Onyx Embolization for Isolated Type Dural Arteriovenous Fistula Using a Dual-Lumen Balloon Catheter.
Kim, Jin Woo; Kim, Byung Moon; Park, Keun Young; Kim, Dong Joon; Kim, Dong Ik
2016-05-01
Utilization of a dual-lumen balloon may improve Onyx penetration into isolated dural arteriovenous fistulas (i-DAVFs). To compare the results of Onyx embolization using a dual-lumen balloon with those using a non-balloon catheter for i-DAVFs. Twenty-nine patients underwent Onyx embolization for i-DAVFs using a non-balloon (n = 14) or a dual-lumen balloon catheter (n = 15). Since its introduction, a dual-lumen balloon catheter has been preferred. We compared the dual-lumen balloon group with the non-balloon catheter group regarding angiographic outcome, treatment-related complications, total procedural time, Onyx injection time, and the number of feeders requiring embolization. The dual-lumen balloon group showed complete occlusion of i-DAVFs in 13 and near-complete in 2 patients, while the non-balloon group showed complete occlusion in 5, near-complete in 5, and incomplete in 4 patients (P < .05). Treatment-related complications occurred in 2 patients: 1 in the non-balloon group and 1 in the dual-lumen balloon group. The mean total procedural time was 62 ± 32 minutes in the dual-lumen balloon and 171 ± 88 minutes in the non-balloon group (P < .05). The mean Onyx injection time was 10 ± 6 minutes in the dual-lumen balloon and 49 ± 32 minutes in the non-balloon group (P < .05). The median number of feeders requiring embolization was 1 (range, 1-3) in the dual-lumen balloon and 2 (range, 1-4) in the non-balloon group (P < .05). Utilization of a dual-lumen balloon catheter for Onyx embolization of i-DAVF seemed to significantly increase the immediate complete occlusion rate and decrease total procedural time, Onyx injection time, and number of feeders requiring embolization.
Telescope Systems for Balloon-Borne Research
NASA Technical Reports Server (NTRS)
Swift, C. (Editor); Witteborn, F. C. (Editor); Shipley, A. (Editor)
1974-01-01
The proceedings of a conference on the use of balloons for scientific research are presented. The subjects discussed include the following: (1) astronomical observations with balloon-borne telescopes, (2) orientable, stabilized balloon-borne gondola for around-the-world flights, (3) ultraviolet stellar spectrophotometry from a balloon platform, (4) infrared telescope for balloon-borne infrared astronomy, and (5) stabilization, pointing, and command control of balloon-borne telescopes.
ERIC Educational Resources Information Center
Balloon Council, Washington, DC.
This document provides background information on balloons including: (1) the history of balloons; (2) balloon manufacturing; (3) biodegradability; (4) the fate of latex balloons; and (5) the effect of balloons on the rainforest and sea mammals. Also included as part of this instructional kit are four fun experiments that allow students to…
NASA Astrophysics Data System (ADS)
Saito, Yoshitaka; Nakashino, Kyoichi; Akita, Daisuke; Matsushima, Kiyoho; Shimadu, Shigeyuki; Goto, Ken; Hashimoto, Hiroyuki; Matsuo, Takuma
2016-07-01
A light super-pressure balloon has been developed using a method to cover a balloon with a diamond-shaped net of high-tensile fibers. The goal is to fly a payload of 900 kg to the altitude of 37 km with a 300,000 m^{3} balloon. Beginning from a demonstration test of the net-balloon with a 10 m^{3} balloon in 2010, we have been polished the net-balloon through ground inflation tests and flight tests, including a flight test of a 3,000 m ^{3} balloon in the tandem balloon configuration with a 15,000 m^{3} zero-pressure balloon in 2012, and a flight test of a 10 m^{3} balloon in the tandem balloon configuration with a 2 kg rubber balloon in 2013, as reported in the last COSPAR. In 2014, we developed a 5,000 m^{3} balloon and performed a ground inflation test to find that the balloon burst from a lip panel for termination with a differential pressure of 425 Pa. It was due to a stress concentration at the edge of a thick tape attached along the termination mechanism. In 2015, we modified the balloon by adding tapes on the lip panel to avoid the stress concentration, and also shorten the net length to leave some margin of the film and performed a ground inflation test again to find the balloon showed asymmetrical deployment and burst from the edge of the net with a differential pressure of 348 Pa. We consider it is due to the margin of the film along the circumferential direction, and proposed a gore shape which circumference length is kept as determined by the pumpkin shape of the balloon but setting meridian length longer than that. We developed a 10 m^{3} balloon with the gore design to find that the balloon deployed symmetrically and showed the burst pressure of 10,000 Pa. In 2016, we are going to develop a 2,000 m^{3} balloon with the gore design and perform its ground inflation test. In this paper, we are going to report its result with the sequence of the development.
Properties of nylon 12 balloons after thermal and liquid carbon dioxide treatments.
Ro, Andrew J; Davé, Vipul
2013-03-01
Critical design attributes of angioplasty balloons include the following: tear resistance, high burst pressures, controlled compliance, and high fatigue. Balloons must have tear resistance and high burst pressures because a calcified stenosis can be hard and nominal pressures of up to 16 atm can be used to expand the balloon. The inflated balloon diameter must be a function of the inflation pressure, thus compliance is predictable and controlled. Reliable compliance is necessary to prevent damage to vessel walls, which may be caused by over-inflation. Balloons are often inflated multiple times in a clinical setting and they must be highly resistant to fatigue. These design attributes are dependent on the mechanical properties and polymer morphology of the balloon. The effects of residual stresses on shrinkage, crystallite orientation, balloon compliance, and mechanical properties were studied for angioplasty nylon 12 balloons. Residual stresses of these balloons were relieved by oven heat treatment and liquid CO2 exposure. Residual stresses were measured by quantifying shrinkage at 80 °C of excised balloon samples using a dynamic mechanical analyzer. Shrinkage was lower after oven heat treatment and liquid CO2 exposure compared to the as-received balloons, in the axial and radial directions. As-received, oven heat treated, and liquid CO2-exposed balloon samples exhibited similar thermal properties (T(g), T(m), X(t)). Crystallite orientation was not observed in the balloon cylindrical body using X-ray scattering and polarized light microscopy, which may be due to balloon fabrication conditions. Significant differences were not observed between the stress-strain curves, balloon compliance, and average burst pressures of the as-received, oven heat treated, and liquid CO2-exposed balloons. Copyright © 2012 Elsevier B.V. All rights reserved.
A stress index model for ascending balloons
NASA Technical Reports Server (NTRS)
Smith, I. S.
1986-01-01
Attention is given to the development on the part of NASA of a simplified stress 'index' model to establish the relative stress magnitudes along a balloon's gore position as a function of altitude. Application of this model to several hundred balloon flights showed a good correlation between balloon failure rate and stress 'index' level. This model can be used during the balloon design process to lower the levels of stress in the balloon. By increasing the wall thickness of the balloon, adding caps, lengthening caps, or using external caps, lower stress can be accomplished. As a result, in January 1985, the NASA Balloon Program established a stress index specification to limit the design and flight stresses for NASA balloons.
Soyama, Hiroaki; Miyamoto, Morikazu; Sasa, Hidenori; Ishibashi, Hiroki; Yoshida, Masashi; Nakatsuka, Masaya; Takano, Masashi; Furuya, Kenichi
2017-09-01
To evaluate the effectiveness of routine rapid insertion of a Bakri balloon during cesarean section for placenta previa based on a retrospective control study. Women with singleton pregnancies who underwent cesarean section for placenta previa at our institution between 2003 and 2016 were enrolled. Between 2015 and 2016, women who routinely underwent balloon tamponade during cesarean section were defined as the balloon group. Between 2003 and 2014, women who underwent no hemostatic procedures except balloon tamponade were defined as the non-balloon group. The clinical outcomes of the two groups were retrospectively analyzed. Of the 266 women with placenta previa, 50 were in the balloon group and 216 were in the non-balloon group. The bleeding amounts were significantly smaller in the balloon group than in the non-balloon group: intraoperative bleeding (991 vs. 1250 g, p < 0.01), postoperative bleeding (62 vs. 150 g, p < 0.01), and total bleeding (1066 vs. 1451 g, p < 0.01). Furthermore, the mean surgical duration was shorter in the balloon group than the non-balloon group (30 vs. 50 min, p < 0.01). In the balloon group, five patients suffered from increasing hemorrhage due to prolapse of the balloon from the uterus after the operation, but the hemorrhage was controlled by balloon re-insertion without additional hemostatic procedures. This study demonstrated that the routine rapid insertion of Bakri balloon tamponade during cesarean section significantly decreased intra- and postoperative hemorrhage and shortened the surgical duration in women with placenta previa.
21 CFR 870.1350 - Catheter balloon repair kit.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Catheter balloon repair kit. 870.1350 Section 870... repair kit. (a) Identification. A catheter balloon repair kit is a device used to repair or replace the balloon of a balloon catheter. The kit contains the materials, such as glue and balloons, necessary to...
21 CFR 870.1350 - Catheter balloon repair kit.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Catheter balloon repair kit. 870.1350 Section 870... repair kit. (a) Identification. A catheter balloon repair kit is a device used to repair or replace the balloon of a balloon catheter. The kit contains the materials, such as glue and balloons, necessary to...
21 CFR 870.1350 - Catheter balloon repair kit.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Catheter balloon repair kit. 870.1350 Section 870... repair kit. (a) Identification. A catheter balloon repair kit is a device used to repair or replace the balloon of a balloon catheter. The kit contains the materials, such as glue and balloons, necessary to...
Status of the NASA Balloon Program
NASA Astrophysics Data System (ADS)
Needleman, H. C.; Nock, R. S.; Bawcom, D. W.
1993-02-01
In the early 1980's the U.S. National Aeronautics and Space Administration (NASA) Balloon Program was faced with a problem of catastrophic balloon failures. In 1986 a balloon recovery program was initiated. This program included qualification of new balloon films, and investigations into materials, processing, structures and performance of balloons. This recovery program has been very successful. To date, more than 100 balloons manufactured of newly developed films have been flown with unprecedented success. There has been much progress made across the spectrum of balloon related disciplines. A new design philosophy has been developed and is being used for all NASA balloons. An updated balloon reliability and quality assurance program is in effect. The long duration balloon development project has been initiated with the first flight test having been conducted in December 1989 from Antarctica. A comprehensive research and development (R&D) effort has been initiated and is progressing well. The progress, status and future plans for these and other aspects of the NASA program, along with a description of the comprehensive balloon R&D activity, will be presented.
Controlled weather balloon ascents and descents for atmospheric research and climate monitoring
Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F.; Hall, Emrys G.; Jordan, Allen F.
2017-01-01
In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth’s surface to about 35 km (3–5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent. PMID:29263765
Controlled weather balloon ascents and descents for atmospheric research and climate monitoring.
Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F; Hall, Emrys G; Jordan, Allen F
2016-01-01
In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.
Evolution of scientific ballooning and its impact on astrophysics research
NASA Astrophysics Data System (ADS)
Jones, William Vernon
2014-05-01
As we celebrate the centennial year of the discovery of cosmic rays on a manned balloon, it seems appropriate to reflect on the evolution of ballooning and its scientific impact. Balloons have been used for scientific research since they were invented in France more than 200 years ago. Ballooning was revolutionized in 1950 with the introduction of the so-called natural shape balloon with integral load tapes. This basic design has been used with more or less continuously improved materials for scientific balloon flights for more than a half century, including long-duration balloon (LDB) flights around Antarctica for the past two decades. The U.S. National Aeronautics and Space Administration (NASA) is currently developing the next generation super-pressure balloon that would enable extended duration missions above 99.5% of the Earth's atmosphere at any latitude. The Astro2010 Decadal Survey report supports super-pressure balloon development and the giant step forward it offers with ultra-long-duration balloon (ULDB) flights at constant altitudes for about 100 days.
Investigation of hot air balloon fatalities.
McConnell, T S; Smialek, J E; Capron, R G
1985-04-01
The rising popularity of the sport of hot air ballooning has been accompanied by several recent incidents, both in this country and other parts of the world, where mechanical defects and the improper operation of balloons have resulted in several fatalities. A study was conducted to identify the location and frequency of hot air ballooning accidents. Furthermore, the study attempted to identify those accidents that were the result of improper handling on the part of the balloon operators and those that were related to specific defects in the construction of the balloon. This paper presents a background of the sport of hot air ballooning, together with an analysis of the construction of a typical hot air balloon, pointing out the specific areas where defects may occur that could result in a potential fatal balloon crash. Specific attention is given to the two recent balloon crashes that occurred in Albuquerque, N.M., hot air balloon capital of the world, and that resulted in multiple fatalities.
NASA Astrophysics Data System (ADS)
Buduru, Suneel Kumar
2016-07-01
The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) is a unique center of expertise working throughout the year to design, fabricate and launch scientific balloons mainly for space astronomy, atmospheric science and engineering experiments. Recently TIFR-BF extended its support to new user scientists for conducting balloon launches for biological and middle atmospheric sciences. For the first time two balloon launches conducted for sending live lab rats to upper stratosphere and provided launch support for different balloon campaigns such as Tropical Tropopause Dynamics (TTD) to study water vapour content in upper tropospheric and lower stratospheric regions over Hyderabad and the other balloon campaign to study the Asian Tropopause Aerosol Layer (BATAL) during the Indian summer monsoon season. BATAL is the first campaign to conduct balloon launches during active (South-West) monsoon season using zero pressure balloons of different volumes. TIFR-BF also provided zero pressure and sounding balloon support to various research institutes and organizations in India and for several international space projects. In this paper, we present details on our increased capability of balloon fabrication for carrying heavier payloads, development of high strength balloon load tapes and recent developments of flight control and safety systems. A summary of the various flights conducted in two years will be presented along with the future ballooning plans.
Clinical experience with the Monorail balloon catheter for coronary angioplasty.
Finci, L; Meier, B; Roy, P; Steffenino, G; Rutishauser, W
1988-01-01
The Monorail balloon catheter is distinctly different from other current balloon catheters: the guidewire passes through the balloon itself, exits the catheter proximal to the balloon, and runs alongside its small shaft (3 French) through the guiding catheter. Monorail coronary angioplasty was attempted in 61 patients on 73 lesions with balloons from 2.0 to 3.7 mm. Angiographic success was obtained in 66 lesions (90%). For 15 lesions, balloon exchanges were needed. In three lesions, the Monorail balloon failed to cross the lesion, while a standard balloon succeeded; two lesions could not be crossed with any balloon. Vessel occlusion occurred in four patients: two had emergency surgery without infarct (one died suddenly 4 days later and one had a stroke 1 day later), one was recanalized with a standard balloon, and one had a myocardial infarct. Continuous infusion of urokinase was used until patient 3 in whom problems with the delivery system led to cardiocerebral air embolization (with complete recovery). No thrombotic complications were observed in the subsequent 58 patients with only a bolus of 10,000 U of heparin. The Monorail balloon facilitates contrast injections and balloon exchanges but appears more difficult to pass through tight lesions. Omission of the previously recommended infusion with a thrombolytic agent proved safe.
Use of monorail PTCA balloon catheter for local drug delivery.
Trehan, Vijay; Nair, Girish M; Gupta, Mohit D
2007-01-01
We report the use of monorail coronary balloon as an infusion catheter to give bailout abciximab selectively into the site of stent thrombosis as an adjunct to plain old balloon angioplasty (POBA) in a patient of subacute stent thrombosis of the left anterior descending coronary artery. The balloon component (polyamide material) of the monorail balloon catheter was shaved off the catheter so that abciximab injected through the balloon port of the catheter exited out the shaft of the balloon catheter at the site from where the balloon material was shaved off. We believe that selective infusion with abciximab along with POBA established antegrade flow and relieved the patient's ischemia. In the absence of essential hardware to give intracoronary drugs in an emergency situation, one may employ our technique of infusion through a monorail balloon catheter after shaving the balloon component from the catheter.
Hot-Air Ballooning in Physics Teaching.
ERIC Educational Resources Information Center
Haugland, Ole Anton
1991-01-01
Describes the modern hot-air balloon and the physics of ballooning. Proposes that students construct their own hot-air balloon and presents an experiment calculating the time needed for a balloon to rise to the ceiling of a gymnasium. (MDH)
Air Force Cambridge Research Laboratories balloon operations
NASA Technical Reports Server (NTRS)
Danaher, T. J.
1974-01-01
The establishment and functions of the AFCRL balloon operations facility are discussed. The types of research work conducted by the facility are defined. The facilities which support the balloon programs are described. The free balloon and tethered balloon capabilities are analyzed.
Development of a Super-Pressure Balloon with an Improved Design
NASA Astrophysics Data System (ADS)
Izutsu, Naoki; Akita, Daisuke; Fuke, Hideyuki; Iijima, Issei; Kato, Yoichi; Kawada, Jiro; Matsushima, Kiyoho; Matsuzaka, Yukihiko; Mizuta, Eiichi; Nakada, Takashi; Nonaka, Naoki; Saito, Yoshitaka; Takada, Atsushi; Tamura, Keisuke; Yamada, Kazuhiko; Yoshida, Tetsuya
A zero-pressure balloon used for scientific observation in the stratosphere has an unmanageable limitation that its floating altitude decreases during a nighttime because of temperature drop of the lifting gas. Since a super-pressure balloon may not change its volume, the lifetime can extend very long. We had introduced so called the ‘lobed-pumpkin’ type of super-pressure balloon that can realize a full-scale long-duration balloon and it will be in practical use in the very near future. As for larger super-pressure balloons, however, we still have some potential difficulties to be resolved. We here propose a new design suitable for a larger super-pressure balloon, which is roughly ‘lobed pumpkin with lobed cylinder’ and can adapt a single design for balloons of a wide range of volumes. Indoor inflation tests were successfully carried out with balloons designed and made by the method. It has been shown that the limit of the resisting pressure differential for a new designed balloon is same as that of a normal lobed-pumpkin balloon.
Development of a 5,000 m(3) super-pressure balloon with a diamond-shaped net
NASA Astrophysics Data System (ADS)
Saito, Yoshitaka; Tanaka, Shigeki; Nakashino, Kyoichi; Matsushima, Kiyoho; Goto, Ken; Furuta, Ryosuke; Domoto, Kodai; Akita, Daisuke; Hashimoto, Hiroyuki
A light super-pressure balloon of which weight will be comparable to the weight of the zero-pressure balloon has been developed using a method to cover a balloon with a diamond-shaped net of high-tensile fibers. The goal is to fly a payload of 900 kg to the altitude of 37 km with a 300,000 m(3) balloon. A flight test of a 3,000 m(3) balloon in the tandem balloon configuration with a 15,000 m(3) zero-pressure balloon was performed in 2012. Although a small gas leak occurred in the super-pressure balloon at the differential pressure of 400 to 500 Pa, the differential pressure reached the highest value of 814 Pa and kept positive through the level flight lasting for 25 minutes due to its slow leakage. To avoid a possible stress concentration to films at the polar area, a new design setting the meridian length of the balloon gore film equal to the length of the net was adopted. A 3-m balloon with the design was developed and its capacity to resist pressure at room temperature and at -30 (°) C was checked through the ground inflation tests. In 2013, a balloon of the same model was launched in the tandem balloon configuration with 2 kg rubber balloons. It was confirmed that the balloon could withstand the maximum differential pressure of 6,280 Pa, could withstand the differential pressure of 5,600 Pa for 2 hours, and there was a small gas leak through a hole with an area of 0.4 mm(2) which was also found in the ground leakage test. These results indicated that the improvement was adequate and there was no problem for the super-pressure balloon to fly in the environment of the stratosphere except for the problem of the small gas leak. In 2014, a flight test of a 5,000 m(3) balloon will be performed. In this paper, after reviewing the method to cover a balloon with a diamond-shaped net, the current status of the development will be reported.
Flight Qualification of the NASA's Super Pressure Balloon
NASA Astrophysics Data System (ADS)
Cathey, Henry; Said, Magdi; Fairbrother, Debora
Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test flight by successfully demonstrated balloon vehicle performance, obtained a large amount of videos, measured balloon differential pressure, obtained temperature and altitude data, assessed structure strength through pressurization, and demonstrated the balloon vehicles altitude stability. This flight was the first of several to qualify this design for the science community. Results of the most recent flights will be presented. Some of the related material characterization testing which is vital to the balloon design development for the balloon will also be presented. Additionally, this paper will provide a current overview of the development and qualification approach pursued for the NASA’s Super Pressure Balloon. Future plans and goals of future test flights will also be presented. This will include the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.
Status of the NASA Balloon Program
NASA Technical Reports Server (NTRS)
Needleman, H. C.; Nock, R. S.; Bawcom, D. W.
1993-01-01
The NASA Balloon Program (BP) is examined in an overview of design philosophy, R&D activities, flight testing, and the development of a long-duration balloon for Antarctic use. The Balloon Recovery Program was developed to qualify the use of existing films and to design improved materials and seals. Balloon flights are described for studying the supernova SN1987a, and systems were developed to enhance balloon campaigns including mobile launch vehicles and tracking/data-acquisition systems. The technical approach to long-duration ballooning is reviewed which allows the use of payloads of up to 1350 kg for two to three weeks. The BP is responsible for the development of several candidate polyethylene balloon films as well as design/performance standards for candidate balloons. Specific progress is noted in reliability and in R&D with respect to optimization of structural design, resin blending, and extrusion.
GHOST balloons around Antarctica
NASA Technical Reports Server (NTRS)
Stearns, Charles R.
1988-01-01
The GHOST balloon position as a function of time data shows that the atmospheric circulation around the Antarctic Continent at the 100 mb and 200 mb levels is complex. The GHOST balloons supposedly follow the horizontal trajectory of the air at the balloon level. The position of GHOST balloon 98Q for a three month period in 1968 is shown. The balloon moved to within 2 deg of the South Pole on 1 October 1968 and then by 9 December 1968 was 35 deg from the South Pole and close to its position on 1 September 1968. The balloon generally moved from west to east but on two occasions moved in the opposite direction for a few days. The latitude of GHOST balloons 98Q and 149Z which was at 200 mb is given. Both balloons tended to get closer to the South Pole in September and October. Other GHOST balloons at the same pressure and time period may not indicate similar behavior.
Concepts for autonomous flight control for a balloon on Mars
NASA Technical Reports Server (NTRS)
Heinsheimer, Thomas F.; Friend, Robyn C.; Siegel, Neil G.
1988-01-01
Balloons operating as airborne rovers have been suggested as ideal candidates for early exploration of the Martian surface. An international study team composed of scientists from the U.S.S.R., France, and the U.S.A. is planning the launching in 1994 of a balloon system to fly on Mars. The current likely design is a dual thermal/gas balloon that consists of a gas balloon suspended above a solar-heated thermal balloon. At night, the thermal balloon provides no lift, and the balloon system drifts just above the Martian surface; the lift of the gas balloon is just sufficient to prevent the science payload from hitting the ground. During the day, the balloon system flies at an altitude of 4 to 5 kilometers, rising due to the added lift provided by the thermal balloon. Over the course of a single Martian day, there may be winds in several directions, and in fact it can be expected that there will be winds simultaneously in different directions at different altitudes. Therefore, a balloon system capable of controlling its own altitude, via an autonomous flight control system, can take advantage of these different winds to control its direction, thereby greatly increasing both its mission utility and its longevity.
Under Pressure: Intraluminal Filling Pressures of Postpartum Hemorrhage Tamponade Balloons
Antony, Kathleen M.; Racusin, Diana A.; Belfort, Michael A.; Dildy, Gary A.
2017-01-01
Objective Uterine tamponade by fluid-filled balloons is now an accepted method of controlling postpartum hemorrhage. Available tamponade balloons vary in design and material, which affects the filling attributes and volume at which they rupture. We aimed to characterize the filling capacity and pressure-volume relationship of various tamponade balloons. Study Design Balloons were filled with water ex vivo. Intraluminal pressure was measured incrementally (every 10 mL for the Foley balloons and every 50 mL for all other balloons). Balloons were filled until they ruptured or until 5,000 mL was reached. Results The Foley balloons had higher intraluminal pressures than the larger-volume balloons. The intraluminal pressure of the Sengstaken-Blakemore tube (gastric balloon) was initially high, but it decreased until shortly before rupture occurred. The Bakri intraluminal pressure steadily increased until rupture occurred at 2,850 mL. The condom catheter, BT-Cath, and ebb all had low intraluminal pressures. Both the BT-Cath and the ebb remained unruptured at 5,000 mL. Conclusion In the setting of acute hemorrhage, expeditious management is critical. Balloons that have a low intraluminal pressure-volume ratio may fill more rapidly, more easily, and to greater volumes. We found that the BT-Cath, the ebb, and the condom catheter all had low intraluminal pressures throughout filling. PMID:28497006
Nácul, Miguel Prestes; Cavazzola, Leandro Totti; Loureiro, Marcelo de Paula; Bonin, Eduardo Aimoré; Ferreira, Paulo Roberto Walter
2015-09-01
To evaluate a new, low-cost, reusable balloon trocar device for dissection of the preperitoneal space during endoscopic surgery. Twenty swine (weight: 15-37 kg) were randomized to two groups, according to whether the preperitoneal space was created with a new balloon device manufactured by Bhio-Supply (group B) or with the commercially available OMSPDB 1000® balloon device manufactured by Covidien (group C). Quality and size of the created preperitoneal space, identification of anatomic structures, balloon dissection time, total procedure time, balloon resistance and internal pressure after insufflation with 300 mL of ambient air, balloon-related complications, and procedure cost were assessed. No significant differences in dissection time, total procedure time, or size of the created preperitoneal space were found between the groups. Balloons in group B had a significantly higher internal pressure compared to balloons in group C. None of the balloons ruptured during the experiment. Three animals in group C had balloon-related peritoneal lacerations. Despite a higher individual device cost, group B had a lower procedure cost over the entire experiment. The new balloon device is not inferior to the commercially available device in terms of the safety and effectiveness for creating a preperitoneal space in swine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saini, Amarjit S.; Zhang, Geoffrey G., E-mail: geoffrey.zhang@moffitt.org; Finkelstein, Steven E.
2011-07-15
Purpose: Vaginal balloon packing is a means to displace organs at risk during high dose rate brachytherapy of the uterine cervix. We tested the hypothesis that contrast-filled vaginal balloon packing reduces radiation dose to organs at risk, such as the bladder and rectum, in comparison to water- or air-filled balloons. Methods and Materials: In a phantom study, semispherical vaginal packing balloons were filled with air, saline solution, and contrast agents. A high dose rate iridium-192 source was placed on the anterior surface of the balloon, and the diode detector was placed on the posterior surface. Dose ratios were taken withmore » each material in the balloon. Monte Carlo (MC) simulations, by use of the MC computer program DOSXYZnrc, were performed to study dose reduction vs. balloon size and contrast material, including commercially available iodine- and gadolinium-based contrast agents. Results: Measured dose ratios on the phantom with the balloon radius of 3.4 cm were 0.922 {+-} 0.002 for contrast/saline solution and 0.808 {+-} 0.001 for contrast/air. The corresponding ratios by MC simulations were 0.895 {+-} 0.010 and 0.781 {+-} 0.010. The iodine concentration in the contrast was 23.3% by weight. The dose reduction of contrast-filled balloon ranges from 6% to 15% compared with water-filled balloon and 11% to 26% compared with air-filled balloon, with a balloon size range between 1.4 and 3.8 cm, and iodine concentration in contrast of 24.9%. The dose reduction was proportional to the contrast agent concentration. The gadolinium-based contrast agents showed less dose reduction because of much lower concentrations in their solutions. Conclusions: The dose to the posterior wall of the bladder and the anterior wall of the rectum can be reduced if the vaginal balloon is filled with contrast agent in comparison to vaginal balloons filled with saline solution or air.« less
14 CFR 101.7 - Hazardous operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS General § 101.7 Hazardous operations. (a) No person may operate any moored balloon, kite, amateur rocket, or... operating any moored balloon, kite, amateur rocket, or unmanned free balloon may allow an object to be...
14 CFR 101.7 - Hazardous operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS General § 101.7 Hazardous operations. (a) No person may operate any moored balloon, kite, amateur rocket, or... operating any moored balloon, kite, amateur rocket, or unmanned free balloon may allow an object to be...
14 CFR 101.7 - Hazardous operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS General § 101.7 Hazardous operations. (a) No person may operate any moored balloon, kite, amateur rocket, or... operating any moored balloon, kite, amateur rocket, or unmanned free balloon may allow an object to be...
14 CFR 101.7 - Hazardous operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS General § 101.7 Hazardous operations. (a) No person may operate any moored balloon, kite, amateur rocket, or... operating any moored balloon, kite, amateur rocket, or unmanned free balloon may allow an object to be...
14 CFR 101.7 - Hazardous operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS General § 101.7 Hazardous operations. (a) No person may operate any moored balloon, kite, amateur rocket, or... operating any moored balloon, kite, amateur rocket, or unmanned free balloon may allow an object to be...
Code of Federal Regulations, 2013 CFR
2013-01-01
... applicable requirements of this part. (c) For purposes of this part— (1) A captive gas balloon is a balloon that derives its lift from a captive lighter-than-air gas; (2) A hot air balloon is a balloon that... STANDARDS: MANNED FREE BALLOONS General § 31.1 Applicability. (a) This part prescribes airworthiness...
Code of Federal Regulations, 2012 CFR
2012-01-01
... applicable requirements of this part. (c) For purposes of this part— (1) A captive gas balloon is a balloon that derives its lift from a captive lighter-than-air gas; (2) A hot air balloon is a balloon that... STANDARDS: MANNED FREE BALLOONS General § 31.1 Applicability. (a) This part prescribes airworthiness...
Code of Federal Regulations, 2014 CFR
2014-01-01
... applicable requirements of this part. (c) For purposes of this part— (1) A captive gas balloon is a balloon that derives its lift from a captive lighter-than-air gas; (2) A hot air balloon is a balloon that... STANDARDS: MANNED FREE BALLOONS General § 31.1 Applicability. (a) This part prescribes airworthiness...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grena, Roberto
2010-04-15
Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)
NASA balloon design and flight - Philosophy and criteria
NASA Technical Reports Server (NTRS)
Smith, I. S., Jr.
1993-01-01
The NASA philosophy and criteria for the design and flight of scientific balloons are set forth and discussed. The thickness of balloon films is standardized at 20.3 microns to isolate potential film problems, and design equations are given for specific balloon parameters. Expressions are given for: flight-stress index, total required thickness, cap length, load-tape rating, and venting-duct area. The balloon design criteria were used in the design of scientific balloons under NASA auspices since 1986, and the resulting designs are shown to be 95 percent effective. These results represent a significant increase in the effectiveness of the balloons and therefore indicate that the design criteria are valuable. The criteria are applicable to four balloon volume classes in combination with seven payload ranges.
Sahin, Tayfun; Karauzum, Kurtulus; Ural, Ertan; Pedersen, Wesley R.
2018-01-01
Percutaneous balloon pulmonary valvuloplasty is the preferred therapy for pulmonary valve stenosis. However, the designs of the cylindrical balloons historically used for valvuloplasty have limitations, especially in patients who have large pulmonary annular diameters. The hourglass-shaped V8 Aortic Valvuloplasty Balloon may prove to be an effective alternative. The balloon has 2 large bulbous segments that are separated by a narrowed waist. The geometric shape is maintained throughout inflation, improving fixation and enabling broader leaflet opening. We present our first experience with the V8 balloon in 3 adults who had severe, symptomatic pulmonary valve stenosis. In addition to describing their cases, we detail our sizing technique for pulmonary valvuloplasty with the V8 balloon. Our successful results suggest that the V8 balloon is efficient and safe for balloon pulmonary valvuloplasty in adults with severe pulmonary valve stenosis. PMID:29844739
Sinha, Santosh Kumar; Mishra, Vikas; Razi, Mahmadula; Jha, Mukesh Jitendra
2017-10-04
Transcatheter therapy of valvular pulmonary stenosis is one of first catheter interventions facilitating its application in field of structural heart disease and now treatment of choice for significant pulmonary stenosis. Myriads of balloon catheter have been used for this purpose starting from Diamond (Boston Scientific,Natick, MA USA), Marshal (Medi-Tech,Watertown MAUSA), Innoue balloon, Tyshak I and currently Tyshak II. Diameter and length of balloon depend on size of annulus and age group, respectively. Problem with shorter balloon is difficulty in keeping it across the annulus while inflation as it tends to slip distally whereas with longer balloon, potential of tricuspid leak or conduction block as it may impinge on adjacent structures. Potential advantage of Accura balloon over Tyshak balloon lies in its peculiar shape while inflation and variable diameter, making stepwise dilatation possible. Here, we report a case of successful balloon pulmonary valvuloplasty using Accura balloon (Vascular Concept, UK) with little modification of conventional technique. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Scientific Ballooning in India - Recent Developments
NASA Astrophysics Data System (ADS)
Manchanda, R. K.; Srinivasan, S.; Subbarao, J. V.
Established in 1972, the National Balloon Facility operated by TIFR in Hyderabad, India is is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, Research and Development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is a hallmark of the Hyderabad balloon facility. In the past few years we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to size of 780,000 M^3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopera, Jorge E., E-mail: Lopera@uthscsa.ed; Alvarez, Alex; Trimmer, Clayton
2009-01-15
The purpose of this study was to determine the performance of two balloon-retention-type gastrostomy tubes when the balloons are inflated with two types of contrast materials at different concentrations. Two commonly used balloon-retention-type tubes (MIC and Tri-Funnel) were inflated to the manufacturer's recommended volumes (4 and 20 cm{sup 3}, respectively) with normal saline or normal saline plus different concentrations of contrast material. Five tubes of each brand were inflated with normal saline and 0%, 25%, 50%, 75%, and 100% contrast material dilutions, using either nonionic hyperosmolar contrast, or nonionic iso-osmolar contrast. The tubes were submerged in a glass basin containingmore » a solution with a pH of 4. Every week the tubes were visually inspected to determine the integrity of the balloons, and the diameter of the balloons was measured with a caliper. The tests were repeated every week for a total of 12 weeks. The MIC balloons deflated slightly faster over time than the Tri-Funnel balloons. The Tri-Funnel balloons remained relatively stable over the study period for the different concentrations of contrast materials. The deflation rates of the MIC balloons were proportionally related to the concentration of saline and inversely related to the concentration of the contrast material. At high contrast material concentrations, solidification of the balloons was observed. In conclusion, this in vitro study confirms that the use of diluted amounts of nonionic contrast materials is safe for inflating the balloons of two types of balloon-retention feeding tubes. High concentrations of contrast could result in solidification of the balloons and should be avoided.« less
Retained intraaortic balloon. Case report and review of the literature.
Grande, A M; Martinelli, L; Graffigna, A; Viganò, M
1995-01-01
We report a case of intraaortic balloon entrapment in a 70-year-old man who underwent emergency triple coronary bypass. Intraaortic balloon rupture caused the formation of a clot inside the balloon that eventually was responsible for the balloon's entrapment at the aortic bifurcation. The patient had severe atherosclerosis of the aorta and iliac arteries. Balloon removal required aorto-iliac exposure and aorto-bifemoral bypass. After 16 months, he is symptom free and at home.
Scientific ballooning in India Recent developments
NASA Astrophysics Data System (ADS)
Manchanda, R. K.
Established in 1971, the National Balloon Facility operated by TIFR in Hyderabad, India, is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, research and development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is its hallmark. In the past few years, we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m 3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.
Secco, Gioel Gabrio; Ghione, Matteo; Mattesini, Alessio; Dall'Ara, Gianni; Ghilencea, Liviu; Kilickesmez, Kadriye; De Luca, Giuseppe; Fattori, Rossella; Parisi, Rosario; Marino, Paolo Nicola; Lupi, Alessandro; Foin, Nicolas; Di Mario, Carlo
2016-06-20
Calcific coronary lesions impose a rigid obstacle to optimal balloon and stent expansion and the 20 to 30 atm limit that non-compliant (NC) balloons reach can be insufficient. The aim of our study was to evaluate the safety and efficacy of a new dedicated super high-pressure NC balloon (OPN NC®; SIS Medical AG, Winterthur, Switzerland). We retrospectively evaluated a consecutive series of 91 lesions in which conventional NC balloons at maximal pressure failed to achieve an adequate post-dilatation luminal gain and were therefore treated with an OPN NC balloon up to 40 atm. Angiographic success was defined as residual angiographic diameter stenosis <30%. MLD and %DS were measured at baseline, after NC balloon, OPN NC balloon and stent implantation. Angiographic success was achieved in 84 lesions (92.3%). All of the remaining lesions received rotational atherectomy with the exception of two cases in which rotational atherectomy was not attempted because of small vessel size and excessive tortuosity. MLD and acute gain were significantly greater and %DS was significantly lower post OPN NC balloon compared with conventional NC balloon inflation (p<0.001). No coronary perforations occurred. No acute or 30-day follow-up MACE was reported. When conventional NC balloons fail, the new OPN NC dedicated high-pressure balloon provides an effective and safe alternative strategy for the dilatation of resistant coronary lesions.
Stability analysis and trend study of a balloon tethered in a wind, with experimental comparisons
NASA Technical Reports Server (NTRS)
Redd, L. T.; Bland, S. R.; Bennett, R. M.
1973-01-01
A stability analysis and trend study for a balloon tethered in a steady wind are presented. The linearized, stability-derivative type analysis includes balloon aerodynamics, buoyancy, mass (including apparent mass), and static forces resulting from the tether cable. The analysis has been applied to a balloon 7.64 m in length, and the results are compared with those from tow tests of this balloon. This comparison shows that the analysis gives reasonable predictions for the damping, frequencies, modes of motion, and stability boundaries exhibited by the balloon. A trend study for the 7.64-m balloon was made to illustrate how the stability boundaries are affected by changes in individual stability parameters. The trends indicated in this study may also be applicable to many other tethered-balloon systems.
A comparative study of internally and externally capped balloons using small scale test balloons
NASA Technical Reports Server (NTRS)
Bell, Douglas P.
1994-01-01
Caps have been used to structurally reinforce scientific research balloons since the late 1950's. The scientific research balloons used by the National Aeronautics and Space Administration (NASA) use internal caps. A NASA cap placement specification does not exist since no empirical information exisits concerning cap placement. To develop a cap placement specification, NASA has completed two in-hangar inflation tests comparing the structural contributions of internal caps and external caps. The tests used small scale test balloons designed to develop the highest possible stresses within the constraints of the hangar and balloon materials. An externally capped test balloon and an internally capped test balloon were designed, built, inflated and simulated to determine the structural contributions and benefits of each. The results of the tests and simulations are presented.
Scientific Balloons for Venus Exploration
NASA Astrophysics Data System (ADS)
Cutts, James; Yavrouian, Andre; Nott, Julian; Baines, Kevin; Limaye, Sanjay; Wilson, Colin; Kerzhanovich, Viktor; Voss, Paul; Hall, Jeffery
Almost 30 years ago, two balloons were successfully deployed into the atmosphere of Venus as an element of the VeGa - Venus Halley mission conducted by the Soviet Union. As interest in further Venus exploration grows among the established planetary exploration agencies - in Europe, Japan, Russia and the United States, use of balloons is emerging as an essential part of that investigative program. Venus balloons have been proposed in NASA’s Discovery program and ESA’s cosmic vision program and are a key element in NASA’s strategic plan for Venus exploration. At JPL, the focus for the last decade has been on the development of a 7m diameter superpressure pressure(twice that of VeGa) capable of carrying a 100 kg payload (14 times that of VeGA balloons), operating for more than 30 days (15 times the 2 day flight duration of the VeGa balloons) and transmitting up to 20 Mbit of data (300 times that of VeGa balloons). This new generation of balloons must tolerate day night transitions on Venus as well as extended exposure to the sulfuric acid environment. These constant altitude balloons operating at an altitude of about 55 km on Venus where temperatures are benign can also deploy sondes to sound the atmosphere beneath the probe and deliver deep sondes equipped to survive and operate down to the surface. The technology for these balloons is now maturing rapidly and we are now looking forward to the prospects for altitude control balloons that can cycle repeatedly through the Venus cloud region. One concept, which has been used for tropospheric profiling in Antarctica, is the pumped-helium balloon, with heritage to the anchor balloon, and would be best adapted for flight above the 55 km level. Phase change balloons, which use the atmosphere as a heat engine, can be used to investigate the lower cloud region down to 30 km. Progress in components for high temperature operation may also enable investigation of the deep atmosphere of Venus with metal-based balloons.
Ballooning Then...and Ballooning Now.
ERIC Educational Resources Information Center
Journal of Aerospace Education, 1978
1978-01-01
Describes the history of hot-air balloon travel, starting with its French origins and continuing through to the 1978 national championship. An address for Balloon Federation of America membership is included. (MA)
Single balloon versus double balloon bipedicular kyphoplasty: a systematic review and meta-analysis.
Jing, Zehao; Dong, Jianli; Li, Zhengwei; Nan, Feng
2018-06-19
Kyphoplasty has been widely used to treat vertebral compression fractures (VCFs). In standard procedure of kyphoplasty, two balloons were inserted into the vertebral body through bipedicular and inflated simultaneously, while using a single balloon two times is also a common method in clinic to lessen the financial burden of patients. However, the effect and safety of single balloon versus double balloon bipedicular kyphoplasty are still controversy. In this systematic review and meta-analysis, eligible studies were identified through a comprehensive literature search of PubMed, Cochrane library EMBASE, Web of Science, Wanfang, CNKI, VIP and CBM until January 1, 2018. Results from individual studies were pooled using a random or fixed effects model. Seven articles were included in the systematic review and five studies were consisted in meta-analysis. We observed no significant difference between single balloon and double balloon bipedicular kyphoplasty in visual analog scale (VAS), angle (kyphotic angle and Cobb angle), consumption (operation time, cement volume and volume of bleeding), vertebral height (anterior height, medium height and posterior height) and complications (cement leakage and new VCFs), while the cost of single balloon bipedicular kyphoplasty is lower than that of double balloon bipedicular kyphoplasty. The results of our meta-analysis also demonstrated that single balloon can significantly improve the VAS, angle and vertebral height of patients suffering from VCFs. This systematic review and meta-analysis collectively concludes that single balloon bipedicular kyphoplasty is as effective as double balloon bipedicular kyphoplasty in improving clinical symptoms, deformity and complications of VCFs but not so expensive. These slides can be retrieved under Electronic Supplementary Material.
Retained intraaortic balloon. Case report and review of the literature.
Grande, A M; Martinelli, L; Graffigna, A; Viganò, M
1995-01-01
We report a case of intraaortic balloon entrapment in a 70-year-old man who underwent emergency triple coronary bypass. Intraaortic balloon rupture caused the formation of a clot inside the balloon that eventually was responsible for the balloon's entrapment at the aortic bifurcation. The patient had severe atherosclerosis of the aorta and iliac arteries. Balloon removal required aorto-iliac exposure and aorto-bifemoral bypass. After 16 months, he is symptom free and at home. Images PMID:8605436
The French balloon and sounding rocket space program
NASA Astrophysics Data System (ADS)
Coutin/Faye, S.; Sadourny, I.
1987-08-01
Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.
Calculating Payload for a Tethered Balloon System
Charles D. Tangren
1980-01-01
A graph method to calculate payload for a tethered balloon system, with the supporting helium lift and payload equations. is described. The balloon system is designed to collect emissions data during the convective-lift and no-convective-lift phases of a forest fire. A description of the balloon system and a list of factors affecting balloon selection are included....
NASA Astrophysics Data System (ADS)
Riedler, W.; Torkar, K.
1996-05-01
This issue is grouped into sections on materials, design, performance and analysis of balloons, reviews of major national and international balloon programmes, novel instrumentation and systems for scientific ballooning, and selected recent scientific observations.
Accurate Determination of the Volume of an Irregular Helium Balloon
ERIC Educational Resources Information Center
Blumenthal, Jack; Bradvica, Rafaela; Karl, Katherine
2013-01-01
In a recent paper, Zable described an experiment with a near-spherical balloon filled with impure helium. Measuring the temperature and the pressure inside and outside the balloon, the lift of the balloon, and the mass of the balloon materials, he described how to use the ideal gas laws and Archimedes' principal to compute the average molecular…
The National Scientific Balloon Facility. [balloon launching capabilities of ground facility
NASA Technical Reports Server (NTRS)
Kubara, R. S.
1974-01-01
The establishment and operation of the National Scientific Balloon Facility are discussed. The balloon launching capabilities are described. The ground support systems, communication facilities, and meteorological services are analyzed.
Esrange Space Center, a Gate to Space
NASA Astrophysics Data System (ADS)
Widell, Ola
Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.
Investigating Diffusion and Entropy with Carbon Dioxide-Filled Balloons
ERIC Educational Resources Information Center
Jadrich, James; Bruxvoort, Crystal
2010-01-01
Fill an ordinary latex balloon with helium gas and you know what to expect. Over the next day or two the volume will decrease noticeably as helium escapes from the balloon. So what happens when a latex balloon is filled with carbon dioxide gas? Surprisingly, carbon dioxide balloons deflate at rates as much as an order of magnitude faster than…
Current trends of balloon laryngoplasty in Thailand.
Moungthong, Greetha; Bunbanjerdsuk, Sacarin; Wright, Nida; Sathavornmanee, Thanakrit; Setabutr, Dhave
2017-06-01
To describe the current trend in balloon laryngoplasty usage and experience by practicing otolaryngologists in Thailand. Anonymous 11 question online and paper survey of otolaryngologists on their current balloon laryngoplasty practices. Current practices and experience in balloon laryngoplasty were queried with multiple choice and open-ended questions. Laser use is the most commonly utilized instrument to treat airway stenosis in Thailand. 86% of respondents do not have experience with balloon dilatation; yet, almost half (47.6%) report they perform a minimum of five airway surgeries per year. Most respondents had been in practice for less than 6 years (41%) and reported that they did not have exposure to balloon use during residency training. The largest barrier reported for the use of balloon instrumentation in the airway is inexperience (44.4%) followed by cost (38.3%), yet most feel that treatment in airway stenosis could benefit by usage of balloons (95.5%). Most otolaryngologists in Thailand do not have experience with the use of balloon dilatation and lack of exposure remains the largest barrier to its use. Otolaryngologists in Thailand feel that increased usage of balloons in the airway could improve airway stenosis treatment in the country.
NASA Astrophysics Data System (ADS)
Yoshida, Tetsuya; Fuke, Hideyuki; Shoji, Yasuhiro; Iijima, Issei; Izutsu, Naoki; Kato, Yoichi; Matsuzaka, Yukihiko; Mizuta, Eiichi; Sato, Takatoshi; Tamura, Keisuke; Saito, Yoshitaka; Kakehashi, Yuya
2012-07-01
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency conducts domestic balloon campaigns at Taiki Aerospace Research Field (TARF) in Hokkaido since 2008. The ballooning at TARF becomes stable after four year operation. Because the field faces to the Pacific Ocean, heavy balloons and payloads can be launched safely using a very unique sliding launcher. Recoveries at the inshore along the Tokachi coast can be done very quickly and smoothly. Unfortunately, flight opportunities are recently limited due to unfriendly weather condition. Unstable Jet stream also prevents us to have so-called `boomerang flight' to achieve long flight duration more than several hours. Six balloon-borne experiments were carried out in 2010 and 2011. Three of them were demonstrations of challenges of space engineering, two were in-situ atmospheric observation, and one was the technical flight of new high-resolution γ-ray telescope. In addition to these flights, we carried out two launches for next generation balloons: one for Tawara-shaped superpressure balloon and the other for ultra-thin high-altitude balloon. In this paper, recent activities of the Japanese scientific balloon program will be introduced. On-going development of the balloon system will also be presented.
Development of a super-pressure balloon with a diamond-shaped net
NASA Astrophysics Data System (ADS)
Saito, Y.; Iijima, I.; Matsuzaka, Y.; Matsushima, K.; Tanaka, S.; Kajiwara, K.; Shimadu, S.
2014-10-01
The essential reason of the lobed-pumpkin shaped super-pressure balloon to withstand against the high pressure is that the local curvature of the balloon film is kept small. Recently, it has been found that the small local curvature can also be obtained if the balloon is covered by a diamond-shaped net with a vertically elongated shape. The development of the super-pressure balloon using this method was started from a 3-m balloon with a polyethylene film covered by a net using Kevlar ropes. The ground inflation test showed the expected high burst pressure. Then, a 6-m and a 12-m balloon using a polyethylene film and a net using the Vectran were developed and stable deployment was checked through the ground inflation tests. The flight test of a 3000 m3 balloon was performed in 2013 and shown to resist a pressure of at least 400 Pa. In the future, after testing a new design to relax a possible stress concentration around the polar area, test flights of scaled balloons will be performed gradually enlarging their size. The goal is to launch a 300,000 m3 super-pressure balloon.
Hu, Hong-Tao; Shin, Ji Hoon; Kim, Jin-Hyoung; Jang, Jong Keon; Park, Jung-Hoon; Kim, Tae-Hyung; Nam, Deok Ho; Song, Ho-Young
2015-07-01
We aimed to evaluate the safety and clinical effectiveness of fluoroscopically guided large balloon dilatation for treating congenital esophageal stenosis in children. Our study included seven children (mean age 4.0 years) who underwent a total of ten balloon dilatation sessions. The initial balloon diameters were 10-15 mm. The technical success, clinical success (improved food intake and reduced dysphagia within 1 month following the first balloon dilatation), dysphagia recurrence, and complications were retrospectively evaluated. Technical and clinical success rates were 100 %. During the mean 38-month follow-up period after the first balloon dilatation, 3 (43 %) patients underwent only one additional balloon dilatation 4-5 months after the first balloon dilatation for dysphagia recurrence. Two of them showed improvement without further recurrence, while the remaining one underwent partial esophagectomy. Well-contained transmural esophageal rupture (type 2) occurred in two (29 %, 2/7) patients and during two (20 %, 2/10) balloon dilatation sessions. All ruptures were successfully treated conservatively. Our study showed that fluoroscopically guided large balloon dilatation seems to be a simple and effective primary treatment technique for congenital esophageal stenosis in children. Esophageal ruptures were not uncommon although they were not fatal.
Wang, Dongyu; Xu, Shuqia; Qiu, Xiwen; Zhu, Caixia; Li, Zhuyu; Wang, Zilian; Hou, Hongying; Gao, Yu; Wang, Xiaoyi; He, Ping; Qin, Yiwei; Liu, Lihua
2017-12-18
To evaluate the success rate and protocol of the Bakri balloon for postpartum hemorrhage (PPH) in the course of a prospective observational multicenter cohort study in South China. At 20 hospitals in South China, women with postpartum bleeding who failed to respond to the first-line conservative management and received the Bakri balloon were recruited for the study. Maternal characteristics, PPH characteristics, PPH management and outcomes in regard to the Bakri balloon use were recorded. A total of 472 women had a Bakri balloon tamponade and 407 (86.23%) women were enrolled (67 after vaginal delivery and 340 either during or after cesarean delivery). The success rate of the Bakri balloon in this study was 91.65% (373/407 women). During vaginal deliveries, the group with a hemorrhage >2000 mL before balloon insertion had significantly more blood loss (551.67±635.17 mL vs. 242.06±313.69 mL, P=0.039) and lower maternal hemoglobin (73±21.77 g/L vs. 92.06±19.60 g/L, P=0.029) after using Bakri balloon than the group with a hemorrhage <1000 mL. Similar data were found during cesarean deliveries. The blood loss before and after balloon insertion were significantly higher in the Bakri balloon failure group (1700±1429.88 mL before and 1209.58±1139.72 mL after using the balloon) than those in the success group [918±493.92 mL before (P=0.002) and 266.57±361.60 mL after using the balloon (P=0.001)]. Rapid diagnosis or prognosis of PPH, in combination with early usage of the Bakri postpartum balloon is more effective for the management of PPH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimatsu, Rika; Yamagami, Takuji, E-mail: yamagami@kochi-u.ac.jp; Ishikawa, Masaki
2016-06-15
PurposeTo evaluate changes in imaging findings on CT during hepatic arteriography (CTHA) and CT during arterial portography (CTAP) by balloon occlusion of the treated artery and their relationship with iodized oil accumulation in the tumor during balloon-occluded transcatheter arterial chemoembolization (B-TACE).MethodsBoth B-TACE and angiography-assisted CT were performed for 27 hepatocellular carcinomas. Tumor enhancement on selective CTHA with/without balloon occlusion and iodized oil accumulation after B-TACE were evaluated. Tumorous portal perfusion defect size on CTAP was compared with/without balloon occlusion. Factors influencing discrepancies between selective CTHA with/without balloon occlusion and the degree of iodized oil accumulation were investigated.ResultsAmong 27 tumors, tumormore » enhancement on selective CTHA changed after balloon occlusion in 14 (decreased, 11; increased, 3). In 18 tumors, there was a discrepancy between tumor enhancement on selective CTHA with balloon occlusion and the degree of accumulated iodized oil, which was higher than the tumor enhancement grade in all 18. The tumorous portal perfusion defect on CTAP significantly decreased after balloon occlusion in 18 of 20 tumors (mean decrease from 21.9 to 19.1 mm in diameter; p = 0.0001). No significant factors influenced discrepancies between selective CTHA with/without balloon occlusion. Central area tumor location, poor tumor enhancement on selective CTHA with balloon occlusion, and no decrease in the tumorous portal perfusion defect area on CTAP after balloon occlusion significantly influenced poor iodized oil accumulation in the tumor.ConclusionsTumor enhancement on selective CTHA frequently changed after balloon occlusion, which did not correspond to accumulated iodized oil in most cases.« less
Testing of the Anorectal and Pelvic Floor Area
... minutes and is well tolerated by most people. Balloon capacity and compliance A balloon capacity and compliance ... while measurements of volume and pressure are recorded. Balloon evacuation study A balloon evacuation study tests pelvic ...
On the response of superpressure balloons to displacements from equilibrium density level
NASA Technical Reports Server (NTRS)
Levanon, N.; Kushnir, Y.
1976-01-01
The response of a superpressure balloon to an initial displacement from its constant-density floating level is examined. An approximate solution is obtained to the governing vertical equation of motion for constant-density superpressure balloons. This solution is used to filter out neutrally buoyant oscillations in balloon records despite the nonlinear behavior of the balloon. The graph depicting the pressure data after deconvolution between the raw pressure data and the normalized balloon wavelet shows clearly the strong filtering-out of the neutral buoyancy oscillations.
Recent Developments in Balloon Support Instrumentation at TIFR Balloon Facility, Hyderabad.
NASA Astrophysics Data System (ADS)
Vasudevan, Rajagopalan
2012-07-01
The Balloon Facility of Tata Institute of Fundamental Research has been conducting stratospheric balloon flights regularly for various experiments in Space Astronomy and Atmospheric Sciences. A continuous improvement in Balloon flight Support instrumentation by the Control Instrumentation Group to keep in space with the growing complexities of the scientific payloads have contributed to the total success of balloon flights conducted recently. Recent improvements in display of Balloon position during balloon flight by showing on real time the balloon GPS position against Google TM maps is of immense help in selecting the right spot for payload landing and safe recovery . For further speeding up the payload recovery process, a new GPS-GSM payload system has been developed which gives SMS of the payload position information to the recovery team on their cell phones. On parallel footing, a new GPS- VHF system has been developed using GPS and Radio Modems for Balloon Tracking and also for obtaining the payload impact point. On the Telecommand side, a single board Telecommand/ Timer weighing less than 2 Kg has been specially developed for use in the mesosphere balloon test flight. The interference on the existing Short Range Telemetry System has been eliminated by introducing a Band Pass Filter and LNA in the Receiving system of the modules, thereby enhancing its reliability. In this paper , we present the details of the above mentioned developments.
Embolization of direct carotid cavernous fistulas with the novel double-balloon technique
Niu, Yin; Li, Lin; Tang, Jun; Zhu, Gang
2015-01-01
Multiple endovascular management of direct carotid cavernous fistula (CCF) has been widely accepted as a treatment option. Embolization of the fistula with detachable balloons or thrombogenic coil-based occlusion has been the main choice to treat direct CCF, with good safety and efficacy. This study investigated the safety and efficacy of embolization of direct CCF with the novel double-balloon technique. A retrospective review of a prospective database on cerebral vascular disease was performed. We identified a total of five patients presenting with high-flow direct CCF. All patients were managed with transarterial embolization with the novel double-balloon technique. Three of the five patients were treated with two detachable balloons, and a completely occluded fistula with preservation of the internal carotid artery was achieved. Of the remaining two patients treated with more detachable balloons, one patient achieved a perfect outcome and the other one suffered from recurrent fistula due to balloon migration 3 weeks after embolization. During a follow-up period of 12–18 months, no symptoms reoccurred in any patient. Thus, the double-balloon treatment may be a promising method for CCF complete occlusion. This novel technique may bring more benefits in the following two cases: 1). A single inflated detachable balloon fails to completely occlude the CCF, which causing the next balloon can not pass into the fistula. 2). A giant CCF needs more balloons for fistula embolization. PMID:26586136
A buoyant tornado-probe concept incorporating an inverted lifting device. [and balloon combination
NASA Technical Reports Server (NTRS)
Grant, F. C.
1973-01-01
Addition of an inverted lifting device to a simple balloon probe is shown to make possible low-altitude entry to tornado cores with easier launch conditions than for the simple balloon probe. Balloon-lifter combinations are particularly suitable for penetration of tornadoes with average to strong circulation, but tornadoes of less than average circulation which are inaccessible to simple balloon probes become accessible. The increased launch radius which is needed for access to tornadoes over a wide range of circulation results in entry times of about 3 minutes. For a simple balloon probe the uninflated balloon must be first dropped on, or near, the track of the tornado from a safe distance. The increase in typical launch radius from about 0.75 kilometer to slightly over 1.0 kilometer with a balloon-lifter combination suggests that a direct air launch may be feasible.
NASA Technical Reports Server (NTRS)
Shibasaki, K.; Iwagami, N.; Ogawa, T.
1985-01-01
As a part of the Japanese activities of MAP in the Antarctica, balloon-borne measurements of the stratospheric NO2 profile were planned and carried out by the JARE 23rd and 24th wintering parties. Few results have been reported so far as the stratospheric NO2 profile at high latitude. There were no reported balloon measurements carried out in the Southern Hemisphere. Profiles are presented for the first balloon-borne measurement of the stratospheric NO2 in the Antarctica. Three balloons named JA21, JA25 and JA26 were launched from Syowa Station (69 deg S, 35.6 deg E) using 5000 cu. cm plastic balloons. JA21 balloon was launched on November 24, 1982, and JA25 and JA26 balloons on November 12 and 20, 1983, respectively.
European Venus Explorer: An in-situ mission to Venus using a balloon platform
NASA Astrophysics Data System (ADS)
Chassefière, E.; Korablev, O.; Imamura, T.; Baines, K. H.; Wilson, C. F.; Titov, D. V.; Aplin, K. L.; Balint, T.; Blamont, J. E.; Cochrane, C. G.; Ferencz, Cs.; Ferri, F.; Gerasimov, M.; Leitner, J. J.; Lopez-Moreno, J.; Marty, B.; Martynov, M.; Pogrebenko, S. V.; Rodin, A.; Whiteway, J. A.; Zasova, L. V.; the EVE Team
2009-07-01
Planetary balloons have a long history already. A small super-pressure balloon was flown in the atmosphere of Venus in the eighties by the Russian-French VEGA mission. For this mission, CNES developed and fully tested a 9 m diameter super-pressure balloon, but finally replaced it by a smaller one due to mass constraints (when it was decided to send Vega to Halley's Comet). Furthermore, several kinds of balloons have been proposed for planetary exploration [Blamont, J., in: Maran, S.P. (Ed.), The Astronomy and Astrophysics Encyclopedia. Cambridge University Press, p. 494, 1991]. A Mars balloon has been studied for the Mars-94 Russian-French mission, which was finally cancelled. Mars and Venus balloons have also been studied and ground tested at JPL, and a low atmosphere Venus balloon is presently under development at JAXA (the Japanese Space Agency). Balloons have been identified as a key element in an ongoing Flagship class mission study at NASA, with an assumed launch date between 2020 and 2025. Recently, it was proposed by a group of scientists, under European leadership, to use a balloon to characterize - by in-situ measurements - the evolution, composition and dynamics of the Venus atmosphere. This balloon is part of a mission called EVE (European Venus Explorer), which has been proposed in response to the ESA AO for the first slice of the Cosmic Vision program by a wide international consortium including Europe, Russia, Japan and USA. The EVE architecture consists of one balloon platform floating at an altitude of 50-60 km, one short lived probe provided by Russia, and an orbiter with a polar orbit to relay data from the balloon and probe, and to perform remote sensing science observations. The balloon type preferred for scientific goals is one, which would oscillate in altitude through the cloud deck. To achieve this flight profile, the balloon envelope would contain a phase change fluid. While this proposal was not selected for the first slice of Cosmic Vision missions, it was ranked first among the remaining concepts within the field of solar system science.
Jagadeesan, Bharathi D; Grigoryan, Mikayel; Hassan, Ameer E; Grande, Andrew W; Tummala, Ramachandra P
2013-12-01
Ethylene vinyl alcohol copolymer (Onyx) is widely used for the embolization of arteriovenous malformations (AVMs) of the brain, head, and neck. Balloon-assisted Onyx embolization may provide additional unique advantages in the treatment of AVMs in comparison with traditional catheter-based techniques. To report our initial experience in performing balloon-assisted AVM embolization for brain and neck AVMs with the use of the new Scepter-C and Scepter-XC coaxial dual-lumen balloon microcatheters. Balloon-assisted transarterial embolization was performed in a series of 7 patients with AVMs (4 with brain AVMs, 1 with a dural arteriovenous fistula, and 2 with neck AVMs) by using Onyx delivered through the lumen of Scepter-C or Scepter XC coaxial balloon microcatheters. Following the initial balloon-catheter navigation into a feeding artery and the subsequent inflation of the balloon, the embolization was performed by using Onyx 18, Onyx 34, or both. A total of 12 embolization sessions were performed via 17 arterial feeders in these 7 patients. In 1 patient, there was an arterial perforation from the inflation of the balloon; in all others, the embolization goals were successfully achieved with no adverse events. The balloon microcatheters showed excellent navigability, and there were no problems with retrieval or with the repeated inflation and deflation of the balloons. A proximal Onyx plug, which is crucial in many AVM embolizations, was not necessary with this technique. Additionally, fluoroscopy and procedural times seemed lower with this technique compared with conventional embolization methods.
Aye, Thin Pa Pa; Htet, Zwe Lin; Singhavilai, Thamvarit; Naiyanetr, Phornphop
2015-01-01
Intra-aortic balloon pump (IABP) has been used in clinical treatment as a mechanical circulatory support device for patients with heart failure. A computer model is used to study the effect on coronary blood flow (CBF) with different balloon cycles under both normal and pathological conditions. The model of cardiovascular and IABP is developed by using MATLAB SIMULINK. The effect on coronary blood flow has been studied under both normal and pathological conditions using different balloon cycles (balloon off; 1:4; 1:2; 1:1). A pathological heart is implemented by reducing the left ventricular contractility. The result of this study shows that the rate of balloon cycles is related to the level of coronary blood flow.
Thermal performance modeling of NASA s scientific balloons
NASA Astrophysics Data System (ADS)
Franco, H.; Cathey, H.
The flight performance of a scientific balloon is highly dependant on the interaction between the balloon and its environment. The balloon is a thermal vehicle. Modeling a scientific balloon's thermal performance has proven to be a difficult analytical task. Most previous thermal models have attempted these analyses by using either a bulk thermal model approach, or by simplified representations of the balloon. These approaches to date have provided reasonable, but not very accurate results. Improvements have been made in recent years using thermal analysis tools developed for the thermal modeling of spacecraft and other sophisticated heat transfer problems. These tools, which now allow for accurate modeling of highly transmissive materials, have been applied to the thermal analysis of NASA's scientific balloons. A research effort has been started that utilizes the "Thermal Desktop" addition to AUTO CAD. This paper will discuss the development of thermal models for both conventional and Ultra Long Duration super-pressure balloons. This research effort has focused on incremental analysis stages of development to assess the accuracy of the tool and the required model resolution to produce usable data. The first stage balloon thermal analyses started with simple spherical balloon models with a limited number of nodes, and expanded the number of nodes to determine required model resolution. These models were then modified to include additional details such as load tapes. The second stage analyses looked at natural shaped Zero Pressure balloons. Load tapes were then added to these shapes, again with the goal of determining the required modeling accuracy by varying the number of gores. The third stage, following the same steps as the Zero Pressure balloon efforts, was directed at modeling super-pressure pumpkin shaped balloons. The results were then used to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. The development of the radiative environment and program input files, the development of the modeling techniques for balloons, and the development of appropriate data output handling techniques for both the raw data and data plots will be discussed. A general guideline to match predicted balloon performance with known flight data will also be presented. One long-term goal of this effort is to develop simplified approaches and techniques to include results in performance codes being developed.
Solar energy collector including a weightless balloon with sun tracking means
Hall, Frederick F.
1978-01-01
A solar energy collector having a weightless balloon, the balloon including a transparent polyvinylfluoride hemisphere reinforced with a mesh of ropes secured to its outside surface, and a laminated reflector hemisphere, the inner layer being clear and aluminized on its outside surface and the outer layer being opaque, the balloon being inflated with lighter-than-air gas. A heat collection probe extends into the balloon along the focus of reflection of the reflective hemisphere for conducting coolant into and out of the balloon. The probe is mounted on apparatus for keeping the probe aligned with the sun's path, the apparatus being founded in the earth for withstanding wind pressure on the balloon. The balloon is lashed to the probe by ropes adhered to the outer surface of the balloon for withstanding wind pressures of 100 miles per hour. Preferably, the coolant is liquid sodium-potassium eutectic alloy which will not normally freeze at night in the temperate zones, and when heated to 4,000.degree. R exerts a pressure of only a few atmospheres.
Ballooning Comes of Age: Make Your Own Balloon.
ERIC Educational Resources Information Center
Eckford, Jim
1983-01-01
Provides instructions for building a working model of a hot-air balloon, offering suggestions for a successful flight. Indicates that children can be involved in the projects, for example, by filling in colors in the panels of a balloon drawing. (JN)
Flow Past a Descending Balloon
NASA Technical Reports Server (NTRS)
Baginski, Frank
2001-01-01
In this report, we present our findings related to aerodynamic loading of partially inflated balloon shapes. This report will consider aerodynamic loading of partially inflated inextensible natural shape balloons and some relevant problems in potential flow. For the axisymmetric modeling, we modified our Balloon Design Shape Program (BDSP) to handle axisymmetric inextensible ascent shapes with aerodynamic loading. For a few simple examples of two dimensional potential flows, we used the Matlab PDE Toolbox. In addition, we propose a model for aerodynamic loading of strained energy minimizing balloon shapes with lobes. Numerical solutions are presented for partially inflated strained balloon shapes with lobes and no aerodynamic loading.
Poder, Thomas G; Fisette, Jean-François
2016-07-01
To perform a cost-effectiveness analysis to help hospital decision-makers with regard to the use of drug-coated balloons compared with bare metal stents and uncoated balloons for femoropopliteal occlusive disease. Clinical outcomes were extracted from the results of meta-analyses already published, and cost units are those used in the Quebec healthcare network. The literature review was limited to the last four years to obtain the most recent data. The cost-effectiveness analysis was based on a 2-year perspective, and risk factors of reintervention were considered. The cost-effectiveness analysis indicated that drug-coated balloons were generally more efficient than bare metal stents, particularly for patients with higher risk of reintervention (up to CAD$1686 per patient TASC II C or D). Compared with uncoated balloons, results indicated that drug-coated balloons were more efficient if the reintervention rate associated with uncoated balloons is very high and for patients with higher risk of reintervention (up to CAD$3301 per patient). The higher a patient's risk of reintervention, the higher the savings associated with the use of a drug-coated balloon will be. For patients at lower risk, the uncoated balloon strategy is still recommended as a first choice for endovascular intervention.
Hot-air balloon tours: crash epidemiology in the United States, 2000-2011.
Ballard, Sarah-Blythe; Beaty, Leland P; Baker, Susan P
2013-11-01
Hot-air balloon tours are FAR Part 91-governed balloon rides conducted for compensation or hire. Part 91, General Aviation, in general involves the least strict federal regulations and accounts for the majority of aviation crashes and fatalities. National Transportation Safety Board reports of hot-air balloon tour crashes in the United States from 2000 through 2011 were read and analyzed. During the 12-yr period, 78 hot-air balloon tours crashed, involving 518 occupants. There were 91 serious injuries and 5 fatalities; 83% of crashes resulted in one or more serious or fatal outcomes. Of the serious injuries characterized, 56% were lower extremity fractures. Most crashes (81%) occurred during landing; 65% involved hard landings. Fixed object collisions contributed to 50% of serious injuries and all 5 fatalities. During landing sequences, gondola dragging, tipping, bouncing, and occupant ejection were associated with poor outcomes. Of the crashes resulting in serious or fatal outcomes, 20% of balloons were significantly damaged or destroyed. The incidence of morbidity and mortality is high among hot-air balloon tour crashes, and the proportion of balloon crashes attributed to paid rides appears to have increased over time. In addition to examining the role of restraint systems, personal protective equipment, and power line emergency procedures in ballooning, injury prevention efforts should target factors such hard landings, object strikes, gondola instability, and occupant ejections, which are associated with balloon injuries and deaths. Crash outcomes may also improve with vehicle engineering that enables balloons themselves to absorb impact forces.
... with a balloon catheter and expands when the balloon is inflated. The stent is then left there to help keep the artery open. ... with a balloon catheter and expands when the balloon is inflated. The stent is then left there to help keep the artery open.
Fasting and meal-induced CCK and PP secretion following intragastric balloon treatment for obesity.
Mathus-Vliegen, Elisabeth M H; de Groot, Gerrit H
2013-05-01
Satiety is centrally and peripherally mediated by gastrointestinal peptides and the vagal nerve. We aimed to investigate whether intragastric balloon treatment affects satiety through effects on fasting and meal-stimulated cholecystokinin (CCK) and pancreatic polypeptide (PP) secretion. Patients referred for obesity treatment were randomised to 13 weeks of sham treatment followed by 13 weeks of balloon treatment (group 1; sham/balloon) or to twice a 13-week period of balloon treatment (group 2; balloon/balloon). Blood samples were taken for fasting and meal-stimulated CCK and PP levels at the start (T0) and after 13 (T1) and 26 (T2) weeks. Patients filled out visual analogue scales (VAS) to assess satiety. Forty-two patients (35 females, body weight 125.1 kg, BMI 43.3 kg/m(2)) participated. In group 1, basal CCK levels decreased but meal-stimulated response remained unchanged after 13 weeks of sham treatment. In group 2, basal and meal-stimulated CCK levels decreased after 13 weeks of balloon treatment. At the end of the second 13-week period, when group 1 had their first balloon treatment, they duplicated the initial 13-week results of group 2, whereas group 2 continued their balloon treatment and reduced meal-stimulated CCK release. Both groups showed reduced meal-stimulated PP secretions at T1 and T2 compared to T0. Changes in diet composition and VAS scores were similar. Improvements in glucose homeostasis partly explained the PP results. The reduced CCK and PP secretion after balloon positioning was unexpected and may reflect delayed gastric emptying induced by the balloon. Improved glucose metabolism partly explained the reduced PP secretion. Satiety and weight loss were not adversely influenced by these hormonal changes.
Intra-aortic balloon shape change: effects on volume displacement during inflation and deflation.
Khir, Ashraf William; Bruti, Gianpaolo
2013-07-01
It has been observed that operating the intra-aortic balloon at an angle to the horizontal resulted in a reduction of the volume displaced toward the coronary arteries and compromised afterload reduction. Therefore, the aim of this work is to examine whether changing the current balloon shape, which has not been altered for 40 years, could compensate for the negative hemodynamic effects due to angulation. We tested two tapered balloons, increasing diameter (TID) and decreasing diameter (TDD), and compared the results with those obtained from a standard cylindrical balloon. The balloons were tested in vitro at 60 beats/min and a static pressure of 90 mm Hg. The balloons were operated at four angles (0°, 20°, 30°, 45°), and the pressure at three locations along the balloon (base, middle, and tip) was also measured. Flow rate upstream of the tip of the balloon was also measured to indicate the flow displaced toward the coronary circulation. The relative volume displaced toward (VUTVi) and suctioned away from (VUTVd) the simulated ascending aorta, during inflation and deflation, respectively, is reduced when a standard cylindrical balloon is operated at an angle to the horizontal. The TDD provided the greatest VUTVi and also produced the largest pulse pressure during deflation. Although the TID provided less VUTVi and VUTVd at smaller angles, it was not markedly affected by the change of angle. According to these results, different balloon shapes analyzed, with comparable volume to that of a cylindrical balloon, produced greater inflation and deflation benefits, at the horizontal and at a range of angles to the horizontal. Further investigations are required to optimize the shape of the tapered balloons to fit into the available physiological space. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
Saad, Wael E; Nicholson, David B
2013-06-01
Since the conception of balloon-occluded retrograde transvenous obliteration (BRTO) of gastric varices 25 years ago, the placement of an indwelling balloon for hours has been central to the BRTO procedure. Numerous variables and variations of the BRTO procedure have been described, including methods to reduce sclerosant, combining percutaneous transhepatic obliteration, varying sclerosant, and using multiple sclerosants within the same procedure. However, the consistent feature of BRTO has always remained the indwelling balloon. Placing an indwelling balloon over hours for the BRTO procedure is a logistical burden that taxes the interventional radiology team and hospital resources. Substituting the balloon with hardware (coils or Amplatzer vascular plugs [AVPs] or both) is technically feasible and its risks most likely correlate with gastrorenal shunt (GRS) size. The current authors use packed 0.018- or 0.035-in coils or both for small gastric variceal systems (GRS size A and B) and AVPs for GRS sizes up to size E (from size A-E). The current authors recommend an indwelling balloon (no hardware substitute) for very large gastric variceal system (GRS size F). Substituting the indwelling balloon for hardware in size F and potentially size E GRS can also be risky. The current article describes the techniques of placing up to 16-mm AVPs through balloon occlusion guide catheters and then deflating the balloon once it has been substituted with the AVPs. In addition, 22-mm AVPs can be placed through sheaths once the balloon occlusion catheters are removed to further augment the 16-mm Amplatzer occlusion. To date, there are no studies describing, let alone evaluating, the clinical feasibility of performing BRTO without indwelling balloons. The described techniques have been successfully performed by the current authors. However, the long-term safety and effectiveness of these techniques is yet to be determined. Copyright © 2013 Elsevier Inc. All rights reserved.
Wang, J; Chung Ann Choo, D; Zhang, X; Yang, Q; Xian, T; Lu, D; Jiang, S
2000-07-01
Spontaneous echo contrast (SEC) is a phenomenon that is commonly seen in areas of blood stasis. It is a slowly moving, cloud-like swirling pattern of "smoke" or increased echogenicity recorded on echocardiography. SEC is commonly seen in the left atrium of patients with mitral stenosis or atrial fibrillation. The presence of SEC has been shown to be a marker of increased thromboembolic risk. By using transesophageal echocardiography during percutaneous balloon mitral valvotomy (PBMV), the study investigated the relationship between SEC and varying left atrial appendage (LAA) blood flow velocity in the human heart. Thirty-five patients with rheumatic mitral stenosis underwent percutaneous balloon mitral valvotomy with intraoperative transesophageal echocardiography monitoring. We alternatively measured LAA velocities and observed the left atrium for various grades of SEC (0 = none to 4 = severe) before and after each balloon inflation. Left atrial appendage maximal ejection velocity was reduced from 35 +/- 14 to 6 +/- 2 mm/s at peak balloon inflation and increased to 40 +/- 16 mm/s after balloon deflation. In comparison with the values before balloon inflation and after balloon deflation, LAA velocities were significantly lower (p < 0.001). New or increased SEC grade was observed during 54 of 61 (88%) inflations and unchanged in 7 (12%) inflations at peak balloon inflation. Spontaneous echo contrast became lower in grade after 55 balloon deflations (90%), completely disappeared after 18 deflations (30%), and remained unchanged after 6 deflations (10%). The mean time to achieve maximal SEC grade (2.5 +/- 1.2 s) coincided with the mean time to trough LAA velocities (2.3 +/- 1.1 s) after balloon inflation. Upon deflation, the mean time to lowest SEC grade (2.9 +/- 1.8 s) coincided with mean time to achieve maximal LAA velocities (2.7 +/- 1.6 s). During balloon inflation, the severity of SEC was enhanced with corresponding reduction in LAA flow velocity. Upon balloon deflation, SEC lightens or disappears with increase in LAA flow velocity.
Nakazaki, Masahito; Nonaka, Tadashi; Takahashi, Akira; Yonemasu, Yasuyuki; Nomura, Tatsufumi; Onda, Toshiyuki; Honda, Osamu; Hashimoto, Yuji; Ohnishi, Hirofumi; Sasaki, Masanori; Daibo, Masahiko; Honmou, Osamu
2016-07-01
The use of distal filter protection alone is associated with a high risk of ischemic complications when vulnerable carotid stenosis is treated by carotid artery stenting (CAS). Double balloon protection, a combination of distal balloon protection and proximal balloon occlusion, can be utilized. We assessed the outcome and complications of the double balloon protection method for vulnerable carotid stenosis. Among 130 patients who underwent CAS from 2009 to 2014, we enrolled the following patients: those whose target lesion was vulnerable as evaluated by MRI, i.e., a signal ratio of plaque to posterior cervical muscle on T1-weighted images before CAS of ≥1.5, and those who underwent diffusion-weighted imaging (DWI) studies within 48 h after the procedure. Ninety patients were enrolled. We investigated DWI findings of the double balloon protection group compared with those of the simple distal balloon protection and distal filter protection groups. Sixty-four patients (71 %) underwent double balloon protection, 15 patients (17 %) simple distal balloon protection, and 11 patients (12 %) distal filter protection. Symptomatic embolic complications and new lesions on DWI after CAS were significantly less common in patients undergoing double balloon protection compared to distal balloon protection or distal filter protection (0 % vs. 20 %, 9 %, P < 0.01, and 30 % vs. 67 %, 82 %, P < 0.01, respectively). Logistic regression analysis also identified the odds ratio of double balloon protection for new lesions on DWI after CAS of 0.23 (95 % confidence interval: 0.07-0.70, P < 0.01) compared to simple distal protections. In the patients who underwent CAS for vulnerable carotid stenosis, double balloon protection was an independent significant factor associated with a reduction in the risk of new lesions on DWI after the procedure compared to conventional distal protections.
O'Shea, Owen R; Hamann, Mark; Smith, Walter; Taylor, Heidi
2014-02-15
Efforts to curb pollution in the marine environment are covered by national and international legislation, yet weather balloons are released into the environment with no salvage agenda. Here, we assess impacts associated with weather balloons in the Great Barrier Reef World Heritage Area (GBRWHA). We use modeling to assess the probability of ocean endpoints for released weather balloons and predict pathways post-release. In addition, we use 21 months of data from beach cleanup events to validate our results and assess the abundance and frequency of weather balloon fragments in the GBRWHA. We found between 65% and 70% of balloons land in the ocean and ocean currents largely determine final endpoints. Beach cleanup data revealed 2460 weather balloon fragments were recovered from 24 sites within the GBRWHA. This is the first attempt to quantify this problem and these data will add support to a much-needed mitigation strategy for weather balloon waste. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Gi-Young; Song, Ho-Young, E-mail: hysong@amc.seoul.kr; Hong, Heuk-Jin
2003-04-15
Purpose: To assess the efficacy of balloon dilation combined with chemotherapy and/or radiation therapy for palliation of dysphagia due to malignant esophagogastric junction strictures. Methods: Fluoroscopically guided balloon dilation was attempted in 20 patients. The causes of strictures were gastric adenocarcinoma (n = 10) and esophageal squamous cell carcinoma (n = 10). Scheduled chemotherapy and/or radiation therapy followed balloon dilation in all patients. Results: There were no technical failures or major complications. After balloon dilation, 15 (75%) patients showed improvement of dysphagia. No patient complained of reflux esophagitis during the follow-up period. Among the 15 patients, seven needed no furthermore » treatment for palliation of dysphagia until their deaths. The remaining eight patients underwent repeat balloon dilation(n = 4) or stent placement (n = 4)3-43 weeks (mean 15 weeks) after the initial balloon dilation because of recurrent dysphagia. Conclusion: Balloon dilation combined with chemotherapy and/or radiation therapy seems to be an easy and reasonably effective palliative treatment for malignant esophagogastric strictures.« less
Davidson, Anders J; Russo, Rachel M; Ferencz, Sarah-Ashley E; Cannon, Jeremy W; Rasmussen, Todd E; Neff, Lucas P; Johnson, M Austin; Williams, Timothy K
2017-07-01
To avoid potential cardiovascular collapse after resuscitative endovascular balloon occlusion of the aorta (REBOA), current guidelines recommend methodically deflating the balloon for 5 minutes to gradually reperfuse distal tissue beds. However, anecdotal evidence suggests that this approach may still result in unpredictable aortic flow rates and hemodynamic instability. We sought to characterize aortic flow dynamics following REBOA as the balloon is deflated in accordance with current practice guidelines. Eight Yorkshire-cross swine were splenectomized, instrumented, and subjected to rapid 25% total blood volume hemorrhage. After 30 minutes of shock, animals received 60 minutes of Zone 1 REBOA with a low-profile REBOA catheter. During subsequent resuscitation with shed blood, the aortic occlusion balloon was gradually deflated in stepwise fashion at the rate of 0.5 mL every 30 seconds until completely deflated. Aortic flow rate and proximal mean arterial pressure (MAP) were measured continuously over the period of balloon deflation. Graded balloon deflation resulted in variable initial return of aortic flow (median, 78 seconds; interquartile range [IQR], 68-105 seconds). A rapid increase in aortic flow during a single-balloon deflation step was observed in all animals (median, 819 mL/min; IQR, 664-1241 mL/min) and corresponded with an immediate decrease in proximal MAP (median, 30 mm Hg; IQR, 14.5-37 mm Hg). Total balloon volume and time to return of flow demonstrated no correlation (r = 0.016). This study is the first to characterize aortic flow during balloon deflation following REBOA. A steep inflection point occurs during balloon deflation that results in an abrupt increase in aortic flow and a concomitant decrease in MAP. Furthermore, the onset of distal aortic flow was inconsistent across study animals and did not correlate with initial balloon volume or relative deflation volume. Future studies to define the factors that affect aortic flow during balloon deflation are needed to facilitate controlled reperfusion following REBOA.
Mobile, high-wind, balloon-launching apparatus
NASA Technical Reports Server (NTRS)
Rust, W. David; Marshall, Thomas C.
1989-01-01
In order to place instruments for measuring meteorological and electrical parameters into thunderstorms, an inexpensive apparatus has been developed which makes it possible to inflate, transport, and launch balloons in high winds. The launching apparatus is a cylinder of bubble plastic that is made by joining the sides of the cylinder together with a velcro rip strip. A balloon is launched by pulling the rip strip rapidly. This allows the balloon to pop upward into the ambient low-level wind and carry its instrumentation aloft. Different-sized launch tubes are constructed to accommodate particular sizes of balloons. Balloons have been launched in winds of about 20 m/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Woong Hee; Kim, Jin Hyoung, E-mail: m1fenew@daum.net; Park, Jung-Hun
Purpose: Little was known about the safety and long-term efficacy of fluoroscopically guided balloon dilation for postintubation tracheal stenosis. The purpose of this study was to evaluate the safety and long-term efficacy of fluoroscopically guided balloon dilation in patients with postintubation tracheal stenosis. Methods: From February 2000 to November 2010, 14 patients underwent fluoroscopically guided balloon dilation for postintubation tracheal stenosis. Technical success, clinical success, and complications were evaluated. Patients were followed up for recurrent symptoms. Results: In all patients, fluoroscopically guided balloon dilation was technically and clinically successful with no major complications. Following the initial procedure, six patients (43more » %) remained asymptomatic during a follow-up period. Obstructive symptoms recurred in eight patients (57 %) within 6 months (mean, 1.7 months), who were treated with repeat balloon dilation (n = 4) and other therapies. Of the four patients who underwent repeat balloon dilation, three became asymptomatic. One patient became asymptomatic after a third balloon dilation. On long-term (mean, 74 months) follow-up, 71 % of patients experienced relief of symptoms following fluoroscopically guided balloon dilation. Conclusions: Fluoroscopically guided balloon dilation may be safe, is easy to perform, and resulted in effective treatment in patients with postintubation tracheal stenosis.« less
Technologies developed by CNES balloon team
NASA Astrophysics Data System (ADS)
Sosa-Sesma, Sergio; Charbonnier, Jean-Marc; Deramecourt, Arnaud
CNES balloon team develops and operates all the components of this kind of vehicle: it means envelope and gondola. This abstract will point out only developments done for envelope. Nowadays CNES offers to scientists four types of envelops that cover a large range of mission demands. These envelops are: 1. Zero pressure balloons: Size going from 3,000m3 to 600,000m3, this kind of envelop is ideal for short duration flights (a few hours) but if we use an intelligent management of ballast consumption and if we chose the best launch site, it is possible to perform medium duration flights (10/20 days depending on the ballast on board). Flight train mass starts at 50kg for small balloons and reach 1000kg for larger ones. Zero pressure balloons are inflated with helium gas. 2. Super pressure balloons: Diameter going from 2.5m to 12m, this kind of envelop is ideal for long duration flights (1 to 6 months). Flight train is inside the envelop for small balloons, it means 2.5 diameter meters which is usually called BPCL (Super pressure balloon for Earth boundary layer) and it is about 3kg of mass. Larger ones could lift external flight trains about 50kg of mass. Super pressure balloons are inflated with helium gas. 3. MIR balloons: Size going from 36,000m3 to 46,000m3. Ceiling is reach with helium gas but after three days helium is no longer present inside and lift force is produced by difference of temperature between air inside and air of atmosphere. Flight trains must not be over 50kg. 4. Aero Clipper balloons: A concept to correlate measurements done in oceans and in nearest layers of atmosphere simultaneously. Flight train is made by a "fish" that drags inside water and an atmospheric gondola few meters above "fish", both pushed by a balloon which profits of the wind force. Materials used for construction and assembling depend on balloon type; they are usually made of polyester or polyethylene. Thickness varies from 12 micrometers to 120 micrometers. Balloon assembling is made at ZODIAC site (near Toulouse) by Zodiac teams although all mechanical machines belong to CNES. These machines had been developed by CNES to cut, to weld and to thermo-joint the different parts of the balloon.
78 FR 9785 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female ACME threaded hose connectors...., Washington, DC 20590. For service information identified in this AD, contact Lindstrand Hot Air Balloons Ltd...
77 FR 64763 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... propose to adopt a new airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female... identified in this proposed AD, contact Lindstrand Hot Air Balloons Ltd., Maesbury Road, Oswestry, Shropshire...
78 FR 18533 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-27
... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... Hot Air Balloons Ltd female ACME threaded hose connectors, part numbers HS6139 and HS6144, installed... follows: * * * * * (c) Applicability This AD applies to Lindstrand Hot Air Balloons Ltd female ACME...
False coronary dissection with the new Monorail angioplasty balloon catheter.
Esplugas, E; Cequier, A R; Sabaté, X; Jara, F
1990-01-01
During percutaneous transluminal coronary angioplasty, the appearance of persistent staining in the vessel by contrast media suggests coronary dissection. We report seven patients in whom a false image of severe coronary dissection was observed during angioplasty performed with the new Monorail balloon catheter. This image emerges at the moment of balloon inflation, is distally located to the balloon, and disappears with balloon catheter deflation. No complications were associated with the appearance of this image.
Status report on the activities of National Balloon Facility at Hyderabad
NASA Astrophysics Data System (ADS)
Shankarnarayan, Sreenivasan; S, Sreenivasan; Shankarnarayan, Sreenivasan; Manchanda, R. K.; Subba Rao Jonnalagadda, Venkata; Buduru, Suneelkumar
National balloon facility at Hyderabad has been mandated to provide launch support for Indian and International scientific balloon experiments and also perform the necessary research and development in the design and fabrication of plastic balloons. In the last 4 years, since our last report, NBF has launched many successful balloon flights for the astronomy payloads and a large number of high altitude GPS Sonde flights at different places in the country. We have also continued our efforts on qualification of raw materials for zero-failure performance of our balloons and major focus on upgrading of various facilities and load-line instrumentation for launching from remote sites. We foresee a surge of balloon based experimental activity for in-situ measurements in atmospheric sciences and concept validation payloads for future space based instruments. A new centre for research in Environmental Sciences and Payload Engineering (ESPE) has also been set up at the National Balloon Facility campus to develop and conduct research in various aspects of Environmental sciences in collaboration with other groups, with a specific goal to identify, development of advanced technologies leading to an improved understanding of the earth system. The Payload Engineering facility is geared to the Design and Fabrication of Micro and Nano Satellites and will act as Inter -University Centre for payload fabrication. In this paper we present an overview of the present and planned activities in scientific ballooning at National Balloon Facility Hyderabad.
Balloon-Inflated Catheters for Enteral Feeding: a Word of Caution.
Dash, Nihar Ranjan; Singh, Anand Narayan; Kilambi, Ragini
2018-02-01
Catheters with inflatable balloons such as a Foley catheter may be used for feeding gastrostomy/jejunostomy. The incorrect or improper use of these catheters can have serious consequences. We report 13 cases of feeding jejunostomy with balloon-inflated catheter's malfunction, some referred to our centre and others operated here over a period of 8 years. The most dramatic consequence of such improper use led to rupture of the small intestine due to inadvertent over-inflation (over 100 ml) of the balloon of the catheter during a contrast study. The patient required a laparotomy with resection and anastomosis of the bowel. Three other patients had similar over-inflation of the balloon leading to severe pain and discomfort. In all three patients, timely deflation of the balloon was sufficient to relieve the symptoms. One patient had intussusception with the inflated balloon acting as a lead point. The patient underwent resection of the small bowel with end jejunostomy and distal mucous fistula. All other patients presented with abdominal pain and distension and intestinal obstruction and were managed non-operatively with deflation of balloon either by aspiration, cutting the balloon port or ultrasound-guided puncture of balloon. Healthcare personnel dealing with patients with indwelling catheters must be educated to suspect, detect and manage such problems. The best measure for such unusual complications of otherwise safe devices would be prevention by training and generation of awareness.
Shafi, Nabil A; Singh, Gagan D; Smith, Thomas W; Rogers, Jason H
2018-05-01
To describe a novel balloon sizing technique used during adult transcatheter patent ductus arteriosus (PDA) closure. In addition, to determine the clinical and procedural outcomes in six patients who underwent PDA balloon sizing with subsequent deployment of a PDA occluder device. Transcatheter PDA closure in adults has excellent safety and procedural outcomes. However, PDA sizing in adults can be challenging due to variable defect size, high flow state, or anatomical complexity. We describe a series of six cases where the balloon- pull through technique was successfully performed for PDA sizing prior to transcatheter closure. Consecutive adult patients undergoing adult PDA closure at our institution were studied retrospectively. A partially inflated sizing balloon was pulled through the defect from the aorta into the pulmonary artery and the balloon waist diameter was measured. Procedural success and clinical outcomes were obtained. Six adult patients underwent successful balloon pull-through technique for PDA sizing during transcatheter PDA closure, since conventional angiography often gave suboptimal opacification of the defect. All PDAs were treated with closure devices based on balloon PDA sizing with complete closure and no complications. In three patients that underwent preprocedure computed tomography, the balloon size matched the CT derived measurements. The balloon pull-through technique for PDA sizing is a safe and accurate sizing modality in adults undergoing transcatheter PDA closure. © 2017 Wiley Periodicals, Inc.
Optimum designs for superpressure balloons
NASA Astrophysics Data System (ADS)
Smith, M. S.; Rainwater, E. L.
2004-01-01
The elastica shape is now well known to be the best basic shape for superpressure balloon design. This shape, also known as the pumpkin, or natural shape for balloons, has been well understood since the early 1900s when it was applied to the determination of the shape of descending parachutes. The elastica shape was also investigated in the 1950s when high strength films were used to produce superpressure cylinder balloons. The need for uniform stress distribution in shells of early superpressure balloons led to a long period of the development of spherical superpressure balloons. Not until the late 1970s was the elastica shape revisited for the purpose of the producing superpressure balloons. This paper will review various development efforts in the field of superpressure design and will elaborate on the current state-of-the-art with suggestions for future developments.
Werner, D; Behrend, D; Schmitz, K P; Urbaszek, W
1995-05-01
Seventy-six PTCA-balloons after coronary angioplasty were studied for superficial changes using scanning electron microscopy (SEM) after fixing in glutardialdehyde. Coronary plaque particles were identified on the balloon surface in 52 cases (68%). Twelve new and unused balloons were subjected to the same chemical treatment and SEM showed no imprints. The average length of the longest imprinted plaques was 128 +/- 201 microns and the average number of plaque particles per balloon was 4.9 +/- 2.7. The maximal dilatation pressure and the number of dilatations showed no influence on the impregnation of plaque particles. However, longer plaque imprints tended to occur under low dilatation pressure. Imprints of plaque particles were significantly higher in patients with low cholesterol (p = 0.0001) and low triglycerides (p = 0.0016). No correlation was seen between imprint length and lipid levels. Similarly, the different balloon materials (polyethylene, polyolefincopolymer) showed no significant differences with regard to plaque occurrence. The PTCA-balloons, plaque particles and six coronary plaques obtained after endatherectomy were subjected to energy dispersive x-ray analysis (EDX) under SEM as EDX reveals qualitative and quantitative information about the structural elements. Highly significant differences in calcium, sodium, phosphorus and silicon contents (p = 0.0000) between plaque particles and balloon surface were observed, owing to the absence of these in balloon material. Thus EDX offers additional advantages over SEM in that it clearly differentiates deformed balloon surface, plaque particle, and retained contrast medium. Plaque particles can be recovered from balloon surfaces after PTCA. Depending upon their size, they could lead to coronary spasm or microembolic phenomenon.
Spiotta, Alejandro M; Miranpuri, Amrendra S; Vargas, Jan; Magarick, Jordan; Turner, Raymond D; Turk, Aquilla S; Chaudry, M Imran
2014-09-01
Endovascular embolization for tumors and vascular malformations has emerged as an important preoperative adjunct prior to resection. We describe the advantages of utilizing a recently released dual lumen balloon catheter for ethylene vinyl alcohol copolymer, also known as Onyx (ev3, Irvine, California, USA), embolization for a variety of head and neck pathologies. A retrospective review of all cases utilizing the Scepter C balloon catheter (MicroVention Inc, Tustin, California, USA) for use in balloon augmented embolization was performed over a 4 month period from October 2012 to February 2013 at the Medical University of South Carolina, Charleston, South Carolina, USA. Charts and angiographic images were reviewed. Representative cases involving diverse pathologies are summarized and illustrate the observed advantages of balloon augmented Onyx embolization with a dual lumen balloon catheter. Balloon augmented Onyx embolization utilizing a novel dual lumen balloon catheter was employed to treat both ruptured and unruptured arteriovenous malformations, intracranial dural arteriovenous fistulae, intracranial neoplasms, carotid body tumors, a thyroid mass, and an extracranial arteriovenous fistula. The dual lumen balloon catheter has several advantages for use with Onyx embolization over older devices, including more efficient proximal plug formation and enhanced navigability for placement deep within the pedicles. The balloon augmented Onyx embolization technique represents a valuable tool to add to the armamentarium of the neurointerventionalist to address a variety of head and neck lesions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
New concepts for interplanetary balloons and blimps, particularly for Titan
NASA Astrophysics Data System (ADS)
Nott, J.
This paper proposes novel approaches for balloons for planets Titan BALLUTE A balloon or blimp arriving at a planet or moon with an atmosphere might inflate falling under a parachute or after landing Neither is ideal In both cases the envelope must include qualities needed for inflation as well as those for flight A ballute BALLoon parachUTE could be used thus a ballute is like a hot air balloon with a large mouth Initially it fills by ram pressure descending through an atmosphere As proposed it would then be heated by solid propellant It would stop descending and float level with hot air lift It is now a perfect location for inflation without wind or movement through the atmosphere and away from the uncertainties of the surface A ballute could be used over several bodies in the solar system BALLOONS FOR LOW TEMPERATURES Flight in very low temperatures is also discussed Conditions are so different that it is useful to examine basic factors These apply for any planet with low temperature and weather calm enough for balloons or blimps First for terrestrial hot air balloons thermal radiation is usually the dominant way heat is lost But radiation rises with the 4th power of absolute temperature At Titan radiation will be one or two orders of magnitude smaller Also the dense atmosphere allows small balloons small temperature differences So convection is small It appears a hot air balloon can easily be heated by a radioactive source likely carried to make electricity Pinholes are not important in such a balloon
Hot-Air Balloon Tours: Crash Epidemiology in the United States, 2000-2011
Ballard, Sarah-Blythe; Beaty, Leland P.; Baker, Susan P.
2016-01-01
Introduction Hot-air balloon tours are FAR Part 91-governed balloon rides conducted for compensation or hire. Part 91, General Aviation, in general involves the least strict federal regulations and accounts for the majority of aviation crashes and fatalities. Methods National Transportation Safety Board reports of hot-air balloon tour crashes in the United States from 2000 through 2011 were read and analyzed. Results During the 12-yr period, 78 hot-air balloon tours crashed, involving 518 occupants. There were 91 serious injuries and 5 fatalities; 83% of crashes resulted in one or more serious or fatal outcomes. Of the serious injuries characterized, 56% were lower extremity fractures. Most crashes (81%) occurred during landing; 65% involved hard landings. Fixed object collisions contributed to 50% of serious injuries and all 5 fatalities. During landing sequences, gondola dragging, tipping, bouncing, and occupant ejection were associated with poor outcomes. Of the crashes resulting in serious or fatal outcomes, 20% of balloons were significantly damaged or destroyed. Discussion The incidence of morbidity and mortality is high among hot-air balloon tour crashes, and the proportion of balloon crashes attributed to paid rides appears to have increased over time. In addition to examining the role of restraint systems, personal protective equipment, and power line emergency procedures in ballooning, injury prevention efforts should target factors such hard landings, object strikes, gondola instability, and occupant ejections, which are associated with balloon injuries and deaths. Crash outcomes may also improve with vehicle engineering that enables balloons themselves to absorb impact forces. PMID:24279231
NASA Astrophysics Data System (ADS)
Chaabane, Makram; Chaabane, Makram; Dalverny, Olivier; Deramecourt, Arnaud; Mistou, Sébastien
The super-pressure balloons developed by CNES are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding to the flight level and the lifespan of the balloon. It appears during the working stages of the super pressure balloons that these last can exploded prematurely in the course of the first hours of flight. For this reason CNES and LGP are carrying out research programs about experimentations and modelling in order to predict a good stability of the balloons flight and guarantee a life time in adequacy with the technical requirement. This study deals with multilayered polymeric film damage which induce balloons failure. These experimental and numerical study aims, are a better understanding and predicting of the damage mechanisms bringing the premature explosion of balloons. The following damages phenomena have different origins. The firsts are simple and triple wrinkles owed during the process and the stocking stages of the balloons. The second damage phenomenon is associated to the creep of the polymeric film during the flight of the balloon. The first experimental results we present in this paper, concern the mechanical characterization of three different damage phenomena. The severe damage induced by the wrinkles of the film involves a significant loss of mechanical properties. In a second part the theoretical study, concerns the choice and the development of a non linear viscoelastic coupled damage behavior model in a finite element code.
Reduction of prostate intrafraction motion using gas-release rectal balloons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su Zhong; Zhao Tianyu; Li Zuofeng
2012-10-15
Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated withmore » the van Herk formula of 2.5{Sigma}+ 0.7{sigma} to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior-inferior (SI) and anterior-posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left-right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.« less
Indwelling esophageal balloon catheter for benign esophageal stenosis in infants and children.
van der Zee, David; Hulsker, Caroline
2014-04-01
Balloon dilatation of benign esophageal strictures is an established mode of therapy in adults and children. There remains a group of patients with refractory stenosis despite dilatation at regular intervals. An indwelling balloon catheter may offer an alternative. This is a retrospective study of 19 children who underwent esophagoscopy between 2004 and 2012 with placement of an indwelling balloon catheter for refractory esophageal stenosis. Total number of endoscopies, number of endoscopies with indwelling balloon catheter, as well as complications, reoperations, and mortality due to use of the balloon catheter were studied. Patient age ranged from 4 weeks to 15 years. The indwelling balloon catheter was used to treat refractory stenosis after corrective surgery of long gap esophageal atresia (n = 5), esophageal atresia with distal fistula (n = 2), refractory esophageal stenosis due to caustic esophageal burns (n = 7), reflux (n = 2), and stenosis of unknown cause (n = 3). With the indwelling balloon catheter in place, the mean number of endoscopies equalled four. Complications were restenosis after a symptom-free period for which a new indwelling balloon catheter was necessary (n = 3). Two others needed two to five additional dilations: balloon leakage requiring replacement (n = 7 in 5 patients), sputum retention (n = 1), and dislodgement (n = 5 in 4 patients). More importantly, there was no mortality or the need for any patient to undergo a surgical resection. The indwelling balloon catheter is safe to use and can be used by parents at home. More importantly it obviates the need for rethoracotomy/-scopy or esophageal replacement.
NASA Astrophysics Data System (ADS)
Voss, P. B.; Nott, J.; Cutts, J. A.; Hall, J. L.; Beauchamp, P. M.; Limaye, S. S.; Baines, K. H.; Hole, L. R.
2013-12-01
In situ exploration of the upper atmosphere of Venus, approximately 65-77 km altitude, could answer many important questions (Limaye 2013, Crisp 2013). This region contains a time-variable UV absorber of unknown composition that controls many aspects of the heat balance on Venus. Understanding the composition and dynamics of this unknown absorber is an important science goal; in situ optical and chemical measurements are needed. However, conventional approaches do not provide access to this altitude range, repeated traverses, and a mission lifetime of several months needed to effectively carry out the science. This paper examines concepts for altitude-controlled balloons not previously flown on planetary missions that could potentially provide the desired measurements. The concepts take advantage of the fact that at 60 km altitude, for example, the atmospheric density on Venus is about 40% of the sea-level density on earth and the temperature is a moderate 230 K. The solar flux is approximately double that on earth, creating some thermal challenges, but making photovoltaic power highly effective. Using a steady-state thermodynamic model and flight data from Earth, we evaluate the suitability of two types of altitude-controlled balloons for a potential mission on Venus. Such balloons could repeatedly measure profiles, avoid diurnal temperature extremes, and navigate using wind shear. The first balloon design uses air ballast (AB) whereby ambient air can be compressed into or released from a constant-volume balloon, causing it to descend or ascend accordingly. The second design uses lift-gas compression (LGC) to change the volume of a zero-pressure balloon, thereby changing its effective density and altitude. For an altitude range of 60-75 km on Venus, we find that the superpressure volume for a LGC balloon is about 5% of that needed for an AB balloon while the maximum pressurization is the same for both systems. The compressor work per km descent of the LGC balloon is about 10% of the AB balloon, largely due to the much lower flow rate. The LGC balloon must compress some lift gas at sunrise, but this can be managed by one of several strategies. We conclude that while the weight constraints are likely to be significant, LGC altitude-controlled balloons may be feasible for accessing the 60 to 75 km altitude range on Venus. The underlying concept of balloons on Venus was proven by the Soviet Union's successful deployment of their two superpressure VEGA balloons in 1981 operating at a fixed altitude near 55 km. Superpressure balloon concepts for similar altitudes and larger payloads have since been proposed for NASA's Discovery program and ESA's Cosmic Visions program. The LGC balloon would add a zero-pressure envelope and a compressor to the established superpressure design, allowing it to ascend above the deployment altitude and realize lossless altitude control over a range of several scale heights. The thermodynamic equations, flight data, and conceptual analysis presented are intended to foster further discussion about the feasibility and potential benefits of a balloon mission to Venus.
NASA Astrophysics Data System (ADS)
Yamamoto, Masa-yuki; Kakinami, Yoshihiro; Kono, Hiroki
In Japan, the high altitude balloon for scientific observation has been continuously launched by JAXA. The balloon has a possibility to reach 50 km altitude without tight environmental condition for onboard equipments, operating with a cost lower than sounding rockets, however, development of the large-scale scientific observation balloons by university laboratories is still difficult. Being coupled with recent improvement of semiconductor sensors, laboratory-basis balloon experiments using small weather balloons has been becoming easily in these years. Owing to an advantage of wide land fields in continental regions, the launch of such small balloons has become to be carried out many times especially in continental countries (e.g. Near Space Ventures, Inc., 2013). Although the balloon is very small as its diameter of 6 feet, excluding its extra buoyancy and the weight of the balloon itself, it is expected that about 2 kg loading capacity is remained for payloads to send it up to about 35 km altitude. However, operation of such balloons in Japan is not in general because precise prediction of a landing area of the payload is difficult, thus high-risk situation for balloon releases is remained. In this study, we aim to achieve practical engineering experiments of weather balloons in Japan to be used for scientific observation within university laboratory level as an educational context. Here we report an approach of developing many devices for a small tethered balloon currently in progress. We evaluated an accuracy of altitude measurement by using a laboratory developed altitude data logger system that consists of a GPS-module and a barometric altimeter. Diameter of the balloon was about 1.4 m. Being fulfilled with about 1440 L helium, it produced buoyancy of about 15.7 N. Taking into account of total weight including the mooring equipments, available payload mass becomes to be about 1100 g. Applying an advantage of a 3D printer of FDM (Fused Deposition Modeling) method with a 3DCAD design software, we designed and manufactured a camera-platform type antenna rotator that automatically track the balloon direction based on the received GPS data as a balloon operation system on ground with automatic controlling software for the tracking system. In order to develop a future telemetry system onboard a small weather balloon, we have performed an onboard data logger system. In this presentation, system configuration of the automatic tracking system will be introduced more in detail. The telemetry system onboard the small balloon is currently under development. We have a plan to send the measured GPS coordinates, temperature, pressure, and humidity data detected by the onboard sensors to ground. A monitoring camera, a 3-axes accelerometer, geomagnetic azimuth measurement, and power monitoring were added to the developed data logger system. The acquired data will be stored in an SD card aboard as well as transmitted to the ground. Using a vacuum chamber with a pressure sensors and a constant-temperature reservoir in laboratory, environmental tests were operated. In this presentation, introducing the data obtained through the development of a prototype balloon system, our recent results and problems will be discussed.
14 CFR 61.115 - Balloon rating: Limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... takes a practical test in a balloon with an airborne heater: (1) The pilot certificate will contain a limitation restricting the exercise of the privileges of that certificate to a balloon with an airborne... removed when the person obtains the required aeronautical experience in a balloon with an airborne heater...
21 CFR 884.5050 - Metreurynter-balloon abortion system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...
14 CFR 31.49 - Control systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... (c) Each balloon using a captive gas as the lifting means must have an automatic valve or appendix... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.49 Control systems. (a) Each control must operate... minute when the balloon is at its maximum operating pressure. (d) Each hot air balloon must have a means...
14 CFR 31.49 - Control systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... (c) Each balloon using a captive gas as the lifting means must have an automatic valve or appendix... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.49 Control systems. (a) Each control must operate... minute when the balloon is at its maximum operating pressure. (d) Each hot air balloon must have a means...
14 CFR 31.49 - Control systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... (c) Each balloon using a captive gas as the lifting means must have an automatic valve or appendix... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.49 Control systems. (a) Each control must operate... minute when the balloon is at its maximum operating pressure. (d) Each hot air balloon must have a means...
14 CFR 31.49 - Control systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... (c) Each balloon using a captive gas as the lifting means must have an automatic valve or appendix... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.49 Control systems. (a) Each control must operate... minute when the balloon is at its maximum operating pressure. (d) Each hot air balloon must have a means...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-31
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-865] Certain Balloon Dissection Devices... the United States after importation of certain dissection balloons and products containing the same by... importation of certain dissection balloons and products containing the same that infringe one or more of...
21 CFR 884.5050 - Metreurynter-balloon abortion system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...
21 CFR 884.5050 - Metreurynter-balloon abortion system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...
21 CFR 884.5050 - Metreurynter-balloon abortion system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...
21 CFR 884.5050 - Metreurynter-balloon abortion system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...
14 CFR 61.3 - Requirement for certificates, ratings, and authorizations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... with a glider category rating, a balloon class rating, or glider or balloon privileges; (ii) Is... than glider or balloon privileges and holds a U.S. driver's license; (iii) Is exercising the privileges... exercising the privileges of a sport pilot certificate with glider or balloon privileges; (v) Is exercising...
14 CFR 61.3 - Requirement for certificates, ratings, and authorizations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... with a glider category rating, a balloon class rating, or glider or balloon privileges; (ii) Is... than glider or balloon privileges and holds a U.S. driver's license; (iii) Is exercising the privileges... exercising the privileges of a sport pilot certificate with glider or balloon privileges; (v) Is exercising...
14 CFR 61.3 - Requirement for certificates, ratings, and authorizations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... with a glider category rating, a balloon class rating, or glider or balloon privileges; (ii) Is... than glider or balloon privileges and holds a U.S. driver's license; (iii) Is exercising the privileges... exercising the privileges of a sport pilot certificate with glider or balloon privileges; (v) Is exercising...
Severe Sunburn After a Hot Air Balloon Ride: A Case Report and Literature Review.
Ozturk, Sinan; Karagoz, Huseyin
2015-01-01
Hot air balloon tours are very popular among travelers worldwide. Preventable burn injuries associated with hot air balloon rides have been reported during crashes into power lines, in propane burner explosions, and following contact with the propane burner tanks. We present a case of severe repeated sunburn, which poses another risk of preventable injury during hot air balloon rides, and briefly discuss the injury epidemiology of hot air balloon rides. © 2015 International Society of Travel Medicine.
Small bowel biopsy; Push enteroscopy; Double-balloon enteroscopy; Capsule enteroscopy ... into the upper gastrointestinal tract. During a double-balloon enteroscopy, balloons attached to the endoscope can be ...
Balloon concepts for scientific investigation of Mars and Jupiter
NASA Technical Reports Server (NTRS)
Ash, R. L.
1979-01-01
Opportunities for scientific investigation of the atmospheric planets using buoyant balloons have been explored. Mars and Jupiter were considered in this study because design requirements at those planets bracket nominally the requirements at Venus, and plans are already underway for a joint Russian-French balloon system at Venus. Viking data has provided quantitative information for definition of specific balloon systems at Mars. Free flying balloons appear capable of providing valuable scientific support for more sophisticated Martian surface probes, but tethered and powered aerostats are not attractive. The Jovian environment is so extreme, hot atmosphere balloons may be the only scientific platforms capable of extended operations there. However, the estimated system mass and thermal energy required are very large.
Ozone profiles from tethered balloon measurements in an urban plume experiment
NASA Technical Reports Server (NTRS)
Youngbluth, O., Jr.; Storey, R. W.; Clendenin, C. G.; Jones, S.; Leighty, B.
1981-01-01
NASA Langley Research Center used two tethered balloon systems to measure ozone in the general area of Norfolk, Va. The large balloon system which has an altitude range of 1,500 meters was located at Wallops Island, Va., and the smaller balloon which has an altitude range of 900 meters was located at Chesapeake, Va. Each balloon system measured ozone, temperature, humidity, wind speed, and wind direction from ground to its maximum altitude. From these measurements and from the location of the balloon sites, areas of ozone generation and ozone transport may be inferred. The measurements which were taken during August 1979 are discussed as well as the measurement techniques.
Low-Altitude Exploration of the Venus Atmosphere by Balloon
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2010-01-01
The planet Venus represents an exciting target for future exploration by spacecraft. One target of scientific interest is the lower atmosphere, which represents an environment of high temperature and moderate to high atmospheric pressure. This represents a considerable challenge to the technical art of ballooning, but one which may be amenable to solution. Several possible designs for low-altitude balloons are discussed. Conceptual design for three mission examples are analyzed: a conventional balloon operating below the cloud level at an altitude of 25 kilometers, a large rigid-envelope balloon operating near the surface at an altitude of 5 kilometers, and a small, technology demonstrator rigid-envelope balloon operating at 5 kilometers.
[Pressure-volume recording of PTCA catheters with balloons of lower and higher compliance].
Werner, C; Bloss, P; Kiessling, D; Patzschke, H; Unverdorben, M; Vallbracht, C
1999-11-01
In this report, the results of complementary studies of pressure-volume (p-V) measurements on balloon catheters with balloons of low (LC) and high compliance (HC) used for percutaneous transluminal coronary angioplasty are discussed. The measurements were performed with balloons unconfined in air (free dilatation) and also confined in different shells. In the case of rigid shells, a surprisingly high self-expansion of the catheters was found. Although this self-expansion does not contribute to the radial dilatation, it cannot be neglected, but must be taken into account when the success of balloon dilatation is determined on the basis of measured p-V curves. The investigations performed using wrapped shells clearly show the different dilatation properties of LC and HC balloons. The results provide important information on the feasibility of controlled balloon dilatation on the basis of p-V measurements performed on-line during PTCA.
Wind-Tunnel Investigation of a Balloon as a Towed Decelerator at Mach Numbers from 1.47 to 2.50
NASA Technical Reports Server (NTRS)
McShera, John T.; Keyes, J. Wayne
1961-01-01
A wind-tunnel investigation has been conducted to study the characteristics of a towed spherical balloon as a drag device at Mach numbers from 1.47 to 2.50, Reynolds numbers from 0.36 x 10(exp 6) to 1.0 x 10(exp 6) , and angles of attack from -15 to 15 deg. Towed spherical balloons were found to be stable at supersonic speeds. The drag coefficient of the balloon is reduced by the presence of a tow cable and a further reduction occurs with the addition of a payload. The balloon inflation pressure required to maintain an almost spherical shape is about equal to the free-stream dynamic pressure. Measured pressure and temperature distribution around the balloon alone were in fair agreement with predicted values. There was a pronounced decrease in the pressure coefficients on the balloon when attached to a tow cable behind a payload.
Advances in endoscopic balloon therapy for weight loss and its limitations
Vyas, Dinesh; Deshpande, Kaivalya; Pandya, Yagnik
2017-01-01
The field of medical and surgical weight loss is undergoing an explosion of new techniques and devices. A lot of these are geared towards endoscopic approaches rather than the conventional and more invasive laparoscopic or open approach. One such recent advance is the introduction of intrgastric balloons. In this article, we discuss the recently Food and Drug Administration approved following balloons for weight loss: the Orbera™ Intragastric Balloon System (Apollo Endosurgery Inc, Austin, TX, United States), the ReShape® Integrated Dual Balloon System (ReShape Medical, Inc., San Clemente, CA, United States), and the Obalon (Obalon® Therapeutics, Inc.). The individual features of each of these balloons, the method of introduction and removal, and the expected weight loss and possible complications are discussed. This review of the various balloons highlights the innovation in the field of weight loss. PMID:29209122
Reed, Larrite; Edriss, Hawa; Nugent, Kenneth
2018-06-01
Obesity in the United States is a medical crisis with many people attempting to lose weight with caloric restriction. Some patients choose minimally invasive weight loss solutions, such as intragastric balloon systems. These balloon systems were approved by the Federal Drug Administration (FDA) in 2015-2016 and have been considered safe, with minimal side effects. We report a patient with a two-day history of melena, abdominal pain, hypotension, and syncope which developed five months after placement of an intragastric balloon. Esophagogastroduodenoscopy with balloon removal revealed a small 8-mm gastric ulcer in the incisura. This gastric ulcer probably developed secondary to mechanical compression of the stomach mucosa by the gastric balloon which contained 900 mL of saline. The FDA is now investigating five deaths since 2016 associated with these second-generation balloons. Clinicians should be aware of these complications when evaluating patients with gastrointestinal complications, such as bleeding.
14 CFR 31.49 - Control systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... minute when the balloon is at its maximum operating pressure. (d) Each hot air balloon must have a means to allow the controlled release of hot air during flight. (e) Each hot air balloon must have a means... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.49 Control systems. (a) Each control must operate...
History and perspectives of scientific ballooning
NASA Astrophysics Data System (ADS)
Lefevre, Frank
2001-08-01
Prehistory: Robertson, Biot and Gay-Lussac; Glaisher and the first studies of the atmosphere; Flammarion. The rebirth of scientific ballooning: polyethylene and mylar vehicles at Minneapolis. Super-pressurized balloons. The CNES and the Nasa programs; meteorology, aeronomy and astronomy, The Eole program. The Venus and Mars balloons in the French-Soviet space program. The future.
21 CFR 870.3535 - Intra-aortic balloon and control system
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intra-aortic balloon and control system 870.3535... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic balloon and control system (a) Identification. A intra-aortic balloon and control system is a device that...
21 CFR 870.3535 - Intra-aortic balloon and control system
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intra-aortic balloon and control system 870.3535... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic balloon and control system (a) Identification. A intra-aortic balloon and control system is a device that...
Auditory Risk of Exploding Hydrogen-Oxygen Balloons
ERIC Educational Resources Information Center
Gee, Kent L.; Vernon, Julia A.; Macedone, Jeffrey H.
2010-01-01
Although hydrogen-oxygen balloon explosions are popular demonstrations, the acoustic impulse created poses a hearing damage risk if the peak level exceeds 140 dB at the listener's ear. The results of acoustical measurements of hydrogen-oxygen balloons of varying volume and oxygen content are described. It is shown that hydrogen balloons may be…
14 CFR 61.23 - Medical certificates: Requirement and duration.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pilot certificate with glider or balloon privileges; or (ii) A pilot certificate with a glider category... privileges in a glider or balloon; (3) When exercising the privileges of a pilot certificate with a glider category rating or balloon class rating in a glider or a balloon, as appropriate; (4) When exercising the...
14 CFR 61.23 - Medical certificates: Requirement and duration.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pilot certificate with glider or balloon privileges; or (ii) A pilot certificate with a glider category... privileges in a glider or balloon; (3) When exercising the privileges of a pilot certificate with a glider category rating or balloon class rating in a glider or a balloon, as appropriate; (4) When exercising the...
14 CFR 61.23 - Medical certificates: Requirement and duration.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pilot certificate with glider or balloon privileges; or (ii) A pilot certificate with a glider category... privileges in a glider or balloon; (3) When exercising the privileges of a pilot certificate with a glider category rating or balloon class rating in a glider or a balloon, as appropriate; (4) When exercising the...
14 CFR 61.23 - Medical certificates: Requirement and duration.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pilot certificate with glider or balloon privileges; or (ii) A pilot certificate with a glider category... privileges in a glider or balloon; (3) When exercising the privileges of a pilot certificate with a glider category rating or balloon class rating in a glider or a balloon, as appropriate; (4) When exercising the...
21 CFR 870.3535 - Intra-aortic balloon and control system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... syndrome, cardiac and non-cardiac surgery, or complications of heart failure. The special controls for this... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intra-aortic balloon and control system. 870.3535... balloon and control system. (a) Identification. An intra-aortic balloon and control system is a...
Biliary sphincteroplasty facilitates retrieval of proximally migrated plastic biliary stent.
Shah, Dharmesh K; Jain, Samit S; Somani, Piyush O; Rathi, Pravin M
2014-01-01
Proximal migration of biliary stents presents a technical challenge for the therapeutic endoscopist. It may require multiple, complicated corrective procedures resulting in significant morbidity to the patients. In this study we evaluated the utility of balloon biliary sphincteroplasty with CRE (Controlled Radial Expansion) Balloon Dilator on retrieval of proximally migrated biliary stents. We identified patients from our ERCP database who presented with proximal migration of biliary stent, between August 2011 and October 2013. Patients in whom the stent could not be retrieved with conventional methods, balloon sphincteroplasty was performed with a 12 mm CRETM Balloon Dilator (Boston Scientific). Stent removal was attempted with extraction balloon or basket thereafter. We identified 28 patients with proximal migration of biliary stents, placed for benign diseases of the common bile duct. Stent removal was successful in 18 patients (64.28%) with help of an extraction balloon or basket. Of the remaining 10 patients, balloon sphincteroplasty was successfully followed by stent removal in eight patients. Balloon biliary sphincteroplasty increases the success rate of retrieving proximally migrated biliary stents. The procedure is safe, technically easy and yields a good success rate in our experience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Poul Erik; Kjeldsen, Anette D.
2008-05-15
Long-term follow-up results after embolization of 13 pulmonary arteriovenous malformations in 10 patients by use of 14 detachable silicone balloons are given. Patients were followed for a mean of 99 months (range, 63-123 months) with chest x-rays and for a mean of 62 months (range, 3-101 months) with pulmonary angiography. Fifty-four percent of the balloons were deflated at latest radiographic chest film follow-up, but at pulmonary angiographic follow-up all embolized malformations were without flow irrespective of whether or not the balloons were visible. Detachable silicone balloons are not available anymore, but use of these balloons for embolization of pulmonary arteriovenousmore » malformations has been shown to be a safe and precise method, with immediate occlusion of the feeding artery and with long-lasting occlusion, even though many balloons deflate with time, leaving a fibrotic scar replacing the pulmonary arteriovenous malformation. No case of recanalization has been discovered, and these results seem to justify a reduced number of controls of these balloon-embolized malformations.« less
A Survey of Titan Balloon Concepts and Technology Status
NASA Technical Reports Server (NTRS)
Hall, Jeffery L.
2011-01-01
This paper surveys the options for, and technology status of, balloon vehicles to explore Saturn's moon Titan. A significant amount of Titan balloon concept thinking and technology development has been performed in recent years, particularly following the spectacular results from the descent and landing of the Huygens probe and remote sensing observations by the Cassini spacecraft. There is widespread recognition that a balloon vehicle on the next Titan mission could provide an outstanding and unmatched capability for in situ exploration on a global scale. The rich variety of revealed science targets has combined with a highly favorable Titan flight environment to yield a wide diversity of proposed balloon concepts. The paper presents a conceptual framework for thinking about balloon vehicle design choices and uses it to analyze various Titan options. The result is a list of recommended Titan balloon vehicle concepts that could perform a variety of science missions, along with their projected performance metrics. Recent technology developments for these balloon concepts are discussed to provide context for an assessment of outstanding risk areas and technological maturity. The paper concludes with suggestions for technology investments needed to achieve flight readiness.
Reference level winds from balloon platforms
NASA Technical Reports Server (NTRS)
Lally, Vincent E.
1985-01-01
The superpressure balloon was developed to provide a method of obtaining global winds at all altitudes from 5 to 30 km. If a balloon could be made to fly for several weeks at a constant altitude, and if it could be tracked accurately on its global circuits, the balloon would provide a tag for the air parcel in which it was embedded. The Lagrangian data on the atmospheric circulation would provide a superior data input to the numerical model. The Global Atmospheric Research Program (GARP) was initiated in large part based on the promise of this technique coupled with free-floating ocean buoys and satellite radiometers. The initial name proposed by Charney for GARP was SABABURA 'SAtellite BAlloon BUoy RAdiometric system' (Charney, 1966). However, although the superpressure balloon exceeded its designers' expectations for flight duration in the stratosphere (longest flight duration of 744 days), flight duration below 10 km was limited by icing in super-cooled clouds to a few days. The balloon was relegated to a secondary role during the GARP Special Observing Periods. The several major superpressure balloon programs for global wind measurement are described as well as those new developments which make the balloon once again an attractive vehicle for measurement of global winds as a reference and bench-mark system for future satellite systems.
Development of a Compact Captive Balloon and Its Level Supporting
NASA Astrophysics Data System (ADS)
Nakao, Tatsuya; Fujiwara, Kazuhito; Furukawa, Motoyasu; Hiroe, Tetsuyuki
Many kinds of observation techniques have been developed to obtain the properties of atmospheric conditions. The advanced observation techniques of the flow in relatively large scale are remote sensing by satellite facilities, long range observations by radar or Doppler Sodar, etc., while data from conventional climometers set at fixed places are merely limited information about local scale flow. Captive balloons are also available and feasible for the observation of local flows if their standing mechanics are robust against the strong wind and the motion of balloon are stable for all wind direction and the change of wind direction. In this paper, a compact captive balloon (about 2m diam.) for flow measurement is proposed and the preservation of balloon height level and the stabilization of its motion are challenged by using a kite. The relation between force balances acted on the balloon and the balloon height or position was estimated and confirmed in experiments. Although the lift force of single kite worked successfully, it is found that the performance of plural kites is less in the traction of balloon since the interaction of their tensions. The compact balloon supported by the kite enabled the over 300m floating by virtue of the small size causing only low air resistance.
Graham, D Y; Smith, J L
1985-06-01
Balloon esophageal dilatation offers many theoretical advantages (safety, speed, and patient comfort) over dilatation with mercury-filled bougies or with the Eder-Puestow system. The authors used balloon dilators in 22 patients with dysphagia secondary to benign or malignant strictures. Dilatation was performed with fluoroscopic guidance, blindly, or by a combination of these techniques. For "blind" stricture dilatation, an Eder-Puestow spring-tipped guide wire is placed into the stomach using a fiberoptic endoscope. The distance from the incisor teeth to the stricture is measured, and the balloon shaft is marked to indicate when the middle of the balloon is within the stricture. Dilatation is then performed using the antegrade or, the preferred, retrograde technique. Finally, the dilated stricture is calibrated by pulling an inflated balloon through the previously strictured area without difficulty. An attempt was made to achieve an esophageal diameter of 15 mm at the initial dilatation episode, and patient discomfort was used as a guide as to the final diameter. The balloon dilatation technique was highly successful, and a stricture diameter of 15 mm (45-47 French) was achieved at the initial dilatation in most instances. Malignant strictures were easily dilated. Balloon dilatation is convenient, effective, quick, and potentially safer than the previous Eder-Puestow or mercury-filled bougie techniques.
Power supplies for long duration balloon flights
NASA Astrophysics Data System (ADS)
Lichfield, Ernest W.
Long duration balloon flights require more electrical power than can be carried in primary batteries. This paper provides design information for selecting rechargeable batteries and charging systems. Solar panels for recharging batteries are discussed, with particular emphasis on cells mounting suitable for balloon flights and panel orientation for maximum power collection. Since efficient utilization of power is so important, modern DC to DC power conversion techniques are presented. On short flights of 1 day or less, system designers have not been greatly concerned with battery weight. But, with the advent of long duration balloon flights using superpressure balloons, anchor balloon systems, and RACOON balloon techniques, power supplies and their weight become of prime importance. The criteria for evaluating power systems for long duration balloon flights is performance per unit weight. Instrumented balloon systems have flown 44 days. For these very long duration flights, batteries recharged from solar cells are the only solution. For intermediate flight duration, say less than 10 days, the system designer should seriously consider using primary cells. The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Durvasula, Venkata S P B; Shalin, Sara C; Tulunay-Ugur, Ozlem E; Suen, James Y; Richter, Gresham T
2018-06-01
Cricoid fracture is a serious concern for balloon dilatation in airway stenosis. Furthermore, there are no studies examining tracheal rupture in balloon dilatation of stenotic segments. The aim of this study was to evaluate the effect of supramaximal pressures of balloons on the cricoid and tracheal rings. Prospective cadaveric study. Seven cadaveric laryngotracheal complexes of normal adults with intact cricothyroid membranes were acquired. Noncompliant vascular angioplasty balloons (BARD-VIDA) were used for dilatation. The subglottis and trachea were subjected to supramaximal dilatation pressures graduated to nominal burst pressure (NBP) and, if necessary, rated burst pressure (RBP). Larger-diameter balloons, starting from 18 mm size to 24 mm, were used. Dilatations were maintained for 3 minutes. The cricoid ring was disrupted by larger-diameter balloons (22 mm and 24 mm) even at lower pressures (less than NBP) in six cases. Tracheal cartilages were very distensible, and external examination after supramaximal dilatation (24 mm close to RBP) revealed no obvious cartilage fractures or trachealis tears. Histopathological examination revealed sloughing of mucosa in the areas corresponding to balloon placement, but no microfractures or disruption of the perichondrium of tracheal ring cartilages. These results indicate that the cricoid is vulnerable to injury from larger balloons even at lower dilatation pressures. The tracheal cartilages and the membranous wall of the trachea remained resilient to supramaximal dilatation and larger balloons. NA. Laryngoscope, 128:1304-1309, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Usefulness of cutting balloon angioplasty for the treatment of congenital heart defects.
Kusa, Jacek; Mazurak, Magdalena; Skierska, Agnieszka; Szydlowski, Leslaw; Czesniewicz, Pawel; Manka, Lukasz
2018-01-01
Patients with complex congenital heart defects may have different hemodynamic prob-lems which require a variety of interventional procedures including angioplasty which involves using high-pressure balloons. After failure of conventional balloon angioplasty, cutting balloon angioplasty is the next treatment option available. The purpose of this study was to evaluate the safety and efficacy of cutting balloon angioplasty in children with different types of congenital heart defects. Cutting balloon angioplasty was performed in 28 children with different congenital heart defects. The indication for cutting balloon angioplasty was: pulmonary artery stenosis in 17 patients, creating or dilatation of interatrial communication in 10 patients, and stenosis of left subclavian artery in 1 patient. In the pulmonary arteries group there was a significant decrease in systolic blood pressure (SBP) in the proximal part of the artery from the average 74.33 ± 20.4 mm Hg to 55 ± 16.7 mm Hg (p < 0.001). Distal to the stenosis there was an increase in SBP from 19.8 ± 3.82 mm Hg to 30.3 ± ± 13.3 mm Hg (p = 0.04). This result remained constant in the follow-up. In atrial septal defect/fenestra-tion group, cutting balloon angioplasty was performed after an unsuccessful classic Rashkind procedure. After cutting balloon angioplasty there was a significant widening of the interatrial communication. Cutting balloon angioplasty is a feasible and effective treatment option in different con-genital heart defects.
Gelsomino, Sandro; Lozekoot, Pieter W J; Lorusso, Roberto; de Jong, Monique M J; Parise, Orlando; Matteucci, Francesco; Lucà, Fabiana; La Meir, Mark; Gensini, Gian Franco; Maessen, Jos G
2016-05-01
We compare a short and a standard-size balloon with same filling volumes to verify the differences in terms of visceral flow, coronary circulation and haemodynamic performance during aortic counterpulsation in an animal model of myocardial ischaemia-reperfusion injury. Eighteen healthy pigs underwent 120-min ligation of the left anterior descending coronary artery followed by 6 h of reperfusion, and they were randomly assigned to have intra-aortic balloon counterpulsation (IABP) with a 40-ml short-balloon (n = 6) or a 40-ml standard-length balloon (n = 6), or to undergo no IABP implantation (controls, n = 6). Haemodynamics and visceral and coronary flows were measured at baseline (t0), at 2 h of ischaemia (t1) and every hour thereafter until 6 h of reperfusion (from tR1 to tR6), respectively. Mesenteric flows increased significantly at tR1 only in the short-balloon group (P < 0.001) and it was constantly higher than in the standard-balloon group regardless of mean arterial pressure, systemic vascular resistance and cardiac output (CO; all, P < 0.001). Renal blood flows were significantly increased during IABP treatment with values constantly and significantly higher in short balloons at any following experimental step (all, P < 0.05). IABP improved CO and coronary blood flow, and reduced afterload, myocardial resistances and myocardial oxygen consumption without differences between the short and the standard-length balloon (all, P > 0.05). The short balloon prevents visceral ischaemia and, compared with the standard-size balloon, it does not lose IABP beneficial cardiac and coronary-related effects. Further studies are warranted to confirm our findings. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Tokuda, Michifumi; Matsuo, Seiichiro; Kato, Mika; Sato, Hidenori; Oseto, Hirotsuna; Okajima, Eri; Ikewaki, Hidetsugu; Isogai, Ryota; Tokutake, Kenichi; Yokoyama, Kenichi; Narui, Ryohsuke; Tanigawa, Shin-Ichi; Yamashita, Seigo; Inada, Keiichi; Yoshimura, Michihiro; Yamane, Teiichi
2017-09-01
Asymptomatic cerebral embolism (ACE) is sometimes detected after cryoballoon ablation of atrial fibrillation. The removal of air bubbles from the cryoballoon before utilization may reduce the rate of ACE. This study aims to compare the incidence of ACE between a conventional and a novel balloon massaging method during cryoballoon ablation. Of 175 consecutive patients undergoing initial cryoballoon ablation of paroxysmal atrial fibrillation, 60 (34.3%) patients underwent novel balloon massaging with extracorporeal balloon inflation in saline water (group N) before the cryoballoon was inserted into the body. The remaining 115 (65.7%) patients underwent conventional balloon massaging in saline water while the balloon remained folded (group C). Of those, 86 propensity score-matched patients were included. The baseline characteristics were similar between the 2 groups. In group N, even after balloon massaging in saline water was carefully performed, multiple air bubbles remained on the balloon surface when the cryoballoon was inflated in all cases. Postprocedural cerebral magnetic resonance imaging detected ACE in 14.0% of all patients. The incidence of ACE was significantly lower in group N than in group C (4.7% vs 23.3%; P = .01). According to multivariable analysis, the novel method was the sole factor associated with the presence of ACE (odds ratio 0.161; 95% confidence interval 0.033-0.736; P = .02). Preliminary removal of air bubbles in heparinized saline water with extracorporeal balloon inflation reduced the incidence of ACE. Since conventional balloon massaging failed to remove air bubbles completely, this novel balloon massaging method should be recommended before cryoballoon utilization. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Spiotta, Alejandro M; James, Robert F; Lowe, Stephen R; Vargas, Jan; Turk, Aquilla S; Chaudry, M Imran; Bhalla, Tarun; Janjua, Rashid M; Delaney, John J; Quintero-Wolfe, Stacey; Turner, Raymond D
2015-10-01
Conventional Onyx embolization of cerebral arteriovenous malformations (AVMs) requires lengthy procedure and fluoroscopy times to form an adequate 'proximal plug' which allows forward nidal penetration while preventing reflux and non-targeted embolization. We review our experience with balloon-augmented Onyx embolization of cerebral AVMs using a dual-lumen balloon catheter technique designed to minimize these challenges. Retrospectively acquired data for all balloon-augmented cerebral AVM embolizations performed between 2011 and 2014 were obtained from four tertiary care centers. For each procedure, at least one Scepter C balloon catheter was advanced into the AVM arterial pedicle of interest and Onyx embolization was performed through the inner lumen after balloon inflation via the outer lumen. Twenty patients underwent embolization with the balloon-augmented technique over 24 discreet treatment episodes. There were 37 total arterial pedicles embolized with the balloon-augmented technique, a mean of 1.9 per patient (range 1-5). The treated AVMs were heterogeneous in their location and size (mean 3.3±1.6 cm). Mean fluoroscopy time for each procedure was 48±26 min (28 min per embolized pedicle). Two Scepter C balloon catheter-related complications (8.3% of embolization sessions, 5.4% of pedicles embolized) were observed: an intraprocedural rupture of a feeding pedicle and fracture and retention of a catheter fragment. This multicenter experience represents the largest reported series of balloon-augmented Onyx embolization of cerebral AVMs. The technique appears safe and effective in the treatment of AVMs, allowing more efficient and controlled injection of Onyx with a decreased risk of reflux and decreased fluoroscopy times. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Charles Blouin, Mathieu; Bouhout, Ismail; Demers, Philippe; Carrier, Michel; Perrault, Louis; Lamarche, Yoan; El-Hamamsy, Ismail; Bouchard, Denis
2017-05-01
Sutureless aortic valve replacement (AVR) is an emerging alternative to standard AVR in elderly and high-risk patients. This procedure is associated with a high rate of postoperative permanent pacemaker implantation (PPI). The study aim was to assess the impact on the rate of PPI of implanting the Perceval prosthesis without using balloon inflation. A total of 159 patients who underwent sutureless AVR using the Perceval prosthesis was included. Balloon inflation was used in 132 patients (Balloon group) and not used in the remaining 27 (No-Balloon group). Clinical, echocardiographic and electrocardiographic outcomes were assessed. There was no significant difference in PPI rate between the two groups (26% for Balloon group versus 22% in No-Balloon group; p = 0.700). Balloon inflation had no significant impact on the incidence of paravalvular leaks (p = 0.839), or on the need to return to cardiopulmonary bypass (CPB) intraoperatively due to paravalvular leak or unsatisfactory deployment (p >0.999). Mean and peak transaortic pressure gradients were similar between the two groups (p = 0.417 and p = 0.522, respectively). Cross-clamp and CPB times were shorter in the No-Balloon group (49.6 ± 15.9 min versus 61.1 ± 25.6 min and 64.1 ± 26.3 min versus 79.6 ± 35.4 min, respectively; p = 0.027 and p = 0.012, respectively). The two groups had similar postoperative PPI rates. Implanting the Perceval prosthesis without balloon inflation is safe and had no impact on paravalvular leaks, intraoperative complications or hemodynamic results. Reductions in aortic cross-clamp time and CPB time were observed when the balloon was not used.
de Castro, Maria Luisa; Morales, Maria Jose; Martínez-Olmos, Miguel A; Pineda, Juan R; Cid, Lucia; Estévez, Pamela; del-Campo, Victor; Rodríguez-Prada, J Ignacio
2013-10-01
intragastric balloons provide early satiety and thereby induce short-term weight loss. The aim of this study was to evaluate safety and short and medium-term effectiveness of gastric balloons associated to hypocaloric diet in obesity. from May 2004 to June 2011 91 obese patients, body mass index (BMI) 45.2 +/- 7.2 kg/m2 were prospectively followed after endoscopic implantation of a gastric balloon associated to restricted diet. Successful therapy was defined as percent loss of total weight (%LTW) > or = 5 % at six months after balloon placement and 6 and 12 months after their withdrawal. All analyses followed intention-to treat principles considering significant p-values < 0.05. we placed 73 fluid-filled balloons (80.2 %) and 18 air-filled ones (19.8 %). Compared to baseline values, at 6-month 73.7 % subjects succeeded, showing significant reductions in weight (13.3 +/- 8.8 kg), BMI (5 +/- 3.4 kg/m2) (p < 0.0001), with % LTW 11 +/- 7 %. Six and twelve months after retrieval 45.1 % and 28.6 % patients reached % LTW > or = 5 %. Short-term and medium-term effectiveness was negatively associated to obesity in first-grade relatives (p = 0.003 and p = 0.04). Higher weight loss 6 months after balloon placement independently predicted medium-term effectiveness (p = 0.0001). Mortality was absent but there were two spontaneous deflations of air-filled balloons and severe withdrawal difficulties in 8 patients, leading to surgery in one case. Retrieval complications associated to air-filled balloons (p = 0.0005). in obesity, effectiveness of gastric balloons associated to hypocaloric diet decreases over time.Complications occurred mainly in the retrieval endoscopic procedure and related to air-filled balloons.
Bo, Liyan; Li, Congcong; Chen, Min; Mu, Deguang; Jin, Faguang
Electrocautery needle knives can largely reduce scar and granulation tissue hyperplasia and play an important role in treating patients with benign stricture. The aim of this retrospective study was to evaluate the efficacy and safety of electrocautery needle knife combined with balloon dilatation versus balloon dilatation alone in the treatment of tracheal stenosis caused by tracheal intubation or tracheotomy. We retrospectively analysed the clinical data of 43 patients with tracheal stenosis caused by tracheotomy or tracheal intubation in our department from January 2013 to January 2016. Among these 43 patients, 23 had simple web-like stenosis and 20 had complex steno sis. All patients were treated under general anaesthesia, and the treatment methods were (1) balloon dilatation alone, (2) needle knife excision of fibrotic tissue combined with balloon dilatation, and (3) needle knife radial incision of fibrotic tissue combined with balloon dilatation. After treatment the symptoms, such as shortness of breath, were markedly improved immediately in all cases. The stenosis degree of patients who were treated with the elec-trocautery needle knife combined with balloon dilatation had better improvement compared with that of those treated with balloon dilatation treatment alone after 3 months (0.45 ± 0.04 vs. 0.67 ± 0.05, p < 0.01), and the proportion of restenosis occurrence that required further treatment was decreased at 6 months (46.9 vs. 81.8%), especially for the web-like stenosis patients, as most of their stenoses dilated with no obvious restenosis and achieved clinical cure. Electrocautery needle knife combined with balloon dilatation is an effective and safe treatment for tracheal fibrotic stenosis compared with balloon dilatation alone. © 2017 S. Karger AG, Basel.
Efficacy of Intrauterine Bakri Balloon Tamponade in Cesarean Section for Placenta Previa Patients.
Cho, Hee Young; Park, Yong Won; Kim, Young Han; Jung, Inkyung; Kwon, Ja-Young
2015-01-01
The aims of this study were to analyze the predictive factors for the use of intrauterine balloon insertion and to evaluate the efficacy and factors affecting failure of uterine tamponade with a Bakri balloon during cesarean section for abnormal placentation. We reviewed the medical records of 137 patients who underwent elective cesarean section for placenta previa between July 2009 and March 2014. Cesarean section and Bakri balloon insertion were performed by a single qualified surgeon. The Bakri balloon was applied when blood loss during cesarean delivery exceeded 1,000 mL. Sixty-four patients (46.7%) required uterine balloon tamponade during cesarean section due to postpartum bleeding from the lower uterine segment, of whom 50 (78.1%) had placenta previa totalis. The overall success rate was 75% (48/64) for placenta previa patients. Previous cesarean section history, anterior placenta, peripartum platelet count, and disseminated intravascular coagulopathy all significantly differed according to balloon success or failure (all p<0.05). The drainage amount over 1 hour was 500 mL (20-1200 mL) in the balloon failure group and 60 mL (5-500 mL) in the balloon success group (p<0.01). Intrauterine tamponade with a Bakri balloon is an adequate adjunct management for postpartum hemorrhage following cesarean section for placenta previa to preserve the uterus. This method is simple to apply, non-invasive, and inexpensive. However, possible factors related to failure of Bakri balloon tamponade for placenta previa patients such as prior cesarean section history, anterior placentation, thrombocytopenia, presence of DIC at the time of catheter insertion, and catheter drainage volume more than 500 mL within 1 hour of catheter placement should be recognized, and the next-line management should be prepared in advance.
Efficacy of Intrauterine Bakri Balloon Tamponade in Cesarean Section for Placenta Previa Patients
Cho, Hee Young; Park, Yong Won; Kim, Young Han; Jung, Inkyung; Kwon, Ja-Young
2015-01-01
Purpose The aims of this study were to analyze the predictive factors for the use of intrauterine balloon insertion and to evaluate the efficacy and factors affecting failure of uterine tamponade with a Bakri balloon during cesarean section for abnormal placentation. Methods We reviewed the medical records of 137 patients who underwent elective cesarean section for placenta previa between July 2009 and March 2014. Cesarean section and Bakri balloon insertion were performed by a single qualified surgeon. The Bakri balloon was applied when blood loss during cesarean delivery exceeded 1,000 mL. Results Sixty-four patients (46.7%) required uterine balloon tamponade during cesarean section due to postpartum bleeding from the lower uterine segment, of whom 50 (78.1%) had placenta previa totalis. The overall success rate was 75% (48/64) for placenta previa patients. Previous cesarean section history, anterior placenta, peripartum platelet count, and disseminated intravascular coagulopathy all significantly differed according to balloon success or failure (all p<0.05). The drainage amount over 1 hour was 500 mL (20–1200 mL) in the balloon failure group and 60 mL (5–500 mL) in the balloon success group (p<0.01). Conclusion Intrauterine tamponade with a Bakri balloon is an adequate adjunct management for postpartum hemorrhage following cesarean section for placenta previa to preserve the uterus. This method is simple to apply, non-invasive, and inexpensive. However, possible factors related to failure of Bakri balloon tamponade for placenta previa patients such as prior cesarean section history, anterior placentation, thrombocytopenia, presence of DIC at the time of catheter insertion, and catheter drainage volume more than 500 mL within 1 hour of catheter placement should be recognized, and the next-line management should be prepared in advance. PMID:26263014
Lamichhane, Sujan; Anderson, Jordan; Remund, Tyler; Kelly, Patrick
2015-01-01
Abstract Drug‐coated balloons (DCBs) have now emerged as a promising approach to treat peripheral artery disease. However, a significant amount of drug from the balloon surface is lost during balloon tracking and results in delivering only a subtherapeutic dose of drug at the diseased site. Hence, in this study, the use of dextran sulfate (DS) polymer was investigated as a platform to control the drug release from balloons. An antiproliferative drug, paclitaxel (PAT), was incorporated into DS films (PAT‐DS). The characterizations using SEM, FT‐IR, and DSC showed that the films prepared were smooth and homogenous with PAT molecularly dispersed in the bulk of DS matrix in amorphous form. An investigation on the interaction of smooth muscle cells (SMCs) with control‐DS and PAT‐DS films showed that both films inhibited SMC growth, with a superior inhibitory effect observed for PAT‐DS films. PAT‐DS coatings were then produced on balloon catheters. The integrity of coatings was well‐maintained when the balloons were either deflated or inflated. In this study, up to 2.2 µg/mm2 of PAT was loaded on the balloons using the DS platform. Drug elution studies showed that only 10 to 20% of the total PAT loaded was released from the PAT‐DS coated balloons during the typical time period of balloon tracking (1 min) and then ∼80% of the total PAT loaded was released during the typical time period of balloon inflation and treatment (from 1 min to 4 min). Thus, this study demonstrated the use of DS as a platform to control drug delivery from balloons. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1416–1430, 2016. PMID:26227252
Lin, Yuan-xiang; Lin, Kun; Kang, De-zhi; Liu, Xin-xiu; Wang, Xing-fu; Zheng, Shu-fa; Yu, Liang-hong; Lin, Zhang-ya
2015-05-01
Dysmorphic neurons and balloon cells constitute the neuropathological hallmarks of type II focal cortical dysplasias (FCDs) with refractory epilepsy. The genesis of these cells may be critical to the histological findings in type II FCD. Recent work has shown enhanced activation of the mTOR cascade in both balloon cells and dysmorphic neurons, suggesting a common pathogenesis for these two neuropathological hallmarks. A direct comparative analysis of balloon cells and dysmorphic neurons might identify a molecular link between balloon cells and dysmorphic neurons. Here, we addressed whether PDK1-AKT-mTOR activation differentiates balloon cells from dysmorphic neurons. We used immunohistochemistry with antibodies against phosphorylated (p)-PDK1 (Ser241), p-AKT (Thr308), p-AKT (Ser473), p-mTOR (Ser2448), p-P70S6K (Thr229), and p-p70S6 kinase (Thr389) in balloon cells compared with dysmorphic neurons. Strong or moderate staining for components of the PDK1-AKT-mTOR signaling pathway was observed in both balloon cells and dysmorphic neurons. However, only a few pyramidal neurons displayed weak staining in control group (perilesional neocortex and histologically normal neocortex). Additionally, p-PDK1 (Ser241) and p-AKT (Thr308) staining in balloon cells were stronger than in dysmorphic neurons, whereas p-P70S6K (Thr229) and p-p70S6 kinase (Thr389) staining in balloon cells was weaker than in dysmorphic neurons. In balloon cells, p-AKT (Ser473) and p-mTOR (Ser2448) staining was comparable with the staining in dysmorphic neurons. Our data support the previously suggested pathogenic relationship between balloon cells and dysmorphic neurons concerning activation of the PDK1-AKT-mTOR, which may play important roles in the pathogenesis of type II FCD. Differential expression of some components of the PDK1-AKT-mTOR pathway between balloon cells and dysmorphic neurons may result from cell-specific gene expression. Copyright © 2015 Elsevier B.V. All rights reserved.
High altitude flights in equatorial regions
NASA Astrophysics Data System (ADS)
Redkar, R. T.
A thorough analysis of balloon flights made from Hyderabad, India (Latitude 17°28'N, Longitude 78°35'E), and other equatorial sites has been made. It has been shown that limited success is expected for flights made from equatorial latitudes with balloons made out of natural colour polyethylene film, since the best known balloon film in the world today viz. Winzen Stratofilm is tested for low temperature brittleness only at -80°C., whereas the tropopause temperatures over equatorial latitudes vary between -80°C and -90°C. The success becomes even more critical when flights are made with heavy payloads and larger balloons particularly at night when in the absence of solar radiation the balloon film becomes more susceptible to low temperature brittle failure. It is recommended that in case of capped balloons longer caps should be used to fully cover the inflated protion of the balloon at the higher level equatorial tropopause. It is also advised that the conditions such as wind shears in the tropopause should be critically studied before launching and a day with the tropopause temperature nearer to -80°C should be chosen. Special care also should be taken while handling the balloon on ground and during launching phase. Properties of Winzen Stratofilm have been critically studied and fresh mandates have been recommended on the basis of limiting values of film stresses which caused balloon failures in the equatorial tropopause. It is also emphasized that the data on such flights is still meagre especially for flights with heavy payloads and larger balloons. It has been also shown that it is safest to use balloons made out of grey coloured film which retains its flexibility with the absorption of solar radiation, the success obtained with such balloons so far being 100%. The drawback, however, is that these balloons cannot be used for night flights. Stratospheric wind regimes over Hyderabad are also discussed with a view to determine the period over which long duration flights can be made. The data available, however, is meagre and it is recommended that more frequent special wind ascents be made to collect adequate statistical data from which reliable conclusions could be drawn through critical analysis.
The NASA super pressure balloon - A path to flight
NASA Astrophysics Data System (ADS)
Cathey, H. M.
2009-07-01
The National Aeronautics and Space Administration's Balloon Program Office has invested significant time and effort in extensive ground testing of model super pressure balloons. The testing path has been developed as an outgrowth of the results of the super pressure balloon test flight in 2006. Summary results of the June 2006 super pressure test flight from Kiruna, Sweden are presented including the balloon performance and "lessons learned". This balloons flight performance exceeded expectations, but did not fully deploy. The flight was safely terminated by command. The results of this test flight refocused the project's efforts toward additional ground testing and analysis; a path to flight. A series of small 4 m diameter models were made and tested to further explore the deployment and structural capabilities of the balloons and materials. A series of ˜27 m model balloons were successfully tested indoors. These balloons successfully replicated the cleft seen in the Sweden flight, explored the deployment trade space to help characterize better design approaches, and demonstrated an acceptable fix to the deployment issue. Photogrammetry was employed during these ˜27 m model tests to help characterize both the balloon and gore shape evolution under pressurization. A ˜8.5 m ground model was used to explore the design and materials performance. Results of these tests will be presented. A general overview of some of the other project advancements made related to demonstrating the strain arresting nature of the proposed design, materials and analysis work will also be presented. All of this work has prepared a clear path toward a renewed round of test flights. This paper will give an overview of the development approach pursued for this super pressure balloon development. A description of the balloon design, including the modifications made as a result of the lessons learned, is presented. A short deployment test flight of the National Aeronautics and Space Administration's super pressure balloon took place in June 2008. This flight was from Ft. Sumner, New Mexico. Preliminary results of this flight are presented. Future plans for both ground testing and additional test flights are also presented. Goals of the future test flights, which are staged in increments of increasing suspended load and altitude, are presented. This includes the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.
An analysis of the deployment of a pumpkin balloon on mars
NASA Astrophysics Data System (ADS)
Rand, J.; Phillips, M.
The design of large superpressure balloons has received significant attention in recent years due to the successful demonstration of various enabling technologies and materials. Of particular note is the "pumpkin" shaped balloon concept, which allows the stress in the envelope to be limited by the surface geometry. Unlike a sphere, which produces stress resultants determined by the volume of the system, the pumpkin utilizes a system of meridional tendons to react the loading in one direction, and form a number of lobes, which limit the stress in the circumferential direction. The application of this technology to very large systems is currently being demonstrated by NASA's Ultra Long Duration Balloon (ULDB) Program. However, this type of balloon has certain features that may be exploited to produce a system far more robust than a comparable sphere during deployment, inflation, and operation for long periods of time. When this concept is applied to a system designed to carry two kilograms in the atmosphere of Mars, the resulting balloon is small enough to alter the construction techniques and produce an envelope which is free of tucks and folds which may cause uncontrolled stress concentrations. A technique has been demonstrated where high strength tendons may be pretensioned prior to installation along the centerline of each gore. Since this position is the shortest distance between the apex and nadir of the balloon, the tendons will automatically resist the forces caused by deployment and inflation and thereby protect the thin film gas barrier from damage. A suitable balloon has been designed for this type of mission using five-micron Mylar Type C film for the gas barrier and P O braided cables for the meridionalB load carrying members. The deployment of this balloon is assumed to occur while falling on a decelerator suitably designed for the Mars atmosphere. The inflation is accomplished by a ten-kilogram system suspended at the nadir of the balloon. As the system falls toward the surface of the planet, helium gas is transferred to the balloon, forming a partially inflated system very similar to an ascending zero pressure balloon. This analysis incorporates the flow of the planetary gas around the inflating balloon, altering the pressure distribution and shape. As a result, stresses are seen to increase beyond the design margin of safety, requiring the balloon to be redesigned. In addition, several scale models of this balloon were dynamically deployed in the laboratory to demonstrate that the deployment forces are indeed carried by the tendons
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-14
... flying hot air balloons transiting across the Lower Mississippi River. Entry into this zone is prohibited... mariners from the safety hazards associated with a fireworks display and low flying hot air balloons... mariners from the safety hazards associated with a fireworks display and low flying hot air balloons...
Lightweight Valve Closes Duct Quickly
NASA Technical Reports Server (NTRS)
Fournier, Walter L.; Burgy, N. Frank
1991-01-01
Expanding balloon serves as lightweight emergency valve to close wide duct. Uninflated balloon stored in housing of duct. Pad resting on burst diaphragm protects balloon from hot gases in duct. Once control system triggers valve, balloon inflates rapidly to block duct. Weighs much less than does conventional butterfly, hot-gas, or poppet valve capable of closing duct of equal diameter.
Retrieval of impacted broken balloon by balloon inflation in guiding catheter.
Mehta, Vimal; Pandit, Bhagya Narayan; Yusuf, Jamal; Mukhopadhyay, Saibal; Trehan, Vijay; Tyagi, Sanjay
2014-07-01
Broken catheter fragment in a coronary artery during percutaneous coronary angioplasty is a rare complication. It can result in serious problems as a result of thrombus formation and embolization of broken fragment. We report an unusual complication of a broken balloon catheter during angioplasty, which was successfully retrieved by balloon inflation in guiding catheter technique.
JACEE long duration balloon flights. [Japanese-American Cooperative Emulsion Experiment
NASA Technical Reports Server (NTRS)
Burnett, T.; Iwai, J.; Dake, S.; Derrickson, J.; Fountain, W.; Fuki, M.; Gregory, J.; Hayashi, T.; Holynski, R.; Jones, W. V.
1989-01-01
JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1 to 100A TeV. Experiments with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed.
NASA Langley Research Center tethered balloon systems
NASA Technical Reports Server (NTRS)
Owens, Thomas L.; Storey, Richard W.; Youngbluth, Otto
1987-01-01
The NASA Langley Research Center tethered balloon system operations are covered in this report for the period of 1979 through 1983. Meteorological data, ozone concentrations, and other data were obtained from in situ measurements. The large tethered balloon had a lifting capability of 30 kilograms to 2500 meters. The report includes descriptions of the various components of the balloon systems such as the balloons, the sensors, the electronics, and the hardware. Several photographs of the system are included as well as a list of projects including the types of data gathered.
Kwan, E S; Heilman, C B; Shucart, W A; Klucznik, R P
1991-12-01
Two patients with distal basilar aneurysms were treated with intra-aneurysmal balloon occlusion. After apparently successful therapy, follow-up angiograms demonstrated aneurysm enlargement with balloon migration distally in the sac. Geometric mismatch between the base of the balloons and the aneurysm neck together with transmitted pulsation through the 2-hydroxyl-ethylmethacrylate (HEMA)-filled balloon directly contributed to aneurysm enlargement. In this report, the authors discuss the problems of progressive aneurysm enlargement due to a "water-hammer effect" and the possibility of hemorrhage following subtotal occlusion.
Early Cosmic Ray Research with Balloons
NASA Astrophysics Data System (ADS)
Walter, Michael
2013-06-01
The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.
Agyei, Justice O; Alvarez, Cynthia; Iqbal, Azher; Fanous, Andrew A; Siddiqui, Adnan H
2018-06-01
A rare complication following tracheotomy is common carotid artery (CCA) pseudoaneurysm. Treatment modalities for CCA pseudoaneurysm include surgical repair and single-artery balloon-covered stent graft technique. We describe successful treatment of tracheotomy-related CCA pseudoaneurysm with the "kissing balloon" expandable stent graft technique. We successfully implemented the kissing balloon expandable stent graft technique for treatment of a large, narrow-necked, bilobed CCA pseudoaneurysm that arose owing to a tracheotomy complication. The pseudoaneurysm was detected while performing a diagnostic angiogram of the aortic arch and surrounding vessels. The stent was deployed while the 2 balloons were introduced in a kissing manner such that they faced one another to avoid occlusion of either branch of the innominate artery coming into contact; 1 balloon was inflated at the origin of the right subclavian artery, and the other was inflated at the right innominate artery simultaneously. The pseudoaneurysm was successfully contained; normal blood flow was restored in the CCA. The balloons were deflated and withdrawn. The patient remained neurologically intact after the procedure. The kissing balloon technique is a safe and effective alternative to surgical repair, as it prevents morbidities associated with the surgical procedure. Also, this technique decreases the risk of major side-branch occlusion associated with the single-artery balloon-covered stent graft technique. Copyright © 2018 Elsevier Inc. All rights reserved.
Despott, Edward J; Murino, Alberto; Bourikas, Leonidas; Nakamura, Masanao; Ramachandra, Vino; Fraser, Chris
2015-05-01
Spiral enteroscopy is a recently introduced technology alternative to balloon-assisted enteroscopy for examination of the small bowel. To compare small bowel insertion depths and procedure duration by spiral enteroscopy and double-balloon enteroscopy performed in the same cohort of patients, in immediate succession, using the same method of insertion depth estimation. A prospective, back-to-back comparative study was performed in 15 patients. Spiral enteroscopy procedures were performed first and a tattoo was placed to mark the most distal point. Double-balloon enteroscopy passed the tattoo placed at spiral enteroscopy in 14/15 cases (93%). Median insertion depths for double-balloon enteroscopy and spiral enteroscopy were 265cm and 175cm, respectively (P=0.004). Median time to achieve maximal depth of insertion was significantly shorter for spiral enteroscopy compared with double-balloon enteroscopy (24min vs. 45min, respectively; P=0.0005). However, in 14 patients no differences were found in median time to reach the same insertion depth (P=0.28). Double-balloon enteroscopy achieved significantly greater small bowel insertion depth than spiral enteroscopy. Although overall double-balloon enteroscopy procedure duration was longer, the time taken to reach the same small bowel insertion depth by both spiral enteroscopy and double-balloon enteroscopy was similar. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Launching Garbage-Bag Balloons.
ERIC Educational Resources Information Center
Kim, Hy
1997-01-01
Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)
Dutch Viking TROS Aktua Special
NASA Technical Reports Server (NTRS)
1986-01-01
Footage shows the night vertical takeoff of the Viking Hollan hot air balloon. The crew is shown participating in survival technique training, boarding the plane to depart to Canada, and preparing for the vertical takeoff in the hot air balloon across the Atlantic Ocean. Scenes also include the making of the capsule for the balloon, some flight activities, and the landing of the balloon.
Heat Transfer Model for Hot Air Balloons
NASA Astrophysics Data System (ADS)
Llado-Gambin, Adriana
A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.
Mechanical properties of ANTRIX balloon film and fabrication of single cap large volume balloons
NASA Astrophysics Data System (ADS)
Suneel Kumar, B.; Sreenivasan, S.; Subba Rao, J. V.; Manchanda, R. K.
2008-11-01
The zero pressure plastic balloons used for high altitude studies are generally made from polyethylene material. Tensile properties of the thin film polymer are the key parameters for material selection due to extremely low temperature of -90 °C encountered by the balloons in the tropopause region during the ascent at equatorial latitudes. The physical and structural properties of the material determine the uniformity of the stress distribution over the entire shell. Load stresses from the suspended load propagate via load tapes heat sealed along with the gore seals as per the balloon design. A balance between this heat seal strength and the film strength is a desirable property of the basic resin in terms of the bubble strength, gauge uniformity, and long-term storage properties. In addition, the design of the top shell of the balloon and its stress distribution play an important role since only a fraction of the balloon is deployed during the filling operation and the ascent. In this paper we describe the mechanical properties of the 'ANTRIX' film developed by us and the optimized design of single cap balloons, which have been successfully used in our experiments over the past 5 years.
Introduction (Special Issue on Scientific Balloon Capabilities and Instrumentation)
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Smith, I. S.; Jones, W. V.
2014-01-01
In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3,000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science.) Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.
Fracture, inflation and floatation embolisation of PTCA balloon.
O'Neill, Louisa; Sowbhaga, Vinay; Owens, Patrick
2015-01-09
This case outlines an unusual complication of coronary intervention, the likely mechanisms leading to this and possible retrieval options. It is the first case to the best of our knowledge reporting this complication. A 78-year-old Caucasian man underwent coronary stenting. During the procedure kinking and subsequent fracture of a non-compliant percutaneous transluminal coronary angioplasty (PTCA) balloon occurred. Injection of contrast down the guide to opacify the coronary arteries resulted in 'inflation' of the balloon with air, and embolisation of the inflated balloon into the proximal left anterior descending artery. The embolised balloon was retrieved by removal of the guide catheter and wire as a unit. The patient had a good angiographic outcome. This case highlights risks associated with usage of kinked balloons catheters, and describes for the first time to our knowledge, the inflation of a PTCA balloon with air from its shaft within the catheter, causing 'floatation' embolisation into the coronary artery. 2015 BMJ Publishing Group Ltd.
Fracture, inflation and floatation embolisation of PTCA balloon
O'Neill, Louisa; Sowbhaga, Vinay; Owens, Patrick
2015-01-01
This case outlines an unusual complication of coronary intervention, the likely mechanisms leading to this and possible retrieval options. It is the first case to the best of our knowledge reporting this complication. A 78-year-old Caucasian man underwent coronary stenting. During the procedure kinking and subsequent fracture of a non-compliant percutaneous transluminal coronary angioplasty (PTCA) balloon occurred. Injection of contrast down the guide to opacify the coronary arteries resulted in ‘inflation’ of the balloon with air, and embolisation of the inflated balloon into the proximal left anterior descending artery. The embolised balloon was retrieved by removal of the guide catheter and wire as a unit. The patient had a good angiographic outcome. This case highlights risks associated with usage of kinked balloons catheters, and describes for the first time to our knowledge, the inflation of a PTCA balloon with air from its shaft within the catheter, causing ‘floatation’ embolisation into the coronary artery. PMID:25576524
NASA Technical Reports Server (NTRS)
Horn, W. J.; Carlson, L. A.
1983-01-01
A FORTRAN computer program called THERMTRAJ is presented which can be used to compute the trajectory of high altitude scientific zero pressure balloons from launch through all subsequent phases of the balloon flight. In addition, balloon gas and film temperatures can be computed at every point of the flight. The program has the ability to account for ballasting, changes in cloud cover, variable atmospheric temperature profiles, and both unconditional valving and scheduled valving of the balloon gas. The program was verified for an extensive range of balloon sizes (from 0.5 to 41.47 million cubic feet). Instructions on program usage, listing of the program source deck, input data and printed and plotted output for a verification case are included.
Schober, Karsten E; Rhinehart, Jaylyn; Kohnken, Rebecca; Bonagura, John D
2017-12-01
Combined cutting balloon and high-pressure balloon dilation was performed in a dog with a double-chambered right ventricle and severe infundibular stenosis of the right ventricular outflow tract. The peak systolic pressure gradient across the stenosis decreased by 65% after dilation (from 187 mmHg before to 66 mmHg after) affirming the intervention as successful. However, early re-stenosis occurred within 3 months leading to exercise intolerance, exercise-induced syncope, and right-sided congestive heart failure. Cutting balloon followed by high-pressure balloon dilation provided temporary but not long-term relief of right ventricular obstruction in this dog. Copyright © 2017 Elsevier B.V. All rights reserved.
Morphological characterization of selected balloon films and its effects on balloon performances
NASA Technical Reports Server (NTRS)
Said, Magdi A.
1994-01-01
Morphological characterization of several polyethylene balloon films have been studied using various techniques. The objective is to determine, if any, differentiating structural or morphological features that can be related to the performance of these balloon film materials. The results of the study indicate that the films are composed of either linear low denstiy polyethylene (LLDPE) or low density polyethylene (LDPE). A selective examination of these data imply that films limited degree of branching and larger crystallites size (same % crystallinity) showed good mechanical properties that appear to correlate with their high level of success in balloon flights.
2002-12-05
KENNEDY SPACE CENTER, FLA. - Stephen Ezell, meteorological systems operator at Weather Station A, Cape Canaveral Air Force Station, gets ready to release a weather balloon. Such balloons are released twice a day. The package in Ezell's hand is a radio sonde that collects temperature and humidity data as the balloon rises. The data is released to agencies nationwide, including the 45th Space Wing, which uses the data for its daily weather reports. The weather station provides additional data to NASA for launches -- releasing 12 balloons in eight hours prior to liftoff - and landings - releasing 5 balloons in six and a half hours before expected touchdown.
2002-12-05
KENNEDY SPACE CENTER, FLA. -- Stephen Ezell, meteorological systems operator at Weather Station A, Cape Canaveral Air Force Station, releases a weather balloon. Such balloons are released twice a day. The package at the bottom is a radio sonde that collects temperature and humidity data as the balloon rises. The data is released to agencies nationwide, including the 45th Space Wing, which uses the data for its daily weather reports. The weather station provides additional data to NASA for launches -- releasing 12 balloons in eight hours prior to liftoff - and landings - releasing 5 balloons in six and a half hours before expected touchdown.
2002-12-05
KENNEDY SPACE CENTER, FLA. - Stephen Ezell, meteorological systems operator at Weather Station A, Cape Canaveral Air Force Station, gets ready to release a weather balloon. Such balloons are released twice a day. The package in Ezell's hand is a radio sonde that collects temperature and humidity data as the balloon rises. The data is released to agencies nationwide, including the 45th Space Wing, which uses the data for its daily weather reports. The weather station provides additional data to NASA for launches -- releasing 12 balloons in eight hours prior to liftoff - and landings - releasing 5 balloons in six and a half hours before expected touchdown.
Sounding rocket and balloon flight safety philosophy and methodologies
NASA Technical Reports Server (NTRS)
Beyma, R. J.
1986-01-01
NASA's sounding rocket and balloon goal is to successfully and safely perform scientific research. This is reflected in the design, planning, and conduct of sounding rocket and balloon operations. The purpose of this paper is to acquaint the sounding rocket and balloon scientific community with flight safety philosophy and methodologies, and how range safety affects their programs. This paper presents the flight safety philosophy for protecting the public against the risk created by the conduct of sounding rocket and balloon operations. The flight safety criteria used to implement this philosophy are defined and the methodologies used to calculate mission risk are described.
Yellow Balloon in a Briar Patch.
ERIC Educational Resources Information Center
Cooper, Frank; Fitzmaurice, Robert W.
1978-01-01
As part of a meteorology unit, sixth grade science students launched helium balloons with attached return postcards. This article describes Weather Service monitoring of the balloons and postcard return results. (MA)
21 CFR 874.4100 - Epistaxis balloon.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... An epistaxis balloon is a device consisting of an inflatable balloon intended to control internal... (general controls). The device is exempt from the premarket notification procedures in subpart E of part...
Atmospheric Electricity and Tethered Aerostats, Volume 2
1976-05-11
vs Altitude (Non- conducting or Conducting Tethers...Effect of Corona Charge Plume 15 3.1 Tether Current vs Balloon Altitude , BJ+3 - 25 Sep 73 20 3.2 Tether Current vs Balloon Altitude , Baldy - 17 Oct 73 21...3.3 Tether Current vs Balloon Altitude , Baldy - 31 Oct 73 22 3.4 Tether Current vs Balloon Altitude , Baldy - 2 Nov 73 23 3.5 Tether Current vs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsi, Wen C.; Fagundes, Marcio; Zeidan, Omar
Purpose: To present a practical image-guided method to position an endorectal balloon that improves in vivo thermoluminiscent dosimeter (TLD) measurements of rectal doses in proton therapy for prostate cancer. Methods: TLDs were combined with endorectal balloons to measure dose at the anterior rectal wall during daily proton treatment delivery. Radiopaque metallic markers were employed as surrogates for balloon position reproducibility in rotation and translation. The markers were utilized to guide the balloon orientation during daily treatment employing orthogonal x-ray image-guided patient positioning. TLDs were placed at the 12 o'clock position on the anterior balloon surface at the midprostatic plane. Markersmore » were placed at the 3 and 9 o'clock positions on the balloon to align it with respect to the planned orientation. The balloon rotation along its stem axis, referred to as roll, causes TLD displacement along the anterior-posterior direction. The magnitude of TLD displacement is revealed by the separation distance between markers at opposite sides of the balloon on sagittal x-ray images. Results: A total of 81 in vivo TLD measurements were performed on six patients. Eighty-three percent of all measurements (65 TLD readings) were within +5% and -10% of the planning dose with a mean of -2.1% and a standard deviation of 3.5%. Examination of marker positions with in-room x-ray images of measured doses between -10% and -20% of the planned dose revealed a strong correlation between balloon roll and TLD displacement posteriorly from the planned position. The magnitude of the roll was confirmed by separations of 10-20 mm between the markers which could be corrected by manually adjusting the balloon position and verified by a repeat x-ray image prior to proton delivery. This approach could properly correct the balloon roll, resulting in TLD positioning within 2 mm along the anterior-posterior direction. Conclusions: Our results show that image-guided TLD-based in vivo dosimetry for rectal dose verification can be perfomed reliably and reproducibly for proton therapy in prostate cancer.« less
Hsi, Wen C; Fagundes, Marcio; Zeidan, Omar; Hug, Eugen; Schreuder, Niek
2013-05-01
To present a practical image-guided method to position an endorectal balloon that improves in vivo thermoluminiscent dosimeter (TLD) measurements of rectal doses in proton therapy for prostate cancer. TLDs were combined with endorectal balloons to measure dose at the anterior rectal wall during daily proton treatment delivery. Radiopaque metallic markers were employed as surrogates for balloon position reproducibility in rotation and translation. The markers were utilized to guide the balloon orientation during daily treatment employing orthogonal x-ray image-guided patient positioning. TLDs were placed at the 12 o'clock position on the anterior balloon surface at the midprostatic plane. Markers were placed at the 3 and 9 o'clock positions on the balloon to align it with respect to the planned orientation. The balloon rotation along its stem axis, referred to as roll, causes TLD displacement along the anterior-posterior direction. The magnitude of TLD displacement is revealed by the separation distance between markers at opposite sides of the balloon on sagittal x-ray images. A total of 81 in vivo TLD measurements were performed on six patients. Eighty-three percent of all measurements (65 TLD readings) were within +5% and -10% of the planning dose with a mean of -2.1% and a standard deviation of 3.5%. Examination of marker positions with in-room x-ray images of measured doses between -10% and -20% of the planned dose revealed a strong correlation between balloon roll and TLD displacement posteriorly from the planned position. The magnitude of the roll was confirmed by separations of 10-20 mm between the markers which could be corrected by manually adjusting the balloon position and verified by a repeat x-ray image prior to proton delivery. This approach could properly correct the balloon roll, resulting in TLD positioning within 2 mm along the anterior-posterior direction. Our results show that image-guided TLD-based in vivo dosimetry for rectal dose verification can be perfomed reliably and reproducibly for proton therapy in prostate cancer.
Apple, Marc; Waksman, Ron; Chan, Rosanna C; Vodovotz, Yoram; Fournadjiev, Jana; Bass, Bill G
2002-08-06
Ionizing radiation administered intraluminally via catheter-based systems using solid beta and gamma sources or liquid-filled balloons has shown reduction in the neointima formation after injury in the porcine model. We propose a novel system that uses a 133-Xenon (133Xe) radioactive gas-filled balloon catheter system. Overstretch balloon injury was performed in the coronary arteries of 33 domestic pigs. A novel 133Xe radioactive gas-filled balloon (3.5/45 mm) was positioned to overlap the injured segment with margins. After vacuum was obtained in the balloon catheter, approximately 2.5 cc of 133Xe gas was injected to fill the balloon. Doses of 0, 7.5, 15, and 30 Gy were delivered to a distance of 0.25 mm from the balloon surface. The dwell time ranged from 1.0 to 4.0 minutes, depending on the dose. Localization of 133Xe in the balloon was verified by a gamma camera. The average activity in a 3.5/45-mm balloon was measured at 67.7+/-12.1 mCi, and the total diffusion loss of the injected dose was 0.26% per minute of the injected dose. Bedside radiation exposure measured between 2 and 6 mR/h, and the shallow dose equivalent was calculated as 0.037 mrem per treatment. Histomorphometric analysis at 2 weeks showed inhibition of the intimal area (intimal area corrected for medial fracture length [IA/FL]) in the irradiated segments of 0.26+/-0.08 with 30 Gy, 0.07+/-0.24 with 15 Gy, and 0.12+/-0.89 with 7.5 Gy versus 0.76+/-0.08 with control P<0.001. 133Xe gas-filled balloon is feasible and effective in the reduction of neointima formation in the porcine model and safe for use in coronary arteries.
Shindo, Ryosuke; Yonemoto, Naohiro; Yamamoto, Yuriko; Kasai, Junko; Kasai, Michi; Miyagi, Etsuko
2017-01-01
Objective To compare the efficacy and safety of hygroscopic dilators and balloon catheters for ripening of the cervix in induction of labor. Study design This retrospective, observational study used data from the Successive Pregnancy Birth Registry System of the Japan Society of Obstetrics and Gynecology from 2012 to 2014. Nulliparous women in whom labor was induced by mechanical methods of cervical ripening at term were enrolled. The eligible women were divided into dilator, balloon <40 mL, balloon ≧40 mL, and overlapping groups. Results The groups included 4645, 4100, 6615, and 1992 women, respectively. In the overlapping group, which included the women in whom delivery was most difficult, the vaginal delivery rate was lower and the intrauterine infection and neonatal mortality rates were higher than those in the dilator group. No difference in the vaginal delivery rate was observed among the dilator, balloon <40 mL, and balloon ≧40 mL groups (74.6%, 72.3%, and 73.8%, respectively; p>0.05). The vaginal instrumental delivery rate was higher in the two-balloon groups than in the dilator group. The volume of intrapartum hemorrhage was lowest in the dilator group. No significant difference in the frequencies of uterine rupture and intrauterine infection were observed among the dilator and two-balloon groups. With regard to neonatal outcomes, the frequency of a low Apgar score was statistically significantly lower in the dilator group than in the two-balloon groups. Moreover, the frequency of neonatal death tended to be lower in the dilator group than in the two-balloon groups. Conclusion With regard to cervical ripening for labor induction in nulliparous women at term, the vaginal delivery rate on using a dilator and on using a balloon seems to be equivalent. Concerning maternal complications and neonatal outcomes, cervical ripening with hygroscopic dilators in labor induction might be safer. PMID:29272277
NASA Astrophysics Data System (ADS)
Vial, F.; Hertzog, A.; Mechoso, C. R.; Basdevant, C.; Cocquerez, P.; Dubourg, V.; Nouel, F.
2001-10-01
In the late southern winter of 1998, Center National d'Études Spatiales (CNES), the French Space Agency, released six 10-m-diameter, superpressure balloons from a location near Quito, Ecuador. Three balloons collapsed soon after launching, but the remaining three drifted westward for a few weeks at altitudes between 19 and 20 km. Two of those balloons crossed the Pacific Ocean before falling above the ``maritime continent,'' while the other completed a revolution around the Earth and crossed the Pacific for a second time before its final fall. Despite the small number and the relatively short duration of the flights, the balloons provided a unique in situ data set for the lower equatorial stratosphere. This part 1 of a two-part paper describes this data set and analyzes outstanding features in the planetary scales. Part 2 focuses on gravity-wave scale. It is argued that balloon trajectories over the Pacific are primarily determined by the westward drift during the easterly phase of the equatorial quasi-biennial oscillation (QBO) and the meridional velocity field of a mixed Rossby-gravity (Yanai) wave with an apparent period of 4 days and zonal wave number 4. This wave appears to have two episodes of amplification during the balloon flights. It is also argued that the balloons show evidence of oscillations with periods between 2 and 4 days and of a Kelvin wave with an apparent period close to 10 days and zonal wave number 1. In this way, the balloon behavior provided a pictorial view of air parcel trajectory in the equatorial lower stratosphere. It is stated that larger balloon campaigns can provide excellent in situ data sets for studies on the dynamics and composition of the middle atmosphere.
Turk, Marvee; Gupta, Vishal; Fischell, Tim A
2010-03-01
There have been reports of serious complications related to difficulty removing the deflated Taxus stent delivery balloon after stent deployment. The purpose of this study was to determine whether the Taxus SIBS polymer was "sticky" and associated with an increase in the force required to remove the stent delivery balloon after stent deployment, using a quantitative, ex-vivo model. Balloon-polymer-stent interactions during balloon withdrawal were measured with the Taxus Liberté, Liberté bare-metal stent (BMS; no polymer = control), the Cordis Cypher drug-eluting stent (DES; PEVA/PBMA polymer) and the BX Velocity (no polymer). We quantitatively measured the force required to remove the deflated stent delivery balloon from each of these stents in simulated vessels at 37 degrees C in a water bath. Balloon withdrawal forces were measured in straight (0 degree curve), mildly curved (20 degree curve) and moderately curved (40 degree curve) simulated vessel segments. The average peak force required to remove the deflated balloon catheter from the Taxus Liberté DES, the Liberté BMS, the Cypher DES, and the Bx Velocity BMS were similar in straight segments, but were much greater for the Taxus Liberté in the moderately curved segments (1.4 lbs vs. 0.11 lbs, 0.11 lbs and 0.12 lbs, respectively; p < 0.0001). The SIBS polymer of the Taxus Liberté DES appears to be "sticky" and is associated with high forces required to withdraw the deflated balloon from the deployed stent in curved segments. This withdrawal issue may help to explain the clinical complications that have been reported with this device.
Balloon dilation of the eustachian tube for dilatory dysfunction: A randomized controlled trial.
Poe, Dennis; Anand, Vijay; Dean, Marc; Roberts, William H; Stolovitzky, Jose Pablo; Hoffmann, Karen; Nachlas, Nathan E; Light, Joshua P; Widick, Mark H; Sugrue, John P; Elliott, C Layton; Rosenberg, Seth I; Guillory, Paul; Brown, Neil; Syms, Charles A; Hilton, Christopher W; McElveen, John T; Singh, Ameet; Weiss, Raymond L; Arriaga, Moises A; Leopold, John P
2018-05-01
To assess balloon dilation of the Eustachian tube with Eustachian tube balloon catheter in conjunction with medical management as treatment for Eustachian tube dilatory dysfunction. In this prospective, multicenter, randomized, controlled trial, we assigned, in a 2:1 ratio, patients age 22 years and older with Eustachian tube dilatory dysfunction refractory to medical therapy to undergo balloon dilation of the Eustachian tube with balloon catheter in conjunction with medical management or medical management alone. The primary endpoint was normalization of tympanogram at 6 weeks. Additional endpoints were normalization of Eustachian Tube Dysfunction Questionaire-7 symptom scores, positive Valsalva maneuver, mucosal inflammation, and safety. Primary efficacy results demonstrated superiority of balloon dilation of the Eustachian tube with balloon catheter + medical management compared to medical management alone. Tympanogram normalization at 6-week follow-up was observed in 51.8% (72/139) of investigational patients versus 13.9% (10/72) of controls (P < .0001). Tympanogram normalization in the treatment group was 62.2% after 24 weeks. Normalization of Eustachian Tube Dysfunction Questionaire-7 Symptom scores at 6-week follow-up was observed in 56.2% (77/137) of investigational patients versus 8.5% (6/71) controls (P < .001). The investigational group also demonstrated substantial improvement in both mucosal inflammation and Valsalva maneuver at 6-week follow-up compared to controls. No device- or procedure-related serious adverse events were reported for those who underwent balloon dilation of the Eustachian tube. This study demonstrated superiority of balloon dilation of the Eustachian tube with balloon catheter + medical management compared to medical management alone to treat Eustachian tube dilatory dysfunction in adults. 1b. Laryngoscope, 128:1200-1206, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Karanasos, Antonios; Van Mieghem, Nicolas; Bergmann, Martin W; Hartman, Eline; Ligthart, Jurgen; van der Heide, Elco; Heeger, Christian-H; Ouhlous, Mohamed; Zijlstra, Felix; Regar, Evelyn; Daemen, Joost
2015-07-01
Renal denervation is a new treatment considered for several possible indications. As new systems are introduced, the incidence of acute renal artery wall injury with relation to the denervation method is unknown. We investigated the acute repercussion of renal denervation on the renal arteries of patients treated with balloon-based and nonballoon-based denervation systems by quantitative angiography, intravascular ultrasound, and optical coherence tomography (OCT). Twenty-five patients (50 renal arteries) underwent bilateral renal denervation with 5 different systems, 3 of which balloon-based (Paradise [n=5], Oneshot [n=6], and Vessix V2 [n=5)]) and 2 nonballoon-based (Symplicity [n=6] and EnligHTN [n=3]). Analysis included quantitative angiography and morphometric intravascular ultrasound measurements pre and post procedure and assessment of vascular trauma (dissection, edema, or thrombus) by OCT after denervation. A significant reduction in lumen size by quantitative angiography and intravascular ultrasound was observed in nonballoon denervation but not in balloon denervation. By postdenervation OCT, dissection was seen in 14 arteries (32.6%). The percentage of frames with dissection was higher in balloon-based denervation catheters. Thrombus and edema were detected in 35 (81.4%) and 32 (74.4%) arteries, respectively. In arteries treated with balloon-based denervation that had dissection by OCT, the balloon/artery ratio was higher (1.24 [1.17-1.32] versus 1.10 [1.04-1.18]; P<0.01). A varying extent of vascular injury was observed after renal denervation in all systems; however, different patterns were identified in balloon-based and in nonballoon-based denervation systems. In balloon denervation, the presence of dissections by OCT was associated with a higher balloon/artery ratio. © 2015 American Heart Association, Inc.
Static and quasi-static analysis of lobed-pumpkin balloon
NASA Astrophysics Data System (ADS)
Nakashino, Kyoichi; Sasaki, Makoto; Hashimoto, Satoshi; Saito, Yoshitaka; Izutsu, Naoki
The present study is motivated by the need to improve design methodology for super pressure balloon with 3D gore design concept, currently being developed at the Scientific Balloon Center of ISAS/JAXA. The distinctive feature of the 3-D gore design is that the balloon film has excess materials not only in the circumferential direction but also in the meridional direction; the meridional excess is gained by attaching the film boundaries to the corresponding tendons of a shorter length with a controlled shortening rate. The resulting balloon shape is a pumpkin-like shape with large bulges formed between adjacent tendons. The balloon film, when fully inflated, develops wrinkles in the circumferential direction over its entire region, so that the stresses in the film are limited to a small amount of uniaxial tension in the circumferential direction while the high meridional loads are carried by re-enforced tendons. Naturally, the amount of wrinkling in the film is dominated by the shortening rate between the film boundaries and the tendon curve. In the 3-D gore design, as a consequence, the shortening rate becomes a fundamental design parameter along with the geometric parameters of the gore. In view of this, we have carried out a series of numerical study of the lobed-pumpkin balloon with varying gore geometry as well as with varying shortening rate. The numerical simula-tions were carried out with a nonlinear finite element code incorporating the wrinkling effect. Numerical results show that there is a threshold value for the shortening rate beyond which the stresses in the balloon film increases disproportionately. We have also carried out quasi-static simulations of the inflation process of the lobed-pumpkin balloon, and have obtained asymmetric deformations when the balloon films are in uniaxial tension state.
Tube Feeding Troubleshooting Guide
... in place. (For example, does it have a balloon, a mushroom bumper, or other internal device, or ... Frequent vomiting. • See “Nausea and Vomiting” page 3. Balloon deflates or bursts. • Be sure the balloon under ...
14 CFR 101.5 - Operations in prohibited or restricted areas.
Code of Federal Regulations, 2012 CFR
2012-01-01
... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND... a moored balloon, kite, amateur rocket, or unmanned free balloon in a prohibited or restricted area...
14 CFR 101.5 - Operations in prohibited or restricted areas.
Code of Federal Regulations, 2011 CFR
2011-01-01
... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND... a moored balloon, kite, amateur rocket, or unmanned free balloon in a prohibited or restricted area...
14 CFR 101.5 - Operations in prohibited or restricted areas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND... a moored balloon, kite, amateur rocket, or unmanned free balloon in a prohibited or restricted area...
14 CFR 101.5 - Operations in prohibited or restricted areas.
Code of Federal Regulations, 2014 CFR
2014-01-01
... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND... a moored balloon, kite, amateur rocket, or unmanned free balloon in a prohibited or restricted area...
14 CFR 101.5 - Operations in prohibited or restricted areas.
Code of Federal Regulations, 2013 CFR
2013-01-01
... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND... a moored balloon, kite, amateur rocket, or unmanned free balloon in a prohibited or restricted area...
Jagadeesan, Bharathi D; Mortazavi, Shabnam; Hunter, David W; Duran-Castro, Olga L; Snyder, Gregory B; Siedel, Glen F; Golzarian, Jafar
2014-04-01
Balloon-assisted embolization performed by delivering Onyx ethylene vinyl alcohol copolymer through a dual-lumen coaxial balloon microcatheter is a new technique for the management of peripheral vascular lesions. This technique does not require an initial reflux of Onyx to form around the tip of the microcatheter before antegrade flow of Onyx can commence. In a series of four patients who were treated with the use of this technique, the absence of significant reflux of Onyx was noted, as were excellent navigability and easy retrieval of the balloon microcatheter. However, in one patient, there was inadvertent adverse embolization of a digital artery, which was not caused by reflux of Onyx but could still be related to balloon inflation. © 2013 SIR Published by SIR All rights reserved.
Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; Cutts, James A.; Garcia, Raphael F.; Mimoun, David; Cadu, Alexandre; Sournac, Anthony; Jackson, Jennifer M.; Lai, Voon Hui; Bowman, Daniel C.
2018-04-01
We conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hot air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.
Exhaled nitric oxide in mylar balloons: influence of storage time, humidity and temperature.
Bodini, Alessandro; Pijnenburg, Mariëlle W H; Boner, Atillio L; de Jongste, Johan C
2003-01-01
BACKGROUND: Mylar balloons are used to collect exhaled air for analysis of fractional nitric oxide concentration (FENO). AIM: We studied the effect of storage conditions on the stability of nitric oxide (NO) in mylar balloons. METHODS: Exhaled air samples and calibration gases were stored in mylar balloons at 4, 21 and 37 degrees C, with or without silica gel. NO was measured after 0, 6, 9, 24 and 48 h. Scheffe F-tests were used to compare NO values. RESULTS: NO remained stable in balloons for 9 h at all temperatures, without silica gel. NO increased between 9 and 48 h, but only with low initial FENO. Silica gel increased variability. CONCLUSIONS: FENO in mylar balloons is stable for at least 9 h. The storage temperature is not critical, but silica gel increases variability. PMID:12745548
A verified technique for calibrating space solar cells
NASA Technical Reports Server (NTRS)
Anspaugh, Bruce
1987-01-01
Solar cells have been flown on high-altitude balloons for over 24 years, to produce solar cell standards that can be used to set the intensity of solar simulators. The events of a typical balloon calibration flight are reported. These are: the preflight events, including the preflight cell measurements and the assembly of the flight cells onto the solar tracker; the activities at the National Scientific Balloon Facility in Palestine, Texas, including the preflight calibrations, the mating of the tracker and cells onto the balloon, preparations for launch, and the launch; the payload recovery, which includes tracking the balloon by aircraft, terminating the flight, and retrieving the payload. In 1985, the cells flow on the balloon were also flown on a shuttle flight and measured independently. The two measurement methods are compared and shown to agree within 1 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshiai, Sodai, E-mail: hoshiai@sb4.so-net.ne.jp; Mori, Kensaku; Ishiguro, Toshitaka
Although transcatheter arterial chemoembolization is one of the established treatments for hepatocellular carcinoma (HCC), it is difficult to treat HCCs with prominent arterioportal (AP) shunts because anticancer drugs and embolic materials migrate into the non-tumorous liver through the AP shunts and may cause liver infarction. We developed a novel method of balloon-assisted chemoembolization using a micro-balloon catheter alongside a microcatheter simultaneously inserted through a single 4.5-Fr guiding sheath, comprising proximal chemoembolization with distal arterial balloon occlusion. We applied this method to treat an HCC with a prominent distal AP shunt induced by previous proton beam therapy and achieved successful chemoembolizationmore » without non-tumorous liver infarction under temporal balloon occlusion of a distal AP shunt.« less
An Overview of the NASA Sounding Rocket and Balloon Programs
NASA Technical Reports Server (NTRS)
Eberspeaker, Philip J.; Smith, Ira S.
2003-01-01
The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 50 to 60 missions per year in support of the NASA scientific community. These missions support investigations sponsored by NASA's Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program provides the science community with payload development support, environmental testing, launch vehicles, and launch operations from fixed and mobile launch ranges. Sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface. New technology efforts include GPS payload event triggering, tailored trajectories, new vehicle configuration development to expand current capabilities, and the feasibility assessment of an ultra high altitude sounding rocket vehicle. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. The Long Duration Balloon (LDB) is capable of providing flight durations in excess of two weeks and has had many successful flights since its development. The NASA Balloon Program is currently engaged in the development of the Ultra Long Duration Balloon (ULDB), which will be capable of providing flight times up to 100-days. Additional development efforts are focusing on ultra high altitude balloons, station keeping techniques and planetary balloon technologies.
Histopathology of balloon-dilation Eustachian tuboplasty.
Kivekäs, Ilkka; Chao, Wei-Chieh; Faquin, William; Hollowell, Monica; Silvola, Juha; Rasooly, Tali; Poe, Dennis
2015-02-01
Surgical intervention of the Eustachian tube (ET) has become increasingly common in the past decade, and balloon dilation has shown promising results in recent studies. It is unclear how balloon dilation enhances ET function. Our aim was to evaluate histological changes in the ET's mucosal lumen comparing before balloon dilation, immediately after, and postoperatively. Case series. Thirteen patients with bilateral ET dysfunction were enrolled. Biopsies of the ET mucosa were obtained just before balloon dilation; immediately after; and in three cases, 5 to 12 weeks postoperatively. Specimens were retrospectively examined under light microscopy by two pathologists blinded to the clinical information and whether specimens were pre- or postballoon dilation. Preoperative biopsies were characterized by inflammatory changes within the epithelium and submucosal layer. Immediate response to balloon dilation was thinning of the mucosa, shearing of epithelium and crush injury to the submucosa, especially to lymphocytic infiltrates. Postoperative biopsies demonstrated healthy pseudocolumnar epithelium and replacement of lymphocytic infiltrate with a thinner layer of fibrous tissue. Reduction of inflammatory epithelial changes and submucosal inflammatory infiltrate appeared to be the principal result of balloon dilation. The balloon may shear or crush portions of inflamed epithelium but usually spared the basal layer, allowing for rapid healing. Additionally, it appeared to effectively crush lymphocytes and lymphocytic follicles that may become replaced with thinner fibrous scar. Histopathology of the ET undergoing balloon dilation demonstrated effects that could reduce the overall inflammatory burden and may contribute to clinical improvement in ET function. 4. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
The glider balloon: a useful device for the treatment of bifurcation lesions.
Briguori, Carlo; Visconti, Gabriella; Donahue, Michael; Chiariello, Giovanni Alfonso; Focaccio, Amelia
2013-10-09
Final kissing balloon dilatation (FKBD) is a recommended final step in case of treatment of bifurcation lesions by two stents approaches. Furthermore, dilatation of the side branch (SB) may be necessary following main vessel (MV) stenting. Occasionally, recrossing the stent struts with a balloon is hampered because the tip hits a stent strut. The Glider (TriReme Medical, Pleasanton, CA) is a dedicated balloon designed for crossing through struts of deployed stents toward a SB. From October 2010 to January 2012, FKBD was attempted in 236 consecutive bifurcation lesions treated in our Institution. FKBD was successfully performed by conventional balloon catheters in 221 (93.5%) lesions (Conventional group). In the remaining 15 (6.5%) lesions, where a conventional balloon failed to cross the stent strut, the Glider balloon was attempted (Glider group). The angle beta (between the axis of the MV after the branch point and the SB axis at the point of divergence) was wider in the Glider group (83±17° versus 65±27°; p=0.032). A trend toward an higher rate of the true bifurcation lesions was observed in the Glider group (93% versus 70.5%; p=0.07). The Glider balloon successfully crossed through MV stent struts toward a SB in 12 patients (80%), whereas failed in the remaining 3 patients. The Glider balloon represents an unique bail-out device which offers an effective rescue strategy for recrossing stent struts during complex bifurcation stenting. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ohari, T.
1982-01-01
A method was developed whereby a balloon was used to carry lumber out of a forest in order to continue lumber production without destroying the natural environment and view of the forest. Emphasis was on the best shape for a logging balloon, development of a balloon logging system suitable for cutting lumber and safety plans, tests on balloon construction and development of netting, and weather of mountainous areas, especially solutions to problems caused by winds.
Assessing the Potential of Societal Verification by Means of New Media
2014-01-01
the Defense Advanced Research Projects Agency (DARPA) “Red Balloon Challenge” in 2009 by finding 10 tethered weather balloons scattered across the...Institute of Technology (MIT) managed to locate 10 weather balloons tethered at undisclosed locations across the continental United States in less than...suited for complex problem solving, and the 2009 Defense Advanced Research Projects Agency’s (DARPA) “Red Balloon Challenge” has already demonstrated
ERIC Educational Resources Information Center
Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim
2005-01-01
The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…
NASA Technical Reports Server (NTRS)
Farley, Rodger
2007-01-01
PlanetaryBalloon Version 5.0 is a software package for the design of meridionally lobed planetary balloons. It operates in a Windows environment, and programming was done in Visual Basic 6. By including the effects of circular lobes with load tapes, skin mass, hoop and meridional stress, and elasticity in the structural elements, a more accurate balloon shape of practical construction can be determined as well as the room-temperature cut pattern for the gore shapes. The computer algorithm is formulated for sizing meridionally lobed balloons for any generalized atmosphere or planet. This also covers zero-pressure, over-pressure, and super-pressure balloons. Low circumferential loads with meridionally reinforced load tapes will produce shapes close to what are known as the "natural shape." The software allows for the design of constant angle, constant radius, or constant hoop stress balloons. It uses the desired payload capacity for given atmospheric conditions and determines the required volume, allowing users to design exactly to their requirements. The formulations are generalized to use any lift gas (or mixture of gases), any atmosphere, or any planet as described by the local acceleration of gravity. PlanetaryBalloon software has a comprehensive user manual that covers features ranging from, but not limited to, buoyancy and super-pressure, convenient design equations, shape formulation, and orthotropic stress/strain.
LISA: a java API for performing simulations of trajectories for all types of balloons
NASA Astrophysics Data System (ADS)
Conessa, Huguette
2016-07-01
LISA (LIbrarie de Simulation pour les Aerostats) is a java API for performing simulations of trajectories for all types of balloons (Zero Pressure Balloons, Pressurized Balloons, Infrared Montgolfier), and for all phases of flight (ascent, ceiling, descent). This library has for goals to establish a reliable repository of Balloons flight physics models, to capitalize developments and control models used in different tools. It is already used for flight physics study software in CNES, to understand and reproduce the behavior of balloons, observed during real flights. It will be used operationally for the ground segment of the STRATEOLE2 mission. It was developed with quality rules of "critical software." It is based on fundamental generic concepts, linking the simulation state variables to interchangeable calculation models. Each LISA model defines how to calculate a consistent set of state variables combining validity checks. To perform a simulation for a type of balloon and a phase of flight, it is necessary to select or create a macro-model that is to say, a consistent set of models to choose from among those offered by LISA, defining the behavior of the environment and the balloon. The purpose of this presentation is to introduce the main concepts of LISA, and the new perspectives offered by this library.
A balloon-borne experiment to investigate the Martian magnetic field
NASA Astrophysics Data System (ADS)
Schwingenschuh, K.; Feldhofer, H.; Koren, W.; Jernej, I.; Stachel, M.; Riedler, W.; Slamanig, H.; Auster, H.-U.; Rustenbach, J.; Fornacon, H. K.; Schenk, H. J.; Hillenmaier, O.; Haerendel, G.; Yeroshenko, Ye.; Styashkin, V.; Zaroutzky, A.; Best, A.; Scholz, G.; Russell, C. T.; Means, J.; Pierce, D.; Luhmann, J. G.
1996-03-01
The Space Research Institute of the Austrian Academy, of Sciences (Graz, Austria) in cooperation with MPE (Berlin, Germany), GFZ Potsdam (Obs. Niemegk, Germany) IZMIRAN/IOFAN (Moscow, Russian) and IGPP/UCLA (Los Angeles, USA) is designing the magnetic field experiment MAGIBAL (MAGnetic field experiment aboard a martian BALloon) to investigate the magnetic field on the surface of Mars. The dual sensor fluxgate magnetometer is part of the MARS-98/MARS-TOGETHER balloon payload. During a ten days period the balloon will float over a distance of about 2000 km at altitudes between 0 and 4 km. Due to the limited power and telemetry allocation the magnetometer can transmit only one vector per ten seconds and spectral information in the frequency range from 2 - 25 Hz. The dynamic range is +/- 2000 nT. The main scientific objectives of the experiment are: • Determination of the magnetism of the Martian rocks • Investigation of the leakage of the solar wind induced magnetosphere using the correlation between orbiter and balloon observations • Measurement of the magnetic field profile between the orbiter and the surface of Mars during the descent phase of the balloon. Terrestrial test flights with a hot air balloon were performed in order to test the original MAGIBAL equipment under balloon flight conditions.
Curie-Montgolfiere Planetary Explorers
NASA Astrophysics Data System (ADS)
Taylor, Chris Y.; Hansen, Jeremiah
2007-01-01
Hot-air balloons, also known as Montgolfiere balloons, powered by heat from radioisotope decay are a potentially useful tool for exploring planetary atmospheres and augmenting the capabilities of other exploration technologies. This paper describes the physical equations and identifies the key engineering parameters that drive radioisotope-powered balloon performance. These parameters include envelope strength-to-weight, envelope thermal conductivity, heater power-to-weight, heater temperature, and balloon shape. The design space for these parameters are shown for varying atmospheric compositions to illustrate the performance needed to build functioning ``Curie-Montgolfiere'' balloons for various planetary atmospheres. Methods to ease the process of Curie-Montgolfiere conceptual design and sizing of are also introduced.
Development of optical laser balloon and drainage from radiation vulcanized natural rubber latex
NASA Astrophysics Data System (ADS)
Shimamura, Yoshiyuki
Rubber film made of radiation vulcanized natural rubber latex (RVNRL) has better transparency and lower toxicity compared with sulfur-vulcanized latex film. Optical laser balloon (optical endoscopical balloon) and drainage were developed by using RVNRL. An endoscope was equipped with a saline-filled latex rubber balloon at its tip to displace contaminating blood, bile, or gastric contents during operative portoscopy, biliary endoscopy, or upper gastrointestinal endoscopy. The transmission of Nd-Yag laser through the balloon is 98%, higher than the sulfur-vulcanized latex rubber (75%). High transparency of the drainage bag facilitated easy observation of discharged fluids without detaching the bag from the tube.
On the feasibility of closed-loop control of intra-aortic balloon pumping
NASA Technical Reports Server (NTRS)
Clark, J. W., Jr.; Bourland, H. M.; Kane, G. R.
1973-01-01
A closed-loop control scheme for the control of intra-aortic balloon pumping has been developed and tested in dog experiments. A performance index reflecting the general objectives of balloon-assist pumping is developed and a modified steepest ascent control algorithm is utilized for the selection of a proper operating point for the balloon during its pumping cycle. This paper attempts to indicate the feasibility of closed-loop control of balloon pumping, and particularly its flexibility in achieving both diastolic augmentation of mean aortic pressure and control of the level of end-diastolic pressure (EDP) an important factor in reducing heart work.
Absorption spectrometer balloon flight and iodine investigations
NASA Technical Reports Server (NTRS)
1970-01-01
A high altitude balloon flight experiment to determine the technical feasibility of employing absorption spectroscopy to measure SO2 and NO2 gases in the earth's atmosphere from above the atmospheric ozone layer is discussed. In addition to the balloon experiment the contract includes a ground-based survey of natural I emissions from geological sources and studies of the feasibility of mapping I2 from spacecraft. This report is divided into three major sections as follows: (1) the planning engineering and execution of the balloon experiment, (2) data reduction and analysis of the balloon data, and (3) the results of the I2 phase of the contract.
2002-12-05
KENNEDY SPACE CENTER, FLA. - Stephen Ezell, meteorological systems operator at Weather Station A, Cape Canaveral Air Force Station, walks out with a weather balloon that he will release. Such balloons are released twice a day. The package in Ezell's hand is a radio sonde that collects temperature and humidity data as the balloon rises. The data is released to agencies nationwide, including the 45th Space Wing which uses the data for its daily weather reports. The weather station provides additional data to NASA for launches - releasing 12 balloons in eight hours prior to liftoff - and landings - releasing 5 balloons in six and a half hours before expected touchdown.
2002-12-05
KENNEDY SPACE CENTER, FLA. - At Weather Station A, Cape Canaveral Air Force Station, Judy Kelley, supervisor of Meteorology Operations, and Stephen Ezell, meteorological systems operator, get ready to release a weather balloon. Such balloons are released twice a day. The package at the bottom is a radio sonde that collects temperature and humidity data as the balloon rises. The data is released to agencies nationwide, including the 45th Space Wing, which uses the data for its daily weather reports. The weather station provides additional data to NASA for launches -- releasing 12 balloons in eight hours prior to liftoff - and landings - releasing 5 balloons in six and a half hours before expected touchdown.
Ioseliani, G D; Chilaia, S M
1983-02-01
A basically new design for the reversing balloon pump has been proposed for increasing the efficacy of intra-aortic balloon pumping (IABP). The device not only causes a significant increase in discharge, but also permits control of the central and peripheral circulation within the desired limits owing to back-and-forth movements (like a piston) of the balloon pump. Standard one- and two-chamber balloon pumps were compared. In addition to traditional hemodynamic and biochemical indexes, the efficacy of IABP was assessed based on electrode monitor control of PO2 and pH in the myocardium, peripheral tissues, and circulating blood. Based on 54 experiments on dogs, it was found that IABP with reversing balloon pumps in synchronous pulsation resulted in survival of 69% of the cases; PO2 and pH levels in the myocardium, tissues, and blood in the coronary sinus were close to normal, and coronary blood flow and peripheral circulation were increased. With standard one-chamber balloon pumps, the survival rate did not exceed 33.4%; PO2 and pH in the peripheral tissues reached critical levels.
Clarençon, Frédéric; Nouet, Aurelien; Redondo, Aimée; Di Maria, Federico; Iosif, Christina; Le Jean, Lise; Chiras, Jacques; Sourour, Nader
2013-05-31
A 29-year-old patient attended our institution for recurrent strokes related to a giant partially thrombosed M1 aneurysm. Superficial temporal artery-middle cerebral artery (STA-MCA) bypass and subsequent occlusion of both the aneurysm and the dysplastic M1 segment were planned. However, owing to the shortness of the non-dysplastic segment of M1 and the risk of occlusion of the lenticulostriate arteries, the use of a double-lumen balloon was considered for coiling and subsequent injection of Onyx. STA-MCA bypass was performed using a regular technique. Endovascular occlusion of both the aneurysm and the parent artery was subsequently performed by means of coils and Onyx-34 that was injected via the Ascent balloon under balloon inflation. No complications were recorded and no stroke was observed on control MRI. The injection of Onyx-34 through a double-lumen balloon under balloon inflation is a quick and safe technique for precise occlusion of a parent artery.
Clarençon, Frédéric; Nouet, Aurelien; Redondo, Aimée; Di Maria, Federico; Iosif, Christina; Le Jean, Lise; Chiras, Jacques; Sourour, Nader
2014-05-01
A 29-year-old patient attended our institution for recurrent strokes related to a giant partially thrombosed M1 aneurysm. Superficial temporal artery-middle cerebral artery (STA-MCA) bypass and subsequent occlusion of both the aneurysm and the dysplastic M1 segment were planned. However, owing to the shortness of the non-dysplastic segment of M1 and the risk of occlusion of the lenticulostriate arteries, the use of a double-lumen balloon was considered for coiling and subsequent injection of Onyx. STA-MCA bypass was performed using a regular technique. Endovascular occlusion of both the aneurysm and the parent artery was subsequently performed by means of coils and Onyx-34 that was injected via the Ascent balloon under balloon inflation. No complications were recorded and no stroke was observed on control MRI. The injection of Onyx-34 through a double-lumen balloon under balloon inflation is a quick and safe technique for precise occlusion of a parent artery.
Clarençon, Frédéric; Nouet, Aurelien; Redondo, Aimée; Di Maria, Federico; Iosif, Christina; Le Jean, Lise; Chiras, Jacques; Sourour, Nader
2013-01-01
A 29-year-old patient attended our institution for recurrent strokes related to a giant partially thrombosed M1 aneurysm. Superficial temporal artery-middle cerebral artery (STA-MCA) bypass and subsequent occlusion of both the aneurysm and the dysplastic M1 segment were planned. However, owing to the shortness of the non-dysplastic segment of M1 and the risk of occlusion of the lenticulostriate arteries, the use of a double-lumen balloon was considered for coiling and subsequent injection of Onyx. STA-MCA bypass was performed using a regular technique. Endovascular occlusion of both the aneurysm and the parent artery was subsequently performed by means of coils and Onyx-34 that was injected via the Ascent balloon under balloon inflation. No complications were recorded and no stroke was observed on control MRI. The injection of Onyx-34 through a double-lumen balloon under balloon inflation is a quick and safe technique for precise occlusion of a parent artery. PMID:23729720
Heidland, U E; Heintzen, M P; Schoppmann, D; Michel, C J; Strauer, B E
2000-02-25
Balloon angioplasty of a stenosed bypass graft has a much higher risk of recurrent stenosis than dilatation of a stenosed native coronary artery. Intracoronary stent implantation has established itself as the better treatment of native coronary artery stenosis than conventional balloon angioplasty. However, there is still uncertainty whether intracoronary stent implantation in stenosed bypass vessels gives better long-term results than conventional balloon angioplasty. Results were retrospectively analyzed of unrandomized 224 primarily successful interventions--122 balloon dilatations and 102 stent implantations--performed between January 1996 and June 1998 on stenosed coronary bypass grafts, re-examined by coronary angiography an average of 6 months later. All but 11 patients were on combined aspirin and ticlopidine antiplatelet aggregation treatment. There was a significantly lower 6-month restenosis rate (30.4%) after stent implantation than after balloon dilatation (51.6%). The re-intervention rate was also significantly lower after stent implantation. These data suggest that stent implantation of stenosed coronary bypass grafts under cover of platelet-aggregation inhibition with aspirin and ticlopidine provides a lower restenosis and thus higher revascularization rate than conventional balloon dilatation.
The effect of pressure anisotropy on ballooning modes in tokamak plasmas
NASA Astrophysics Data System (ADS)
Johnston, A.; Hole, M. J.; Qu, Z. S.; Hezaveh, H.
2018-06-01
Edge Localised Modes are thought to be caused by a spectrum of magnetohydrodynamic instabilities, including the ballooning mode. While ballooning modes have been studied extensively both theoretically and experimentally, the focus of the vast majority of this research has been on isotropic plasmas. The prevalence of pressure anisotropy in modern tokamaks thus motivates further study of these modes. This paper presents a numerical analysis of ballooning modes in anisotropic equilibria. The investigation was conducted using the newly-developed codes HELENA+ATF and MISHKA-A, which adds anisotropic physics to equilibria and stability analysis. We have examined the impact of anisotropy on the stability of an n = 30 ballooning mode, confirming results conform to previous calculations in the isotropic limit. Growth rates of ballooning modes in equilibria with different levels of anisotropy were then calculated using the stability code MISHKA-A. The key finding was that the level of anisotropy had a significant impact on ballooning mode growth rates. For {T}\\perp > {T}| | , typical of ICRH heating, the growth rate increases, while for {T}\\perp < {T}| | , typical of neutral beam heating, the growth rate decreases.
16 CFR 1117.4 - Time for filing a report.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REPORTING OF CHOKING INCIDENTS INVOLVING MARBLES, SMALL BALLS, LATEX BALLOONS AND OTHER SMALL PARTS § 1117.4... marble, small ball, or latex balloon or on a marble, small ball, latex balloon, or other small part...
Ignition of Hydrogen Balloons by Model-Rocket-Engine Igniters.
ERIC Educational Resources Information Center
Hartman, Nicholas T.
2003-01-01
Describes an alternative method for exploding hydrogen balloons as a classroom demonstration. Uses the method of igniting the balloons via an electronic match. Includes necessary materials to conduct the demonstration and discusses potential hazards. (SOE)
Sunada, Keijiro; Yamamoto, Hironori; Kita, Hiroto; Yano, Tomonori; Sato, Hiroyuki; Hayashi, Yoshikazu; Miyata, Tomohiko; Sekine, Yutaka; Kuno, Akiko; Iwamoto, Michiko; Ohnishi, Hirohide; Ido, Kenichi; Sugano, Kentaro
2005-01-01
AIM: To evaluate the clinical outcome of enteroscopy, using the double-balloon method, focusing on the involvement of neoplasms in strictures of the small intestine. METHODS: Enteroscopy, using the double-balloon method, was performed between December 1999 and December 2002 at Jichi Medical School Hospital, Japan and strictures of the small intestine were found in 17 out of 62 patients. These 17 consecutive patients were subjected to analysis. RESULTS: The double-balloon enteroscopy contributed to the diagnosis of small intestinal neoplasms found in 3 out of 17 patients by direct observation of the strictures as well as biopsy sampling. Surgical procedures were chosen for these three patients, while balloon dilation was chosen for the strictures in four patients diagnosed with inflammation without involvement of neoplasm. CONCLUSION: Double-balloon enteroscopy is a useful method for the diagnosis and treatment of strictures in the small bowel. PMID:15742422
NASA Astrophysics Data System (ADS)
Gaskin, J. A.; Smith, I. S.; Jones, W. V.
In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science). Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.
Balloon Ascent: 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons
NASA Technical Reports Server (NTRS)
Farley, Rodger E.
2005-01-01
The BalloonAscent balloon flight simulation code represents a from-scratch development using Visual Basic 5 as the software platform. The simulation code is a transient analysis of balloon flight, predicting the skin and gas temperatures along with the 3-D position and velocity in a time and spatially varying environment. There are manual and automated controls for gas valving and the dropping of ballast. Also, there are many handy calculators, such as appropriate free lift, and steady-state thermal solutions with temperature gradients. The strength of this simulation model over others in the past is that the infrared environment is deterministic rather than guessed at. The ground temperature is specified along with the emissivity, which creates a ground level IR environment that is then partially absorbed as it travels upward through the atmosphere to the altitude of the balloon.
[Effect of hot-air balloon crossings on animals in the open air].
Stephan, E
1997-02-01
Since the middle of the eighties owners of animals increasingly claimed compensation from balloon pilots. They asserted, that their animals got restless due to strange optical and acoustical stimuli caused by low altitude crossing of hot-air balloons and were damaged while trying to get out of the way or to escape. Very low altitude "Contour crossing" of hot-air balloons, mainly forming the basis of complaints, is only left possible in a limited degree in Germany since the air traffic regulations were changed to a higher minimum safety altitude (Air Traffic Act, LuftVO, version of March 21, 1995) and the violating balloon pilot may be disciplined. The paper is dealing with the principle of hot-air ballooning, with the feasibility of the pilot to avoid and restrict damages, with the possibilities to assign damages to a potential cause and with the legal basis.
NASA Astrophysics Data System (ADS)
Bowman, D. C.; Albert, S.; Dexheimer, D.; Murphy, S.; Mullen, M.
2017-12-01
Existing scientific ballooning solutions for multi hour flights in the upper troposphere/lower stratosphere are expensive and/or technically challenging. In contrast, solar hot air balloons are inexpensive and simple to construct. These balloons, which rely solely on sunlight striking a darkened envelope, can deliver payloads to 22 km altitude and maintain level flight until sunset. We describe an experimental campaign in which five solar hot air balloons launched in 45 minutes created a free flying infrasound (low frequency sound) microphone network that remained in the air for over 12 hours. We discuss the balloons' trajectory, maximum altitude, and stability as well as present results from the infrasound observations. We assess the performance and limitations of this design for lightweight atmospheric instrumentation deployments that require multi-hour flight times. Finally, we address the possibilities of multi day flights during the polar summer and on other planets.
Wind Tunnel Investigation of a Balloon as Decelerator at Mach Numbers from 1.47 to 2.50
NASA Technical Reports Server (NTRS)
McShera, John T.; Keyes, J. Wayne
1961-01-01
A wind-tunnel investigation was conducted to study the characteristics of a towed spherical balloon as a drag device at Mach numbers from 1.47 to 2.50, Reynolds numbers from 0.36 x 10(exp 6) to 1.0 x 10(exp 6) , and angles of attack from -15 to 15 degrees. Tow-cable length was approximately 24 inches from asymmetric body to cone on the upstream side of the balloon. As the tow cable was lengthened the balloon reached a point in the test section where wall-reflected shocks intersected the balloon and caused severe oscillations. As a result, the tow cable broke and the inflatable balloon model was destroyed. Further tests used a model rigid plastic sphere 6.75 inches in diameter. Tow cable length was approximately 24 inches from asymmetric body to the upstream side of the sphere.
Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors
Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; ...
2018-04-24
Here, we conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hotmore » air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.« less
Initial experience with the Europass: a new ultra-low profile monorail balloon catheter.
Zimarino, M; Corcos, T; Favereau, X; Tamburino, C; Toussaint, M; Spaulding, C; Guérin, Y
1994-09-01
One of the causes for percutaneous transluminal coronary angioplasty (PTCA) failure is the inability to cross the lesion with the balloon catheter after guidewire positioning. The Europass coronary angioplasty catheter is a monorail Duralyn balloon catheter developed to enhance lesion crossability and to overcome this limitation. This system was evaluated in 50 patients in which target lesions were chronic total coronary occlusions (12 cases) or stenoses that could not be reached or crossed by other new monorail balloon catheters. Overall procedural success was obtained in 49/50 patients (98%), using a single Europass balloon catheter in 46/50 patients (92%), with no in-hospital complications. Its low profile, small distal shaft, and excellent trackability allowed successful angioplasty in cases where other catheters failed. This balloon catheter represents a significant advance in angioplasty technology and can be considered as a first-choice device for a safe and expeditious single-operator procedure.
A balloon-borne prototype for demonstrating the concept of JEM-EUSO
NASA Astrophysics Data System (ADS)
von Ballmoos, P.; Santangelo, A.; Adams, J. H.; Barrillon, P.; Bayer, J.; Bertaina, M.; Cafagna, F.; Casolino, M.; Dagoret, S.; Danto, P.; Distratis, G.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Evrard, J.; Gorodetzky, Ph.; Haungs, A.; Jung, A.; Kawasaki, Y.; Medina-Tanco, G.; Mot, B.; Osteria, G.; Parizot, E.; Park, I. H.; Picozza, P.; Prévôt, G.; Prieto, H.; Ricci, M.; Rodríguez Frías, M. D.; Roudil, G.; Scotti, V.; Szabelski, J.; Takizawa, Y.; Tusno, K.
2014-05-01
EUSO-BALLOON has been conceived as a pathfinder for JEM-EUSO, a mission concept for a space-borne wide-field telescope monitoring the Earth's nighttime atmosphere with the objective of recording the ultraviolet light from tracks initiated by ultra-high energy cosmic rays. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-BALLOON will serve as a test-bench for the key technologies of JEM-EUSO. EUSO-BALLOON shall perform an end-to-end test of all subsystems and components, and prove the global detection chain while improving our knowledge of the atmospheric and terrestrial ultraviolet background. The balloon-instrument also has the potential to detect for the first time UV-light generated by atmospheric air-shower from above, marking a milestone in the development of UHECR science, and paving the way for any future large scale, space-based ultra-high energy cosmic ray observatory.
Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.
Here, we conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hotmore » air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.« less
The Latest Developments in NASA's Long Duration Balloon Systems
NASA Astrophysics Data System (ADS)
Stilwell, Bryan D.
The Latest Developments in NASA’s Long Duration Balloon Systems Bryan D. Stilwell, bryan.stilwell@csbf.nasa.gov Columbia Scientific Balloon Facility, Palestine, Texas, USA The Columbia Scientific Balloon Facility, located in Palestine, Texas offers the scientific community a high altitude balloon based communications platform. Scientific payload mass can exceed 2722 kg with balloon float altitudes on average of 40000 km and flight duration of up to 100 days. Many developments in electrical systems have occurred over the more than 25 years of long duration flights. This paper will discuss the latest developments in electronic systems related to long duration flights. Over the years, the long duration flights have increased in durations exceeding 56 days. In order to support these longer flights, the systems have had to increase in complexity and reliability. Several different systems that have been upgraded and/or enhanced will be discussed.
Anderson, Jordan A; Lamichhane, Sujan; Remund, Tyler; Kelly, Patrick; Mani, Gopinath
2016-01-01
Drug-coated balloons (DCBs) are used to treat various cardiovascular diseases. Currently available DCBs carry drug on the balloon surface either solely or using different carriers. Several studies have shown that a significant amount of drug is lost in the blood stream during balloon tracking to deliver only a sub-therapeutic level of drug at the treatment site. This research is focused on developing paclitaxel (PAT) loaded polyethylene oxide (PEO) films (PAT-PEO) as a controlled drug delivery carrier for DCBs. An array of PAT-PEO films were developed in this study to provide tailored release of >90% of drug only at specific time intervals, which is the time frame required for carrying out balloon-based therapy. The characterizations of PAT-PEO films using SEM, FTIR, and DSC showed that the films developed were homogenous and the PAT was molecularly dispersed in the PEO matrix. Mechanical tests showed that most PAT-PEO films developed were flexible and ductile, with yield and tensile strengths not affected after PAT incorporation. The viability, proliferation, morphology, and phenotype of smooth muscle cells (SMCs) interacted with control-PEO and PAT-PEO films were investigated. All control-PEO and PAT-PEO films showed a significant inhibitory effect on the growth of SMCs, with the degree of inhibition strongly dependent on the w/v% of the polymer used. The PAT-PEO coating was produced on the balloons. The integrity of PAT-PEO coating was well maintained without any mechanical defects occurring during balloon inflation or deflation. The drug release studies showed that only 15% of the total PAT loaded was released from the balloons within the initial 1min (typical balloon tracking time), whereas 80% of the PAT was released between 1min and 4min (typical balloon treatment time). Thus, this study demonstrated the use of PEO as an alternate drug delivery system for the balloons. Atherosclerosis is primarily responsible for cardiovascular diseases (CVDs) in millions of patients every year. Drug-coated balloons (DCBs) are commonly used to treat various CVDs. However, in several currently used DCBs, a significant amount of drug is lost in the blood stream during balloon tracking to deliver only a sub-therapeutic level of drug at the treatment site. In this study, paclitaxel containing polyethylene oxide (PEO) films were developed to provide unique advantages including drug release profiles specifically tailored for balloon-based therapy, homogeneous films with molecularly dispersed drug, flexible and ductile films, and exhibits significant inhibitory effect on smooth muscle cell growth. Thus, this study demonstrated the use of PEO as an alternate drug delivery platform for DCBs to improve its efficacy. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Scientific Balloon Team Hopes to Break Flight Duration Record with New Zealand Launch
2017-12-08
After years of tests and development, NASA’s Balloon Program team is on the cusp of expanding the envelope in high-altitude, heavy-lift ballooning with its super pressure balloon (SPB) technology. NASA’s scientific balloon experts are in Wanaka, New Zealand, prepping for the fourth flight of an 18.8 million-cubic-foot (532,000 cubic-meter) balloon, with the ambitious goal of achieving an ultra-long-duration flight of up to 100 days at mid-latitudes. Launch of the pumpkin-shaped, football stadium-size balloon is scheduled for sometime after April 1, 2016, from Wanaka Airport, pending final checkouts and flight readiness of the balloon and supporting systems. Once launched, the SPB, which is made from 22-acres of polyethylene film – similar to a sandwich bag, but stronger and more durable – will ascend to a nearly constant float altitude of 110,000 feet (33.5 km). The balloon will travel eastward carrying a 2,260-pound (1,025 kg) payload consisting of tracking, communications and scientific instruments. NASA expects the SPB to circumnavigate the globe once every one to three weeks, depending on wind speeds in the stratosphere. Read more: go.nasa.gov/1p56xKR NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Cho, Moonsung; Neubauer, Peter; Fahrenson, Christoph; Rechenberg, Ingo
2018-06-01
The physical mechanism of aerial dispersal of spiders, "ballooning behavior," is still unclear because of the lack of serious scientific observations and experiments. Therefore, as a first step in clarifying the phenomenon, we studied the ballooning behavior of relatively large spiders (heavier than 5 mg) in nature. Additional wind tunnel tests to identify ballooning silks were implemented in the laboratory. From our observation, it seems obvious that spiders actively evaluate the condition of the wind with their front leg (leg I) and wait for the preferable wind condition for their ballooning takeoff. In the wind tunnel tests, as-yet-unknown physical properties of ballooning fibers (length, thickness, and number of fibers) were identified. Large spiders, 16-20 mg Xysticus spp., spun 50-60 nanoscale fibers, with a diameter of 121-323 nm. The length of these threads was 3.22 ± 1.31 m (N = 22). These physical properties of ballooning fibers can explain the ballooning of large spiders with relatively light updrafts, 0.1-0.5 m s-1, which exist in a light breeze of 1.5-3.3 m s-1. Additionally, in line with previous research on turbulence in atmospheric boundary layers and from our wind measurements, it is hypothesized that spiders use the ascending air current for their aerial dispersal, the "ejection" regime, which is induced by hairpin vortices in the atmospheric boundary layer turbulence. This regime is highly correlated with lower wind speeds. This coincides well with the fact that spiders usually balloon when the wind speed is lower than 3 m s-1.
Saurer, Eric M.; Yamanouchi, Dai; Liu, Bo; Lynn, David M.
2010-01-01
We report an approach for the localized delivery of plasmid DNA to vascular tissue from the surfaces of inflatable embolectomy catheter balloons. Using a layer-by-layer approach, ultrathin multilayered polyelectrolyte films were fabricated on embolectomy catheter balloons by alternately adsorbing layers of a hydrolytically degradable poly(β-amino ester) and plasmid DNA. Fluorescence microscopy revealed that the films coated the surfaces of the balloons uniformly. Coated balloons that were incubated in phosphate-buffered saline at 37 °C released ~25 μg DNA/cm2 over 24 hours. Analysis of the DNA by gel electrophoresis showed that the DNA was released in open-circular (‘nicked’) and supercoiled conformations, and in vitro cell transfection assays confirmed that the released DNA was transcriptionally active. Arterial injury was induced in the internal carotid arteries of Sprague-Dawley rats using uncoated balloons, followed by treatment with film-coated balloons for 20 minutes. X-gal, immunohistochemical, and immunofluorescence staining of sectioned arteries indicated high levels of β-galactosidase or enhanced green fluorescent protein (EGFP) expression in arteries treated with film-coated balloons. β-galactosidase and EGFP expression were observed throughout the medial layers of arterial tissue, and around approximately two-thirds of the circumference of the treated arteries. The layer-by-layer approach reported here provides a general platform for the balloon-mediated delivery of DNA to vascular tissue. Our results suggest the potential of this approach to deliver therapeutically relevant DNA to prevent complications such as intimal hyperplasia that arise after vascular interventions. PMID:20933275
Ballooning for Biologists: Mission Essentials for Flying Experiments on Large NASA Balloons
NASA Technical Reports Server (NTRS)
Smith, David J.; Sowa, Marianne
2017-01-01
Despite centuries of scientific balloon flights, only a handful of experiments have produced biologically-relevant results. Yet unlike orbital spaceflight, it is much faster and cheaper to conduct biology research with balloons, sending specimens to the near space environment of Earths stratosphere. Samples can be loaded the morning of a launch and sometimes returned to the laboratory within one day after flying. The National Aeronautics and Space Administration (NASA) flies large, unmanned scientific balloons from all over the globe, with missions ranging from hours to weeks in duration. A payload in the middle portion of the stratosphere (approx. 35 km above sea level) will be exposed to an environment similar to the surface of Mars: temperatures generally around -36 C, atmospheric pressure at a thin 1 kPa, relative humidity levels <1%, and a harsh illumination of ultraviolet (UV) and cosmic radiation levels (about 100 W/sq m and 0.1 mGy/d, respectively) that can be obtained nowhere else on the surface of the Earth, including environmental chambers and particle accelerator facilities attempting to simulate space radiation effects. Considering the operational advantages of ballooning and the fidelity of space-like stressors in the stratosphere, researchers in aerobiology, astrobiology, and space biology can benefit from balloon flight experiments as an intermediary step on the extraterrestrial continuum (ground, low Earth orbit, and deep space studies). Our presentation targets biologists with no background or experience in scientific ballooning. We will provide an overview of large balloon operations, biology topics that can be uniquely addressed in the stratosphere, and a roadmap for developing payloads to fly with NASA.
High submuscular placement of urologic prosthetic balloons and reservoirs via transscrotal approach.
Morey, Allen F; Cefalu, Christopher A; Hudak, Steven J
2013-02-01
Traditional placement of inflatable penile prosthesis (IPP) reservoirs and/or artificial urinary sphincter (AUS) balloons into the space of Retzius may be challenging following major pelvic surgery. The aim of this study is to report our 1-year experience using a novel technique for high balloon/reservoir placement beneath the rectus abdominus muscle, thus completely obviating deep pelvic dissection during prosthetic urologic surgery. A retrospective review of all patients who underwent IPP and/or AUS placement between June 2011 and June 2012 was performed. All had AUS balloons and/or IPP reservoirs placed in a submuscular location by bluntly tunneling through the external inguinal ring into a potential space between the transversalis fascia and the rectus abdominus muscle using a long, angled, lung grasping clamp. Patient demographics, perioperative outcomes, and initial follow-up patient-reported outcomes were reviewed. During the study period, 120 submuscular balloons/reservoirs were inserted in 107 consecutive patients who underwent placement of an IPP (61 patients), AUS (33 patients), or both (13 patients). Among our 48 most recent patients, 41 (85%) reported they were totally unable to feel their balloon/reservoir, and all but two patients reported no bother from the submuscular balloon/reservoir placement. Of the 120 total submuscular balloons and reservoirs, surgical time and outcomes of the prosthetic procedures appeared similar to those placed using traditional methods; two reservoirs required revision surgery for repositioning. High submuscular placement of genitourinary prosthetic balloons and reservoirs via a transscrotal approach is both safely and effective, while avoiding deep retropubic dissection. © 2012 International Society for Sexual Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Min Tae; Park, Jung-Hoon; Shin, Ji Hoon, E-mail: jhshin@amc.seoul.kr
PurposeTo determine the effect of contrast medium dilution during tracheal balloon dilation on balloon deflation time and visibility using a 3-dimensional (3D) printed airway phantom.Materials and MethodsA comparison study to investigate balloon deflation times and image quality was performed using two contrast agents with different viscosities, i.e., iohexol and ioxithalamate, and six contrast dilutions with a 3D printed airway phantom.ResultsCompared to 1:0 concentration, 3:1, 2:1, 1:1, 1:2, and 1:3, contrast/saline ratios resulted in a 46% (56.2 s), 59.8% (73.1 s), 74.9% (91.6 s), 81.7% (99.8 s), and 83.5% (102 s) reduction for iohexol, respectively, and a 51.8% (54.7 s), 63.8% (67.6 s), 74.7% (79.2 s), 80.5% (85.3 s), andmore » 82.4% (87.4 s) reduction for ioxithalamate, respectively, in the mean balloon deflation time, although at the expense of decreased balloon opacity (3.5, 6.9, 11.1, 12.4, and 13.9%, for iohexol, respectively, and 3.2, 6, 9.6, 10.8, and 12.4%, for ioxithalamate, respectively).ConclusionsUse of a lower viscosity contrast agent and higher contrast dilution is considered to be able to reduce balloon deflation times and then simultaneously decrease visualization of balloons. The rapid balloon deflation time is likely to improve the safe performance of interventional procedures.« less
Taking the Hot Air Out of Balloons.
ERIC Educational Resources Information Center
Brinks, Virgil L.; Brinks, Robyn L.
1994-01-01
Describes how a teacher can give their students the challenge of designing and building model balloons or blimps. The project helps students learn the basics of balloon flight and what it really means to be "lighter than air." (PR)
Crash in Australian outback ends NASA ballooning season
NASA Astrophysics Data System (ADS)
Harris, Margaret
2010-06-01
NASA has temporarily suspended all its scientific balloon launches after the balloon-borne Nuclear Compton Tele scope (NCT) crashed during take-off, scattering a trail of debris across the remote launch site and overturning a nearby parked car.
The Great Balloon Controversy.
ERIC Educational Resources Information Center
Chase, Valerie
1989-01-01
Discusses the harmful effects of balloon launches and the dumping of plastic debris into oceans. Cites several examples of plastic materials being discovered inside the bodies of sick and/or dead marine animals. Offers alternative activities to releasing balloons into the atmosphere. (RT)
An Overview of the NASA Sounding Rockets and Balloon Programs
NASA Technical Reports Server (NTRS)
Flowers, Bobby J.; Needleman, Harvey C.
1999-01-01
The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a combined total of approximately fifty to sixty missions per year in support of the NASA scientific community. These missions are provided in support of investigations sponsored by NASA'S Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program has continued to su,pport the science community by integrating their experiments into the sounding rocket payload and providing the rocket vehicle and launch operations necessary to provide the altitude/time required obtain the science objectives. The sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface, which is physically inaccessible to either balloons or satellites. A new architecture for providing this support has been introduced this year with the establishment of the NASA Sounding Rockets Contract. The Program has continued to introduce improvements into their operations and ground and flight systems. An overview of the NASA Sounding Rockets Program with special emphasis on the new support contract will be presented. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. Long duration balloon (LDB) is a prominent aspect of the program with two campaigns scheduled for this calendar year. Two flights are scheduled in the Northern Hemisphere from Fairbanks, Alaska, in June and two flights are scheduled from McMurdo, Antarctica, in the Southern Hemisphere in December. The comprehensive balloon research and development (R&D) effort has continued with advances being made across the spectrum of balloon related disciplines. As a result of these technology advancements a new ultra long duration balloon project (ULDB) for the development of a 100- day duration balloon capability has been initiated. The ULDB will rely upon new balloon materials and designs to accomplish its goals. The Program has also continued to introduce new technology and improvements into flights systems, ground systems and operational techniques. An overview of the various aspects of the NASA Balloon Program will be presented.
Overview of the Scientific Balloon Activity in Sweden
NASA Astrophysics Data System (ADS)
Abrahamsson, Mattias; Kemi, Stig; Lockowandt, Christian; Andersson, Kent
SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from ESC since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times are very beneficial for astronomical payloads, such as telescopes that need long observation times. In 2013 two such payloads were flown, the first called SUNRISE was a German/US solar telescope, and the other called PoGOLite with a Swedish gamma-ray telescope. In 14 days PoGOLite, which had permission to fly over Russia, made an almost complete circumpolar flight. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. University students from all over Europe are involved in flights from Esrange under a Swedish/German programme called BEXUS. Two stratospheric balloons are flown with student payloads yearly, with the goal to introduce students in ballooning. Over the next couple of years the plan is to make a re-flight of the PoGOLite payload, fly two Japanese balloon payloads for planetary science missions, fly four student balloons, three balloons for technical studies of re-entry vehicles, and a balloon with a payload studying aerodynamic behaviour of a falling body.
Solar research with stratospheric balloons
NASA Astrophysics Data System (ADS)
Vázquez, Manuel; Wittmann, Axel D.
Balloons, driven by hot air or some gas lighter than air, were the first artificial machines able to lift payloads (including humans) from the ground. After some pioneering flights the study of the physical properties of the terrestrial atmosphere constituted the first scientific target. A bit later astronomers realized that the turbulence of the atmospheric layers above their ground-based telescopes deteriorated the image quality, and that balloons were an appropriate means to overcome, total or partially, this problem. Some of the most highly-resolved photographs and spectrograms of the sun during the 20th century were actually obtained by balloon-borne telescopes from the stratosphere. Some more recent projects of solar balloon astronomy will also be described.
Balloon Program Wraps up in Antarctica, Heading to New Zealand
2015-02-02
Caption: A NASA Super Pressure Balloon with the COSI payload is ready for launch from McMurdo, Antarctica. Credit: NASA More info: NASA’s globetrotting Balloon Program Office is wrapping up its 2014-2015 Antarctic campaign while prepping for an around-the-world flight launching out of Wanaka, New Zealand, in March. After 16 days, 12 hours, and 56 minutes of flight, operators successfully conducted a planned flight termination of the Suborbital Polarimeter for Inflation Dust and the Epoch of Reionization (SPIDER) mission Saturday, Jan. 18, the final mission of the campaign. Other flights in the 2014-2015 Antarctic campaign included the Antarctic Impulsive Transient Antenna (ANITA-III) mission as well as the Compton Spectrometer and Imager (COSI) payload flown on the developmental Super Pressure Balloon (SPB). ANITA-III successfully wrapped up Jan. 9 after 22 days, 9 hours, and 14 minutes of flight. Flight controllers terminated the COSI flight 43 hours into the mission after detecting a small gas leak in the balloon. Crews are now working to recover all three instruments from different locations across the continent. The 6,480-pound SPIDER payload is stationary at a position about 290 miles from the United Kingdom’s Sky Blu Logistics Facility in Antarctica. The 4,601 pound ANITA-III payload, located about 100 miles from Australia’s Davis Station, and the 2,866 pound COSI payload, located about 340 miles from the United States McMurdo Station both had numerous key components recovered in the past few days. Beginning in late January, the Balloon Program Office will deploy a team to Wanaka, New Zealand, to begin preparations for an SPB flight, scheduled to launch in March. The Program Office seeks to fly the SPB more than 100 days, which would shatter the current flight duration record of 55 days, 1 hour, and 34 minutes for a large scientific balloon. “We’re looking forward to the New Zealand campaign and hopefully a history-making flight with the Super Pressure Balloon,” said Debbie Fairbrother, NASA’s Balloon Program Office Chief. Most scientific balloons see altitude variances based on temperature changes in the atmosphere at night and during the day. The SPB is capable of missions on the order of 100 days or more at constant float altitudes due to the pressurization of the balloon. “Stable, long-duration flights at near-space altitudes above more than 99 percent of the atmosphere are highly desirable in the science community, and we’re ready to deliver,” said Fairbrother. In addition to the SPB flight in March, the Balloon Program Office has 10 more balloon missions planned through September 2015 to include scheduled test flights of the Low-Density Supersonic Decelerator, which is testing new technologies for landing larger, heavier payloads on Mars. NASA’s Wallops Flight Facility manages the agency’s Scientific Balloon Program with 10 to 15 flights each year from launch sites worldwide. The balloons are massive in volume; the average-sized balloon could hold the volume of nearly 200 blimps. Previous work on balloons have contributed to confirming the Big Bang Theory. For more information on NASA’s Scientific Balloon Program, see: sites.wff.nasa.gov/code820/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Korn, A. O.
1975-01-01
In the late 1960's several governmental agencies sponsored efforts to develop unmanned, powered balloon systems for scientific experimentation and military operations. Some of the programs resulted in hardware and limited flight tests; others, to date, have not progressed beyond the paper study stage. Balloon system designs, materials, propulsion units and capabilities are briefly described, and critical problem areas are pointed out which require further study in order to achieve operational powered balloon systems capable of long duration flight at high altitudes.
Some special sub-systems for stratospheric balloon flights in India
NASA Astrophysics Data System (ADS)
Damle, S. V.; Gokhale, G. S.; Kundapurkar, R. U.
During last few years several new sub-systems for balloon were developed and are being regularly used in the balloon flights. Some of these sub-systems are i) positive monitor for magnetic ballast release using an opto-electronic device ii) one-way pressure switch to terminate flight for runaway balloon iii) in-flight payload reel down system for atmospheric science experiment. The design, usage and performance of these and other sub-systems will be presented.
Hot air balloons fill gap in atmospheric and sensing platforms
NASA Astrophysics Data System (ADS)
Watson, Steven M.; Price, Russ
Eric Edgerton was having a problem he could not solve: how to noninvasively collect in situ incinerator plume data. So he called in the Air Force and learned about its Atmospheric and Sensor Test Platform program; its platform is a manned hot air balloon. Many investigators are discovering the advantages of hot air balloons as stable, inexpensive platforms for performing in situ atmospheric measurements. Some are also using remote sensing capabilities on the balloon platforms.
Location and data collection for long stratospheric balloon flights
NASA Astrophysics Data System (ADS)
Malaterre, P.
Stratospheric balloons capable of taking a 30 kg scientific payload to an altitude of 22 to 30 km for 1 month or more were developed. In-flight experiments were used to qualify the designs of a pumpkin shaped superpressure balloon and an infrared hot air balloon. Tracking of the flights (location and transmission of the parameters measured on board) was achieved using a telemetry gondola including an ARGOS beacon adapted for operation in the low temperatures encountered.
2015-06-12
soldiers aloft in tethered hot air balloons to observe enemy positions on the battlefield. The Union Army even established a separate Balloon Corps from...December 20, 2014). 1 describe man-lifting kites in the Far East while eighteenth and nineteenth century manned balloons and piloted fixed wing aircraft...in the twentieth and twenty-first centuries provided this capability. One of the first recorded Western uses of manned balloons for ISR purposes
Balloon crash damage and injuries: an analysis of 86 accidents, 2000-2004.
de Voogt, Alexander J; van Doorn, Robert R A
2006-05-01
General aviation accounts for the majority of aviation crashes and casualties in the United States. The role of ballooning in these statistics is not regularly studied. Since 2001, the National Transportation and Safety Board has made its accident reports more readily available, which presents opportunities for further study. This study analyzes and compares a 5-yr period of accident reports and includes an analysis of injuries and balloon damage in hot-air and gas balloon accidents. Balloon crash 2-page briefs and 5-page accident reports published by the National Transportation and Safety Board for the 5-yr time period 2000-2004 were examined. Data collected in the investigation of these crashes were analyzed and compared with the epidemiological data collected in earlier research. In 86 crashes during a 5-yr period, there were 4 fatalities and 75 people were seriously injured. Only one accident was reported involving a student pilot. Broken ankles and legs have been the most commonly recorded serious injury, but could not be linked to the severity of damage to the balloon. The absence of student pilot accidents may be explained by possible stricter supervision. Balloon basket and envelopes appear of sufficient quality to withstand crashes, but improving the protection of passengers during hard landings should help to decrease the number of serious injuries in ballooning.
Goreczny, Sebastian; Qureshi, Shakeel A; Rosenthal, Eric; Krasemann, Thomas; Nassar, Mohamed S; Anderson, David R; Morgan, Gareth J
2017-07-01
We aimed to compare the procedural and mid-term performance of a specifically designed self-expanding stent with balloon-expandable stents in patients undergoing hybrid palliation for hypoplastic left heart syndrome and its variants. The lack of specifically designed stents has led to off-label use of coronary, biliary, or peripheral stents in the neonatal ductus arteriosus. Recently, a self-expanding stent, specifically designed for use in hypoplastic left heart syndrome, has become available. We carried out a retrospective cohort comparison of 69 neonates who underwent hybrid ductal stenting with balloon-expandable and self-expanding stents from December, 2005 to July, 2014. In total, 43 balloon-expandable stents were implanted in 41 neonates and more recently 47 self-expanding stents in 28 neonates. In the balloon-expandable stents group, stent-related complications occurred in nine patients (22%), compared with one patient in the self-expanding stent group (4%). During follow-up, percutaneous re-intervention related to the ductal stent was performed in five patients (17%) in the balloon-expandable stent group and seven patients (28%) in self-expanding stents group. Hybrid ductal stenting with self-expanding stents produced favourable results when compared with the results obtained with balloon-expandable stents. Immediate additional interventions and follow-up re-interventions were similar in both groups with complications more common in those with balloon-expandable stents.
The financial impact of flipping the coin.
Gonzalez, Katherine W; Reddy, Shiva R; Mundakkal, Angela A; St Peter, Shawn D
2017-01-01
Esophageal foreign body retrieval is typically performed by rigid or flexible esophagoscopy. Despite evidence supporting the efficacy and safety of balloon extraction, it is rarely performed. We sought to establish the financial benefits of this minimally invasive approach. A retrospective review of 241 children with esophageal coins between 2011 and 2013 was performed. Coins were removed via endoscopy or fluoroscopic-guided balloon retrieval. Timing, symptoms, facility cost, and patient charges were compared. Two hundred patients had attempted balloon retrieval with 80% success. Forty-one patients went directly for operative removal. Patients with respiratory difficulty (p=0.05), wheezing (p<0.01), or fever (p=0.03) were more often taken directly for endoscopic retrieval. The median cost and charges for attempted balloon extraction were $484 and $1647. The median cost and charges for primary endoscopy were $1834 and $6746. The median total cost and charges of attempted balloon extraction including ED, OR, transport, admission, and balloon retrieval were $1231 and $3539 versus $3615 and $12,204 in the primary endoscopy group (p<0.001, p<0.001). Seventeen percent of patients who underwent attempted balloon retrieval were admitted prior to removal compared to 76% who underwent primary endoscopy (p<0.001). Fluoroscopic guided balloon extraction of esophageal coins is a financially prudent choice which shortens hospital stay. III. Retrospective treatment and economic study. Copyright © 2017 Elsevier Inc. All rights reserved.
Wiarda, Bart M; Stolk, Mark; Heine, Dimitri G N; Mensink, Peter; Thieme, Mai E; Kuipers, Ernst J; Stoker, Jaap
2013-03-01
We aimed to prospectively determine patient burden and patient preference for magnetic resonance enteroclysis, capsule endoscopy and balloon-assisted enteroscopy in patients with suspected or known Crohn's disease (CD) or occult gastrointestinal bleeding (OGIB). Consecutive consenting patients with CD or OGIB underwent magnetic resonance enteroclysis, capsule endoscopy and balloon-assisted enteroscopy. Capsule endoscopy was only performed if magnetic resonance enteroclysis showed no high-grade small bowel stenosis. Patient preference and burden was evaluated by means of standardized questionnaires at five moments in time. From January 2007 until March 2009, 76 patients were included (M/F 31/45; mean age 46.9 years; range 20.0-78.4 years): 38 patients with OGIB and 38 with suspected or known CD. Seventeen patients did not undergo capsule endoscopy because of high-grade stenosis. Ninety-five percent (344/363) of the questionnaires were suitable for evaluation. Capsule endoscopy was significantly favored over magnetic resonance enteroclysis and balloon-assisted enteroscopy with respect to bowel preparation, swallowing of the capsule (compared to insertion of the tube/scope), burden of the entire examination, duration and accordance with the pre-study information. Capsule endoscopy and magnetic resonance enteroclysis were significantly preferred over balloon-assisted enteroscopy for clarity of explanation of the examination, and magnetic resonance enteroclysis was significantly preferred over balloon-assisted enteroscopy for bowel preparation, painfulness and burden of the entire examination. Balloon-assisted enteroscopy was significantly favored over magnetic resonance enteroclysis for insertion of the scope and procedure duration. Pre- and post-study the order of preference was capsule endoscopy, magnetic resonance enteroclysis and balloon-assisted enteroscopy. Capsule endoscopy was preferred to magnetic resonance enteroclysis and balloon-assisted enteroscopy; it also had the lowest burden. Magnetic resonance enteroclysis was preferred over balloon-assisted enteroscopy for clarity of explanation of the examination, bowel preparation, painfulness and burden of the entire examination, and balloon-assisted enteroscopy over magnetic resonance enteroclysis for scope insertion and study duration. © 2012 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
Development Overview of the Revised NASA Ultra Long Duration Balloon
NASA Technical Reports Server (NTRS)
Cathey, H. M.; Gregory, D; Young, L.; Pierce, D.
2006-01-01
The development of the National Aeronautics and Space Administration s (NASA) Ultra Long Duration Balloon (ULDB) has made significant strides in addressing the deployment issues experienced in the scaling up of the balloon structure. This paper concentrates on the super-pressure balloon developments that have been, and are currently being planned by the NASA Balloon Program Office at Goddard Space Flight Center s Wallops Flight Facility. The goal of the NASA ULDB development project is to attempt to extend the potential flight durations for large scientific balloon payloads. A summary of the February 2005 test flight from Ft. Sumner, New Mexico will be presented. This test flight spurred a number of investigations and advancements for this project. The development path has pursued some new approaches in the design, analysis, and testing of the balloons. New issues have been ideEti6ed throu& both analysis md testing. These have been addressed in the design stage before the next balloon construction was begun. This paper will give an overview of the recent history for this effort and the development approach pursued for ULDB. A description of the balloon design, including the modifications made as a result of the lessons learned, will be presented. Areas to be presented include the design approach, deployment issues that have been encountered and the proposed solutions, ground testing, photogrammetry, and an analysis overview. Test flight planning and considerations will be presented including test flight safety. An extended duration test flight of the National Aeronautics and Space Administration s Ultra Long Duration Balloon is planned for the May/June 2006 time frame. This flight is expected to fly from Sweden to either Canada or Alaska. Preliminary results of this flight will be presented as available. Future plans for both ground testing and additional test flights will also be presented. Goals of the future test flights, which are staged in increments of increasing suspended load and altitude, will be presented. This will include the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.
75 FR 77673 - National Environmental Policy Act: Scientific Balloon Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-13
... implementation of the Proposed Action are summarized below. Airspace and Balloon Operations: No adverse impacts to airspace management or balloon operations are anticipated under this proposal. CSBF would continue... minimal. Air emissions would not be perceptibly [[Page 77674
ERIC Educational Resources Information Center
Brimicombe, M. W.
1991-01-01
A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)
Gondola development for CNES stratospheric balloons
NASA Astrophysics Data System (ADS)
Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.
The CNES has been supporting scientific ballooning since its establishment in 1962. The two main parts of the balloon system or aerostat are the balloon itself and the flight train, comprising the house-keeping gondola, for the control of balloon flight (localization and operational telemetry & telecommand - TM/TC), and the scientific gondola with its dedicated telecommunication system. For zero pressure balloon, the development of new TM/TC system for the housekeeping and science data transmission are going on from 1999. The main concepts are : - for balloon house-keeping and low rate scientific telemetry, the ELITE system, which is based on single I2C bus standardizing communication between the different components of the system : trajectography, balloon control, power supply, scientific TM/TC, .... In this concept, Radio Frequency links are developed between the house keeping gondola and the components of the aerostat (balloon valve, ballast machine, balloon gas temperature measurements, ...). The main objectives are to simplify the flight train preparation in term of gondola testing before flight, and also by reducing the number of long electrical cables integrated in the balloon and the flight train; - for high rate scientific telemetry, the use of functional interconnection Internet Protocol (IP) in interface with the Radio Frequency link. The main idea is to use off-the-shelf IP hardware products (routers, industrial PC, ...) and IP software (Telnet, FTP, Web-HTTP, ...) to reduce the development costs; - for safety increase, the adding, in the flight train, of a totally independent house keeping gondola based on the satellite Inmarsat M and Iridium telecommunication systems, which permits to get real time communications between the on-board data mobile and the ground station, reduced to a PC computer with modem connected to the phone network. These GEO and LEO telecommunication systems give also the capability to operate balloon flights over longer distance (over the line of sight) than with dedicated RF system, which requires balloon visibility from the ground station. For long duration flights (3 months) of Infra Red Montgolfieres, a house keeping gondola has been developed, using the Inmarsat C standard to have communication all around the world (up to N or S 80 ° latitude) with an automatic switching between the 4 geostationnary Inmarsat satellites. After validation flights performed from Bauru / Brazil. (2000 & 2001) and Kiruna/Sweden (2002), the first operational flights took place from Bauru in February 2003 during ENVISAT validation campaign. The next flights will be realized in the framework of the Hibiscus campaign planned in February 2004 in Bauru.. The Balloon Division was involved in the Franco / Japanese HSFD II project which consists to drop a mock-up of the Japanese HOPE-X space shuttle from a stratospheric balloon to validate its flight from the altitude of 30 km. We developed a specific gondola as a service module for the HOPE-X shuttle, providing power and GPS radio-frequency signal during the balloon flight phase, telemetry end remote control radio frequency links and separation system with pyrotechnic cutters for the drop of the shuttle. A successful flight was performed at Kiruna in July 2003. Concerning gondola with pointing system, the study of a big g-ray telescope (8 m of focal length), started by the end of 2002. For this 1 ton gondola, the telescope stabilization system will be based on control moment gyro (CMG). The CMG system has been designed and will be manufactured and validated during 2004. The first flight of this g-ray gondola is planned for 2006. The progress, status and future plans concerning these gondola developments will be presented.
Modeling the ascent of sounding balloons: derivation of the vertical air motion
NASA Astrophysics Data System (ADS)
Gallice, A.; Wienhold, F. G.; Hoyle, C. R.; Immler, F.; Peter, T.
2011-10-01
A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30-35 km altitude) is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI) campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s-1 in the troposphere and 0.2 m s-1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study) in the orographically unperturbed mid-latitude middle troposphere.
Use of mechanical devices for distal hemoperfusion during balloon catheter coronary angioplasty.
Heibig, J; Angelini, P; Leachman, D R; Beall, M M; Beall, A C
1988-01-01
Previous attempts to protect the dependent myocardium during balloon catheter coronary angioplasty in animals and humans have had generally unsatisfactory results. This paper summarizes the authors' experience in investigating commercially available mechanical pumps for distal coronary hemoperfusion during balloon angioplasty. Both roller and piston pumps can attain adequate distal perfusion without significant side effects in the majority of patients. Our goal was to suppress angina for at least 5 min to prolong balloon inflation in awake patients. Minor T-wave changes without concomitant angina pectoris can be expected when the distal coronary bed is perfused with hypothermic blood. Side branch occlusion by the inflated balloon prevents effective protection of the corresponding part of the dependent myocardium during distal hemoperfusion, which may result in persistent angina and ST-T changes uncorrected by increasing the hemoperfusion rate. Distal coronary diffuse spasm, rare and transient, was the only immediate complication of this procedure. It is suggested that intense local wall stimulation could occur with a higher flow rate (jet effect). Improved balloon catheter pressure/flow characteristics and on-line continuous mechanical pumps should soon make distal coronary hemoperfusion through balloon catheters an accepted clinical technique.
NASA Astrophysics Data System (ADS)
González-Llana, Arturo; González-Bárcena, David; Pérez-Grande, Isabel; Sanz-Andrés, Ángel
2018-07-01
The selection of the extreme thermal environmental conditions -albedo coefficient and Earth infrared radiation- for the thermal design of stratospheric balloon missions is usually based on the methodologies applied in space missions. However, the particularities of stratospheric balloon missions, such as the much higher residence time of the balloon payload over a determined area, make necessary an approach centered in the actual environment the balloon is going to find, in terms of geographic area and season of flight. In this sense, this work is focussed on stratospheric balloon missions circumnavigating the North Pole during the summer period. Pairs of albedo and Earth infrared radiation satellite data restricted to this area and season of interest have been treated statistically. Furthermore, the environmental conditions leading to the extreme temperatures of the payload depend in turn on the surface finish, and more particularly on the ratio between the solar absorptance and the infrared emissivity α/ε. A simple but representative thermal model of a balloon and its payload has been set up in order to identify the pairs of albedo coefficient and Earth infrared radiation leading to extreme temperatures for each value of α/ε.
Endoscopic minor papilla balloon dilation for the treatment of symptomatic pancreas divisum.
Yamamoto, Natsuyo; Isayama, Hiroyuki; Sasahira, Naoki; Tsujino, Takeshi; Nakai, Yousuke; Miyabayashi, Koji; Mizuno, Suguru; Kogure, Hirofumi; Sasaki, Takashi; Hirano, Kenji; Tada, Minoru; Koike, Kazuhiko
2014-08-01
A subpopulation of patients with pancreas divisum experience symptomatic events such as recurrent acute pancreatitis and chronic pancreatitis. Minor papilla sphincterotomy has been reported as being an effective treatment. The aim of this study was to evaluate the safety and efficacy of endoscopic balloon dilation for the minor papilla. Between 2000 and 2012, 16 patients were retrospectively included in this study. After endoscopic balloon dilation for the minor papilla was received, a pancreatic stent or a nasal pancreatic drainage catheter was placed for 1 week. If a stricture or obstruction was evident, it was treated with balloon dilation followed by long-term stent placement (1 year). When an outflow of pancreatic juice was disturbed by a pancreatic stone, endoscopic stone extraction was performed. Balloon dilation and stent placement were achieved and were successful in all the cases (16/16; 100%). Clinical improvement was achieved in 7 (84.7%) of the 9 patients with recurrent acute pancreatitis and in 6 (85.7%) of the 7 patients with chronic pancreatitis. Early complications were observed in 1 (6.3%) patient. Pancreatitis or bleeding related to balloon dilation was not observed. Endoscopic balloon dilation for the minor papilla is feasible for the management of symptomatic pancreas divisum.
Clarençon, Frédéric; Pérot, Guillaume; Biondi, Alessandra; Di Maria, Federico; Szatmary, Zoltan; Chiras, Jacques; Sourour, Nader
2012-03-01
To present the feasibility of using the Ascent balloon, a new double-lumen remodeling balloon, for a new 2-in-1 technique allowing coiling through the lumen of the balloon without the use of an additional coiling microcatheter. Remodeling technique had enlarged the indications for endovascular treatment of intracranial aneurysm. Nevertheless, one of the limitations of this technique is that it requires using 2 devices in the same parent artery. A 55-year-old woman presented with a 7.7 × 4.5-mm incidental anterior communicating artery aneurysm. Only 1 A1 segment (left side) was patent on the cerebral angiogram. A 6F Fargo Max guiding catheter was positioned in the left petrous internal carotid artery. The Ascent balloon was placed in front of the neck of the aneurysm after navigation on a Traxcess 0.014-in guidewire. Coiling of the aneurysm sac was performed via 1 lumen of the device under iterative inflations of the balloon through the second lumen. This new 2-in-1 technique using a sole remodeling balloon without an additional coiling microcatheter is very promising, especially in cases of a small-caliber parent artery.
A Methane Balloon Inflation Chamber
ERIC Educational Resources Information Center
Czerwinski, Curtis J.; Cordes, Tanya J.; Franek, Joe
2005-01-01
The various equipments, procedure and hazards in constructing the device for inflating a methane balloon using a standard methane outlet in a laboratory are described. This device is fast, safe, inexpensive, and easy to use as compared to a hydrogen gas cylinder for inflating balloons.
14 CFR 101.39 - Balloon position reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Balloon position reports. 101.39 Section 101.39 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE...
14 CFR 101.39 - Balloon position reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Balloon position reports. 101.39 Section 101.39 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE...
14 CFR 101.39 - Balloon position reports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Balloon position reports. 101.39 Section 101.39 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE...
14 CFR 101.39 - Balloon position reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Balloon position reports. 101.39 Section 101.39 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE...
14 CFR 101.39 - Balloon position reports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Balloon position reports. 101.39 Section 101.39 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE...
2011-12-01
in the Social Sciences (George & Bennett, 2005), the main challenges of this thesis are: 9 To test the hypothesis of whether the implications of...Americas´ security chain; To test whether the new concept of balloon-effect counter-pressure coming from the Mexican strategy is influencing latent...balloon effects against U.S. homeland security; To test whether those balloon effects created by the Mexican strategy inside Mexico are a
2016-03-01
AWARD NUMBER: W81XWH-15-1-0025 TITLE: Clinical Study of Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) for Severe Pelvic...Intra-Abdominal Hemorrhagic Shock 5b. GRANT NUMBER W81XWH-15-1-0025 Clinical Study of Resuscitative Endovascular Balloon Occlusion of the Aorta ...sites. Resuscitative balloon occlusion of the aorta (REBOA) has been clinically demonstrated to stop bleeding below the diaphragm. It has the potential
NASA Technical Reports Server (NTRS)
Blamont, J.
1978-01-01
A hot-air balloon, with the air heated by natural sources, is described. Buoyancy is accomplished by either solar heating or by utilizing the IR thermal flux of the planet to heat the gas in the balloon. Altitude control is provided by a valve which is opened and closed by a barometer. The balloon is made of an organic material which has to absorb radiant energy and to emit as little as possible.
Vertical sounding balloons for stratospheric photochemistry
NASA Astrophysics Data System (ADS)
Pommereau, J. P.
The use of vertical sounding balloons for stratospheric photochemistry studies is illustrated by the use of a vertical piloted gas balloon for the search of NO2 diurnal variations. It is shown that the use of montgolfieres (hot air balloons) can enhance the vertical sounding technique. Particular attention is given to a sun-heated montgolfiere and to the more sophisticated infrared montgolfiere that is able to perform three to four vertical excursions per day and to remain aloft for weeks or months.
Strengths of balloon films with flaws and repairs
NASA Technical Reports Server (NTRS)
Portanova, M. A.
1989-01-01
The effects of manufacture flaws and repairs in high altitude scientific balloons was examined. A right circular cylinder was used to induce a biaxial tension-tension stress field in the polyethlene film used to manufacture these balloons. A preliminary investigation of the effect that cylinder geometry has on stress rate as a function of inflation rate was conducted. The ultimate goal was to rank, by order of degrading effects, the flaws and repairs commonly found in current high altitude balloons.
Analysis of Flight of Near-Space Balloon
NASA Astrophysics Data System (ADS)
Miller, Zech; Evans, Austin; Seyfert, James; Leadlove, Kyle; Gumina, Kaitlyn; Martell, Eric
2015-04-01
In December 2014, the Electronics class at Millikin University launched a balloon designed to travel into the near-space region of the atmosphere. The balloon was equipped with an instrumentation package including a camera, accelerometer, barometric pressure sensor, temperature probes, as well as a system for tracking using an Automatic Packet Reporting System (APRS). The balloon was launched from Decatur, IL, and landed in Marysville, OH, nearly 320 miles away. The students then analyzed the data from the flight and compared results to expectations.
Modeling the ascent of sounding balloons: derivation of the vertical air motion
NASA Astrophysics Data System (ADS)
Gallice, A.; Wienhold, F. G.; Hoyle, C. R.; Immler, F.; Peter, T.
2011-06-01
A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ~30-35 km altitude) is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI) campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s-1 in the troposphere and 0.2 m s-1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study) in the orographically unperturbed mid-latitude middle troposphere.
A New Type of Captive Balloon for Vertical Meteorological Observation in Urban Area
NASA Astrophysics Data System (ADS)
Nakamura, M.; Sakai, S.; Ono, K.
2010-12-01
Many meteorological observations in urban area have been made in recent years in order to investigate the mechanism of heat island. However, there are few data of cooling process in urban area. For this purpose, high density observations in both space and time are required. Generally vertical meteorological observations can be made by towers, radars, balloons. These methods are limited by urban area conditions. Among these methods, a captive balloon is mainly used to about a hundred meter from ground in a vertical meteorological observation. Small airships called kytoons or advertising balloons, for example. Conventional balloons are, however, influenced by the wind and difficult to keep the specified position. Moreover, it can be dangerous to conduct such observations in the highly build-up area. To overcome these difficulties, we are developing a new type of captive balloon. It has a wing form to gain lift and keep its position. It is also designed small to be kept in a carport. It is made of aluminum film and polyester cloth in order to attain lightweight solution. We have tried floating a balloon like NACA4424 for several years. It was difficult to keep a wing form floating up over 100 meters from ground because internal pressure was decreased by different temperature. The design is changed in this year. The balloon that has wing form NACA4415 is similar in composition to an airplane. It has a big gasbag with airship form and two wing form. It is able to keep form of a wing by high internal pressure. We will report a plan for the balloon and instances of some observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeang, E; Lim, Y; Cho, K
Purpose: We developed an endorectal balloon for in-vivo rectal dosimetry in two-dimensions, and evaluated its dosimetric properties for the radiation treatment of prostate cancer. Methods: The endorectal balloon for in-vivo rectal dosimetry is equipped with a radiochromic film so that two-dimensional dose distribution can be measured in the rectal wall. The film is unrolled as the balloon is inflated, and it is rolled as the balloon is deflated. The outer diameter of the balloon is about 14 mm before inflating it, but its outer diameter can be increased up to about 50 mm after inflating it with 80 ml distilledmore » water. The size of the film is 80(L) x 64(W) mm2, so large as to measure a dose distribution of an anterior half of the rectal wall. After it was inserted into a fabricated rectal phantom, the phantom was scanned by a CT scanner and 5 Gy was delivered to a target inside the phantom with a 15 MV photon beam in AP direction. Finally, the dose distribution measured in the endorectal balloon was compared with that of the treatment plan. Results: The two dose distributions were compared each other in the parallel and the perpendicular directions along an axis of the balloon. The two dose profiles analyzed from the radiochromic film agreed well with the plan within 3% for 15 MV photon beam. Conclusion: An endorectal balloon for two-dimensional in-vivo rectal dosimetry was developed and its dosimetric effectiveness was evaluated for the radiation treatment of prostate cancer. The measured dose distributions showed good agreement with the plans.« less
Prospects for infrasound bolide detections from balloon-borne platforms
NASA Astrophysics Data System (ADS)
Young, Eliot; Bowman, Daniel; Arrowsmith, Stephen; Boslough, Marc; Klein, Viliam; Ballard, Courtney; Lees, Jonathan
2017-04-01
We report on an experiment to assess whether balloon-borne instruments can improve sensitivities to bolides exploding in the Earth's atmosphere (essentially using the atmosphere as a witness plate to characterize the small end of the NEO (Near Earth Object) population). The CTBTO's infrasound network regularly detects infrasound disturbances caused by bolides, including the 15-FEB-2013 Chelybinsk impact. Balloon-borne infrasound sensors should have two important advantages over ground-based infrasound stations: there should be virtually no wind noise on a free-floating platform, and a sensor in the stratosphere should benefit from its location within the stratospheric duct. Balloon-borne sensors also have the disadvantage that the amplitude of infrasound waves will decrease as they ascend with altitude. To test the performance of balloon-borne sensors, we conducted an experiment on a NASA high altitude (35 km) balloon launched from Ft Sumner, NM on 28-SEP-2016. We were able to put two independent infrasound payloads on this flight. We arranged for three 3000-lb ANFO explosions to be detonated from Socorro, NM at 12:00, 14:00 and 16:29:59 MST. The first two explosions were detected from the NASA balloon, with the first explosion showing three separate waveforms arriving within a 25-s span. The peak-to-peak amplitude of the waveforms was about 0.06 Pa, and the cleanest microphone channel detected this waveform with an SNR greater than 20. A second balloon at 15 km altitude also detected the second explosion. We have signals from a dozen ground stations at various positions from Socorro to Ft Sumner. We will report on wave propagation models and how they compare with observations from the two balloons and the various ground-stations.
Zhang, Qun; Lin, Shi-Rong; He, Fang; Kang, De-Hua; Chen, Guo-Zhang; Luo, Wei
2011-11-01
Postoperative radiotherapy is a major treatment for patients with maxillary sinus carcinoma. However, the irregular resection cavity poses a technical difficulty for this treatment, causing uneven dose distribution to target volumes. In this study, we evaluated the dose distribution to target volumes and normal tissues in postoperative intensity-modulated radiotherapy (IMRT) after placing a water-filled balloon into the resection cavity. Three postoperative patients with advanced maxillary sinus carcinoma were selected in this trial. Water-filled balloons and supporting dental stents were fabricated according to the size of the maxillary resection cavity. Simulation CT scans were performed with or without water-filled balloons, IMRT treatment plans were established, and dose distribution to target volumes and organs at risk were evaluated. Compared to those in the treatment plan without balloons, the dose (D98) delivered to 98% of the gross tumor volume (GTV) increased by 2.1 Gy (P = 0.009), homogeneity index (HI) improved by 2.3% (P = 0.001), and target volume conformity index (TCI) of 68 Gy increased by 18.5% (P = 0.011) in the plan with balloons. Dosimetry endpoints of normal tissues around target regions in both plans were not significantly different (P > 0.05) except for the optic chiasm. In the plan without balloons, 68 Gy high-dose regions did not entirely cover target volumes in the ethmoid sinus, posteromedial wall of the maxillary sinus, or surgical margin of the hard palate. In contrast, 68 Gy high-dose regions entirely covered the GTV in the plan with balloons. These results suggest that placing a water-filled balloon in the resection cavity for postoperative IMRT of maxillary sinus carcinoma can reduce low-dose regions and markedly and simultaneously increase dose homogeneity and conformity of target volumes.
Onyx embolization using dual-lumen balloon catheter: initial experience and technical note.
Paramasivam, Srinivasan; Niimi, Yasunari; Fifi, Johanna; Berenstein, Alejandro
2013-10-01
Onyx as an embolization agent for the management of vascular malformation is well established. We report our initial experience with dimethyl-sulphoxide (DMSO) compatible double lumen balloon catheters used for Onyx embolization. Between December 2011 and March 2013, we treated 22 patients aged between 1.5 to 70years with two types of DMSO compatible dual-lumen balloon catheters (Scepter C and Ascent) to treat dural arteriovenous fistulas, brain arteriovenous malformation (AVM) with dural feeders, mandibular, facial, lingual, vertebral and paravertebral AVMs. The catheter has good navigability, compliant balloon on inflation formed a "plug" that has more resistance than Onyx plug enhancing better penetration. During injection, the balloon remained stable without spontaneous deflation or rupture and withstood the pressure build-up well. The retrieval of the catheter in most cases took less than a minute (19/28) while in five, it was less than five minutes and in the remaining four, it was longer that includes a trapped catheter on prolonged attempted retrieval resulted in an epidural hematoma, requiring emergent surgical evacuation. The fluoroscopy time is reduced, as we do not form a proximal onyx plug, the injection time is shorter along with easy and instantaneous removal of the catheter after balloon deflation in most cases. Dual-lumen balloon catheter Onyx embolization is a safe and effective technique. Currently, an important tool to circumvent some of the shortcomings associated with Onyx embolization. The catheter has good navigability, the balloon has stability, tolerance, enhances penetrability. It is easy to retrieve the microcatheter. With the experience gained, and with more compliant balloon catheters available, this technique can be applied to cerebral vessels in near future. Copyright © 2013. Published by Elsevier Masson SAS.
TMBM: Tethered Micro-Balloons on Mars
NASA Technical Reports Server (NTRS)
Sims, M. H.; Greeley, R.; Cutts, J. A.; Yavrouian, A. H.; Murbach, M.
2000-01-01
The use of balloons/aerobots on Mars has been under consideration for many years. Concepts include deployment during entry into the atmosphere from a carrier spacecraft, deployment from a lander, use of super-pressurized systems for long duration flights, 'hot-air' systems, etc. Principal advantages include the ability to obtain high-resolution data of the surface because balloons provide a low-altitude platform which moves relatively slowly. Work conducted within the last few years has removed many of the technical difficulties encountered in deployment and operation of balloons/aerobots on Mars. The concept proposed here (a tethered balloon released from a lander) uses a relatively simple approach which would enable aspects of Martian balloons to be tested while providing useful and potentially unique science results. Tethered Micro-Balloons on Mars (TMBM) would be carried to Mars on board a future lander as a stand-alone experiment having a total mass of one to two kilograms. It would consist of a helium balloon of up to 50 cubic meters that is inflated after landing and initially tethered to the lander. Its primary instrumentation would be a camera that would be carried to an altitude of up to tens of meters above the surface. Imaging data would be transmitted to the lander for inclusion in the mission data stream. The tether would be released in stages allowing different resolutions and coverage. In addition during this staged release a lander camera system may observe the motion of the balloon at various heights above he lander. Under some scenarios upon completion of the primary phase of TMBM operations, the tether would be cut, allowing TMBM to drift away from the landing site, during which images would be taken along the ground.
Neubauer, Peter; Fahrenson, Christoph; Rechenberg, Ingo
2018-01-01
The physical mechanism of aerial dispersal of spiders, “ballooning behavior,” is still unclear because of the lack of serious scientific observations and experiments. Therefore, as a first step in clarifying the phenomenon, we studied the ballooning behavior of relatively large spiders (heavier than 5 mg) in nature. Additional wind tunnel tests to identify ballooning silks were implemented in the laboratory. From our observation, it seems obvious that spiders actively evaluate the condition of the wind with their front leg (leg I) and wait for the preferable wind condition for their ballooning takeoff. In the wind tunnel tests, as-yet-unknown physical properties of ballooning fibers (length, thickness, and number of fibers) were identified. Large spiders, 16–20 mg Xysticus spp., spun 50–60 nanoscale fibers, with a diameter of 121–323 nm. The length of these threads was 3.22 ± 1.31 m (N = 22). These physical properties of ballooning fibers can explain the ballooning of large spiders with relatively light updrafts, 0.1–0.5 m s−1, which exist in a light breeze of 1.5–3.3 m s−1. Additionally, in line with previous research on turbulence in atmospheric boundary layers and from our wind measurements, it is hypothesized that spiders use the ascending air current for their aerial dispersal, the “ejection” regime, which is induced by hairpin vortices in the atmospheric boundary layer turbulence. This regime is highly correlated with lower wind speeds. This coincides well with the fact that spiders usually balloon when the wind speed is lower than 3 m s−1. PMID:29902191
Percutaneous Mitral Valve Dilatation: Single Balloon versus Double Balloon - A Finite Element Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schievano, Silvia; Kunzelman, Karyn; Nicosia, Mark
2009-01-01
Background: Percutaneous mitral valve (MV) dilatation is performed with either a single balloon (SB) or double balloon (DB) technique. The aim of this study was to compare the two balloon system results using the finite element (FE) method. Methods and Results: An established FE model of the MV was modified by fusing the MV leaflet edges at commissure level to simulate a stenotic valve (orifice area=180mm2). A FE model of a 30mm SB (low-pressure, elastomeric balloon) and an 18mm DB system (high-pressure, non-elastic balloon) was created. Both SB and DB simulations resulted in splitting of the commissures and subsequent stenosismore » dilatation (final MV area=610mm2 and 560mm2 respectively). Stresses induced by the two balloon systems varied across the valve. At the end of inflation, SB showed higher stresses in the central part of the leaflets and at the commissures compared to DB simulation, which demonstrated a more uniform stress distribution. The higher stresses in the SB analysis were due to the mismatch of the round balloon shape with the oval mitral orifice. The commissural split was not easily accomplished with the SB due to its high compliance. The high pressure applied to the DB guaranteed the commissural split even when high forces were required to break the commissure welds. Conclusions: The FE model demonstrated that MV dilatation can be accomplished by both SB and DB techniques. However, the DB method resulted in higher probability of splitting of the fused commissures and less damage caused to the MV leaflets by overstretching.« less
Ballooning in the constant sun of the South Pole summer
2017-12-08
BARREL researchers get ready to release the top part of the balloon, called the bubble, as it fills with enough helium to support itself. Only the top part of the balloon is inflated before launch since the helium expands as the balloon ascends. Credit: NASA/Goddard/BARREL/Nicky Knox Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Advances in Scientific Balloon Thermal Modeling
NASA Technical Reports Server (NTRS)
Bohaboj, T.; Cathey, H. M., Jr.
2004-01-01
The National Aeronautics and Space Administration's Balloon Program office has long acknowledged that the accurate modeling of balloon performance and flight prediction is dependant on how well the balloon is thermally modeled. This ongoing effort is focused on developing accurate balloon thermal models that can be used to quickly predict balloon temperatures and balloon performance. The ability to model parametric changes is also a driver for this effort. This paper will present the most recent advances made in this area. This research effort continues to utilize the "Thrmal Desktop" addition to AUTO CAD for the modeling. Recent advances have been made by using this analytical tool. A number of analyses have been completed to test the applicability of this tool to the problem with very positive results. Progressively detailed models have been developed to explore the capabilities of the tool as well as to provide guidance in model formulation. A number of parametric studies have been completed. These studies have varied the shape of the structure, material properties, environmental inputs, and model geometry. These studies have concentrated on spherical "proxy models" for the initial development stages and then to transition to the natural shaped zero pressure and super pressure balloons. An assessment of required model resolution has also been determined. Model solutions have been cross checked with known solutions via hand calculations. The comparison of these cases will also be presented. One goal is to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. This papa presents the step by step advances made as part of this effort, capabilities, limitations, and the lessons learned. Also presented are the plans for further thermal modeling work.
[The Application of Internal Iliac Artery Balloon Occlusion in Pernicious Placenta Previa].
Qi, Xiao-Rong; Liu, Xing-Hui; You, Yong; Wang, Xiao-Dong; Zhou, Rong; Xing, Ai-Yun; Zhang, Li; Ning, Gang; Zhao, Fu-Min; Li, Kai-Ming
2016-07-01
To evaluate the clinical application value of internal iliac artery balloon occlusion in pernicious placenta previa. We retrospectively reviewed the medical records of the patients of pernicious placenta previa in a single center from Jan, 2010 to Jan, 2015. The patients were divided into two groups, internal iliac artery balloon occlusion group and the control group without endovascular intervention. Blood loss in operation, volume of transfused blood products, caesarean hysterectomy, operating time, hospital days after operation and postoperative morbidity were compared between the two groups. The balloon occlusion group had significantly less blood loss, the volume of transfused blood products, caesarean hysterectomy, hospital day after operation than the control group had. There was no statistical difference in operating time, intensive care units (ICU), hypotension, infection, hypoxemia, bladder injury, bowel obstruction, neonatal asphyxia between the two groups. The balloon occlusion group had significantly higher rate in coagulopathy, hypoalbuminemia, electrolyte imbalance. Among the patients whose uterus were preserved, the blood loss was not significantly difference between the two groups. Among the patients with the complication of placenta accreta, caesarean hysterectomy was less in balloon group, and blood loss between the two groups was not significantly different. Among the patients without placenta accrete, the blood loss was less in balloon group, and caesarean hysterectomy between the two groups was not significantly different. The risk of hysterectomy in balloon group was related to placenta accreta, uterine arteries engorgement, placental invasive serosa, taking placenta by hand, placental invasive bladder, barrel-shaped thickening of lower uterine segment, unable to remove placenta. Internal iliac artery balloon occlusion is an effective treatment for pernicious placenta previa.
Bipolar versus balloon endometrial ablation in the office: a randomized controlled trial.
Penninx, Josien P M; Herman, Malou C; Kruitwagen, Roy F P M; Ter Haar, Annette J F; Mol, Ben W; Bongers, Marlies Y
2016-01-01
To compare the effectiveness of bipolar radiofrequency (Novasure®) ablation and balloon endometrial ablation (Thermablate®). We performed a multi-center double blind, randomized controlled trial in three hospitals in The Netherlands. Women with heavy menstrual bleeding were randomly allocated to bipolar or balloon endometrial ablation, performed in the office, using a paracervical block. The primary outcome was amenorrhea. Secondary outcome measures were pain, satisfaction, quality of life and reintervention. 104 women were randomized into the bipolar (52) and balloon (52) groups. After 12 months amenorrhea rates were 56% (29/52) in the bipolar group and 23% (12/52) in the balloon group (relative risk (RR) 0.6, 95% confidence interval (CI) 0.4-0.8). The mean visual analog pain score of the total procedure was 7.1 in the bipolar group and 7.4 in the balloon group (P<.577). 87% (45/52) of the patients in the bipolar group were satisfied with the result of the treatment versus 69% (36/52) in the balloon group (RR 0.44, 95% CI 0.2-0.97). The reintervention rates were 5/52 (10%) in the bipolar group and 6/52 (12%) in the balloon group (RR 1.02, 95% CI 0.9-1.2). Quality of life (Shaw score) improved over time (P<.001) and was significantly higher in the bipolar group at 12 months follow-up (P=.025). In the treatment of heavy menstrual bleeding, bipolar radiofrequency endometrial ablation is superior to balloon endometrial ablation as an office procedure in amenorrhea rate, patient satisfaction and quality of life. Copyright © 2015. Published by Elsevier Ireland Ltd.
Cheuk, Queenie K Y; Lo, T K; Lee, C P; Yeung, Anita P C
2015-06-01
To evaluate the efficacy and safety of double balloon catheter for induction of labour in Chinese women with one previous caesarean section and unfavourable cervix at term. Retrospective cohort study. A regional hospital in Hong Kong. Women with previous caesarean delivery requiring induction of labour at term and with an unfavourable cervix from May 2013 to April 2014. Primary outcome was to assess rate of successful vaginal delivery (spontaneous or instrument-assisted) using double balloon catheter. Secondary outcomes were double balloon catheter induction-to-delivery and removal-to-delivery interval; cervical score improvement; oxytocin augmentation; maternal or fetal complications during cervical ripening, intrapartum and postpartum period; and risk factors associated with unsuccessful induction. All 24 Chinese women tolerated double balloon catheter well. After double balloon catheter expulsion or removal, the cervix successfully ripened in 18 (75%) cases. The improvement in Bishop score 3 (interquartile range, 2-4) was statistically significant (P<0.001). Overall, 18 (75%) cases were delivered vaginally. The median insertion-to-delivery and removal-to-delivery intervals were 19 (interquartile range, 13.4-23.0) hours and 6.9 (interquartile range, 4.1-10.8) hours, respectively. Compared with cases without, the interval to delivery was statistically significantly shorter in those with spontaneous balloon expulsion or spontaneous membrane rupture during ripening (7.8 vs 3.0 hours; P=0.025). There were no major maternal or neonatal complications. The only factor significantly associated with failed vaginal birth after caesarean was previous caesarean section for failure to progress (P<0.001). This is the first study using double balloon catheter for induction of labour in Asian Chinese women with previous caesarean section. Using double balloon catheter, we achieved a vaginal birth after caesarean rate of 75% without major complications.
Design Evolution and Methodology for Pumpkin Super-Pressure Balloons
NASA Astrophysics Data System (ADS)
Farley, Rodger
The NASA Ultra Long Duration Balloon (ULDB) program has had many technical development issues discovered and solved along its road to success as a new vehicle. It has the promise of being a sub-satellite, a means to launch up to 2700 kg to 33.5 km altitude for 100 days from a comfortable mid-latitude launch point. Current high-lift long duration ballooning is accomplished out of Antarctica with zero-pressure balloons, which cannot cope with the rigors of diurnal cycles. The ULDB design is still evolving, the product of intense analytical effort, scaled testing, improved manufacturing, and engineering intuition. The past technical problems, in particular the s-cleft deformation, their solutions, future challenges, and the methodology of pumpkin balloon design will generally be described.
Balloon-Borne, High-Energy Astrophysics: Experiences from the 1960s to the 1980s
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2008-01-01
Observational high-energy astrophysics in the hard-x-ray and gamma-ray regions owes its development and initial successes to the balloon-borne development of detector systems, as well as pioneering observations, primarily in the timeframe from the 1960s to the 1990s. I will describe some of the first observations made by the Rice University balloon group in the 1960s, including the impetus for these observations. The appearance of SN 1987a led to several balloon-flight campaigns, sponsored by NASA, from Alice Springs, Australia in 1987 and 1988. During the 1980s, prototypes of instruments for the Compton Gamma Ray Observatory were flown on many balloon flights, which greatly enhanced the success of that mission.
Incorporation of Scientific Ballooning into Science Education
NASA Astrophysics Data System (ADS)
Chanover, N.; Stochaj, S.; Petty, C.
1999-12-01
We are augmenting the science curriculum of the Roswell Independent School District in Roswell, NM, to take advantage of the proximity of a NASA scientific balloon base. The basic science related to balloon experimentation is being incorporated into the K-12 science curriculum via the discussion of topics such as atmospheric properties, weather, phases of matter, plotting skills, and communications in the context of a high-altitude balloon flight. These efforts will culminate in the construction of balloon-borne instruments by high school students, which will be launched during the spring of 2000. A demonstration flight, launched in the spring of 1999, was used to build student enthusiasm and community support for this program, which is funded by the NASA/IDEAS program.
Nimbus 4/IRLS Balloon Interrogation Package (BIP)
NASA Technical Reports Server (NTRS)
1971-01-01
The balloon interrogation package (BIP), an integral part of the overall interrogation, recording, and location subsystems (IRLS) for the Nimbus 4 program, is described. The BIP is a self-contained, integrated transponder designed to be carried aloft by a constant altitude, superpressure balloon to an altitude of 67,000 or 78,000 feet. After launch the BIP senses high-altitude balloon overpressure and temperature, and upon receipt of an interrogated command from the IRLS aboard the Nimbus 4 satellite, the BIP enodes the data on a real-time basis into a pulse-code modulation (PCM) format and transmits this data to the satellite. A summary of the program activity to produce 30 BIP systems and to support balloon launches from Ascension Island is presented.
NASA Technical Reports Server (NTRS)
Tatom, F. B.; King, R. L.
1977-01-01
The proper application of constant-volume balloons (CVB) for measurement of atmospheric phenomena was determined. And with the proper interpretation of the resulting data. A literature survey covering 176 references is included. the governing equations describing the three-dimensional motion of a CVB immersed in a flow field are developed. The flowfield model is periodic, three-dimensional, and nonhomogeneous, with mean translational motion. The balloon motion and flow field equations are cast into dimensionless form for greater generality, and certain significant dimensionless groups are identified. An alternate treatment of the balloon motion, based on first-order perturbation analysis, is also presented. A description of the digital computer program, BALLOON, used for numerically integrating the governing equations is provided.
Endovascular techniques in limb salvage: cutting, cryo, brachy, and drug-eluting balloons.
Davies, Mark G; Anaya-Ayala, Javier E
2013-04-01
The complex pathophysiology response to injury of the lower-extremity arteries has prompted the development of several unique balloon technologies to overcome initial technical failures and short-term intimal hyperplasia. Cryoplasty alters the cellular and mechanical properties of the vessel wall during angioplasty. Cutting balloons incise the wall, preventing elastic recoil and allowing expansion of the lumen at a lower pressure, thus limiting barotrauma. Drug-eluting balloons actively transfer inhibitory compounds to the wall during the initial therapy, while brachytherapy balloons allow for localized delivery of radiation to inhibit the proliferative response seen after angioplasty. These platforms provide unique means to enhance immediate and short-term results and also reduce stent usage in the lower extremity.
Transthoracic ultrasound guided balloon dilation of cor triatriatum dexter in 2 Rottweiler puppies.
Birettoni, F; Caivano, D; Bufalari, A; Giorgi, M E; Miglio, A; Paradies, P; Porciello, F
2016-12-01
Balloon dilation was performed in two Rottweiler puppies with cor triatriatum dexter and clinical signs of ascites using transthoracic echocardiographic guidance. The dogs were positioned on a standard echocardiography table in right lateral recumbency, and guide wires and balloon catheters were imaged by echocardiographic views optimized to allow visualization of the defect. The procedures were performed successfully without complications and clinical signs were resolved completely in both cases. Guide wires and balloon catheters appeared hyperechoic on transthoracic echocardiography image and could be clearly monitored and guided in real-time. These two cases demonstrate that it is possible to perform balloon catheter dilation of cor triatriatum dexter under transthoracic guidance alone. Copyright © 2016 Elsevier B.V. All rights reserved.
Hurricane Balloon Observations in the Hurricane Inflow Layer
NASA Astrophysics Data System (ADS)
Businger, S.; Johnson, R.; Ellis, R.; Talbot, R.
2005-12-01
Four autonomous NOAA smart balloons have been prepared at NOAA's Air Resources Lab Field Research Division. The balloons will be released from the northwest corner of Puerto Rico during August and September 2005 into the inflow of tropical cyclones passing just to the north or south of the island. Ballast control allows the balloons to be positioned low in the atmosphere in the inflow of the storms. Observations will include aspirated temperature and humidity, barometric pressure, GPS position, rain rate, ozone, downward IR temperature, and solar radiation. The observations will be transmitted in real time via satellite cellular telephone and posted to the web. Preliminary results of the analysis of the balloon data sets will be presented, including energy content of the inflow air, estimates of surface fluxes, and evidence of organized eddies. Solar cells will help prolong battery life. If a balloon survives an eye-wall penetration, data on the energy content and ozone concentrations of the boundary layer air in the eye will be presented.
NASA Technical Reports Server (NTRS)
Kremic, Tibor; Cheng, Andrew F.; Hibbitts, Karl; Young, Eliot F.; Ansari, Rafat R.; Dolloff, Matthew D.; Landis, Rob R.
2015-01-01
NASA and the planetary science community have been exploring the potential contributions approximately 200 questions raised in the Decadal Survey have identified about 45 topics that are potentially suitable for addressing by stratospheric balloon platforms. A stratospheric balloon mission was flown in the fall of 2014 called BOPPS, Balloon Observation Platform for Planetary Science. This mission observed a number of planetary targets including two Oort cloud comets. The optical system and instrumentation payload was able to provide unique measurements of the intended targets and increase our understanding of these primitive bodies and their implications for us here on Earth. This paper will discuss the mission, instrumentation and initial results and how these may contribute to the broader planetary science objectives of NASA and the scientific community. This paper will also identify how the instrument platform on BOPPS may be able to contribute to future balloon-based science. Finally the paper will address potential future enhancements and the expected science impacts should those enhancements be implemented.
Astrobiology Exploration Strategies for the Mars Polar Regions Using Balloon Platforms
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Atreya, S. A.; Fairbrother, D. A.; Farrell, W. M.; Gorevan, S.; Jones, J.; Mitrofanov, I.; Scott, J.
2003-01-01
Montgolfiere balloons can provide a unique near-surface platform for an extended traverse over the polar regions of Mars. During the polar summer, such solar powered balloons would remain in the constant sun of the polar summer and could remain airborne for many weeks or even months as the atmospheric circulation would drive the balloons around the polar region many times before the balloon would cross the terminator. Such a platform for scientific measurements could provide in situ sampling of the atmosphere for trace disequilibrium species that might be indicators of present geological or biological activity in this region. It could furthermore provide high resolution imaging, deep electromagnetic (EM) sounding for subsurface stratigraphy and liquid water, and high spatial resolution neutron measurements of subsurface ice. Technologies for robust balloon deployment on entry and controlled encounters with the surface and near subsurface for sample acquisition in otherwise inaccessible regions are presently being studied and developed with support from NASA.
Astrobiology Exploration Strategies for the Mars Polar Regions Using Balloon Platforms
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Atreya, S. A.; Fairbrother, D. A.; Farrell, W. M.; Gorevan, S.; Jones, J.; Mitrofanov, I.; Scott, J.
2003-01-01
Montgolfiere balloons can provide a unique near-surface platform for an extended traverse over the polar regions of Mars. During the polar summer, such solar powered balloons would remain in the constant sun of the polar summer and could remain airborne for many weeks or even months as the atmospheric circulation would drive the balloons around the polar region many times before the balloon would cross the terminator. Such a platform for scientific measurements could provide in situ sampling of the atmosphere for trace disequilibrium species that might be indicators of present geological or biological activity in this regon. It could furthermore provide high resolution imaging, deep electromagnetic (EM) sounding for subsurface stratigraphy and liquid water, and high spatial resolution neutron measurements of subsurface ice. Technologies for robust balloon deployment on entry and controlled encounters with the surface and near subsurface for sample acquisition in otherwise inaccessible regions are presently being studied and developed with support from NASA.
Aerial Deployment and Inflation System for Mars Helium Balloons
NASA Technical Reports Server (NTRS)
Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.
2009-01-01
A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.
Dislodgement of variceal bands after esophageal balloon tamponade for variceal bleeding.
Mogrovejo, Estela; Manickam, Palaniappan; Polidori, Gregg; Cappell, Mitchell S
2014-01-01
A 43-year-old male with alcoholic cirrhosis underwent EGD for hematemesis which revealed bleeding, grade II, lower esophageal varices that were endoscopically ligated with 6 bands. All the bands remained attached to varices at the completion of EGD. Despite apparent initial hemostasis, balloon tamponade was performed one hour later for suspected continued bleeding. Due to suspected continuing bleeding, EGD was repeated 4 h after initial EGD, and 3 h after balloon tamponade. This EGD revealed the esophageal varices; none of the bands remaining on esophageal mucosa; multiple mucosal stigmata likely from trauma at initial site of variceal bands before dislodgement; and 3 dislodged bands in gastric body, duodenal bulb, or descending duodenum. The patient expired 17 h thereafter from hypovolemic shock. This single report may suggest an apparently novel, balloon tamponade complication: dislodgement of previously placed, endoscopic bands. The proposed pathophysiology is release of bands by stretching entrapped, esophageal mucosa during esophageal balloon tamponade. This complication, if confirmed, might render balloon tamponade a less desirable option very soon after band ligation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguzkurt, Levent, E-mail: loguzkurt@yahoo.com; Tercan, Fahri; Gulcan, Oner
2005-04-15
A 24-year-old woman with uncontrollable high blood pressure for 3 months had significant stenosis of the left renal artery caused by fibromuscular dysplasia (FMD). The lesion was resistant to percutaneous transluminal angioplasty at 18 atm with a semicompliant balloon. Angioplasy with a 6 x 10 mm cutting balloon (CB) caused rupture of the artery. Low-pressure balloon inflation decreased but did not stop the leak. An attempt to place a stent-graft (Jostent; Jomed, Rangendingen, Germany) failed, and a bare, 6-mm balloon-expandable stent (Express SD; Boston Scientific, MN) was deployed to seal the leak, which had decreased considerably after long-duration balloon inflation.more » The bleeding continued, and the patient underwent emergent surgical revascularization of the renal artery with successful placement of a 6-mm polytetrafluoroethylene bypass graft. CBs should be used very carefully in the treatment of renal artery stenosis, particularly in patients with FMD.« less
Meeting the Challenge to Balloon Science
NASA Astrophysics Data System (ADS)
Jones, W. Vernon
The promise of superpressure ballooning is helping the balloon program evolve toward a cost-effective means for frequent access to near-space. Superpressure balloons fabricated from strong, light-weight composite materials have the potential for increasing flight times of ton-class payloads to 100 days or more at altitudes above 5 mbars at essentially any geographic latitude. Although this new capability is still in an embryonic stage, its potential has already had an impact. Specifically, a new NASA Office of Space Science policy for University-class Explorer missions allows balloon investigations to compete on an equal basis with other low-cost missions requiring expendable launch vehicles. The new challenge for the science community is to design winning payloads that can be built within the cost cap of $13 M, including launch costs, and be developed within two to three years from selection to launch. Defining the international trajectories and getting the overflight agreements for balloon flights that make several circumnavigations of Earth will also be a challenge
Kleman, Mandi E; Estrada, Amara H; Maisenbacher, Herbert W; Prošek, Robert; Pogue, Brandon; Shih, Andre; Paolillo, Joseph A
2012-01-01
Subvalvular aortic stenosis (SAS) is one of the most common congenital cardiac malformations in dogs. Unfortunately, the long term success rate and survival data following either open heart surgery or catheter based intervention has been disappointing in dogs with severe subaortic stenosis. Medical therapy is currently the only standard recommended treatment option. A cutting balloon dilation catheter has been used successfully for resistant coronary artery and peripheral pulmonary arterial stenoses in humans. This catheter is unique in that it has the ability to cut, or score, the stenotic region prior to balloon dilatation of the stenosis. The use of cutting balloon valvuloplasty combined with high pressure valvuloplasty for dogs with severe subaortic stenosis has recently been reported to be a safe and feasible alternative therapeutic option. The following report describes this technique, outlines the materials required, and provides some 'tips' for successful percutaneous subaortic balloon valvuloplasty. Copyright © 2012 Elsevier B.V. All rights reserved.
Balloon cell nevus of the iris.
Morcos, Mohib W; Odashiro, Alexandre; Bazin, Richard; Pereira, Patricia Rusa; O'Meara, Aisling; Burnier, Miguel N
2014-12-01
Balloon cell nevus is a rare histopathological lesion characterized by a predominance of large, vesicular and clear cells, called balloon cells. There is only 1 case of balloon cell nevus of the iris reported in the literature. A 55 year-old man presented a pigmented elevated lesion in the right iris since the age of 12 years old. The lesion had been growing for the past 2 years and excision was performed. Histopathological examination showed a balloon cell nevus composed of clear and vacuolated cells without atypia. A typical spindle cell nevus of the iris was also observed. The differential diagnosis included xanthomatous lesions, brown adipocyte or other adipocytic lesions, clear cell hidradenoma, metastatic clear cell carcinoma of the kidney and clear cell sarcoma. The tumor was positive for Melan A, S100 protein and HMB45. Balloon cell nevus of the iris is rare but should be considered in the differential diagnosis of melanocytic lesions of the iris. Copyright © 2014 Elsevier GmbH. All rights reserved.
Iridium: Global OTH data communications for high altitude scientific ballooning
NASA Astrophysics Data System (ADS)
Denney, A.
While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several beneficial points provided by the Iridium platform include pure global accessibility (as well as polar), cost effectiveness because it is available as a COTS (Commercially Off The Shelf) technology, reliability in that the equipment must operate in extreme conditions (near space), integration and development time into current systems must be minimized. As a bonus Motorola and NAL Research Corporation are developing SBD (Short Burst Data) into the Iridium network. This may lead the way to a global IP (Internet Protocol) node based ballooning platform. The Iridium satellite data modems employ the Iridium Low-Earth Orbit (LEO) satellite network. The scope of this paper is to introduce an OTH communications alternative, albeit not necessarily a primary one, to existing ballooning platforms using COTS based emerging technologies. Design aspects, characteristics, actual flight testing statistics, principles of the Iridium modems and communication paths are described including payload and support instrumentation interfacing. Not limited to high altitude ballooning, the Iridium communications platform opens a new era in remote commanding and data retrieval.
Kerolus, Mena G; Chung, Joonho; Munich, Stephen A; Matsuda, Yoshikazu; Okada, Hideo; Lopes, Demetrius K
2017-11-17
Transvenous embolization is an effective method for treating dural arteriovenous fistulas (DAVFs) of the transverse-sigmoid sinus (TSS). However, in cases of complicated DAVFs, it is difficult to preserve the patency of the dural sinus. The authors describe the technical details of a new reconstructive technique using transvenous balloon-assisted Onyx embolization as another treatment option in a patient with an extensive and complex DAVF of the left TSS. A microcatheter and compliant balloon catheter were navigated into the left internal jugular vein and placed at the distal end of the DAVF in the transverse sinus. The microcatheter was placed between the vessel wall of the TSS and the balloon. After the balloon was fully inflated, Onyx-18 was injected at the periphery of the balloon in a slow, controlled, progressive, stepwise manner; the balloon and microcatheter were simultaneously withdrawn toward the sigmoid sinus, with Onyx encompassing the entirety of the complex DAVF. The Onyx refluxed into multiple arterial feeders in a distal-to-proximal step-by-step manner, ultimately resulting in an Onyx tunnel. The final angiography study revealed complete obliteration of the DAVF and patency of the TSS. The Onyx tunnel, or reconstructive transvenous balloon-assisted Onyx embolization technique, may be an effective treatment option for large, complex DAVFs of the TSS. This technique may provide another option to facilitate the complete obliteration of the DAVF while preserving the functional sinus.
Inquiry-Based Early Undergraduate Research Using High-Altitude Ballooning
NASA Astrophysics Data System (ADS)
Sibbernsen, K.; Sibbernsen, M.
2012-12-01
One common objective for undergraduate science classes is to have students learn how to do scientific inquiry. However, often in science laboratory classes, students learn to take data, analyze the data, and come to conclusions, but they are told what to study and do not have the opportunity to ask their own research questions, a crucial part of scientific inquiry. A special topics class in high-altitude ballooning (HAB) was offered at Metropolitan Community College, a large metropolitan two-year college in Omaha, Nebraska to focus on scientific inquiry for the participants through support of NASA Nebraska Space Grant. A weather balloon with payloads attached (balloonSAT) was launched to near space where the balloon burst and fell back to the ground with a parachute. Students worked in small groups to ask their research questions, they designed their payloads, participated in the launch and retrieval of equipment, analyzed data, and presented the results of their research. This type of experience has potential uses in physics, physical science, engineering, electronics, computer programming, meteorology, astronomy, and chemistry classes. The balloonSAT experience can act as a stepping-stone to designing sounding rocket payloads and it can allow students the opportunity to participate in regional competitions and present at HAB conferences. Results from the workshop are shared, as well as student responses to the experience and suggestions for administering a high-altitude ballooning program for undergraduates or extending inquiry-based ballooning experiences into high-school or middle-school.
21 CFR 870.1350 - Catheter balloon repair kit.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Catheter balloon repair kit. 870.1350 Section 870.1350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1350 Catheter balloon...
TETHERED BALLOON MEASUREMENTS OF BIOGENIC VOCS IN THE ATMOSPHERIC BOUNDARY LAYER
Measurements of biogenic volatile organic compounds (BVOCs) have been made on a tethered balloon platform in eleven field deployments between 1985 and 1996. A series of balloon sampling packages have been developed for these campaigns and they have been used to describe boundary ...
21 CFR 870.1350 - Catheter balloon repair kit.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Catheter balloon repair kit. 870.1350 Section 870.1350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1350 Catheter balloon...
NASA’s BARREL Mission Launches 20 Balloons
2017-12-08
A BARREL balloon floats into the sky as it is partially filled. When fully inflated, each balloon is 90 feet in diameter and carries an instrument suite that weighs 50 pounds. This is small for an Antarctica balloon launch, which can have balloons Typical balloons l the size of a football field with payloads of some 3,000 pounds. Credit: NASA --- In Antarctica in January, 2013 – the summer at the South Pole – scientists launched 20 balloons up into the air to study an enduring mystery of space weather: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? The mission is called BARREL (Balloon Array for Radiation belt Relativistic Electron Losses) and it is led by physicist Robyn Millan of Dartmouth College in Hanover, NH. Millan provided photographs from the team’s time in Antarctica. The team launched a balloon every day or two into the circumpolar winds that circulate around the pole. Each balloon floated for anywhere from 3 to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere. BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels through the Van Allen radiation belts surrounding Earth. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites must travel. Scientists wish to understand this process better, and even provide forecasts of this space weather, in order to protect our spacecraft. As the Van Allen Probes were observing what was happening in the belts, BARREL tracked electrons that precipitated out of the belts and hurtled down Earth’s magnetic field lines toward the poles. By comparing data, scientists will be able to track how what’s happening in the belts correlates to the loss of particles – information that can help us understand this mysterious, dynamic region that can impact spacecraft. Having launched balloons in early 2013, the team is back at home building the next set of payloads. They will launch 20 more balloons in 2014. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
ERIC Educational Resources Information Center
Jeskova, Z.; Featonby, D.; Fekova, V.
2012-01-01
Whilst everyone is familiar with the process of blowing up a balloon, few of us have gone further to quantify the actual pressures involved at different stages in the inflation process. This paper seeks to describe experiments to fill some of those gaps and examine some of the apparently anomalous behaviour of connected balloons. (Contains 12…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-865] Certain Balloon Dissection Devices... importation, or sale in the United States after importation of certain balloon dissection devices and products...; Pajunk Medizintechnologie GmbH of Geisingen, Germany; and Pajunk Medical Systems LP of Norcross, Georgia...
The Vega balloons - A tool for studying atmosphere dynamics on Venus
NASA Technical Reports Server (NTRS)
Kremnev, R. S.; Selivanov, A. S.; Linkin, V. M.; Lipatov, A. N.; Tarnoruder, I. IA.; Puchkov, V. I.; Kustodiev, V. D.; Shurupov, A. A.; Ragent, B.; Preston, R. A.
1986-01-01
The Vega balloon experiment, designed to measure the dynamics of the Venus atmosphere, comprised the balloons themselves, their gondolas with on-board sensors and radio transmitters, and the radio telescope network on the earth. The structures and the physical parameters of the balloon probe are described, together with the instruments on the gondola, designed for the measurements of the atmospheric pressure, temperature, and vertical wind flows, and illumination, as well as possible flashes of lightning. Consideration is also given to the formatting of the information flow for the individual parameters measured.
The use of optical fibers in the Trans Iron Galactic Element Recorder (TIGER)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sposato, S. H.; Binns, W. R.; Dowkontt, P. F.
1998-11-09
TIGER, the Trans-Iron Galactic Element Recorder, is a cosmic-ray balloon borne experiment that utilizes a scintillating Fiber Hodoscope/Time of Flight (TOF) counter. It was flown aboard a high altitude balloon on September 24, 1997. The objective of this experiment is to measure the elemental abundances of all nuclei within the charge range: 26{<=}Z{<=}40. This initial balloon flight will test the detector concept, which will be used in future balloon and space experiments. The instrument and the fiber detector are described.
[A balloon probe for the treatment of recurrent bloat in calves and young cattle].
Doll, K
1989-01-01
For the treatment of recurrent bloat a soft-rubber balloon tube which is inserted through the nose into the rumen and can stay there for several days was developed. The inflated balloon ensures a floating of the tip of the tube in the dorsal gas cap above the rumen contents. The tube can also be used as a prophylactic measure to avoid excessive ruminal gas accumulation in recumbent patients during surgery. This report describes the experiences with this balloon tube gathered in 23 clinical patients.
NASA Technical Reports Server (NTRS)
Youngbluth, Otto; Owens, Thomas L.; Storey, Richard W.
1990-01-01
Systems take meteorological measurements for variety of research projects. Report describes work done by NASA Langley Research Center in atmospheric research using tethered balloon systems composed of commercially available equipment. Two separate tethered balloon systems described in report have payloads and configurations tailored to requirements of specific projects. Each system capable of measuring atmospheric parameter or species in situ and then telemetering this data in real time to ground station. Meteorological data and concentration of ozone typically measured. Indicates instrumented tethered balloon systems have distinct advantages over other systems for gathering data on troposphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosling, J.; Nayeemuddin, M.; Cowling, M.
Here, a case of Paget-Schroetter Syndrome in a 25-year-old guitar player is reported. After thrombolysis, conventional angioplasty failed to dilate the underlying subclavian stenosis both before and after first-rib excision with scalenus anterior and medius division. For the third attempt at angioplasty, a cutting balloon was used, which immediately produced a good result. Venography at 4-year follow-up showed no restenosis and no functional deficit. This case report demonstrates that cutting-balloon angioplasty may be considered when conventional balloon fails and may have greater durability than conventional balloon angioplasty in the treatment of Paget-Schroetter syndrome.
NASA Technical Reports Server (NTRS)
Pelling, M. R.; Duttweiler, F.; Lin, R. F.; Levedahl, W. K.; Primbach, H.; Curtis, D. W.; Burley, K. C.
1985-01-01
A program currently in progress to conduct extended duration spectroscopic and photometric observation of solar X-ray phenomena from balloons is described. High photometric sensitivity to weak hard X-ray bursts is attained using a 600 sq cm array of phoswich scintillators. High spectral resolution for stronger bursts is available from an array of planar germanium detectors. These instruments are carried in a novel balloon gondola dssigned for the 15 to 20 day float durations available through using conventional zero pressure balloons in the radiation controlled (RACOON) mode.
NASA Astrophysics Data System (ADS)
Pelling, M. R.; Duttweiler, F.; Lin, R. F.; Levedahl, W. K.; Primbach, H.; Curtis, D. W.; Burley, K. C.
1985-08-01
A program currently in progress to conduct extended duration spectroscopic and photometric observation of solar X-ray phenomena from balloons is described. High photometric sensitivity to weak hard X-ray bursts is attained using a 600 sq cm array of phoswich scintillators. High spectral resolution for stronger bursts is available from an array of planar germanium detectors. These instruments are carried in a novel balloon gondola dssigned for the 15 to 20 day float durations available through using conventional zero pressure balloons in the radiation controlled (RACOON) mode.
Tsuura, M.; Terada, T.; Masuo, O.; Matsumoto, H.; Itakura, T.; Hyoutani, G.; Nakamura, Y.; Moriwaki, H.; Hayashi, S.
2001-01-01
Summary 110 patients with extracranial ICA stenosis were treated by PTA or stenting. In 21 of 55 cases of only PTA and in 40 of 55 cases of stenting, we used our blocking balloon systems to prevent distal embolism. The morbidity and the mortality rates were 5.4% and 0%, respectively. There was only one embolic complication in cases of PTA or stenting where blocking balloon systems were used. In contrast, distal embolism occurred in 3 of 34 cases of PTA without blocking balloon systems (one symptomatic case) and in 4 of 15 cases of stenting without blocking balloon systems (3 symptomatic cases). Our blocking balloon catheter system is a useful device to reduce the risk of symptomatic distal embolism. PMID:20663375
Balloon mania: news in the air.
Kim, Mi Gyung
2004-12-01
The hot-air balloon, invented by the Montgolfier brothers in 1783, enabled the French King to project his glory, the nobility to exhibit their valor, the literary public to transmit the ideal of the Enlightenment and the plebian public to rejoice in a scientific spectacle. The ensuing balloon mania helped create an integrated public that, because of its size and composition, can only be described as 'democratic' just a few years before the French Revolution. The monumental impact of the balloon was well represented in a flood of poetry, pamphlets, books, journal reports, academic papers and consumer items. Sifting through these artifacts and considering the crowd that witnessed the ascent of the balloon will bring us to the historical moment when things, spectacles, and events (rather than words) shaped public and popular opinion.
Ruggeri, Andrea; Enseñat, Joaquim; Prats-Galino, Alberto; Lopez-Rueda, Antonio; Berenguer, Joan; Cappelletti, Martina; De Notaris, Matteo; d'Avella, Elena
2017-03-01
OBJECTIVE Neurosurgical management of many vascular and neoplastic lesions necessitates control of the internal carotid artery (ICA). The aim of this study was to investigate the feasibility of achieving control of the ICA through the endoscopic endonasal approach by temporary occlusion with a Fogarty balloon catheter. METHODS Ten endoscopic endonasal paraseptal approaches were performed on cadaveric specimens. A Fogarty balloon catheter was inserted through a sellar bony opening and pushed laterally and posteriorly extraarterially along the paraclival carotid artery. The balloon was then inflated, thus achieving temporary occlusion of the vessel. The position of the catheter was confirmed with CT scans, and occlusion of the ICA was demonstrated with angiography. The technique was performed in 2 surgical cases of pituitary macroadenoma with cavernous sinus invasion. RESULTS Positioning the Fogarty balloon catheter at the level of the paraclival ICA was achieved in all cadaveric dissections and surgical cases through a minimally invasive, quick, and safe approach. Inflation of the Fogarty balloon caused interruption of blood flow in 100% of cases. CONCLUSIONS Temporary occlusion of the paraclival ICA performed through the endoscopic endonasal route with the aid of a Fogarty balloon catheter may be another maneuver for dealing with intraoperative ICA control. Further clinical studies are required to prove the efficacy of this method.
Watson, Timothy; El-Jack, Seifeddin; Stewart, James T; Ormiston, John
2013-09-01
Intravascular ultrasound (IVUS) is a proven and safe imaging modality used to guide percutaneous coronary intervention (PCI). The Volcano VIBE™ RX Vascular Imaging Balloon Catheter is a novel rapid exchange, 0.014" wire-compatible multi-lumen conventional balloon catheter modified with the addition of an IVUS transducer proximal to the balloon, delivered via a standard 6 Fr sheath. We sought to evaluate the safety, balloon performance, and image quality of the VIBE™ RX in patients scheduled for coronary intervention. Patients aged >21 and <85 years with single or multivessel coronary disease scheduled for PCI due to coronary ischaemic symptoms were included. Those with angiographic features that precluded the safe or informative use of the device were excluded. Twenty-nine patients having angiography because of ischaemic symptoms underwent 44 VIBE RX imaging runs, with balloon dilation in 20. Successful device deployment was achieved in all but one patient. All images were adequate and reproducible. One patient had a non-ST-elevation MI felt to be due to the complexity of the procedure rather than directly related to the VIBE™ RX. The study demonstrated the safety and effectiveness of the VIBE™ RX for its intended purpose with minimal failure rate and no directly related complications.
Gulino, Ferdinando Antonio; Guardo, F Di; Zambrotta, E; Di Gregorio, L M; Miranda, Andrea; Capriglione, Stella; Palumbo, M A
2018-05-18
We studied the efficacy of using pre-cesarean delivery (CD) temporary occlusion of internal iliac arteries with balloon catheters in case of placenta previa-accreta in terms of maternal and neonatal outcomes and to test accuracy of ultrasound (US) and magnetic resonance imaging (MRI) for prenatal diagnosis. From March 2014 to January 2018, women with an US and/or MRI diagnosis of placenta previa-accreta and a planned delivery were enrolled and divided into two groups: balloon catheterization group (women treated with preoperative catheters and CD) and control group (women candidates to elective CD). 37 patients were enrolled: 16 in balloon catheterization group and 21 in control group. Significant differences were detected in estimated blood loss. Prophylactic balloon catheterization could reduce intraoperative red blood cell transfusion. The incidence of hysterectomy was lower in balloon group. No statistical difference was found for neonatal outcomes. Both US and MRI have showed to be useful and complementary to diagnose placenta previa-accreta. Temporal, perioperative, and prophylactic positioning of balloon vascular catheters is an effective method for managing severe hemorrhage caused by placenta previa-accreta as it reduced intraoperative blood loss, lessened perioperative hemostatic measures and intraoperative red cell transfusions, and reduced hysterectomies.
[Clinical application of self-made drainage tube with balloon for iatrogenic colonic perforation].
Liu, Bing-rong; Li, Hui; Zhao, Li-xia; Song, Ji-tao; Wang, Yan-jun; Chen, Jing; Liu, Wei
2012-07-01
To investigate the clinical efficacy of colonic bypass drainage by self-made drainage tube with balloon for iatrogenic colonic perforation. A retrospective analysis of 8 patients with iatrogenic colonic perforations from January 2009 to March 2011 was performed. Self-made drainage tubes with balloon were placed in the bowel lumen endoscopically after perforations were closed with endoclips or endoloops under endoscope. The inflatable balloon at the front-end of the tube was fixed at the mouth side of colonic perforation to achieve continuous drainage of stool and intestinal juice. Endoscopic bypass continuous drainage by using self-made drainage tube with balloon was successfully carried out in all the 8 patients. All the perforations healed and no surgical intervention required. Bypass drainage continued for 3-10 days(mean 7.6 days). One patient received colonoscopy 3 days after the procedure, and displacement of the drainage tube was noticed requiring endoscopic adjustment. All the drainage tubes were removed uneventfully, and no ulceration or perforation occurred at balloon fixed site after removal. After follow up ranging from 12 to 36 months, no chronic fistula, adhesive obstruction, or abdominal infection occurred. Colonic bypass drainage by self-made drainage tube with balloon for iatrogenic colonic perforation is simple, feasible, safe and reliable.
Significant skin burns may occur with the use of a water balloon in HIFU treatment
NASA Astrophysics Data System (ADS)
Ritchie, Robert; Collin, Jamie; Wu, Feng; Coussios, Constantin; Leslie, Tom; Cranston, David
2012-10-01
HIFU is a minimally-invasive therapy suitable for treating selected intra-abdominal tumors. Treatment is safe although skin burns may occur due to pre-focal heating. HIFU treatment of a renal transplant tumor located in the left lower abdomen was undertaken in our centre. Treatment was performed prone, requiring displacement of the abdominal wall away from the treatment field using a water balloon, constructed of natural rubber latex and filled with degassed water. Intra-operatively, ultrasound imaging and physical examination of the skin directly over the focal region was normal. Immediately post-operative, a full-thickness skin burn was evident at the periphery of the balloon location, outside the expected HIFU path. Three possibilities may account for this complication. Firstly, the water balloon may have acted as a lens, focusing the HIFU to a neo-focus off axis. Secondly, air bubbles may have been entrapped between the balloon and the skin, causing heating at the interface. Finally, heating of the isolated water within the balloon may have been sufficient to cause burning. In this case, the placement of a water balloon caused a significant skin burn. Care should be taken in their use as burns, situated off axis, may occur even if the overlying skin appears normal.
Goltz, Jan Peter; Anton, Susanne; Wiedner, Marcus; Barkhausen, Jörg; Stahlberg, Erik
2017-08-01
To report a rendezvous technique for subintimal revascularization of a chronic total occlusion (CTO) of the superficial femoral artery (SFA). This maneuver is appropriate after failure to cross a long SFA CTO via intra- and subintimal approaches from the ipsilateral femoral as well as retrograde posterior tibial artery (PTA) access sites. After predilation of the subintimal space from the femoral access, a reentry device was placed at the level of the first popliteal artery segment. A balloon was delivered via the retrograde PTA access and inflated at the corresponding level of the reentry device. The balloon was punctured with the needle of the reentry device under fluoroscopic control, and a 0.014-inch guidewire was placed within the punctured balloon. The balloon and the antegrade guidewire were retracted from the retrograde access while the guidewire was gently pushed from the femoral site. Conventional balloon angioplasty of the SFA occlusion was performed via the femoral access, followed by overlapping stent-graft implantation. Complete revascularization of the CTO was documented. In selected cases a transfemoral reentry device-assisted puncture of a retrogradely inserted balloon within the subintimal space may facilitate a rendezvous and revascularization if standard techniques to cross long CTOs have failed.
Trande, Paolo; Mussetto, Alessandro; Mirante, Vincenzo G; De Martinis, Elvira; Olivetti, Giampiero; Conigliaro, Rita L; De Micheli, Enrico A
2010-09-01
Overweight and obesity lead to serious health consequences, so that many strategies were recommended for preventing or curing this emerging problem. Treatments are various: diet, physical activity, psychotherapy, drugs, and bariatric surgery. Moreover, during these years, the use of intragastric balloon (BIB) to treat obesity increased rapidly, aimed to (1) reduce bariatric surgical risks; (2) reduce general surgical risks; (3) lead to a significant reduction in the prevalence of cardiovascular diseases, diabetes, musculoskeletal disorders and some cancers. Recently, a new device inflated with air to reduce weight has been developed since 2004 (Heliosphere BAG). Between March 2006 and September 2006, in our unit, intragastric air-filled balloon insertion was performed under general anesthesia and endoscopic control. The balloons were removed after 6 months. We evaluated efficacy, tolerance, and safety of this technique. Seventeen patients (eight men, nine women), with a mean age of 43 +/- 10 years (range 18-65), mean basal BMI of 46 +/- 8 (range 35-58) were included, after providing informed consent. Weight and BMI loss were evaluated in all patients. BMI decreased 4 +/- 3 (range +0.33/-11), weight loss was 11 +/- 9 kg (range +1/-29.5; 8.5%). 14/17 patients maintain a BMI > 35 at the time of balloon removal. The difference between initial weight and BMI was statistically significant (p = 0.02 for weight and p < 0.01 for BMI, T Student test). Tolerance was very good, limited only to some dyspeptic symptoms during the first 3 days after insertion. One asymptomatic gastric ulcer was seen at the removal of balloon. Only one severe adverse effect was registered at the time of insertion (acute coronary syndrome in patient with chronic coronary disease). No serious technical problems were noted at balloon insertion. Balloon removal was more difficult and successful in 15/17 cases (one distal migration and one patient led to surgery because of balloon fragmentation). Intragastric air-filled balloon showed a good profile of efficacy and tolerance. Weight loss appeared to be equivalent to other type of balloons. On the other hand, technical problems (especially at the time of removal) probably linked to the device's material, set a low safety profile.
Xiang, Guang-Heng; Tong, Min-Ji; Lou, Chao; Zhu, Si-Pin; Guo, Wei Jun; Ke, Chen Rong
2018-05-01
An increasing number of studies have been conducted to apply unilateral balloon kyphoplasty in the treatment of ostroporotic vertebral compression fractures (OVCFs). However, the efficacy and safety of unilateral kyphoplasty and whether a unilateral or a bilateral approach is superior is controversial. The purpose of this study was to evaluate the role of unilateral balloon kyphoplasty and use meta-analysis to compare the efficacy and safety of unilateral and bilateral kyphoplasty in patients with OVCFs. A systematic literature search was conducted from 1970 to April 2017 using Medline database and the Cochrane Central Register of Controlled Trials. Articles were limited to those published in English. Randomized controlled trials and nonrandomized comparative studies were also included. The following search terms were used: "osteoporotic vertebral compression fractures," or "OVCF," and "unilateral kyphoplasty," or "unipedicular approach," or "single balloon kyphoplasty," or "one balloon kyphoplasty." A comprehensive search of reference lists of retrieved articles and previous published reviews was also performed to ensure inclusion of all possible studies. All potential articles were independently reviewed by 2 investigators for inclusion into the final analysis. MINORS score was used for nonrandomized studies, and Detsky quality index was applied for prospective randomized controlled trials. Systematic review and meta-analysis was performed for the included studies. After unilateral balloon kyphoplasty the mean postoperative visual analog score (VAS) was from 1.74 to 4.77, mean postoperative kyphotic angle was from 5.9º to 11.22º, and complications involving cement leaks was from 6.8 to 21.9% or adjacent level fractures was from 0 to 5.6%). Unilateral kyphoplasty had significantly lower operative time, and less bone cement volume; however, the postoperative VAS, Oswestry Disability Index (ODI), vertebral height restoration rate, and cement leakage and adjacent vertebral fracture rate, were similar to bilateral kyphoplasty. Only 6 randomized controlled trials and 3 retrospective comparative studies were selected for analysis. Heterogeneity was detected among the studies when we pooled the outcomes. Based on the available evidence, the clinical and radiological results of unilateral balloon kyphoplasty were as good as those of bilateral balloon kyphoplasty for the treatment of OVCFs. And unilateral kyphoplasty had advantages in terms of operation time, radiation exposure, and cost. Unilateral balloon kyphoplasty, bilateral balloon kyphoplasty, osteoporotic vertebral compression fractures, complications of balloon kyphoplasty, meta-analysis.
NASA Astrophysics Data System (ADS)
Nott, Julian
This paper will describe practical work flying prototype balloons in the "The Titan Sky Simulator TM " in conditions approximating those found in Titan's atmosphere. Saturn's moon, Titan, is attracting intense scientific interest. This has led to wide interest in exploring it with Aerobots, balloons or airships. Their function would be similar to the Rovers exploring Mars, but instead of moving laboriously across the rough terrain on wheels, they would float freely from location to location. To design any balloon or airship it is essential to know the temperature of the lifting gas as this influences the volume of the gas, which in turn influences the lift. To determine this temperature it is necessary to know how heat is transferred between the craft and its surroundings. Heat transfer for existing balloons is well understood. However, Titan conditions are utterly different from those in which balloons have ever been flown, so heat transfer rates cannot currently be calculated. In particular, thermal radiation accounts for most heat transfer for existing balloons but over Titan heat transfer will be dominated by convection. To be able to make these fundamental calculations, it is necessary to get fundamental experimental data. This is being obtained by flying balloons in a Simulator filled with nitrogen gas at very low temperature, about 95° K / minus 180° C, typical of Titan's temperatures. Because the gas in the Simulator is so cold, operating at atmospheric pressure the density is close to that of Titan's atmosphere. "The Titan Sky Simulator TM " has an open interior approximately 4.5 meter tall and 2.5 meters square. It has already been operated at 95° K/-180° C. By the time of the Conference it is fully expected to have data to present from actual balloons flying at this temperature. Perhaps the most important purpose of this testing is to validate numerical [computational fluid dynamics] models being developed by Tim Colonius of Caltech. These numerical models will be very valuable: once validated, a wide range of Titan aerobot designs can be analyzed rapidly. It is currently expected that Montgolfiere balloons ["hot air balloons"] will prove most suitable for Titan. However, the fundamental data obtained will be equally valuable for designing of any type of Titan Aerobot. This work is supported by the NASA Jet Propulsion Laboratory with Jeffrey Hall as program manager.
NASA Astrophysics Data System (ADS)
Bénech, Bruno; Ezcurra, Agustin; Lothon, Marie; Saïd, Frédérique; Campistron, Bernard; Lohou, Fabienne; Durand, Pierre
ESCOMPTE programme aims at studying the emissions of primary pollutants in industrial and urban areas, their transport, diffusion and transformation in the atmosphere. This experiment, carried out in southeast France, can be used to validate and to improve meteorological and chemical mesoscale models. One major goal of this experiment was to follow the pollutant plumes, and to investigate its thermodynamic and physico-chemical time evolution. This was realized by means of constant volume balloons, located by global position satellite (GPS) and equipped with thermodynamic and ozone sensors, flying at constant density levels. During the two ESCOMPTE campaigns that took place in June and July 2000 and 2001, 40 balloons were launched, 17 of them equipped with ozone sensors during the day from 0800 to 1800 UTC. Balloons' altitudes flight levels ranged between 400 and 1200 m altitude with Mistral (northerly synoptic flow) and Sea Breeze (southerly breeze) conditions. The atmospheric boundary layer (ABL) topography of the experimental domain is complex and varies strongly from day to day. Its depth presents a large gradient from the sea coast to the north part of the ESCOMPTE domain, and also more complex variability within the domain. The balloons' trajectories describe the evolution of the pollutant plume emitted from the industrial area of Fos-Berre or from the Marseille urban area. Constant volume balloons give a good description of the trajectories of these two plumes. The balloons, which fly at an isopicnic level, cross different atmospheric layers chiefly depending on the ABL height in relation with the constant volume balloons flight level. Thus, each balloon flight is decomposed into different segments that correspond to the same atmospheric layer. In each segment, the ozone content variation is analyzed in relation to other thermodynamical parameters measured by the balloon and mainly to the vapor mixing ratio content. During ESCOMPTE campaign, the mean linear rate of chemical net ozone production at the top of the atmospheric boundary layer was found to be around 6 ppb h -1.
Lin, Jing; Parikh, Niraj; Udgiri, Naval; Wang, Shaoxia; Miller, Daniel F; Li, Chaojing; Panneton, Jean; Nutley, Mark; Zhang, Ze; Huang, Yunfan; Lu, Jun; Zhang, Jingyi; Wang, Lu; Guidoin, Robert
2018-06-01
To examine the effects of in situ laser fenestration and subsequent balloon dilation (noncompliant vs cutting) on the graft fabric of 4 aortic stent-graft models. In an in vitro setup, the Zenith TX2, Talent, Endurant, and Anaconda aortic stent-grafts (all made of polyester graft material) were subjected to laser fenestration with a 2.3-mm-diameter probe at low and high energy in a physiologic saline solution followed by balloon dilation of the hole. For the first series of tests, 6-mm-diameter noncompliant balloons were used and replaced for the second series by 6-mm-diameter cutting balloons. Each procedure was performed 5 times (5 fenestrations per balloon type). The fenestrations were examined visually and with light and scanning electron microscopy. Each fenestration demonstrated various degrees of fraying and/or tearing regardless of the device. The monofilament twill weave of the Talent endograft tore in the warp direction up to 7.09±0.46 mm at high energy compared with 2.41±0.26 mm for the Endurant multifilament device. The fenestrations of the 3 endografts with multifilament weave (Zenith, Anaconda, and Endurant) showed more fraying; fenestration areas in the multifilament Endurant were >10 mm 2 at low and high energy. The fenestrations were free of melted fibers, but minor blackening of the filaments was observed in all devices. Overall, the cutting balloons resulted in worse tearing and damage. Of note, the edges of the dilated laser-formed fenestrations of the Talent and the Endurant grafts demonstrated evidence of additional shredded yarns. In situ fenestration does not cause any melting of the polyester; however, the observed structural damage to the fabric construction must be carefully considered. Cutting balloons caused various levels of tearing compared to the noncompliant balloons and cannot be recommended for use in this application. Rather, noncompliant balloons should be employed, but only with endografts constructed from multifilament yarns. The use of in situ fenestration must be restricted to urgent and emergent cases until long-term durability can be determined.
The French Balloon Program 2013 - 2017
NASA Astrophysics Data System (ADS)
Dubourg, Vincent; Vargas, André; Raizonville, Philippe
2016-07-01
With over 50 years' experience in the field, the French Centre National d'Etudes Spatiales (CNES) goes on supporting - as designer and operator - a significant scientific ballooning program. In particular so because balloons still give a unique and valuable access to near space science. From 2008 to 2013, an important renovation effort was achieved, beginning by Zero Pressure Balloons (ZPB) systems, to comply with more stringent Safety constraints and to the growing reliability and performance requirements from scientific missions. The paper will give an overview of the CNES new capabilities and services for operational balloon activities, and their availability status. The scientific launch campaigns of the past two years will be presented. A focus will be made on the results of the Stratoscience 2015 flight campaign from Timmins, Ontario, using the NOSYCA command and control system for ZPB, qualified in flight in 2013. In particular, the PILOT telescope successfully flew during the 2015 campaign, key figures about the flight and mission will be given. An outlook of the new stratospheric long duration flight systems currently in process of developement at CNES will be given, as well as the presentation of the Stratéole 2 project, dedicated to the survey of the low stratosphere and upper troposphere in equatorial regions, with a fleet of small suprer pressure balloons (SPB). As far as tropospheric balloons are concerned, the Aeroclipper initiative will be presented, aiming at qualifying a quasi-tethered balloon, pushed by the winds close to the sea surface, for the study of cyclones. The scientific launch campaigns and the main payloads in the study for the near future will also be presented.
Sugihara, Fumie; Murata, Satoru; Ueda, Tatsuo; Yasui, Daisuke; Yamaguchi, Hidenori; Miki, Izumi; Kawamoto, Chiaki; Uchida, Eiji; Kumita, Shin-Ichiro
2017-06-01
To investigate haemodynamic changes in hepatocellular carcinoma (HCC) and liver under hepatic artery occlusion. Thirty-eight HCC nodules in 25 patients were included. Computed tomography (CT) during hepatic arteriography (CTHA) with and without balloon occlusion of the hepatic artery was performed. CT attenuation and enhancement volume of HCC and liver with and without balloon occlusion were measured on CTHA. Influence of balloon position (segmental or subsegmental branch) was evaluated based on differences in HCC-to-liver attenuation ratio (H/L ratio) and enhancement volume of HCC and liver. In the segmental group (n = 20), H/L ratio and enhancement volume of HCC and liver were significantly lower with balloon occlusion than without balloon occlusion. However, in the subsegmental group (n = 18), H/L ratio was significantly higher and liver enhancement volume was significantly lower with balloon occlusion; HCC enhancement volume was similar with and without balloon occlusion. Rate of change in H/L ratio and enhancement volume of HCC and liver were lower in the segmental group than in the subsegmental group. There were significantly more perfusion defects in HCC in the segmental group. Hepatic artery occlusion causes haemodynamic changes in HCC and liver, especially with segmental occlusion. • Hepatic artery occlusion causes haemodynamic changes in hepatocellular carcinoma and liver. • Segmental occlusion decreased rate of change in hepatocellular carcinoma-to-liver attenuation ratio. • Subsegmental occlusion increased rate of change in hepatocellular carcinoma-to-liver attenuation ratio. • Hepatic artery occlusion decreased enhancement volume of hepatocellular carcinoma and liver. • Hepatic artery occlusion causes perfusion defects in hepatocellular carcinoma.
Shape Analysis and Deployment of the ExaVolt Antenna
NASA Astrophysics Data System (ADS)
Baginski, Frank; Zhao, Kaiyu; Furer, Joshua; Landay, Justin; Bailoor, Shantanu; Gorham, Peter; Varner, Gary; Miki, Christian; Hill, Brian; Schoorlemmer, Harm; Nguyen, Liem; Romero-Wolf, Andrew; Liewer, Kurt; Sauder, Jonathan; Brakke, Kenneth; Beatty, Jim; Connolly, Amy; Allison, Patrick; Pfendner, Carl; Dailey, Brian; Fairbrother, Debra; Said, Magdi; Lang, Steven; Young, Leyland
The ExaVolt Antenna (EVA) is the next generation balloon-borne ultra-high energy (UHE) particle observatory under development for NASA’s suborbital super-pressure balloon program in Antarctica. Unlike a typical mission where the balloon lifts a gondola that carries the primary scientific instrument, the EVA mission is a first-of-its-kind in that the balloon itself is part of the science instrument. Specifically, a toroidal RF reflector is mounted onto the outside surface of a superpressure balloon (SPB) and a feed antenna is suspended inside the balloon, creating a high-gain antenna system with a synoptic view of the Antarctic ice sheet. The EVA mission presents a number of technical challenges. For example, can a stowed feed antenna be inserted through an opening in the top-plate? Can the feed antenna be deployed during the ascent? Once float altitude is achieved, how might small shape changes in the balloon shape affect the antenna performance over the life of the EVA mission? The EVA team utilized a combination of testing with a 1/20-scale physical model, mathematical modeling and numerical simulations to probe these and related questions. While the problems are challenging, they are solvable with current technology and expertise. Experiments with a 1/20-scale EVA physical model outline a pathway for inserting a stowed feed into a SPB. Analysis indicates the EVA system will ascend, deploy and assume a stable configuration at float altitude. Nominal shape changes in an Antarctic SPB are sufficiently small to allow the use of the surface of the balloon as a high-gain reflector.
77 FR 7589 - Neurological Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-13
... current knowledge about the safety and effectiveness of the Wingspan Stent System with Gateway PTA Balloon... premarket and postmarket data. The Wingspan Stent System with Gateway PTA Balloon Catheter is a neurovascular stent, balloon catheter, and delivery system consisting of the following components: 1. Wingspan...
Aerodynamics of a Party Balloon
ERIC Educational Resources Information Center
Cross, Rod
2007-01-01
It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…
ERIC Educational Resources Information Center
Kennon, Tillman; Roberts, Ed; Fuller, Teresa
2008-01-01
Space travel, even low Earth orbit, is probably several years away for most of us; however, students and teachers can research the edge of space by participating in the BalloonSat program. BalloonSat is an offshoot of the Space Grant Consortium's very successful RocketSat program. The Arkansas BalloonSat program consists of teacher-initiated…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
... balloon and control system (IABP) devices when indicated for acute coronary syndrome, cardiac and non... and non-cardiac surgery, or complications of heart failure. The special controls for this device are.... FDA-2013-N-0581] Cardiovascular Devices; Reclassification of Intra-Aortic Balloon and Control Systems...
Cryo-balloon catheter localization in fluoroscopic images
NASA Astrophysics Data System (ADS)
Kurzendorfer, Tanja; Brost, Alexander; Jakob, Carolin; Mewes, Philip W.; Bourier, Felix; Koch, Martin; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert
2013-03-01
Minimally invasive catheter ablation has become the preferred treatment option for atrial fibrillation. Although the standard ablation procedure involves ablation points set by radio-frequency catheters, cryo-balloon catheters have even been reported to be more advantageous in certain cases. As electro-anatomical mapping systems do not support cryo-balloon ablation procedures, X-ray guidance is needed. However, current methods to provide support for cryo-balloon catheters in fluoroscopically guided ablation procedures rely heavily on manual user interaction. To improve this, we propose a first method for automatic cryo-balloon catheter localization in fluoroscopic images based on a blob detection algorithm. Our method is evaluated on 24 clinical images from 17 patients. The method successfully detected the cryoballoon in 22 out of 24 images, yielding a success rate of 91.6 %. The successful localization achieved an accuracy of 1.00 mm +/- 0.44 mm. Even though our methods currently fails in 8.4 % of the images available, it still offers a significant improvement over manual methods. Furthermore, detecting a landmark point along the cryo-balloon catheter can be a very important step for additional post-processing operations.
Nath, Ranjit Kumar; Soni, Dheeraj Kumar
2015-12-01
A 22-year-old woman with severe mitral stenosis was referred to us for further evaluation and management. She was found to have severe mitral stenosis, severe tricuspid regurgitation with dilated right atrium and right ventricle with persistent left superior vena cava and hugely dilated coronary sinus. Valve was suitable for balloon mitral valvotomy. Cardiac catheterization showed interrupted inferior vena cava with azygos continuation to right atrium and large left superior vena cava draining to coronary sinus which was very much dilated. Right trans-jugular approach was tried for balloon mitral valvotomy, but was unsuccessful due to a very large right atrium and coronary sinus. Retrograde non trans-septal approach was used and balloon valvotomy was done successfully using a 24 mm × 40 mm TYSHAK balloon without any major complication. Reduction in the transmitral pressure gradient on cardiac catheterization data and transthoracic echocardiography confirmed successful procedure. Balloon mitral valvotomy can be done successfully in patients with the above unusual cardiac anatomy with no major procedural complications. © 2015 Wiley Periodicals, Inc.
Intrarectal pressures and balloon expulsion related to evacuation proctography.
Halligan, S; Thomas, J; Bartram, C
1995-01-01
Seventy four patients with constipation were examined by standard evacuation proctography and then attempted to expel a small, non-deformable rectal balloon, connected to a pressure transducer to measure intrarectal pressure. Simultaneous imaging related the intrarectal position of the balloon to rectal deformity. Inability to expel the balloon was associated proctographically with prolonged evacuation, incomplete evacuation, reduced anal canal diameter, and acute anorectal angulation during evacuation. The presence and size of rectocoele or intussusception was unrelated to voiding of paste or balloon. An independent linear combination of pelvic floor descent and evacuation time on proctography correctly predicted maximum intrarectal pressure in 74% of cases. No patient with both prolonged evacuation and reduced pelvic floor descent on proctography could void the balloon, as maximum intrarectal pressure was reduced in this group. A prolonged evacuation time on proctography, in combination with reduced pelvic floor descent, suggests defecatory disorder may be caused by inability to raise intrarectal pressure. A diagnosis of anismus should not be made on proctography solely on the basis of incomplete/prolonged evacuation, as this may simply reflect inadequate straining. PMID:7672656
NASA Astrophysics Data System (ADS)
Redi, Martha; Canik, John; Fredrickson, E.; Fu, G.; Nuehrenberg, C.; Boozer, A. H.
2000-10-01
The standard ballooning-mode beta limit comes from an infinite-n, radially local, ideal magnetohydrodynamic (MHD) calculation. Finite-n ballooning modes have been observed in tokamak plasmas [1]. Investigations of optimized quasiaxially symmetric stellarators with three dimensional, global, ideal MHD codes have recently shown good stability for the external kink, ``vertical" and infinite-n ballooning modes [2,3]. However, infinite-n ballooning stability may be too restrictive, due to its sensitivity to features in the local shear and curvature. The CAS3D [4] code is being used to compare the stability of the high-n ballooning modes to the infinite-n calculations from TERPSICHORE [5]. [1] E. Fredrickson, et al. Phys. Plas. 3 (1996) 2620. [2] G. Fu, Phys. Plas. 7 (2000)1079; Phys. Plas. 7 (2000) 1809. M. Redi, et al. Phys. Plas 7 (2000)1911. [3] A. Reiman, et al., Plas. Phys. Cont. Fus. 41 (1999) B273. [4] C. Nuehrenberg, Phys. Plas. 6 (1999) 275. C. Nuehrenberg, Phys. Plas. 3 (1996) 2401. C. Schwab, Phys. Fluids B5 (1993) 3195. [5] W. A. Cooper, Phys. Plas. 3 (1996) 275.
Khan, Erum Saleem; Basharat, Ayesha
2018-01-01
Worldwide 50%-70% of all cases of maternal morbidity have been attributed to postpartum hemorrhage. This report discusses a case of bicornuate uterus in a term pregnancy. The delivery was by cesarean section, which was followed by massive postpartum hemorrhage, managed successfully with balloon tamponade. This is the second reported case of successful management of post partum hemorrhage in a bicornuate uterus with balloon tamponade. A 22-year-old primigravida at 39 weeks of gestational age presented with vaginal leaking of clear fluid. Cesarean section was done due to meconium stained liquor in early labor; with an incidental finding of bicornuate uterus followed by massive postpartum hemorrhage managed successfully with balloon tamponade. The use of uterine balloon tamponade as an effective method to control postpartum hemorrhage has been studied extensively, but use in cases of hemorrhage associated with uterine malformations has not been reported much in literature. Use of uterine balloon tamponade in case of uterine malformations has been highlighted in our case as an effective non-surgical method to control hemorrhage.
Structural Analysis of NASA's ULDB using Photogrammetric Measurements
NASA Astrophysics Data System (ADS)
Young, Leyland; Garde, Gabriel; Cathey, Henry
The National Aeronautics and Space Administration (NASA) Balloon Program Office (BPO) has been developing a super-pressure Ultra Long Duration Balloon (ULDB) for constant altitude and longer flight times. The development of the ULDB has progressed in many areas that are significant to NASA's desired goals. However, there has been a re-occurring anomaly of the ULDB called a cleft, which prevents the balloon from properly deploying at float altitudes. Over the years, there has been an influx of hypotheses and speculations to the cause of the cleft formation. Significant changes were made to the design paradigm of the ULDB to address the clefting issue. It was hypothesized that the design philosophy of fore-shortening the tendons relative to the polyethylene film was causing the cleft formation, thus the fore-shortened scheme was removed in the design process. The latest design concept removed the fore-shortening and produced a one to one matching of the tendons and film. Consequently, in 2006, a six million cubic foot (MCF) balloon was designed with the new concept of zero fore-shortening and clefted as it reached its float altitude. This 6 MCF cleft proved that the clefting phenomenon was not properly understood and there was more to the problem than just fore-shortening. Most analytical analyses conducted on the ULDB towards the clefting issue focused on pressure stabilities. It was shown through several finite element analyses that the new design concept produces a stable balloon when pressurized; thus, pressurized stability was believed to be a sufficient measure to indicate if a balloon would cleft or not cleft. Eventually, the 6 MCF balloon that clefted in 2006 showed that the pressurized stability analysis is subjective and is not applicable in predicting a cleft formation. Moreover, the analytical pressurized stability is conducted on a fully deployed balloon, whereas, the clefting phenomena occurs as part of the deployment process, and is clearly seen during the final deployment stages. In time, there is no doubt that an analytical tool will be available to fully analyze the ULDB for all concerns; however, at the present time, the analytical efforts are ongoing but are delayed by the complexity of modeling a balloon from un-deployed to deployed configuration. Thus, in the absence of an analytical tool, the development of the ULDB was steered towards more experimental work in understanding the clefting phenomena. This paper highlights the experimental analyses conducted on several scaled model ULDB's using photogrammetry measurements. The experimental work began with two 48-gore 4-meter diameter scaled ULDB's having the characteristics of a 180-degree bulge angle and 7.5-degree bulge angle respectively. The 180-degree balloon inflation experiments showed that similes of clefts appeared in the balloon at the onset of full deployment; whereas, these cleft-like formations were absent in the subsequent experiments with the 7.5-degree bulge angle balloon. This confirmed the thought that "excess material" designed in the gore width to create a 180-degree bulge angle is likely contributing to the clefting phenomena. Thus, the ULDB project decided to build three 200-gore 27-meter balloons: a 90-degree bulge angle, a 55- degree bulge angle, and a 1.8-degree bulge angle balloon to verify the hypothesis of excess material contribution to the clefting phenomena and to explore the limits of the deployment trade space. The experimental analysis with photogrammetry of these three 27-meter diameter balloons provided valuable data of stresses and strains and of the deployment mechanics of an ULDB that proves excess material is a contributor to the clefting phenomena. Significantly, the photogrammetry data showed that there are significant benefits for the lower value lobe angle designs; moreover, the lower value lobe angle balloon deployed better and had stresses and strains comparable to the other two designs. Another test was conducted on an 8-meter 48-gore scaled model ULDB to test the strain limits of the film. After
Catching Comet's Particles in the Earth's Atmosphere by Using Balloons
NASA Astrophysics Data System (ADS)
Potashko, Oleksandr; Viso, Michel
The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use Indian Space Research Organization experience that launched a balloon to stratosphere in 2009 and successfully caught particles with organics at an altitude of 42 km. The main aim of the project is to catch cometary particles by using balloons and to make this method steady and reliable. Why are the comet particles interesting? The nature of a comet is full of puzzles; many researchers think that comets may give keys to the origin of the Solar System and origin of life on the Earth. 2014 and 2015 are special years for comet science: mission Rozetta will reach the vicinity of the comet 67P/Churyumov-Gerasimenko - 10 years after leaving the Earth. Using astronomic data, one may choose date for ballooning, specify the altitude of comet particles by photometry and laser measurement of particle outburst. After height measurement one may launch a balloon. For example, for Draconids particles (Parent comet: 21PGiacobini-Zinner) the expected time of outburst maximum - hence that for catching is 22:42 UT, October 6, 2014. The best conditions for catching will be in Greenland and extreme north-eastern part of North America. Draconids are very convenient for the initial stage of the project - the altitude of observed Draconids outburst is 10 km. One may catch them above 10 km, e.g. 10500 m. We consider ballooning is quite a good method to get experimental data as an additional technique in comparison with big space missions. Moreover, it might be a part of cosmic mission to other planets such as Mars and Venus. The approach of the project is to make targeting catch of comet particles. The method consists of choosing the right place and time for ballooning.
NASA Technical Reports Server (NTRS)
Said, Magdi A; Schur, Willi W.; Gupta, Amit; Mock, Gary N.; Seyam, Abdelfattah M.; Theyson, Thomas
2004-01-01
Science and technology development from balloon-borne telescopes and experiments is a rich return on a relatively modest involvement of NASA resources. For the past three decades, the development of increasingly competitive and complex science payloads and observational programs from high altitude balloon-borne platforms has yielded significant scientific discoveries. The success and capabilities of scientific balloons are closely related to advancements in the textile and plastic industries. This paper will present an overview of scientific balloons as a viable and economical platform for transporting large telescopes and scientific instruments to the upper atmosphere to conduct scientific missions. Additionally, the paper sheds the light on the problems associated with UV degradation of high performance textile components that are used to support the payload of the balloon and proposes future research to reduce/eliminate Ultra Violet (UV) degradation in order to conduct long-term scientific missions.
Diurnal forcing of planetary atmospheres
NASA Technical Reports Server (NTRS)
Houben, Howard C.
1991-01-01
The utility of the Mars Planetary Boundary Layer Model (MPBL) for calculations in support of the Mars 94 balloon mission was substantially enhanced by the introduction of a balloon equation of motion into the model. Both vertical and horizontal excursions of the balloon are calculated along with its volume, temperature, and pressure. The simulations reproduce the expected 5-min vertical oscillations of a constant density balloon at altitude on Mars. The results of these calculations are presented for the nominal target location of the balloon. A nonlinear balanced model was developed for the Martian atmosphere. It was used to initialize a primitive equation model for the simulations of the Earth's atmosphere at the time of the El Chichon eruption in 1982. It is also used as an assimilation model to update the temperature and wind fields at frequent intervals.
Integrating BalloonSAT and Atmospheric Dynamic Concepts into the Secondary Classroom
NASA Astrophysics Data System (ADS)
Fong, B. N.; Kennon, J. T.; Roberts, E.
2016-05-01
Arkansas BalloonSAT is an educational outreach and scientific research program that is part of Arkansas State University in Jonesboro, AR. The following is a unit of instruction to incorporate BalloonSAT measurements into secondary science classes. Students interpret graphs and identify several atmospheric trends and properties of a typical balloon flight. Students engage critical thinking skills in developing and answering their own questions relevant to the BalloonSAT program. Prerequisite concepts students should know are how to interpret graphs and unit conversions. Students should have a basic understanding of gravity, units of temperature and distance, and error in measurements. The unit is designed for one week after end-of-course exams and before the end of school. The unit may take two to five 50-minute periods, depending on how many activities are completed.
Field-Line Localized Destabilization of Ballooning Modes in Three-Dimensional Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willensdorfer, M.; Cote, T. B.; Hegna, C. C.
2017-08-25
Field-line localized ballooning modes have been observed at the edge of high confinement mode plasmas in ASDEX Upgrade with rotating 3D perturbations induced by an externally applied n ¼ 2 error field and during a moderate level of edge localized mode mitigation. The observed ballooning modes are localized to the field lines which experience one of the two zero crossings of the radial flux surface displacement during one rotation period. The localization of the ballooning modes agrees very well with the localization of the largest growth rates from infinite-n ideal ballooning stability calculations using a realistic 3D ideal magnetohydrodynamic equilibrium.more » This analysis predicts a lower stability with respect to the axisymmetric case. The primary mechanism for the local lower stability is the 3D distortion of the local magnetic shear.« less
Management of obstructed balloon catheters.
Browning, G G; Barr, L; Horsburgh, A G
1984-01-01
Failure of a balloon catheter to deflate is not uncommon and prevents its removal. Methods of overcoming the problem include traction, bursting the balloon by overinflation, dissolving it with solvents, puncturing it percutaneously with a needle, or puncturing it with a wire stylet passed through the catheter. All except the last technique have major disadvantages and are of questionable safety. Transcatheter puncture of the balloon was used in 16 patients to remove obstructed balloon catheters without any technical difficulty, distress to the patient, or complication. The procedure is safe, simple, and does not require an anaesthetic. If necessary it could be performed safely by nursing or paramedical staff without the patient having to be admitted to hospital. It is the method of choice for the management of this problem. Images FIG 1 FIG 2 FIG 3 FIG 4 PMID:6428691
Ogasawara, Go; Ishida, Kenichiro; Fujii, Kaoru; Yamane, Takuro; Nishimaki, Hiroshi; Matsunaga, Keiji; Inoue, Yusuke
2014-01-01
We present two cases of acquired uterine arterial venous malformation (AVM) which was diagnosed because of massive genital bleeding successfully treated with transcatheter arterial embolization (TAE), using N-butyl-2-cyanoacrylate (NBCA) under balloon occlusion. Balloon occlusion at the uterine artery was performed in both patients for diffuse distribution of NBCA in multiple feeding branches, as well as to the pseudoaneurysm, and for the prevention of NBCA reflux. In one of our patients, balloon occlusion of the draining vein was simultaneously performed to prevent NBCA migration through accompanying high-flow arteriovenous fistula (AVF). Doppler ultrasound at 6 months of both patients documented persistent complete occlusion of AVM. Complete and safe obliteration of acquired uterine AVM was accomplished using NBCA as embolic agent, under balloon occlusion at the communicating vessels of acquired uterine AVM. PMID:25346850
Ishiwatari, Hirotoshi; Kawakami, Hiroshi; Hisai, Hiroyuki; Yane, Kei; Onodera, Manabu; Eto, Kazunori; Haba, Shin; Okuda, Toshinori; Ihara, Hideyuki; Kukitsu, Takehiro; Matsumoto, Ryusuke; Kitaoka, Keisuke; Sonoda, Tomoko; Hayashi, Tsuyoshi
2016-04-01
Endoscopic bile duct stone (BDS) removal is a well-established treatment; however, the preference for basket or balloon catheters for extraction is operator-dependent. We therefore conducted a multicenter prospective randomized trial to compare catheter performance. We enrolled patients with a BDS diameter ≤ 10 mm and common bile duct diameter ≤ 15 mm. Participants were randomly assigned to groups that were treated with basket or balloon catheters between October 2013 and September 2014. The primary endpoint was the rate of complete clearance of the duct; the secondary endpoints were the rate and time to complete clearance in one endoscopic session. We initially enrolled 172 consecutive patients; 14 were excluded after randomization. The complete clearance rates were 92.3 % (72/78) in the balloon group and 80.0 % (64 /80) in the basket group. The difference in the rates between the two groups was 12.3 percentage points, indicating non-inferiority of the balloon method (non-inferiority limit -10 %; P < 0.001 for non-inferiority). Moreover, the balloon was superior to the basket (P = 0.037). The rate of complete clearance in one endoscopic session was 97.4 % using the balloon and 97.5 % using the basket (P = 1.00). The median times to complete clearance in one endoscopic session were 6.0 minutes (1 - 30) and 7.8 minutes (1 - 37) in the balloon and basket groups, respectively (P = 0.15). For extraction of BDSs ≤ 10 mm, complete endoscopic treatment with a single catheter is more likely when choosing a balloon catheter over a basket catheter.University Hospital Medical Information Network Trials Registry: UMIN000011887. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel
2016-08-01
In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.
NASA Astrophysics Data System (ADS)
Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelles, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Mesmin, S.; Duverger, V.; Dupont, J. C.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.
2015-09-01
In the companion paper (Renard et al., 2015), we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter) based on scattering measurements at angles of 12 and 60° that allows some topology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 μm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV) and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.
NASA Astrophysics Data System (ADS)
Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelle, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Mineau, J.-L.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Mesmin, S.; Duverger, V.; Dupont, J.-C.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.
2015-01-01
In a companion (Part 1) paper (Renard et al., 2015), we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosols Counter) based on scattering measurements at angles of 12 and 60°. that allows some speciation of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overwhelm those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 μm in diameter) in desert dust plumes or fog and clouds. LOAC light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV) and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Wien (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.
Bruti, Gianpaolo; Kolyva, Christina; Pepper, John R.
2015-01-01
Abstract The intra‐aortic balloon pump (IABP) is a ventricular assist device that is used with a broad range of pre‐, intra‐, and postoperative patients undergoing cardiac surgery. Although the clinical efficacy of the IABP is well documented, the question of reduced efficacy when patients are nursed in the semi‐recumbent position remains outstanding. The aim of the present work is therefore to investigate the underlying mechanics responsible for the loss of IABP performance when operated at an angle to the horizontal. Simultaneous recordings of balloon wall movement, providing an estimate of its diameter (D), and fluid pressure were taken at three sites along the intra‐aortic balloon (IAB) at 0 and 45°. Flow rate, used for the calculation of displaced volume, was also recorded distal to the tip of the balloon. An in vitro experimental setup was used, featuring physiological impedances on either side of the IAB ends. IAB inflation at an angle of 45° showed that D increases at the tip of the IAB first, presenting a resistance to the flow displaced away from the tip of the balloon. The duration of inflation decreased by 15.5%, the inflation pressure pulse decreased by 9.6%, and volume decreased by 2.5%. Similarly, changing the position of the balloon from 0 to 45°, the balloon deflation became slower by 35%, deflation pressure pulse decreased by 14.7%, and volume suctioned was decreased by 15.2%. IAB wall movement showed that operating at 45° results in slower deflation compared with 0°. Slow wall movement, and changes in inflation and deflation onsets, result in a decreased volume displacement and pressure pulse generation. Operating the balloon at an angle to the horizontal, which is the preferred nursing position in intensive care units, results in reduced IAB inflation and deflation performance, possibly compromising its clinical benefits. PMID:25959284
Ballooning in the constant sun of the South Pole summer
2014-04-24
A view looking over the payload – the instruments that fly under a balloon – while the BARREL balloon inflates. The orange parachute lies on the ground in front of the payload, while most of the balloon length can be seen stretched along the ground toward the part being inflated. Credit: NASA/Goddard/BARREL Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy.NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.Follow us on TwitterLike us on FacebookFind us on Instagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Çildağ, Mehmet Burak, E-mail: mbcildag@yahoo.com; Çildağ, Songül, E-mail: songulcildag@yahoo.com; Köseoğlu, Ömer Faruk Kutsi, E-mail: kutsikoseoglu@yahoo.com
ObjectiveThe aim of this study is to investigate the potential association of neutrophil–lymphocyte ratio (NLR) between primary patency of percutaneous transluminal angioplasty (PTA) in hemodialysis arteriovenous fistula stenosis and type (Conventional and Drug-Eluting) of balloons used in PTA.Material-MethodThis retrospective study consists of 78 patients with significant arteriovenous fistulas stenosis who were treated with PTA by using Drug-Eluting Balloon (DEB) (n = 29) or Conventional Balloon (CB) (n = 49). NLR was calculated from preinterventional blood samples. All patients were classified into two groups. Group A; primary patency <12 months (43/78), Group B; primary patency ≥12 months (35/78). Cox regression analysis and Kaplan–Meier method were used to determine respectivelymore » independent factors affecting the primary patency and to compare the primary patency for the two balloon types.ResultsNLR ratio and balloon type of the two groups were significantly different (p = 0.002, p = 0.010). The cut-off value of NLR was 3.18 for determination of primary patency, with sensitivity of 81.4 % and specificity of 51.4 %. Primary patency rates between PTA with DEB and CB displayed statistically significant differences (p < 0.05). The cut-off value was 3.28 for determination of 12-month primary patency with the conventional balloon group; sensitivity was 81.8 % and specificity was 81.3 %. There was no statistical relation between NLR levels and the drug-eluting balloon group in 12-month primary patency (p = 0.927).ConclusionIncreased level of NLR may be a risk factor in the development of early AVF restenosis after successful PTA. Preferring Drug-Eluting Balloon at an increased level of NLR can be beneficial to prolong patency.« less
Trial of a Paclitaxel-Coated Balloon for Femoropopliteal Artery Disease.
Rosenfield, Kenneth; Jaff, Michael R; White, Christopher J; Rocha-Singh, Krishna; Mena-Hurtado, Carlos; Metzger, D Christopher; Brodmann, Marianne; Pilger, Ernst; Zeller, Thomas; Krishnan, Prakash; Gammon, Roger; Müller-Hülsbeck, Stefan; Nehler, Mark R; Benenati, James F; Scheinert, Dierk
2015-07-09
The treatment of peripheral artery disease with percutaneous transluminal angioplasty is limited by the occurrence of vessel recoil and restenosis. Drug-coated angioplasty balloons deliver antiproliferative agents directly to the artery, potentially improving vessel patency by reducing restenosis. In this single-blind, randomized trial conducted at 54 sites, we assigned, in a 2:1 ratio, 476 patients with symptomatic intermittent claudication or ischemic pain while at rest and angiographically significant atherosclerotic lesions to angioplasty with a paclitaxel-coated balloon or to standard angioplasty. The primary efficacy end point was primary patency of the target lesion at 12 months (defined as freedom from binary restenosis or from the need for target-lesion revascularization). The primary safety end point was a composite of freedom from perioperative death from any cause and freedom at 12 months from limb-related death (i.e., death from a medical complication related to a limb), amputation, and reintervention. The two groups were well matched at baseline; 42.9% of the patients had diabetes, and 34.7% were current smokers. At 12 months, the rate of primary patency among patients who had undergone angioplasty with the drug-coated balloon was superior to that among patients who had undergone conventional angioplasty (65.2% vs. 52.6%, P=0.02). The proportion of patients free from primary safety events was 83.9% with the drug-coated balloon and 79.0% with standard angioplasty (P=0.005 for noninferiority). There were no significant between-group differences in functional outcomes or in the rates of death, amputation, thrombosis, or reintervention. Among patients with symptomatic femoropopliteal peripheral artery disease, percutaneous transluminal angioplasty with a paclitaxel-coated balloon resulted in a rate of primary patency at 12 months that was higher than the rate with angioplasty with a standard balloon. The drug-coated balloon was noninferior to the standard balloon with respect to safety. (Funded by Lutonix-Bard; LEVANT 2 ClinicalTrials.gov number, NCT01412541.).
VisibleWind: wind profile measurements at low altitude
NASA Astrophysics Data System (ADS)
Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell
2009-09-01
VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other remote wind sensors must operate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, P; Caroprese, B; McKellar, H
2014-06-01
Purpose: To illustrate 25% reduction in CyberKnife prostate SBRT treatment times using a water filled rectal balloon. Methods: We perform prostate SBRT using a 3800cGy in 4 fraction regimen prescribed between 51% 59% iso-dose lines to 95% of PTV using a CyberKnife System. The resultant heterogeneous dosimetry is analogous to HDR dosimetry. Our patients are treated in a feet first supine position to decrease treatment couch sag and also to position the prostate anatomy closer to the robot. CT imaging is performed with a Radiadyne Immobiloc rectal balloon filled with 45-50cc water placed firmly inside the patient's rectum. A treatmentmore » plan is developed from this CT study using Multiplan. The patient is treated every other day for 4 days using the rectal balloon for each fraction. Gold fiducials previously implanted inside the prostate are used for tracking by the CyberKnife system. Results: Critical structures comprise the usual GU anatomy of bladder, rectum, urethra, femoral-heads along with emphasis on doses to anterior rectal wall and rectal mucosa. The water filled rectal balloon localizes the rectum, which enables the physician to accurately contour both anterior rectal wall, and rectal mucosa. The balloon also has a gas release valve enabling better patient comfort. Rectum localization enables the CyberKnife system to make fewer corrections resulting in fewer treatment interruptions and time lost to re-adjustment for rectal motion, bowel filling and gas creation. Effective treatment times are reduced by 25% to approximately 45 minutes. Adoption of the balloon has required minimal change to our planning strategy and plan evaluation process. Conclusion: Patient follow-up comparisons show no difference in effectiveness of treatment with and without balloons We conclude that rectal balloons enhance patient comfort and decrease effective treatment times.« less
'X-ray'-free balloon dilation for totally ultrasound-guided percutaneous nephrolithotomy.
Zhou, Tie; Chen, Guanghua; Gao, Xiaofeng; Zhang, Wei; Xu, Chuanliang; Li, Lei; Sun, Yinghao
2015-04-01
The objective of the study was to evaluate the feasibility and safety of balloon dilation for 'X-ray'-free ultrasound-guided percutaneous nephrolithotomy (PCNL). From January 2012 to December 2012, patients underwent 'X-ray'-free ultrasound-guided PCNL with Amplatz dilator (Group A). From January 2013 to April 2014, patients underwent 'X-ray'-free ultrasound-guided PCNL with balloon dilator (Group B). For balloon dilation, a 10 F fascial dilator was used to dilate the tract. Subsequently, the 6 F nephrostomy balloon (8 mm in diameter) was indwelled along the guidewire with a marked length equal to the dilation depth. Under the monitoring of ultrasound, the location of balloon was secured and disappearance of balloon waist was confirmed when the balloon was inflated at a pressure of 20 atm. A total of 163 patients were involved in this study. Of 81 procedures in Group A, 45 procedures were performed by a senior urologist while 36 procedures by a resident. Of 82 patients in Group B, 47 procedures were performed by the same senior urologist while 35 procedures by another resident. For the senior urologist, there was no statistically significant difference between two groups in calyx of entry, stone-free rate, decline of hemoglobin and hematocrit, operation time and hospitalization. But for the residents, there was less decline of hemoglobin and hematocrit, tract development time and hospitalization in Group B compared to Group A (0.6 vs. 1.7 g/dl, p = 0.001; 2.3% vs. 5.5%, p = 0.003; 10.1 vs. 11.0 min, p = 0.027; 7.8 vs. 13.9 days, p < 0.001). Balloon dilation method introduced in this study is compensable for tract development when 'X-ray'-free ultrasound-guided PCNL is performed. Modified techniques make totally ultrasound guidance for PCNL feasible, easy and safe. In addition, such a procedure is preferable for initial operators because of less hemorrhage complication.
Stenting for curved lesions using a novel curved balloon: Preliminary experimental study.
Tomita, Hideshi; Higaki, Takashi; Kobayashi, Toshiki; Fujii, Takanari; Fujimoto, Kazuto
2015-08-01
Stenting may be a compelling approach to dilating curved lesions in congenital heart diseases. However, balloon-expandable stents, which are commonly used for congenital heart diseases, are usually deployed in a straight orientation. In this study, we evaluated the effect of stenting with a novel curved balloon considered to provide better conformability to the curved-angled lesion. In vitro experiments: A Palmaz Genesis(®) stent (Johnson & Johnson, Cordis Co, Bridgewater, NJ, USA) mounted on the Goku(®) curve (Tokai Medical Co. Nagoya, Japan) was dilated in vitro to observe directly the behavior of the stent and balloon assembly during expansion. Animal experiment: A short Express(®) Vascular SD (Boston Scientific Co, Marlborough, MA, USA) stent and a long Express(®) Vascular LD stent (Boston Scientific) mounted on the curved balloon were deployed in the curved vessel of a pig to observe the effect of stenting in vivo. In vitro experiments: Although the stent was dilated in a curved fashion, stent and balloon assembly also rotated conjointly during expansion of its curved portion. In the primary stenting of the short stent, the stent was dilated with rotation of the curved portion. The excised stent conformed to the curved vessel. As the long stent could not be negotiated across the mid-portion with the balloon in expansion when it started curving, the mid-portion of the stent failed to expand fully. Furthermore, the balloon, which became entangled with the stent strut, could not be retrieved even after complete deflation. This novel curved balloon catheter might be used for implantation of the short stent in a curved lesion; however, it should not be used for primary stenting of the long stent. Post-dilation to conform the stent to the angled vessel would be safer than primary stenting irrespective of stent length. Copyright © 2014 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
STRATCOM 8 Data Workshop and supplement
NASA Technical Reports Server (NTRS)
Reed, E. L. (Compiler)
1978-01-01
The STRATCOM-8 effort took place at Holloman Air Force Base and White Sands Missile Range, New Mexico, on September 28-30, 1977. The prime emphasis was on the study of stratospheric photochemistry involving ozone, with secondary objectives including a study of the balloon environment, comparison of independent techniques for the measurement of O3 and NO, and the development of new sensor systems. More than forty sensors were included on the two large balloons, a U-2 aircraft, and several rockets and small balloons, in addition to meteorological balloons and rockets. Most of the systems performed as expected.
The balloon and the airship technological heritage
NASA Technical Reports Server (NTRS)
Mayer, N. J.
1981-01-01
The balloon and the airship are discussed with emphasis on the identification of commonalities and distinctions. The aerostat technology behind the shape and structure of the vehicles is reviewed, including a discussion of structural weight, internal pressure, buckling, and the development of a stable tethered balloon system. Proper materials for the envelope are considered, taking elongation and stress into account, and flight operation and future developments are reviewed. Airships and tethered balloons which are designed to carry high operating pressure with low gas loss characteristics are found to share similar problems in low speed flight operations, while possessing interchangeable technologies.
Experimental and analytical determination of stability parameters for a balloon tethered in a wind
NASA Technical Reports Server (NTRS)
Redd, L. T.; Bennett, R. M.; Bland, S. R.
1973-01-01
Experimental and analytical techniques for determining stability parameters for a balloon tethered in a steady wind are described. These techniques are applied to a particular 7.64-meter-long balloon, and the results are presented. The stability parameters of interest appear as coefficients in linearized stability equations and are derived from the various forces and moments acting on the balloon. In several cases the results from the experimental and analytical techniques are compared and suggestions are given as to which techniques are the most practical means of determining values for the stability parameters.
Balloon dilation of congenital supravalvular pulmonic stenosis in a dog.
Treseder, Julia R; Jung, SeungWoo
2017-03-30
Percutaneous balloon valvuloplasty is considered the standard of care for treatment of valvular pulmonic stenosis, a common congenital defect in dogs. Supravalvular pulmonic stenosis is a rare form of pulmonic stenosis in dogs and standard treatment has not been established. Although, there have been reports of successful treatment of supravalvular pulmonic stenosis with surgical and stenting techniques, there have been no reports of balloon dilation to treat dogs with this condition. Here, a case of supravalvular pulmonic stenosis diagnosed echocardiographically and angiographically in which a significant reduction in pressure gradient was achieved with balloon dilation alone is presented.
Immediate stent recoil in an anastomotic vein graft lesion treated by cutting balloon angioplasty.
Akkus, Nuri Ilker; Budeepalli, Jagan; Cilingiroglu, Mehmet
2013-11-01
Saphenous vein graft (SVG) anastomotic lesions can have significant fibromuscular hyperplasia and may be resistant to balloon angioplasty alone. Stents have been used successfully to treat these lesions. There are no reports of immediate stent recoil following such treatment in the literature. We describe immediate and persistent stent recoil in an anastomotic SVG lesion even after initial and post-deployment complete balloon dilatation of the stent and its successful treatment by cutting balloon angioplasty. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
NASA Astrophysics Data System (ADS)
Orr, Dwayne
CSBF Engineering Overview Dwayne Orr (Presenting Author) Columbia Scientific Balloon Facility, Palestine, Texas (USA) Dwayne.Orr@csbf.nasa.gov The Columbia Scientific Balloon Facility (CSBF) at Palestine, Texas provides operational and engineering support for the launch of NASA Scientific Balloons. Over the years with the support of the NASA Balloon Program Office, CSBF has developed unique flight systems with the focus of providing a highly reliable, cost effective medium for giving Scientist’s access to a near space environment. This paper will provide an overview of the CSBF flight systems with an emphasis on recent developments and plans for the future.
Management of postpartum hemorrhage with free-flow pressure controlled uterine balloon.
Theron, Gerhard B
2018-05-20
The free-flow pressure controlled uterine balloon (Ellavi UBT; Sinapi biomedical, Stellenbosch, South Africa) allows the expulsion of water from the balloon to reduce volume and pressure control by adjusting the height of the supply bag above the patient. The balloon can be filled to a capacity of 750 mL without requiring expansion pressure. The device is affordable for use in lesser resourced countries with a sales price from the factory of approximately US $6. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Wakefield, David
Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures. Founded upon their inTENS finite element analysis suite, these activities have broadened to encompass ‘lighter than air' structures such as aerostats, hybrid air-vehicles and stratospheric balloons. Since 2004 Tensys have acted as consultants to the NASA Ultra Long Duration Balloon (ULDB) Program. Early implementations of the super-pressure balloon design chosen for ULDB have shown problems of geometric instability, characterised by improper deployment and the potential for overall geometric instability once deployed. The latter has been reproduced numerically using inTENS, and the former are better understood following a series of large-scale hangar tests simulating launch and ascent. In both cases the solution lies in minimising the film lobing between the tendons. These tendons, which span between base and apex end fittings, cause the characteristic pumpkin shape of the balloons and also provide valuable constraint against excessive film deformation. There is also the requirement to generate a biaxial stress field in order to mobilise in-plane shear stiffness. A consequence of reduced lobing between tendons is the development of higher stresses in the balloon film under pressure. The different thermal characteristics between tendons and film lead to further significant meridional stress under low temperature flight conditions. The non-linear viscoelastic response of the envelope film acts positively to help dissipate excessive stress and local concentrations. However, creep over time may produce lobe geometry variations sufficient to compromise the geometric stability of the balloon. The design of a balloon requires an analysis approach that addresses the questions of stress and stability over the duration of a flight by time stepping analyses using an appropriate material model. This paper summarises the Dynamic Relaxation approach to stress and stability analysis inherent in inTENS, and focuses in particular on: Implementation of an alternative application of the Incremental Schapery Rand (ISR) representation of the non-linear visco-elastic response of the polyethylene balloon film. This is based upon the relaxation modulus, rather than the creep compliance, and as such fits more efficiently into the Dynamic Relaxation analysis procedure used within inTENS. Comparisons of results between the two approaches are given. Verification of the material model by comparison with material tests. Verification of the application to pumpkin balloon structures by comparison with scale model tests. Application of inTENS with ISR to time-stepping analyses of a balloon flight including diurnal variations of temperature and pressure. This includes the demonstration of a method for checking the likely hood of overall instability developing at any particular time in the flight as both balloon geometry and film properties change due to visco-elastic effects.
Pala, Şehmus; Atilgan, Remzi; Başpınar, Melike; Kavak, Ebru Çelik; Yavuzkır, Şeyda; Akyol, Alparslan; Kavak, Burçin
2018-02-01
The aim of this study was to compare the postoperative results of the patients who were treated with Bakri balloon tamponade or hysterectomy for placenta accreta and increta. Patients who were diagnosed with placenta accreta or increta preoperatively and intraoperatively and treated with Bakri balloon tamponade (Group 1) or caesarean hysterectomy (Group 2) were compared in regards to the postoperative results. Among the 36 patients diagnosed with placenta accreta or increta, 19 patients were treated with Bakri balloon tamponade while 17 cases were treated with hysterectomy. Intraoperative blood loss amount was 1794 ± 725 ml in G1, which was lower than that in G2 (2694 ± 893 ml). Blood transfusion amount was 2.7 ± 2.6 units in G1, lower than that in G2 (5.7 ± 2.4 units), too. Operation time was 64.5 ± 29 min and 140 ± 51 min in G1 and G2, respectively, showing significant differences between two groups. The success rate of Bakri balloon was determined as 84.21%. In conclusion, cases with placenta accreta/increta, with predicted placental detachment who are willing to preserve fertility, application of uterine balloon tamponade devices before the hysterectomy is encouraging with its advantages compared with the hysterectomy. Impact statement What is already known on this subject: Invasive placental anomalies are the most common indication of postpartum hysterectomy. Recently, uterine balloon tamponade was also included in the treatment modalities of postpartum haemorrhage.This study aimed to compare the postoperative results of UBT or hysterectomy for patients with placenta accreta and increta. What the results of this study add: In this study, the total amount of blood loss was higher in the caesarean hysterectomy group when compared with the Bakri balloon tamponade group. The mean transfusion requirement, mean operation time and hospitalisation period was significantly longer in the caesarean hysterectomy group. The success rate of the Bakri balloon was determined as 84.21%. Two patients who were treated with balloon application had a successful pregnancy and delivery later. Maternal mortality was reported in neither balloon nor hysterectomy groups. What the implications are of these findings for clinical practice and/or further research: In conclusion, patients diagnosed with placenta accreta/increta with ultrasound should be taken into the operation in elective conditions, if possible, on lithotomy position. In cases with predicted placental detachment that are willing to preserve fertility, application of uterine balloon tamponade devices before the hysterectomy has advantages compared with the hysterectomy.
Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity
NASA Astrophysics Data System (ADS)
Rand, J. L.; Wakefield, D. S.
Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may
Antonatos, P G; Anthopoulos, L P; Kandyla, D D; Karras, A D; Moulopoulos, S D
1984-07-01
The coronary artery flow changes relative to the function of a catheter-mounted balloon valve used for relief of aortic regurgitation were studied in 10 mongrel dogs. Acute aortic regurgitation was produced by severing the aortic cusps with a long needle. Coronary flow was recorded from the left anterior descending coronary artery through an electromagnetic flowmeter. When the balloon was functioning within the cavity of the left ventricle there were no significant changes in the coronary flow and aortic pressure, except for a slight decrease in the aortic end-diastolic pressure. When it was functioning in the aortic ring the coronary flow increased 6.52 +/- 1.65 ml/min/100 gm of myocardium (p less than 0.001) and became predominantly diastolic. When it was functioning in the ascending aorta the coronary flow decreased 6.22 +/- 1.16 ml/min/100 gm of myocardium (p less than 0.001) and remained predominantly systolic. Finally, when the balloon was functioning in the thoracic aorta the coronary flow did not change significantly. With the balloon functioning in the aortic ring, ascending aorta, or thoracic aorta, there was a significant increase in the aortic end-diastolic pressure and decrease in the pulse pressure distal to the location of the balloon. It is concluded that the location of the balloon valve inserted for relief of aortic regurgitation influences the effect on coronary arterial flow.
Multicenter comparison of double-balloon enteroscopy and spiral enteroscopy.
Rahmi, Gabriel; Samaha, Elia; Vahedi, Kouroche; Ponchon, Thierry; Fumex, Fabien; Filoche, Bernard; Gay, Gerard; Delvaux, Michel; Lorenceau-Savale, Camille; Malamut, Georgia; Canard, Jean-Marc; Chatellier, Gilles; Cellier, Christophe
2013-06-01
Spiral enteroscopy is a novel technique for small bowel exploration. The aim of this study is to compare double-balloon and spiral enteroscopy in patients with suspected small bowel lesions. Patients with suspected small bowel lesion diagnosed by capsule endoscopy were prospectively included between September 2009 and December 2010 in five tertiary-care academic medical centers. After capsule endoscopy, 191 double-balloon enteroscopy and 50 spiral enteroscopies were performed. Indications were obscure gastrointestinal bleeding in 194 (80%) of cases. Lesions detected by capsule endoscopy were mainly angioectasia. Double-balloon and spiral enteroscopy resulted in finding one or more lesions in 70% and 75% of cases, respectively. The mean diagnosis procedure time and the average small bowel explored length during double-balloon and spiral enteroscopy were, respectively, 60 min (45-80) and 55 min (45-80) (P=0.74), and 200 cm (150-300) and 220 cm (200-300) (P=0.13). Treatment during double-balloon and spiral enteroscopy was possible in 66% and 70% of cases, respectively. There was no significant major procedure-related complication. Spiral enteroscopy appears as safe as double-balloon enteroscopy for small bowel exploration with a similar diagnostic and therapeutic yield. Comparison between the two procedures in terms of duration and length of small bowel explored is slightly in favor of spiral enteroscopy but not significantly. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
Diagnostic and therapeutic direct peroral cholangioscopy using an intraductal anchoring balloon
Parsi, Mansour A; Stevens, Tyler; Vargo, John J
2012-01-01
AIM: To report our experience using a recently introduced anchoring balloon for diagnostic and therapeutic direct peroral cholangioscopy (DPOC). METHODS: Consecutive patients referred for diagnostic or therapeutic peroral cholangioscopy were evaluated in a prospective cohort study. The patients underwent DPOC using an intraductal anchoring balloon, which was recently introduced to allow consistent access to the biliary tree with an ultraslim upper endoscope. The device was later voluntarily withdrawn from the market by the manufacturer. RESULTS: Fourteen patients underwent DPOC using the anchoring balloon. Biliary access with an ultraslim upper endoscope was accomplished in all 14 patients. In 12 (86%) patients, ductal access required sphincteroplasty with a 10-mm dilating balloon. Intraductal placement of the ultraslim upper endoscope allowed satisfactory visualization of the biliary mucosa to the level of the confluence of the right and left hepatic ducts in 13 of 14 patients (93%). Therapeutic interventions by DPOC were successfully completed in all five attempted cases (intraductal biopsy in one and DPOC guided laser lithotripsy in four). Adverse events occurred in a patient on immunosuppressive therapy who developed an intrahepatic biloma at the site of the anchoring balloon. This required hospitalization and antibiotics. Repeat endoscopic retrograde cholangiopancreatography 8 wk after the index procedure showed resolution of the biloma. CONCLUSION: Use of this anchoring balloon allowed consistent access to the biliary tree for performance of diagnostic and therapeutic DPOC distal to the biliary bifurcation. PMID:22912549
Diagnostic and therapeutic direct peroral cholangioscopy using an intraductal anchoring balloon.
Parsi, Mansour A; Stevens, Tyler; Vargo, John J
2012-08-14
To report our experience using a recently introduced anchoring balloon for diagnostic and therapeutic direct peroral cholangioscopy (DPOC). Consecutive patients referred for diagnostic or therapeutic peroral cholangioscopy were evaluated in a prospective cohort study. The patients underwent DPOC using an intraductal anchoring balloon, which was recently introduced to allow consistent access to the biliary tree with an ultraslim upper endoscope. The device was later voluntarily withdrawn from the market by the manufacturer. Fourteen patients underwent DPOC using the anchoring balloon. Biliary access with an ultraslim upper endoscope was accomplished in all 14 patients. In 12 (86%) patients, ductal access required sphincteroplasty with a 10-mm dilating balloon. Intraductal placement of the ultraslim upper endoscope allowed satisfactory visualization of the biliary mucosa to the level of the confluence of the right and left hepatic ducts in 13 of 14 patients (93%). Therapeutic interventions by DPOC were successfully completed in all five attempted cases (intraductal biopsy in one and DPOC guided laser lithotripsy in four). Adverse events occurred in a patient on immunosuppressive therapy who developed an intrahepatic biloma at the site of the anchoring balloon. This required hospitalization and antibiotics. Repeat endoscopic retrograde cholangiopancreatography 8 wk after the index procedure showed resolution of the biloma. Use of this anchoring balloon allowed consistent access to the biliary tree for performance of diagnostic and therapeutic DPOC distal to the biliary bifurcation.
Active Learning in the Atmospheric Science Classroom and beyond through High-Altitude Ballooning
ERIC Educational Resources Information Center
Coleman, Jill S. M.; Mitchell, Melissa
2014-01-01
This article describes the implementation of high-altitude balloon (HAB) research into a variety of undergraduate atmospheric science classes as a means of increasing active student engagement in real-world, problem-solving events. Because high-altitude balloons are capable of reaching heights of 80,000-100,000 ft (24-30 km), they provide a…
Montgolfiere balloon missions from Mars and Titan
NASA Technical Reports Server (NTRS)
Jones, Jack A.
2005-01-01
Montgolfieres, which are balloons that are filled with heated ambient atmospheric gas, appear promising for the exploration of Mars as well as of Saturn's moon, Titan. On Earth, Montgolfieres are also known as 'hot air balloons'. Commercial versions are typically heated by burning propane, although a number of radiant and solar-heated Montgolfieres have been flown on earth by CNES.
Paraspinal arteriovenous malformation Onyx embolization via an Ascent balloon.
Martínez-Galdámez, Mario; Rodriguez-Arias, Carlos A; Utiel, Elena; Arreba, Emilio; Gonzalo, Miguel; Arenillas, Juan F
2013-03-22
Purely extradural lumbar spinal arteriovenous malformations (AVMs) are rare lesions that have diverse presentations and imaging features. The treatment of a symptomatic high flow paraspinal AVM with multiple feeders remains a challenge. We report the first use of an Ascent balloon (dual lumen balloon catheter) to deliver Onyx with excellent penetration to a paraspinal AVM.
Paraspinal arteriovenous malformation Onyx embolization via an Ascent balloon
Martínez-Galdámez, Mario; Rodriguez-Arias, Carlos A; Utiel, Elena; Arreba, Emilio; Gonzalo, Miguel; Arenillas, Juan F
2013-01-01
Purely extradural lumbar spinal arteriovenous malformations (AVMs) are rare lesions that have diverse presentations and imaging features. The treatment of a symptomatic high flow paraspinal AVM with multiple feeders remains a challenge. We report the first use of an Ascent balloon (dual lumen balloon catheter) to deliver Onyx with excellent penetration to a paraspinal AVM. PMID:23524491
Paraspinal arteriovenous malformation Onyx embolization via an Ascent balloon.
Martínez-Galdámez, Mario; Rodriguez-Arias, Carlos A; Utiel, Elena; Arreba, Emilio; Gonzalo, Miguel; Arenillas, Juan F
2014-04-01
Purely extradural lumbar spinal arteriovenous malformations (AVMs) are rare lesions that have diverse presentations and imaging features. The treatment of a symptomatic high flow paraspinal AVM with multiple feeders remains a challenge. We report the first use of an Ascent balloon (dual lumen balloon catheter) to deliver Onyx with excellent penetration to a paraspinal AVM.
High Altitude Balloons as a Platform for Space Radiation Belt Science
NASA Astrophysics Data System (ADS)
Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)
2011-12-01
The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana Space Consortium (LaSpace), and sponsored by NASA. The HASP platform was launched from Fort Sumner, New Mexico, and to an altitude of about 36kilometers with flight durations of 15 to 20 hours using a small volume, low pressure balloon. The main objectives of the program, the challenges involved in developing it, and the major achievements and outcomes will be discussed. Future opportunities for the use of high altitude balloons for solar-terrestrial science, such as the diagnosis of radiation belt loss through the flight of alternative X-ray scintillator payloads, on short duration weather balloon flights will also be discussed. The UA-HAB project is undertaken with the financial support of the Canadian Space Agency.
Lai, Chao-Lun; Fan, Chieh-Min; Liao, Pen-Chih; Tsai, Kuang-Chau; Yang, Chi-Yu; Chu, Shu-Hsun; Chien, Kuo-Liong
2009-04-01
This before-after study investigated the association between an audit program and door-to-balloon times in patients with acute ST-elevation myocardial infarction (STEMI) and explored other factors associated with the door-to-balloon time. An audit program that collected time data for essential time intervals in acute STEMI was developed with data feedback to both the Department of Emergency Medicine and the Department of Cardiology. The door-to-balloon times for 76 consecutive acute STEMI patients were collected from February 16, 2007, through October 31, 2007, after the implementation of the audit program, as the intervention group. The control group was defined by 104 consecutive acute STEMI patients presenting from April 1, 2006, through February 15, 2007, before the audit was applied. A multivariate linear regression model was used for analysis of factors associated with the door-to-balloon time. The geometric mean 95% CI of the door-to-balloon time decreased from 164.9 (150.3, 180.9) minutes to 141.9 (127.4, 158.2) minutes (p = 0.039) in the intervention phase. The median door-to-balloon time was 147.5 minutes in the control group and 136.0 minutes in the intervention group (p = 0.09). In the multivariate regression model, the audit program was associated with a shortening of the door-to-balloon time by 35.5 minutes (160.4 minutes vs. 195.9 minutes, p = 0.004); female gender was associated with a mean delay of 58.4 minutes (208.9 minutes vs. 150.5 minutes; p = 0.001); posterolateral wall infarction was associated with a mean delay of 70.5 minutes compared to anterior wall infarction (215.4 minutes vs. 144.9 minutes; p = 0.037) and a mean delay of 69.5 minutes compared to inferior wall infarction (215.4 minutes vs. 145.9 minutes; p = 0.044). The use of a glycoprotein IIb/IIIa inhibitor was associated with a 46.1 minutes mean shortening of door-to-balloon time (155.7 minutes vs. 201.8 minutes; p < 0.001). The implementation of an audit program was associated with a significant reduction in door-to-balloon times among patients with acute STEMI. In addition, female patients, posterolateral wall infarction territory, and nonuse of glycoprotein IIb/IIIa inhibitor were associated with longer door-to-balloon times.
Recent Results and Near Term Outlook for the NASA Balloon Science Program
NASA Astrophysics Data System (ADS)
Jones, William Vernon
Long-duration and conventional balloon flights in the traditional Astrophysics, Solar and Heliophysics, and Earth Science disciplines have continued in both polar and non-polar regions since the 39th COSPAR Assembly in Mysore, India. One of these established a new flight record of 55 days over Antarctica during the 2012-2013 austral season. That Super-TIGER science flight broke both the 42-day record of the CREAM science flight during the 2004-2005 season and the 54-day super pressure balloon test flight in 2008-2009. With two comets approaching the sun in 2013-2014, the Planetary Science community has shown increased interest in remote observations of comets, planets, and other objects in the Solar System. All of the above science disciplines are interested in super pressure balloon (SPB) flights, which have been under development by NASA, and which were strongly supported by the Astro2010 Decadal Study. A 532,152 m3 (18.8 MCF) SPB with a major gamma ray astrophysics payload is planned for an ultra-long duration balloon (ULDB) test flight around and from Antarctica during the upcoming 2014-2015 season. Flights for SPB qualification to support 1000 kg science instruments to 33 km altitude have proceeded in parallel with planning for options to increase the altitude for less massive instruments that require less atmospheric overburden. The nearly constant SPB volume will provide stable altitude long-duration flights at non-polar latitudes, thereby supporting a much broader range of scientific investigations. Scientific ballooning continues to complement and enable space missions, while training young scientists and systems engineers for the workforce needed to conduct future missions. Highlights of results from past balloon-borne measurements and expected results from ongoing and planned balloon-borne experiments will be presented.
Project Aether Aurora: STEM outreach near the arctic circle
NASA Astrophysics Data System (ADS)
Longmier, B. W.; Bering, E. A.
2012-12-01
Project Aether is a program designed to immerse high-school through graduate students to field research in some of the fields of STEM. The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The balloon's location is monitored during its flight by GPS-satellite relay. Most of the science and video data are recorded on SD cards using an Arduino digitizer. The payload is located using the GPS device. The science data are recovered from the payload and shared with the students. In April 2012, Project Aether leaders conducted a field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. Auroral physics experiments that can be done on ultra small balloons (5 cubic meters) include electric field and magnetic fluctuation observations, full spectrum and narrow band optical imaging, GPS monitoring of the total electron content of the ionosphere, x-ray detection and infrared and UV spectroscopy. The actual undergraduate student experiments will be reviewed and some data presented.; Balloon deployment underneath aurora, Fairbanks Alaska, 2012.
Ballooning in the constant sun of the South Pole summer
2014-04-24
While large compared to a human, BARREL balloons are actually much smaller than typical science balloons, which can be as large as a football field. Credit: NASA/Goddard/BARREL/Brett Anderson Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Wind-Based Navigation of a Hot-air Balloon on Titan: A Feasibility Study
NASA Technical Reports Server (NTRS)
Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim
2008-01-01
Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semiautonomous exploration of Titan.
Wind-based navigation of a hot-air balloon on Titan: a feasibility study
NASA Astrophysics Data System (ADS)
Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim
2008-04-01
Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semi-autonomous exploration of Titan.
Ballooning in the constant sun of the South Pole summer
2017-12-08
The BARREL team at Halley Research Station in Antarctica, work to inflate a balloon. The long tube on the left is the inflation tube used to fill the top of the balloon with helium. Credit: NASA/Goddard/BARREL Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy.NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.Follow us on TwitterLike us on FacebookFind us on Instagram
Ballooning in the constant sun of the South Pole summer
2014-04-24
Release of a BARREL balloon. The launch crew can be seen on the right holding the payload as the top of the balloon moves overhead where they can release it. Credit: NASA/Goddard/BARREL Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy.NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.Follow us on TwitterLike us on FacebookFind us on Instagram
Ballooning in the constant sun of the South Pole summer
2014-04-24
Getting ready to lay out a BARREL balloon to prepare for inflation. The helium stillages used to fill the balloon can be seen in the background. Credit: NASA/Goddard/BARREL/Brett Anderson Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Application of new balloon catheters in the treatment of congenital heart defects
Fiszer, Roland; Szkutnik, Małgorzata; Smerdziński, Sebastian; Chodór, Beata; Białkowski, Jacek
2016-01-01
Introduction Balloon angioplasty (BAP) and aortic or pulmonary balloon valvuloplasty (BAV, BPV) are well-established treatment options in congenital heart defects. Recently, significant technological progress has been made and new catheters have been implemented in clinical practice. Aim To analyze the results of BAP, BAV and BPV with the new balloon catheter Valver and its second generation Valver II, which the company Balton (Poland) launched and developed. These catheters have not been clinically evaluated yet. Material and methods We performed 64 interventions with Valver I and Valver II. With Valver I the following procedures were performed: 17 BPV (including 9 in tetralogy of Fallot – TOF), 10 BAV and 27 BAP in coarctations of the aorta (CoA) – including 9 native and 18 after surgery. With Valver II ten interventions were done – 3 BPV, 2 pulmonary supravalvular BAP (after switch operations), 2 BAP of recoarctations and 3 other BAP. Age of the patients ranged from a few days to 40 years. Results All procedures were completed successfully, without rupture of any balloon catheters. The pressure gradient drop was statistically significant in all groups: BPV in isolated pulmonary valvular stenosis 28.1 mm Hg (mean), BPV in TOF 18.7 mm Hg, BAV 32.8 mm Hg, BAP in native CoA 15.4 mm Hg and in recoarctations 18.6 mm Hg. In 3 cases during rapid deflation of Valver I, wrinkles of the balloons made it impossible to insert the whole balloon into the vascular sheath (all were removed surgically from the groin). No such complication occured with Valver II. Conclusions Valver balloon catheters are an effective treatment modality in different valvular and vascular stenoses. PMID:27625686
Gastric emptying and intragastric balloon in obese patients.
Bonazzi, P; Petrelli, M D; Lorenzini, I; Peruzzi, E; Nicolai, A; Galeazzi, R
2005-01-01
Intragastric balloons have been proposed to induce weight loss in obese subjects. The consequences of the balloon on gastric physiology remain poorly studied. We studied the influence of an intragastric balloon on gastric emptying in obese patients. 12 patients were included in the study, with BMI (mean +/- SD) of 38.51 +/- 4.32 kg/m2. The balloon was inserted under light anaesthesia and endoscopic control, inflated with 700 ml saline, and removed 6 months later. Body weight and gastric emptying (T1/2 and T lag) using 13C-octanoic acid breath test were monitored before balloon placement, during its permanence and 2 months after removal. Mean weight loss was: 6.2 +/- 2.3 kg after one month; 12.4 +/- 5.8 kg after 3 months; 14.4 +/- 6.6 kg after 6 months and 10.1 +/- 4.3 kg two months after BIB removal. Gastric emptying rates were significantly decreased in the first periods with balloon in place, and returned to pre-implantation values after balloon removal. T1/2 was: 87 +/- 32 min before BIB positioning, 181 +/- 91 min after 1 month, 145 +/- 99 min after 3 months, 104 +/- 50 min after 6 months and 90 +/- 43 min 2 months after removal. T lag was 36 +/- 18 min before BIB positioning, 102 +/- 82 min after 1 month, 77 +/- 53 min after 3 months, 59 +/- 28 min after 6 months and 40 +/- 21 min. 2 months after removal. BIB in obese patients seems to be a good help in following the hypo caloric diet, especially during the first three months when the gastric emptying is slower and the sense of repletion is higher. After this period gastric emptying starts to return to normal and the stomach adapts to BIB loosing efficacy in weight loss.
Endovascular rescue of a fused monorail balloon and cerebral protection device.
Campbell, John E; Bates, Mark C; Elmore, Michael
2007-08-01
To present a case of successful endovascular retrieval of a monorail predilation balloon fused to an embolic protection device (EPD) in the distal internal carotid artery (ICA) of a high-risk symptomatic patient. A 60-year-old man with documented systemic atherosclerotic disease had a severe (>70%) restenosis in the left ICA 3 years after endarterectomy. He was scheduled for carotid artery stenting (CAS) with cerebral protection; however, he developed unstable angina and was transferred to our facility, where the admitting team decided that staged CAS followed by coronary bypass grafting would be the best option. During the CAS procedure, a 6-mm AccuNet filter was passed across the lesion via a 6-F carotid sheath and deployed in the distal ICA without incident. However, the 4-x20-mm predilation monorail balloon was then advanced without visualizing the markers, resulting in inadvertent aggressive interaction that trapped the balloon's tip in the filter. Several maneuvers to separate the devices were unsuccessful. Finally, the filter/balloon combination was moved gently retrograde until the balloon was straddling the subtotal ICA lesion. The lesion was dilated to 4 mm with the balloon, and the sheath was gently advanced across the lesion as the balloon was deflated. Angiography excluded interval occlusion of the filter from the embolic debris during the aforementioned aggressive maneuvers and documented antegrade flow. The filter was slowly withdrawn into the 6-F sheath with simultaneous aspiration. A second 6-mm filter was deployed, and the procedure was completed satisfactorily. The patient did well, with no neurological sequelae. EPDs are an essential in carotid artery stenting and, keeping in mind the potential risks associated with their use, will help the operator avoid complications such as this one.
Rocha Ferreira, Graziela Santos; de Almeida, Juliano Pinheiro; Landoni, Giovanni; Vincent, Jean Louis; Fominskiy, Evgeny; Gomes Galas, Filomena Regina Barbosa; Gaiotto, Fabio A; Dallan, Luís Oliveira; Franco, Rafael Alves; Lisboa, Luiz Augusto; Palma Dallan, Luis Roberto; Fukushima, Julia Tizue; Rizk, Stephanie Itala; Park, Clarice Lee; Strabelli, Tânia Mara; Gelas Lage, Silvia Helena; Camara, Ligia; Zeferino, Suely; Jardim, Jaquelline; Calvo Arita, Elisandra Cristina Trevisan; Caldas Ribeiro, Juliana; Ayub-Ferreira, Silvia Moreira; Costa Auler, Jose Otavio; Filho, Roberto Kalil; Jatene, Fabio Biscegli; Hajjar, Ludhmila Abrahao
2018-04-30
The aim of this study was to evaluate the efficacy of perioperative intra-aortic balloon pump use in high-risk cardiac surgery patients. A single-center randomized controlled trial and a meta-analysis of randomized controlled trials. Heart Institute of São Paulo University. High-risk patients undergoing elective coronary artery bypass surgery. Patients were randomized to receive preskin incision intra-aortic balloon pump insertion after anesthesia induction versus no intra-aortic balloon pump use. The primary outcome was a composite endpoint of 30-day mortality and major morbidity (cardiogenic shock, stroke, acute renal failure, mediastinitis, prolonged mechanical ventilation, and a need for reoperation). A total of 181 patients (mean [SD] age 65.4 [9.4] yr; 32% female) were randomized. The primary outcome was observed in 43 patients (47.8%) in the intra-aortic balloon pump group and 42 patients (46.2%) in the control group (p = 0.46). The median duration of inotrope use (51 hr [interquartile range, 32-94 hr] vs 39 hr [interquartile range, 25-66 hr]; p = 0.007) and the ICU length of stay (5 d [interquartile range, 3-8 d] vs 4 d [interquartile range, 3-6 d]; p = 0.035) were longer in the intra-aortic balloon pump group than in the control group. A meta-analysis of 11 randomized controlled trials confirmed a lack of survival improvement in high-risk cardiac surgery patients with perioperative intra-aortic balloon pump use. In high-risk patients undergoing cardiac surgery, the perioperative use of an intra-aortic balloon pump did not reduce the occurrence of a composite outcome of 30-day mortality and major complications compared with usual care alone.
Clinical Evaluation of a Safety-device to Prevent Urinary Catheter Inflation Related Injuries.
Davis, Niall F; Cunnane, Eoghan M; Mooney, Rory O'C; Forde, James C; Walsh, Michael T
2018-05-01
To evaluate the feasibility of a novel "safety-valve" device for preventing catheter related urethral trauma during urethral catheterization (UC). To assess the opinions of clinicians on the performance of the safety-valve device. A validated prototype "safety-valve" device for preventing catheter balloon inflation related urethral injuries was prospectively piloted in male patients requiring UC in a tertiary referral teaching hospital (n = 100). The device allows fluid in the catheter system to decant through an activated safety threshold pressure valve if the catheter anchoring balloon is misplaced. Users evaluated the "safety-valve" with an anonymous questionnaire. The primary outcome measurement was prevention of anchoring balloon inflation in the urethra. Secondary outcome measurement was successful inflation of urinary catheter anchoring balloon in the bladder. Patient age was 76 ± 12 years and American Society of Anaesthesiologists grade was 3 ± 1.4. The "safety-valve" was utilized by 34 clinicians and activated in 7% (n = 7/100) patients during attempted UC, indicating that the catheter anchoring balloon was incorrectly positioned in the patient's urethra. In these 7 cases, the catheter was successfully manipulated into the urinary bladder and inflated. 31 of 34 (91%) clinicians completed the questionnaire. Ten percent (n = 3/31) of respondents had previously inflated a urinary catheter anchoring balloon in the urethra and 100% (n = 31) felt that a safety mechanism for preventing balloon inflation in the urethra should be compulsory for all UCs. The safety-valve device piloted in this clinical study offers an effective solution for preventing catheter balloon inflation related urethral injuries. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Siguier, J.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.
Long duration super-pressure balloons are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin,...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding the flight level and the life-span of the balloon. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. On the one hand, we define the mechanical laws of envelope materials, that is the elasticity, plasticity and viscosity properties of polymers, and find the parameters of the law with unidirectional tests. These laws are introduced in a finite element code which predict the stress and strain state of a complex envelope structure. On the other hand, we are developing an experimental set-up to measure the 3D strain of a balloon sub-system, that is including the envelope, assemblies and apex parts, with realistic flight conditions. This facility, called NIRVANA, is a 1m3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. We can submit a 1,5m diameter sample to differential pressure, regulate the temperature from +20°C to -120°C and apply a load to tendons of up to 6 tons if required. This paper presents the first results of the modelizations and m asurements of ane envelope sample submitted to axisymetrical stress due to the differential pressure. This sample consists of a 50μm multi-layer polymer film with an assembly, used in 10m diameter STRATEOLE super-pressure balloons. The modelization gives results which largely agree with the experiment and enable us to continue with cold conditions and more complex structures.
Thermal structure of the Venus atmosphere in the middle cloud layer
NASA Technical Reports Server (NTRS)
Linkin, V. M.; Seiff, A.; Ragent, B.; Young, R. E.; Elson, L. S.; Preston, A.
1986-01-01
Thermal structure measurements obtained by the two VEGA balloons show the Venus middle cloud layer to be generally adiabatic. Temperatures measured by the two balloons at locations roughly symmetric about the equator differed by about 6.5 kelvins at a given pressure. The VEGA-2 temperatures were about 2.5 kelvins cooler and those of VEGA-1 about 4 kelvins warmer than temperatures measured by the Pioneer Venus Large Probe at these levels. Data taken by the VEGA-2 lander as it passed through the middle cloud agreed with those of the VEGA-2 balloon. Study of individual frames of the balloon data suggests the presence of multiple discrete air masses that are internally adiabatic but lie on slightly different adiabats. These adiabats, for a given balloon, can differ in temperature by as much as 1 kelvin at a given pressure.
ebb® Complete Tamponade System: effective hemostasis for postpartum hemorrhage
McQuivey, Ross W; Block, Jon E; Massaro, Robert A
2018-01-01
As a leading cause of maternal death, postpartum hemorrhage (PPH) remains a worldwide obstetrical problem. However, in most cases, mortality and morbidity can be averted if efforts are immediately undertaken to achieve hemostasis. Uterine balloon tamponade has been shown to provide effective control of PPH and avoid more invasive surgical procedures and even the emergency peripartum hysterectomy. Recent clinical recommendation suggests that balloon tamponade should be considered earlier in the treatment cascade in conjunction with uterotonic agents to ensure hemostasis in the most timely fashion and maximize clinical outcomes. This paper profiles the ebb® Complete Tamponade System, a unique dual-balloon single-use device that was developed specifically for hemostatic management of PPH. The ebb system combines a uterine conforming balloon that can be rapidly deployed with a vaginal balloon that eliminates the need for vaginal packing. The description, indications for use, procedural steps, and clinical characterization of this device are presented. PMID:29535559
Seidel, Vera; Braun, Thorsten; Weizsäcker, Katharina; Henrich, Wolfgang
2018-05-26
Postpartum or peripartum hemorrhage (PPH) is a major cause of maternal death worldwide. Fertility preserving second stage interventions following uterotonic medications may include compression sutures, uterine balloon tamponade and ligation or embolization of arteries. We present a case of PPH where a novel "uterine sandwich" approach (combination of chitosan-covered gauze with intrauterine balloon tamponade) was effectively used to stop further blood loss and prevented more invasive second stage interventions. Furthermore, we present the ultrasonographic image of chitosan-covered gauze in the uterine cavity. Chitosan-covered gauze and intrauterine balloon tamponade are complementary in their mechanism of work, the balloon reducing blood flow into the uterus and the chitosan-covered gauze enhancing the coagulation. This novel "uterine sandwich" approach can be a useful method for fertility preserving management of PPH. Copyright © 2018. Published by Elsevier Ltd.
Proposed techniques for launching instrumented balloons into tornadoes
NASA Technical Reports Server (NTRS)
Grant, F. C.
1971-01-01
A method is proposed to introduce instrumented balloons into tornadoes by means of the radial pressure gradient, which supplies a buoyancy force driving to the center. Presented are analytical expressions, verified by computer calculations, which show the possibility of introducing instrumented balloons into tornadoes at or below the cloud base. The times required to reach the center are small enough that a large fraction of tornadoes are suitable for the technique. An experimental procedure is outlined in which a research airplane puts an instrumented, self-inflating balloon on the track ahead of the tornado. The uninflated balloon waits until the tornado closes to, typically, 750 meters; then it quickly inflates and spirals up and into the core, taking roughly 3 minutes. Since the drive to the center is automatically produced by the radial pressure gradient, a proper launch radius is the only guidance requirement.
Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix
NASA Astrophysics Data System (ADS)
Eich, T.; Goldston, R. J.; Kallenbach, A.; Sieglin, B.; Sun, H. J.; ASDEX Upgrade Team; Contributors, JET
2018-03-01
We show for JET and ASDEX Upgrade, based on Thomson-scattering measurements, a clear correlation of the density limit of the tokamak H-mode high-confinement regime with the approach to the ideal ballooning instability threshold at the periphery of the plasma. It is shown that the MHD ballooning parameter at the separatrix position α_sep increases about linearly with the separatrix density normalized to Greenwald density, n_e, sep/n_GW for a wide range of discharge parameters in both devices. The observed operational space is found to reach at maximum n_e, sep/n_GW≈ 0.4 -0.5 at values for α_sep≈ 2 -2.5, in the range of theoretical predictions for ballooning instability. This work supports the hypothesis that the H-mode density limit may be set by ballooning stability at the separatrix.
Space Station trash removal system
NASA Technical Reports Server (NTRS)
Petro, Andrew J. (Inventor)
1993-01-01
A trash removal system for space stations is described. The system is comprised of a disposable trash bag member and an attached, compacted large, lightweight inflatable balloon element. When the trash bag member is filled, the astronaut places the bag member into space through an airlock. Once in the vacuum of space, the balloon element inflates. Due to the large cross-sectional area of the balloon element relative to its mass, the combined balloon element and the trash bag member are slowed by atmospheric drag to a much greater extent than the Space Station's. The balloon element and bag member lose altitude and re-enter the atmosphere, and the elements and contents are destroyed by aerodynamic heating. The novelty of this system is in the unique method of using the vacuum of space and aerodynamic heating to dispose of waste material with a minimum of increase in orbital debris.
Innovative measurement within the atmosphere of Venus.
NASA Astrophysics Data System (ADS)
Ekonomov, Alexey; Linkin, Vyacheslav; Manukin, Anatoly; Makarov, Vladislav; Lipatov, Alexander
The results of Vega project experiments with two balloons flew in the cloud layer of the atmosphere of Venus are analyzed as to the superrotation nature and local dynamic and thermodynamic characteristics of the atmosphere. These balloons in conjunction with measurements of temperature profiles defined by the Fourier spectrometer measurements from the spacecraft Venera 15 allow us to offer a mechanism accelerating the atmosphere to high zonal velocities and supporting these speeds, the atmosphere superrotation in general. Spectral measurements with balloons confirm the possibility of imaging the planet's surface from a height of not more than 55 km. Promising experiments with balloons in the atmosphere of Venus are considered. In particular, we discuss the possibility of measuring the geopotential height, as Venus no seas and oceans to vertical positioning of the temperature profiles. As an innovative research facilities within the atmosphere overpressure balloon with a lifetime longer than 14 Earth days and vertical profile microprobes are considered.
Usefulness of Corsair microcatheter to cross stent struts in bifurcation lesions.
Fujimoto, Yoshihide; Iwata, Yo; Yamamoto, Masashi; Kobayashi, Yoshio
2014-01-01
Side branch compromise after stenting in bifurcation lesions is a matter of concern. It may happen that even low-profile balloon catheters do not cross stent struts after rewiring. The Corsair catheter is a hybrid catheter that has features of a microcatheter and a support catheter. The present study evaluated usefulness of the Corsair catheter to facilitate advancing a low-profile balloon catheter through stent struts in bifurcation lesions. After rewiring, low-profile balloon catheters failed to cross stent struts of 29 bifurcation lesions. The Corsair microcatheter successfully crossed stent struts in all lesions except one (97 %) where a stent was implanted to treat in-stent restenosis (stent-in-stent). Low-profile balloon catheters were able to advance into the side branch of all bifurcation lesions where the Corsair microcatheter crossed stent struts. In conclusion, the Corsair microcatheter may be utilized if low-profile balloon catheters are unable to cross stent struts in bifurcation lesions.
ebb® Complete Tamponade System: effective hemostasis for postpartum hemorrhage.
McQuivey, Ross W; Block, Jon E; Massaro, Robert A
2018-01-01
As a leading cause of maternal death, postpartum hemorrhage (PPH) remains a worldwide obstetrical problem. However, in most cases, mortality and morbidity can be averted if efforts are immediately undertaken to achieve hemostasis. Uterine balloon tamponade has been shown to provide effective control of PPH and avoid more invasive surgical procedures and even the emergency peripartum hysterectomy. Recent clinical recommendation suggests that balloon tamponade should be considered earlier in the treatment cascade in conjunction with uterotonic agents to ensure hemostasis in the most timely fashion and maximize clinical outcomes. This paper profiles the ebb ® Complete Tamponade System, a unique dual-balloon single-use device that was developed specifically for hemostatic management of PPH. The ebb system combines a uterine conforming balloon that can be rapidly deployed with a vaginal balloon that eliminates the need for vaginal packing. The description, indications for use, procedural steps, and clinical characterization of this device are presented.
Encountered-Type Haptic Interface for Representation of Shape and Rigidity of 3D Virtual Objects.
Takizawa, Naoki; Yano, Hiroaki; Iwata, Hiroo; Oshiro, Yukio; Ohkohchi, Nobuhiro
2017-01-01
This paper describes the development of an encountered-type haptic interface that can generate the physical characteristics, such as shape and rigidity, of three-dimensional (3D) virtual objects using an array of newly developed non-expandable balloons. To alter the rigidity of each non-expandable balloon, the volume of air in it is controlled through a linear actuator and a pressure sensor based on Hooke's law. Furthermore, to change the volume of each balloon, its exposed surface area is controlled by using another linear actuator with a trumpet-shaped tube. A position control mechanism is constructed to display virtual objects using the balloons. The 3D position of each balloon is controlled using a flexible tube and a string. The performance of the system is tested and the results confirm the effectiveness of the proposed principle and interface.
SoRa first flight. Summer 2009
NASA Astrophysics Data System (ADS)
Pirrotta, S.; Flamini, E.
The SoRa (Sounding Radar) experiment was successfully launched from Longyearbyen (Svalbard, Norway) during the summer 2009 campaign managed by the Italian/Norwegian "Nobile Amundsen / Stratospheric Balloon Centre" (NA/SBC). SoRa is part of the Italian Space Agency (ASI) programs for Long Duration Balloon Flights. Carried by the biggest balloon (800.000 m3) ever launched in polar regions, SoRa main experiment and its three piggyback payloads (DUSTER, ISA and SIDERALE) performed a nominal flight of almost 4 days over the North Sea and Greenland, until the separation, landing and recovery in Baffin Island (Canada). Despite the final destructive event that compromise the scientific main goal of SoRa, the 2009 ASI balloon campaign can be considered an important milestone, because of the obtained scientific and technical results but also for the lesson learned by the science, engineering and managerial teams looking at the future ASI scientific balloon-born activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trefall, H.
Ways to solve the practical problems associated with largescale simultaneous balloon recordings of auroral-zone x rays in the region from Scandinavia to eastern Greenland, caused by the paucity of land-based launching and telemetry sites, are suggested. Firstly, the long-duration flight capabilities of modern stratospheric balloons coupled with their westward drift in the summer should make it possible to perform such recordings with launchings from Scandinavian stations only. Secondly, the experimentally tested vhf radio range of a balloon-borne transmitter seems just sufficient to cover the region mentioned from land-based telemetry stations only. Thirdly, the CONSOL navigation system seems conveniently applicable formore » the determination of balloon positions between Scandinavia and Greenland. On this basis, suggestions are made for cooperative programs between balloon recordings of x rays from electron precipitation events and GEOS satellite measurements. A scheme for longitudinal shift maneuver of the satellite is proposed with such measurements in mind. (FR)« less
NASA Technical Reports Server (NTRS)
Papen, George
1995-01-01
This proposal funded 100 high altitude weather balloons costing $15,500 to support the deployment of a Rayleigh/Raman/Na lidar at the South Pole. One year of measurements have been completed and it is estimated that the balloons will provide another 1-2 years of data.
Near-Space Science: A Ballooning Project to Engage Students with Space beyond the Big Screen
ERIC Educational Resources Information Center
Hike, Nina; Beck-Winchatz, Bernhard
2015-01-01
Many students probably know something about space from playing computer games or watching movies and TV shows. Teachers can expose them to the real thing by launching their experiments into near space on a weather balloon. This article describes how to use high-altitude ballooning (HAB) as a culminating project to a chemistry unit on experimental…
Innovations in Balloon Catheter Technology in Rhinology.
D'Anza, Brian; Sindwani, Raj; Woodard, Troy D
2017-06-01
Since being introduced more than 10 years ago, balloon catheter technology (BCT) has undergone several generations of innovations. From construction to utilization, there has been a myriad of advancements in balloon technology. The ergonomics of the balloon dilation systems have improved with a focus on limiting the extra assembly. "Hybrid" BCT procedures have shown promise in mucosal preservation, including treating isolated complex frontal disease. Multiple randomized clinical trials report improved long-term outcomes in stand-alone BCT, including in-office use. The ever-expanding technological innovations ensure BCT will be a key component in the armamentarium of the modern sinus surgeon. Copyright © 2017 Elsevier Inc. All rights reserved.
1989-07-01
A special balloon race last week symbolically launched a new charity aimed at providing holidays for sick and disabled children. Richard Branson, head of the Virgin Group, launched the National Holiday Fund for Sick and Disabled Children by releasing the last of 5,000 sponsored balloons. The National Holiday Fund, founded by two police officers, aims to brighten the lives of disabled, and chronically or terminally ill children by sending them on dream holidays. Specialist teams, will assess the children and accompany them on holiday. Each of the 5,000 balloons has been sponsored for £1. The sponsor of the balloon which travels the furthest will win £100.
Near Space Environments: Tethering Systems
NASA Technical Reports Server (NTRS)
Lucht, Nolan R.
2013-01-01
Near Space Environments, the Rocket University (Rocket U) program dealing with high altitude balloons carrying payloads into the upper earth atmosphere is the field of my project. The tethering from balloon to payload is the specific system I am responsible for. The tethering system includes, the lines that tie the payload to the balloon, as well as, lines that connect payloads together, if they are needed, as well as how to sever the tether to release payloads from the balloon. My objective is to design a tethering system that will carry a payload to any desired altitude and then sever by command at any given point during flight.
Cox, J G; Winter, R K; Maslin, S C; Jones, R; Buckton, G K; Hoare, R C; Sutton, D R; Bennett, J R
1988-01-01
Seventy one patients with benign oesophageal strictures were randomised to receive balloon or bougie dilatation. Sixty five patients were eligible for analysis. At the end of five months the balloon group had significantly more dysphagia and the calibre of the strictures in the balloon group had narrowed by a greater degree. The methods were equally safe and acceptable to patients. While the choice of the method of dilatation depends on the individual patient's needs and operator experience, bougie dilatation is more effective in reducing dysphagia and maintaining stricture patency. Images Fig. 2 Fig. 3 PMID:3065156
A hard X-ray experiment for long-duration balloon flights
NASA Astrophysics Data System (ADS)
Johnson, W. N.; Kurfess, J. D.; Strickman, M. S.; Saulnier, D. M.
The Naval Research Lab has developed a balloon-borne hard X-ray experiment which is designed for 60- to 90-day flight durations soon to be available with around the world Sky Anchor or RACOON balloon flights. The experiment's scintillation detector is sensitive to the 15 - 250 keV X-ray energy range. The experiment includes three microcomputer systems which control the data acquisition and provide the orientation and navigation information required for global balloon flights. The data system supports global data communications utilizing the GOES satellite as well as high bit rate communications through L-band li line-of-site transmissions
A review of lighter-than-air progress in the United States and its technological significance
NASA Technical Reports Server (NTRS)
Mayer, N. J.; Krida, R. H.
1977-01-01
Lighter-than-air craft for transportation and communications systems are discussed, with attention given to tethered balloons used to provide stable platforms for airborne surveillance equipment, freight-carrying balloons, manned scientific research balloons such as Atmosat, high-altitude superpressure aerostats employed in satellite communications systems, airport feeder airships, and naval surveillance airships. In addition, technical problems associated with the development of advanced aerostats, including the aerodynamics of hybrid combinations of large rotor systems and aerostat hulls, the application of composites to balloon shells, computer analyses of the complex geometrical structures of aerostats and propulsion systems for airships, are considered.
NASA Technical Reports Server (NTRS)
Atallah, K.; Modlinger, A.; Schmidt, W. K. H.; Cleghorn, T. F.
1975-01-01
A balloon experiment which was used to determine the chemical composition of very high-energy cosmic rays up to and beyond 100 GeV/nucleon is described. The detector had a geometric factor of 1 sq m sr and a total weight on the balloon of 2100 kg. The apparatus consisted of an ionization spectrometer, spark chambers, and plastic scintillation and Cherenkov counters. It was calibrated at CERN up to 24 GeV/c protons and at DESY up to 7 GeV/c electrons. In October 1972 it was flown successfully on a stratospheric balloon.
[SICI-GISE position paper on drug-coated balloon use in the coronary district].
Cortese, Bernardo; Sgueglia, Gregory A; Berti, Sergio; Biondi-Zoccai, Giuseppe; Colombo, Antonio; Limbruno, Ugo; Bedogni, Francesco; Cremonesi, Alberto
2013-10-01
Drug-coated balloons are a new tool for the treatment of patients with coronary artery disease. The main feature of this technology is a rapid and homogeneous transfer of an antiproliferative drug (paclitaxel) to the vessel wall just at the time of balloon inflation, when neointimal proliferation, in response to angioplasty, is the highest. Moreover, drug-coated balloons share adjunctive advantages over stents: the absence of permanent scaffold and polymer, the respect of the original coronary anatomy, and limited inflammatory stimuli, thereby allowing for short-term dual antiplatelet therapy. At present, a variety of devices are available in the market, with limited scientific data for the vast majority of them. Thus, the Italian Society of Interventional Cardiology (SICI-GISE) decided to coordinate the efforts of a group of renowned experts in this field, in order to produce a position paper on the correct use of drug-coated balloons in all settings of coronary artery disease, giving a class of indication to each one, based on clinical evidence. This position paper represents a quick reference for operators, investigators and manufacturers to promote the understanding and the correct use of the drug-coated balloon technology in everyday clinical practice.
Miura, Fumihiko; Takada, Tadahiro; Ochiai, Takenori; Asano, Takehide; Kenmochi, Takashi; Amano, Hodaka; Yoshida, Masahiro
2006-04-01
Massive intraabdominal hemorrhage sometimes requires urgent hemostatic surgical intervention. In such cases, its rapid stabilization is crucial to reestablish a general hemodynamic status. We used an aortic occlusion balloon catheter in patients with massive intraabdominal hemorrhage occurring after hepato-pancreato-biliary surgery. An 8-French balloon catheter was percutaneously inserted into the aorta from the femoral artery, and the balloon was placed just above the celiac artery. Fifteen minutes inflation and 5 minutes deflation were alternated during surgery until the bleeding was surgically controlled. An aortic occlusion balloon catheter was inserted on 13 occasions in 10 patients undergoing laparotomy for hemostasis of massive hemorrhage. The aorta was successfully occluded on 12 occasions in nine patients. Both systolic pressure and heart rate were normalized during aortic occlusion, and the operative field became clearly visible after adequate suction of leaked blood. Bleeding sites were then easily found and controlled. Hemorrhage was successfully controlled in 7 of 10 patients (70%), and they were discharged in good condition. The aortic occlusion balloon catheter technique was effective for easily controlling massive intraabdominal bleeding by hemostatic procedure after hepato-pancreato-biliary surgery.
Eckard, D A; O'Boynick, P L; Han, P P
1996-11-01
Unintentional intracerebral embolization is a serious, ever present threat during neurointerventional procedures. We have devised a method to reduce this intraprocedural risk in vertebral artery interventions by creating a temporary subclavian steal. For this technique, a temporary balloon occlusion catheter is advanced into the proximal subclavian artery via a femoral artery approach, while a second introducer catheter is passed into the target vertebral artery via an axillary artery access. The temporary occluding balloon is then inflated within the proximal subclavian artery, establishing a subclavian steal that diverts blood flow into the arm. Permanent balloon occlusion of the vertebral artery can then be accomplished without fear of intracerebral embolization. Two patients with vertebrobasilar junction aneurysms were successfully treated with detachable balloon embolization using this cerebral protection technique. The permanent occlusion balloons were easily passed through the introducer catheter without difficulty despite reversed vertebral artery flow. No complications were encountered, and the aneurysms were successfully occluded in both patients. Temporary subclavian steal can be easily created to reduce the risk of cerebral embolic complications when performing interventional neuroradiological procedures in the vertebral artery.
Xu, Xuan; Li, Dandan; Zhao, Shuyu; Liu, Xicheng; Feng, Zhichun; Ding, Hui
2012-01-01
The aim of this study was to evaluate the use of balloon-expandable metallic stents in the treatment of children with congenital tracheal stenosis in whom conventional therapy has failed. From 2010 to 2011, balloon-expandable metallic stents were implanted into the trachea of eight infants aged 2–20 months in the paediatric intensive care unit. The infants had severe airway obstruction caused by congenital tracheal stenosis. Tracheal stents were placed after intraluminal balloon dilatation of the tracheal stenosis, inserted with balloon catheters and implanted into the desired position bronchoscopically. The stents were 12 to 29 mm long and 4 mm in diameter. Seven children were relieved of airway obstruction after this procedure. However, a child died due to severe sepsis after the placement of bronchial stents. No granulation tissue developed over the stents in any of the children. Stents have been in place for 1–6 months after insertion without any other complication. Balloon-expandable metallic stents are effective in relieving airway obstruction by congenital tracheal stenosis in children. This technique may provide an important remedy for congenital tracheal stenosis in children. PMID:22361127
Repka, Michael X; Chandler, Danielle L; Holmes, Jonathan M; Hoover, Darren L; Morse, Christine L; Schloff, Susan; Silbert, David I; Tien, D Robbins
2009-05-01
To compare the outcomes of balloon catheter dilation and nasolacrimal intubation as treatment for congenital nasolacrimal duct obstruction after failed probing in children younger than 4 years. We conducted a prospective, nonrandomized, multicenter study that enrolled 159 children aged 6 months to younger than 48 months who had a history of a single failed nasolacrimal duct probing and at least 1 of the following clinical signs of nasolacrimal duct obstruction: epiphora, mucous discharge, or increased tear lake. One hundred ninety-nine eyes underwent either balloon catheter nasolacrimal duct dilation or nasolacrimal duct intubation. Treatment success was defined as absence of epiphora, mucous discharge, or increased tear lake at the outcome visit 6 months after surgery. Treatment success was reported in 65 of 84 eyes (77%; 95% confidence interval, 65%-85%) in the balloon catheter dilation group compared with 72 of 88 eyes (84% after adjustment for intereye correlation; 74%-91%) in the nasolacrimal intubation group (risk ratio for success for intubation vs balloon dilation, 1.08; 0.95-1.22). Both balloon catheter dilation and nasolacrimal duct intubation alleviate the clinical signs of persistent nasolacrimal duct obstruction in a similar percentage of patients.
Congenital duodenal web: successful management with endoscopic dilatation
Poddar, Ujjal; Jain, Vikas; Yachha, Surender Kumar; Srivastava, Anshu
2016-01-01
Background and study aims: Congenital duodenal web (CDW) is an uncommon cause of duodenal obstruction and endoscopic balloon dilatation has been reported in just eight pediatric cases to date. Here we are reporting three cases of CDW managed successfully with balloon dilatation. Cases and methods: In 2014 we diagnosed three cases of CDW on the basis of typical radiological and endoscopic findings. Endoscopic balloon dilatation was done under conscious sedation with a through-the-scope controlled radial expansion (CRE) balloon. Results: All three children presented late (median age 8 [range 2 – 9] years) with bilious vomiting, upper abdominal distension, and failure to thrive. One of them had associated Down syndrome and another had horseshoe kidney. In all cases, CDW was observed in the second part of the duodenum beyond the ampulla, causing partial duodenal obstruction. After repeated endoscopic dilatation (2 – 4 sessions), all three patients became asymptomatic. None of the patients experienced complications after balloon dilatation. Conclusions: Duodenal diaphragm should be suspected in patients with abdominal distension with bilious vomiting, even in relatively older children. Endoscopic balloon dilatation is a simple and effective method of treating this condition. PMID:27004237
Advances in the Remote Monitoring of Balloon Flights
NASA Astrophysics Data System (ADS)
Breeding, S.
At the National Scientific Balloon Facility (NSBF), we must staff the Long Duration Balloon (LDB) control center 24 hours a day during LDB flights. This requires three daily shifts of two operators (balloon control and tdrss scheduling). In addition to this we also have one engineer on-call as LDB Lead to resolve technical issues and one manager on-call for flight management. These on-call periods are typically 48 to 72 hours in length. In the past the on-call staff had to travel to the LDB control center in order to monitor the status of a flight in any detail. This becomes problematic as flight durations push out beyond 20 to 30 day lengths, as these staff members are not available for business travel during these periods. This paper describes recent advances which allow for the remote monitoring of scientific balloon flight ground station computer displays. This allows balloon flight managers and lead engineers to check flight status and performance from any location with a network or telephone connection. This capability frees key personnel from the NSBF base during flights. It also allows other interested parties to check on the flight status at their convenience.
NASA Astrophysics Data System (ADS)
Marshall, T. C.; Stolzenburg, M.
2006-12-01
One of Benjamin Franklin's most famous experiments was the kite experiment, which showed that thunderstorms are electrically charged. It is not as commonly noted that the kite experiment was also one of the the first attempts to make an in situ measurement of any storm parameter. Franklin realized the importance of making measurements close to and within storms, and this realization has been shared by later atomspheric scientists. In this presentation we focus on a modern version of Franklin's kite--instrumented balloons--used for in situ measurements of electric field and other storm parameters. In particular, most of our knowledge of the charge structure inside thunderstorms is based on balloon soundings of electric field. Balloon measurements of storm electricity began with the work of Simpson and colleagues in the 1930's and 1940's. The next major instrumentation advances were made by Winn and colleagues in the 1970's and 1980's. Today's instruments are digital versions of the Winn design. We review the main instrument techniques that have allowed balloons to be the worthy successors to kites. We also discuss some of the key advances in our understanding of thunderstorm electrification made with in situ balloon-borne instruments.
Intra-Aortic Balloon Pump Malposition Reduces Visceral Artery Perfusion in an Acute Animal Model.
Vondran, Maximilian; Rastan, Ardawan J; Tillmann, Eugen; Seeburger, Jörg; Schröter, Thomas; Dhein, Stefan; Bakhtiary, Farhad; Mohr, Friedrich-Wilhelm
2016-04-01
Visceral artery perfusion can be potentially affected by intra-aortic balloon pump (IABP) catheters. We utilized an animal model to quantify the acute impact of a low balloon position on mesenteric artery perfusion. In six pigs (78 ± 7 kg), a 30-cc IABP was placed in the descending aorta in a transfemoral procedure. The celiac artery (CA) and the cranial mesenteric artery (CMA) were surgically dissected. Transit time blood flow was measured for (i) baseline, (ii) 1:1 augmentation with the balloon proximal to the visceral arteries, and (iii) 1:1 augmentation with the balloon covering the visceral arteries. Blood flow in the CMA and CA was reduced by 17 and 24%, respectively, when the balloon compromised visceral arteries compared with a position above the visceral arteries (flow in mL/min: CMA: (i) 1281 ± 512, (ii) 1389 ± 287, (iii) 1064 ± 276, P < 0.05 for 3 vs. 1 and 3 vs. 2; CA: (i) 885 ± 370, (ii) 819 ± 297, (iii) 673 ± 315; P < 0.05 for 3 vs. 1). The covering of visceral arteries by an IABP balloon causes a significant reduction of visceral artery perfusion; thus, the positioning of this device during implantation is critical for obtaining a satisfactory outcome. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Evolution of NASA Scientific Ballooning and Particle Astrophysics Research
NASA Astrophysics Data System (ADS)
Jones, William Vernon
2017-01-01
Particle astrophysics research has a history in ballooning that spans over 100 years, ever since Victor Hess discovered cosmic rays on a manned balloon in 1912. The NASA Particle Astrophysics Program currently covers the origin, acceleration and transport of Galactic cosmic rays, plus the Nature of Dark Matter and Ultrahigh Energy Neutrinos. Progress in each of these topics has come from sophisticated instrumentation flown on Long Duration Balloon (LDB) flights around Antarctica for more than two decades. Super Pressure Balloons (SPB) and International Space Station (ISS) platforms are emerging opportunities that promise major steps forward for these and other objectives. NASA has continued development and qualification flights leading to SPB flights capable of supporting 1000 kg science instruments to 33 km for upwards of hundred day missions, with plans for increasing the altitude to 38 km. This goal is even more important now, in view of the Astro2010 Decadal Study recommendation that NASA should support Ultra-Long Duration Balloon (ULDB) flight development for studies of particle astrophysics, cosmology and indirect detection of dark matter. The mid-latitude test flight of an 18.8 MCF SPB launched from Wanaka, NZ in 2015 achieved 32 days of nearly constant altitude exposure, and an identical SPB launched from Wanaka in 2016 with a science payload flew for 46 days. Scientific ballooning as a vital infrastructure component for cosmic ray and general astrophysics investigations, including training for young scientists, graduate and undergraduate students, leading up to the 2020 Decadal Study and beyond, will be presented and discussed.
DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach
NASA Astrophysics Data System (ADS)
Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M. M.
2018-03-01
This paper reports an energy-based method for the dynamic pull-in instability analysis of a spherical dielectric elastomer (DE) balloon subjected to a quasi-statically applied inflation pressure and a Heaviside step voltage across the balloon wall. The proposed technique relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle, followed by the imposition of an instability condition for extracting the threshold parameters. The material models of the Ogden family are employed for describing the hyperelasticity of the balloon. The accuracy of the critical dynamic pull-in parameters is established by examining the saddle-node bifurcation in the transient response of the balloon obtained by integrating numerically the equation of motion, derived using the Euler-Lagrange equation. The parametric study brings out the effect of inflation pressure on the onset of the pull-in instability in the DE balloon. A quantitative comparison between the static and dynamic pull-in parameters at four different levels of the inflation pressure is presented. The results indicate that the dynamic pull-in instability gets triggered at electric fields that are lower than those corresponding to the static instability. The results of the present investigation can find potential use in the design and development of the balloon actuators subjected to transient loading. The method developed is versatile and can be used in the dynamic instability analysis of other conservative systems of interest.
Balloon-Borne Infrasound Detection of Energetic Bolide Events
NASA Astrophysics Data System (ADS)
Young, Eliot F.; Ballard, Courtney; Klein, Viliam; Bowman, Daniel; Boslough, Mark
2016-10-01
Infrasound is usually defined as sound waves below 20 Hz, the nominal limit of human hearing. Infrasound waves propagate over vast distances through the Earth's atmosphere: the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization) has 48 installed infrasound-sensing stations around the world to detect nuclear detonations and other disturbances. In February 2013, several CTBTO infrasound stations detected infrasound signals from a large bolide that exploded over Chelyabinsk, Russia. Some stations recorded signals that had circumnavigated the Earth, over a day after the original event. The goal of this project is to improve upon the sensitivity of the CTBTO network by putting microphones on small, long-duration super-pressure balloons, with the overarching goal of studying the small end of the NEO population by using the Earth's atmosphere as a witness plate.A balloon-borne infrasound sensor is expected to have two advantages over ground-based stations: a lack of wind noise and a concentration of infrasound energy in the "stratospheric duct" between roughly 5 - 50 km altitude. To test these advantages, we have built a small balloon payload with five calibrated microphones. We plan to fly this payload on a NASA high-altitude balloon from Ft Sumner, NM in August 2016. We have arranged for three large explosions to take place in Socorro, NM while the balloon is aloft to assess the sensitivity of balloon-borne vs. ground-based infrasound sensors. We will report on the results from this test flight and the prospects for detecting/characterizing small bolides in the stratosphere.
Xu, Xiao-Quan; Liu, Sheng; Zu, Qing-Quan; Zhao, Lin-Bo; Xia, Jin-Guo; Zhou, Chun-Gao; Zhou, Wei-Zhong
2013-01-01
Background and Purpose This study evaluated the clinical value of detachable-balloon embolization for traumatic carotid-cavernous fistula (TCCF), focusing on the frequency, risk factors, and retreatment of recurrence. Methods Fifty-eight patients with TCCF underwent transarterial detachable-balloon embolization between October 2004 and March 2011. The clinical follow-up was performed every 3 months until up to 3 years postprocedure. Each patient was placed in either the recurrence group or the nonrecurrence group according to whether a recurrence developed after the first procedure. The relevant factors including gender, fistula location, interval between trauma and the interventional procedure, blood flow in the carotid-cavernous fistula, number of balloons, and whether the internal carotid artery (ICA) was sacrificed were evaluated. Results All 58 TCCFs were successfully treated with transarterial balloon embolization, including 7 patients with ICA sacrifice. Recurrent fistulas occurred in seven patients during the follow-up period. Univariate analysis indicated that the interval between trauma and the interventional procedure (p=0.006) might be the main factor related to the recurrence of TCCF. The second treatments involved ICA sacrifice in two patients, fistula embolization with balloons in four patients, and placement of a covered stent in one patient. Conclusions Detachable balloons can still serve as the first-line treatment for TCCFs and recurrent TCCFs despite having a nonnegligible recurrence rate. Shortening the interval between trauma and the interventional procedure may reduce the risk of recurrence. PMID:23626645
DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach.
Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M M
2018-03-01
This paper reports an energy-based method for the dynamic pull-in instability analysis of a spherical dielectric elastomer (DE) balloon subjected to a quasi-statically applied inflation pressure and a Heaviside step voltage across the balloon wall. The proposed technique relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle, followed by the imposition of an instability condition for extracting the threshold parameters. The material models of the Ogden family are employed for describing the hyperelasticity of the balloon. The accuracy of the critical dynamic pull-in parameters is established by examining the saddle-node bifurcation in the transient response of the balloon obtained by integrating numerically the equation of motion, derived using the Euler-Lagrange equation. The parametric study brings out the effect of inflation pressure on the onset of the pull-in instability in the DE balloon. A quantitative comparison between the static and dynamic pull-in parameters at four different levels of the inflation pressure is presented. The results indicate that the dynamic pull-in instability gets triggered at electric fields that are lower than those corresponding to the static instability. The results of the present investigation can find potential use in the design and development of the balloon actuators subjected to transient loading. The method developed is versatile and can be used in the dynamic instability analysis of other conservative systems of interest.
NASA Astrophysics Data System (ADS)
Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.
2015-11-01
EUSO-Balloon is a pathfinder for JEM-EUSO, the Extreme Universe Space Observatory which is to be hosted on-board the International Space Station. As JEM-EUSO is designed to observe Ultra-High Energy Cosmic Rays (UHECR)-induced Extensive Air Showers (EAS) by detecting their ultraviolet light tracks "from above", EUSO-Balloon is a nadir-pointing UV telescope too. With its Fresnel Optics and Photo-Detector Module, the instrument monitors a 50 km2 ground surface area in a wavelength band of 290-430 nm, collecting series of images at a rate of 400,000 frames/sec. The objectives of the balloon demonstrator are threefold: a) perform a full end-to-end test of a JEM-EUSO prototype consisting of all the main subsystems of the space experiment, b) measure the effective terrestrial UV background, with a spatial and temporal resolution relevant for JEM-EUSO. c) detect tracks of ultraviolet light from near space for the first time. The latter is a milestone in the development of UHECR science, paving the way for any future space-based UHECR observatory. On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario, Canada) by the balloon division of the French Space Agency CNES. From a float altitude of 38 km, the instrument operated during the entire astronomical night, observing UV-light from a variety of ground-covers and from hundreds of simulated EASs, produced by flashers and a laser during a two-hour helicopter under-flight.
Su, Hongwei; Zhu, Yongsheng; Wang, Jia; Deng, Qingfu; Pei, Lijun; Wang, Juan
2015-12-01
To evaluate the effect of nephrostomy tubing with balloon on postoperative hemorrhage after percutaneous nephrolithotomy. A total of 284 patients with upper urinary calculi were enrolled for blocked randomization with 71 blocks and block length of 4. The experimental group consisted of 143 patients receiving 14-Fr silicone tubing with balloon, and the control group consisted of 141 patients receiving 14-Fr silicone tubing without balloon. One patient in the control group developed intraoperative bleeding as a result of calyceal laceration, and was reassigned to the experimental group receiving nephrostomy tubing with balloon. Postoperative drop in hemoglobin level at 3 days was significantly less in the experimental group (3.31 ± 2.85 g/L) compared with the control group (5.14 ± 3.43 g/L) (P < 0.001). The duration of gross hematuria, defined by urine with visible light or bright red color (2.73 ± 1.59 days vs. 3.55 ± 2.09 days, P < 0.001), and the incidence of postoperative extravasation (22/143 vs. 38/141, P < 0.05) for patients in the experimental group (implanted with 14-Fr silicone tubing with balloon) were significantly lower compared with the control group. Use of indwelling nephrostomy tubes with balloon after percutaneous nephrolithotomy can reduce blood loss. Further consideration for more widespread adoption of this type of tubing to limit perioperative bleeding complications is warranted. © 2015 The Japanese Urological Association.
The GRAD Supernova Observer: First flight of a very large balloon over Antarctica
NASA Astrophysics Data System (ADS)
Rester, A. C.
1993-02-01
The first very large, zero pressure balloon to be flown over Antarctica was launched from Williams Field near Ross Island on 8 January 1988. It carried the GRAD Supernova Observer Experiment, with which a study of the gamma-ray spectrum of SN1987a was made. The mission is reviewed, and recommendations for further long duration balloon flights are made.
NASA Technical Reports Server (NTRS)
Conrad, George R.; Robbins, Edward J.
1991-01-01
The evolution of an empirical drag relationship that has stimulated rethinking regarding the physics of balloon drag phenomena is discussed. Combined parasitic drag from all sources in the balloon system are estimated to constitute less than 10 percent of the total system drag. It is shown that the difference between flight-determined drag coefficients and those based on the spherical assumption should be related to the square of the Froude number.
NASA Technical Reports Server (NTRS)
Murcray, D. G.; Brooks, J. N.; Kosters, J. J.; Williams, W. J.
1975-01-01
A balloon flight was conducted with a sensitive infrared spectral radiometer system in support of the LACATE balloon experiment. The instrumentation aboard the balloon is described along with data reduction techniques. Results obtained during the flight are presented.
Balloon Borne Ultraviolet Spectrometer.
1978-12-28
n.c.aaary ond lden lfy by block numb.r) ultraviolet ground support equipment (GSE) spectrometers flight electronics instrumentation balloons \\ solar ...Assembly 4 Fig. 3 Solar Balloon Experiment Ass ’y 7 Fig. 4 Mechanical Interface , UV Spectrometer 8 Fig . 5 Spectrometer Body Assemb ly 10 Fig. 6...Diagram, GSE )bnitor 48 Selector and Battery Charger Fig. 25 Schematic Diagram, GSE Serial to 49 Parallel Data Converter Fig. 26 Schematic Diagram
Middle Atmosphere Program. Handbook for MAP. Volume 15: Balloon techniques
NASA Technical Reports Server (NTRS)
Murcray, D. G. (Editor)
1985-01-01
Some techniques employed by investigators using balloons to obtain data on the properties of the middle atmosphere are discussed. Much effort has gone into developing instruments which could be used on small balloons to measure temperature and variable species. These efforts are discussed. Remote sensing techniques used to obtain data on atmospheric composition are described. Measurement of stratospheric ions and stratospheric aerosols are also discussed.
The radiation controlled balloon (RACOON)
NASA Astrophysics Data System (ADS)
Lally, Vincent E.
The RACOON concept permits the flight of large, low-cost polyethylene balloons for several weeks at stratospheric altitudes without ballast. The theory of operations is described. The RACOON balloon ascends each morning and descends at night. This movement of 15 to 20 km in altitude provides an ideal platform for vertical soundings and sampling measurements in the stratosphere. Results of a number of globe-circling flights are presented.
NASA Technical Reports Server (NTRS)
Nigro, N. J.; Elkouh, A. F.; Shen, K. S.; Nimityongskul, P.; Jhaveri, V. N.; Sethi, A.
1975-01-01
A mathematical model for predicting the three dimensional motion of the balloon system is developed, which includes the effects of bounce, pendulation and spin of each subsystem. Boundary layer effects are also examined, along with the aerodynamic forces acting on the balloon. Various simplified forms of the system mathematical model were developed, based on an order of magnitude analysis.
Effects of intra-aortic balloon counterpulsation in a model of septic shock.
Solomon, Steven B; Minneci, Peter C; Deans, Katherine J; Feng, Jing; Eichacker, Peter Q; Banks, Steven M; Danner, Robert L; Natanson, Charles; Solomon, Michael A
2009-01-01
Fluid refractory septic shock can develop into a hypodynamic cardiovascular state in both children and adults. Despite management of these patients with empirical inotropic therapy (with or without a vasodilator), mortality remains high. The effect of cardiovascular support using intra-aortic balloon counterpulsation was investigated in a hypodynamic, mechanically ventilated canine sepsis model in which cardiovascular and pulmonary support were titrated based on treatment protocols. Each week, three animals (n = 33, 10-12 kg) were administered intrabronchial Staphylococcus aureus challenge and then randomized to receive intra-aortic balloon counterpulsation for 68 hrs or no intra-aortic balloon counterpulsation (control). Bacterial doses were increased over the study (4-8 x 10(9) cfu/kg) to assess the effects of intra-aortic balloon counterpulsation during sepsis with increasing risk of death. Compared with lower bacterial doses (4-7 x 10(9) colony-forming units/kg), control animals challenged with the highest dose (8 x 10(9) colony-forming units/kg) had a greater risk of death (mortality rate 86% vs. 17%), with worse lung injury ([A - a]O2), and renal dysfunction (creatinine). These sicker animals required higher norepinephrine infusion rates to maintain blood pressure (and higher FIO2) and positive end-expiratory pressure levels to maintain oxygenation (p < or = 0.04 for all). In animals receiving the highest bacterial dose, intra-aortic balloon counterpulsation improved survival time (23.4 +/- 10 hrs longer; p = 0.003) and lowered norepinephrine requirements (0.43 +/- 0.17 microg/kg/min; p = 0.002) and systemic vascular resistance index (1.44 +/- 0.57 dynes/s/cm5/kg; p = 0.0001) compared with controls. Despite these beneficial effects, intra-aortic balloon counterpulsation was associated with an increase in blood urea nitrogen (p = 0.002) and creatinine (p = 0.12). In animals receiving lower doses of bacteria, intra-aortic balloon counterpulsation had no significant effects on survival or renal function. In a canine model of severe septic shock with a low cardiac index, intra-aortic balloon counterpulsation prolongs survival time and lowers vasopressor requirements.
Laboratory and balloon flight performance of the liquid xenon gamma ray imaging telescope
NASA Astrophysics Data System (ADS)
Curioni, Alessandro
2004-10-01
This thesis presents the laboratory calibration and in- flight performance of the liquid xenon γ-ray imaging telescope (LXeGRIT). LXeGRIT is the prototype of a novel concept of Compton telescope, based on a liquid xenon time projection chamber (LXeTPC), developed through several years by Prof. Aprile and collaborators at Columbia. When I joined the collaboration in Spring 1999, LXeGRIT was getting ready for a balloon borne experiment with the goal of performing the key measurement of the background at balloon altitude. After the 1999 balloon flight, a good deal of work was devoted to a thorough calibration of LXeGRIT, both through several tests in the laboratory and through improving the analysis software and developing Monte Carlo simulations. After substantial advancements in our understanding of the detector performance, LXeGRIT was improved and calibrated before a long duration balloon campaign in the Fall of 2000. Data gathered in this flight have allowed a detailed study of the background at balloon altitude and of the sensitivity to celestial γ-ray sources, the focus of the second part of my thesis. As this dissertation is intended to show, “the LXeGRIT phase”—defined as the prototype work, the experimental demonstration of the LXeTPC concept as a Compton telescope, the measurement of the background and of the detection sensitivity—has been now successfully completed. We are now ready for future implementations of the LXeTPC technology for astrophysics observations. The detailed calibration of LXeGRIT, both as an imaging calorimeter and as a Compton telescope is described in Chapters 2, 3 and 4. In Chapter 5 more details are given of LXeGRIT as a balloon borne instrument and its flight performance in year 2000. The measurement of the background at balloon altitude, based on the data collected in year 2000, is presented in Chapter 6 and the sensitivity of the instrument is derived in Chapter 7. An overview of future developments for the LXeTPC technology in the field of γ-ray astronomy is given in Chapter 8. The main results from the 1999 balloon flight are summarized in Appendix A.
Misra, Mahesh C; Kumar, Sareesh; Bansal, Virinder K
2008-09-01
Creation of extraperitoneal space during TEP repair requires an expensive commercially available balloon. Fifty-six patients suffering from uncomplicated primary unilateral or bilateral groin hernia were randomized into two groups; group 1--indigenous balloon dissection and group 2--direct telescopic dissection. There were 55 males and 1 female, with an average age of 49 years; 50% of the inguinal hernias were bilateral. Creation of extraperitoneal space was considered as satisfactory in majority of patients (94.6%) with satisfactory anatomical delineation. Peritoneal breach was noticed during dissection in 36 (64.3%) patients. There was one (3.8%) conversion of TEP to TAPP in group 2. Distance between pubic symphysis to umbilicus was an important factor, which affected the easiness of dissection. In patients with this distance
AIAA Educator Academy: The Space Weather Balloon Module
NASA Astrophysics Data System (ADS)
Longmier, B.; Henriquez, E.; Bering, E. A.; Slagle, E.
2013-12-01
Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based science and engineering challenges to improve critical thinking skills and enhance problem solving skills. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude balloon equipped with HD cameras.The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The payload is located using the GPS device. In April 2012, the Space Weather Balloon team conducted a prototype field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. To better assist teachers in implementing one or more of these Curriculum Modules, teacher workshops are held to give teachers a hands-on look at how this curriculum is used in the classroom. And, to provide further support, teachers are each provided with an AIAA professional member as a mentor for themselves and/or their students. These curriculum modules, provided by AIAA are available to any K-12 teachers as well as EPO officers for use in formal or informal education settings.
Bruti, Gianpaolo; Kolyva, Christina; Pepper, John R; Khir, Ashraf W
2015-08-01
The intra-aortic balloon pump (IABP) is a ventricular assist device that is used with a broad range of pre-, intra-, and postoperative patients undergoing cardiac surgery. Although the clinical efficacy of the IABP is well documented, the question of reduced efficacy when patients are nursed in the semi-recumbent position remains outstanding. The aim of the present work is therefore to investigate the underlying mechanics responsible for the loss of IABP performance when operated at an angle to the horizontal. Simultaneous recordings of balloon wall movement, providing an estimate of its diameter (D), and fluid pressure were taken at three sites along the intra-aortic balloon (IAB) at 0 and 45°. Flow rate, used for the calculation of displaced volume, was also recorded distal to the tip of the balloon. An in vitro experimental setup was used, featuring physiological impedances on either side of the IAB ends. IAB inflation at an angle of 45° showed that D increases at the tip of the IAB first, presenting a resistance to the flow displaced away from the tip of the balloon. The duration of inflation decreased by 15.5%, the inflation pressure pulse decreased by 9.6%, and volume decreased by 2.5%. Similarly, changing the position of the balloon from 0 to 45°, the balloon deflation became slower by 35%, deflation pressure pulse decreased by 14.7%, and volume suctioned was decreased by 15.2%. IAB wall movement showed that operating at 45° results in slower deflation compared with 0°. Slow wall movement, and changes in inflation and deflation onsets, result in a decreased volume displacement and pressure pulse generation. Operating the balloon at an angle to the horizontal, which is the preferred nursing position in intensive care units, results in reduced IAB inflation and deflation performance, possibly compromising its clinical benefits. Copyright © 2015 The Authors. Artificial Organs published by Wiley Periodicals, Inc. on behalf of International Center for Artificial Organ and Transplantation (ICAOT).
NASA Astrophysics Data System (ADS)
Moision, Bruce; Erkmen, Baris; Keyes, Edward; Belt, Todd; Bowen, Oliver; Brinkley, Devin; Csonka, Paul; Eglington, Michael; Kazmierski, Andrei; Kim, Nam-hyong; Moody, John; Tu, Thanh; Vermeer, William
2017-02-01
Internet connectivity is limited and in some cases non-existent for a significant part of the world's population. Project Loon aims to address this with a network of high-altitude balloons traveling in the stratosphere, at an altitude of approximately 20 km. The balloons navigate by using the stratified wind layers at different altitudes, adjusting the balloon's altitude to catch winds in a desired direction. Data transfer is achieved by 1) uplinking a signal from an Internet-connected ground station to a balloon terminal, 2) crosslinking the signal through the balloon network to reach the geographic area of the users, and 3) downlinking the signal directly to the end-users' phones or other LTE-enabled devices. We describe Loon's progress on utilizing free-space optical communications (FSOC) for the inter-balloon crosslinks. FSOC, offering high data rates and long communication ranges, is well-suited for communication between high-altitude platforms. A stratospheric link is sufficiently high to be above weather events (clouds, fog, rain, etc.), and the impact of atmospheric turbulence is significantly weaker than at ground level. In addition, being in the stratosphere as opposed to space helps avoid the typical challenges faced by space-based systems, namely operation in a vacuum environment with significant radiation. Finally, the angular pointing disturbances introduced by a floating balloon-based platform are notably less than any propelled platform, which simplifies the disturbance rejection requirements on the FSOC system. We summarize results from Project Loon's early-phase experimental inter-balloon links at 20 km altitude, demonstrating full duplex 130 Mbps throughput at distances in excess of 100 km over the course of several-day flights. The terminals utilize a monostatic design, with dual wavelengths for communication and a dedicated wide-angle beacon for pointing, acquisition, and tracking. We summarize the constraints on the terminal design, and the key design trades that led to our initial system. We illustrate measured performance during flight tests: received signal power variations with range, pointing system performance, and data throughput.
NASA Technical Reports Server (NTRS)
Ohman, Lynne E.
1995-01-01
Rats with either bilateral electrolytic or sham lesions of the ventrolateral portion of the lateral parabrachial nucleus (VLLPBN) were implanted with latex balloons that lay at the right superior vena cava/atrial junction (RSVC/AJ). Water intake in response to isoproterenol was measured both with and without inflation of the balloon. Water intake of the sham-lesioned rats was significantly depressed by balloon inflation during the first hour of the experiment. In contrast, water intake in the VLLPBN-lesioned rats was unaffected by balloon inflation. These results suggest that the VLLPBN is involved in the processing of afferent input from stretch-activated RSVC/AJ receptors.
Project SunbYte: solar astronomy on a budget
NASA Astrophysics Data System (ADS)
Alvarez Gonzalez, F.; Badilita, A.-M.; Baker, A.; Cho, Y.-H.; Dhot, N.; Fedun, V.; Hare, C.; He, T.; Hobbs, M.; Javed, M.; Lovesey, H.; Lord, C.; Panoutsos, G.; Permyakov, A.; Pope, S.; Portnell, M.; Rhodes, L.; Sharma, R.; Taras, P.; Taylor, J.; Tilbrook, R.; Verth, G.; Wrigley, S. N.; Yaqoob, M.; Cook, R.; McLaughlin, J.; Morton, R.; Scullion, E.; Shelyag, S.; Hamilton, A.; Zharkov, S.; Jess, D.; Wrigley, M.
2017-04-01
The Sheffield University Nova Balloon Lifted Solar Telescope (SunbYte) is a high-altitude balloon experiment devised and run largely by students at the University of Sheffield, and is scheduled for launch in October 2017. It was the only UK project in 2016 to be selected for the balloon side of the Swedish-German student programme REXUS/BEXUS (Rocket and Balloon Experiments for University Students; see box on p2.25). The success of the SunbYte team in the REXUS/BEXUS selection process is an unprecedented opportunity for the students to gain valuable experience working in the space engineering industry, using their theoretical knowledge and networking with students and technology companies from all over Europe.
Kulhanek, Frank C.
1977-01-01
An altitude release mechanism for releasing a radiosonde or other measuring instrument from a balloon carrying it up into the atmosphere includes a bottle partially filled with water, a tube sealed into the bottle having one end submerged in the water in the bottle and the free end extending above the top of the bottle and a strip of water-disintegrable paper held within the free end of the tube linking the balloon to the remainder of the package. As the balloon ascends, the lowered atmospheric air pressure causes the air in the bottle to expand, forcing the water in the bottle up the tubing to wet and disintegrate the paper, releasing the package from the balloon.
Percutaneous Transhepatic Cutting Balloon Papillotomy for Removal of Common Bile Duct Stones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguzkurt, Levent, E-mail: loguzkurt@yahoo.com; Ozkan, Ugur; Gumus, Burcak
2009-09-15
We report the case of a 66-year-old female who presented with jaundice secondary to recurrent adenocarcinoma of the gallbladder and several common bile duct stones. Percutaneous papillary dilatation was planned to remove the common bile duct stones. Papilla was dilated through the percutaneous approach with an 8-mm peripheral cutting balloon instead of a standard balloon. All the stones were pushed successfully into the duodenum with a saline flush. No complications were encountered. Use of a peripheral cutting balloon for dilatation of the papilla seems to be safe and effective because it has the advantage of controlled incision and dilatation ofmore » the target at low pressures.« less
Inoue Balloon Mitral Valvotomy in a 4-Year-Old Boy
Kapoor, Aditya; Moorthy, Nagaraja; Kumar, Sudeep
2012-01-01
Mitral stenosis in children often has a fulminant and rapid course. Percutaneous transvenous mitral commissurotomy is accepted as the treatment of choice for mitral stenosis not only in adults, but also in younger patients who have pliable valves. Balloon mitral valvotomy has yielded good immediate and long-term results. Herein, we report successful Inoue balloon mitral valvotomy in a 4-year-old boy who had severe, symptomatic rheumatic mitral stenosis. To our knowledge, our patient is the youngest to have undergone this procedure. In addition to the case description, we discuss the features of juvenile rheumatic mitral stenosis and several technical aspects of performing the Inoue balloon mitral valvotomy procedure in children. PMID:22412242
A simple Lissajous curves experimental setup
NASA Astrophysics Data System (ADS)
Şahin Kızılcık, Hasan; Damlı, Volkan
2018-05-01
The aim of this study is to develop an experimental setup to produce Lissajous curves. The setup was made using a smartphone, a powered speaker (computer speaker), a balloon, a laser pointer and a piece of mirror. Lissajous curves are formed as follows: a piece of mirror is attached to a balloon. The balloon is vibrated with the sound signal provided by the speaker that is connected to a smartphone. The laser beam is reflected off the mirror and the reflection is shaped as a Lissajous curve. Because of the intersection of two frequencies (frequency of the sound signal and natural vibration frequency of the balloon), these curves are formed. They can be used to measure the ratio of frequencies.
Balloon pulmonary valvotomy--not just a simple balloon dilatation.
Mohanty, Subhendu; Pandit, Bhagya Narayan; Tyagi, Sanjay
2014-01-01
Balloon pulmonary valvotomy is the preferred mode of treatment in patients with isolated pulmonary valvar stenosis and has shown good long term results. It is generally considered a safe procedure with few complications. There have been however, case reports of potentially fatal acute severe pulmonary edema occurring after the procedure in some patients. The cause of this complication and its pathophysiology is still not clear. Its occurrence is also infrequent with less than 5 cases reported till now. We report a case of pulmonary valvar stenosis which developed acute severe refractory pulmonary edema immediately after balloon pulmonary valvotomy. Copyright © 2014 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.
Seth, Ashok; Gupta, Sajal; Pratap Singh, Vivudh; Kumar, Vijay
2017-09-01
Final stent dimensions remain an important predictor of restenosis, target vessel revascularisation (TVR) and subacute stent thrombosis (ST), even in the drug-eluting stent (DES) era. Stent balloons are usually semi-compliant and thus even high-pressure inflation may not achieve uniform or optimal stent expansion. Post-dilatation with non-compliant (NC) balloons after stent deployment has been shown to enhance stent expansion and could reduce TVR and ST. Based on supporting evidence and in the absence of large prospective randomised outcome-based trials, post-dilatation with an NC balloon to achieve optimal stent expansion and maximal luminal area is a logical technical recommendation, particularly in complex lesion subsets.
NASA Technical Reports Server (NTRS)
Huang, Adam
2016-01-01
The goal of the Solid State Inflation Balloon Active Deorbiter project is to develop and demonstrate a scalable, simple, reliable, and low-cost active deorbiting system capable of controlling the downrange point of impact for the full-range of small satellites from 1 kg to 180 kg. The key enabling technology being developed is the Solid State Gas Generator (SSGG) chip, generating pure nitrogen gas from sodium azide (NaN3) micro-crystals. Coupled with a metalized nonelastic drag balloon, the complete Solid State Inflation Balloon (SSIB) system is capable of repeated inflation/deflation cycles. The SSGG minimizes size, weight, electrical power, and cost when compared to the current state of the art.
BENIGN IDIOPATHIC ESOPHAGEAL STRICTURE IN A LION ( PANTHERA LEO): DILATION BY AN ACHALASIA BALLOON.
Ayala, Ignacio; Laredo, Francisco; Escobar; Alberca, Fernando
2018-03-01
A 1-yr old female lion ( Panthera leo) was referred with a 10-mo history of dysphagia for solid food (meat), episodic regurgitation, and poor weight gain. Esophagoscopy confirmed an esophagitis (midesophagus) and a stricture estimated to be of 13 mm diameter. This was subsequently dilated using a 20-mm-diameter balloon for 2 min followed by a 35-mm achalasia balloon for 3 min. The etiology remains undetermined in spite of a thorough history. The animal progressed satisfactorily, reaching 124 kg after 1 yr and has had no further signs. To the authors' knowledge, neither idiopathic esophageal stricture nor dilation using an achalasia balloon has been reported in Panthera spp.
The two-dimensional kinetic ballooning theory for ion temperature gradient mode in tokamak
NASA Astrophysics Data System (ADS)
Xie, T.; Zhang, Y. Z.; Mahajan, S. M.; Hu, S. L.; He, Hongda; Liu, Z. Y.
2017-10-01
The two-dimensional (2D) kinetic ballooning theory is developed for the ion temperature gradient mode in an up-down symmetric equilibrium (illustrated via concentric circular magnetic surfaces). The ballooning transform converts the basic 2D linear gyro-kinetic equation into two equations: (1) the lowest order equation (ballooning equation) is an integral equation essentially the same as that reported by Dong et al., [Phys. Fluids B 4, 1867 (1992)] but has an undetermined Floquet phase variable, (2) the higher order equation for the rapid phase envelope is an ordinary differential equation in the same form as the 2D ballooning theory in a fluid model [Xie et al., Phys. Plasmas 23, 042514 (2016)]. The system is numerically solved by an iterative approach to obtain the (phase independent) eigen-value. The new results are compared to the two earlier theories. We find a strongly modified up-down asymmetric mode structure, and non-trivial modifications to the eigen-value.
Global electrodynamics from superpressure balloons
NASA Technical Reports Server (NTRS)
Holzworth, R. H.; Hu, H.
1995-01-01
Electric field and conductivity measurements in the stratosphere between November 1992 and March 1993 have been made using superpressure balloons in the southern hemisphere. Over 400 payload-days of data have been made during a record setting experiment called ELBBO (Extended Life Balloon Borne Observatories). This experiment resulted in 4 flights aloft simultaneously for over 2 months including one flight which lasted over 4 months. Electrodynamical coupling between the atmosphere and ionosphere is studied using the measured electric fields, and a simple empirical model of the stratospheric conductivity. Altitude profiles of conductivity have been obtained from several superpressure balloon flights using the large end-of-flight altitude swings on the last few days of each flight (as the balloon begins to loose superpressure). Coupling between the fields and atmospheric inertial waves has been observed. Effects and dynamics of the global circuit suggest that standard models are missing significant phenomena. Large scale ionospheric convection activity has been studied from the polar cap to the middle latitudes. Cusp latitude fields have been continuously measured for many days in a row.
The NASA rocky mountain space grant high altitude research balloon project
NASA Astrophysics Data System (ADS)
Moore, R. G.; Espy, P.
1994-02-01
A group of U.S. universities, under the auspices of NASA's Space Grant College and Fellowship Program, has initiated a super-pressure balloon research project to measure ozone column density in the atmosphere above 20 kilometers, together with stratospheric circulation between 20 km and 40 km, over the continental U.S.A. Data from a balloon-borne ultraviolet spectrometer, together with time, altitude, latitude and longitude information from a Global Positioning System receiver, are recorded at ten-minute intervals during daytime hours in an on-board solid-state data logger. Coded messages are transmitted nightly from selected amateur radio ground stations to a receiver in the balloon gondola to command the transmission of packet radio bursts from the data logger to the ground stations, for relay to a central data collection and analysis facility at Utah State University. Discussions are under way with radio amateurs and members of the international scientific balloon community regarding extension of flights to cover the earth's northern hemisphere.
The NASA rocky moutain space grant high altitude research balloon project
NASA Astrophysics Data System (ADS)
Moore, R. G.; Espy, P.
1994-02-01
A group of U.S. universities, under the auspices of NASA's Space Grant College and Fellowship Program, has initiated a super-pressure balloon research project to measure ozone column density in the atmosphere above 20 kilometers, together with stratospheric circulation between 20 km and 40 km, over the continental U.S.A. Data from a balloon-borne ultraviolet spectrometer, together with time, altitude, latitude and longitude information from a Global Positioning System reciever, are recorded at ten-minute intervals during daytime hours in an on-board solid-state data logger. Coded messages are transmitted nightly from selected amateur radio ground stations to a receiver in the balloon gondola to command transmission of packet radio bursts from the data logger to the ground stations, for relay to a central data collection and analysis facility at Utah State University. Discussions are under way with radio amateurs and members of the international scientific balloon community regarding extension of flights to cover the earth's northern hemisphere.
Laser welding of balloon catheters
NASA Astrophysics Data System (ADS)
Flanagan, Aidan J.
2003-03-01
The balloon catheter is one of the principal instruments of non-invasive vascular surgery. It is used most commonly for angioplasty (and in recent years for delivering stents) at a multitude of different sites in the body from small arteries in the heart to the bilary duct. It is composed of a polymer balloon that is attached to a polymer shaft at two points called the distal and proximal bonds. The diverse utility of balloon catheters means a large range of component sizes and materials are used during production; this leads to a complexity of bonding methods and technology. The proximal and distal bonds have been conventionally made using cyanoacrylate or UV curing glue, however with performance requirements of bond strength, flexibility, profile, and manufacturing costs these bonds are increasingly being made by welding using laser, RF, and Hot Jaw methods. This paper describes laser welding of distal and proximal balloon bonds and details beam delivery, bonding mechanisms, bond shaping, laser types, and wavelength choice.
NASA Scientific Balloon in Antarctica
2017-12-08
NASA image captured December 25, 2011 A NASA scientific balloon awaits launch in McMurdo, Antarctica. The balloon, carrying Indiana University's Cosmic Ray Electron Synchrotron Telescope (CREST), was launched on December 25. After a circum-navigational flight around the South Pole, the payload landed on January 5. The CREST payload is one of two scheduled as part of this seasons' annual NASA Antarctic balloon Campaign which is conducted in cooperation with the National Science Foundation's Office of Polar Programs. The campaign's second payload is the University of Arizona's Stratospheric Terahertz Observatory (STO). You can follow the flights at the Columbia Scientific Balloon Facility's web site at www.csbf.nasa.gov/antarctica/ice.htm Credit: NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Kim, Sang Heum; Kim, Tae Gon; Kong, Min Ho
2017-09-01
The Onyx system has been well established in recent years as a very important material in the treatment of arteriovenous malformations (AVMs). When using the Onyx, it is essential to wait for the creation of a plug around the tip of the catheter, which enables the effective forward penetration of Onyx. Recent reports have shown that the introduction of a dimethyl sulfoxide compatible dual-lumen balloon microcatheter improves the efficiency of AVM embolization. We report our recent experience of two cases of intracranial AVM embolization using Onyx and the transarterial balloon-assisted technique. In both cases, the procedures were successfully performed and the nidus of the AVM was totally occluded in a relatively short time. This technique may enable immediate forward flow and penetration of Onyx without concern about reflux. It may also reduce the procedure time and increase the angiographic occlusion rate. Navigation of the dual-lumen balloon microcatheter nevertheless remains a challenge.
Kim, Sang Heum; Kong, Min Ho
2017-01-01
The Onyx system has been well established in recent years as a very important material in the treatment of arteriovenous malformations (AVMs). When using the Onyx, it is essential to wait for the creation of a plug around the tip of the catheter, which enables the effective forward penetration of Onyx. Recent reports have shown that the introduction of a dimethyl sulfoxide compatible dual-lumen balloon microcatheter improves the efficiency of AVM embolization. We report our recent experience of two cases of intracranial AVM embolization using Onyx and the transarterial balloon-assisted technique. In both cases, the procedures were successfully performed and the nidus of the AVM was totally occluded in a relatively short time. This technique may enable immediate forward flow and penetration of Onyx without concern about reflux. It may also reduce the procedure time and increase the angiographic occlusion rate. Navigation of the dual-lumen balloon microcatheter nevertheless remains a challenge. PMID:29159158
Resuscitative Endovascular Balloon Occlusion of the Aorta: A Bridge to Flight Survival.
Goforth, Carl; Bradley, Matthew; Pineda, Benilani; See, Suzanne; Pasley, Jason
2018-04-01
Trauma endures as the leading cause of death worldwide, and most deaths occur in the first 24 hours after initial injury as a result of hemorrhage. Historically, about 90% of battlefield deaths occur before the injured person arrives at a theater hospital, and most are due to noncompressible hemorrhage of the torso. Resuscitative endovascular balloon occlusion of the aorta is an evolving technique to quickly place a balloon into the thoracic or abdominal aorta to efficiently block blood flow to distal circulation. Maneuvers, such as resuscitative endovascular balloon occlusion of the aorta, to control endovascular hemorrhage offer a potential intervention to control noncompressible hemorrhage. This technique can be performed percutaneously or open in prehospital environments to restore hemodynamic functions and serve as a survival bridge until the patient is delivered to a treatment facility for definitive surgical hemostasis. This article describes the indications, complications, and application of resuscitative endovascular balloon occlusion of the aorta to military and civilian aeromedical transport. ©2018 American Association of Critical-Care Nurses.
A new noninvasive controlled intra-articular ankle distraction technique on a cadaver model.
Aydin, Ahmet T; Ozcanli, Haluk; Soyuncu, Yetkin; Dabak, Tayyar K
2006-08-01
Effective joint distraction is crucial in arthroscopic ankle surgery. We describe an effective and controlled intra-articular ankle distraction technique that we have studied by means of a fresh-frozen cadaver model. Using a kyphoplasty balloon, which is currently used in spine surgery, we tried to achieve a controlled distraction. After the fixation of the cadaver model, standard anteromedial and anterolateral portals were used for ankle arthroscopy. From the same portals, the kyphoplasty balloon was inserted and placed in an appropriate position intra-articularly. The necessary amount of distraction was achieved by inflating the kyphoplasty balloon with a pressure regulation pump. All anatomic sites of the ankle joint were easily visualized with the arthroscope during surgery by changing the pressure and the intra-articular position of the kyphoplasty balloon. Ankle distraction was clearly seen on the arthroscopic and image intensifier view. The kyphoplasty balloon is simple to place through the standard portals and the advantage is that it allows easy manipulation of the arthroscopic instruments from the same portal.
Holmium:YAG laser coronary angioplasty in patients with lesions not ideal for balloon angioplasty
NASA Astrophysics Data System (ADS)
Miyazaki, Shunichi; Nonogi, Hiroshi; Goto, Yoichi; Itoh, Akira; Ozono, Keizaburo; Daikoku, Satoshi; Haze, Kazuo
1993-06-01
Conventional balloon coronary angioplasty has limitations for application on particular lesions, such as lesions near the left main trunk (LMT), ostial location, and highly eccentric lesions. Hence, efficacy of newly developed Holmium YAG laser coronary angioplasty (HLCA) was assessed for 24 patients with angina. Adjunctive balloon angioplasty was performed for 21 of 24 lesions. Delivered energy ranged from 1.5 to 2.5 watts/pulse and the total exposure time ranged from 6 to 32 seconds. Laser success, defined as 20% reduction of stenotic ratio, was obtained in 16 of 24 (67%) and overall procedural success rate was 92%. Follow up coronary angiography after 3 months showed restenosis in 9 of 19 patients (47%). HLCA is an acutely effective treatment for lesions identified as not ideal for balloon angioplasty. However, angiographical restenosis rate is similar to the conventional balloon angioplasty and a highly calcified complex lesion may not be a candidate for the treatment of HLCA, because of a potential risk of coronary perforation.
Eustachian Tube Dilation via a Transtympanic Approach in 6 Cadaver Heads: A Feasibility Study.
Dean, Marc; Chao, Wei-Chieh; Poe, Dennis
2016-10-01
The goal of this study was to evaluate the feasibility of endoscopic transtympanic balloon dilation of the cartilaginous eustachian tube. To accomplish this, transtympanic balloon dilation of the cartilaginous eustachian tube was performed on 11 eustachian tubes (6 cadaver heads). The balloon catheter was introduced and passed through the protympanic orifice of the eustachian tube transtympanically under endoscopic view and cannulated without incident in all cadavers. Computed tomography was then performed postprocedure to evaluate for inadvertent dilation of the bony eustachian tube, adverse placement of the balloon, or any bony fractures. The balloon was seen to be successfully inflated in the cartilaginous portion without damage to surrounding structures in all cases. This demonstrates that under endoscopic guidance, the protympanic orifice of the eustachian tube can be feasibly cannulated and reliably traversed, allowing for targeted dilation of the cartilaginous eustachian tube from a transtympanic approach. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
Gabriel, Kara I; Williamson, Ashley
2010-12-01
Framing uncertain scenarios to emphasize potential positive or negative elements influences decision making and behavior. The current experiment investigated sex differences in framing effects on risk-taking propensity in a modified version of the Balloon Analogue Risk Task (BART). Male and female undergraduates completed questionnaires on sensation seeking, impulsiveness, and risk and benefit perception prior to viewing one of three framing conditions for the BART: (1) positively-framed instructions emphasizing the ability to earn money if balloons were inflated to large size; (2) negatively framed instructions emphasizing the possibility that money could be lost if balloons were inflated to bursting; and (3) completely framed instructions noting both possible outcomes. Results revealed correlations between BART performance and impulsiveness for both sexes. Compared to positive and complete framing, negatively framed instructions decreased balloon inflation time in women but not men, indicating sex differences in response to treatments designed to alter risk-taking behavior.
Structure of micro-instabilities in tokamak plasmas: Stiff transport or plasma eruptions?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickinson, D., E-mail: dd502@york.ac.uk; EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB; Roach, C. M.
2014-01-15
Solutions to a model 2D eigenmode equation describing micro-instabilities in tokamak plasmas are presented that demonstrate a sensitivity of the mode structure and stability to plasma profiles. In narrow regions of parameter space, with special plasma profiles, a maximally unstable mode is found that balloons on the outboard side of the tokamak. This corresponds to the conventional picture of a ballooning mode. However, for most profiles, this mode cannot exist, and instead, a more stable mode is found that balloons closer to the top or bottom of the plasma. Good quantitative agreement with a 1D ballooning analysis is found, providedmore » the constraints associated with higher order profile effects, often neglected, are taken into account. A sudden transition from this general mode to the more unstable ballooning mode can occur for a critical flow shear, providing a candidate model for why some experiments observe small plasma eruptions (Edge Localised Modes, or ELMs) in place of large Type I ELMs.« less
Overview of the TILDAE High-Altitude Balloon Mission
NASA Astrophysics Data System (ADS)
Godbole, N. H.; Maruca, B.; Marino, R.; Sundkvist, D. J.; Constantin, S.; Zimmerman, H.; Carbone, V.
2016-12-01
Though the presence of intermittent turbulence in the stratosphere has been well established, much remains unknown about it. In situ observations of this phenomenon, which have provided the greatest detail of it, have typically been achieved via sounding balloons (i.e., small balloons which burst at peak altitude) carrying constant-temperature "hot wire" anemometers (CTAs). The Turbulence and Intermittency Long-Duration Atmospheric Experiment (TILDAE) was developed to test a new paradigm for stratospheric observations. Rather than flying on a sounding balloon, TILDAE was incorporated as an "add-on" experiment to the payload of a NASA long-duration balloon mission that launched in January, 2016 from McMurdo Station, Antarctica. Furthermore, TILDAE's key instrument was a sonic anemometer, which (relative to a CTA) provides better-calibrated measurements of wind velocity and more-robust separation of velocity components. This presentation focuses on the technical details of TILDAE's instrumentation and the performance thereof during its flight. Potential design improvements for future flights are also discussed.
Yakami, Yoshikazu; Watanabe, Kenji; Kameda, Natsuhiko; Machida, Hirohisa; Okazaki, Hirotoshi; Yamagami, Hirokazu; Shiba, Masatsugu; Fujiwara, Yasuhiro; Oshitani, Nobuhide; Arakawa, Tetsuo
2008-11-01
A 31-year-old man has visited our hospital, complaining diarrhea and leg edema. Blood test showed hypoalbuminea, but we couldn't find the reason by several examinations. Therefore, we performed double balloon enteroscopy, and intestinal lymphangiectasia was diagnosed histologically by biopsy. It's useful and effective to perform double balloon enteroscopy and histological examination for the unknown origin case of protein loosing enteropathy.
Balloon valvuloplasty of congenital mitral stenosis.
Arndt, Jason W; Oyama, Mark A
2013-06-01
Radiographic, echocardiographic, fluoroscopic, and angiographic images from 2 dogs with severe congenital mitral valve stenosis that underwent cardiac catheterization and balloon valvuloplasty are presented. Both dogs displayed systolic doming of the mitral valve leaflets, increased diastolic pressure gradient across the left atrium and ventricle, and decreased mitral inflow E to F slope. Balloon valvuloplasty was performed on both dogs using atrial transeptal puncture. Copyright © 2013 Elsevier B.V. All rights reserved.
Balloon-assisted embolization of skull base meningioma with liquid embolic agent.
Abdel Kerim, Amr; Bonneville, Fabrice; Jean, Betty; Cornu, Philippe; LeJean, Lise; Chiras, Jacques
2010-01-01
The authors report a novel technique of balloon-assisted embolization of a skull base meningioma supplied by a branch of the cavernous segment of the internal carotid artery using liquid embolic agent. A temporarily inflated balloon distal to the meningioma's feeding vessel may improve the access to this small branch and may reduce the chances of unintended reflux during delivery of the liquid embolic agent.
Performance of a day time star sensor for a stabilized balloon platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, E.; DiCocco, G.; Donati, A.
1989-02-01
A modified version of a CCD star tracker originally designed for use on the ROSAT X ray astronomy satellite, has been built for use on a three axis stabilized balloon platform. The first flight of this star sensor was planned for may 1988 from the NASA Balloon base at Palestine, Texas. The expected performance of this instrument is described along with the preflight results.
Cortese, Bernardo; Berti, Sergio; Biondi-Zoccai, Giuseppe; Colombo, Antonio; Limbruno, Ugo; Bedogni, Francesco; Cremonesi, Alberto; Silva, Pedro Leon; Sgueglia, Gregory A
2014-02-15
Drug-coated balloons are a new tool for the treatment of patients with coronary artery disease. The main feature of this technology is a rapid and homogenous transfer of an antiproliferative drug (paclitaxel) to the vessel wall just at the time of balloon inflation, when neointimal proliferation, in response to angioplasty, is the highest. Moreover, drug-coated balloons share adjuntive advantages over stents: the absence of permanent scaffold and polymer, the respect of the original coronary anatomy, and limited inflammatory stimuli, thereby allowing for short-term dual antiplatelet therapy. To this day, a lot of devices are available in the market, with limited scientific data for the vast majority of them. Thus, the Italian scientific society of interventional cardiologists GISE decided to coordinate the efforts of a group of reknown experts on the field, in order to obtain a Position Paper on the correct use of drug-coated balloons in all the settings of coronary artery disease, giving a class of indication to each one, based on the clinical evidence. This Position Paper represents a quick reference for operators, investigators, and manufactures to promote the understanding and the correct use of the drug-coated balloon technology in everyday clinical practice. Copyright © 2013 Wiley Periodicals, Inc.
Real-time adjustment of ventricular restraint therapy in heart failure.
Ghanta, Ravi K; Lee, Lawrence S; Umakanthan, Ramanan; Laurence, Rita G; Fox, John A; Bolman, Ralph Morton; Cohn, Lawrence H; Chen, Frederick Y
2008-12-01
Current ventricular restraint devices do not allow for either the measurement or adjustment of ventricular restraint level. Periodic adjustment of restraint level post-device implantation may improve therapeutic efficacy. We evaluated the feasibility of an adjustable quantitative ventricular restraint (QVR) technique utilizing a fluid-filled polyurethane epicardial balloon to measure and adjust restraint level post-implantation guided by physiologic parameters. QVR balloons were implanted in nine ovine with post-infarction dilated heart failure. Restraint level was defined by the maximum restraint pressure applied by the balloon to the epicardium at end-diastole. An access line connected the balloon lumen to a subcutaneous portacath to allow percutaneous access. Restraint level was adjusted while left ventricular (LV) end-diastolic volume (EDV) and cardiac output was assessed with simultaneous transthoracic echocardiography. All nine ovine successfully underwent QVR balloon implantation. Post-implantation, restraint level could be measured percutaneously in real-time and dynamically adjusted by instillation and withdrawal of fluid from the balloon lumen. Using simultaneous echocardiography, restraint level could be adjusted based on LV EDV and cardiac output. After QVR therapy for 21 days, LV EDV decreased from 133+/-15 ml to 113+/-17 ml (p<0.05). QVR permits real-time measurement and physiologic adjustment of ventricular restraint therapy after device implantation.
Overview of and first observations from the TILDAE High-Altitude Balloon Mission
NASA Astrophysics Data System (ADS)
Maruca, Bennett A.; Marino, Raffaele; Sundkvist, David; Godbole, Niharika H.; Constantin, Stephane; Carbone, Vincenzo; Zimmerman, Herb
2017-04-01
Though the presence of intermittent turbulence in the stratosphere has been well established, much remains unknown about it. In situ observations of this phenomenon, which have provided the greatest details of it, have mostly been achieved via sounding balloons (i.e., small balloons which burst at peak altitude) carrying constant-temperature hot-wire
anemometers (CTAs). The Turbulence and Intermittency Long-Duration Atmospheric Experiment (TILDAE) was developed to test a new paradigm for stratospheric observations. Rather than flying on a sounding balloon, TILDAE was incorporated as an add-on
experiment to the payload of a NASA long-duration balloon mission that launched in January 2016 from McMurdo Station, Antarctica. Furthermore, TILDAE's key instrument was a sonic anemometer, which (relative to a CTA) provides better-calibrated measurements of wind velocity and a more robust separation of velocity components. During the balloon's ascent, TILDAE's sonic anemometer provided atmospheric measurements up to an altitude of about 18 km, beyond which the ambient air pressure was too low for the instrument to function properly. Efforts are currently underway to scientifically analyze these observations of small-scale fluctuations in the troposphere, tropopause, and stratosphere and to develop strategies for increasing the maximum operating altitude of the sonic anemometer.
Gupta, Devendra; Agarwal, Anil; Dhiraaj, Sanjay; Tandon, Manish; Kumar, Mukesh; Singh, Ravi Shankar; Singh, Prabhat K; Singh, Uttam
2006-05-01
Venipuncture is the most common painful event for a hospitalized child. We evaluated the efficacy of balloon inflation for attenuating venipuncture pain in children. Seventy-five pediatric patients aged 6-12 yr, ASA physical status I-II, of either sex, undergoing elective surgery were included in this prospective and randomized study. Patients were randomly divided into 3 equal groups of 25 each; Group I (control), Group II (distraction) pressed a rubber ball, and Group III (balloon) inflated a balloon. A manual venous occlusion was applied on the forearm and venipuncture was performed with a 22-gauge venous cannula. Pain was self-reported by a pain face scale with a 10-cm visual analog scale (VAS) placed at its back, where 0 = "no pain" and 10 = "worst imaginable pain." VAS scores of 1-3 were rated as mild, 4-6 as moderate, and >6 as severe. Median (interquartile range) VAS score in the balloon group was 1 (3), which was reduced as compared with 2 (2) and 4 (2) observed in the distraction and control groups, respectively (P < 0.000). Significant reduction in the incidence and severity of venipuncture pain was also observed in the balloon group compared with the other 2 groups (P < 0.05).
NASA Astrophysics Data System (ADS)
Shimazaki, Natsumi; Naruse, Sho; Arai, Tsunenori; Imanishi, Nobuaki; Aiso, Sadakazu
2013-03-01
The purpose of this study was to investigate the artery dilatation performance of the short-duration heating balloon catheter in cadaver stenotic arteries. We designed a prototype short-duration heating balloon catheter that can heat artery media to around 60 °C in 15-25 s by a combination of laser-driven heat generation and continuous fluid irrigation in the balloon. We performed ex vivo short-duration heating dilatation in the cadaver atherosclerotic femoral arteries (initial percent diameter stenosis was 36-98%), with the maximum balloon temperature of 65+/-5 °C, laser irradiation duration of 25 s, and balloon dilatation pressure of 3.5 atm. The artery lumen configurations before and after the dilatations were assessed with a commercial IVUS system. After the short-duration heating dilatations, the percent diameter stenosis was reduced below 30% without any artery tears or dissections. We estimated that the artery media temperature was raised to around 60 °C in which plaque thickness was below 0.8 mm by a thermal conduction calculation. The estimated maximum temperature in artery adventitia and surrounding tissue was up to 45 °C. We found that the short-duration heating balloon could sufficiently dilate the cadaver stenotic arteries, without thermal injury in artery adventitia and surroundings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Nina, E-mail: nina.ni@yale.edu; Mojibian, Hamid; Pollak, Jeffrey
To compare the rates of central venous stenosis in patients undergoing hemodialysis who underwent disruption of fibrin sheath with percutaneous transluminal angioplasty balloons and those who underwent over-the-wire catheter exchange. This study is a retrospective review of 209 percutaneous transluminal angioplasty balloon disruption and 1304 over-the-wire catheter exchange procedures performed in 753 patients. Approval from the Human Investigations Committee was obtained for this study. Up to 10-year follow-up was performed. A {chi}{sup 2} test was used to compare the rates of central venous stenosis after balloon disruption versus catheter exchange. A t-test was used to compare time to central venousmore » stenosis development. Of the 753 patients in the study, 127 patients underwent balloon disruption of fibrin sheath and 626 had catheter exchange. Within the balloon disruption group, 18 (14.2%) of 127 patients subsequently developed central venous stenosis, compared with 44 (7.0%) of 626 in the catheter exchange group (P < 0.01, {chi}{sup 2} test). Time to central venous stenosis development was approximately 3 years in both groups and not significantly different (1371 and 1010 days, P = 0.20). A total of 25.2% of patients in the balloon disruption group had four or more subsequent catheter exchanges, versus 12.6% in the catheter exchange group (P < 0.01, {chi}{sup 2} test). In conclusions, there is a possible association between percutaneous transluminal angioplasty balloon disruption of fibrin sheath and late-onset central venous stenosis. Because venography was not routinely performed in catheter exchange patients, future randomized studies are necessary to confirm these findings.« less