotta, Francis A.

    1990-01-01

    A simple calculational model is derived for use in estimating solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field, including storm conditions and the astronauts' self-shielding, are evaluated explicitly. The magnetic storm model is keyed to the planetary index K(sub p).

  10. A Constitutive Equation for Stratospheric Balloon Materials

    NASA Technical Reports Server (NTRS)

    Rand, J. L.; Sterling, W. J.

    2004-01-01

    The selection of a suitable material for use as a reliable stratospheric balloon gas barrier and structural component is based on a variety of properties. Due to a more desirable combination of properties, the low density polyethylene that has been used for the last half century has been replaced during the last decade by linear low density polyethylene (LLDPE). This paper describes the effort to characterize the time dependent properties of a 38 micron coextrusion of LLDPE. The nonlinear viscoelastic constitutive equation presented may be used to accurately describe the creep and/or relaxation of this film when subjected to a biaxial state of stress, such as might be required for an extended balloon flight. Recent laboratory data have been used to mod@ an existing model of LLDPE to account for differences caused by the coextrusion process. The new model will facilitate structural design optimization and reliability assessment, and may be further utilized as a predictive tool to benefit in-flight operations. Current structural analysis tech&ques based on linear elastic properties have predicted stresses in excess of those which would actually exist.

  11. Waves and Magnetism in the Solar Atmosphere (WAMIS)

    NASA Astrophysics Data System (ADS)

    Ko, Y. K.; Auchere, F.; Casini, R.; Fineschi, S.; Gibson, S. E.; Knoelker, M.; Korendyke, C.; Laming, J. M.; Mcintosh, S. W.; Moses, J. D.; Romoli, M.; Rybak, J.; Socker, D. G.; Strachan, L.; Tomczyk, S.; Vourlidas, A.; Wu, Q.

    2014-12-01

    Magnetic fields in the solar atmosphere provide the energy for most varieties of solar activity, including high-energy electromagnetic radiation, solar energetic particles, flares, and coronal mass ejections, as well as powering the solar wind. Despite the fundamental role of magnetic fields in solar and heliospheric physics, there exists only very limited measurements of the field above the base of the corona. What is needed are direct measurements of not only the strength and orientation of the magnetic field but also the signatures of wave motions in order to better understand coronal structure, solar activity and the role of MHD waves in heating and accelerating the solar wind. Fortunately, the remote sensing instrumentation used to make magnetic field measurements is also well suited for measuring the Doppler signature of waves in the solar structures. With this in mind, we are proposing the WAMIS (Waves and Magnetism in the Solar Atmosphere) investigation. WAMIS will take advantage of greatly improved infrared (IR) detectors, forward models, advanced diagnostic tools and inversion codes to obtain a breakthrough in the measurement of coronal magnetic fields and in the understanding of the interaction of these fields with space plasmas. This will be achieved with a high altitude balloon borne payload consisting of a coronagraph with an IR spectro-polarimeter focal plane assembly. The balloon platform provides minimum atmospheric absorption and scattering at the IR wavelengths in which these observations are made. Additionally, a NASA long duration balloon flight mission from the Antarctic can achieve continuous observations over most of a solar rotation, covering all of the key time scales for the evolution of coronal magnetic fields. With these improvements in key technologies along with experience gained from current ground-based instrumentation, WAMIS will provide a low-cost mission with a high technology readiness leve.

  12. High Energy Replicated Optics to Explore the Sun: Hard X-Ray Balloon-Borne Telescope

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Apple, Jeff; StevensonChavis, Katherine; Dietz, Kurt; Holt, Marlon; Koehler, Heather; Lis, Tomasz; O'Connor, Brian; RodriquezOtero, Miguel; Pryor, Jonathan; Ramsey, Brian; Rinehart-Dawson, Maegan; Smith, Leigh; Sobey, Alexander; Wilson-Hodge, Colleen; Christe, Steven; Cramer, Alexander; Edgerton, Melissa; Rodriquez, Marcello; Shih, Albert; Gregory, Don; Jasper, John; Bohon, Steven

    2013-01-01

    Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaborative effort between the NASA Marshall Space Flight Center and the Goddard Space Flight Center to upgrade an existing payload, the High Energy Replicated Optics (HERO) balloon-borne telescope, to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES science payload consists of 8 mirror modules, housing a total of 109 grazing-incidence optics. These modules are mounted on a carbon-fiber - and Aluminum optical bench 6 m from a matching array of high pressure xenon gas scintillation proportional counters, which serve as the focal-plane detectors. The HERO gondola utilizes a differential GPS system (backed by a magnetometer) for coarse pointing in the azimuth and a shaft angle encoder plus inclinometer provides the coarse elevation. The HEROES payload will incorporate a new solar aspect system to supplement the existing star camera, for fine pointing during both the day and night. A mechanical shutter will be added to the star camera to protect it during solar observations. HEROES will also implement two novel alignment monitoring system that will measure the alignment between the optical bench and the star camera and between the optics and detectors for improved pointing and post-flight data reconstruction. The overall payload will also be discussed. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist

  13. High Energy Replicated Optics to Explore the Sun: Hard X-ray balloon-borne telescope

    NASA Astrophysics Data System (ADS)

    Gaskin, J.; Apple, J.; Chavis, K. S.; Dietz, K.; Holt, M.; Koehler, H.; Lis, T.; O'Connor, B.; Otero, M. R.; Pryor, J.; Ramsey, B.; Rinehart-Dawson, M.; Smith, L.; Sobey, A.; Wilson-Hodge, C.; Christe, S.; Cramer, A.; Edgerton, M.; Rodriguez, M.; Shih, A.; Gregory, D.; Jasper, J.; Bohon, S.

    Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaborative effort between the NASA Marshall Space Flight Center and the Goddard Space Flight Center to upgrade an existing payload, the High Energy Replicated Optics (HERO) balloon-borne telescope, to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES science payload consists of 8 mirror modules, housing a total of 109 grazing-incidence optics. These modules are mounted on a carbon-fiber - and Aluminum optical bench 6 m from a matching array of high pressure xenon gas scintillation proportional counters, which serve as the focal-plane detectors. The HERO gondola utilizes a differential GPS system (backed by a magnetometer) for coarse pointing in the azimuth and a shaft angle encoder plus inclinometer provides the coarse elevation. The HEROES payload will incorporate a new solar aspect system to supplement the existing star camera, for fine pointing during both the day and night. A mechanical shutter will be added to the star camera to protect it during solar observations. HEROES will also implement two novel alignment monitoring system that will measure the alignment between the optical bench and the star camera and between the optics and detectors for improved pointing and post-flight data reconstruction. The overall payload will also be discussed. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist.

  14. Hurricane Balloon Observations in the Hurricane Inflow Layer

    NASA Astrophysics Data System (ADS)

    Businger, S.; Johnson, R.; Ellis, R.; Talbot, R.

    2005-12-01

    Four autonomous NOAA smart balloons have been prepared at NOAA's Air Resources Lab Field Research Division. The balloons will be released from the northwest corner of Puerto Rico during August and September 2005 into the inflow of tropical cyclones passing just to the north or south of the island. Ballast control allows the balloons to be positioned low in the atmosphere in the inflow of the storms. Observations will include aspirated temperature and humidity, barometric pressure, GPS position, rain rate, ozone, downward IR temperature, and solar radiation. The observations will be transmitted in real time via satellite cellular telephone and posted to the web. Preliminary results of the analysis of the balloon data sets will be presented, including energy content of the inflow air, estimates of surface fluxes, and evidence of organized eddies. Solar cells will help prolong battery life. If a balloon survives an eye-wall penetration, data on the energy content and ozone concentrations of the boundary layer air in the eye will be presented.

  15. Tricuspid balloon valvuloplasty: a more simplified approach using inoue balloon.

    PubMed

    Patel, T M; Dani, S I; Shah, S C; Patel, T K

    1996-01-01

    We report a more simplified technique of the balloon tricuspid valvuloplasty using inoue balloon set in a patient suffering from severe rheumatic tricuspid stenosis. We believe that this technique may be useful in a difficult case of tricuspid valvuloplasty. PMID:8770490

  16. Iridium: Global OTH data communications for high altitude scientific ballooning

    NASA Astrophysics Data System (ADS)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several

  17. The role of a space patrol of solar X-ray radiation in the provisioning of the safety of orbital and interplanetary manned space flights

    NASA Astrophysics Data System (ADS)

    Avakyan, S. V.; Kovalenok, V. V.; Savinykh, V. P.; Ivanchenkov, A. S.; Voronin, N. A.; Trchounian, A.; Baranova, L. A.

    2015-04-01

    In interplanetary flight, after large solar flares, cosmonauts are subjected to the action of energetic solar protons and electrons. These energetic particles have an especially strong effect during extravehicular activity or (in the future) during residence on the surface of Mars, when they spend an extended time there. Such particles reach the orbits of the Earth and of Mars with a delay of several hours relative to solar X-rays and UV radiation. Therefore, there is always time to predict their appearance, in particular, by means of an X-ray-UV radiometer from the apparatus complex of the Space Solar Patrol (SSP) that is being developed by the co-authors of this paper. The paper discusses the far unexplored biophysical problem of manned flight to Mars, scheduled for the next decade. In long-term manned space flights on the orbital stations "Salyut" Soviet cosmonaut crews from three of the co-authors (cosmonauts V.V. Kovalenok, A.S. Ivanchenkov, and V.P. Savinykh) had repeatedly observed the effect of certain geophysical conditions on the psychological state of each crew. These effects coincide with the increased intensity of global illumination in the upper ionosphere space on flight altitudes (300-360 km). It is important that during all of these periods, most of the geomagnetic pulsations were completely absent. Possible ways to study the synergistic effects of the simultaneous absence of the geomagnetic field, the magnetic pulsations and the microwave radiation of the terrestrial ionosphere are considered for a flight to Mars.

  18. Analysis of Data from the Balloon Borne Gamma RAy Polarimeter Experiment (GRAPE)

    NASA Astrophysics Data System (ADS)

    Wasti, Sambid K.; Bloser, Peter F.; Legere, Jason S.; McConnell, Mark L.; Ryan, James M.

    2016-04-01

    The Gamma Ray Polarimeter Experiment (GRAPE), a balloon borne polarimeter for 50~300 keV gamma rays, successfully flew in 2011 and 2014. The main goal of these balloon flights was to measure the gamma ray polarization of the Crab Nebula. Analysis of data from the first two balloon flights of GRAPE has been challenging due to significant changes in the background level during each flight. We have developed a technique based on the Principle Component Analysis (PCA) to estimate the background for the Crab observation. We found that the background depended mostly on the atmospheric depth, pointing zenith angle and instrument temperatures. Incorporating Anti-coincidence shield data (which served as a surrogate for the background) was also found to improve the analysis. Here, we present the calibration data and describe the analysis done on the GRAPE 2014 flight data.

  19. Buddy balloon for TAVI.

    PubMed

    Balkin, Jonathan; Silberman, Shuli; Almagor, Yaron

    2013-11-15

    Percutaneous transfemoral aortic valve replacement is a new rapidly evolving technique that has made significant progress in recent years. The technology is however limitted and in some cases has resulted in failure to deliver the prosthetic valve. We describe a new technique using a buddy balloon, from the contralateral femoral artery, to assist in crossing the native aortic valve in those cases where extreme calcification and or tortuosity have caused the delivery system to hang up on the aortic wall. The technique is easily applied and facilitates the success of the procedure in cases which may otherwise have to be converted to open surgical aortic valve replacement.

  20. Superpressure Balloon Design Using Nonlinear Viscoelasticity

    NASA Astrophysics Data System (ADS)

    Rand, James; Rand, James; Wakefield, David

    Stratospheric balloon platforms are used extensively by scientists for a variety of purposes. The typical balloon used today is the zero pressure natural shape fabricated from a thin film of linear low density polyethylene. This material has been found to possess a variety of desirable characteristics suitable to this environment. This film will remain ductile at very low temperatures which will permit it to develop large strains if necessary to satisfy equilibrium considerations. However, in order to achieve long duration flight without significant changes in altitude, the balloon should be pressurized to the extent necessary to maintain constant volume during typical variations in temperature. In the past, pressurized balloons were fabricated from other materials in order to achieve significant increases in strength. Thin films of polyester or polyimide have been used to make relatively small spheres capable of long duration flight. Unfortunately, these materials do not have the ductility of polyethylene at low temperature and are somewhat more fragile and subject to damage. In recent years various organizations have attempted to use the characteristic shape of a pumpkin to limit the stresses in a balloon envelope to that which can be accommodated by laminated fabric materials. While developing the design, analysis and construction techniques for this type of system, the use of polyethylene has been successfully demonstrated to provide a reliable envelope. This shape is achieved by using high strength members in the meridional direction to carry the very high loads generated by the pressure. These so called "tendons" have very low elongation and serve to limit the deformation of the film in that direction. However, earlier designs attempted to limit the stresses in the circumferential direction by using a lobe angle to control the stress. Unfortunately this has led to a number of stability problems with this type of balloon. In order to control the stability of

  1. Managing Balloon Projects - A Changing Paradigm: A Retrospective Look

    NASA Astrophysics Data System (ADS)

    Black, R. K.; Smith, I. S.

    With the advent of the Ultra-Long Duration Balloon (ULDB) capability and balloons being offered as a carrier for NASA Explorer class missions, a fundamental shift in the way balloon mission projects are managed will be required. This shift will ensure the performance and reliability of the science instrument, balloon vehicle, flight system, and ground control center to support a science mission of up to 100 days in duration. The current ``design to capability'' paradigm, with minimal management oversight, has traditionally worked well for many years in flying scientific instruments on balloons at low cost with medium to high risk. Newer, more complex science instruments and missions, such as those developed under NASA's Explorers Program, will require a radical shift to a much more formal ``design to requirements'' management paradigm. This paper will attempt to take a retrospective look at the formality imposed by the Explorers Program and determine what management elements are needed to assure the success of the current ``design to capability'' missions without increasing significant cost. This paradigm shift is intended to support the successful accomplishment of balloon missions on schedule, within budget, and lower risk, while enhancing and satisfying the success criteria and requirements of the primary customer, the Principal Investigator. This shift to a ``Explorer-like'' formality paradigm will require development of a cohesive mission management organization, organizing an effective system engineering process that links science requirements to instrument and flight system performance, implementing a cost effective performance assurance program, and exerting cost control over all aspects of the mission. All of these elements need to be addressed within a context of a strong commitment to meeting schedule within the constrained budgets.

  2. A Methane Balloon Inflation Chamber

    ERIC Educational Resources Information Center

    Czerwinski, Curtis J.; Cordes, Tanya J.; Franek, Joe

    2005-01-01

    The various equipments, procedure and hazards in constructing the device for inflating a methane balloon using a standard methane outlet in a laboratory are described. This device is fast, safe, inexpensive, and easy to use as compared to a hydrogen gas cylinder for inflating balloons.

  3. Aerodynamics of a Party Balloon

    ERIC Educational Resources Information Center

    Cross, Rod

    2007-01-01

    It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…

  4. Characterization of production GaAs solar cells for space

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.

    1988-01-01

    The electrical performance of GaAs solar cells was characterized as a function of irradiation with protons and electrons with the underlying goal of producing solar cells suitable for use in space. Proton energies used varied between 50 keV and 10 MeV, and damage coefficients were derived for liquid phase epitaxy GaAs solar cells. Electron energies varied between 0.7 and 2.4 MeV. Cells from recent production runs were characterized as a function of electron and proton irradiation. These same cells were also characterized as a function of solar intensity and operating temperature, both before and after the electron irradiations. The long term stability of GaAs cells during photon exposure was examined. Some cells were found to degrade with photon exposure and some did not. Calibration standards were made for GaAs/Ge solar cells by flight on a high altitude balloon.

  5. Pre-Flight Dark Forward Electrical Testing of the Mir Cooperative Solar Array

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Scheiman, David A.; Hoffman, David J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) was developed jointly by the United States (US) and Russia to provide approximately 6 kW of photovoltaic power to the Russian space station Mir. After final assembly in Russia, the MCSA was shipped to the NASA Kennedy Space Center (KSC) in the summer of 1995 and launched to Mir in November 1995. Program managers were concerned of the potential for MCSA damage during the transatlantic shipment and the associated handling operations. To address this concern, NASA Lewis Research Center (LERC) developed an innovative dark-forward electrical test program to assess the gross electrical condition of each generator following shipment from Russia. The use of dark test techniques, which allow the array to remain in the stowed configuration, greatly simplifies the checkout of large area solar arrays. MCSA dark electrical testing was successfully performed at KSC in July 1995 following transatlantic shipment. Data from this testing enabled engineers to quantify the effects of potential MCSA physical damage that would degrade on-orbit electrical performance. In this paper, an overview of the principles and heritage of photovoltaic array dark testing is given. The specific MCSA dark test program is also described including the hardware, software, testing procedures and test results. The current-voltage (4) response of both solar cell circuitry and by-pass diode circuitry was obtained. To guide the development of dark test hardware, software and procedures, a dedicated FORTRAN computer code was developed to predict the dark 4 responses of generators with a variety of feasible damage modes. By comparing the actual test data with the predictions, the physical condition of the generator could be inferred. Based on this data analysis, no electrical short-circuits or open-circuits were detected. This suggested the MCSA did not sustain physical damage that affected electrical performance during handling and shipment from Russia to the US. Good

  6. High-Precision Measurements of the Solar Diameter and Oblateness by the Solar Disk Sextant (SDS) Experiment

    NASA Astrophysics Data System (ADS)

    Egidi, A.; Caccin, B.; Sofia, S.; Heaps, W.; Hoegy, W.; Twigg, L.

    2006-05-01

    We reduce and analyze, in a uniform way, all of the data obtained by the Solar Disk Sextant (SDS) experiment, concerning high-precision measurements of the solar radius and oblateness, in the bandwidth 590 {-} 670 nm, made onboard stratospheric balloons during a series of flights carried out in 1992, 1994, 1995, and 1996. The measured radius value appears anti-correlated with the level of solar activity, ranging from about 959.5 to 959.7 arcsec. Its variation from year to year is outside the error range, which is mostly due to a systematic diurnal behavior, particularly evident in the 1996 flight. The oblateness shows an analogous temporal behavior, ranging from about (4.3 to 10.3) × 10-6.

  7. The French Balloon Program : overview of the 200 -2010 period and strategy for the future

    NASA Astrophysics Data System (ADS)

    Clair, Marie-Anne; Vassaux, Didier

    Since its establishment in 1962, the Centre National d'Etudes Spatiales (CNES) has been supporting scientific ballooning, which remains the most cost effective means to support near space science. This paper will give an overview of the CNES capabilities and services for operational balloon activities, and on the on going development to improve them. Since these last two years, the most important balloon campaigns will be presented : atmospheric research and satellite validation with zero pressure balloons launched from Esrange facility (Kiruna); Pacific Asian Regional Campaign (T-PARC) from Hawaii for studies of typhoon genesis above the Asian Coasts in collaboration with NCAR; validation of super pressure balloon system for the Concordiasi campaign which is planned in Antarctica from MacMurdo US station at the end of 2010 (Metop/IASI satellite validation and ozone depletion studies) and flights of the Fireball stabilized gondola for UV astronomy in collaboration with Caltech and CNRS/LAM.

  8. On the use of manned hydrogen-gas ballooning in boundary layer studies.

    PubMed

    Rappenglück, B; Reitmayer, H; Fabian, P

    2000-01-01

    Measurements of nitrogen dioxide, ozone and, for the first time, on-line, nonmethane hydrocarbons with a quasicontinuous gaschromatographic/flame ionization technique were performed on a manned hydrogen-gas balloon platform. A cycle time of 10 min allowed the determination of nonmethane hydrocarbons in the carbon number range of C(4)-C(10) with a detection limit of 10 pptv. In addition, meteorological parameters (atmospheric pressure, temperature, humidity) along with GPS-data (global positioning system) was accomplished during the balloon flights. Balloon measurements of trace compounds provide valuable information about photochemical processes in the boundary layer since gas ballooning offers the only technique that stays in the same air parcel along Langrangian trajectories. In addition, gas ballooning represents a unique tool to elucidate micrometeorological observations such as atmospheric stability oscillations and local wind fields.

  9. Progress of the super-pressure balloon developments in Japan

    NASA Astrophysics Data System (ADS)

    Fuke, Hideyuki; Izutsu, Naoki; Akita, Daisuke; Iijima, Issei; Kato, Yoichi; Kawada, Jiro; Matsushima, Kiyoho; Matsuzaka, Yukihiko; Mizuta, Eiichi; Namiki, Michiyoshi; Nonaka, Naoki; Ohta, Shigeo; Saito, Yoshitaka; Sato, Takatoshi; Seo, Motoharu; Takada, Atsushi; Tamura, Keisuke; Toriumi, Michi-Hiko; Yamada, Kazuhiko; Yamagami, Takamasa; Yoshida, Tetsuya

    Zero-pressure balloon (ZPB) used for the scientific observation in the stratosphere has an un-avoidable limitation of flight duration. The ZPB cannot fly for a long day and nights, because it cannot keep its floating altitude during nighttime without dropping ballasts. On the other hand, super-pressure balloon (SPB) can keep its volume, and thus it can keep its altitude for a long duration. Therefore, the SPB is expected to provide a very useful way of a long flight to the science communities. The basic principle of the SPB had been well known for several tens of years. However, it was not easy to develop a large, light-weight, and pressure-tight SPB, which can lift a heavy (heavier than a few hundred kg) payload to an altitude of around 35 km. In these ten years, we have developed the SPB based on a unique lobed-pumpkin design. We have carried out a number of ground tests and flight tests to improve the every component of the SPB developments. Recently, we have begun an additional development of an advanced shape of SPB, named `tawara', which is a lobed-pumpkin with a lobed-cylinder. We have performed tests of the tawara-SPB to verify its advantages over the conventional pumpkin SPB. The tawara-SPB can make it easier to enlarge the SPB volume with keeping a single basic design and saving the balloon weight. The tawara-SPB may improve the balloon deployment stability, and can be utilized as a powered balloon. At the conference, we will report a summary of our tests over the past few years as well as of the prospects in the near future.

  10. Aerial Deployment and Inflation System for Mars Helium Balloons

    NASA Technical Reports Server (NTRS)

    Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.

    2009-01-01

    A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.

  11. Determination of washout performance of various monochrome displays under simulated flight ambient and solar lighting conditions

    NASA Technical Reports Server (NTRS)

    Batson, Vernon M.; Robertson, James B.; Parrish, Russell V.

    1990-01-01

    The aircraft cockpit ambient lighting simulation system (ACALSS) has been developed to study display readability and associated pilot/vehicle performance effects in a part-task simulator cockpit. In the study reported here, the ACALSS was used to determine the illumination levels at which subjects lose the ability to maintain aircraft states when using three display technologies as display media for primary flight displays: a standard monochrome EL (electroluminescent) flat-panel, a laboratory-class monochrome CRT, and an enhanced-brightness EL flat-panel. The multivariate statistical technique of modified profile analysis was used to test for performance differences between display devices as functions of illumination levels. The standard monochrome EL flat-panel display began to washout after the 2500 foot-candle level of illumination. The monochrome CRT began to washout after the 5500 foot-candle level of illumination. No performance decrements by increased illumination up to the 12,000 foot-candle level were found for the enhanced-brightness EL flat-panel display. What was not anticipated was that half the subjects would subjectively prefer the CRT over the enhanced-brightness EL, even though their performance errors would have indicated the opposite.

  12. An automatic parachute release for high altitude scientific balloons

    NASA Astrophysics Data System (ADS)

    Field, Chris

    NASA's Columbia Scientific Balloon Facility launches high altitude scientific research balloons at many locations around the world. Locations like Antarctica are flat for hundreds of miles and have nothing to snag a parachute consequently causing it to be more important to separate the parachute from the payload than in an area with vegetation and fences. Scientists are now building one of a kind payloads costing millions of dollars, taking five years or more to build, and are requesting multiple flights. In addition to that, the data gathering rate of many science payloads far exceeds the data downlink rate on over-the-horizon flights therefore making a recovery of at least the data hard drives a "minimum success requirement". The older mentality in ballooning; separating the parachute and payload from the balloon and getting it on the ground is more important than separating the parachute after the payload is on the ground has changed. It is now equally as important to separate the parachute from the gondola to prevent damage from dragging. Until now, commands had to be sent to separate the parachute from the gondola at approximately 60K ft, 30K ft, and 10K ft to use the Semi Automatic Parachute Release (SAPR), which is after the sometimes violent parachute opening shock. By using the Gondola controlled Automatic Parachute Release (GAPR) all commanding is done prior to termination, making the parachute release fully autonomous.

  13. Balloon-Borne, High-Energy Astrophysics: Experiences from the 1960s to the 1980s

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2008-01-01

    Observational high-energy astrophysics in the hard-x-ray and gamma-ray regions owes its development and initial successes to the balloon-borne development of detector systems, as well as pioneering observations, primarily in the timeframe from the 1960s to the 1990s. I will describe some of the first observations made by the Rice University balloon group in the 1960s, including the impetus for these observations. The appearance of SN 1987a led to several balloon-flight campaigns, sponsored by NASA, from Alice Springs, Australia in 1987 and 1988. During the 1980s, prototypes of instruments for the Compton Gamma Ray Observatory were flown on many balloon flights, which greatly enhanced the success of that mission.

  14. [Extrascleral ballooning. 2. New approaches: double and sector ballooning].

    PubMed

    Movshovich, A I; Saksonova, E O; Il'nitskiĭ, V V

    1991-01-01

    Treatment of retinal detachment with the use of distended balloons (extrascleral ballooning) holds good promise due to ease of operation and low traumatism. Unfortunately it may be used only in cases with fresh not high detachments of the retina with solitary or multiple ruptures up to 1-2 optic disk diameters in length. That is why the authors suggest two new modifications of the method: double and sector ballooning, widening the indications for the employment of the method. Double ballooning is recommended for cases with retinal detachments with 2 ruptures up to 2 disc diameters in length, located at a distance of 2-3 disc diameters from each other within one quadrant or in different quadrants of the fundus oculi. Sector ballooning is recommended for cases with retinal detachments with ruptures or breaks off 3-6 disc diameters in length. The results of 24 surgeries are analyzed. Double ballooning is effective in 77 percent of cases, sector ballooning in 82 percent. The presence of proliferative vitreoretinopathy, stages C3-D, is a contraindication against the use of this technique.

  15. A Summary of The 2000-2001 NASA Glenn Lear Jet AM0 Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Scheiman, David; Brinker, David; Snyder, David; Baraona, Cosmo; Jenkins, Phillip; Rieke, William J.; Blankenship, Kurt S.; Tom, Ellen M.

    2002-01-01

    Calibration of solar cells for space is extremely important for satellite power system design. Accurate prediction of solar cell performance is critical to solar array sizing, often required to be within 1%. The NASA Glenn Research Center solar cell calibration airplane facility has been in operation since 1963 with 531 flights to date. The calibration includes real data to Air Mass (AM) 0.2 and uses the Langley plot method plus an ozone correction factor to extrapolate to AM0. Comparison of the AM0 calibration data indicates that there is good correlation with Balloon and Shuttle flown solar cells. This paper will present a history of the airplane calibration procedure, flying considerations, and a brief summary of the previous flying season with some measurement results. This past flying season had a record 35 flights. It will also discuss efforts to more clearly define the ozone correction factor.

  16. Test of Re-Entry Systems at Estrange Using Sounding Rockets and Stratospheric Balloons

    NASA Astrophysics Data System (ADS)

    Lockowandt, C.; Abrahamsson, M.; Florin, G.

    2015-09-01

    Stratospheric balloons and sounding rockets can provide an ideal in-flight platform for performing re-entry and other high speed tests off different types of vehicles and techniques. They are also ideal platforms for testing different types of recovery systems such as airbrakes and parachutes. This paper expands on some examples of platforms and missions for drop tests from balloons as well as sounding rockets launched from Esrange Space Center, a facility run by Swedish Space Corporation SSC in northern Sweden.

  17. THz photometers for solar flare observations from space

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Marcon, Rogério; Abrantes, André; Bortolucci, Emilio C.; T. Fernandes, Luis Olavo; Kropotov, Grigory I.; Kudaka, Amauri S.; Machado, Nelson; Marun, Adolfo; Nikolaev, Valery; Silva, Alexandre; da Silva, Claudemir S.; Timofeevsky, Alexander

    2014-11-01

    The search for the still unrevealed spectral shape of the mysterious THz solar flare emissions is one of the current most challenging research issues. The concept, fabrication and performance of a double THz photometer system, named SOLAR-T, is presented. Its innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. The detecting system was constructed to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. Tests have been conducted to confirm the entire system performance, on ambient and low pressure and temperature conditions. An artificial Sun setup was developed to simulate performance on actual observations. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014-2016.

  18. Flight. Science Series Grades 4, 5, 6.

    ERIC Educational Resources Information Center

    Frensch, Helen

    The activities in this book are designed to reinforce the elementary concepts of flight. General background information, suggested activities, questions for discussion, and answers are provided. Twenty-eight reproducible worksheets are contained in this guide. Topics include: hot air balloons, the physics of flight, air resistance, airplane…

  19. Stability of Lobed Balloons

    NASA Technical Reports Server (NTRS)

    Ball, Danny (Technical Monitor); Pagitz, M.; Pellegrino, Xu S.

    2004-01-01

    This paper presents a computational study of the stability of simple lobed balloon structures. Two approaches are presented, one based on a wrinkled material model and one based on a variable Poisson s ratio model that eliminates compressive stresses iteratively. The first approach is used to investigate the stability of both a single isotensoid and a stack of four isotensoids, for perturbations of in.nitesimally small amplitude. It is found that both structures are stable for global deformation modes, but unstable for local modes at su.ciently large pressure. Both structures are stable if an isotropic model is assumed. The second approach is used to investigate the stability of the isotensoid stack for large shape perturbations, taking into account contact between di.erent surfaces. For this structure a distorted, stable configuration is found. It is also found that the volume enclosed by this con.guration is smaller than that enclosed by the undistorted structure.

  20. Balloon catheter coronary angioplasty

    SciTech Connect

    Angelini, P.

    1987-01-01

    The author has produced a reference and teaching book on balloon angioplasty. Because it borders in surgery and is performed on an awake patient without circulatory assistance, it is a complex and demanding procedure that requires thorough knowledge before it is attempted. The text is divided into seven sections. The first section describes coronary anatomy and pathophysiology, defines the objectives and mechanisms of the procedure and lists four possible physiologic results. The next section describes equipment in the catheterization laboratory, catheters, guidewires and required personnel. The following section is on the procedure itself and includes a discussion of examination, testing, technique and follow-up. The fourth section details possible complications that can occur during the procedure, such as coronary spasms, occlusion, thrombosis, perforations and ruptures, and also discusses cardiac surgery after failed angioplasty. The fifth section details complex or unusual cases that can occur. The sixth and seventh sections discuss radiation, alternative procedures and the future of angioplasty.

  1. Overview of the development of the pathfinder ultra-long duration balloon system

    NASA Astrophysics Data System (ADS)

    Said, Magdi A.; Stuchlik, David; Corbin, Brian; Smolinski, Michael; Abresch, Brian; Shreves, Christopher; Stancil, Robert; Cathey, Henry M.; Cannon, Scott

    2004-01-01

    The ultra-long duration balloon (ULDB) Pathfinder Project is developing a small pumpkin balloon system and a new communication package based on the iridium satellites technology to demonstrate a global, 100-day duration capability that is scalable to the full-scale ULDB. A set of trade studies has been conducted to determine the volume, mass and cost of the balloon system to support up to 90 kg payload mass to an altitude of 35 km. The Pathfinder test balloons will provide valuable data in the development of performance models for future ULDB flights. The iridium based communication package will include a power subsystem, a command and data-handling unit, a GPS receiver, and an iridium L-Band Transceiver (LBT) for global communications. The flight data will include, at a minimum: latitude, longitude, altitude, horizontal and vertical speeds, heading, time, and other balloon performance parameters (i.e., system voltages, temperatures, etc.). Although the system will be designed for global launch capability, initial flights will be launched from the proposed full-scale ULDB mission launch locations. This paper will present and discuss the initial series of trade studies conducted for the development of the pathfinder balloon and the design concept of the iridium based communication package.

  2. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons

    NASA Astrophysics Data System (ADS)

    Potashko, Oleksandr; Viso, Michel

    Indian Space Research Organization experience that launched a balloon to stratosphere in 2009 and successfully caught particles with organics at an altitude of 42 km. The main aim of the project is to catch cometary particles by using balloons and to make this method steady and reliable. Why are the comet particles interesting? The nature of a comet is full of puzzles; many researchers think that comets may give keys to the origin of the Solar System and origin of life on the Earth. 2014 and 2015 are special years for comet science: mission Rozetta will reach the vicinity of the comet 67P/Churyumov-Gerasimenko - 10 years after leaving the Earth. Using astronomic data, one may choose date for ballooning, specify the altitude of comet particles by photometry and laser measurement of particle outburst. After height measurement one may launch a balloon. For example, for Draconids particles (Parent comet: 21PGiacobini-Zinner) the expected time of outburst maximum - hence that for catching is 22:42 UT, October 6, 2014. The best conditions for catching will be in Greenland and extreme north-eastern part of North America. Draconids are very convenient for the initial stage of the project - the altitude of observed Draconids outburst is 10 km. One may catch them above 10 km, e.g. 10500 m. We consider ballooning is quite a good method to get experimental data as an additional technique in comparison with big space missions. Moreover, it might be a part of cosmic mission to other planets such as Mars and Venus. The approach of the project is to make targeting catch of comet particles. The method consists of choosing the right place and time for ballooning.

  3. Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads

    NASA Technical Reports Server (NTRS)

    Kogut, Alan; James, Bryan; Fixsen, Dale

    2013-01-01

    Astrophysical observations at millimeter wavelengths require large (2-to-5- meter diameter) telescopes carried to altitudes above 35 km by scientific research balloons. The scientific performance is greatly enhanced if the telescope is cooled to temperatures below 10 K with no emissive windows between the telescope and the sky. Standard liquid helium bucket dewars can contain a suitable telescope for telescope diameter less than two meters. However, the mass of a dewar large enough to hold a 3-to-5-meter diameter telescope would exceed the balloon lift capacity. The solution is to separate the functions of cryogen storage and in-flight thermal isolation, utilizing the unique physical conditions at balloon altitudes. Conventional dewars are launched cold: the vacuum walls necessary for thermal isolation must also withstand the pressure gradient at sea level and are correspondingly thick and heavy. The pressure at 40 km is less than 0.3% of sea level: a dewar designed for use only at 40 km can use ultra thin walls to achieve significant reductions in mass. This innovation concerns new construction and operational techniques to produce a lightweight liquid helium bucket dewar. The dewar is intended for use on high-altitude balloon payloads. The mass is low enough to allow a large (3-to-5-meter) diameter dewar to fly at altitudes above 35 km on conventional scientific research balloons without exceeding the lift capability of the balloon. The lightweight dewar has thin (250- micron) stainless steel walls. The walls are too thin to support the pressure gradient at sea level: the dewar launches warm with the vacuum space vented continuously during ascent to eliminate any pressure gradient across the walls. A commercial 500-liter storage dewar maintains a reservoir of liquid helium within a minimal (hence low mass) volume. Once a 40-km altitude is reached, the valve venting the vacuum space of the bucket dewar is closed to seal the vacuum space. A vacuum pump then

  4. Structure variations of pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Yajima, N.; Izutsu, N.; Honda, H.

    A robed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super -pressure balloon. This paper deals with an extension of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes or poles. When the original pumpkin shape is modified for those systems, superior characteristics of 3-D gore design, those are large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail.

  5. The Rocket Balloon (Rocketball): Applications to Science, Technology, and Education

    NASA Technical Reports Server (NTRS)

    Esper, Jaime

    2009-01-01

    Originally envisioned to study upper atmospheric phenomena, the Rocket Balloon system (or Rocketball for short) has utility in a range of applications, including sprite detection and in-situ measurements, near-space measurements and calibration correlation with orbital assets, hurricane observation and characterization, technology testing and validation, ground observation, and education. A salient feature includes the need to reach space and near-space within a critical time-frame and in adverse local meteorological conditions. It can also provide for the execution of technology validation and operational demonstrations at a fraction of the cost of a space flight. In particular, planetary entry probe proof-of-concepts can be examined. A typical Rocketball operational scenario consists of a sounding rocket launch and subsequent deployment of a balloon above a desired location. An obvious advantage of this combination is the additional mission 'hang-time' rendered by the balloon once the sounding rocket flight is completed. The system leverages current and emergent technologies at the NASA Goddard Space Flight Center and other organizations.

  6. Planetary Balloon-Based Science Platform Evaluation and Program Implementation

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob

    2016-01-01

    This report describes a study evaluating the potential for a balloon-based optical telescope as a planetary science asset to achieve decadal class science. The study considered potential science achievable and science traceability relative to the most recent planetary science decadal survey, potential platform features, and demonstration flights in the evaluation process. Science Potential and Benefits: This study confirms the cost the-benefit value for planetary science purposes. Forty-four (44) important questions of the decadal survey are at least partially addressable through balloon based capabilities. Planetary science through balloon observations can provide significant science through observations in the 300 nm to 5 m range and at longer wavelengths as well. Additionally, balloon missions have demonstrated the ability to progress from concept to observation to publication much faster than a space mission increasing the speed of science return. Planetary science from a balloon-borne platform is a relatively low-cost approach to new science measurements. This is particularly relevant within a cost-constrained planetary science budget. Repeated flights further reduce the cost of the per unit science data. Such flights offer observing time at a very competitive cost. Another advantage for planetary scientists is that a dedicated asset could provide significant new viewing opportunities not possible from the ground and allow unprecedented access to observations that cannot be realized with the time allocation pressures faced by current observing assets. In addition, flight systems that have a relatively short life cycle and where hardware is generally recovered, are excellent opportunities to train early career scientists, engineers, and project managers. The fact that balloon-borne payloads, unlike space missions, are generally recovered offers an excellent tool to test and mature instruments and other space craft systems. Desired Gondola Features: Potential

  7. STUDYING THE POLARIZATION OF HARD X-RAY SOLAR FLARES WITH THE GAMMA RAY POLARIMETER EXPERIMENT (GRAPE)

    NASA Astrophysics Data System (ADS)

    Ertley, Camden

    2014-01-01

    The degree of linear polarization of hard X-rays (50-500 keV) can provide a better understanding of the particle acceleration mechanisms and the emission of radiation during solar flares. Difficulties in measuring the linear polarization has limited the ability of past experiments to place constraints on solar flare models. The Gamma RAy Polarimeter Experiment (GRAPE) is a balloon-borne Compton polarimeter designed to measure polarization in the 50 - 500 keV energy range. This energy range minimizes the thermal contamination that can potentially affect measurements at lower energies. This research focuses on the analysis of data acquired during the first high altitude balloon flight of the GRAPE payload in 2011. During this 26 hour balloon flight two M-class flares were observed. The analysis effort includes the development of a Monte Carlo simulation of the full instrument payload with the GEANT4 toolkit. The simulations were used in understanding the background environment, creating a response matrix for the deconvolution of the energy loss spectra, and determining the modulation factor for a 100% linearly polarized source. We report on the results from the polarization analysis of the solar flare data. The polarization and spectral data can be used to further our understanding of particle acceleration in the context of current solar flare models.

  8. The NASA/Marshall Space Flight Center program in gamma-ray burst astronomy

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1981-01-01

    The research program in gamma-ray burst astronomy at the NASA/Marshall Space Flight Center is described. Large-area scintillation detector arrays have been flown on high-altitude balloons, and an array is being developed for the Gamma-Ray Observatory. The design of these detectors is described along with results obtained from previous balloon flights.

  9. Astrobiology Exploration Strategies for the Mars Polar Regions Using Balloon Platforms

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Atreya, S. A.; Fairbrother, D. A.; Farrell, W. M.; Gorevan, S.; Jones, J.; Mitrofanov, I.; Scott, J.

    2003-01-01

    Montgolfiere balloons can provide a unique near-surface platform for an extended traverse over the polar regions of Mars. During the polar summer, such solar powered balloons would remain in the constant sun of the polar summer and could remain airborne for many weeks or even months as the atmospheric circulation would drive the balloons around the polar region many times before the balloon would cross the terminator. Such a platform for scientific measurements could provide in situ sampling of the atmosphere for trace disequilibrium species that might be indicators of present geological or biological activity in this regon. It could furthermore provide high resolution imaging, deep electromagnetic (EM) sounding for subsurface stratigraphy and liquid water, and high spatial resolution neutron measurements of subsurface ice. Technologies for robust balloon deployment on entry and controlled encounters with the surface and near subsurface for sample acquisition in otherwise inaccessible regions are presently being studied and developed with support from NASA.

  10. Astrobiology Exploration Strategies for the Mars Polar Regions Using Balloon Platforms

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Atreya, S. A.; Fairbrother, D. A.; Farrell, W. M.; Gorevan, S.; Jones, J.; Mitrofanov, I.; Scott, J.

    2003-01-01

    Montgolfiere balloons can provide a unique near-surface platform for an extended traverse over the polar regions of Mars. During the polar summer, such solar powered balloons would remain in the constant sun of the polar summer and could remain airborne for many weeks or even months as the atmospheric circulation would drive the balloons around the polar region many times before the balloon would cross the terminator. Such a platform for scientific measurements could provide in situ sampling of the atmosphere for trace disequilibrium species that might be indicators of present geological or biological activity in this region. It could furthermore provide high resolution imaging, deep electromagnetic (EM) sounding for subsurface stratigraphy and liquid water, and high spatial resolution neutron measurements of subsurface ice. Technologies for robust balloon deployment on entry and controlled encounters with the surface and near subsurface for sample acquisition in otherwise inaccessible regions are presently being studied and developed with support from NASA.

  11. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    NASA Technical Reports Server (NTRS)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  12. Status of the Balloon-Borne X-ray Polarimetry Mission X-Calibur

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Kislat, Fabian; Stuchlik, David; Okajima, Takashi; de Geronimo, Gianluigi

    2016-04-01

    We report on the status of the balloon borne hard X-ray polairmetry mission X-Calibur. The missions combines a focussing hard X-ray mirror from the InFOCuS collaboration with a scattering polarimeter and the WASP (Wallops Arc Second Pointer) pointing system. The mission is scheduled for a conventonal ~1 day balloon flight in Fall 2016 and a long duration (~30 day) balloon flight from McMurdo (Ross Island) in 2018/2019. X-Calibur will allow us to measure ~5% polarization fractions for strong sources with a Crab-like enegry spectra and fluxes. The science targets of the first balloon flights will include the stellar mass black holes GRS 1915+105 and Cyg X-1, Her X-1, Sco X-1, and the Crab nebula and pulsar. The long duration balloon flight will target several X-ray binaries and the extragalactic mass accreting supermassive black hole Cen A. In this contribution we give an update on the status of the mission, and the expected science return.

  13. The balloon-borne exoplanet spectroscopy experiment (BETSE)

    NASA Astrophysics Data System (ADS)

    Pascale, E.

    2015-10-01

    The balloon-borne exoplanet spectroscopy experiment (BETSE) is a proposed balloon spectrometer operating in the 1-5 μm band with spectral resolution of R = 100. Using a 50 cm diameter telescope, BETSE is desgnied to have sufficient sensitivity and control of systematics to measure the atmospheric spectra of representative sample of known hot Jupiters, few warm Neptunes, and some of the exoplanets TESS will soon begin to discover. This would for the first time allow us to place strict observational constraints on the nature of exo-atmospheres and on models of planetary formation. In a LDB flight from Antarctica, BETSE would be able to characterize the atmospheres of 20 planets. If a ULDB flight is available, the combination of a longer flight and night time operations would enable BETSE to ground-breakingly characterize the atmospheres of more than 40 planets. Prior to an LDB or ULDB flight, BETSE would be tested in a 24 hr flight from Fort Sumner, NM, in order to test all subsystems, also observing more than 4 planets with SNR greater than 5.

  14. AIROscope: Ames infrared balloon-borne telescope

    NASA Technical Reports Server (NTRS)

    Koontz, O. L.; Scott, S. G.

    1974-01-01

    A balloon-borne telescope system designed for astronomical observations at infrared wavelengths is discussed. The telescope is gyro-stabilized with updated pointing information derived from television, star tracker, or ground commands. The television system furnishes both course and fine acquisition after initial orientation using a pair of fluxgate servo compasses. Command and control is by a UHF link with 256 commands available. Scientific and engineering data are telemetered to the ground station via narrow band F.M. in the L band. The ground station displays all scientific, engineering and status information during the flights and records the command and telemetry digital bit stream for detailed analysis. The AIROscope telescope has a 28-inch diameter primary mirror and Dall-Kirkham optics. The beam is modulated by oscillating a secondary mirror at 11 or 25 Hz with provision for left or right beam fixed positions by command.

  15. Balloon-Borne Infrasound Detection of Energetic Bolide Events

    NASA Astrophysics Data System (ADS)

    Young, Eliot F.; Ballard, Courtney; Klein, Viliam; Bowman, Daniel; Boslough, Mark

    2016-10-01

    Infrasound is usually defined as sound waves below 20 Hz, the nominal limit of human hearing. Infrasound waves propagate over vast distances through the Earth's atmosphere: the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization) has 48 installed infrasound-sensing stations around the world to detect nuclear detonations and other disturbances. In February 2013, several CTBTO infrasound stations detected infrasound signals from a large bolide that exploded over Chelyabinsk, Russia. Some stations recorded signals that had circumnavigated the Earth, over a day after the original event. The goal of this project is to improve upon the sensitivity of the CTBTO network by putting microphones on small, long-duration super-pressure balloons, with the overarching goal of studying the small end of the NEO population by using the Earth's atmosphere as a witness plate.A balloon-borne infrasound sensor is expected to have two advantages over ground-based stations: a lack of wind noise and a concentration of infrasound energy in the "stratospheric duct" between roughly 5 - 50 km altitude. To test these advantages, we have built a small balloon payload with five calibrated microphones. We plan to fly this payload on a NASA high-altitude balloon from Ft Sumner, NM in August 2016. We have arranged for three large explosions to take place in Socorro, NM while the balloon is aloft to assess the sensitivity of balloon-borne vs. ground-based infrasound sensors. We will report on the results from this test flight and the prospects for detecting/characterizing small bolides in the stratosphere.

  16. 14 CFR 31.23 - Flight load factor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight load factor. 31.23 Section 31.23... STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.23 Flight load factor. In determining limit load, the limit flight load factor must be at least 1.4....

  17. 14 CFR 31.23 - Flight load factor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight load factor. 31.23 Section 31.23... STANDARDS: MANNED FREE BALLOONS Strength Requirements § 31.23 Flight load factor. In determining limit load, the limit flight load factor must be at least 1.4....

  18. The MIPAS balloon borne trace constitutent experiment

    NASA Technical Reports Server (NTRS)

    Oelhaf, H.; Vonclarmann, TH.; Fischer, H.; Friedl-Vallon, F.; Fritzsche, CHR.; Piesch, CHR.; Rabus, D.; Seefeldner, M.; Voelker, W.

    1994-01-01

    A novel cryogenic Fourier transform spectrometer (FTS) has been developed for limb emission measurements in the mid IR-region from balloon-borne platforms. The FTS is a rapid scanning interferometer using a modified Michelson arrangement which allows a spectral resolution of 0.04 cm(exp -1) to be achieved. Solid carbon-dioxide cooling of the spectrometer and liquid-helium cooling of the detectors provide adequate sensitivity. The line of sight can be stabilized in terms of azimuth and elevation. A three-mirror off-axis telescope provides good vertical resolution and straylight rejection. Calibration is performed by high elevation and internal blackbody measurements. Four balloon flights were performed, two of them during spring turn-around 1989 and 1990 over mid-latitudes (Aire sur L'Adour, France, 44 deg N) and two near the northern polar circle in winter 1992 (Esrange, Sweden, 68 deg N). Limb emission spectra were collected from 32 km to 39 km floating altitudes covering tangent heights between the lower troposphere and the floating altitude. The trace gases CO2, H2O, O3, CH4, N2O, HNO3, N2O5, ClONO2, CF2Cl2, CFCl3, CHF2Cl, CCl4, and C2H6 have been identified in the measured spectra. The 1989 data have been analyzed to retrieve profiles of O3, HNO3, CFCl3 and CF2Cl2. The flights over Kiruna have provided the first ever reported profile measurements of the key reservoir species ClONO2 and N2O5 inside the polar vortex.

  19. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.

    1981-01-01

    Stratospheric electric field and conductivity measurements are presented for sites of latitude greater than 50 deg N GG, during the months of either April or August, in a variety of weather and solar conditions. Vertical electric field data from balloon flights with an average duration of 18 hours at ceiling, in fair weather, are shown to be appropriately modeled by a simple, exponential, altitude-dependent equation. Data collected over electrified clouds and thunderstorms are presented, along with a discussion of the thunderstorm-related electric currents. Current surges in the atmosphere due to DC currents as well as the spheric are calculated, and it is found that in over 1000 hours of balloon data, no direct solar influence is identified except during major flares.

  20. Hot Air Balloon: An Unusual Cause of Multicasualty Trauma Incident.

    PubMed

    Persoz, Marc-Olivier; Dami, Fabrice; Ciavatta, Ettore; Vallotton, Laurent; Albrecht, Roland; Carron, Pierre-Nicolas

    2016-01-01

    Hot air balloon incidents are few and far between compared with the total number of flights. Nevertheless, hot air balloon incidents may produce severe trauma involving several patients and are linked to significant mortality. The prehospital management of injured patients starts after having secured potential surrounding dangers, such as fire or explosion. In the context of a rescue by helicopter, close attention must be paid to potential obstacles, like trees or electrical wires, and the risk of aspiration of the balloon envelope into the rotor. Patients involved in such incidents are often split up in a closed perimeter around the crash point. The severity of the trauma depends essentially on the height of the fall. The most frequent traumatic lesions involve fractures of the lower limbs, the spine, and the pelvis as well as severe burns caused by the balloon fire. Because of the number of patients present, an initial triage is usually required at the site. The use of rescue helicopters can be helpful. They can perform aerial reconnaissance, provide on-site high-level resources, enable access to the patients even in hostile environments, and quickly transport them to trauma center hospitals. PMID:27255882

  1. Galactic and solar radiation exposure to aircrew during a solar cycle.

    PubMed

    Lewis, B J; Bennett, L G I; Green, A R; McCall, M J; Ellaschuk, B; Butler, A; Pierre, M

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure (PCAIRE) has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H x (10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events.

  2. Certification and safety aspects relating to the transport of passengers on high altitude balloons in Europe

    NASA Astrophysics Data System (ADS)

    Schoenmaker, Annelie

    2014-07-01

    High-altitude balloons typically fly between 25 and 50 km in altitude, which, while below the Karman line of 100 km, is yet far above the altitudes typically flown by aircraft. For example, the highest-flying commercial aircraft - the Concorde - had a maximum cruising altitude of only 18 km. zero2infinity, a Spanish company, is currently developing a pressurized pod named “bloon” which will be capable of lifting six people, including two pilot crew members and four paying passengers, to an altitude of 36 km through the use of high-altitude balloons. The boundary between Airspace and Outer Space has never been legally defined, mostly because of the lack of activities taking place between the altitude where airplanes fly and the lowest orbiting spacecraft. High-altitude balloons do fly at these in-between altitudes and the prospect of commercializing access to these parts of the stratosphere poses some questions in a new light. Given the relatively low altitude at which they fly, it may well be that these types of balloons would be considered to operate exclusively within air space. However, given the technology involved in crewed high altitude balloon flights, which is more similar to spacecraft engineering than to traditional hot-air or gas ballooning, it is necessary to evaluate the various legal regimes, codes, and regulations that would apply to such flights, especially regarding licenses and liabilities. For high altitude balloon flights commencing in Europe, the European Aviation Safety Agency (EASA) would very likely be the competent certification or licensing agency for these flights, although there would likely be input from various national aviation authorities as well. However, because the European Commission (EC) has not yet issued regulations regarding commercial spaceflight, particularly the use of high altitude balloons, new rules and regulations governing such flights may still need to be drafted and promulgated. With the development of

  3. Undergraduate Student-built Experiments in Sounding-Rocket and Balloon Campaign

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Christian, J. A.; Keesee, A. M.; Lindon, M.; Lusk, G. D.

    2014-12-01

    Space physics and aerospace engineering experiments are becoming readily accessible to STEM undergraduates. A number of ionospheric physics experiments and guidance and navigation components were designed, built, integrated, and tested by STEM students at West Virginia University in the 2013-2014 academic year. A main payload was flown on NASA's annual RockSat-C two-stage rocket launched from Wallops Flight Facility in Chincoteague, VA on the morning of June 26, 2014. A high-altitude balloon with a reduced payload was released from Bruceton Mills, WV, prior to the rocket and reached 30,054 m. The geographic distance between the two launch points is small compared to the footprint of geomagnetic and solar-terrestrial disturbances. Aerospace sensors provided flight profiles for each of the two platforms. Daytime E region electron density was measured via a Langmuir probe as a function of altitude from 90 km to the apogee of 117 km. Geomagnetic activity was low (Dst>-7 nT, AE<500 nT) so geomagnetic disturbances were probably due to solar quiet (Sq) currents. Earlier solar wind activity included two high-plasma-density regions measured by NASA's ACE which impacted the magnetosphere producing two sudden impulses at midlatitudes (Dst=+19 and +13 nT). In an airglow experiment, the altitude range of the sodium layer was estimated to be 75-110 km based on in situ measurements of the D2emission line intensity. Acceleration, rotation-rate, and magnetic-field data are useful in reconstructing the trajectory and flight dynamics of the two vehicles and comparing with video from onboard cameras. Participation in RockSat and similar programs is useful in ushering space science and spaceflight concepts in the classroom and lab experience of STEM undergraduates. Lectures, homework, and progress reports were used to connect advanced topics of Earth's space environment and spaceflight to the students' core courses. In several cases the STEM students were guided by graduate students

  4. Integrating BalloonSAT and Atmospheric Dynamic Concepts into the Secondary Classroom

    NASA Astrophysics Data System (ADS)

    Fong, B. N.; Kennon, J. T.; Roberts, E.

    2016-05-01

    Arkansas BalloonSAT is an educational outreach and scientific research program that is part of Arkansas State University in Jonesboro, AR. The following is a unit of instruction to incorporate BalloonSAT measurements into secondary science classes. Students interpret graphs and identify several atmospheric trends and properties of a typical balloon flight. Students engage critical thinking skills in developing and answering their own questions relevant to the BalloonSAT program. Prerequisite concepts students should know are how to interpret graphs and unit conversions. Students should have a basic understanding of gravity, units of temperature and distance, and error in measurements. The unit is designed for one week after end-of-course exams and before the end of school. The unit may take two to five 50-minute periods, depending on how many activities are completed.

  5. Neutron techniques. [for study of high-energy particles produced in large solar flares

    NASA Technical Reports Server (NTRS)

    Frye, Glenn M., Jr.; Dunphy, Philip P.; Chupp, Edward L.; Evenson, Paul

    1988-01-01

    Three experimental methods are described which hold the most promise for improved energy resolution, time resolution and sensitivity in the detection of solar neutrons on satellites and/or long duration balloon flights: the neutron calorimeter, the solar neutron track chamber, and the solar neutron decay proton detector. The characteristics of the three methods as to energy range, energy resolution, time resolution, detection efficiency, and physical properties are delineated. Earlier techniques to measure the intensity of high-energy cosmic-ray neutrons at the top of the atmosphere and to search for solar neutrons are described. The past three decades of detector development has now reached the point where it is possible to make comprehensive and detailed measurements of solar neutrons on future space missions.

  6. Microbiological sampling of the atmosphere using a latex sounding balloon

    NASA Astrophysics Data System (ADS)

    Adkins, W. P.; Bryan, N.; Christner, B. C.; Guzik, T. G.; Stewart, M. F.; Giammanco, J. R.

    2010-12-01

    The occurrence of microbes in the atmosphere has been the subject of scientific inquiry since Louis Pasteur’s time; however, data on the nature and diversity of microbial life in the upper troposphere and stratosphere is very limited. To experimentally address this, we have designed, constructed, and field-tested a lightweight, autonomous system that can sample at high altitudes using a latex sounding balloon. An important aspect of our sampling protocol is the ability to decontaminate and assess the level of background contamination during laboratory and field handling. Our approach involves the parallel decontamination and monitoring of 3 identical payloads: (i) one that remains in the laboratory, (ii) a control on the flight string, and (iii) a payload that opens and samples airborne particles in the atmosphere. Comparative analysis of various sterilization methods indicated that ethylene oxide was most effective at decreasing the concentration of DNA-containing cells, decreasing background cellular contamination by 94%. In conjunction, germicidal ultraviolet light, sodium hypochlorite, and 70% ethanol were used to decrease the concentration of microbes associated with payload surfaces. Bioaerosol collection is achieved by impact sampling on a 3.5 mm^2 retention surface covered with a thin layer of sterile silicone grease as the payload travels through the atmosphere. Initial flights have been successful in recovering viable microorganisms present in parcels of air at altitudes of 3 km to 9 km. Microscopic analysis on the collected cell assemblages implied that ~70% of the cells were potentially viable, and aerobic heterotrophic bacteria were cultured and isolated from liquid and agar-solidified culture media. Future plans include increasing the sampling altitude up to ~30 km in a series of discrete steps, maintaining our background controls and connection to lower altitude measurements. The pressure, temperature, and radiation levels in Earth’s stratosphere

  7. SUNRISE Impressions from a successful science flight

    NASA Astrophysics Data System (ADS)

    Schmidt, W.; Solanki, S. K.; Barthol, P.; Berkefeld, T.; Gandorfer, A.; Knölker, M.; Martínez Pillet, V.; Schüssler, M.; Title, A.

    2010-06-01

    SUNRISE is a balloon-borne telescope with an aperture of one meter. It is equipped with a filter imager for the UV wavelength range between 214 nm and 400 nm (SUFI), and with a spectro-polarimeter that measures the magnetic field of the photosphere using the Fe I line at 525.02 nm that has a Landé factor of 3. SUNRISE performed its first science flight from 8 to 14 June 2009. It was launched at the Swedish ESRANGE Space Center and cruised at an altitude of about 36 km and geographic latitudes between 70 and 74 degrees to Somerset Island in northern Canada. There, all data, the telescope and the gondola were successfully recovered. During its flight, Sunrise achieved high pointing stability during 33 hours, and recorded about 1.8 TB of science data. Already at this early stage of data processing it is clear that SUNRISE recorded UV images of the solar photosphere, and spectropolarimetric measurements of the quiet Sun's magnetic field of unprecedented quality.

  8. Structure variations of pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Yajima, N.; Izutsu, N.; Honda, H.

    2004-01-01

    A lobed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super-pressure balloon. This paper deals with extensions of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes, belts or a strut. When the original pumpkin shape is modified by these systems, the superior characteristics of the 3-D gore design, incorporating large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail. Application for ground structures are also mentioned.

  9. Balloon Exoplanet Nulling Interferometer (BENI)

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-01-01

    We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.

  10. Recent activities for long duration flight systems in Japan

    NASA Astrophysics Data System (ADS)

    Nishimura, J.

    For the feasibility studies of the long duration balloon systems in recent times in Japan, the forces was on following items. • An analysis to utilize the Pumpkin Balloons for the over pressurized balloons, and to develop the simple automatic gas pressure control systems for the long duration flights. • Test flights by the balloon group of the Institute of Space and Astronautical Science (ISAS) to see the performance of the balloons of new films of EVAL (Ethylene-Vinyl-Alcohol) having strong absorption bands of the infra-red between 7-14 microns. We expect that this absorption prevents the cooling of the lifting gas after the sun-sets, and thus save the ballast consumption. • A sea recovery system beyond 100-200 km from the Pacific coast by using helicopters with ARGOS/GPS. The situation would be applicable to the sea recovery of payloads after the long duration flights at the turn-around period launched from Sanriku Balloon Center. The flight performances have already been proved in the 1975 and 77 achieving the duration of 55, 65, 80 hrs keeping the locations of payloads within 200 km from the sea coast. • Studies on the high altitude balloons with thin polyethylene films are also reported in this paper.

  11. NASA Aeronautics Showcased at Balloon Fiesta

    NASA Video Gallery

    Visitors at the 2010 International Balloon Fiesta in Albuquerque, N.M., got visual stimulation from hundreds of colorful hot-air balloons soaring skyward, but also learned about NASA's aeronautics ...

  12. Tensile set behavior of Foley catheter balloons.

    PubMed

    Joseph, R; Ramesh, P; Sivakumar, R

    1999-01-01

    The removal of indwelling urinary balloon catheters from patients is usually associated with many problems. The problems such as balloon deflation failure; encrustations on balloons, eyes, and lumen; and catheter associated infections are widely discussed in the literature. The tensile set exhibited by the catheter balloon material could also play a role and further complicate the removal process. This article addresses this issue by comparing the tensile set behavior of the balloon material from three commercially available Foley catheters. The balloon materials were subjected to aging in synthetic urine at 37 degrees C for 28 days to simulate clinical conditions. The deflation time of catheter balloons aged in similar conditions were also measured. It was found that different brands of catheters exhibited statistically significant differences in their properties. The tensile set data of the aged samples could be correlated with the deflation time of the balloons. The clinical significance of the tensile set is also highlighted.

  13. Yellow Balloon in a Briar Patch.

    ERIC Educational Resources Information Center

    Cooper, Frank; Fitzmaurice, Robert W.

    1978-01-01

    As part of a meteorology unit, sixth grade science students launched helium balloons with attached return postcards. This article describes Weather Service monitoring of the balloons and postcard return results. (MA)

  14. Astrophysical Observations with the HEROES Balloon-borne Payload

    NASA Astrophysics Data System (ADS)

    Wilson, Colleen; Gaskin, J.; Christe, S.; Shih, A. Y.; Swartz, D. A.; Tennant, A. F.; Ramsey, B.

    2014-01-01

    The High Energy Replicated Optics to Explore the Sun (HEROES) payload flew on a balloon from Ft. Sumner, NM, September 21-22, 2013. HEROES is sensitive from about 20-75 keV and comprises 8 optics modules, each consisting of 13-14 nickel replicated optics shells and 8 Xenon-filled position-sensitive proportional counter detectors. HEROES is unique in that it is the first hard X-ray telescope that will observe the Sun and astrophysical targets in the same balloon flight. Our astrophysics targets include the Crab nebula and pulsar and the black hole binary GRS 1915+105. In this presentation, I will describe the HEROES mission, the data analysis pipeline and calibrations, and preliminary astrophysics results.

  15. Balloon borne measurements of Stratospheric ozone over Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.; Sreenivasan, S.; Sinha, P. R.

    We conducted a one year campaign for the study of stratospheric ozone concentration and its variability along with other metrological parameters over Hyderabad. The flights were made every 15 days using 5000 cu m plastic balloons except during the rainy days when rubber balloon were employed. Ozone plays important role in the chemistry and dynamics of the atmosphere. In troposphere, ozone represents one of the most active gases involved in photochemical reactions as many factors influence tropospheric ozone concentration. Tropospheric ozone also plays a central role in the oxidative chemistry of the troposphere and has an important impact on the radiative balance of the atmosphere and therefore continuous observation program is necessary to assess the ozone budget. The measurement of other meteorological parameters is also essential since an atmospheric composition is intimately linked to the meteorological conditions, under which chemical and transport processes occur. The measurements were made using ozonesonde (Electro Chemical Cell) coupled with GPS RS80-15N radiosonde.

  16. Miracle Flights

    MedlinePlus

    ... the perfect solution for your needs. Book A Flight Request a flight now Click on the link ... Now Make your donation today Saving Lives One Flight At A Time Miracle Flights provides free flights ...

  17. Development of Solar Research

    NASA Astrophysics Data System (ADS)

    Wittmann, Axel D.; Wolfschmidt, Gudrun; Duerbeck, Hilmar W.

    Originally based on a workshop on “Development of Solar Research”, held in Freiburg/Breisgau, this book contains articles on megalithic structures, the Nebra sky-disk, ancient sun cults, the observation of sunspots, the photography of the sun during eclipses, eclipse maps and expeditions, solar telescopes, solar physics during the Nazi era, archives of solar observations, scientific ballooning for solar research, site-testing on the Canary Islands, as well as on international cooperation.

  18. 21 CFR 874.4100 - Epistaxis balloon.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a) Identification. An epistaxis balloon is a device consisting of an inflatable balloon intended to control...

  19. 21 CFR 874.4100 - Epistaxis balloon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a) Identification. An epistaxis balloon is a device consisting of an inflatable balloon intended to control...

  20. Balloon-borne measurements of the ultraviolet flux in the Arctic stratosphere during winter

    NASA Technical Reports Server (NTRS)

    Schiller, Cornelius; Mueller, Martin; Klein, Erich; Schmidt, Ulrich; Roeth, Ernst-Peter

    1994-01-01

    Filter radiometers sensitive from 280 to 320 nm and from 280 to 400 nm, respectively, were used for measurements of the actinic flux in the stratosphere. Since the instruments are calibrated for absolute spectral sensitivity the data can be compared with model calculations of the actinic flux. Data were obtained during seven balloon flights during the European Arctic Stratospheric Ozone Experiment (EASOE).

  1. CdZnTe Background Measurements at Balloon Altitudes with PoRTIA

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Barthelmy, S.; Bartlett, L.; Gehrels, N.; Naya, J.; Stahle, C. M.; Tueller, J.; Teegarden, B.

    2003-01-01

    Measurements of the CdZnTe internal background at balloon altitudes are essential to determine which physical processes make the most important background contributions. We present results from CdZnTe background measurements made by PoRTIA, a small CdZnTe balloon instrument that was flown three times in three different shielding configurations. PoRTIA was passively shielded during its first flight from Palestine, Texas and actively shielded as a piggyback instrument on the GRIS balloon experiment during its second and third flights from Alice Springs, Australia, using the thick GRIS Nal anticoincidence shield. A significant CdZnTe background reduction was achieved during the third flight with PoRTIA placed completely inside the GRIS shield and blocking crystal, and thus completely surrounded by 15 cm of Nal. A unique balloon altitude background data set is provided by CdZnTe and Ge detectors simultaneously surrounded by the same thick anticoincidence shield; the presence of a single coxial Ge detector inside the shield next to PoRTIA allowed a measurement of the ambient neutron flux inside the shield throughout the flight. These neutrons interact with the detector material to produce isomeric states of the Cd, Zn and Te nuclei that radiatively decay; calculations are presented that indicate that these decays may explain most of the fully shielded CdZnTe background.

  2. Qualitative comparison of concurrent vertical optical turbulence profiles from an aircraft and balloons over White Sands Missile Range

    NASA Astrophysics Data System (ADS)

    Nowlin, Scott R.; Hahn, Ila L.; Hugo, Ronald J.; Bishop, Kenneth P.

    1999-08-01

    We report simultaneous balloon-borne thermosonde/airborne constant-current anemometer measurements made over a portion of White Sands Missile Range, NM. For the first time, vertical profiles of the refractive index structure parameter (Cn2) data generated from shallow slant aircraft flight paths are compared to the balloons vertical Cn2 distributions. We discuss possible adverse effects of meteorology and atmospheric velocity fluctuations. We present conclusions and make recommendations for future similar experimental efforts.

  3. Balloon atmospheric propagation experiment measurements

    NASA Technical Reports Server (NTRS)

    Minott, P. O.

    1973-01-01

    High altitude balloon measurements on laser beam fading during propagation through turbulent atmosphere show that a correlation between fading strength and stellar scintillation magnitudes exists. Graphs for stellar scintillation as a function of receiver aperture are used to predict fading bit error rates for neodymium-yag laser communication system.

  4. Solar-cell power system for the BESS Polar Experiment

    NASA Astrophysics Data System (ADS)

    Hasegawa, Masaya

    The Balloon-born Experiment with a Superconducting Spectrometer (BESS), aiming to search for antiparticle/antimatter in the cosmic radiation, successfully carried out two long-duration flights over Antarctica in 2004 (BESS Polar-I, 8.5days) and 2007/2008 (BESS Polar-II, 24.5days science, 29.5 days total). To achieve the long duration flights, establishment of a reliable power supply system was one of our new challenges. The requirements for the new system were to enable detector system operation with a capacity of 500W for a flight period of ˜30 days, and the total weight was required to be less than ˜300kg from the view point of the global payload weight constraints. To meet these requirements, we adopted solar panels (Sharp NT3436BD solar cell modules) as a power source. Thanks to their high efficiency and light weight, we could design a simple and compact omni-directional solar array structure with enough power generation capability and mechanical strength. Moreover, because each side of the structure is designed to have the same solar-cell area, no directional control is required. This was preferred because the superconducting magnet controls the direction of the instrument and a directional system for the solar array would have to incorporate independent azimuth control. The basic performance was first verified through two technical flights. Subsequently, this system was flown for 8.5 days and nearly 30 days over Antarctica successfully supplying the electric power fro instrument as expected. In the paper, an overview and flight performance of the solar power system will be presented.

  5. Data catalog series for space science and applications flight missions. Volume 5A: Descriptions of astronomy, astrophysics, and solar physics spacecraft and investigations. Volume 5B: Descriptions of data sets from astronomy, astrophysics, and solar physics spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Kim, Sang J. (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets of astronomy, astrophysics, solar physics spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  6. The Focusing Optics Solar X-ray Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.

    2009-12-01

    The Focusing Optics x-ray Solar Imager is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager provides excellent spatial (2 arcseconds) and spectral (1~keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The foxsi project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  7. Long-term weathering effects on the thermal performance of the solargenics (liquid) solar collector at outdoor conditions. [Marshall Space Flight Center Solar test facility

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures and the results obtained during the evaluation of a single-covered liquid solar collector are presented. The tests were performed under outdoor natural conditions. The collector was under stagnation conditions for a total of approximately ten months. The solar collector is a liquid, single-glazed, flat plate collector, and is about 240 inches long, and 3.8 inches in depth.

  8. Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity

    NASA Astrophysics Data System (ADS)

    Rand, J. L.; Wakefield, D. S.

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may

  9. Integrating Balloon and Satellite Operation Data Centers for Technology Readiness Assessment

    NASA Astrophysics Data System (ADS)

    Mattiello-Francisco, Fátima; Fernandes, Jose Oscar

    2016-07-01

    Stratospheric balloon-borne experiments have been one of the most effective ways to validate innovative space technology, taking the advantage of reduced development cycles and low cost in launching and operation. In Brazil, the National Institute for Space Research (INPE) has balloon and satellite ground infrastructures since the 1970´s and the 1990´s, respectively. In the recent past, a strategic approach was adopted on the modernization of balloon ground operation facilities for supporting the protoMIRAX experiment, an X-ray imaging telescope under development at INPE as a pathfinder for the MIRAX (Monitor e Imageador de Raios X) satellite mission. The strategic target was to reuse the SATellite Control System (SATCS), a software framework developed to control and monitor INPÉs satellites, for balloon operation. This paper presents the results of that effort and the new ongoing project, a computer-based framework named I2Bso, which strategic target is to Integrate INPÉs Balloon and Satellite Operation data centers. The I2Bso major purpose is to support the continuous assessment of an innovative technology after different qualification flights either on board balloons or satellites in order to acquire growing evidence for the technology maturity.

  10. Numerical and experimental simulation of the mechanical behavior of super-pressure balloon subsystems

    NASA Astrophysics Data System (ADS)

    Siguier, J.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.

    Long duration super-pressure balloons are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin,...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding the flight level and the life-span of the balloon. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. On the one hand, we define the mechanical laws of envelope materials, that is the elasticity, plasticity and viscosity properties of polymers, and find the parameters of the law with unidirectional tests. These laws are introduced in a finite element code which predict the stress and strain state of a complex envelope structure. On the other hand, we are developing an experimental set-up to measure the 3D strain of a balloon sub-system, that is including the envelope, assemblies and apex parts, with realistic flight conditions. This facility, called NIRVANA, is a 1m3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. We can submit a 1,5m diameter sample to differential pressure, regulate the temperature from +20°C to -120°C and apply a load to tendons of up to 6 tons if required. This paper presents the first results of the modelizations and m asurements of ane envelope sample submitted to axisymetrical stress due to the differential pressure. This sample consists of a 50μm multi-layer polymer film with an assembly, used in 10m diameter STRATEOLE super-pressure balloons. The modelization gives results which largely agree with the experiment and enable us to continue with cold conditions and more complex structures.

  11. The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: Calibration and Targeted Sources

    NASA Astrophysics Data System (ADS)

    Truch, M. D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; Marsden, G.; Martin, P. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.

    2008-07-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 100 hr flight from northern Sweden in 2005 June (BLAST05). As part of the calibration and pointing procedures, several compact sources were mapped, including solar system, Galactic, and extragalactic targets, specifically Pallas, CRL 2688, LDN 1014, IRAS 20126+4104, IRAS 21078+5211, IRAS 21307+5049, IRAS 22134+5834, IRAS 23011+6126, K3-50, W75N, and Mrk 231. One additional source, Arp 220, was observed and used as our primary calibrator. Details of the overall BLAST05 calibration procedure are discussed here. The BLAST observations of each compact source are described, flux densities and spectral energy distributions are reported, and these are compared with previous measurements at other wavelengths. The 250, 350, and 500 μm BLAST data can provide useful constraints to the amplitude and slope of the submillimeter continuum, which in turn may be useful for the improved calibration of other submillimeter instruments.

  12. A Challenge to the Highest Balloon Altitude

    NASA Astrophysics Data System (ADS)

    Saito, Yoshitaka; Akita, Daisuke; Fuke, Hideyuki; Iijima, Issei; Izutsu, Naoki; Kato, Yoichi; Kawada, Jiro; Matsuzaka, Yukihiko; Mizuta, Eiichi; Namiki, Michiyoshi; Nonaka, Naoki; Ohta, Shigeo; Sato, Takatoshi; Seo, Motoharu; Takada, Atsushi; Tamura, Keisuke; Toriumi, Michihiko; Yamagami, Takamasa; Yamada, Kazuhiko; Yoshida, Tetsuya; Matsushima, Kiyoho; Tanaka, Shigeki

    Development of a balloon to fly at higher altitudes is one of the most attractive challenges in scientific balloon technologies. After reaching the highest record setting balloon altitude of 53.0 km using the 3.4 µm film in 2002, a thinner balloon film with a thickness of 2.8 µm using a higher density resin was developed. In 2004, a 5,000 m3 balloon with the film was successfully launched, however, 60,000 m3 balloons launched in 2005, 2006, and 2007, were broken during the ascending phase. The problem was suspected to be due to the properties of the film including the uniformity and the strength, neither of which can be estimated by the conventional tensile test. Thus, we checked the strength of the film with large sample, the bi-axial tensile test properties, the creep properties, and the viscoelasticity, comparing with these to the other thick balloon films. In this conference, we are going to report our new test procedure of the balloon film, results of our current and a new 2.8 µm balloon film, and our future plan to launch the highest altitude balloon.

  13. A method for balloon trajectory control

    NASA Astrophysics Data System (ADS)

    Aaron, K. M.; Heun, M. K.; Nock, K. T.

    A balloon trajectory control system is discussed that is under development for use on NASA's Ultra Long Duration Balloon Project. The trajectory control system exploits the natural wind field variation with altitude to generate passive lateral control forces on a balloon using a tether-deployed aerodynamic surface below the balloon. A lifting device, such as a wing on end, is suspended on a tether well beneath the balloon to take advantage of this variation in wind velocity with altitude. The wing generates a horizontal lift force that can be directed over a wide range of angles. This force, transmitted to the balloon by a tether, alters the balloon's path providing a bias velocity of a few meters per second to the balloon drift rate. The trajectory control system enables the balloon to avoid hazards, reach targets, steer around avoidance countries and select convenient landing zones. No longer will balloons be totally at the mercy of the winds. Tests in April 1999 of a dynamically-scaled model of the trajectory control system were carried out by Global Aerospace Corporation in ground level winds up to 15 m/s. The size of the scale model was designed to simulate the behavior of the full scale trajectory control system operating at 20 km altitude. The model confirmed many aspects of trajectory control system performance and the results will be incorporated into future development.

  14. Solar extinction radiometry

    NASA Technical Reports Server (NTRS)

    Goldman, A.

    1981-01-01

    Work on the spectral line parameters of hydroxyl radical band was completed. The UV-visible data obtained during 1977 balloon flights were used for zone quantification. The region between from 3100 A to 3500 A appears to be the best region to use for determining ozone columns with the three wavelength method. Ozone volume mixing ratios determined for the 1977 data were compared with standard middle latitude ozone profiles. Numerous high and low Sun scans were obtained during ascent and from float altitude (1981 balloon flight) at 0.003 A resolution in the 3068 A to 3089 A region. The spectra are being studied for OH identification and quantification.

  15. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    NASA Astrophysics Data System (ADS)

    Gallice, A.; Wienhold, F. G.; Hoyle, C. R.; Immler, F.; Peter, T.

    2011-06-01

    A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ~30-35 km altitude) is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI) campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s-1 in the troposphere and 0.2 m s-1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study) in the orographically unperturbed mid-latitude middle troposphere.

  16. a Pinhole Sun Sensor for Balloon-Borne Experiment Attitude Determination

    NASA Astrophysics Data System (ADS)

    Korotkov, A. L.; English, M.-P.; Tucker, G. S.; Pascale, E.; Gandilo, N.

    2013-09-01

    We report on the design, calibration and in-flight performance of a sun sensor, which is used to determine the attitude of a balloon-borne telescope. The device uses a position-sensitive detector (PSD) in a pinhole camera. By determining the position of the image of the Sun on the PSD, the orientation of the sun sensor and the boresight of the telescope relative to the Sun can be determined. The pinhole sun sensor (PSS) was first flown in the December 2010 flight of the Balloon-borne Large Aperture Submillimeter Telescope with Polarization (BLAST-Pol). In flight the PSS achieved an accuracy (combined azimuth and elevation) of about 0.18°. The accuracy could be improved by increasing the distance between the pinhole and the PSD, but the field-of-view of the PSS would be reduced.

  17. Infrared balloon experiment: improved instrumental configuration and assessment of instrument performance.

    PubMed

    Bianchini, G; Boscaleri, A; Carli, B; Mencaraglia, F; Palchetti, L; Pascale, E

    2006-02-10

    During the 2002 environmental satellite Envisat mid-latitude validation campaign, a new upgraded configuration of the Infrared Balloon Experiment (IBEX) Fourier transform spectrometer, which had its first flight in 1978, performed a stratospheric balloon flight across the Mediterranean Sea. Among the substantial upgrades made to the instrument, the use of photon-noise-limited detectors permitted us to reach the theoretical limits in terms of signal-to-noise ratio. Also, important modifications were made to the interferometric system and electronics, such as the installation of a solid-state laser reference source and an onboard data recording system. During the flight, measurement of volume-mixing-ratio vertical profiles of O3, HNO3, N2O, and ClO from an altitude of approximately 38 km were performed with a vertical resolution of approximately 1.5 km.

  18. Balloon tracer for atmospheric pollutants

    SciTech Connect

    Lichfield, E.W.; Ivey, M.D.; Zak, B.D.; Church, H.W.

    1985-01-01

    An operational prototype of the Balloon Tracer was developed and described. This prototype was designed to be capable of meeting all of the desired specifications for the Balloon Tracer. Its buoyancy adjustment subsystem is shown. Three Gilian instrument pumps operating in parallel provide a flow of about 12 litres per minute, depending upon backpressure. The miniature Klippard mechanical valves are actuated by a servo mechanism which only requires power when the state of the valves is being changed. The balloon itself for the operational prototype is just under 3 meters in diameter. A block diagram of the operational prototype payload measures ambient pressure, temperature, and humidity obtained from AIR which outputs its data in ASCII format. The vertical anemometer, which has a measured starting speed of under 2 cm/s, makes use of a Gill styrofoam propeller and a Spaulding Instruments rotation sendor. The command decoder is built around a chip developed originally for remote control television tuners. The command receiver operating on 13.8035 MHz was developed and built by Hock Engineering. The Argos transmitter is a Telonics platform transmitter terminal. The heart of the control system is an Intel 8052AH BASIC microcomputer with both random access and read only memory.

  19. Viscoelastic behaviour of pumpkin balloons

    NASA Astrophysics Data System (ADS)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2008-11-01

    The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.

  20. High Energy Cosmic Ray Electron Spectra measured from the ATIC Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G.; Batkov, K. E.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2003-01-01

    The Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) is specifically designed for high energy cosmic ray ion detection. From simulation and a CERN beam test exposure we find that the design consisting of a graphite target and an energy detection device, a totally active calorimeter of BGO scintillator, gives us sufficient information to distinguish electrons from protons up to the TeV energy range. Balloon observations were successfully carried out over Antarctica in both 2000/2001 and 2002/2003 for a total of more than 35 days. This paper presents preliminary results on the spectrum of high energy electrons observed in the first ATIC flight.